University of Minho
School of Engineering

Rafaela Maria Soares da Silva
Infrastructure as Code:

Analysis of Misconfiguration and
Non-Compliance Problems

June 2022

University of Minho

School of Engineering

Rafaela Maria Soares da Silva

Infrastructure as Code:
Analysis of Misconfiguration and
Non-Compliance Problems

Master’s Dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by

Vitor Francisco Mendes Freitas Gomes Fonte (supervisor)
Jodo Marco Cardoso Silva (co-supervisor)

Daniela da Cruz (supervisor in workplace)

June 2022

COPYRIGHT AND TERMS OF USE FOR THIRD PARTY WORK

This dissertation reports on academic work that can be used by third parties as long as the internationally
accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the
author through the RepositériUM of the University of Minho.

LICENSE GRANTED TO USERS OF THIS WORK:

OMOM

CC BY
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

ACKNOWLEDGEMENTS

| would like to express my deepest gratitude to Checkmarx, the company that allowed me to embrace this
research. Especially to Daniela da Cruz, who regularly motivated, guided, and helped me throughout the
dissertation progress. Her assistance and knowledge sharing were crucial. And also to everyone involved
with KICS, who shared their knowledge with me and motivated me.

My warmest appreciation also goes to my supervisors, Vitor Francisco Mendes Freitas Gomes Fonte and
Jodo Marco Cardoso Silva, for their insightful observations, support and encouragement.

| would also like to extend my thanks to my "poconico” and my family for being patient with me and for
their support since day one. Last but not least, thanks also should go to my friends, who supported my
journey.

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity.

| confirm that | have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the University of Minho.

ABSTRACT

Infrastructure as Code: Analysis of Misconfiguration and Non-Compliance Problems

Infrastructure as Code (laC) is an innovative DevOps approach to infrastructure configuration and man-
agement. Instead of using traditional interactive tools — such as command line — or cloud provider web
interfaces, it automates several tasks through extensive use of scripting languages and tools.

Being a relatively new field, with a fast-paced developing set of tools, it is of crucial importance to assist
its users and its developers to tackle security concerns that might affect the environments these tools are
meant to manage. Some of those security concerns must always be handled within an actual live, running
environment. This is the case, for example, of checking for service availability. Issues like this are already
being addressed by existing dynamic analysis tools. Others should be handled using a static analysis
approach, which, in turn, should prevent those security concerns from ever becoming a live security issue.

In this dissertation, we focus on trying to bridge the gap between the set of security checks currently
being addressed by tools that follow these approaches. We identify 150 security checks currently being
performed only by dynamic analysis tools, and we implement 23% of them in KICS, a Checkmarx-backed,
open source, static code analysis tool for laC solutions.

The new checks we contribute to KICS address misconfiguration and non-compliance problems that can
be prevented using static analysis, mainly focusing on access control, but also on network security. Overall,
this dissertation addresses 34 security checks, effectively bridging the gap between static and dynamic
analysis for 1aC in the KICS context.

Although not always possible, we strive to make available each security check to Ansible, CloudFormation,
and Terraform. These new security checks and the necessary changes to KICS were submitted to the GitHub
project’s repository, were approved by the KICS team, and are now into its master branch. This means that
new KICS releases will make available these security checks to its current users and to a broader audience,
and, hopefully, will foster the development of community-based extensions and enhancements, such as
support for other laC platforms and security domains that we were unable to tackle due to time constraints.

Keywords: DevOps, Dynamic Analysis, Infrastructure as Code, KICS, Static Analysis.

RESUMO

Infrastructure as Code: Analise de Problemas de Misconfiguration e Non-Compliance

Infrastructure as Code (laC) ¢ uma pratica inovadora de DevOps para configuracao e gestao de in-
fraestrutura. Em alternativa ao uso tradicional de ferramentas interativas — como a linha de comandos
— ou interfaces web de cloud providers, 1aC automatiza varias tarefas, através do uso de linguagens e
ferramentas de script.

Por ser um campo novo, com um conjunto de ferramentas em desenvolvimento acelerado, é fulcral
ajudar os seus utilizadores e developers a lidar com problemas de seguranca, que possam afetar os ambi-
entes que essas ferramentas devem gerir. Algumas dessas preocupacdes devem sempre ser tratadas num
ambiente em execucdo. E o caso, p. ex., da verificacdo de service availability. Questdes como esta ja s&o
abordadas por ferramentas de analise dinamica. Outras devem ser tratadas através de uma abordagem de
analise estatica, que deve impedir que essas preocupacoes se tornem um problema de seguranca ativo.

Nesta dissertacdo, focamo-nos em tentar preencher a lacuna entre o conjunto de security checks das
ferramentas que seguem estas abordagens, atualmente. Identificamos 150 security checks atualmente
realizadas apenas por ferramentas de analise dinamica e implementamos 23% delas no KICS, uma ferra-
menta open source de analise estatica de codigo, apoiada pela Checkmarx, para solucdes de laC.

As novas security checks, que contribuimos para o KICS, abordam problemas de misconfiguration e
non-compliance, que podem ser evitados através de analise estatica, com foco principal em access control,
mas também em network security. No geral, esta dissertacdo aborda 34 security checks, preenchendo
efetivamente a lacuna entre a analise estatica e dindmica para laC, no contexto do KICS.

Embora nem sempre seja possivel, esforcamo-nos para disponibilizar cada security check para Ansi-
ble, CloudFormation e Terraform. As novas security checks e alteracdes no KICS foram submetidas no
repositdrio GitHub do KICS, foram aprovadas pela equipa do KICS e estdo no master branch. Tal significa
gue as novas versdes do KICS terao essas security checks para os seus utilizadores atuais e para um publico
mais amplo e, esperancosamente, promoverao contribuicbes da comunidade, como o suporte para outras
plataformas de laC e dominios de seguranca que nao conseguimos resolver devido a limitagdes de tempo.

Palavras-chave: DevOps, Dynamic Analysis, Infrastructure as Code, KICS, Static Analysis.

Vi

LISTOF CONTENTS

1 INTRODUCTION

1.1 Context

1.2 Motivation

1.3 Objectives

1.4 Methodology Approach

1.5 Document Structure

2 INFRASTRUCTURE AS CODE
2.1 Main Concepts
2.1.1 Infrastructure as Code
2.1.2 Code and Security Smells
2.1.3 laC Misconfiguration and Non-Compliance Problems
2.1.4 Security Query
2.1.5 Static Analysis vs. Dynamic Analysis
2.2 Related Work
2.2.1 Prior Work on laC Scripts
2.2.2 Scanning laC Scripts using Static Code Analysis Tools
2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure
2.2.3.1 Commercial Tools 16
2.2.3.2 Open Source Tools 18
2.3 Summary
3 KICS: ACASE STUDY
3.1 Static Analysis Tools vs. Dynamic Analysis Tools
3.1.1 Methodology
3.1.2 Results
3.2 WhyKICS

3.3 KICS Overview

0 N o o oW w NN

— = = = e e
A BN NN = O

18
19
19
19
21
33
33

vii

list of contents

3.3.1 Architecture 33

3.3.2 Command Line Interface 34

3.3.3 Core 34

3.3.4 laC Solutions 35

3.3.5 Queries Execution Engine 36

3.3.6 Results 38

3.4 The Problem 40
3.5 Challenges 40
3.5.1 Filtration of the Collected Security Queries 40

3.5.2 Implementation of the Selected Security Queries 41

3.6 Summary 41
FITTING NEW SECURITY QUERIES INTO KICS 43
4.1 Introduction 43
4.2 Implementing the Security Queries 43
421 [AWS_AC_08] API Gateway without WAF 44

4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer 44

4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower

Than 256 46

4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication 47

4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled 47

4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions 48

4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined 48

4.2.8 [AWS_AC_41] IAM Group Without Users 49

429 [AWS_AC_b53] Cross-Account IAM Assume Role Policy Without Externalld or MFA 49
4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in

use for EC2 instance 51

4211 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without

VPC 52

4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database

Service (RDS) Using Default Port & [AWS_NS_61] Redshift Using Default Port 53

viii

5.1
5.2

5.3
54
5.5

list of contents

4.2.13 [AWS_NS_56] VPC Without Network Firewall 54
4.2.14 [AWS_NS_57] RDS Associated with Public Subnet 54
4.2.15 [AWS_NS_74] Shield Advanced Not In Use 55
4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions 56
4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation 56
4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions 57
4.2.19 [AZURE_AC_39] Storage Table Allows All ACL Permissions 57
4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled 57
4.2.21 [GCP_AC_13] Service Account With Improper Privileges 58
4.2.22 [GCP_AC_16] IAM Role Assigned to User 58
4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles 58
4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible 59
4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account 59
4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule 59
4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports &
[GCP_NS_08] Google Compute Network Using Firewall Rule that Allows Port Range60

4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled 60

4.3 Discarded Queries 61
4.4 Summary 64
EXTENDING KICS 65
Setup of the KICS Development Environment 65
Development of the Security Queries 66

5.2.1 Metadata File 66

5.2.2 Query File 67

5.2.3 Security Query Development Example 68

Tests 72
Creation of the Pull Request 74
Contribution Overview 75
CONCLUSIONS AND FUTURE WORK 77

6.1

Conclusions

77

ix

list of contents X

6.2 Future Work 78

References 79

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

ltem 3.9 of the CIS Amazon Web Services Foundations Benchmark v1.4.0 (Source: CIS) 10

Example of incidents that can be detected with Bridgecrew 17
KICS Architecture (Source: KICS Website) 34
KICS results in Command Line Interface (CLI) 38
KICS GitHub repository fork 65
KICS GitHub repository fork clone link 66
REGO Playground 67
REGO Playground 70
Pull request 74

Xi

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18

Table 19
Table 20
Table 21
Table 22
Table 23
Table 24

Catalog of 24 code smells for Puppet by Sharma et al. (2016)
Catalog of 17 code smells for Chef by Schwarz et al. (2018)
Static code analysis tools for laC

Commercial dynamic analysis tools for cloud-based infrastructure
Open source dynamic analysis tools for cloud-based infrastructure
[AWS] Access Control context - Part |

[AWS] Access Control Part Il

[AZURE] Access Control context

[GCP] Access Control context

[AWS] Network Security context - Part |

[AWS] Network Security - Part Il

[AZURE] Network Security

[GCP] Network Security context

Collected security queries according to 1aC problem

laC solutions configuration file extension

[AWS_AC_08] API Gateway without WAF

[AWS_AC_10] API Gateway Without Configured Authorizer

13
13
15
17
18
23
24
25
26
27
28
29
30
32
35
44
46

[AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than

256

[AWS_AC_18] Elasticsearch Without IAM Authentication

[AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled
[AWS_AC_32] SES Policy With Allowed IAM Actions

[AWS_AC_35] IAM Access Analyzer Undefined

[AWS_AC_41] IAM Group Without Users

[AWS_AC_53] Cross-Account IAM Assume Role Policy Without Externalld or MFA

47
47
47
48
49
49
51

Xii

Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47

Table 48
Table 49

Table 50

list of tables

[AWS_NS_05] Default EC2 security group are in use 51
[AWS_NS_07] Default VPC in use for EC2 instance 52
[AWS_NS_49] Elastic MapReduce Without VPC 52
[AWS_NS_50] ElastiCache Without VPC 52
Default ports 53
[AWS_NS_51] ElastiCache Using Default Port 53
[AWS_NS_58] Relational Database Service (RDS) Using Default Port 53
[AWS_NS_61] Redshift Using Default Port 54
[AWS_NS_56] VPC Without Network Firewall 54
[AWS_NS_57] RDS Associated with Public Subnet 55
[AWS_NS_74] Shield Advanced Not In Use 56
[AZURE_AC_21] Role Assignment Not Limit Guest User Permissions 56
[AZURE_AC_22] Role Definition Allows Custom Role Creation 56
[AZURE_AC_29] Storage Share File Allows All ACL Permissions 57
[AZURE_AC_39] Storage Table Allows All ACL Permissions 57
[AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled 57
[GCP_AC_13] Service Account With Improper Privileges 58
[GCP_AC_16] IAM Role Assigned to User 58
[GCP_AC_17] User with KMS Admin and CryptoKey Rules 58
[GCP_AC_21] KMS Crypto Key is Publicly Accessible 59
[GCP_AC_23] Container Cluster Using Default Service Account 59
[GCP_NS_06] Google Compute Network Using Default Firewall Rule 60
[GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_-
NS_08] Google Compute Network Using Firewall Rule that Allows Port Range 60
[GCP_NS_43] Compute Subnetwork with Private Google Access Disabled 61

noon;

List of the discarded queries according to "dynamic”, "known”, "inapplicable”, and "un-
known" scopes 63

List of security queries contributed to KICS 76

Xiii

LIST OF LISTINGS

O 00 N O 01 & W N =

N N —m = = = = = = = =
— O W 00 N O O & W N — O

AWS CLI command example
Terraform script
AWS Access Key hard-coded

laC Misconfiguration example .

Payload example .
Terraform file example
Query file tree .

Metadata example

Query example
KICS results in a JSON repor
All actions to all principals
MFA configuration

External ID configuration
Payload example .

metadata.json of the query "Neptune Cluster With IAM Database Authentication Disabled”
query.rego of the query "Neptune Cluster With IAM Database Authentication Disabled”

Test folder tree

Positive sample example ('positivel.tf’) .
Positive sample example ('positive2.tf') .
Negative sample example ('negative.tf’) .

Positive expected result sample example ('positive_expected_result.json’) .

70

72
72
72
73
73

Xiv

INTRODUCTION

11 Context

Cloud Computing Services assert themselves to the detriment of other data management and processing
forms. Instead of using our hardware to satisfy requirements from storage to management and processing
of data, these services offer the possibility to call upon remote servers on the Internet. "Software is remotely
deployed in a virtualized runtime environment using shared hardware/software resources, and hosted in a
third-party infrastructure”, as maintained by Bai et al. (2011).

That is possible through approaches like Infrastructure as a Service (laaS), Platform as a Service (PaaS),
and Software as a Service (SaaS) that involve the management of some parts of the stack instead of the full
traditional stack. That is the most likely reason why more than 90% of companies use at least one Cloud
Computing Service!. Examples of well-known providers are Amazon Web Services (AWS), Google Cloud
Platform (GCP), and Microsoft Azure.

Apart from these services, Infrastructure as Code (laC) appears as a modern way of infrastructure con-
figuration and management. According to Guerriero et al. (2019), this technology can be seen as a DevOps
practice that provides configuration and management of infrastructure through scripts instead of traditional
interactive tools — such as command line — or cloud provider web interfaces. Examples of 1aC technologies
are Ansible?, Chef®, CloudFormation®, Docker®, Kubernetes®, Puppet’, and Terraform®, among others.

laC technologies present substantial benefits over configuration management and server provisioning
compared to other alternatives. In addition to being a faster process, they also allow the reuse of scripts
and implementation of software engineering practices.

1 https://techjury.net/blog/how-many-companies-use-cloud-computing/
2 https://docs.ansible.com/ansible/latest/index.html

3 https://docs.chef.io/

4 https://docs.aws.amazon.com/cloudformation/

5 https://www.docker.com/

6 https://kubernetes.io/

7 https://puppet.com/

8 https://www.terraform.io/

https://techjury.net/blog/how-many-companies-use-cloud-computing/
https://docs.ansible.com/ansible/latest/index.html
https://docs.chef.io/
https://docs.aws.amazon.com/cloudformation/
https://www.docker.com/
https://kubernetes.io/
https://puppet.com/
https://www.terraform.io/

1.2. Motivation

However, during the development of these scripts, inadvertent infrastructure misconfigurations, non-
compliance problems, or security vulnerabilities can occur, either because of a lack of awareness of the
best security practices in laC, or even due to bugs in the code. Additionally, various challenges can arise
from these technologies, the main one being testability, as stated by Guerriero et al. (2019).

1.2 Motivation

According to Google Trends?, Infrastructure as Code started gaining traction in 2015, which indicates that
this practice is a recent field. As with any recent field of study, there are several significant subjects to
investigate and explore. In this dissertation, however, the focus will be on the analysis of misconfiguration
and non-compliance problems in laC scripts.

Before 1aC code is executed, the best way to prevent potential vulnerabilities in cloud infrastructure (as a
result of misconfiguration and non-compliance problems from laC scripts) is to focus on a static approach.
However, this type of approach has disadvantages compared to a dynamic one, which results in a gap
between the static analysis tools for laC and dynamic tools for cloud-based infrastructure. The exploration
of this gap can benefit the laC community since it will be new material to consider and contribute to a more
extensive testability of 1aC scripts.

For that matter, the present dissertation explores how information usually collected by dynamic tools for
cloud-based infrastructure can be fully or partially implemented or addressed in an laC static approach in
a specific context.

1.3 Objectives

As a starting point, it is necessary to understand the concept of 1aC to better grasp how these technologies
work. That is essential to perceive the best security practices desired in this type of technology.

Secondly, it is essential to study dynamic analysis tools for cloud-based infrastructure that already exist
and identify what problems and information they can recognize in a specific context. Subsequently, the
present study intends to verify which of those problems and information recognized by the dynamic analysis
tools for cloud-based infrastructure are not identified by laC static analysis tools.

As a final goal, the study aims to pinpoint which of the potential problems identified by the dynamic
approach are feasible to be transposed to a static one.

To this end, the main objectives are:

¢ Understand the laC concept and explore its technologies.

9 https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure’20as’20code

https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code

1.4. Methodology Approach

e Study the gap between static analysis tools for IaC and dynamic analysis tools for cloud-based infras-

tructure.

e Study and attempt to define solutions bridging the gap between static analysis tools for laC and

dynamic analysis tools for cloud-based infrastructure in a static approach.

¢ Contribute solutions to KICS (Keeping Infrastructure as Code Secure), an open source static analysis
tool for laC provided by Checkmarx.

1.4 Methodology Approach

The methodology followed in this dissertation consists of the following eight steps:

1. Literature review about all aspects considered relevant, supported by scientific articles, publications,

and documentation.

2. ldentify and explore static analysis tools for laC and dynamic analysis tools for cloud-based infras-

tructure.

3. Choose a security context, between the several existing domains of security problems, to compare
both kinds of tools.

4. Collect the information that both kinds of tools recognize in a given context.

5. Study the gap between static analysis tools for laC and dynamic analysis tools for cloud-based infras-

tructure from the information collected; Present the results of the study.

6. Study and attempt to define solutions bridging the gap in a static approach; Contribute the solutions
to KICS.

7. Simultaneously to the previous task, tests the effectiveness of the proposed solutions.

8. Focus on the writing of the dissertation and, later, revision.

1.5 Document Structure

The present document is composed of four main chapters, preceded by this Introduction (Chapter 1) and
succeeded by Conclusions and Future Work (Chapter 6).

Chapter 1, the current one, is an introduction to the project, which provides an explanation of the disser-
tation context, including the motivation, objectives, and methodology approach.

3

1.5. Document Structure

Chapter 2, Infrastructure as Code, is constituted by two main sections, Infrastructure as Code (2.1) and
Related Work (2.2). Section 2.1 includes all relevant background necessary to understand the context of
this dissertation. For its part, Section 2.2 highlights an overview of prior work on laC scripts.

Chapter 3, KICS: A Case Study, details the case study of the present dissertation, i.e., a comparison
between static analysis tools for laC and dynamic analysis tools for cloud-based infrastructure in the defined
context. Furthermore, it reports its results.

Chapter 4, Fitting New Security Queries Into KICS, highlights how the dissertation study results can
or cannot be implemented in KICS. Moreover, it presents a set of reasons regarding the queries discard
process.

Chapter 5, Extending KICS, addresses the application of the solutions presented in Chapter 4 to KICS.
Therefore, it lists all the solutions implemented in the KICS GitHub repository, including the GitHub pull
request related to each one.

Chapter 6, Conclusions and Future Work, presents the conclusions of the present dissertation, focusing
on contributions to KICS and the prospect for future work.

2

INFRASTRUCTURE AS CODE

This chapter details the essential concepts needed to understand Infrastructure as Code. Moreover, it
provides an overview of the related work in this field.

2.1 Main Concepts

2.1.1 |Infrastructure as Code

DevOps is the collaboration result between Dev (Development) and Ops (Operations). This concept comes
up with two different needs in mind. On the one hand, the demand for speed by the developers: since they
need to deliver software products as soon as possible, they need a fast deployment and release process,
as stated by Guerriero et al. (2019). On the other hand, the demand for system stability by the system
operations. Any change in the system could present a risk of instability, which hampers its maintenance.

In prior years, both teams used to work separately. Ops teams had to manage a great deal of hardware
manually to deploy and run software products done by the Dev team. According to Brikman (2019), this
might lead to mistakes since the number of servers increases with time, resulting in slow and uncertain
releases. Consequently, the system becomes unstable, which delays its delivery.

However, with the emergence of the Cloud Computing concept, Ops teams no longer have to manage
the full traditional stack. Cloud Computing Services! offer the possibility to manage just some parts of the
stack. This management is done by software, which brings both teams together.

With that being said, it seems that the division of work and teams has become obsolete. There are
several DevOps practices such as Continuous Integration, Continuous Delivery, Continuous Deployment,
Build Automation, Configuration Management, Orchestration, Monitoring, Microservices, and Infrastructure
as Code (the main subject of this dissertation). All these practices allow both teams to cooperate and

achieve speed and stability.

1 Infrastructure as a Service, Platform as a Service, Software as a Service, and Function as a Service

4

O 0 N O

—_
o

2.1. Main Concepts

Infrastructure as Code (laC) is a DevOps practice that provides configuration and management of in-
frastructure through scripts instead of traditional interactive tools — such as command line — or cloud
provider web interfaces. Guerriero et al. (2019) These files are known as laC scripts, configuration scripts,
or configuration as code scripts. Rahman, Parnin and Williams (2019)

Concerning configuration management (software installation and management on existing servers), the
most popular tools are Chef?, Puppet®, Ansible?, and SaltStack®. On the other hand, for server provisioning,
well-known tools are Terraform®, CloudFormation’, and OpenStack Heat®. Brikman (2019)

As said before, according to Google Trends®, the interest in this modern practice started to increase
in 2015. Major IT companies such as GitHub, Mozilla, Netflix, Google, and Facebook have adopted this
approach. Rahman, Mahdavi-Hezaveh and Williams (2019)

Practitioners use 1aC scripts because this technology is faster than the manual execution of shell com-
mands and interactive web pages. Moreover, they also use this approach due to re-usability and reliability.
Sharma et al. (2016) Beyond that, 1aC allows the implementation of software engineering practices like
self-service, consistency, documentation, version control, and validation. Brikman (2019)

Imagine a scenario with an Amazon EC2 instance launch. Through an interactive web page, more
precisely the AWS Management Console, the necessary steps are presented in the official AWS documen-
tation©.

Through manual execution of shell commands (in this context, AWS CLI) after configuring security cre-
dentials, a command similar to Listing 1 is required:

aws ec2 run-instances --image-id ami-40d28157 --count 1

--instance-type t2.micro

Listing 1: AWS CLI command example.

The previous example does not provide a practical way of documentation, version control, validation,
consistency, or re-usability. Instead of using them, one option is to use an laC technology, which can offer
these features, as shown in Listing 2.

provider "aws" {

region = "us-west-2"

https://www.chef.io/

https://puppet.com/

https://docs.ansible.com/ansible/latest/index.html

https://saltproject.io/

https://www.terraform.io/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.openstack.org/heat/latest/
https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure’,20as’20code

https://docs.aws.amazon.com/quickstarts/latest/vmlaunch/step-1-launch-instance.html

https://www.chef.io/
https://puppet.com/
https://docs.ansible.com/ansible/latest/index.html
https://saltproject.io/
https://www.terraform.io/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.openstack.org/heat/latest/
https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code
https://docs.aws.amazon.com/quickstarts/latest/vmlaunch/step-1-launch-instance.html

2.1. Main Concepts

resource "aws_instance" "

example" {
ami = ami-40d28157

instance_type = "t2.micro"

Listing 2: Terraform script.

This kind of script can be easily changed or reused, which provides a more intuitive way of configuring
and managing infrastructure. However, during the development of the 1aC scripts, inadvertent infrastructure
misconfigurations, non-compliance problems, or security vulnerabilities can occur. It can arise from a lack
of the best security practices in 1aC, misconfigurations, code smells, security smells, or even due to bugs
in the code.

The possibility of lack of the best security practices in laC, misconfigurations, code smells, security smells,
and bugs in the code seem to raise concerns for developers. As stated by Guerriero et al. (2019), the main
one being testability. Since this technology is recent, the field is under construction when it comes to the

security of these scripts.

The laC platforms use unique code structures, which require specific code implementation for each one.
Finding a range of tool options that incorporates the same target platform or all the platforms is quite hard.
In addition to that, need to be updated often and push forward to support more and more cloud solutions.

Consequently, the tools that scan the platform’s scripts also need to be constantly updated.
Finally, the best approach to analyze laC scripts is static analysis - a static analysis tool for laC that runs
security queries. Nevertheless, there is a gap between the static analysis tools for IaC and dynamic tools

for the cloud-based infrastructure. Chapter 3 addresses this issue.

2.1.2 Code and Security Smells

Code smells are "flaws in code which may lead to problems”. They do not "lead to a run-time error but
usually indicate that the code needs to be improved”. Schwarz et al. (2018) For example, incomplete tasks
can be considered as a code smell, which can lead to misconfigurations since the environment is not
completely configured.

On the other hand, as defined by Rahman, Parnin and Williams (2019), "security smells are recurring
coding patterns that are indicative of security weakness, and requires further inspection”. As an example of
this, consider a Terraform file with AWS as the cloud provider. As a best practice, AWS Access Key should

not be hard-coded in the script, as depicted below in Listing 3:

7

2.1. Main Concepts

provider "aws" {
region = "us-west-2"

access_key = "my_access_key"

Listing 3: AWS Access Key hard-coded.

If the AWS Access Key is hard-coded, anyone who has access to the file will have access to the credentials,
which is something to avoid.

2.1.3 laC Misconfiguration and Non-Compliance Problems

Misconfiguration problems can be seen as an incorrect or inadequate configuration of the infrastructure.

The usage of default settings or deprecated protocols and unsafe configurations (e.g., not using the latest
Transport Layer Security (TLS) version) are examples of this type of problem.

An example of a misconfiguration problem can be the definition of an AWS Redshift cluster in Terraform
with default settings for the optional parameters. When the field 'publicly_accessible’ (optional parameter)
is not defined in the resource 'aws_redshift_cluster’, the default value will be used. Since the default
value is true, the Redshift cluster will be accessible from a public network!!. It is important to read the

documentation and be aware of this type of problem. See Listing 4 for a suggestion of remediation for this

problem.

resource "aws_redshift_cluster" "example" {
cluster_identifier = "tf-redshift-cluster"
database_name = "mydb"
master_username = "exampleuser"
master_password = "Mustbe8characters"
node_type = "dcl.large"
cluster_type = "single-node"
publicly_accessible = false

}

Listing 4: [aC Misconfiguration example.

11 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_
accessible

8

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_accessible
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_accessible

2.1. Main Concepts

Non-compliance problems occur when standards are not followed. The standards help the developers
to establish a guide of best practices to prevent unsafe configurations. CIS (Center for Internet Security)
benchmarks are examples of well-known sets of standards.

There are several CIS benchmarks available!2, such as CIS Benchmarks for Amazon Web Services Foun-
dations, CIS Benchmarks for Google Cloud Platform Foundation, and CIS Benchmarks for Microsoft Azure
Foundations, which are examples of relevant ones in the cloud-based infrastructure context. Each item of
the benchmark presents the following topics: (i) a description of the best practice, (ii) a rationale statement
that explains the importance of the rule, (iii) an impact statement that presents the possible consequences
of not following the best practice, (iv) an audit procedure that demonstrates how to verify if the recommen-
dation is already applied, and (v) remediation that details how to follow the best practice, among others.
See Figure 1 as an example of a best practice from the CIS Amazon Web Services Foundations Benchmark
v1.4.0.

12 https://www.cisecurity.org/cis-benchmarks/

https://www.cisecurity.org/cis-benchmarks/

2.1. Main Concepts

19 Ensure VPC flow logging is enabled in all VPCs

t PARENT : CIS Amazon Web Services Foundations Benchmark 1.2.0 | 2 9-Ensure VPC flow logging is enabled in all

Automated
Applicable Profiles
Level 2

Description

VPG Flow Logs is a feature that enables you to capture informafion about the IP traffic going to and from network interfaces
in your VPC. After you've created a flow log, you can view and retrieve its data in Amazon CloudWatch Logs. It is
recommended that VPC Flow Logs be enabled for packet "Rejecis” for VPCs.

Rationale Statement

VPG Flow Logs provide visibility into network fraffic that fraverses the VPC and can be used fo detect anomalous fraffic or
insight during security workflows.

Impact Statement

By default, CloudWatch Logs will store Logs indefinitely unless a specific retention period is defined for the log group. When
choosing the number of days to refain, keep in mind the average days it takes an organization to realize they have been
breached is 210 days (at the fime of this writing). Since additional time is required to research a breach, a minimum 365 day
retention policy allows time for detection and research. You may also wish to archive the logs to a cheaper storage service
rather than simply delefing them. See the following AWS resource to manage CloudWatch Logs retention periods:

1. hifps:fdocs.aws.amazen.comfAmazonCloudWatch/latest DeveloperGuide/SettingLogRetention. himl
Audit Procedure
Perform the fellowing to determine if VPC Flow logs is enabled:
From Console:

1. Sign into the management console

2. Select services then wec

3. In the left navigation pane, select vour vPCs

4. Select a VPC

5. In the right pane, select the Flow Logs tab.

©. Ensure a Log Flow exists that has Active inthe Status column.

Remediation Procedure

WARNING: The contents of this section may not render correctly in the Werd Export

Perform the fellowing to determine if VPC Flow logs is enabled:
From Console:

. Sign into the management console

. Select services then wec

. In the l=ft navigation pane, select vour vecs
. Select a VPC

. In the right pane, select the Flow Logs tab.
. If mo Flow Log exists, click create Flow Log

L S O

Figure 1: ltem 3.9 of the CIS Amazon Web Services Foundations Benchmark v1.4.0 (Source: CIS).

2.1.4 Security Query

Also known as a security check or guide, a security query can detect possible security vulnerabilities, code
and security smells, misconfigurations, non-compliance problems, or the lack of best practices. It can cover
several categories, such as:

10

2.1. Main Concepts

¢ Access Control: This technique offers preventive mechanisms to avoid untrusted individuals (au-
thentication) and restrict access permissions to data (authorization). If these two types of processes
are not implemented or are misconfigured, it can result in a vulnerability or lack of best practice. For
example, if the authentication is disabled in some environment, anyone can gain access to it.

e Backup: Backup is a (periodic) copy of the environment used to keep its most up-to-date data. It
provides recovery from lost or corrupted data. Therefore, this feature should be enabled and properly
configured.

* Encryption: Ensuring secure communication in an open channel is essential to prevent information
leaks. The same applies even if it is a private channel. Enabling encryption, ensuring encryption key
rotation, and forcing the usage of HTTPS are examples of measures to verify in this category.

* Network Security: This category protects the connection of an environment. When talking about
network security, aspects like restricting access to the network and implementing a VPC (Virtual
Private Cloud) are essential.

¢ Observability: This category refers to the diagnosis of the operational environment. Keeping logs

is an example of a way to investigate possible errors or uncommon behaviors.

2.1.5 Static Analysis vs. Dynamic Analysis

Static analysis does not imply code execution since it is applied to the source code or the binaries of the
system. Silva and Campos (2013) Therefore, this approach can be implemented in the early phase of the
software development life cycle, which can lighten the costs of the validation software phase, save time,
and prevent potential vulnerabilities.

There are several types of tools using static code analysis. Their main goals range between code best
practices enforcement, code improvement, bug detection, and vulnerabilities detection. Examples of them
are:

* Linting tools: They focus mainly on syntax errors, best practices enforcement, code improvement,
and bug detection. These tools are available for almost all programming languages. As an example
of an open source one, there is Terraform Linter!3.

* Security tools: They detect and report vulnerabilities, bugs, and lack of best practices. These tools
are essential to prevent potential software defects that can compromise the system during the early
phase of the software development life cycle.

13 https://github.com/terraform-linters/tflint

https://github.com/terraform-linters/tflint

2.2. Related Work

As most people involved with software feel the need to detect software defects as soon as possible,
these tools are in great demand. To meet this need, several companies rely on these tools, as is
the case of Checkmarx which provides the CxSAST product!*. Apart from the commercial ones,
companies and the IT community provide open source tools. KICS (Keeping Infrastructure as Code
Secure)!®, provided by Checkmarx, is an example of it.

Nevertheless, this approach cannot identify vulnerabilities introduced at run-time, leading to the need for
dynamic analysis approaches. Different from static analysis, dynamic analysis implies code execution, i.e.,
observation of the run-time system behavior. Silva and Campos (2013)

Through the examination, dynamic tools can provide vulnerability management that identifies the
vulnerabilities in the runstime environment, and netweork visibility, which is important to monitor the

d16

components of the network, for example. Prisma Cloud™ is an example of a dynamic analysis tool that

offers these benefits.

2.2 Related Work

This section presents prior work on laC scripts. Furthermore, it introduces static analysis tools for laC and
dynamic analysis tools for cloud-based infrastructure.

2.2.1 Prior Work on laC Scripts

In the scope of smells, through the analysis of Puppet repositories, Sharma et al. (2016) present a catalog
of 24 code smells (Table 1) distinguished into two categories: Implementation Configuration Smells
(13) and Design Configuration Smells (11).

14 https://checkmarx.com/product/cxsast-source-code-scanning/
15 https://github.com/Checkmarx/kics
16 https://docs.paloaltonetworks.com/prisma/prisma-cloud.html

https://checkmarx.com/product/cxsast-source-code-scanning/
https://github.com/Checkmarx/kics
https://docs.paloaltonetworks.com/prisma/prisma-cloud.html

2.2. Related Work

Table 1: Catalog of 24 code smells for Puppet by Sharma et al. (2016).

Implementation Code Smells Design Configuration Smells
Missing Default Case Multifaceted Abstraction
Inconsistent Naming Convention Unnecessary Abstraction
Complex Expression Imperative Abstraction
Duplicate Entity Missing Abstraction
Misplaced Attribute Insufficient Modularization
Improper Alignment Duplicate Block
Invalid Property Value Broken Hierarchy
Incomplete Tasks Unstructured Module
Deprecated Statement Usage Dense Structure
Improper Quote Usage Deficient Encapsulation
Long Statement Weakened Modularity
Incomplete Conditional
Unguarded Variable

From this study, Schwarz et al. (2018) investigated the feasibility of applying this catalog into Chef scripts.
To this end, they identified the five most frequent smells in each category and implemented them into a
static code analysis tool named Foodcritic. In this investigation, they identified three types of 1aC smells: (i)
Technology Agnostic Smells that can be adapted from Puppet smells, without changing the detection
method, (i) Technology Dependent Smells, which cannot be directly adopted due to the differences
between Puppet and Chef, so it is necessary to change the detection method and (iii) Technology Specific

Smells that are only applicable to a specific 1aC technology. From this analysis, they defined a catalog of
17 Chef laC smells (Table 2).

Table 2: Catalog of 17 code smells for Chef by Schwarz et al. (2018).

Agnostic Smells Dependent Smells Specific Smells
Improper Alignment Improper Quote Usage Hyphens
Long Statement Insufficient Modularization Empty Default
Unguarded Variable Weakened Modularity
Misplaced Attribute Unstructured Module
Multifaceted Abstraction Law of Demeter
Duplicate Block Include Consistency
Long Resource
Too many Attributes
Avoid Comments

Later, Rahman, Parnin and Williams (2019), through a quantitative analysis of 1,726 laC scripts, identified
seven signs of security smells in 1aC scripts: (1) admin by default, (2) empty password, (3) hard-
coded secret, (4) invalid IP address binding, (5) suspicious comment, (6) use of HTTP without

13

2.2. Related Work

TLS, and (7) use of weak cryptography algorithms. To identify the occurrence of these smells, they
implemented and validated a static analysis tool called SLIC (Security Linter for Infrastructure as Code
scripts).

However, Almuairfi and Alenezi (2020) recognize permissions and configuration path as security
smells to consider, in addition to the smells presented by the studies of Schwarz et al. (2018) and Rahman,
Parnin and Williams (2019). Also, Aimuairfi and Alenezi (2020) suggest what they considered to be the best
security practices in laC: (i) manual security assessment, which implies inspection of the live infrastruc-
ture before and after deployments (ii) codify everything related to the infrastructure specifications in 1aC
scripts, discarding the manually changes (iii) laC documentation should be reduced to the minimum
since the infrastructure documentation will have the status automatically registered by the 1aC scripts, (iv)
version everything is important to version control any changes in the 1aC scripts, (v) continuously test
system, integrate and deploy to ensure a test environment before deployment, (vi modular code
in order to prefer small changes to big ones, (vi) immutable infrastructure that suggests replacement
of the infrastructure elements rather than changing them, and (viii) continuous security and service
availability to also ensure security in the continuous delivery toolchain and test environment.

2.2.2 Scanning laC Scripts using Static Code Analysis Tools

Apart from the studies mentioned in the previous section, several static analysis tools for laC are currently
available. They detect possible flaws in laC technologies according to best practices from cloud providers
and laC technologies.

Referring to the Terraform script presented in Section 2.1.2 with an AWS Access Key hard-coded. As a
best practice in laC scripts, it is not recommended to use hard-coded credentials in Terraform!’. That is
considered a security smell by Rahman, Parnin and Williams (2019), as recognizable in Section 2.2.1.

Considering another scenario with the same provider (AWS), 1aC technology (Terraform), and a Virtual
Private Cloud (VPC) configuration. As an AWS best practice!® it is recommended to enable VPC Flow Logs
to "capture information about IP traffic going to and from network interfaces in our VPC”.

Both cases can be detected by static code analysis tools that scan Terraform scripts (or other tech-
nologies depending on their restrictions), which covers these checks. These static code analysis tools are

fundamental to ensure best practices and prevent security flaws in the cloud before 1aC scripts execution.

17 https://registry.terraform.io/providers/hashicorp/aws/latest/docs#static-credentials

18 https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

https://registry.terraform.io/providers/hashicorp/aws/latest/docs##static-credentials
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

19
20
21
22
23
24
25
26
27
28
29
30
31
32

2.2. Related Work

Of the open source static analysis tools available, Ansible Linter'?, CFN_NAG2°, CFRipper?!, Checkov??,
Haskell Dockerfile Linter?3, KICS?*, Kube-Score?®, Puppet linter?®, Terrafirma?’, Terrascan?®, TFLint??, and
TFSEC3? stand out. Companies like Aqua3! and Snyk3?2 also offer static analysis products for laC scripts.

Table 3 presents the laC technologies supported by the laC tools mentioned above. Note that this
information is based on the tools documentation understanding from around the end of 2020. Also, it is
important to mention that almost none of the above tools supports more than three laC technologies, except
KICS.

Table 3: Static code analysis tools for laC.

Ansible | Chef | CloudFormation | Dockerfile | Kubernetes | Puppet | Terraform
Ansible Linter v
Aqua Wave laC
CFN_NAG
CFRipper
Checkov
Haskell Dockerfile Linter v
KICS v
Kube-Score
Prisma Cloud laC v
Puppet Linter v
Snyk laC v
Terrafirma
Terrascan v
TFLint
TFSEC

v

NN NS

N
\

NN S

SISSNY N NS

To clearly understand how these tools work, Section 3.3 presents an overview of KICS (Keeping Infras-
tructure as Code Secure).

https://github.com/ansible-community/ansible-1lint
https://github.com/stelligent/cfn_nag
https://github.com/Skyscanner/cfripper
https://github.com/bridgecrewio/checkov
https://github.com/hadolint/hadolint
https://github.com/Checkmarx/kics
https://github.com/zegl/kube-score
https://github.com/rodjek/puppet-lint
https://github.com/wayfair/terrafirma
https://github.com/accurics/terrascan
https://github.com/terraform-linters/tflint
https://github.com/tfsec/tfsec
https://wave-support.aquasec.com/support/home

https://snyk.io/product/infrastructure-as-code-security/

15

https://github.com/ansible-community/ansible-lint
https://github.com/stelligent/cfn_nag
https://github.com/Skyscanner/cfripper
https://github.com/bridgecrewio/checkov
https://github.com/hadolint/hadolint
https://github.com/Checkmarx/kics
https://github.com/zegl/kube-score
https://github.com/rodjek/puppet-lint
https://github.com/wayfair/terrafirma
https://github.com/accurics/terrascan
https://github.com/terraform-linters/tflint
https://github.com/tfsec/tfsec
https://wave-support.aquasec.com/support/home
https://snyk.io/product/infrastructure-as-code-security/

2.2. Related Work

2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure

Currently, on the market, there are plenty of dynamic analysis tools capable of inferring data about the
infrastructure of the system and finding security issues. These tools can have different features, such as
compliance checks, incident response, malware detection, misconfigurations identification, network man-
agement, run-time defense, threat detection, and vulnerability management, among others. However, their

main goal is to ensure best practices to prevent security flaws.

2.2.3.1 Commercial Tools

Currently, several commercial dynamic analysis tools for cloud-based infrastructure are available. All of
them implement security checks on the cloud environments that they support, providing several features.
See Table 4 (note that the provider's coverage in the table only considers AWS, AZURE, or GCP).

For instance, Bridgecrew33 offers a platform that permits finding and fixing issues in the cloud. It is
possible to infer AWS, Kubernetes, GCP, and Azure misconfigurations in run-time through policies. These
policies cover various categories, such as logging, networking, secrets, identity and access management,
and others.

Consider a scenario where this platform should check compliance and the security of an AWS account.
As a requirement, the user only needs to launch an instance (associated with Bridgecrew) in their AWS

account. Figure 2 represents an example of which incidents can be possibly detected.

33 https://bridgecrew.io/

16

https://bridgecrew.io/

2.2. Related Work

Ensure access keys are rotated every 90
days or less
Policy ID: BC_£

Ensure roles unused in the last 90 days
are removed
Policy ID: BC_£

AM_34 O}

Ensure users unused in the last 90 days
with ADMIN privileges are removed

Policy ID: BC_AWS_IAM_37

gg.

Ensure credentials unused for 90 days
or greater are disabled

Policy ID: BC_LAWS_IAM_3 ®

Ensure a log metric filter and alarm exist
for IAM policy changes
Policy ID: BC_AWS_MONITORING_4

Figure 2: Example of incidents that can be detected with Bridgecrew.
Prisma Cloud®* provides vulnerability management, compliance checks, runtime-defense, network visi-
bility, incident response, and forensics in AWS, AZURE, GCP, and Alibaba Cloud.

Aqua Enterprise® scans container images supported on vulnerability data sources in AWS, AZURE, GCP,
and Oracle Cloud Infrastructure. Furthermore, this tool finds malware and misconfigurations.

Cloud One - Conformity3® contributes to real-time monitoring and auto-remediation in AWS and Microsoft
Azure environments.

Table 4: Commercial dynamic analysis tools for cloud-based infrastructure.

Tool name Cloud provider’s coverage
Bridgecrew AWS, AZURE, and GCP
Prisma Cloud AWS, AZURE, and GCP
Aqua Enterprise AWS, AZURE, and GCP
Cloud One - Conformity AWS, AZURE

34 https://docs.paloaltonetworks.com/prisma/prisma-cloud.html
35 https://www.aquasec.com/demo/
36 https://www.cloudconformity.com/

17

https://docs.paloaltonetworks.com/prisma/prisma-cloud.html
https://www.aquasec.com/demo/
https://www.cloudconformity.com/

2.3. Summary

2.2.3.2 Open Source Tools

Apart from the closed source tools, several open source tools also scan cloud environments, such as Cloud
Reports®’, Prowler®8, and Scout Suite3?. All the tools in Table 5 implement security checks on the cloud
environments that they support and provide reporting. Note that the provider’s coverage in the table below
only considers AWS, AZURE, or GCP.

Table 5: Open source dynamic analysis tools for cloud-based infrastructure.

Tool name | Cloud provider’s coverage
Cloud Reports AWS
Prowler AWS
Scout Suite AWS, AZURE, and GCP

23 Summary

Infrastructure as Code appears in the cloud community as an innovative and easiest way of infrastructure
configuration and management. As suggested by its name, this technology allows the configuration and
management of the infrastructure through the development and execution of scripts instead of traditional
interactive tools — such as command line — or cloud provider web interfaces.

This new method of dealing with infrastructure is very promising since it seems to be faster compared to
other alternatives due to its re-usability. Moreover, it provides the implementation of software engineering
practices, which seems to be the main advantage of its use.

The community that uses laC faces challenges related to the quality and security of the code. As the
platforms that provide this technology are recent and unique, there is a lot to explore in their code structures.
The best answer to code improvement seems to be the static analysis tools for laC.

However, these types of tools have their limitations when compared to dynamic analysis tools for the
cloud, resulting in a gap that needs to be bridged between them. The next chapter explores how to bridge
the gap in two contexts: Access Control and Network Security.

37 https://github.com/tensult/cloud-reports
38 https://github.com/prowler-cloud/prowler
39 https://github.com/nccgroup/ScoutSuite

https://github.com/tensult/cloud-reports
https://github.com/prowler-cloud/prowler
https://github.com/nccgroup/ScoutSuite

KICS: ACASE STUDY

As discussed in Section 2.1.5, static analysis has its limitations, which results in a gap between static analysis
tools for laC and dynamic analysis tools for cloud-based infrastructure. For that reason, this chapter details
the case study of the present dissertation, i.e., a comparison between static analysis tools for laC and
dynamic analysis tools for cloud-based infrastructure. The main focus of this analysis is the collection of
security queries (see Section 2.1.4) only covered by dynamic analysis tools for cloud-based infrastructure.

This study is also a contribution to KICS, an open source tool for static code analysis of laC solutions,
provided by Checkmarx. See Section 3.2 and Section 3.3 for information about the tool.

3.1 Static Analysis Tools vs. Dynamic Analysis Tools

Firstly, this section presents the methodology followed in this dissertation, describing the selection criteria
regarding the security context, coverage of laC technologies, and coverage of cloud infrastructure providers.
Lastly, it represents the security queries in table format and highlights the results of the study.

3.1.1 Methodology

First of all, the triage of which security contexts are covered takes place (see Section 2.1.4). The main focus
is on Access Control, which includes all security queries that prevent untrusted individuals and restrict
access permissions to data in an environment (Access Control queries).

Secondly, this study also covers a secondary security context, Network Security. This category includes
all security queries that protect the connection of an environment (Network Security queries). However, as
presented in Section 2.1.4, there are other security query categories that can cover cases like encryption best
practices in a network (Encryption category). In these cases, these kinds of security queries are excluded.

The next step consists of identifying what possible Access Control related services are made available
by cloud infrastructure providers. It should be noted that the same applies to the Network Security context.
This step considers two types of services:

19

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

¢ Services directly related to each category: It includes vital services for the implementation of
the security queries category.

Regarding Access Control, examples of them are Identity and Access Management (IAM) and API
Gateway services. However, this study can include security queries that embrace other security
queries categories since it is relevant to protect both services.

Concerning Network Security, services related to Virtual Private Network and Security Group, stand
out, for example.

* Services indirectly related to each category: Services where it is crucial to apply the category
best practices.

Concerning Access Control, for example, if someone launches an Amazon S3 bucket on an AWS
cloud infrastructure environment, one must keep in mind its permissions to prevent leaking private
information. Simple practices such as restricting write permissions are sometimes disregarded, but
they should not be.

Regarding Network Security, for example, if someone launches a Relational Database Service that
uses the default port, an attacker can trivially guess it, thus endangering the network security of the
environment.

After the identification of the services and before selecting the tools to explore, it is necessary to consider
the common bond between the static analysis tools for laC and dynamic analysis tools for cloud-based
infrastructure: cloud providers. The chosen cloud providers are AWS, AZURE, and GCP since they are the
leading cloud providers on the market.

In addition, it is also important to choose the laC technologies. The laC technologies chosen are Ansible,
CloudFormation, and Terraform since all of them have detailed documentation and their configuration is
very intuitive.

The selection criteria applied to the static analysis tools for 1aC presented in Table 3 is the following:

¢ Coverage of laC technologies: It is immediately discarded tools that do not cover at least one
of the laC technologies chosen, such as Haskell Dockerfile Linter, Kube-Score, and Puppet Linter.

¢ Coverage of cloud infrastructure providers: It is not immediately discarded any tool through
this parameter since all the target tools cover at least one of the chosen providers (AWS, AZURE,
and/or GCP).

On the other hand, the selection criteria applied to dynamic analysis tools for cloud-based infrastructure
mentioned in Section 2.2.3 is the following;

20

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

¢ Coverage of cloud infrastructure providers: It is not immediately discarded any tool through
this parameter since all the target tools cover at least one of the chosen providers (AWS, AZURE,
and/or GCP).

After the application of the two selection criteria and considering the documentation available, the tools

chosen for this study are:
* Static analysis tools for laC: CFN_NAG, Checkov, KICS, Terrascan, and TFSec.

* Dynamic Analysis Tools for Cloud-Based Infrastructure: Aqua, Cloud Reports, Cloud Confor-
mity, Prowler, and Scout Suite.

As the final step, it is time to choose how to study these tools. One option is the observation of the tools
in action. Alternatively, another option is reading documents.

The first alternative would be, in practice, unsatisfactory, since access to the selected commercial tools
will be limited to free demos.

The process of obtaining them is not always easy, and their usage period is also limited. Moreover, the
free demos do not have all the features compared to the paid solution. Additionally, dynamic analysis tools
for cloud-based infrastructure require cloud accounts, which also involves monetary costs.

Although the second option is dependent on the interpretation of the documentation and how up-to-date
it is, which can result in (hopefully) minor inaccuracies, it seems to be the best way to better analyze all
tools equally. Therefore, this study is based on reading documents from around the end of 2020. See the

results in Section 3.1.2.

3.1.2 Results

As mentioned in the previous section, the case study is based on reading the available documentation for
the selected tools and extracting information regarding the set of security queries provided by each tool.
The procedure to collect the security queries only covered by dynamic analysis tools for cloud-based

infrastructure involves the following steps:

¢ Data collection: Consists of studying the reading documents and listing the security queries ac-
cording to the methodology defined in the previous section.

¢ Comparison between static analysis tools for laC and dynamic analysis tools for cloud-

based infrastructure: Identification of what tools cover each security query.

 ldentification of security queries only covered by dynamic analysis tools for cloud-based
infrastructure: Identification of what security queries are not covered by any static analysis tool
for laC.

21

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

Based on our understanding, this case study reports 150 security queries as a gap between static analysis
tools for laC and dynamic analysis tools for cloud-based infrastructure through Tables 6, 7, 8, 9, 10, 11, 12,
and 13. From this set, 78 of them are related to Access Control and 72 to Network Security.

The results are grouped in the following tables accordingly to the cloud provider and context. In each
table, the collected security queries (as a gap between static analysis tools for 1aC and dynamic analysis

tools for cloud-based infrastructure) are shown in gray.

22

23

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AWS] Access Control context - Part |.

Table 6

This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

siasn Jnouim dnois W [T~ 0% S
sjoijod aujur i dnois) 4y (07O~ SMY]

saBajd uwpe yym dnois) i 66~ ~SAy]

dnoin Ay

SIS S

30y Y] InoLim ouelsu| 203 [8€ W SMY]

810y ¢03 I

SOS

LBl S} USNI3 B 4o} pasnun Aay| S99y Y| [Z€70% SMY]
uoryelod oys ym Aay| $5800y NI (96 0¥~ SMY]

oy S50y Y|

Pa|qesip S| JazAjeuy $s890y A [G€™ Oy~ SMY]

1ozAjRuy SS90 Y|

$5300 91|qnd UYHIM 80IMBS anang) ajdwiS [#€ ™Iy SMy]

58008 JUN0J2. SO0 UMOUXUN SMOJ[e BIAIBS Bnan() ajduwiS [E€™ 0y~ SMY]

801M3G aNnang) ojduig

$58008 dljqnd UM B0IMIRS [lew3 BldwiS [2€™0 ™~ SMY]

5008 JUNOJJ SS04D UMOUYUN SMOJ[e BaIA8S [Iewd ajdwiS [16~0y Sy
$58008 JUNOJJ. $S04D UMOUNUN SMOJ[e J9Yng €S (08~ % SMY]

§58008 4Oy 3 LIMM, SMOIfe 14ong €S (62O SMv]

90IM8S [lew3 ajdwis

§59908 31 4, SMOJje 18%ong €S [82O%” Sy

§58008 4O\ QY3Y, SMOe 1e¥ong €S 220y~ SMY]
$58908 ,Q73Y, SMOJ[e 12%ong € (92~ SMy]

SISIS SIS

§58008 J04LNOD"TINJ, SMO|le 124ong €S (G2 Oy SMv]

1ong €8

Pa|gesip uoieanusyny sseqeleq Ay InoLM Jajsnjg sunidaN 20y~ SMY]

Jaisn|y sumday

9|qIssa0e Apnand st sisnjo Juspay (€2 oY Syl

Hiyspay

a[qissa0e Apand si 3aue)sur sseqelep SaY [22-0W SMY]

303G 8seqeleq [euonejay

9|qIssa00e Ajngnd aie sisvoiq QI [12- 0V SMy]

oW

seBapinud iwipe yym uonouny epawer (07 Sl

SISISISISISISIS SIS ISSISISIS SIS SIS ISISSS

553008 UN0OJE SS0I) UMOUYUN SMOJ[e UORoUNY epquieT [61~9v ™ SMy]

uoioun4 epquie]

uoiyeanuany || INOLIM yosessanse(3 810y Smyl
$53008 JUN0OJE S04 UMOLUN SMOJ[e YIeasanserd [/1 ™9y SMy]

oessonse)3

SaIUB [\ly| Umouy 0} Ajuo SSeade JiLui| Jou saop Adijod Alopsoday Y93 [91 v~ Smy]

$58008 JUN0DJE SS0I) UMOLNUN SMOj[e A10ysoday ¥D3 [G1 0V SM]
SJUBN8 JO AI9NBP 10} SSBIOR JUN0DE-SS0I0 UMOLBUN SMOJIE SNg 1ueng yatepMpnol) [T ™9y Syl
fotjod nouyim %oeIS UOReULIOIPNOLY [E10Y SMY]

fioysoday Y93

SNg JUaN3 Yajeppnol)

SISSISISSS

1d }sea] In0y}IM YoeIS UoleLLIo4pnoj) (210~ SMY]
pailda sey ajeaya) [11-0Y”SMY]

3|0y [\Y] SO3:

YIS UOKeLLIO4PNO])

JoSeue}y djeaye)

~
~

Jaziloyine paingijuod Jnoyym Aemaled) |dy (0T~ 0%SMY]
Sejealj1}ad Juslo Inoyym Saels Aemaies) |dy [60™ 0% SMY]

SIS IS S S

[lemest uoieaiiddy qaj e ym pajeroosse jou s| females |dy (80 0% SV
ajenud jou aje sjulodpus Aemages [dy [0~V SMY]

Pajqeus SuIpodus JusU0D aney Jou Saop Aemales) |y [90~ v SMY]

S

pajqeus 3uI330| $S809e aney Jou Saop Aemales) |y [G0™ OV SMY]

Pa|geua SOLL Yojen Pnoj9 Pajielap aney jou op seBels [dy Aemaled) Idy (¥~ Oy SMY]

SIS S

SISSIS S

pajgeus Suppei) Aegy aney Jou op seBels (dy Aewaled [dy [£0~0W Syl

Remajen) |dy

SISSISISISISSS

SOS

53104 [\ly] InOUHM Suonein3iLod youne| (9Sy) dnoid Suileds oiny Ja-Gap [20~0vSMY]
$9J04 [\ly] Inoy}m suofein3|uod yaunel (9Sy) dnoin Suljeag ony Jaik-ddy [100y~SMy]

Sulleas oy

angynoog

IoMoigd

spodaypnol)

Ryuiouog pnoy

enby

%9841

ueased] | oIV

0§08y

SO

A0%08YJ) | HYN"NAD

SO

wiojena]

uofjeuLio4pnoj)

ajqisuy

SIsAjeuy olweuAq

sisfeuy el

24

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AWS] Access Control Part Il.

This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

Table 7

SIS S

S S

Jasn |y pasnu [z8~0v Syl

saloljod ssaoe [\y| S}pa Jasn) I\y| paziotjneun (180%™ SMyl
Q0UBJSIXS J8S) WYy| penoaddeun [08~ 0% SMY]

S43sn uiwpe Auew 00 [6/ 9% SMY]

1UN02E SMY U} 0} 3928 0} pasn ARuaLind Jasf I ON [82~Jv~ Syl
(4I) UoiyeanuaLANy Jojoe4-N|N IOLIM J8S INVI [£/0%"SMY]

NS

savljod yum Josq NI [92~0% SV

SISS

38N Uy Uayjo] 55809y Aleue) LM Jasn) Wyl [5~0y~SY]
PRIGESIP (i14) UONEANUaYINY 0108y SNy SS90 305U SHY UM J8sn WY [/ 0¥ SY]

sadajiniid uwpe Lim Jasn Y] [€/0YSMY]

pasn Jou pue dnjes [eiul Suunp pajesso sAey Ssed0e UM Jesn Y| [z~ oy Smyl
Shay $S8008 pue piomssed 80su0d & ypm Jasn NI [T v~ Smyl

£y Ss3008 3UO LY} BJow Sasn Jas) Y] 04~ 9YSMY]

S SIS S

~
SISIS SIS SIS

SIS S

dnoJ3 A1088}e2 au} ur jou 43S Y1 [69 D% SMY]

SS

Plfenul ueu Jasq Y] [89 0¥~ SMv]
awi} Jo potiad Suo| e 4o} aAjoeUI USR] Sey Jasf) WYI [£9~ 0y SMY]
SO 9G Ueuy Jayaiy o o} [enba LBUB] e yim AaX Sy e sasn Bjealiiad (990 SMY]

8sN I

3)eoIa)) Jonas Y|

asN Ul Japinoid Ayuapi] pieA] [G9™ 0y~ SMY]

J3pinoid TAVS VI

AN JnOLIM JUN03dY 100y Y| (79 SMY]

4N @/empiey Jnouyym JuNoddy 100y Y [£9~0%SMy]

SIS S

SISISSS

SISISSS

Apusaa1 pasn Junoooy 1004 Wy| [29™ 0y SMY]
U9 60G"X ML Sey Junoody 100y NI [19~0y~SMY]
Sy anjoe sey Junoddy Jooy NI (0970 SMY]

JUnoddy J0oy Y|

~

SIS ISISISIS SIS IS S

3SN U] S9[0J [\ JUN022e-85042 PaIsnAUN [6G 0¥ SMY]
ane Jou 8oy Hoddng | (85 0Y~ SMY]
saB0|iLd Jsea| InoLym 3joyY IYI [£G QY SM]

SOS

LUl Bwily UBNS e Joj pasn Jou ajod Y| [9G 9V SMY]
awnsse o} sfedound (e smojje a0y Wyl [65 oY SMy]

SIS SIS

VAN Inowim Ao ejoy swnssy Wy| 75Oy SMY]
V4N pue] [ewaixe noLpim Adljod 8]0y aLUNSSY] UN022y-55019) [€G 0w SMY]
oo M ROl N (260 SMY]

910y VI

S

SOS

SO
SO

Jasn o} payee Adijod I [16~0Y~SMY]

uonYIoN +Mojly sMojje Adijod Iyl [0SOy~ SMY]

Aaiod Wy

aseasaddn Jnoyym Adijog piomssed WY (6 9vSMY]

loquiAs ynoum Kdijod piomssed NI (87~ 0% SMv]

Jaquinu nopim A3lod plomssed Wyl [/ Q¥~Smv]

ase0s10| Jn0LYM Aollog piomsSed Wyl (97 0¥ SMy]

SIS IS S S

SIS S

1Ioys 00} Yj3us| piomssed wn

uopesdxs .;m_; Upm Aotjod promssed (Y| [y~ v SMv]

/

pajqesip uopeidxa yym Aoljod piomssed Y] (£ 9% SM]

SISISSSIS SIS S

SISISSSISSS

SISISSSISSS
SISISISSISSS

SISISSSISSS

SISISSSISSS
SISISSSISSS

SISISSSISSS

/

Sspiomssed Jo asnal au) smojfe Ad1jo4 piomssed NI [Zy D% SMY]

£a1jo4 piomssed \y|

anginoog

Jomoid

spodaypnof) | Anwiouo) pnoj)

<

SISISISISISISIS S

99541

ueasela) | SO

NoYO3YJ | SN

AoYO8Y)

YNNI

SO

wlojela]

UOIjeLLI04pNnoj)

||qisuy

Siskjeuy dlweuAq

sishjeuy oneig

25

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AZURE] Access Control context.

Table 8

This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

suoissiuiad Qv [[e Smojle 2218S ajqeL [6€~ 0y 3WNZY]
1unodoe 88.J0)S UO PBGeSIP SSB008 SBOIAIDS HOS0I Palsnil [8€ Iy FUNZY]

90IMI3S 9|qeL

S8|l4 24nzy |[e 4o} pajqeus S UoiednuayIny |14 ainzy Joj 9dISS Aiojosiig peseq-Aiusp [£€~ 0y 34NZYI
$S900€ peal 21|gnd aAey Jsuteyuo) 507 AuAdy [9€ Oy 3HNZY]

1UN022Y 83eI0IS

SIS

SISSSS

ulpe A1030311Q SAOY 34nzy INOYNM JoAIRS T0S [GET OV FUNZYI
ss992e 21|qnd smojle Janag 10S [¥€ v 3uNZv]

PaIqESIP SUILIPE JUN0YJ. [fewd Sey Janas 10S [E€~0v3uNzy]

19n9S 108

suoIssiwiad 7V |[e smojje 82IAeS anang) [Z€ Oy 3¥NZY]

901\ 9nang)

ulwpe A10j0a11Qg SAIRRY 2inzy Inoypim uoRednuayiny 10Sa48isod [1€-0Y 3dNzZv]

JaMIBS 10S948150d

SIS

S

Qvgy Inoyim Jalsnjo saeulegnyl [0€ 0¥ FUNZYI

921G SajauIagny|

suoissiuliad 7OV [[e smojje 8a1ss 314 [62-0v~3uNZv]
pajqeus uiwpe yym AsiBas Jaurejuog [gz 0y 34Nzy]

921038 914

Ansidey Jouleyuon

ssa00e 21|gnd Smojje Jauleu0d qoig [/2 oV 3uNZv]

901G qo|g

Ayuapi do1niss pageuew Jnoypm d0109S ddy [92~ 0y~ FuNZY]

$31B2}11439 JU3I noLim suopedydde gem soinag ddy [Gz-0y~3dNZY]

SSSS

SNSSS

pajgesip uoedRuayine 3dIMag ddy [~ oy~ 3uNzvl

90IMeS ddy

SISISISISNSNISSE S

SISISISTOSHSNS

SISISISS

pa|qeus Juswadeuew dnoi3 80IAI8SH9S [€2 OV 3HNZY]

UOI}ea,o 8j0J LLOJSND sMoje uoniulyaq ajoY [gz~ 0V 34NZyl

SuoIssIwIad JasM 3sanK) Jwi| Jou JuswudIssy 9|0y [Tz~ oV 34NZv]

pajqeus uoieanuaLiny Jojoe4-nINjN Sutequisway [0z~ 0V 3¥NZV]

pajqesIp $edIAe(UIof 0} Y4 a4inbay [61 0V 3¥NZv]

Joye| aseasaddn Jnoypm piomssed [81 OV I¥NZY]

[oquuAs Jnoupm piomssed [£1~0v 3uNZv]

sJaqunu Jnoynm piomssed [91 v 3UNZV]

Ui3u8| Winwiuiw Inoyim piomssed [G1 0V 34NZv]

Jo8| 9seasaddn Jnoypm piomssed [y 0y FHNZY]

siojedjsiuiupe o} Ajuo pajoLisal jou uoljes) dnois Gog O [ET OV FUNZY]
sdnos3 Andas sjes.d 0} siojelisiuiupe Ajuo mojie 10N [T oV 3¥NZY]
sdnoi3 Ggog so1yQ a3euew 0} siojedisiuiwipe Ajuo mojie JoN [T1- 0y 34NZY]
P3}oLi}sal JOU [e}I0d LOKeSIUILPY 0} SS90y Ulpy-UoN [T 0y~ 34Nzl
pa|qesip siesn padajinud-uou 4oy uonedusyIny Joje4-)nNA [60 OV 3¥NZY]
pajqesip siasn paa|inLd Joj uoleanuauyiny J03oe4-HNN [80~ 0V 3UNZYI
slojessiuluipe o} Ajuo jou suoneyAul [£0~ 0y F4NZYI

PajoL)sal Jou suonepAul Jesn 3seny [90~ Qv FUNZYI

SN Ul $49sN 1s9Nn9) [G0Qy™ FUNZY]

SNSISSSISINSNSNSNSDS

8)IngIN0og

Awioyuo) pnoj)

enby

ueosels|

SOIM | Ao%98YD

SO

wiojelss|

d|qisuy

sIsAjeuy dlweuAq

sisAjeuy onels

pa|qesip Josai piomssed Joj uoneaynuap| [eng [#0 oy~ FUNZv]

pajqesip UoRewLIL0da) UoedRUBYINY [0 Oy~ FUNZV]

pajousal Jou siasn pada|iald-uou Joj uonesisi3ay uonedlddy [0~ oy 34NZY]
PajouIsal Jou [aued $s920y 0} sddy Aisjlen uippy [10~ 0V 38Nzl

£10)08.1Q BAROY

26

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[GCP] Access Control context.

Table 9

This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

Pa|gesIp UORBONUBYINE JSISBLU YIM SIB)SN|d auiBus sejsulagny [/z-ov d0D

pajqesip uonezioyine KBS Yim SIelsn|o suigua seyeuIsqny [9z 0% doD

pajqesip a}edli}ad JUSID YHM S19)sn|d auidus sajeulagny [GZ- OV doD

SISSS

SISSS

SISSS

SISSS

pa|qesip UoReanuaYINe iseq YiM S1aisnjd suidus saeulagny [z oy doo

JUN0J9E B2IAIBS Neyep By} SUISh sialsn|d suiBus seyeulagny [c2 IV d0v]

sajeusagny)

SIS SISS S

SIS SIS

N

AN

AN

pouad uoiyejos Jnoyym Asy oydAi1d SWY [z OV~ dd9]

a|qissavde Aaignd si Asy 0}dAid SY [Tz 0¥ d09]

Y4IN Inoyum sasn [02~ 0% dd9l
$3]0J J0}2310 U0} JUNOJJE BJAJSS JO J3SN JUNOJJE BDIAIBS YIM Jas([61 QY d9]

S

SIS SIS S

S S

S S

3]0J UIWIPE BDIAISS J0/pUe 3]0J JUNOII. BIIIS YIM J3S() [RT OV dID)]

SIS

AS

SIS TSI SS

SIS S

N

AN

so|o4 Aoy 0)dAd pue uiwpe SNY Yim Jesn [£170Y d09)

3j0J I yym Jasn [91 0y dJ9]
asn ul A8y Junodde BdIAISS pageuew JasM [GT Y d99]

(8001 Aq paBeuew jou A8y Junodde BIINIBS [H1 IV dOv]
sega|inud Aladoiduw yum Aotjod I [ET~0Y dD9]
8N U SJunodoe |lews) [21~0Y d99)

1UBLU32I0JUS A3y £11INDaS JnoLIM UILLPY [TT~0Y 09

VI

AN

SS800B [9AD[49XINQ WLIOHUN INOUYHM Joxong a3elolS pnoj) [0 IV dD9

9|qissade Ajignd Jo AjsnowAuoue s 3exong a3el0lS pnoj) [60° OV dJ9

19%0ng 88eI0)S pnoj)

JUN0DOB BIINBS dDD) JN.JAP BU} YHM pajeldosse saaueisul WA [Z0~ IV d0D

SISIS S

SISIS SIS

SIS S

SISSIS S

]
|
aines} [11Inoss |NA P3PI3IYS Inoyym ssouelsul WA [80~ 0 d99]
]
|

ui307 SO Inoyum spalold 499 [90~ Y dID

auidu3 spndwo)

N

AN

AN

piomssed JnoyiIm Jasn sAeSIUILIPE Yim souelsul aseqelep TOSAIN Pnotd [G0 OV dool
3|qissevde Aiignd si aouejsul aseqelep JOSAN Pnojd [¥0 oY 499l

pejqesp Sey ,8uiurey) diysisumo 4q sS04, Sey souelsul aseqerep TOSAN Pnojd [0~ OY dID]

pajqesip ey UojedRUBYINY dseqejeq paulejuoy,, sey aduejsul aseqelep TOSAN Pnojd [20~ oY d09l

10S Pnoig

SISISISSISISISIS NSNS

/

/

SISSS

/

9|qIssad0e Aja1ignd Jo AisnowAuoue s Jaseleq A1an()3ig [10 OV dDD]

Kend3ig

alINSIN0og

Ayusiojuog pnojy

enby

ueoseuss) | SO

AOYORY)

SO

wiiojels]

a|gisuy

sisAjeuy olweuiq

sisfjeuy aneig

27

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AWS] Network Security context - Part |.

Table 10

$S9008 $58430,/pUNogino pajoLIsaIun [97~ SN~ SMY]

(dINDI) 10903014 83eSSaN [043U0D JoUIBIU| Buisn $S802e SSaiul pajaLisaIUN [G~SN™SMY]
spod 4an /4oL uowwodun 0} $$800e SsauSul pajaLIsaiun [y SN~SMY]

SIS IS SIS

SIS S

~

SYQIO BI61-04Y LU0y SS802€ SSaI3UI Pajouisalln [ey~SN™SMY]
SsaI3ul pajoLIsaIuN [y SN”SMY]

SIS S

pasnun dnoi3 £11n2ss [T SN~ SMY]

(S419) Gt Mod dan usdo [0y SN~SMY]

(SOIgieN) €T 4o £€T 1od dan ued [6€™SN”SMY]

(payoeowa|y) 11211 Hod 4an/dol usdo [8E"SN"SMY]

S SIS S

(yoreasonser3) 00g6 Hod 4ol uado [£€"SN"SMY]

SISISIS SIS S S

SIS SIS S

(13)seul Jes) 905 40 GOGY SHod 491 uadp [9€"SN~SMY]

SIS S

(201as ejepeaw apoNeLeN S4AH) 0208 Hod dO uadQ [GE™SN™SMY]
(dLLH) 08 Mod 491 ued [y€~SN”SMY]

(epuesseD) 8888 10 0916 ‘661 ‘T¢919 Hod 49l uado [ee"SN~SMY]

(stpay) 669 Hod 491 uado [2€7SN”SMy]

(1an138 ONA) 006 Mod 491 uad [1€7SN~SMY]

(eueqiy) 109G Hod 4oL uadg [0€™SN™SMY]
(a1 INA) 006G Hod 491 uado [62”SN"SMY]

SIS OISSIS S

SIS TOISSIS S

(1on49G aseqeleq T0SaIBIS0d) 2eyG Hod o1 uadp [82SN~Smy]

SISS SIS S

S

S

(89118s |NG3M 9PONaWeN SIaH/doopeH) 070G PUe 0£00G Mod 49 uado [£2”SN™SMY]
(d0L Jeno gINS smopuip) Gy Hod 4o uado [92"SN~Smy]

(SdLLH) €7 Mod 0L uedo [Gz~SN™SMy]
(d@y) 68¢€ Hod 91 ued [yz"SN~SMy]

S S

(9seqeleq 10SAIN) 90€€ Hod 4oL uado (€2 SN™SMY]

SIS S

(ggosuo) £10£g Mod 401 usdo [2z"SN~SMy]

S
SIS SIS S

SIS SIS

SIS SIS

(dLINS) Gz Mod 9] uadQ [T2"SN~Smy]

(12%00q) 9€2 40 G/€Z Mod 41 uedQ [02™SN™SMY]
(1uja1) £z Mod 49 uadQ [61~SN~SMy]

S S

S S

(HSS) g Hod 4o uado [81SNSMY]

AN
SIS S

(d14) T2 pue oz Hod 49 usdQ [£17SN™SMy]
(asnoyaiem ejeq oiny 8joei0) ggGT Hod 4oy usdo [91SN™SMY]
(aseqejeq ajoei0) TeST Hod 4o uado [GT™SN~SMY]

(1313 70S WOSOIIN) pEYT 1od dan Jo gevT Mod 4ol uado [¥T~SN”SMY]

(0d¥) GeT Mod 49| uadQ [ET7SN”SMY]

SISIS SIS SIS SSS

(SN) €6 1od dan pue 4oL usdo [21"SN~SMy]

SIS SIS S

SISISIS S

oljeu} uiuiodur mojje 0} spod Jo a8ues usdo yym dnoi Aundss 293 [T SN~ SMy]

~

STOSISISS

dI 2qnd yym oueIsul 233 [01"SN~SMY]

AS

1ouqns o1jgnd ur Suiuuny si souelsul 203 [60” SN~ SMY]

SIS S

uLiofeld disse|)-z93 Jo peajsul uuiofeld OdA-ZO SMY Sk ultim pafojdap si oueisul 293 [80” SN~ SMY]
ouejsul 203 4o} asn Ul 9dA Inejeq [£0™SN™SMY]
oljjed) |[e Jousai Jou op sdnoi3 Aunoss 293 Inejaq (90~ SN~ SMY]

AN
SISIS SIS

asn ul aJe dnoi3 Aundss z)3 Inejaq [G0 SN~ SMY]
Pa|qeua Sial} dA S¥enud pue aljgnd USIMISQ LOREIIUNWIWOY [0~ SN SMY]

¢33

,

/

/

)

4VM 1IN0y Ju044pnol) [£0"SN~SMY]

/

/

/

SN Ul Jou HOMBN UolngLlsiq Juajuog Jo4pnojg [z0-SNSMy]

Juoi4pnoj)

)

/

3NgIN0ag

13|M0I4

spodaypnol) | Auwiojuo) pnoj)

enby

99641

ueoselis]

SO

A0YO3Y)

SO | No%3Y9

DYN"N4D

SOIA

wiojelss]

UOIjewo4pnojo

ajqisuy

SIsAjeuy dlweuAiq

e

Y oneis

sdnoJg) Aundag anoe Jnoyym uolesnSiuoY youne [10- SN~ SMY]

3u1jeag oy

28

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AWS] Network Security - Part II.

Table 11

dnjou st sauum} (NA) HiomgaN sjenid [enuih [18”SN”Siy]
UOeIN3U0D A 3Uf) UIIA B3B3 Jou ale SaNU AN TON WOMIRN [08”SN” Sy

~

~

Spod |[e 0} dljfel} SS3139/punogino smojje Oy YomaN (6~ SN"SMY!

spiod e 0} aygen ssaiful/punoqul sOJ 10y HOMBN [8/ SN Sy

~

~

68E€ Hod 0} dujey ssaidl/punoqui sojfe O HOMIaN [/~ NSy

22 1od 0} Oien ssau3u1/punogul SMojfe 1O HOMIBN [92”SN S

PROJ) ajend [enip

YUITeYeAId MY SUISN 10U 1. SIS 4 40} JajSuei] [G/SNTSMY

Jajsuel]

3511 Ul Jou paouenpy PIRIYS [~ SN™SMy]

PRIYS

~

~

v
PRIGeus 500y Jaulaju] 19au1], LM JaxeaBes [z/ SN Sy

Iaye|yaes

SUBIS |NINQ O S35 [T2"SN”SHY

/MBS [feLL Bjduwig

~

SISSISISIS SIS SIS SIS SIS S>>

PI031 SN XIN 404 pautapun piodal yomawelq Aoijod J3puas [0/ ~SN"SMY
Pasn jou | yiomauuesd A1jod Jpuag [69™SNSMY

SalLIe LIeWop Maus f|Bafjelwojne Jou Seop 8aInJas G a1y [89™SNSHY
Spi09I GNQ Bu1Lep Ly sauoz pajso) €6 aynoy (/9™ SN”SMY

PalIdx Sey SaLLBU SUIWOp £ 3oy [99™SNSMY

Pa|QesIp U0RIBI0I AoBNlld Sey SUIeLLOP €6 a1y [G9™SNSHY!

S0 U1 Jou S| 801MIas SN €6 a0y 19 SN S

007 JBJSUA JNOYYIM SaLIEU UfeLg [£97SNSMY

1
1
]
1
1
1
]
PO @8N (2N} B 3PISUI BUIUUNI J0U B1e SaDuUesUl §00gajou JaxeiyaBes [£/ SN Sl
]
]
]
]
]
]
]

€6 2oy

aljed} e smojfe dnoiB KNoas iyspY [29”SN S

~

~

S22 35ee(ep Jof od Jnejap) GG od Buisn s ysnjo Jyspay [197GNTSHY
DIOL) 3N [T & UM PRUDUINE] 10U 5 21T Lspay 109N Sy

Hiyspey

$3SSBIPE d| |/ SMojle dnoi3 Anass Sy (65 SN SMY]

shod }nesop oy} uisn S| sauelsul aseqeiep SOy (3G SN Syl

MBIl YiOMIBN SHfy Bush Jou 18 SQdA [9G™SNSMY
UONBINGIYLI0D SIBY0IG JO YIOMRU L SUISN 10U B8 SINIG QI (GG SNSMY

30IAI8S aseqeleq [euonepy

MBI HOMGBY

o]

POJ7) 3}eAlid [BNLIA B Ul S30IN0S3I $S3308 0} PaINS|jL00 J0U 248 SLoRouny epawe] (4SSN ™Syl

pgLe]

SaSSAINPE] PalSIjales wol AjUo 3jqissaoe 10U 1 Yoleasalise[d (SN
PNOLY) 8YeAlid BN © W04} 9IQISS3908 JoU BJe SULIOp YoIeasalse[d (26 SN SMY

YoIeasonser3

SaUI3UB 311920 PaLIRLLB|Y pue SIpaY Joj 135 sHod Jnejap au) Buisn ale SJalsnp ayoeYAser3 (16N S
PNof aleniq Jenih e oju pafojdap Jou e siajsnio audegiserd [0g™SN S

aYoeAser3

PO g [BT\ B Ul paLUTE| 0u ate i 3 [t SN

[LE]

/

SISSS SIS SIS SIS

/

/

]
]
]
]
]
]
]
]
JoUTS QYN L pajeio0sse S| 20Uelsu aSeqele SOY [£67SN Sy
]
]
]
]
]
]
]
]
]

il UO[eD]ddy Gaj 1nouyh Jaoueleg peoT [gy SN SHY

Jouejeq peo

/

~

/

/

/

/

aljgnd s| $saaae Juiodpus Jaisnja Sy [SN~SMY]

0/ SaRUIRGNY Ose3

angyoog

Jamolg

Spodaypnor) | Aiwojuo) pnojy

enby

99541

ueaselss] | SOIN

MOY3Y)

S

10§34

9N N30

S

Wwiojels|

uofeuLio4pnof)

3lqisuy

Sisfjeuy dlweudq

sisfjeuy oneig

29

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[AZURE] Network Security.

Table 12

Pa|gesip uondajoid pJepuels SoqQ Lm YiomgaN [enbiiA 67 SN 34NZY]

SHIOMIBN [eNUIA

~S

SHIOMI3U UMOLY| 0] PRJLASAI 10U S1 JUN0ddy a3elolS [§2 SN~ IMNZY]

SJuno2ay ageiolg

9|qiss800e Apoijgnd si JaniaS 10S [£¢SN”34NZY]

0/0°0°0°0 wiouy ssai3ul smojle Janiag 10S [92 SN 3Nzv]

108

(S410) v 1od an uedg [Gz~SN~3uNzy]

(SOigieN) 8€T 4o €1 Hod dan uedo [SN™3unzv]

SISIS SIS

(#a1seu Jes) 906y 40 GoGY Shod 9] uadQ [€2”SN~3uNZY]

S
~

(8oinias ejepejaw aponaweN S4aH) 0708 Hod 1 uado [gz™ SN~ 34NZv]
(#anaS INA) 006G Hod 49 uedo (12~ SN™34NZv]

(eveqiy) 109G Mod 491 usdo [02™SN™3uNzv]
(w3119 INA) 005G Hod 491 uedQ [61~SN™34NZY]

S S
S S

S S

(1onag aseqeleq 10S2/3150d) €S Hod 4oL uedo (81 SN 3yNZv]

(s0inias [Ng@p poNaweN S4AH/doopeH) 0/0G PUe 000G Hod d9L UadQ [£17SN™34NZY]
(dQ1 4210 GNS Smopuim) Gy Mod 49 usdo [9TSN™34NZv]

(dQy) 68€€ Mod ¢ uadp [STSN™3uNzv]

(eseqereq 10SAIN) 90€€ Mod dO1 uedO [y~ SN”~3YNZY]

SISIS S
SISS S

SIS SIS

(dLINS) Gz Mod gD uedo [ET™SN™3uNzZv]

(i400q) 9/€¢ 40 G/€z Hod 491 usdp [g1SN~3YNZY]
(18ujaL) £z Mod g0 uedo [11-SN”34NZv]

S S
SIS

S S

(HSS) 2g Hod 49 uedo (01 SN™3YNZv]

(d.L4) T pue 0z Hod 491 uedo [60™SN™3uNZv]
(snoyaiey eteq oiny 8oei0) ggGT Hod doL uedo [80”SN™3uNzv]
(eseqeleq 8joei0) 126t Hod 49 uedo [10”SN”34Nzv]

(1an18g 108 HOSOIN) wEFT Hod 4an 4o eeyT Mod dL uedg [90~SN”3¥Nzy]

(0dy) GET Hod 49| uedo [G0™SN™34NZY]

(SN@) £6 Hod dan pue 491 uad [0~ SN~ 3Nnzv]

/

SISIS S

Pa|esip Jaylep YiomgaN (€0 SN F4NZv]

/

SISISIS SIS SIS IS SIS NSNS

/

ijqnd 8y} 0} syiod je asodxa dnoig) AN9aS yiomgaN [20”SN”FuNzv]

sdnoig) A1ndas yiomjaN

/

/

$$9028 2l/qnd Ausp Jou S80p §Q Sowso) [10~SN~3¥NZY]

gq sowsoy

a)INgN0ag

Ryusiouog pnojg

enby

ueaseds] | SOl

A0Y03Y7)

S

uuojeLd]

s|qisuy

SisAjeuy alweuAq

siskjeuy aneis

30

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

[GCP] Network Security context.

Table 13

SSSNSDS

Sse20e Ssaide /punogino pajoulsaiun [9 SN dOD]

spod 4an/do.L uowwodun 0} ssedde ssaldul pajoulsalun [G SN dOD]

(dINDI) [090104d ©8esSsa|\ |043U0D Jouialu| Suish punoqul pajousalun [~ SN™ d09]
pajgesip ssa2dy 8|8009 8jeAlld sey 32uqns [~ SN™d09]

olyjes} Sulooul mojje o} pauado spiod Jo a3uey [g SN dO9]

(S410) G 1Wod dan usdo [T SN™d09]

(SOIg¥eN) 8€T 40 LET Mod dan uado [0t SN™d09]

(4o1seW JjES) 90GY 40 GOGH SHod 401 uadQ [6€7 SN 09I

(991185 elepelaw spoNaweN S4aH) 0208 Hod 4oL uadQ [8€™ SN™ dO9I
(eapuesse)) 100/ 1od 491 uadQ [£LE€TSN™d0D]

(s1pay) 6£€9 Hod 401 uadQ [9€™ SN™ dODI

(49n493 ONA) 006G Hod 491 usdQ [GETSN™dOD]

(eueqiy) 109G Hod 401 usdQ [y€ SN 09I

(Aua11D ONA) 005G Hod 4oL uedo [EETSN™d09]

(Jonieg aseqereq 10S48150d) ¢S Hod 401 uado [2€7 SN d0B]

(93143 |NGSM SPONSWEN S4aH/doopeH) 040G Pue 0£00G 3od 401 uado [TETSN™ 09I
(dOL 4on0 gINS smopulp) G Mod 401 uedo [0€™ SN~ 09I

(day) 68€€ 1od 4J1 uadQ [62” SN dO9I

(eseqereq 1OSAIN) 90€€ Hod 491 uedQ [82~ SN dO9I]
(a@osuo) £10£2 Hod 401 uadQ [£27SN™d09]
(dLNS) GZ Hod 491 uedQ [92~ SN™dO9I

(4ax00Q) 9/€2 40 GLEZ Hod dOL uadQ [GZTSN™JO9]
(1upel) €2 1od 491 uedQ [¥Z~ SN~ d09]

(HSS) gz 1od 401 uadQ [eZ2" SN~ d09I

SIS TONSSNNNSSNNSSNNSNSNNSNE ST SHD

(d14) 12 pue oz Hod 491 uadQ [g2”SN™ d09]

(esnoyasep eleq oy 9j9eIQ) 2gGT Hod 4oL uado [T2TSN™ d09]

(eseqeieq 919e4Q) 12GT Hod dJ1 uado [02” SN™ d09]

(19/43S 1OS HOSOIN) HEYT Hod dan 40 €T Hod 401 uadQ [6T SN~ dODI]
(0d¥) GET Hod 4oL uadQ [8TSN™ d09]

(SNQ) €6 Hod dan pue 4oL uadQ [Z17SN™d09]

asn ul yomau Yneyad [9T SN d09I

MIOMISN

julodpus a1eaud Jnoypm Jasn|o suidu3 sejeuiagny [GTT SN dOD]

SIS

pajqeus Ad1jod 3iomiau INOYUM J83sNn|o auiSul sayautagny [T~ SN~ d09]

pajgesip 491snjo ajeaud yum usisn|o auiug seeusagny [T SN dO9]

pa|qesip sagued d| selje sey Ja)snjd auidul saeuwiadny [21 SN d0D]

auiu3 sajauiagny

pajqgesip sI ANndag SNA [T~ SN™d09]

SNd

SISISISISSISNSSNNSSNNSSNNESNNSNSNNND

pajqeus Suipiemiod d| Yum soueisul WA [0T SN~ dO9]

SIS

SISISTSS

SINSISSISS

SISISSNSNNS

SISISSISDS

pajgesip . INA PIPIBIUS., Yim payoune| souelsul WA [60” SN~ d09]

SSS

sa3uel pod sasn jey) ojnJ ||lemadly e 3uisn s asdueisul INA [BO” SN d0D]
spod ||e smojje Jey} a|n. ||lemally e Suisn si dduelsul NA [£L0” SN™dO9]
3|nJ |lemauly ynejap e Suisn s aduejsul WA [90° SN dOD]

sassaippe d| 21ignd sey soueisul NA [G0” SN d09]

/

pajgeus ,suod [euss 0} 3uiosuu0d 8|gqeud,, sey aouelsul INA [0 SN dOD]

/

pajgesip ,sASY HSS apIm103f0id 320ig., Sey adueisul INA [E0” SN~ dO9]

auiBu3 sndwo)

/

Val

SISSS

3ouialU| By} 0} uado Spim sI soueIsul seqelep 10S PNojD [20_SN”dOD]

SIS SN

SIS NS

sessalppe d| 2lgnd sey aouejsul aseqelep 1OS PNojY [10~ SN~ dO9]

10S pPnoio

2)NSIN00S

Ayuiiojuo) pnojy

enby

ueodsena]

SO

AOYO9YD

SO

wi.ojelia)

s|qisuy

sisAleuy s1weuiq

sisAjeuy oneis

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

Table 14 presents the 150 security queries collected as a gap between static analysis tools for laC and
dynamic analysis tools for cloud-based infrastructure (see Tables 6, 7, 8, 9, 10, 11, 12, and 13). All of
them are categorized according to the 1aC problem, based on the understanding of misconfiguration and
non-compliance problems definition (see Section 2.1.3).

The non-compliance problems are identified through the mapping of the collected security queries with
the CIS Amazon Web Services Foundations Benchmark v1.4.0, CIS Microsoft Azure Foundations Bench-
mark v1.4.0, and CIS Google Cloud Platform Foundation Benchmark v1.4.0. They are labeled as "non-
compliance” in the column "laC Problem”, pointing to the number item of the CIS benchmark (e.g., non-
compliance (<item-number>)).

On the other hand, the misconfigurations problems are labeled as "misconfiguration”. The identification
of them is done by excluding the security queries as a non-compliance problem since this type of problem

can cover any unsafe configuration.

31

3.1. Static Analysis Tools vs. Dynamic Analysis Tools

Table 14: Collected security queries according to laC problem.

Security Query ID 1aC Problem Security Query ID 1aC Problem Security Query ID IaC Problem
[AWS_AC_01] misconfiguration [AWS_NS_30] misconfiguration [AZURE_AC_37] misconfiguration
[AWS_AC_02] misconfiguration [AWS_NS_35] misconfiguration [AZURE_AC_39] misconfiguration
[AWS_AC_08] misconfiguration [AWS_NS_43] misconfiguration [AZURE_NS_08] misconfiguration
[AWS_AC_10] misconfiguration [AWS_NS_45] misconfiguration [AZURE_NS_09] misconfiguration
[AWS_AC_11] non-compliance (1.19) [AWS_NS_49] misconfiguration [AZURE_NS_12] misconfiguration
[AWS_AC_12] misconfiguration [AWS_NS_50] misconfiguration [AZURE_NS_17] misconfiguration
[AWS_AC_14] misconfiguration [AWS_NS_51] misconfiguration [AZURE_NS_20] misconfiguration
[AWS_AC_15] misconfiguration [AWS_NS_53] misconfiguration [AZURE_NS_22] misconfiguration
[AWS_AC_17] misconfiguration [AWS_NS_b5] misconfiguration [AZURE_NS_29] misconfiguration
[AWS_AC_18] misconfiguration [AWS_NS_56] misconfiguration [GCP_AC_05] | non-compliance (6.1.1)
[AWS_AC_19] misconfiguration [AWS_NS_57] misconfiguration [GCP_AC_11] non-compliance (1.3)
[AWS_AC_24] misconfiguration [AWS_NS_58] misconfiguration [GCP_AC_13] misconfiguration
[AWS_AC_25] misconfiguration [AWS_NS_61] misconfiguration [GCP_AC_14] non-compliance (1.4)
[AWS_AC_27] misconfiguration [AWS_NS_63] misconfiguration [GCP_AC_15] misconfiguration
[AWS_AC_30] misconfiguration [AWS_NS_64] misconfiguration [GCP_AC_16] misconfiguration
[AWS_AC_31] misconfiguration [AWS_NS_65] misconfiguration [GCP_AC_17] misconfiguration
[AWS_AC_3?2] misconfiguration [AWS_NS_66] misconfiguration [GCP_AC_20] misconfiguration
[AWS_AC_33] misconfiguration [AWS_NS_67] misconfiguration [GCP_AC_21] non-compliance (1.9)
[AWS_AC_35] | non-compliance (1.20) [AWS_NS_68] misconfiguration [GCP_AC_23] misconfiguration
[AWS_AC_36] non-compliance (1.14) [AWS_NS_69] misconfiguration [GCP_NS_06] misconfiguration
[AWS_AC_37] | non-compliance (1.12) [AWS_NS_70] misconfiguration [GCP_NS_07] misconfiguration
[AWS_AC_41] misconfiguration [AWS_NS_71] misconfiguration [GCP_NS_08] misconfiguration
[AWS_AC_53] misconfiguration [AWS_NS_74] misconfiguration [GCP_NS_17] misconfiguration
[AWS_AC_54] misconfiguration [AWS_NS_81] misconfiguration [GCP_NS_18] misconfiguration
[AWS_AC_56] misconfiguration [AZURE_AC_01] misconfiguration [GCP_NS_19] misconfiguration
[AWS_AC_58] non-compliance (1.17) [AZURE_AC_02] misconfiguration [GCP_NS_20] misconfiguration
[AWS_AC_59] misconfiguration [AZURE_AC_03] misconfiguration [GCP_NS_21] misconfiguration
[AWS_AC_61] misconfiguration [AZURE_AC_04] misconfiguration [GCP_NS_22] misconfiguration
[AWS_AC_62] misconfiguration [AZURE_AC_06] | non-compliance (1.12) [GCP_NS_24] misconfiguration
[AWS_AC_65] misconfiguration [AZURE_AC_07] misconfiguration [GCP_NS_25] misconfiguration
[AWS_AC_66] misconfiguration [AZURE_AC_08] | non-compliance (1.1) [GCP_NS_26] misconfiguration
[AWS_AC_67] misconfiguration [AZURE_AC_09] | non-compliance (1.2) [GCP_NS_27] misconfiguration
[AWS_AC_68] misconfiguration [AZURE_AC_10] misconfiguration [GCP_NS_28] misconfiguration
[AWS_AC_72] non-compliance (1.11) [AZURE_AC_11] misconfiguration [GCP_NS_30] misconfiguration
[AWS_AC_75] misconfiguration [AZURE_AC_12] misconfiguration [GCP_NS_31] misconfiguration
[AWS_AC_78] misconfiguration [AZURE_AC_13] | non-compliance (1.18) [GCP_NS_32] misconfiguration
[AWS_AC_79] misconfiguration [AZURE_AC_14] misconfiguration [GCP_NS_33] misconfiguration
[AWS_AC_80] misconfiguration [AZURE_AC_15] misconfiguration [GCP_NS_34] misconfiguration
[AWS_AC_81] misconfiguration [AZURE_AC_16] misconfiguration [GCP_NS_35] misconfiguration
[AWS_AC_82] misconfiguration [AZURE_AC_17] misconfiguration [GCP_NS_36] misconfiguration
[AWS_NS_01] misconfiguration [AZURE_AC_18] misconfiguration [GCP_NS_37] misconfiguration
[AWS_NS_04] misconfiguration [AZURE_AC_19] | non-compliance (1.19) [GCP_NS_38] misconfiguration
[AWS_NS_05] misconfiguration [AZURE_AC_20] misconfiguration [GCP_NS_39] misconfiguration
[AWS_NS_07] misconfiguration [AZURE_AC_21] | non-compliance (1.12) [GCP_NS_40] misconfiguration
[AWS_NS_08] misconfiguration [AZURE_AC_22] misconfiguration [GCP_NS_41] misconfiguration
[AWS_NS_16] misconfiguration [AZURE_AC_23] misconfiguration [GCP_NS_42] misconfiguration
[AWS_NS_17] misconfiguration [AZURE_AC_29] misconfiguration [GCP_NS_43] misconfiguration
[AWS_NS_20] misconfiguration [AZURE_AC_31] | non-compliance (4.5) [GCP_NS_44] misconfiguration
[AWS_NS_25] misconfiguration [AZURE_AC_32] misconfiguration [GCP_NS_45] misconfiguration
[AWS_NS_27] misconfiguration [AZURE_AC_35] | non-compliance (4.5) [GCP_NS_46] misconfiguration

32

3.2. Why KICS

3.2 Why KICS

The present dissertation is developed in a collaboration with Checkmarx. As stated on the Checkmarx
website, this company is a global leader in software security solutions for DevOps. Of the several products
that this well-known company provides, KICS (Keeping Infrastructure as Code Secure) is its first open source
one.

This Checkmarx solution was created to provide an automatic way of identifying laC issues. In this way,
the development teams can fix the 1aC issues quickly and easily rather than relying on manual code reviews.

Since Checkmarx advocates open source projects, KICS was launched as an open source tool to allow
the community to keep Infrastructure as Code more secure together with the company, for free, by allowing
the community to interact and contribute to KICS. The KICS source code is available in the KICS GitHub
repository?.

Available since 2020, KICS is attracting more and more users as time goes by for being such an attractive
open source tool: as stated in Section 2.2.2, KICS is one of the few tools that cover several laC solutions
(Ansible, CloudFormation, Docker, Kubernetes, and Terraform, among others), which makes it so appealing.

3.3 KICS Overview

Provided by Checkmarx, KICS (Keeping Infrastructure as Code Secure) is an open source tool for static code
analysis of laC solutions (Ansible, CloudFormation, Docker, Kubernetes, and Terraform, among others).

Its main goal consists of preventing security vulnerabilities, misconfiguration, and non-compliance prob-
lems in various categories? through over 1000 security queries. Each security query detects the presence

of the security issue in question. See Section 2.1.4 to obtain further information.

3.3.1 Architecture

This section describes the five main components that make up the KICS architecture, as shown in Figure
3. All of them are written in Golang, using Open Policy Agent (OPA)/REGO for security queries.

Open Policy Agent® is an open source engine that provides the development of policies as code, using a
declarative policy language (REGO*) to write them. The policies are used in decision-making processes for
structured documents.

1 https://github.com/Checkmarx/kics

2 Access Control, Backup, Best Practices, Build Process, Encryption, Insecure Configurations, Insecure Defaults, Networking and Firewall, Observability, Resource
Management, Secret Management, Structure and Semantics, andSupply-Chain

3 https://www.openpolicyagent.org/

4 https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego

33

https://github.com/Checkmarx/kics
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/##what-is-rego

Core

Service
Parser

T

Shared Resources

Inspector

>
.
| Storage

cLl

SourceProvider

—Terraform Service—»

——Docker

—YAML S

Service—»

—

ervice—»

Tracker

Resolver

3.3.2 Command Line Interface

—JSON Semce*‘

Figure 3: KICS Architecture (Source: KICS Website).

lacC Providers

Terraform

Docker

Ansible

K8s

CloudFormation

OpenAPI

3.3. KICS Overview

Queries Execution Engine

«—REGO—

—JSON—>

Azure

GCP

Github

k8s_pod

)

Resuits

The Command Line Interface (CLI) controls KICS scan behavior. There are several features available, such

as:

* Cloud provider(s) restriction: The scan can be restricted to queries related to the chosen cloud

provider(s). Valid values are aws, azure, and gcp.

¢ Category exclusion: The scan can exclude a set of categories.

¢ Queries exclusion: The scan can exclude a set of queries.

¢ Queries inclusion: The scan can include a set of queries.

¢ Report format: The results can be reported in many formats.

3.3.3 Core

Acting as the KICS engine, the core incorporates several agents that are dependent on the Service Parser.

Together, these agents are responsible for parsing the files into a payload and storing it.

The Service Parser is responsible for converting the laC files into JSON format (payload). Since the

REGO queries require a structured data as input, which is the case of JSON, the laC samples need to be

normalized into structured data according to each laC solution (see Section 3.3.4).

34

3.3. KICS Overview
3.3.4 |aC Solutions

KICS covers several laC solutions, such as Ansible, CloudFormation, Docker, Kubernetes, and Terraform,

among others. These solutions do not have a common configuration file extension, as can be seen in Table
15:

Table 15: 1aC solutions configuration file extension.

laC solution | Configuration file extension
Ansible yaml
CloudFormation yaml &.json
Dockerfile .dockerfile
Helm yaml
Kubernetes yaml
OpenAPI yaml &.json
Terraform i

Although some of them have the same file extension, all have different specifications that require a

specific conversion for each laC provider into a normalized JSON format (payload). The responsible for that
task is the Service Parser.

As an example of a payload, see Listing 5 which represents the payload of Listing 6.

"document": [
{

"file": "positivel.tf",

"id": "5835e708-66dc-4bb9-b219-6772d9d2d77a",
"resource": {

"aws_instance": {
"positivel": {
"ami": "ami-003634241a8fcdecO",

"instance_type": "t2.micro"

35

3.3. KICS Overview

Listing 5: Payload example.

resource "aws_instance" "positivel" {

ami = "ami-003634241a8fcdecO"

instance_type = "t2.micro"

Listing 6: Terraform file example.

3.3.5 Queries Execution Engine

The Queries Execution Engine is the component responsible for applying the REGO queries against the
normalized JSON. All the KICS queries are developed and organized according to the 1aC technology and
cloud provider (AWS, AZURE, and GCP), as can be seen in Listing 7.

- <technology>
|- <provider>
| |- <queryfolder>
| | |- test
| | | |- positive<.ext>
| | | |- negative<.ext>
| | | |- positive_expected_result. json
| | |- metadata.json

| | |- query.rego

Listing 7: Query file tree.

Each query is composed of:

* metadata.json: Describes the relevant aspects of the query: id, query name, severity, category,
description text, description URL, and platform. For an example, see Listing 8.

{

"id": "a31aba29-718a-4ff4-8001-a69eb5e4d029e",

36

3.3. KICS Overview 37

"queryName": "Instance With No VPC",

"severity": "MEDIUM",

"category": "Insecure Configurations",

"descriptionText": "Instance should be configured in VPC (Virtual Private Cloud)",

"descriptionUrl": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/
resources/instance",

"platform": "Terraform"

Listing 8: Metadata example.

* query.rego: Establishes the policy to verify the vulnerability and delineates the result. The result
includes the document id, search key (specific data used to verify the vulnerability presence), issue
type (indicates if the attribute is missing, redundant, or incorrect), expected value, and actual value.
For example, Listing 9 presents a query that reports a vulnerability if the attribute 'vpc_security_-

group_ids’ of the resource 'aws_instance’ is undefined.

package Cx

CxPolicy[result] {

resource := input.document[i].resource.aws_instance [namel]

not resource.vpc_security_group_ids

result := {
"documentId": input.document[i].id,
"searchKey": sprintf ("aws_instancel[%s]", [name]),
"issueType": "MissingAttribute",
"keyExpectedValue": "Attribute 'vpc_security_group_ids' is set",
"keyActualValue": "Attribute 'vpc_security_group_ids' is undefined",
}

Listing 9: Query example.

* test folder: Includes positive and negative laC samples as test cases (further information will be
provided in Section 5.3).

3.3. KICS Overview

3.3.6 Results

The results are available in two forms: presented in the Command Line Interface (CLI) and saved in a few
different file formats. In the CLI, the number of files scanned, parsed files, queries loaded, queries failed to
execute, results summary (results total categorized by severity), scan duration (in seconds), and information
about the results of each query failed is reported. As an example, see Figure 4.

Files scanned: 1

Parsed files: 1

Queries loaded: 1

Queries failed to execute: @

Instance With No VPC, Severity: MEDIUM, Results: 1
Description: Instance should be configured in VPC (Virtual Private Cloud)
Platform: Terraform

[1]: assets\queries\terraform\aws\instance_with_no_vpc\test\positivel.tf:1

@el: resource "aws_instance" "positivel" {
002: ami = "ami-@03634241la8fcdeco”
003:

Results Summary:
HIGH: @

MEDIUM: 1

LOW: ©

INFO: @

TOTAL: 1

Scan duration: 131.3443ms

Figure 4: KICS results in Command Line Interface (CLI).

On the other hand, apart from the features reported in CLI, the results can be written in different file
formats, such as JSON, and provide more detailed information regarding the execution of each query. As

an example, see the Listing 10.

"files_scanned": 4,

"files_parsed": 4,

"files_failed_to_scan": O,
"queries_total": 1,
"queries_failed_to_execute": O,
"queries_failed_to_compute_similarity_id": O,
"queries": [
{
"query_name": "Instance With No VPC",

"query_id": "a31ab5a29-718a-4ff4-8001-a69e5e4d029e",

38

3.3. KICS Overview

"query_url": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources

/instance",

"severity": "MEDIUM",
"platform": "Terraform",
"files": [
{
"file_name": "C:/Users/rafaelas/Desktop/kics2/kics/assets/queries/terraform/aws/

instance_with_no_vpc/test/positive.tf",

"similarity_id": "f£19cab5c67792801cd7295f65fcc54172c625eel1b5c4f2ce3730b1dc3bc6b8139",
"line": 1,

"issue_type": "MissingAttribute",

"search_key": "aws_instance[positivel]",

"search_value":

nn
>

"expected_value": "Attribute 'vpc_security_group_ids' is set",
"actual_value": "Attribute 'vpc_security_group_ids' is undefined",
"value": null
}
1,
"category": "Insecure Configurations",
"description": "Instance should be configured in VPC (Virtual Private Cloud)"
}
1,
"scan_id": "console",
"severity_counters": {
"HIGH": O,
"INFO": O,
"LOW": O,
"MEDIUM": 1
1,
"total_counter": 1

Listing 10: KICS results in a JSON report.

39

3.4. The Problem

34 The Problem

As presented in Chapter 2, the community that uses 1aC technologies faces challenges related to the laC
scripts. During the development of laC scripts, inadvertent infrastructure misconfigurations, non-compliance
problems, or security vulnerabilities can occur. It can arise from a lack of the best security practices in
laC, misconfigurations, code smells, security smells, or even due to bugs in the code. This concerns the
developers, especially the testability of the laC scripts.

The best way of preventing all the issues mentioned above, before laC scripts are executed, is to use a
static analysis tool for 1aC. However, as concluded in Chapter 3, there is a gap between the static analysis
tools for laC and dynamic tools for cloud-based infrastructure.

Unfortunately, the definition of solutions to bridge the gap between static analysis tools for laC and
dynamic analysis tools for cloud-based infrastructure in a static approach has its limitations. The main one
is the fact that this approach is not capable of identifying possible vulnerabilities, misconfiguration, and non-
compliance problems that require a run-time environment. For example, a static approach cannot identify
the period of user inactivity through laC technology. This approach does not have access to all the account
information of the cloud infrastructure provider. If it does, it is no longer a static approach since it is just
available in a run-time environment (cloud-based infrastructure provider account).

Another limitation is the coverage of the resources. l1aC technologies do not provide all the resources
made available by the cloud providers. This limits the static approach implementation since it does not
have the same resources as a run-time environment. Furthermore, sometimes, it does not provide all the
resource information made available by the cloud providers.

Although challenging, this dissertation study explores how some dynamic security queries can be adapted
to a static approach.

3.5 Challenges

3.5.1 Filtration of the Collected Security Queries

The first challenge is the filtration of the collected security queries presented in Section 3.1.2. This step
requires a crucial understanding of whether it is possible to verify each query in a static approach and
discard it otherwise. This may sound easy, but there are a few obstacles that need to be tackled:

¢ Lack of IaC documentation: As a very recent technological field, information and documentation
are lacking, which impacts the study process.

40

3.6. Summary

¢ Static analysis limitations: As mentioned above, a static approach cannot access information
available only in a run-time environment. Because of that, some security queries are simply impos-
sible to verify.

* Differences between the chosen laC technologies: Every technology has its specifications
and services available, requiring a specific implementation. In some cases, it is impossible to imple-
ment the same security query in all technologies. In the worst-case scenarios, it is not possible to

implement under no technology.

3.5.2 Implementation of the Selected Security Queries

The lack of knowledge of the involved technologies can be challenging since this requires a time-consuming
documentation review about all of them.

Concerning the selected laC technologies (Ansible, CloudFormation, and Terraform), all of them have
their specifications which can demand different implementation methods for the same check. For instance,
for the same role, it can be necessary to analyze one resource in Terraform and Ansible, and two in Cloud-
Formation. Therefore, different implementation methods entail more time, creativity, and effort.

Regarding the contribution of new security queries for KICS, it is necessary to understand how this tool
works and understand the languages involved in KICS queries development, i.e. JSON and OPA (REGO).

Furthermore, if the study implies adding more information to the JSON payload used in KICS queries,
understanding the KICS engine is also fundamental. It requires studying its parser to figure out where to

add the necessary information, as well as the programming language it uses (Go).

3.6 Summary

This chapter details the core study of the present dissertation, i.e., it discusses the gap between the chosen
static analysis tools for IaC and dynamic analysis tools for cloud-based infrastructure, from the methodolog-
ical approach to the results. The main focus is on Access Control, but it also includes Network Security.

It identifies 150 missing security checks between the chosen static analysis tools for laC and dynamic
analysis tools for cloud-based infrastructure. A total of 78 of them are related to Access Control and 72 to
Network Security.

Moreover, it explains why KICS is the chosen tool for the practical contribution of this dissertation and
how it works. It also highlights the challenges that must be addressed during the implementation of security
queries. Among them, the lack of documentation, static analysis limitations, differences between the laC

technologies chosen, and the lack of knowledge of the involved technologies stand out.

Il

3.6. Summary 42

The next chapter discusses possible solutions for the collected queries, describing how they can be or

cannot be implemented in KICS.

FITTING NEW SECURITY QUERIES INTO KICS

The present chapter presents the core developments of this dissertation. In other words, the discussion
about the solutions for how the collected security queries can be applied to KICS.

41 Introduction

Section 3.1 reports 150 security queries as a gap between static analysis tools for 1aC and dynamic analysis
tools for cloud-based infrastructure.

The implementation of these security queries in KICS requires contribution mainly in KICS Queries. How-
ever, in some cases, it also entails contribution to KICS Parser, as discussed in Section 4.2.2 and Section
4.2.3.

Unfortunately, not all the security queries have viable solutions to KICS. For more detailed information,
see Section 4.3.

42 Implementing the Security Queries

This section describes and discusses the development of the security queries reported as a gap between
static analysis tools for laC and dynamic analysis tools for cloud-based infrastructure (see Section 3.1).

Each security query development highlights the description and the approach attached to itself. The
query description is a brief description of the query, which points out why it is relevant. In contrast, the
query approach indicates the implementation steps and the correspondent laC technology target.

Each query also refers to a table, identifying the resource(s) and attribute(s) used for its implementation
in each platform.

As mentioned in Section 3.1.1, the selected laC technologies are Ansible, CloudFormation, and Terraform.
Besides, the selected providers are AWS, AZURE, and GCP. Note that Ansible and Terraform cover all the
providers, but CloudFormation only covers AWS.

43

4.2. Implementing the Security Queries

There are cases where it is impossible to implement the query on a specific platform. Sometimes because
the specific platform does not support a specific resource necessary for the solution. Others because the
specific platform supports the specific resource necessary for the solution, but the specific resource does
not provide enough settings to perform the solution. In these scenarios, the platform is not referenced in
the table.

421 [AWS_AC_08] API Gateway without WAF

Query description: AWS Web Application Firewall (WAF) provides protection assistance for web applica-
tions or APIs against known web exploits, like Cross-Site Request Forgery (CSRF) or SQL injections. This
kind of attack can call into question the CIA (Confidentiality, Integrity, and Availability) Triad. That said, when
WAF is integrated with AWS API Gateway, it will provide extra protection against it.

Query approach: To verify if WAF is implemented for APl Gateway, it is necessary to check if the resource
related to APl Gateway Stage is associated with a resource related to WAF Web ACL.

Table 16: [AWS_AC_08] API Gateway without WAF.
Platform Resource(s) Attributes
community.aws.aws_api_gateway (1),
aws_api_gateway (1),
community.aws.wafv2_resources (2),
and wafv2_resources (2)
AWS::ApiGateway::Stage (1) and Properties.StageName (1) and
AWS::WAFv2::WebACLAssociation (2) Properties.ResourceArn (2)
aws_api_gateway_stage (1) and
aws_wafregional_web_acl_association (2)

Ansible stage (1) and arn (2)

CloudFormation

Terraform resource_arn (2)

4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer

Query description: AWS provides two types of authorizers to restrict an API: Lambda authorizers! (also
known as "custom authorizers”) and Amazon Cognito user pool?.

Both are essential to confer a more robust authorization mechanism. If none of these services is defined,
the API Gateway could have security issues since IAM roles and policies might not be sufficient. Therefore,
it is relevant to verify if an APl Gateway does not have a configured Authorizer.

Query approach: Unlike Terraform and CloudFormation, Ansible does not provide a resource related to
AWS API Gateway Authorizer. For that reason, this query for Ansible requires a complex implementation.

1 https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

2 https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

4.2. Implementing the Security Queries

Since this platform provides two resources related to AWS APl Gateway (community.aws.aws_api_gateway®
and aws_api_gateway?) that allow configuration of swagger definitions for API, the verification can be done
through a swagger attribute (swagger_file, swagger_dict or swagger_text). If the swagger attribute does not
have the extension 'x-amazon-apigateway-authorizer'® set in the security definitions, the AWS APl Gateway
does not have an authorizer configured. However, this is not enough.

This attribute only refers to the file name that contains the swagger definitions. To access the information

about the presence of the extension 'x-amazon-apigateway-authorizer’, the KICS parser needs to be modified.

In the swagger attribute of the AWS API Gateway resource, the parser has to add the content of the swagger
file.
The algorithm to be followed in order to implement this modification is:

1. Get the file path

a) Verify if the content of 'swagger_file’ is a fully valid path through function 'Stat’ of package
'0s'®,

b) If so, the file path is ready. If not, the 'swagger_file’ could be an incomplete path. In that
case, it is necessary to get the directory of the Ansible template and join it to the content of
'swagger_file’ through functions 'Dir’ and "Join’ of package 'filepath’’ .

2. Read and add the file content

a) Read the file through function 'Unmarshal’ of packages ’json’® or 'yaml’® in case of being a
JSON or a YAML file, respectively.

b) Add the content read to the 'swagger_file' attribute.

For Terraform and CloudFormation, it is only necessary to verify if the AWS API Gateway resource has an
AWS API Gateway Authorizer associated.

3 https://docs.ansible.com/ansible/latest/collections/community/aws/aws_api_gateway_module.html

4 https://docs.ansible.com/ansible/2.4/aws_api_gateway_module.html

5 https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions-authorizer.html
6 https://golang.org/pkg/os/

7 https://golang.org/pkg/path/filepath/

8 https://golang.org/pkg/encoding/json/

9 https://pkg.go.dev/gopkg.in/yaml.v3

45

https://docs.ansible.com/ansible/latest/collections/community/aws/aws_api_gateway_module.html
https://docs.ansible.com/ansible/2.4/aws_api_gateway_module.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions-authorizer.html
https://golang.org/pkg/os/
https://golang.org/pkg/path/filepath/
https://golang.org/pkg/encoding/json/
https://pkg.go.dev/gopkg.in/yaml.v3

4.2. Implementing the Security Queries 46

Table 17: [AWS_AC_10] API Gateway Without Configured Authorizer.

Platform Resource(s) Attribute(s)
. community.aws.aws_api_gateway swagger_dict, swagger_file,
Ansible)
and aws_api_gateway and swagger_text
AWS::ApiGateway::RestApi,
AWS::ApiGateway::Authorizer (1), Properties.RestApild (1)

CloudFormation AWS::ApiGatewayV2::Api, and Properties.Apild (2)

and AWS::ApiGatewayV2::Authorizer (2)
aws_api_gateway_authorizer
and aws_api_gateway_rest_api (1)

Terraform rest_api_id (1)

4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than 256

Query description: RSA Key length is commonly set to 1024, 2048, or 4096 bits. However, according
to the National Institute of Standards and Technology (NIST)!9, the length of an RSA key should be at least
2048-bit.

With the technological innovation related to hardware (computing power), the 1024-bit RSA key is no
longer considered to be safe. For that reason, it is a best practice to check if any certificate has a 1024-bit
RSA key.

In addition to that, expired certificates could lead to security issues (man-in-the-middle attacks), credibility
reduction, and errors in the run-time environment. All of these inconveniences should be avoided.

Query approach: These queries seem to be only possible to implement in Ansible and Terraform since
no resource was found to import an existing certificate in CloudFormation.

As the attribute related to the certificate file only mentions the file name, the implementation approach
requires a modification to the KICS Parser. The steps to be followed are as follows:

1. Get the file path

a) Similar to 4.2.2.

2. Read the certificate

a) Through packages 'os’, ‘pem’!! and 'x509'12,

3. Add the information about the expiration date and the RSA Key bytes

a) Through functions 'NotAfter’ and 'PublicKey’ of package 'x509'.

10 https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131arl.pdf
11 https://golang.org/pkg/encoding/pem/
12 https://golang.org/pkg/crypto/x509/

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://golang.org/pkg/encoding/pem/
https://golang.org/pkg/crypto/x509/

4.2. Implementing the Security Queries

With this modification, it is possible to verify if the certificate uses an RSA key length lower than 256

bytes. Furthermore, it is possible to verify if the certificate has expired.

Table 18: [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than

256.
Platform Resource(s) Attribute
Ansible community.aws.aws_acm certificate
aws_api_gateway_domain_name,
Terraform aws_iam_server_certificate, certificate_body
and aws_acm_certificate

4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication

Query description: Elasticsearch should ensure IAM Authentication to prevent public access.
Query approach: [t is necessary to check if the policy related to Elasticsearch allows any Principal. In
the case of CloudFormation, the verification is done directly in the resource 'AWS::Elasticsearch::Domain’
through 'Properties.AccessPolicies’.

On the other hand, in Terraform, it is necessary to check the 'aws_elasticsearch_domain_policy’ attached

to the "aws_elasticsearch_domain’.

Table 19: [AWS_AC_ 18] Elasticsearch Without IAM Authentication.

Platform Resource Attribute(s)
CloudFormation AWS::Elasticsearch::Domain Properties.AccessPolicies
aws_elasticsearch_domain and domain_name (1) and
Terraform , . . .
aws_elasticsearch_domain_policy (1) access_policies (1)

4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled

Query description: Neptune Cluster should have IAM Database Authentication enabled to ensure the use
of IAM in database access.
Query approach: Itis only necessary to check if the resource related to Neptune Cluster has IAM Database

Authentication enabled.

Table 20: [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled.
Platform Resource Attribute

CloudFormation | AWS::Neptune::DBCluster Properties.lamAuthEnabled
Terraform aws_neptune_cluster iam_database_authentication_enabled

47

4.2. Implementing the Security Queries

4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions

Query description: Simple Email Service (SES) should not allow all actions to all principals in order to
grant the least possible privileges.

Query approach: In the policy of an SES, this query searches if all principals have permission to perform
all actions. In such a scenario, the statement effect is set to "allow’, the statement action is set to '*’, and
the statement principal contains '*’'. See Listing 11 as an example.

{

"Version": "2012-10-17",
"Statement": [
{
||Action": ||*||’

"Principal": {

n AwS n : n * n
},
"Effect": "Allow",
"Resource": "x",
"Sid": nn

Listing 11: All actions to all principals.

Table 21: [AWS_AC_32] SES Policy With Allowed IAM Actions.
Platform Resource(s) Attributes
community.aws.aws_ses_identity_policy

and aws_ses_identity_policy
Terraform aws_ses_identity_policy policy

Ansible policy

4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined

Query description: AWS IAM Access Analyzer is part of Identity and Access Management (IAM) features
that attempts to identify unintentional access to the resources and data in an AWS cloud environment.
Query approach: It checks if the resource related to IAM Access Analyzer is undefined in the entire project.

48

4.2. Implementing the Security Queries

Table 22: [AWS_AC_35] IAM Access Analyzer Undefined.

Platform Resource
CloudFormation | AWS::AccessAnalyzer::Analyzer
Terraform aws_accessanalyzer_analyzer

4.2.8 [AWS_AC_41] IAM Group Without Users

Query description: Having an IAM Group without at least one user attached is pointless since every policy
defined to it will not be used. It does not represent an immediate risk but could be in the future if the group
fades to oblivion and an unauthorized user is able to attach herself to it.
Query approach: This query implies one implementation method for each platform. In an Ansible ap-
proach, it is necessary to check if the attribute 'users’ exists and is not empty in the AWS IAM Group.
However, different from Ansible, the resource AWS IAM Group provides by CloudFormation and Terraform
does not have an attribute directly related to users. So, for Terraform, it is necessary to check if an AWS
[AM Group is not associated with an AWS IAM Group Membership (that has at least one user set).
On the other hand, for CloudFormation, it is necessary to check if an AWS IAM Group is in the groups of
an AWS IAM User.

Table 23: [AWS_AC_41] IAM Group Without Users.

Platform Resource Attribute
Ansible community.aws.iam_group and iam_group users
CloudFormation AWS::IAM::Group and AWS::IAM::User (1) Properties.Groups (1)
Terraform aws_iam_group and aws_iam_group_membership (1) group (1)

4.2.9 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without Externalld or MFA

Query description: Cross-account access allows resource sharing from a specific account to a third-party
entity (external account users). That said, it is crucial to ensure the protection of cross-account access.
For that, there are two mechanisms: (1) MFA (Multi-Factor Authentication) which combine two factors,
the credentials, and the MFA device; (2) External ID, a third-party entity identifier that the IAM role uses to
ensure the cross-account identity.
Query approach: The best way of giving cross-account access is through an IAM Assume Role policy
since it supplies temporary credentials to the cross-account. So, this query verifies if MFA or External ID are
not defined correctly in this kind of policy. Listing 12 and Listing 13 represent an example of a correct MFA
and External ID configuration, respectively:

49

"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",

"Principal": {
"AWS": "arn:aws:iam::987654321145:root"
1,
"Effect": "Allow",
"Resource": "x",
"Sid": """,
"Condition": {
"Bool": {

"aws:MultiFactorAuthPresent": "true"

4.2. Implementing the Security Queries

Listing 12: MFA configuration.

"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Principal": {
"AWS": "arn:aws:iam::987654321145:root"
},
"Effect": "Allow",
"Resource": "x",
"Sid": "",
"Condition": {
"StringEquals": {

"sts:ExternalId": "98765"

50

4.2. Implementing the Security Queries

Listing 13: External ID configuration.

Table 24: [AWS_AC_53] Cross-Account IAM Assume Role Policy Without Externalld or MFA.

Platform Resource(s) Attribute
Ansible communlty.aws.|am_role assume_role_policy_document
and iam_role
CloudFormation AWS::IAM::Role Properties.AssumeRolePolicyDocument
Terraform aws_iam_role assume_role_policy

4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in use for EC2

instance

Query description: Using default security groups in an EC2 instance can result in unrestricted access
since this type of security group is commonly too permissive. The same applies to the use of default VPC
in an EC2 instance.

To avoid malicious attacks that take advantage of unrestricted access, an EC2 should use a specific
security group/VPC for its context.
Query description: These queries verify if an EC2 instance is associated with a security group/VPC
named as default, respectively.

Table 25: [AWS_NS_05] Default EC2 security group are in use.

Platform Resources Attributes
) amazon.aws.ec?2 group
Ansible and ec2 and group_id

Properties.SecurityGroups
and Properties.SecurityGroupslds
security_groups
and vpc_security_group_ids

CloudFormation | AWS::EC2::Instance

Terraform aws_instance

51

4.2. Implementing the Security Queries

Table 26: [AWS_NS_07] Default VPC in use for EC2 instance.

Platform Resources Attributes
amazon.aws.ec? (1),
Ansible ec? (1), vpc_subne’F_id (1)
amazon.aws.ec2_vpc_subnet (2), and vpc_id (2)
and ec2_vpc_subnet (2)
CloudFormation AWS::EC2::Instance (1) Properties.Subnetld (1)
and AWS::EC2::Subnet (2) and Properties.Vpcld (2)
Terraform aws_instance (1) subnet_id (1)
and aws_subnet (2) and vpc_id (2)

4211 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without VPC

Query description: Virtual Private Cloud (VPC) provides several benefits for a network environment. One
of the most relevant ones is most likely the prevention of Internet exposure. That said, both ElastiCache
and Elastic MapReduce (EMR) should use VPC to endow security.

Query approach: Regarding ElastiCache, the existence of a subnet group informs if a VPC is attached to
it. In contrast, in EMR, the presence of the subnet identifier indicates the use of VPC. Therefore, the first
query verifies if ElastiCache does not define the attribute related to the subnet group. The same strategy
applies to the EMR query but searches for subnet identifier definition.

Table 27: [AWS_NS_49] Elastic MapReduce Without VPC.

Platform Resource Attribute
CloudFormation | AWS::EMR::Cluster | Properties.Instances.Ec2Subnetld(s)
Terraform aws_emr_cluster subnet_id(s)

Table 28: [AWS_NS_50] ElastiCache Without VPC.
Platform Resource(s) Attribute
community.aws.elasticache
and elasticache
CloudFormation | AWS::ElastiCache::CacheCluster | Properties.CacheSubnetGroupName
Terraform aws_elasticache_cluster subnet_group_name

Ansible cache_subnet_group

52

4.2. Implementing the Security Queries

4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database Service (RDS)
Using Default Port & [AWS_NS_61] Redshift Using Default Port

Query description: When using a default port, an attacker can trivially guess it, which could pose a risk to
the network security of the environment. Although replacing the default port does not prevent port scanning
and subsequent attacks, it makes malicious actions a little harder to carry out.

Query approach: For each environment, this query verifies if the correspondent default port is in use.

Table 29 lists the default port for the contexts in question.

Table 29: Default ports.

Environment Default Port Environment Default Port
ElastiCache (memcached) 11211 RDS (oracle-se?) 1621
ElastiCache (redis) 6379 RDS (oracle-se2-cdb) 1521
RDS (aurora) 3306 RDS (postgres) 5432
RDS (aurora-mysql) 3306 RDS (sqlserver-ee) 1433
RDS (aurora-postgresql) 3306 RDS (sqlserver-se) 1433
RDS (mariadb) 3306 RDS (sqlserver-ex) 1433
RDS (mysql) 3306 RDS (sqlserver-web) 1433
RDS (oracle-ee) 1521 Redshift 5439

RDS (oracle-ee-cdb) 1521

Table 30: [AWS_NS_51] ElastiCache Using Default Port.
Platform Resource(s) Attributes
community.aws.elasticache
and elasticache
CloudFormation | AWS::ElastiCache::ReplicationGroup | Properties.Engine and Properties.Port
Terraform aws_elasticache_cluster engine and port

Ansible engine and cache_port

Table 31: [AWS_NS_58] Relational Database Service (RDS) Using Default Port.
Platform Resource(s) Attributes
Ansible community.aws.rds_instance
and rds_instance
CloudFormation AWS::RDS::DBInstance Properties.Engine and Properties.Port
Terraform aws_db_instance engine and port

engine and port

53

4.2. Implementing the Security Queries

Table 32: [AWS_NS_61] Redshift Using Default Port.
Platform Resource(s) Attributes
community.aws.redshift
and redshift
AWS::Redshift::Cluster | Properties.Port
aws_redshift_cluster port

Ansible port

CloudFormation
Terraform

4213 [AWS_NS_56] VPC Without Network Firewall

Query description: AWS Network Firewall provides additional network protection to a VPC, such as traffic
filtering and intrusion detection. That said, each VPC should be associated with an AWS Network Firewall.
Query approach: For each resource related to VPC, this query verifies if there is a Network Firewall
attached to it.

Table 33: [AWS_NS_56] VPC Without Network Firewall.

Platform

Resource(s)

Attributes

CloudFormation

AWS::EC2::VPC

and AWS::NetworkFirewall::Firewall (1)

Properties.Vpcld (1)

Terraform

aws_vpc

and aws_networkfirewall_firewall (1) vpe_id (1)

4214 [AWS_NS_57] RDS Associated with Public Subnet

Query description: When a Relational Database Service (RDS) is associated with a public subnet, it can
become a target for malicious requests since it is exposed to the entire Internet.

Query approach: Each RDS is associated with a subnet group constituted by a set of subnets. This
query checks if at least one of them is public (CIDR block or IPv6 CIDR block set to "0.0.0.0/0” or "::/0",
respectively).

54

4.2. Implementing the Security Queries

Table 34: [AWS_NS_57] RDS Associated with Public Subnet.

Platform Resources Attributes
community.aws.rds_instance (1), db_subnet_group_name (1),
rds_instance (1), subnet_group (1),
Ansible community.aws.rds_subnet_group (2), name (2),
rds_subnet_group (2), subnets (2),
amazon.aws.ec2_vpc_subnet (3), cidr (3),
and ec2_vpc_subnet (3) and ipv6_cidr (3)

Properties.DBSubnetGroupName (1),
Properties.Subnetlds (2),
Properties.CidrBlock (3),

and Properties.|pv6CidrBlock (3)
db_subnet_group_name (1),
subnet_ids (2),
cidr_block (3),
and ipv6_cidr_block (3)

AWS::RDS::DBInstance (1),
CloudFormation AWS::RDS::DBSubnetGroup (2),
and AWS::EC2::Subnet (3)

aws_db_instance (1),
Terraform aws_db_subnet_group (2),
and aws_subnet (3)

4.2.15 [AWS_NS_74] Shield Advanced Not In Use

Query description: AWS Shield protects against Distributed Denial of Service (DDoS) attacks on applica-
tions. Two plans enable this service: AWS Shield Standard and AWS Shield Advanced.

As the name suggests, AWS Shield Standard provides defense against common attacks. This protection
occurs in the network and transport layer (layers 3 and 4 of the OSI model, respectively).

In contrast, AWS Shield Advanced, in addition to these layers, also offers protection at higher levels of the
OSI model and detects uncommon attacks. For that reason, to achieve the maximum protection possible
for an application, AWS Shield Advanced should be used.

Query approach: AWS Shield Advanced is available for Amazon Route 53 hosted zone, AWS Global
Accelerator accelerator, Elastic IP Address, Elastic Load Balancing, and Amazon CloudFront Distribution.
That said, this query should verify if any of them, when defined, is not protected by AWS Shield Advanced.

55

4.2. Implementing the Security Queries

Table 35: [AWS_NS_74] Shield Advanced Not In Use.

Platform Resources Attributes
AWS::CloudFront::Distribution,
AWS::ElasticLoadBalancing::LoadBalancer,
CloudFormation AWS::GlobalAccelerator::Accelerator, Properties (1)
AWS::EC2::EIP, AWS::Route53::HostedZone,
and AWS::FMS::Policy (1)
aws_ cloudfront_distribution,
aws_|b,
aws_globalaccelerator_accelerator,
aws_eip,
aws_routeb3_zone,
and aws_shield_protection (1)

Terraform resource_arn (1)

4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions

Query description: Role Assignment should limit guest user permissions in order to grant the least
privileges.

Query approach: It checks if each resource related to Role Assignment does not limit permissions for
guest users. For that, it is necessary to check the associated resource related to Role Definition.

Table 36: [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions.

Platform Resources Attributes
azurerm_role_assignment (1) and | role_definition_id (1) and
Terraform . . .
azurerm_role_definition (2) permissions.not_actions (2)

4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation

Query description: Role Definition should not allow custom role creation in order to grant the least
privileges.

Query approach: It checks if each resource related to Role Definition has all permissions set (represented
by "*') or has the permission to write custom roles ('Microsoft.Authorization/roleDefinitions/write’).

Table 37: [AZURE_AC_22] Role Definition Allows Custom Role Creation.

Platform Resource Attribute
Ansible | azure_rm_roledefinition | permissions.actions

Terraform | azurerm_role_definition | permissions.actions

56

4.2. Implementing the Security Queries

4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions

Query description: Storage Share File should set the least privileges. In other words, it should not allow
all ACL (Access Control List) permissions — r (read), w (write), d (delete), and | (list).

Query approach: The resource related to the Storage Share File is associated with the resource related
to Storage Share (where the permissions are set). It is important to check if the Storage Share allows all
ACL (Access Control List) permissions — r (read), w (write), d (delete), and | (list).

Table 38: [AZURE_AC_29] Storage Share File Allows All ACL Permissions.

Platform Resources Attributes
azurerm_storage_share_file (1) storage_share_id (1) and
Terraform . .
and azurerm_storage_share (2) | acl.access_policy.permissions (2)

4219 [AZURE_AC_39] Storage Table Allows All ACL Permissions

Query description: Storage Table should set the least privileges. In other words, it should not allow all
ACL (Access Control List) permissions — r (read), w (write), d (delete), and | (list).

Query approach: It checks if the resources related to Storage Table allow all ACL (Access Control List)
permissions — r (read), w (write), d (delete), and | (list).

Table 39: [AZURE_AC_39] Storage Table Allows All ACL Permissions.
Platform Resource Attribute
Terraform | azurerm_storage_table | acl.access_policy.permissions

4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled

Query description: Virtual Network should have a Distributed Denial-of-Service (DDoS) Protection Plan

enabled to be protected against denial of service (DoS) attacks.

Query approach: It checks if the resource related to Virtual Network disables the DDoS Protection Plan.

There are two ways to verify this: (1) DDoS Protection Plan configuration is not defined; (2) DDoS Protection

Plan configuration is defined but disabled.

Table 40: [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled.
Platform Resource Attribute
Terraform | azurerm_virtual_network | ddos_protection_plan.enable

57

4.2. Implementing the Security Queries

4.2.21 [GCP_AC_13] Service Account With Improper Privileges

Query description: Service Account should not have admin, editor, owner, or write privileges in order to
grant the least privileges.
Query approach: It checks if service account users have improper privileges: admin, owner, or editor.

Table 41: [GCP_AC_13] Service Account With Improper Privileges.
Platform Resources Attributes
google_iam_policy (1),
Terraform | google_project_iam_binding (2) and
google_project_iam_member (2)

binding.role (1)
and role (2)

4.2.22 [GCP_AC_16] IAM Role Assigned to User
Query description: As a best practice, it is better to assign a role to a group. Adding or removing members

to a group seems easier than creating, updating, or removing an 1AM role to a user.

Query approach: It is only necessary to check if a resource related to IAM Role is assigned to a user.

Table 42: [GCP_AC_16] IAM Role Assigned to User.

Platform Resources Attributes
data.google_iam_policy,
Terraform google_project_iam_binding, binding and role
and google_project_iam_member

4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles

Query description: IAM Policy should not have KMS admin and CryptoKey roles. This check ensures the
separation of responsibilities. The KMS admin role ('roles/cloudkms.admin’) allows full access to Cloud
KMS resources, except to the operations allowed by CryptoKey roles ('roles/cloudkms.cryptoKeyDecrypter’,
'roles/cloudkms.cryptoKeyEncrypter’, or 'roles/cloudkms.cryptoKeyEncrypterDecrypter’).

Query approach: It checks if users have both KMS admin and CryptoKey roles set.

Table 43: [GCP_AC_17] User with KMS Admin and CryptoKey Rules.
Platform Resources Attributes
Terraform | google_project_iam_policy | policy_data

58

4.2. Implementing the Security Queries

4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible

Query description: The policy associated with the KMS crypto key should restrict public access. If not,
anyone can access the KMS crypto key and the data encrypted with them.

Query approach: In order to verify if the KMS crypto key is publicly accessible, it is necessary to check if
the policy attached to it allows "allUsers” or "allAuthenticatedUsers”.

Table 44: [GCP_AC_21] KMS Crypto Key is Publicly Accessible.

Platform Resources Attributes
Terraform google_kms_crypt(?_key_la.m_pol|cy (1) pollf:y_data (1)
and google_iam_policy (2) and binding.members (2)

4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account

Query description: When using a default service account, the principle of least privilege is not assured,
which can lead to malicious attacks on the container cluster. That said, a container cluster should use a
custom service account that has the least privileges to run it.
Query approach: This query verifies if the resource related to the container cluster does not define the
service account or uses a service account named as default.

Table 45: [GCP_AC_23] Container Cluster Using Default Service Account.
Platform Resource(s) Attribute
google.cloud.gcp_container_cluster

and gcp_container_cluster
Terraform google_container_cluster node_config.service_account

Ansible node_config.service_account

4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule

Query description: Using a default firewall rule can undermine the principle of least privilege since default
firewall rules are not defined for a specific context. That said, a Compute Network should not use default
firewall rules.

Query approach: This query verifies if a Google Compute Network is associated with a Google Compute
Firewall named as default.

59

4.2. Implementing the Security Queries

Table 46: [GCP_NS_06] Google Compute Network Using Default Firewall Rule.

Platform Resources Attributes
google.cloud.gcp_compute_firewall,
Ansible gcp_compute_firewall, name (1)

google.cloud.gcp_compute_network (1), | and network (1)

and gcp_compute_network (1)
google_compute_network network (1)

and google_compute_firewall (1) and name (1)

Terraform

4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_08]
Google Compute Network Using Firewall Rule that Allows Port Range

Query description: When a Google Compute Network uses a firewall rule that allows all ports, an attacker
can trivially guess the port and perform malicious attacks. The same can happen when the firewall rule
allows a port range since some ports can be unintentionally exposed.

Query approach: For each resource related to Google Compute Network, these queries verify if it is
associated with a firewall rule that allows all ports (matches 0-65535) or a range of ports (matches the
regex [0-9]+-[0-9]+), respectively.

Table 47: [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_-
08] Google Compute Network Using Firewall Rule that Allows Port Range.
Platform Resources Attributes
google.cloud.gcp_compute_firewall,
gcp_compute_firewall,

direction (1),

Ansible google.cloud.gcp_compute_network (1), aallr?éviitf/)voc)r:; ((i)) '
and gcp_compute_network (1)
direction (1),
Terraform google_compuite_network allow.ports (1),

and google_compute_firewall (1)

and network (1)

4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled

Query description: Virtual machines in a Compute Subnetwork without external IP addresses can only
send traffic to the internal network. However, they can access Google APIs and services through Private
Google Access enablement.

Query approach: This query verifies if Private Google Access is enabled to ensure that VMs without
external IP addresses can access Google APIs and services.

60

4.3. Discarded Queries

Table 48: [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled.
Platform Resources Attributes
google.cloud.gcp_compute_subnetwork
and gcp_compute_subnetwork
Terraform google_compute_subnetwork private_ip_google_access

Ansible private_ip_google_access

4.3 Discarded Queries

Around 77% of the collected security queries could not be implemented in KICS. This value reflects the
discarding process in action.

The discarding process raises a few sets of reasons responsible for discarding 77% of the collected
security queries. These sets of reasons can be categorized in the following scopes:

* Dynamic scope: Scope related to information that can be only accessible in a dynamic environment.

In other words, the data is only available in a run-time environment. As a case in point, the information

related to the cloud account and the availability of its services.

Regarding Access Control, the time of user inactivity in the account, for example, is not accessible
for an laC static approach. Concerning Network Security, knowing if a VPC tunnel is "UP” is also

impossible since there is no access to the realtime state of the VPC in an laC static approach.

* Known laC scope: Scope related to similar information already available in an laC static approach
for the same resource.

Regarding Access Control, there are already available laC queries that verify if a user has admin
privileges. So, for the context of the gap, the verification of several users with admin privileges is not
that relevant since some static analysis tools for laC already handle similar cases.

Concerning Network Security, the study case reports that the target 1aC tools do not verify if an FTP
port is "open” in an AWS Security Group. However, some of the target laC tools check it for an SSH
port. For the context of bridging this gap, verifying if an FTP port is open in an AWS Security Group
is not that relevant for the same reason indicated above.

¢ Inapplicable 1aC scope: Scope related to information that does not make sense to implement in

an laC static approach.

Regarding Access Control, the developers writing 1aC scripts, keep in mind which specific users can
access the defined environment. That said, custom queries, where the laC developer needs to refer

to the "allowed” users, do not make sense.

61

4.3. Discarded Queries

Concerning Networking Security, as an assumption, no laC developer will create an AWS Auto Scaling
Group and associate it to an inactive AWS Security Group. And even if the developer does that, there

is no way to infer it by an laC static approach.

* Unknown scope: Scope related to information that seems to not be accessible in an laC static
approach. Several reasons can justify this statement, such as the lack of service support, information
about a specific service, or documentation from the target laC technologies.

Table 49 classifies the queries according to "dynamic”, "known”, "inapplicable”, and "unknown” scopes.

Queries are represented according to the ID defined in Section 3.1.2.

62

Table 49: List of the discarded queries according to "dynamic”, "known”, "inapplicable”, and "unknown”

scopes.

Dynamic Known laC Inapplicable 1aC Unknown
[AWS_AC_37] [AWS_AC_12] [AWS_AC_14] [AWS_AC_01]
[AWS_AC_56] [AWS_AC_25] [AWS_AC_15] [AWS_AC_02]
[AWS_AC_62] [AWS_AC_27] [AWS_AC_17] [AWS_AC_36]
[AWS_AC_67] [AWS_AC_b54] [AWS_AC_19] [AWS_AC_58]
[AWS_AC_72] [AWS_AC_79] [AWS_AC_30] [AWS_AC_61]
[AWS_AC_75] [AWS_NS_16] [AWS_AC_31] [AWS_AC_65]
[AWS_NS_67] [AWS_NS_17] [AWS_AC_33] [AWS_NS_04]
[AWS_NS_81] [AWS_NS_20] [AWS_AC_59] [AWS_NS_08]

[AWS_NS_25] [AWS_AC_68] [AWS_NS_55]
[AWS_NS_27] [AWS_AC_78] [AWS_NS_63]
[AWS_NS_30] [AWS_AC_80] [AWS_NS_64]
[AWS_NS_35] [AWS_AC_81] [AWS_NS_65]
[AWS_NS_43] [AWS_AC_82] [AWS_NS_66]
[AWS_NS_45] [AWS_NS_01] [AWS_NS_68]
[AZURE_NS_08] [AWS_NS_53] [AWS_NS_69]
[AZURE_NS_09] [AWS_NS_70]
[AZURE_NS_12] [AWS_NS_71]
[AZURE_NS_17] [AZURE_AC_01]
[AZURE_NS_20] [AZURE_AC_02]
[AZURE_NS_22] [AZURE_AC_03]
[GCP_NS_17] [AZURE_AC_04]
[GCP_NS_18] [AZURE_AC_06]
[GCP_NS_19] [AZURE_AC_07]
[GCP_NS_20] [AZURE_AC_08]
[GCP_NS_21] [AZURE_AC_09]
[GCP_NS_22] [AZURE_AC_10]
[GCP_NS_24] [AZURE_AC_11]
[GCP_NS_25] [AZURE_AC_12]
[GCP_NS_26] [AZURE_AC_13]
[GCP_NS_27] [AZURE_AC_14]
[GCP_NS_28] [AZURE_AC_15]
[GCP_NS_30] [AZURE_AC_16]
[GCP_NS_31] [AZURE_AC_17]
[GCP_NS_32] [AZURE_AC_18]
[GCP_NS_33] [AZURE_AC_19]
[GCP_NS_34] [AZURE_AC_20]
[GCP_NS_35] [AZURE_AC_23]
[GCP_NS_36] [AZURE_AC_31]
[GCP_NS_37] [AZURE_AC_32]
[GCP_NS_38] [AZURE_AC_35]
[GCP_NS_39] [AZURE_AC_37]
[GCP_NS_40] [GCP_AC_05]
[GCP_NS_41] [GCP_AC_11]
[GCP_NS_42] [GCP_AC_14]
[GCP_NS_44] [GCP_AC_15]
[GCP_NS_45] [GCP_AC_20]

[GCP_NS_46]

4.3. Discarded Queries

63

4.4, Summary

44 Summary

This chapter presents the discussion about the availability and current (wherever possible) development
of the 150 collected security queries (as a gap between static analysis tools for laC and dynamic analysis
tools for cloud-based infrastructure) to KICS (Section 3). It involves the implementation process and the
subjacent discarding process.

Around 23% (34) of the 150 collected security queries have been found to have practical solutions. Al-
though this number can be considered of low value, it reflects the possibility to adapt the security queries
"only” collected by dynamic analysis tools for cloud-based infrastructure to static analysis tools for 1aC, in
the context of the present dissertation.

On the other hand, around 77% (116) of the collected security queries does not have viable solutions. This
value reflects the discarding process in action. From it, a few sets of reasons that result in four scopes can
be noticed: (i) dynamic scope related to information that can be only accessible in a dynamic environment,
(i) known l1aC scope related to similar information already available in an laC static approach for the same
resource, (iii) inapplicable laC scope related to information that does not make sense to implement in
an laC static approach, (iv) unknown scope related to information that seems to not be accessible in an

laC static approach until the moment.

64

EXTENDING KICS

This chapter addresses necessary contributions to the KICS GitHub repository to implement the security
queries described in Chapter 4. Therefore, it lists all the solutions implemented and contributed to KICS,
including the KICS GitHub pull request related to each one, as can be seen in Table 50. Note that all the
security queries listed in the table are already in the KICS GitHub repository master branch.

5.1 Setup of the KICS Development Environment

Before the contribution of all the solutions to KICS, it is necessary to prepare the KICS development envi-
ronment. For that, it is necessary to check the following steps:

1. Fork the KICS GitHub repository: Click on the "Fork” button of the KICS GitHub repository and
create the fork.

¢ C & githubcom/Checkmand/kics e *x O % 0@

Pull requests Issues Marketplace Explore

H Checkmarx / kics ' Public R EditPins ~ @Watch 13~ | ¥ Fork 157 Staed Tk

Figure 5: KICS GitHub repository fork.

2. Clone the fork locally: In the forked repository, click on the "Code” button and copy paste the link,
as can be seen in Figure 6. After that, it is necessary to run the command ‘git clone <clone_link>*.

65

5.2. Development of the Security Queries

& C 8 github.com/cosmicgirl97/kics 2 Y« C » 0O o H

5 Apps » Outros marcadores

O Search or jump to... Pull requests Issues Marketplace Explore

% cosmicgirl97 / kics ' Public & Pin @ Watch 0 ~ 1 T Star 0~

forked from Checkmand/kics

<> Code 17 Pullrequests () Actions [Projects (@ Security |~ Insights 8 Settings

P master ~ ¥ 44 branches ©31tags Go to file Add file ~ m About @

Find security vulnerabilities, compliance

This branch is 474 commits behind Checkmancmz B Clone issues, and infrastructure

WIS SSH Gtub CLl misconfigurations early in the

development cycle of your infrastructure-

‘ joaoReigotal fix(version): fixed bug with vers httos: //github. comcosadcglr197/kics, git L‘,:‘ as-code with KICS by Checkmarx.
github fix{qolang): fixe U5e Git or checkout with SVN using the web URL & kics.io
Readme
assets feat(buildah): 2 M Readme
e 2] Open with GitHub Desktop
&8 Apache-2.0 license
cmd feat(engine): s¢

& Code of conduct

docs feat(buildah): m Dowmload ZIP ¥% 0 stars

Figure 6: KICS GitHub repository fork clone link.

3. Verify if the setup is ready: Check for any necessary dependencies by running ‘go run —tags dev
./cmd/console/main.go scan’, in the KICS folder, for example.

5.2 Development of the Security Queries

As a best practice, the development of each solution to KICS requires a specific branch. The branch can
be created by running ‘git checkout -b <branch_name>* inside the KICS cloned folder. However, before the
creation of the branch, another best practice is to run ‘git pull* in the KICS master branch.

Before initiating the development of the security queries, it is necessary to keep in mind the guidelines
presented in Section 3.3.5 and understand the gold of the security query. Each security query should be
composed of metadata.json, query.rego, and the test folder.

5.2.1 Metadata File

The metadata.json documents all the relevant aspects of the security query. See a brief explanation of them
below:

¢ |D: Should be unique and can be generated by the command ‘go run ./cmd/console/main.go
generate-id’.

* Query Name: Should clearly indicate what the security query finds.

66

5.2. Development of the Security Queries

e Severity: Should indicate the severity related to the security query. KICS considers INFO, LOW,
MEDIUM, and HIGH for this field.

¢ (Category: Should indicate what security domain fits better for the security query. KICS considers the
following: Access Control, Availability, Backup, Best Practices, Build Process, Encryption, Insecure
Configurations, Insecure Defaults, Networking and Firewall, Observability, Resource Management,
Secret Management, and Supply-Chain.

¢ Description text: Should suggest how to remediate the configuration.
¢ Description URL: Should point to the laC platform documentation.

* Platform: Should point to the target 1aC platform.

5.2.2 Query File

The security queries in KICS are written in REGO (See Section 3.3.1). Since the input of the REGO policies
requires structured data, KICS parses all the 1aC platforms files in a JSON payload (See Section 3.3.3).
Although it is possible to develop the security queries directly in KICS and test them, the use of the REGO
Playground! is very useful and intuitive as a first step. A helpful REGO Playground setting is the "Coverage”
button that indicates whether or not the statements have been evaluated, as can be seen in Figure 7.

C @ playopenpolicyagent.org =+ Cio» 0O 0 i

i apps »

‘ The Rego Playground Examples - Strict m

package play

ayground! Rege (pronounced “ray-ga™) is OPA's palicy language.

n i= input.message
m == “worlg”

Built by (o) sty

Figure 7: REGO Playground.

1 https://play.openpolicyagent.org/

67

https://play.openpolicyagent.org/

5.2. Development of the Security Queries

The content of the query.rego is composed of all the policies necessary to cover the goal of the target
security query. Each policy should return a result composed of:

¢ Search key: Applies Levenshtein distance to find where the "vulnerability” occurs in the original file.

¢ |ssue type: indicates the issue found by the policy: (i) IncorrectValue, (i) MissingAttribute, (iii) Re-
dundantAttribute.

* Key expected value: Presents a recommendation as an expected configuration.

* Key actual value: Presents the actual configuration found by the policy.

In addition to the guidelines presented above, there are a few more that should be considered during the
development of the security queries. Among them it highlights:

¢ Understand the goal(s) of the security query.

* (reate the payload of an laC script related to the target 1aC technology to understand how KICS
parses the specific laC technology files. This guideline is important to understand how to access the
information in the development of the security queries.

¢ Study the existing KICS queries to understand its specifications: each platform have a specific set of
security queries.

¢ Use of the ‘package Cx'.

¢ Explore the KICS queries libraries and use them (if necessary).

5.2.3 Security Query Development Example

As a use case, focus on the Terraform solution for the security query [AWS_AC_24] "Neptune Cluster With
IAM Database Authentication Disabled”, presented in Section 4.2.5. The security query should verify if the
field ‘iam_database_authentication_enabled' is enabled in the resource ‘aws_neptune_cluster’.

When using the REGO Playground, the input should contain the configuration target of analysis. In the
query example, the input should point to the configuration of the resource ‘aws_neptune_cluster’. In KICS,
the input can be generated through the following command ‘go run ./cmd/console/main.go scan -p <file_-
path> -d payload‘. As an example, see the payload of the file presented in Listing 14:

{
"document": [

{

68

"file": "positive.tf",

"id": "388a0fa0-bbda-49f9-bbe3-aec598321743",

"resource": {

"aws_neptune_cluster": {
"positivel": {

"apply_immediately": true,
"backup_retention_period": 5,
"cluster_identifier": "neptune-cluster-demo",
"engine": "neptune",
"preferred_backup_window": "07:00-09:00",
"skip_final_snapshot": true,

"storage_encrypted": true

5.2. Development of the Security Queries

Listing 14: Payload example.

After obtaining the payload, it is time to develop the query. For this query, it is necessary to develop two

policies. One that verifies if the field ‘iam_database_authentication_enabled* is undefined and another one

that checks if the field ‘iam_database_authentication_enabled’ is set to false in the resource ‘aws_neptune_-

cluster’. Since the payload presents a configuration with the field ‘iam_database_authentication_enabled’

undefined in the resource ‘aws_neptune_cluster’, it should satisfy the first policy. So, it is expected that

the output presents results. See Figure 8.

69

5.2. Development of the Security Queries

C @ play.openpolicyagent.org w & C » 0O e :

3 Apps » Outros marcadores

‘ The Rego Playground Examples ¥ Strict Coverage m

1 package €x = INPUT

1
cxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster[name] “document™: [
object.get(password_policy, "iam database_authentication_enabled”, "undefined") == "undefined" ‘
“file": "positive.tf",
result = { " 388a0Fa0-bbda-299-bbe3-aec508321743",
"document1d”: input.document(i].id, “resource”: {
"searchkey”: sprintf("aws_neptune_cluster[¥s]”, [name]), aws_neptune_cluster™: {
"issueType": "M Attribute”, Wi _aw. ¢]
“keyExpectedval *iam_database_authentication_enabled’ is set to true”, 4 '

“keyaActualvalue®: *

1 am_database_authentication_enabled’ is undefined", DATA

1 H _
4/}

16 CxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster[name] 2 cxpolicy™: [
password_policy.iam_database_authentication_enabled == false 1N

“document T 8820 fa0-bbda-49f9-bbel-aec59832174
ingattribute”,

m_database_authentication_en

result := {
"documentId”: input.document[i].id,

“keyActualval
“searchkey”: sprintf("aws_neptune_cluster(%s].iam_database_authentication_enabled”, [name])
"issueType": “Incorrectvalue”,

"keyExpectedv iam_database_authentication

"searchkey”: "aws_neptune_cluster[positive1]”
"keyExpectedvalue”: "'iam_database_authentication_enabled’ is set to true”,

Builtby Q) sbyra PA v0.40.0

Figure 8: REGO Playground.

After using the REGO Playground and validating all the policies, it is necessary to create a branch in KICS
and start to add the query. The query should be added according to the platform and cloud provider. In this
case, it should be added in ‘kics/assets/queries/terraform/aws‘. Remember the query file tree structure
in Section 3.3.5 and see the content of the metadata.json and the query.rego for this query:

* metadata.json

"id": "c91d7ea0-d4d1-403b-8fel-c9961ac082c5",

"queryName": "Neptune Cluster With IAM Database Authentication Disabled",

"severity": "MEDIUM",

"category": "Access Control",

"descriptionText": "Neptune Cluster should have IAM Database Authentication enabled",

"descriptionUrl": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/
resources/neptune_cluster#storage_encrypted",

"platform": "Terraform",

"descriptionID": "88b26e61",

"cloudProvider": "aws"

Listing 15: metadata.json of the query "Neptune Cluster With IAM Database Authentication Disabled”.

70

5.2. Development of the Security Queries

* query.rego: In this query example, to verify if the field ‘iam_database_authentication_enabled" is
enabled in the resource ‘aws_neptune_cluster’, it is necessary to check if the field is undefined or
set to false.

package Cx

CxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster [name]
object.get (password_policy, "iam_database_authentication_enabled",
"undefined") == "undefined"
result := {
"documentId": input.document[i].id,
"searchKey": sprintf("aws_neptune_cluster[%s]", [namel),
"issueType": "MissingAttribute",
"keyExpectedValue": "'iam_database_authentication_enabled' is set to true",
"keyActualValue": "'iam_database_authentication_enabled' is undefined",
}

CxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster [namel
password_policy.iam_database_authentication_enabled == false
result := {
"documentId": input.document[i].id,
"searchKey": sprintf("aws_neptune_cluster[s].iam_database_authentication_enabled", [
namel),
"issueType": "IncorrectValue",
"keyExpectedValue": "'iam_database_authentication_enabled' is set to true",
"keyActualValue": "'iam_database_authentication_enabled' is set to false",
}

Listing 16: query.rego of the query "Neptune Cluster With IAM Database Authentication Disabled”.

5.3. Tests 72

5.3 Tests

As mentioned in the previous section and in Section 3.3.5, a KICS query is also composed of the test folder.
For testing proposes, KICS requires that each query should have a folder named "test”. This folder should
contain positive and negative 1aC samples as test cases. Additionally, it should have a JSON file with the
expected results of the query against the samples. See the Listening 17.

- test
| |- positive<.ext>
| |- negative<.ext>

| |- positive_expected_result.json

Listing 17: Test folder tree.

The positive samples present vulnerable configurations that the security query should find. Focusing
on query [AWS_AC_24] "Neptune Cluster With IAM Database Authentication Disabled” for Terraform, for
example, "positive1.tf” should set a resource 'aws_neptune_cluster’ with 'iam_database_authentication_-
enabled’ undefined. See the Listing 18.

resource "aws_neptune_cluster" "positivel" {
cluster_identifier = "neptune-cluster-demo"
engine = "neptune"
backup_retention_period =5
preferred_backup_window = "07:00-09:00"
skip_final_snapshot = true
apply_immediately = true
storage_encrypted = true

}

Listing 18: Positive sample example ('positive1.tf").

Additionally, "positive2.tf" should set a 'aws_neptune_cluster’ with 'iam_database_authentication_en-
abled’ set to false, for example. See the Listing 19.

resource "aws_neptune_cluster" "positive2" {
cluster_identifier = "neptune-cluster-demo"
engine = "neptune"
iam_database_authentication_enabled = false
backup_retention_period =5

5.3. Tests

preferred_backup_window = "07:00-09:00"
skip_final_snapshot = true
apply_immediately = true
storage_encrypted = true

Listing 19: Positive sample example ('positive2.tf’').

On the other hand, negative samples suggest a recommended configuration to avoid the vulnerability.
In the present case, 'negative.tf’ should set a 'aws_neptune_cluster’ with 'iam_database_authentication_-
enabled’ set to true. As an example, see the Listing 20.

resource "aws_neptune_cluster" "negative" {
cluster_identifier = "neptune-cluster-demo"
engine = "neptune"
iam_database_authentication_enabled = true
backup_retention_period =5
preferred_backup_window = "07:00-09:00"
skip_final_snapshot = true
apply_immediately = true
storage_encrypted = true

}

Listing 20: Negative sample example ('negative.tf’).

Finally, it should also contain the 'positive_expected_result.json’, which indicates where the positives

files have the vulnerability. As an example, see the Listing 21.

{
"queryName": "Neptune Cluster With IAM Database Authentication Disabled",
"severity": "MEDIUM",
"line": 1,
"fileName": "positivel.tf"
3,
{
"queryName": "Neptune Cluster With IAM Database Authentication Disabled",

"severity": "MEDIUM",

5.4. Creation of the Pull Request

"line": 4,

"fileName": "positive2.tf"

Listing 21: Positive expected result sample example ('positive_expected_result.json’).

The test folder is essential for the validation of the query. When running the test folder of the query
against the target query, it is expected that the scan returns the results presented in the ‘positive_expected_-
result.json’. To test that, the command ‘go run —tags dev ./cmd/console/main.go scan -p <query_query>
-q <query_path>' needs to be run inside the ‘kics' folder.

Additionally to that, it is necessary to run the command ‘go test ./test’ to ensure that the query follows
all the KICS requirements. However, in the KICS GitHub pull request, there are KICS GitHub actions that
verify if the query follows all the requirements.

5.4 Creation of the Pull Request

The security query should pass all the KICS queries tests to be ready for the pull request. After that, the
following steps are required:

1. Commit and push the changes.

2. Submit the pull request on KICS GitHub repository.

<« C @ github.com/Checkmanx/kics/pull/3654 2 % 0 * 0@ :

Add "Neptune Cluster With IAM Database Authentication Disabled" e o cos-
query for Terraform and CloudFormation (Closes #3653) #3654

a
rogeriopeixotocx merged 1 commit into checkmarx:master from cosmicgirle?:feature/neptune_cluster with_iam database_authentication_disabled (D) on 18 Jun 2021
Q) Conversation 4 - Commits 1 [l checks 13 [Files changed 13 +199 -0 MEEER
. cosmicgirld7 commented on 15 Jun 2021 Contributor (D) +++ Reviewers)
josoreigotal v
Closes #3653
rageriopeixot o
Proposed Changes
* Added "Neptune Cluster With IAM Database Authentication Disabled" query for Terraform and Assignees B
CloudFormation (This query is relevant to ensure the use of the IAM service in database access) @ cosmicgiris7
I submit this contribution under the Apache-2 .0 license
Labels]

Figure 9: Pull request.

74

5.5. Contribution Overview

3. Wait for the pull request review.

4. Wait for the merge of the pull request.

55 Contribution Overview

In total, the work done in this dissertation contributes 71 new security queries to KICS, 34 of them for
Terraform, 20 for Ansible, and 17 for CloudFormation. Table 50 presents all the security queries contributed
to KICS, including the KICS GitHub pull request(s) related to each one.

The comparison of these values can only be considered fair between the same cloud provider(s) as the
target of the dissertation study (AWS, AZURE, and GCP). From the 34 queries implemented for Terraform,
20 are related to AWS, 5 to AZURE, and 9 to GCP. On the other hand, from the 20 queries implemented for
Ansible, 14 are related to AWS, 1 to AZURE, and 5 to GCP. As CloudFormation only covers AWS, all the 17
queries are related to AWS.

Overall, there are no significant discrepancies between the number of queries per cloud provider. How-
ever, Terraform stands out in all of them. The higher value for Terraform seems to suggest that this platform

provides more relevant information about cloud services than the others.

75

76

5.5. Contribution Overview

List of security queries contributed to KICS.

Table 50

OIGYV# P , pa|gesiq Sse00y 88005 81eAlld YHM yiomiaugng andwo) [gy SN~ d09]
11GV# / / a3uey MO SMO||Y 18yl 3|ny ||email Suisn YJomiaN sindwo) 818009 [80” SN~ d09]
21GT# a Va SHOd |IV SMOJ|Y 18y} @|ny ||emadl4 Buisn YJomiaN @ndwo) 918009 [£0” SN™ d09]
EIGY# P P 9|NJ ||lemadyy }neyap e sasn yJompeN epndwo)d [90” SN d09]
GIGT# Va P 1UNOD22Y 82IAJIBS Y Nneyaq Sulsn J81sn|) Jeureiuod [~ OV dO9]
VIGY# a 9|q1sS$202Y AdlIqnd s! Aoy 03dAID SINM [127 OV dO9]
LSOV# P s9|0Y Aoy 03dAIQ pue ulwpy SINY Yim J4esn [Z17 0V 409l
L1GV# s J8s 0} paudiIssy 310y VI [9T OV d09]
9IGY# a se89|Inld Jedosdu| Yyim Junoddy 90IMRS [E17 OV d09]
60ST# P pLajgesiq ue|d uoijosjoid SOAQ YHM YJomiaN [entiIA [627 SN JdNzv]
8G9cH# , suolissiwIad OV IV SMOJlY 9|gel 98eJ01S [6€™ OV J4NZV]
9G9ocH# a suoISsiWIRd OV IV SMO||Y 9|14 @Jeys a8elols [62 OV 3HNZV]
LIVS# 099E# s , uojeal) 9|0y WOISN) SMOJ||y uoiuyaq 810y [gz~ Ov~ Junzvl
GOSE# , SuoISsIWIad J8sn 1seNny PwWiT 10N uswudissy 8|0y [1Z2” oV 3¥NZv]
SYGr# a / 9SM U] JON paduenpy pIBIys [¥/~ SN~ SMmv]
9GOV # s / Ya Hod yneyaq Buisn HYspay [197 SN”Smv]
22Sv# P / / Hod }neyaQ 8uisn (SAY) 901G dseqeje(jeuoliedy [8G SN™ SMVI
LELVH# P / , 1ougns 211gnd yum pajeloossy say [£G7 SN smyl
6951 # s / [lemaii] YJoMISN INOYUM OdA [9G SN~ SmV]
YZSv# a / , Hod yneyaq 8uisn ayoegnse|q [1G- SN™SMYI]
2LSV# P / / OdA Inoyum ayoednise|s [0~ SN~ smvl
1/SY# s / OdA INoyupn eonpayde|n onsels [67 SN SMY]
SELV# a / / 2ouelsul g03 404 dsn ul OdA Hneya [Z07 SN Smv]
0/ST# P / P asn u aJje dnoid Apnoas g3 Ineyed [SO” SN™SMmvI]
680E# 0962# / P 9Gg uey] JamoT salkg Aoy VSY 81edia) [997 OV SMVI]
oY St # a Va Va V4IA 10 plleussixg INOYUA AD1j0d 8]0y SWINSSY |AY| JUN0doy-ssol) [€G™ OV SMVI
GIBE# P / P sJosn INoyum dnoun NI [Ty OV~ Smvl
CLLV# 099V # / P pauyepun JazAjeuy ssad0y V| [GE™ OV SMVI]
SYSv# a , SUOIOY VI PEMO|lY YHM Adljod S3S [2€ OV SMv]
VSOE# s / pajgesig uonednuayny aseqeled INYI YHM J93sn|Q aunydaN [#2 OV~ SMVI]
6897 # / P uoiedUBYINY NI INOYHM Yyodessonse(q [8T° OV SMVI]
YYOv# 0962# a s/ paJidx3 seH sjeoyiia) [11~ OV SMVI
[2/# 0962# s / P J8Z1oyiny paindyuo)d INoyum Aemaien |4y [0T~ OV SMV]
[YSY# P / P 4VM Inoyum Aemalen |dv [80 OV SMV]
wojeldls| uoljewio4pno|) o|qisuy

(s)asanbay |Ind

swaope|d

https://github.com/Checkmarx/kics/pull/4547
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/4727
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/4044
https://github.com/Checkmarx/kics/pull/4689
https://github.com/Checkmarx/kics/pull/3654
https://github.com/Checkmarx/kics/pull/4548
https://github.com/Checkmarx/kics/pull/4660
https://github.com/Checkmarx/kics/pull/4772
https://github.com/Checkmarx/kics/pull/3815
https://github.com/Checkmarx/kics/pull/4546
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/3089
https://github.com/Checkmarx/kics/pull/4570
https://github.com/Checkmarx/kics/pull/4738
https://github.com/Checkmarx/kics/pull/4571
https://github.com/Checkmarx/kics/pull/4572
https://github.com/Checkmarx/kics/pull/4524
https://github.com/Checkmarx/kics/pull/4569
https://github.com/Checkmarx/kics/pull/4737
https://github.com/Checkmarx/kics/pull/4522
https://github.com/Checkmarx/kics/pull/4656
https://github.com/Checkmarx/kics/pull/4545
https://github.com/Checkmarx/kics/pull/3805
https://github.com/Checkmarx/kics/pull/3660
https://github.com/Checkmarx/kics/pull/5417
https://github.com/Checkmarx/kics/pull/3656
https://github.com/Checkmarx/kics/pull/3658
https://github.com/Checkmarx/kics/pull/4509
https://github.com/Checkmarx/kics/pull/4516
https://github.com/Checkmarx/kics/pull/4517
https://github.com/Checkmarx/kics/pull/4657
https://github.com/Checkmarx/kics/pull/4514
https://github.com/Checkmarx/kics/pull/4515
https://github.com/Checkmarx/kics/pull/4513
https://github.com/Checkmarx/kics/pull/4512
https://github.com/Checkmarx/kics/pull/4511
https://github.com/Checkmarx/kics/pull/4510

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions of this dissertation, focusing on contributions to KICS and the prospect
for future work.

6.1 Conclusions

By analyzing misconfiguration and non-compliance problems in Infrastructure as Code, this dissertation
proves the viability of adapting relevant security queries that were only collected by dynamic analysis tools
for cloud-based infrastructure to static analysis tools for 1aC. The 150 security queries that the present
study reports as a gap between static analysis tools for 1aC and dynamic analysis tools for cloud-based
infrastructure in Access Control and Network Security context supports this statement.

This study contributes around 23% of the collected security queries to KICS for at least one platform,
resulting in 71 new security queries to this open source tool. Although the percentage is one-third of the
total, this value validates the dissertation study.

This discussion also raises relevant observations regarding 77% of the collected security queries. This
value reflects the discarding process that identified a set of reasons that result in four scopes: (i) dynamic
scope related to information that can be only accessible in a dynamic environment, (ii) known laC scope
related to similar information already available in an laC static approach for the same resource, (iii) inappli-
cable 1aC scope related to information that does not make sense to implement in an laC static approach,
(iv) unknown scope related to information that seems to not be accessible in an laC static approach until
the moment.

All the scopes mentioned above sustain strong motives responsible for 77% of the collected security
queries without a solution. It also reveals how challenging it can be to find the exploited scope that fills the
collected security queries with solutions (in this study, represented by 23%).

In conclusion, the contribution of 23% of the collected queries to KICS not only validates this work but
can also be considered a successful achievement.

77

6.2. Future Work

6.2 Future Work

As a prospect for future work, the case study of this dissertation can take the following approaches:

¢ Cover other fields: The present case study covers Access Control and Network Security contexts,
which mainly focuses on security query categories like Access Control and Network Security. It would
also be relevant to cover many others, such as Backup, Encryption, etc. (see Section 2.1.4).

¢ Cross results in the same context: The results of the case study are grouped in tables accord-
ingly to the cloud provider and security query category, as can be seen in Section 3.1.2. These tables

are analyzed individually.

Another approach can be crossing the tables related to the same security query category. For ex-
ample, focus on the tables associated with Access Control context (Tables 6, 7, 8, and 9). Tables 6
and 7 are related to AWS, Table 8 to AZURE, and Table 9 to GCP. The collected security queries in
Table 6 and Table 7 (AWS), if not implemented either in Table 8 (AZURE) or Table 9 (GCP), can be

collected for implementation in either AZURE or GCP context and vice-versa.

¢ Cover other platforms: Platforms like Docker and Kubernetes, for example, are potential targets
to compare the security queries covered by dynamic analysis for cloud-based infrastructure and static

analysis tools for laC.

* Repeat the same case study in the future: Technology is moving at a fast pace. Updates of
the tools are constant, which almost certainly include new security queries. The repetition of the
case study, some time from now, can result in the collection of new security queries only covered by

dynamic analysis tools for cloud-based infrastructure.

REFERENCES

Almuairfi, S. and Alenezi, M. (2020), ‘Security controls in infrastructure as code’, Computer Fraud Security
(10), 13 - 19.
URL: https.//www.sciencedirect.com/science/article/pii/S1361372320301093

Bai, X., Li, M., Chen, B., Tsai, W. and Gao, J. (2011), Cloud testing tools, in ‘Proceedings of 2011 IEEE 6th
International Symposium on Service Oriented System (SOSE)’, pp. 1-12.

Brikman, Y. (2019), Terraform: Up & Running: Writing Infrastructure as Code, O'Reilly Media.
URL: https://books.google.pt/books?id=57ytDwAAQBAJ

Guerriero, M., Garriga, M., Tamburri, D. A. and Palomba, F. (2019), Adoption, support, and challenges
of infrastructure-as-code: Insights from industry, in ‘2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME)’, pp. 580-589.

Rahman, A., Mahdavi-Hezaveh, R. and Williams, L. (2019), ‘A systematic mapping study of infrastructure
as code research’, Information and Software Technology pp. 65 — 77.
URL: http://www.sciencedirect.com/science/article/pii/S0950584918302507

Rahman, A., Parnin, C. and Williams, L. (2019), The seven sins: Security smells in infrastructure as code
scripts, in ‘2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)’, pp. 164-175.

Schwarz, J., Steffens, A. and Lichter, H. (2018), Code smells in infrastructure as code, in ‘2018 11th Inter-
national Conference on the Quality of Information and Communications Technology (QUATIC)’, pp. 220-
228.

Sharma, T., Fragkoulis, M. and Spinellis, D. (2016), Does your configuration code smell?, pp. 189-200.

Silva, C. E. and Campos, J. C. (2013), ‘Combining static and dynamic analysis for the reverse engineering of
web applications’, Proceedings of the 5th ACM SIGCH! symposium on Engineering interactive computing
systems - EICS 13.

79

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Methodology Approach
	1.5 Document Structure

	2 Infrastructure as Code
	2.1 Main Concepts
	2.1.1 Infrastructure as Code
	2.1.2 Code and Security Smells
	2.1.3 IaC Misconfiguration and Non-Compliance Problems
	2.1.4 Security Query
	2.1.5 Static Analysis vs. Dynamic Analysis

	2.2 Related Work
	2.2.1 Prior Work on IaC Scripts
	2.2.2 Scanning IaC Scripts using Static Code Analysis Tools
	2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure
	2.2.3.1 Commercial Tools
	2.2.3.2 Open Source Tools

	2.3 Summary

	3 KICS: A Case Study
	3.1 Static Analysis Tools vs. Dynamic Analysis Tools
	3.1.1 Methodology
	3.1.2 Results

	3.2 Why KICS
	3.3 KICS Overview
	3.3.1 Architecture
	3.3.2 Command Line Interface
	3.3.3 Core
	3.3.4 IaC Solutions
	3.3.5 Queries Execution Engine
	3.3.6 Results

	3.4 The Problem
	3.5 Challenges
	3.5.1 Filtration of the Collected Security Queries
	3.5.2 Implementation of the Selected Security Queries

	3.6 Summary

	4 Fitting New Security Queries Into KICS
	4.1 Introduction
	4.2 Implementing the Security Queries
	4.2.1 [AWS_AC_08] API Gateway without WAF
	4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer
	4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than 256
	4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication
	4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled
	4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions
	4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined
	4.2.8 [AWS_AC_41] IAM Group Without Users
	4.2.9 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA
	4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in use for EC2 instance
	4.2.11 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without VPC
	4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database Service (RDS) Using Default Port & [AWS_NS_61] Redshift Using Default Port
	4.2.13 [AWS_NS_56] VPC Without Network Firewall
	4.2.14 [AWS_NS_57] RDS Associated with Public Subnet
	4.2.15 [AWS_NS_74] Shield Advanced Not In Use
	4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions
	4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation
	4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions
	4.2.19 [AZURE_AC_39] Storage Table Allows All ACL Permissions
	4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled
	4.2.21 [GCP_AC_13] Service Account With Improper Privileges
	4.2.22 [GCP_AC_16] IAM Role Assigned to User
	4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles
	4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible
	4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account
	4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule
	4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_08] Google Compute Network Using Firewall Rule that Allows Port Range
	4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled

	4.3 Discarded Queries
	4.4 Summary

	5 Extending KICS
	5.1 Setup of the KICS Development Environment
	5.2 Development of the Security Queries
	5.2.1 Metadata File
	5.2.2 Query File
	5.2.3 Security Query Development Example

	5.3 Tests
	5.4 Creation of the Pull Request
	5.5 Contribution Overview

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future Work

	References

