
University of Minho

School of Engineering

Rafaela Maria Soares da Silva

Infrastructure as Code:
Analysis of Misconfiguration and
Non-Compliance Problems

June 2022

University of Minho

School of Engineering

Rafaela Maria Soares da Silva

Infrastructure as Code:
Analysis of Misconfiguration and
Non-Compliance Problems

Master’s Dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Vitor Francisco Mendes Freitas Gomes Fonte (supervisor)

João Marco Cardoso Silva (co-supervisor)

Daniela da Cruz (supervisor in workplace)

June 2022

C O P Y R I G H T A N D T E R M S O F U S E FO R T H I R D PA R T Y WO R K

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

L I C ENSE GRANTED TO USERS OF TH I S WORK :

CC BY
https://creativecommons.org/licenses/by/4.0/

ii

https://creativecommons.org/licenses/by/4.0/

A C K N OW L E D G EM E N T S

I would like to express my deepest gratitude to Checkmarx, the company that allowed me to embrace this

research. Especially to Daniela da Cruz, who regularly motivated, guided, and helped me throughout the

dissertation progress. Her assistance and knowledge sharing were crucial. And also to everyone involved

with KICS, who shared their knowledge with me and motivated me.

My warmest appreciation also goes to my supervisors, Vitor Francisco Mendes Freitas Gomes Fonte and

João Marco Cardoso Silva, for their insightful observations, support and encouragement.

I would also like to extend my thanks to my ”poconico” and my family for being patient with me and for

their support since day one. Last but not least, thanks also should go to my friends, who supported my

journey.

iii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

A B S T R A C T

Infrastructure as Code: Analysis of Misconfiguration and Non-Compliance Problems

Infrastructure as Code (IaC) is an innovative DevOps approach to infrastructure configuration and man-

agement. Instead of using traditional interactive tools — such as command line — or cloud provider web

interfaces, it automates several tasks through extensive use of scripting languages and tools.

Being a relatively new field, with a fast-paced developing set of tools, it is of crucial importance to assist

its users and its developers to tackle security concerns that might affect the environments these tools are

meant to manage. Some of those security concerns must always be handled within an actual live, running

environment. This is the case, for example, of checking for service availability. Issues like this are already

being addressed by existing dynamic analysis tools. Others should be handled using a static analysis

approach, which, in turn, should prevent those security concerns from ever becoming a live security issue.

In this dissertation, we focus on trying to bridge the gap between the set of security checks currently

being addressed by tools that follow these approaches. We identify 150 security checks currently being

performed only by dynamic analysis tools, and we implement 23% of them in KICS, a Checkmarx-backed,

open source, static code analysis tool for IaC solutions.

The new checks we contribute to KICS address misconfiguration and non-compliance problems that can

be prevented using static analysis, mainly focusing on access control, but also on network security. Overall,

this dissertation addresses 34 security checks, effectively bridging the gap between static and dynamic

analysis for IaC in the KICS context.

Although not always possible, we strive to make available each security check to Ansible, CloudFormation,

and Terraform. These new security checks and the necessary changes to KICS were submitted to the GitHub

project’s repository, were approved by the KICS team, and are now into its master branch. This means that

new KICS releases will make available these security checks to its current users and to a broader audience,

and, hopefully, will foster the development of community-based extensions and enhancements, such as

support for other IaC platforms and security domains that we were unable to tackle due to time constraints.

Keywords: DevOps, Dynamic Analysis, Infrastructure as Code, KICS, Static Analysis.

v

R E S UM O

Infrastructure as Code: Análise de Problemas de Misconfiguration e Non-Compliance

Infrastructure as Code (IaC) é uma prática inovadora de DevOps para configuração e gestão de in-

fraestrutura. Em alternativa ao uso tradicional de ferramentas interativas — como a linha de comandos

— ou interfaces web de cloud providers, IaC automatiza várias tarefas, através do uso de linguagens e

ferramentas de script.

Por ser um campo novo, com um conjunto de ferramentas em desenvolvimento acelerado, é fulcral

ajudar os seus utilizadores e developers a lidar com problemas de segurança, que possam afetar os ambi-

entes que essas ferramentas devem gerir. Algumas dessas preocupações devem sempre ser tratadas num

ambiente em execução. É o caso, p. ex., da verificação de service availability. Questões como esta já são

abordadas por ferramentas de análise dinâmica. Outras devem ser tratadas através de uma abordagem de

análise estática, que deve impedir que essas preocupações se tornem um problema de segurança ativo.

Nesta dissertação, focámo-nos em tentar preencher a lacuna entre o conjunto de security checks das

ferramentas que seguem estas abordagens, atualmente. Identificámos 150 security checks atualmente

realizadas apenas por ferramentas de análise dinâmica e implementámos 23% delas no KICS, uma ferra-

menta open source de análise estática de código, apoiada pela Checkmarx, para soluções de IaC.

As novas security checks, que contribuímos para o KICS, abordam problemas de misconfiguration e

non-compliance, que podem ser evitados através de análise estática, com foco principal em access control,

mas também em network security. No geral, esta dissertação aborda 34 security checks, preenchendo

efetivamente a lacuna entre a análise estática e dinâmica para IaC, no contexto do KICS.

Embora nem sempre seja possível, esforçámo-nos para disponibilizar cada security check para Ansi-

ble, CloudFormation e Terraform. As novas security checks e alterações no KICS foram submetidas no

repositório GitHub do KICS, foram aprovadas pela equipa do KICS e estão no master branch. Tal significa

que as novas versões do KICS terão essas security checks para os seus utilizadores atuais e para um público

mais amplo e, esperançosamente, promoverão contribuições da comunidade, como o suporte para outras

plataformas de IaC e domínios de segurança que não conseguimos resolver devido a limitações de tempo.

Palavras-chave: DevOps, Dynamic Analysis, Infrastructure as Code, KICS, Static Analysis.

vi

L I S T O F C O N T E N T S

1 IN TRODUCT ION 1

1.1 Context 1

1.2 Motivation 2

1.3 Objectives 2

1.4 Methodology Approach 3

1.5 Document Structure 3

2 I N FRASTRUCTURE AS CODE 5

2.1 Main Concepts 5

2.1.1 Infrastructure as Code 5

2.1.2 Code and Security Smells 7

2.1.3 IaC Misconfiguration and Non-Compliance Problems 8

2.1.4 Security Query 10

2.1.5 Static Analysis vs. Dynamic Analysis 11

2.2 Related Work 12

2.2.1 Prior Work on IaC Scripts 12

2.2.2 Scanning IaC Scripts using Static Code Analysis Tools 14

2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure 16

2.2.3.1 Commercial Tools 16

2.2.3.2 Open Source Tools 18

2.3 Summary 18

3 K I CS : A CASE STUDY 19

3.1 Static Analysis Tools vs. Dynamic Analysis Tools 19

3.1.1 Methodology 19

3.1.2 Results 21

3.2 Why KICS 33

3.3 KICS Overview 33

vii

l i s t o f c o n t e n t s viii

3.3.1 Architecture 33

3.3.2 Command Line Interface 34

3.3.3 Core 34

3.3.4 IaC Solutions 35

3.3.5 Queries Execution Engine 36

3.3.6 Results 38

3.4 The Problem 40

3.5 Challenges 40

3.5.1 Filtration of the Collected Security Queries 40

3.5.2 Implementation of the Selected Security Queries 41

3.6 Summary 41

4 F I T T I NG NEW SECUR I T Y QUER I E S I N TO K I CS 43

4.1 Introduction 43

4.2 Implementing the Security Queries 43

4.2.1 [AWS_AC_08] API Gateway without WAF 44

4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer 44

4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower

Than 256 46

4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication 47

4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled 47

4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions 48

4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined 48

4.2.8 [AWS_AC_41] IAM Group Without Users 49

4.2.9 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA 49

4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in

use for EC2 instance 51

4.2.11 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without

VPC 52

4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database

Service (RDS) Using Default Port & [AWS_NS_61] Redshift Using Default Port 53

l i s t o f c o n t e n t s ix

4.2.13 [AWS_NS_56] VPC Without Network Firewall 54

4.2.14 [AWS_NS_57] RDS Associated with Public Subnet 54

4.2.15 [AWS_NS_74] Shield Advanced Not In Use 55

4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions 56

4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation 56

4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions 57

4.2.19 [AZURE_AC_39] Storage Table Allows All ACL Permissions 57

4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled 57

4.2.21 [GCP_AC_13] Service Account With Improper Privileges 58

4.2.22 [GCP_AC_16] IAM Role Assigned to User 58

4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles 58

4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible 59

4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account 59

4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule 59

4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports &

[GCP_NS_08] Google Compute Network Using Firewall Rule that Allows Port Range60

4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled 60

4.3 Discarded Queries 61

4.4 Summary 64

5 EX TEND ING K I CS 65

5.1 Setup of the KICS Development Environment 65

5.2 Development of the Security Queries 66

5.2.1 Metadata File 66

5.2.2 Query File 67

5.2.3 Security Query Development Example 68

5.3 Tests 72

5.4 Creation of the Pull Request 74

5.5 Contribution Overview 75

6 CONCLUS IONS AND FUTURE WORK 77

6.1 Conclusions 77

l i s t o f c o n t e n t s x

6.2 Future Work 78

References 79

L I S T O F F I G U R E S

Figure 1 Item 3.9 of the CIS Amazon Web Services Foundations Benchmark v1.4.0 (Source: CIS) 10

Figure 2 Example of incidents that can be detected with Bridgecrew 17

Figure 3 KICS Architecture (Source: KICS Website) 34

Figure 4 KICS results in Command Line Interface (CLI) 38

Figure 5 KICS GitHub repository fork 65

Figure 6 KICS GitHub repository fork clone link 66

Figure 7 REGO Playground 67

Figure 8 REGO Playground 70

Figure 9 Pull request 74

xi

L I S T O F TA B L E S

Table 1 Catalog of 24 code smells for Puppet by Sharma et al. (2016) 13

Table 2 Catalog of 17 code smells for Chef by Schwarz et al. (2018) 13

Table 3 Static code analysis tools for IaC 15

Table 4 Commercial dynamic analysis tools for cloud-based infrastructure 17

Table 5 Open source dynamic analysis tools for cloud-based infrastructure 18

Table 6 [AWS] Access Control context - Part I 23

Table 7 [AWS] Access Control Part II 24

Table 8 [AZURE] Access Control context 25

Table 9 [GCP] Access Control context 26

Table 10 [AWS] Network Security context - Part I 27

Table 11 [AWS] Network Security - Part II 28

Table 12 [AZURE] Network Security 29

Table 13 [GCP] Network Security context 30

Table 14 Collected security queries according to IaC problem 32

Table 15 IaC solutions configuration file extension 35

Table 16 [AWS_AC_08] API Gateway without WAF 44

Table 17 [AWS_AC_10] API Gateway Without Configured Authorizer 46

Table 18 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than

256 47

Table 19 [AWS_AC_18] Elasticsearch Without IAM Authentication 47

Table 20 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled 47

Table 21 [AWS_AC_32] SES Policy With Allowed IAM Actions 48

Table 22 [AWS_AC_35] IAM Access Analyzer Undefined 49

Table 23 [AWS_AC_41] IAM Group Without Users 49

Table 24 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA 51

xii

l i s t o f t a b l e s xiii

Table 25 [AWS_NS_05] Default EC2 security group are in use 51

Table 26 [AWS_NS_07] Default VPC in use for EC2 instance 52

Table 27 [AWS_NS_49] Elastic MapReduce Without VPC 52

Table 28 [AWS_NS_50] ElastiCache Without VPC 52

Table 29 Default ports 53

Table 30 [AWS_NS_51] ElastiCache Using Default Port 53

Table 31 [AWS_NS_58] Relational Database Service (RDS) Using Default Port 53

Table 32 [AWS_NS_61] Redshift Using Default Port 54

Table 33 [AWS_NS_56] VPC Without Network Firewall 54

Table 34 [AWS_NS_57] RDS Associated with Public Subnet 55

Table 35 [AWS_NS_74] Shield Advanced Not In Use 56

Table 36 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions 56

Table 37 [AZURE_AC_22] Role Definition Allows Custom Role Creation 56

Table 38 [AZURE_AC_29] Storage Share File Allows All ACL Permissions 57

Table 39 [AZURE_AC_39] Storage Table Allows All ACL Permissions 57

Table 40 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled 57

Table 41 [GCP_AC_13] Service Account With Improper Privileges 58

Table 42 [GCP_AC_16] IAM Role Assigned to User 58

Table 43 [GCP_AC_17] User with KMS Admin and CryptoKey Rules 58

Table 44 [GCP_AC_21] KMS Crypto Key is Publicly Accessible 59

Table 45 [GCP_AC_23] Container Cluster Using Default Service Account 59

Table 46 [GCP_NS_06] Google Compute Network Using Default Firewall Rule 60

Table 47 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_-

NS_08] Google Compute Network Using Firewall Rule that Allows Port Range 60

Table 48 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled 61

Table 49 List of the discarded queries according to ”dynamic”, ”known”, ”inapplicable”, and ”un-

known” scopes 63

Table 50 List of security queries contributed to KICS 76

L I S T O F L I S T I N G S

1 AWS CLI command example . 6

2 Terraform script . 6

3 AWS Access Key hard-coded . 8

4 IaC Misconfiguration example . 8

5 Payload example . 35

6 Terraform file example . 36

7 Query file tree . 36

8 Metadata example . 36

9 Query example . 37

10 KICS results in a JSON report . 38

11 All actions to all principals . 48

12 MFA configuration . 49

13 External ID configuration . 50

14 Payload example . 68

15 metadata.json of the query ”Neptune Cluster With IAM Database Authentication Disabled” 70

16 query.rego of the query ”Neptune Cluster With IAM Database Authentication Disabled” . 71

17 Test folder tree . 72

18 Positive sample example (’positive1.tf’) 72

19 Positive sample example (’positive2.tf’) 72

20 Negative sample example (’negative.tf’) 73

21 Positive expected result sample example (’positive_expected_result.json’) 73

xiv

1

I N T R O D U C T I O N

1.1 C o n t e x t

Cloud Computing Services assert themselves to the detriment of other data management and processing

forms. Instead of using our hardware to satisfy requirements from storage to management and processing

of data, these services offer the possibility to call upon remote servers on the Internet. ”Software is remotely

deployed in a virtualized runtime environment using shared hardware/software resources, and hosted in a

third-party infrastructure”, as maintained by Bai et al. (2011).

That is possible through approaches like Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS) that involve the management of some parts of the stack instead of the full

traditional stack. That is the most likely reason why more than 90% of companies use at least one Cloud

Computing Service1. Examples of well-known providers are Amazon Web Services (AWS), Google Cloud

Platform (GCP), and Microsoft Azure.

Apart from these services, Infrastructure as Code (IaC) appears as a modern way of infrastructure con-

figuration and management. According to Guerriero et al. (2019), this technology can be seen as a DevOps

practice that provides configuration and management of infrastructure through scripts instead of traditional

interactive tools — such as command line — or cloud provider web interfaces. Examples of IaC technologies

are Ansible2, Chef3, CloudFormation4, Docker5, Kubernetes6, Puppet7, and Terraform8, among others.

IaC technologies present substantial benefits over configuration management and server provisioning

compared to other alternatives. In addition to being a faster process, they also allow the reuse of scripts

and implementation of software engineering practices.

1 https://techjury.net/blog/how-many-companies-use-cloud-computing/
2 https://docs.ansible.com/ansible/latest/index.html
3 https://docs.chef.io/
4 https://docs.aws.amazon.com/cloudformation/
5 https://www.docker.com/
6 https://kubernetes.io/
7 https://puppet.com/
8 https://www.terraform.io/

1

https://techjury.net/blog/how-many-companies-use-cloud-computing/
https://docs.ansible.com/ansible/latest/index.html
https://docs.chef.io/
https://docs.aws.amazon.com/cloudformation/
https://www.docker.com/
https://kubernetes.io/
https://puppet.com/
https://www.terraform.io/

1.2. Motivation 2

However, during the development of these scripts, inadvertent infrastructure misconfigurations, non-

compliance problems, or security vulnerabilities can occur, either because of a lack of awareness of the

best security practices in IaC, or even due to bugs in the code. Additionally, various challenges can arise

from these technologies, the main one being testability, as stated by Guerriero et al. (2019).

1.2 Mo t i v a t i o n

According to Google Trends9, Infrastructure as Code started gaining traction in 2015, which indicates that

this practice is a recent field. As with any recent field of study, there are several significant subjects to

investigate and explore. In this dissertation, however, the focus will be on the analysis of misconfiguration

and non-compliance problems in IaC scripts.

Before IaC code is executed, the best way to prevent potential vulnerabilities in cloud infrastructure (as a

result of misconfiguration and non-compliance problems from IaC scripts) is to focus on a static approach.

However, this type of approach has disadvantages compared to a dynamic one, which results in a gap

between the static analysis tools for IaC and dynamic tools for cloud-based infrastructure. The exploration

of this gap can benefit the IaC community since it will be new material to consider and contribute to a more

extensive testability of IaC scripts.

For that matter, the present dissertation explores how information usually collected by dynamic tools for

cloud-based infrastructure can be fully or partially implemented or addressed in an IaC static approach in

a specific context.

1.3 Ob j e c t i v e s

As a starting point, it is necessary to understand the concept of IaC to better grasp how these technologies

work. That is essential to perceive the best security practices desired in this type of technology.

Secondly, it is essential to study dynamic analysis tools for cloud-based infrastructure that already exist

and identify what problems and information they can recognize in a specific context. Subsequently, the

present study intends to verify which of those problems and information recognized by the dynamic analysis

tools for cloud-based infrastructure are not identified by IaC static analysis tools.

As a final goal, the study aims to pinpoint which of the potential problems identified by the dynamic

approach are feasible to be transposed to a static one.

To this end, the main objectives are:

• Understand the IaC concept and explore its technologies.

9 https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code

https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code

1.4. Methodology Approach 3

• Study the gap between static analysis tools for IaC and dynamic analysis tools for cloud-based infras-

tructure.

• Study and attempt to define solutions bridging the gap between static analysis tools for IaC and

dynamic analysis tools for cloud-based infrastructure in a static approach.

• Contribute solutions to KICS (Keeping Infrastructure as Code Secure), an open source static analysis

tool for IaC provided by Checkmarx.

1.4 Me t h o d o l o g y A p p r o a ch

The methodology followed in this dissertation consists of the following eight steps:

1. Literature review about all aspects considered relevant, supported by scientific articles, publications,

and documentation.

2. Identify and explore static analysis tools for IaC and dynamic analysis tools for cloud-based infras-

tructure.

3. Choose a security context, between the several existing domains of security problems, to compare

both kinds of tools.

4. Collect the information that both kinds of tools recognize in a given context.

5. Study the gap between static analysis tools for IaC and dynamic analysis tools for cloud-based infras-

tructure from the information collected; Present the results of the study.

6. Study and attempt to define solutions bridging the gap in a static approach; Contribute the solutions

to KICS.

7. Simultaneously to the previous task, tests the effectiveness of the proposed solutions.

8. Focus on the writing of the dissertation and, later, revision.

1.5 D o c umen t S t r u c t u r e

The present document is composed of four main chapters, preceded by this Introduction (Chapter 1) and

succeeded by Conclusions and Future Work (Chapter 6).

Chapter 1, the current one, is an introduction to the project, which provides an explanation of the disser-

tation context, including the motivation, objectives, and methodology approach.

1.5. Document Structure 4

Chapter 2, Infrastructure as Code, is constituted by two main sections, Infrastructure as Code (2.1) and

Related Work (2.2). Section 2.1 includes all relevant background necessary to understand the context of

this dissertation. For its part, Section 2.2 highlights an overview of prior work on IaC scripts.

Chapter 3, KICS: A Case Study, details the case study of the present dissertation, i.e., a comparison

between static analysis tools for IaC and dynamic analysis tools for cloud-based infrastructure in the defined

context. Furthermore, it reports its results.

Chapter 4, Fitting New Security Queries Into KICS, highlights how the dissertation study results can

or cannot be implemented in KICS. Moreover, it presents a set of reasons regarding the queries discard

process.

Chapter 5, Extending KICS, addresses the application of the solutions presented in Chapter 4 to KICS.

Therefore, it lists all the solutions implemented in the KICS GitHub repository, including the GitHub pull

request related to each one.

Chapter 6, Conclusions and Future Work, presents the conclusions of the present dissertation, focusing

on contributions to KICS and the prospect for future work.

2

I N F R A S T R U C T U R E A S C O D E

This chapter details the essential concepts needed to understand Infrastructure as Code. Moreover, it

provides an overview of the related work in this field.

2.1 Ma i n C o n c e p t s

2.1.1 Infrastructure as Code

DevOps is the collaboration result between Dev (Development) and Ops (Operations). This concept comes

up with two different needs in mind. On the one hand, the demand for speed by the developers: since they

need to deliver software products as soon as possible, they need a fast deployment and release process,

as stated by Guerriero et al. (2019). On the other hand, the demand for system stability by the system

operations. Any change in the system could present a risk of instability, which hampers its maintenance.

In prior years, both teams used to work separately. Ops teams had to manage a great deal of hardware

manually to deploy and run software products done by the Dev team. According to Brikman (2019), this

might lead to mistakes since the number of servers increases with time, resulting in slow and uncertain

releases. Consequently, the system becomes unstable, which delays its delivery.

However, with the emergence of the Cloud Computing concept, Ops teams no longer have to manage

the full traditional stack. Cloud Computing Services1 offer the possibility to manage just some parts of the

stack. This management is done by software, which brings both teams together.

With that being said, it seems that the division of work and teams has become obsolete. There are

several DevOps practices such as Continuous Integration, Continuous Delivery, Continuous Deployment,

Build Automation, Configuration Management, Orchestration, Monitoring, Microservices, and Infrastructure

as Code (the main subject of this dissertation). All these practices allow both teams to cooperate and

achieve speed and stability.

1 Infrastructure as a Service, Platform as a Service, Software as a Service, and Function as a Service

5

2.1. Main Concepts 6

Infrastructure as Code (IaC) is a DevOps practice that provides configuration and management of in-

frastructure through scripts instead of traditional interactive tools — such as command line — or cloud

provider web interfaces. Guerriero et al. (2019) These files are known as IaC scripts, configuration scripts,

or configuration as code scripts. Rahman, Parnin and Williams (2019)

Concerning configuration management (software installation and management on existing servers), the

most popular tools are Chef2, Puppet3, Ansible4, and SaltStack5. On the other hand, for server provisioning,

well-known tools are Terraform6, CloudFormation7, and OpenStack Heat8. Brikman (2019)

As said before, according to Google Trends9, the interest in this modern practice started to increase

in 2015. Major IT companies such as GitHub, Mozilla, Netflix, Google, and Facebook have adopted this

approach. Rahman, Mahdavi-Hezaveh and Williams (2019)

Practitioners use IaC scripts because this technology is faster than the manual execution of shell com-

mands and interactive web pages. Moreover, they also use this approach due to re-usability and reliability.

Sharma et al. (2016) Beyond that, IaC allows the implementation of software engineering practices like

self-service, consistency, documentation, version control, and validation. Brikman (2019)

Imagine a scenario with an Amazon EC2 instance launch. Through an interactive web page, more

precisely the AWS Management Console, the necessary steps are presented in the official AWS documen-

tation10.

Through manual execution of shell commands (in this context, AWS CLI) after configuring security cre-

dentials, a command similar to Listing 1 is required:

aws ec2 run-instances --image-id ami-40d28157 --count 1

--instance-type t2.micro

Listing 1: AWS CLI command example.

The previous example does not provide a practical way of documentation, version control, validation,

consistency, or re-usability. Instead of using them, one option is to use an IaC technology, which can offer

these features, as shown in Listing 2.

provider "aws" {

region = "us-west-2"

2 https://www.chef.io/
3 https://puppet.com/
4 https://docs.ansible.com/ansible/latest/index.html
5 https://saltproject.io/
6 https://www.terraform.io/
7 https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
8 https://docs.openstack.org/heat/latest/
9 https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code

10 https://docs.aws.amazon.com/quickstarts/latest/vmlaunch/step-1-launch-instance.html

https://www.chef.io/
https://puppet.com/
https://docs.ansible.com/ansible/latest/index.html
https://saltproject.io/
https://www.terraform.io/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.openstack.org/heat/latest/
https://trends.google.com/trends/explore?date=all&geo=US&q=infrastructure%20as%20code
https://docs.aws.amazon.com/quickstarts/latest/vmlaunch/step-1-launch-instance.html

2.1. Main Concepts 7

}

resource "aws_instance" "example" {

ami = ami-40d28157

instance_type = "t2.micro"

}

Listing 2: Terraform script.

This kind of script can be easily changed or reused, which provides a more intuitive way of configuring

and managing infrastructure. However, during the development of the IaC scripts, inadvertent infrastructure

misconfigurations, non-compliance problems, or security vulnerabilities can occur. It can arise from a lack

of the best security practices in IaC, misconfigurations, code smells, security smells, or even due to bugs

in the code.

The possibility of lack of the best security practices in IaC, misconfigurations, code smells, security smells,

and bugs in the code seem to raise concerns for developers. As stated by Guerriero et al. (2019), the main

one being testability. Since this technology is recent, the field is under construction when it comes to the

security of these scripts.

The IaC platforms use unique code structures, which require specific code implementation for each one.

Finding a range of tool options that incorporates the same target platform or all the platforms is quite hard.

In addition to that, need to be updated often and push forward to support more and more cloud solutions.

Consequently, the tools that scan the platform’s scripts also need to be constantly updated.

Finally, the best approach to analyze IaC scripts is static analysis - a static analysis tool for IaC that runs

security queries. Nevertheless, there is a gap between the static analysis tools for IaC and dynamic tools

for the cloud-based infrastructure. Chapter 3 addresses this issue.

2.1.2 Code and Security Smells

Code smells are ”flaws in code which may lead to problems”. They do not ”lead to a run-time error but

usually indicate that the code needs to be improved”. Schwarz et al. (2018) For example, incomplete tasks

can be considered as a code smell, which can lead to misconfigurations since the environment is not

completely configured.

On the other hand, as defined by Rahman, Parnin and Williams (2019), ”security smells are recurring

coding patterns that are indicative of security weakness, and requires further inspection”. As an example of

this, consider a Terraform file with AWS as the cloud provider. As a best practice, AWS Access Key should

not be hard-coded in the script, as depicted below in Listing 3:

2.1. Main Concepts 8

provider "aws" {

region = "us-west-2"

access_key = "my_access_key"

}

Listing 3: AWS Access Key hard-coded.

If the AWS Access Key is hard-coded, anyone who has access to the file will have access to the credentials,

which is something to avoid.

2.1.3 IaC Misconfiguration and Non-Compliance Problems

Misconfiguration problems can be seen as an incorrect or inadequate configuration of the infrastructure.

The usage of default settings or deprecated protocols and unsafe configurations (e.g., not using the latest

Transport Layer Security (TLS) version) are examples of this type of problem.

An example of a misconfiguration problem can be the definition of an AWS Redshift cluster in Terraform

with default settings for the optional parameters. When the field ’publicly_accessible’ (optional parameter)

is not defined in the resource ’aws_redshift_cluster’, the default value will be used. Since the default

value is true, the Redshift cluster will be accessible from a public network11. It is important to read the

documentation and be aware of this type of problem. See Listing 4 for a suggestion of remediation for this

problem.

resource "aws_redshift_cluster" "example" {

cluster_identifier = "tf-redshift-cluster"

database_name = "mydb"

master_username = "exampleuser"

master_password = "Mustbe8characters"

node_type = "dc1.large"

cluster_type = "single-node"

publicly_accessible = false

}

Listing 4: IaC Misconfiguration example.

11 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_
accessible

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_accessible
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/redshift_cluster#publicly_accessible

2.1. Main Concepts 9

Non-compliance problems occur when standards are not followed. The standards help the developers

to establish a guide of best practices to prevent unsafe configurations. CIS (Center for Internet Security)

benchmarks are examples of well-known sets of standards.

There are several CIS benchmarks available12, such as CIS Benchmarks for Amazon Web Services Foun-

dations, CIS Benchmarks for Google Cloud Platform Foundation, and CIS Benchmarks for Microsoft Azure

Foundations, which are examples of relevant ones in the cloud-based infrastructure context. Each item of

the benchmark presents the following topics: (i) a description of the best practice, (ii) a rationale statement

that explains the importance of the rule, (iii) an impact statement that presents the possible consequences

of not following the best practice, (iv) an audit procedure that demonstrates how to verify if the recommen-

dation is already applied, and (v) remediation that details how to follow the best practice, among others.

See Figure 1 as an example of a best practice from the CIS Amazon Web Services Foundations Benchmark

v1.4.0.

12 https://www.cisecurity.org/cis-benchmarks/

https://www.cisecurity.org/cis-benchmarks/

2.1. Main Concepts 10

Figure 1: Item 3.9 of the CIS Amazon Web Services Foundations Benchmark v1.4.0 (Source: CIS).

2.1.4 Security Query

Also known as a security check or guide, a security query can detect possible security vulnerabilities, code

and security smells, misconfigurations, non-compliance problems, or the lack of best practices. It can cover

several categories, such as:

2.1. Main Concepts 11

• Access Control: This technique offers preventive mechanisms to avoid untrusted individuals (au-

thentication) and restrict access permissions to data (authorization). If these two types of processes

are not implemented or are misconfigured, it can result in a vulnerability or lack of best practice. For

example, if the authentication is disabled in some environment, anyone can gain access to it.

• Backup: Backup is a (periodic) copy of the environment used to keep its most up-to-date data. It

provides recovery from lost or corrupted data. Therefore, this feature should be enabled and properly

configured.

• Encryption: Ensuring secure communication in an open channel is essential to prevent information

leaks. The same applies even if it is a private channel. Enabling encryption, ensuring encryption key

rotation, and forcing the usage of HTTPS are examples of measures to verify in this category.

• Network Security: This category protects the connection of an environment. When talking about

network security, aspects like restricting access to the network and implementing a VPC (Virtual

Private Cloud) are essential.

• Observability: This category refers to the diagnosis of the operational environment. Keeping logs

is an example of a way to investigate possible errors or uncommon behaviors.

2.1.5 Static Analysis vs. Dynamic Analysis

Static analysis does not imply code execution since it is applied to the source code or the binaries of the

system. Silva and Campos (2013) Therefore, this approach can be implemented in the early phase of the

software development life cycle, which can lighten the costs of the validation software phase, save time,

and prevent potential vulnerabilities.

There are several types of tools using static code analysis. Their main goals range between code best

practices enforcement, code improvement, bug detection, and vulnerabilities detection. Examples of them

are:

• Linting tools: They focus mainly on syntax errors, best practices enforcement, code improvement,

and bug detection. These tools are available for almost all programming languages. As an example

of an open source one, there is Terraform Linter13.

• Security tools: They detect and report vulnerabilities, bugs, and lack of best practices. These tools

are essential to prevent potential software defects that can compromise the system during the early

phase of the software development life cycle.

13 https://github.com/terraform-linters/tflint

https://github.com/terraform-linters/tflint

2.2. Related Work 12

As most people involved with software feel the need to detect software defects as soon as possible,

these tools are in great demand. To meet this need, several companies rely on these tools, as is

the case of Checkmarx which provides the CxSAST product14. Apart from the commercial ones,

companies and the IT community provide open source tools. KICS (Keeping Infrastructure as Code

Secure)15, provided by Checkmarx, is an example of it.

Nevertheless, this approach cannot identify vulnerabilities introduced at run-time, leading to the need for

dynamic analysis approaches. Different from static analysis, dynamic analysis implies code execution, i.e.,

observation of the run-time system behavior. Silva and Campos (2013)

Through the examination, dynamic tools can provide vulnerability management that identifies the

vulnerabilities in the run-time environment, and network visibility, which is important to monitor the

components of the network, for example. Prisma Cloud16 is an example of a dynamic analysis tool that

offers these benefits.

2.2 Re l a t e d Wo r k

This section presents prior work on IaC scripts. Furthermore, it introduces static analysis tools for IaC and

dynamic analysis tools for cloud-based infrastructure.

2.2.1 Prior Work on IaC Scripts

In the scope of smells, through the analysis of Puppet repositories, Sharma et al. (2016) present a catalog

of 24 code smells (Table 1) distinguished into two categories: Implementation Configuration Smells

(13) and Design Configuration Smells (11).

14 https://checkmarx.com/product/cxsast-source-code-scanning/
15 https://github.com/Checkmarx/kics
16 https://docs.paloaltonetworks.com/prisma/prisma-cloud.html

https://checkmarx.com/product/cxsast-source-code-scanning/
https://github.com/Checkmarx/kics
https://docs.paloaltonetworks.com/prisma/prisma-cloud.html

2.2. Related Work 13

Table 1: Catalog of 24 code smells for Puppet by Sharma et al. (2016).
Implementation Code Smells

Missing Default Case
Inconsistent Naming Convention

Complex Expression
Duplicate Entity

Misplaced Attribute
Improper Alignment
Invalid Property Value
Incomplete Tasks

Deprecated Statement Usage
Improper Quote Usage

Long Statement
Incomplete Conditional
Unguarded Variable

Design Configuration Smells
Multifaceted Abstraction
Unnecessary Abstraction
Imperative Abstraction
Missing Abstraction

Insufficient Modularization
Duplicate Block
Broken Hierarchy

Unstructured Module
Dense Structure

Deficient Encapsulation
Weakened Modularity

From this study, Schwarz et al. (2018) investigated the feasibility of applying this catalog into Chef scripts.

To this end, they identified the five most frequent smells in each category and implemented them into a

static code analysis tool named Foodcritic. In this investigation, they identified three types of IaC smells: (i)

Technology Agnostic Smells that can be adapted from Puppet smells, without changing the detection

method, (ii) Technology Dependent Smells, which cannot be directly adopted due to the differences

between Puppet and Chef, so it is necessary to change the detection method and (iii) Technology Specific

Smells that are only applicable to a specific IaC technology. From this analysis, they defined a catalog of

17 Chef IaC smells (Table 2).

Table 2: Catalog of 17 code smells for Chef by Schwarz et al. (2018).
Agnostic Smells
Improper Alignment
Long Statement

Unguarded Variable
Misplaced Attribute

Multifaceted Abstraction
Duplicate Block
Long Resource

Too many Attributes
Avoid Comments

Dependent Smells
Improper Quote Usage

Insufficient Modularization
Weakened Modularity
Unstructured Module

Law of Demeter
Include Consistency

Specific Smells
Hyphens

Empty Default

Later, Rahman, Parnin and Williams (2019), through a quantitative analysis of 1,726 IaC scripts, identified

seven signs of security smells in IaC scripts: (1) admin by default, (2) empty password, (3) hard-

coded secret, (4) invalid IP address binding, (5) suspicious comment, (6) use of HTTP without

2.2. Related Work 14

TLS, and (7) use of weak cryptography algorithms. To identify the occurrence of these smells, they

implemented and validated a static analysis tool called SLIC (Security Linter for Infrastructure as Code

scripts).

However, Almuairfi and Alenezi (2020) recognize permissions and configuration path as security

smells to consider, in addition to the smells presented by the studies of Schwarz et al. (2018) and Rahman,

Parnin and Williams (2019). Also, Almuairfi and Alenezi (2020) suggest what they considered to be the best

security practices in IaC: (i)manual security assessment, which implies inspection of the live infrastruc-

ture before and after deployments (ii) codify everything related to the infrastructure specifications in IaC

scripts, discarding the manually changes (iii) IaC documentation should be reduced to the minimum

since the infrastructure documentation will have the status automatically registered by the IaC scripts, (iv)

version everything is important to version control any changes in the IaC scripts, (v) continuously test

system, integrate and deploy to ensure a test environment before deployment, (vi) modular code

in order to prefer small changes to big ones, (vii) immutable infrastructure that suggests replacement

of the infrastructure elements rather than changing them, and (viii) continuous security and service

availability to also ensure security in the continuous delivery toolchain and test environment.

2.2.2 Scanning IaC Scripts using Static Code Analysis Tools

Apart from the studies mentioned in the previous section, several static analysis tools for IaC are currently

available. They detect possible flaws in IaC technologies according to best practices from cloud providers

and IaC technologies.

Referring to the Terraform script presented in Section 2.1.2 with an AWS Access Key hard-coded. As a

best practice in IaC scripts, it is not recommended to use hard-coded credentials in Terraform17. That is

considered a security smell by Rahman, Parnin and Williams (2019), as recognizable in Section 2.2.1.

Considering another scenario with the same provider (AWS), IaC technology (Terraform), and a Virtual

Private Cloud (VPC) configuration. As an AWS best practice18 it is recommended to enable VPC Flow Logs

to ”capture information about IP traffic going to and from network interfaces in our VPC”.

Both cases can be detected by static code analysis tools that scan Terraform scripts (or other tech-

nologies depending on their restrictions), which covers these checks. These static code analysis tools are

fundamental to ensure best practices and prevent security flaws in the cloud before IaC scripts execution.

17 https://registry.terraform.io/providers/hashicorp/aws/latest/docs#static-credentials
18 https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

https://registry.terraform.io/providers/hashicorp/aws/latest/docs##static-credentials
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

2.2. Related Work 15

Of the open source static analysis tools available, Ansible Linter19, CFN_NAG20, CFRipper21, Checkov22,

Haskell Dockerfile Linter23, KICS24, Kube-Score25, Puppet linter26, Terrafirma27, Terrascan28, TFLint29, and

TFSEC30 stand out. Companies like Aqua31 and Snyk32 also offer static analysis products for IaC scripts.

Table 3 presents the IaC technologies supported by the IaC tools mentioned above. Note that this

information is based on the tools documentation understanding from around the end of 2020. Also, it is

important to mention that almost none of the above tools supports more than three IaC technologies, except

KICS.

Table 3: Static code analysis tools for IaC.
Ansible Chef CloudFormation Dockerfile Kubernetes Puppet Terraform

Ansible Linter 3

Aqua Wave IaC 3 3

CFN_NAG 3

CFRipper 3

Checkov 3 3 3

Haskell Dockerfile Linter 3

KICS 3 3 3 3 3

Kube-Score 3

Prisma Cloud IaC 3 3 3

Puppet Linter 3

Snyk IaC 3 3

Terrafirma 3

Terrascan 3 3

TFLint 3

TFSEC 3

To clearly understand how these tools work, Section 3.3 presents an overview of KICS (Keeping Infras-

tructure as Code Secure).

19 https://github.com/ansible-community/ansible-lint
20 https://github.com/stelligent/cfn_nag
21 https://github.com/Skyscanner/cfripper
22 https://github.com/bridgecrewio/checkov
23 https://github.com/hadolint/hadolint
24 https://github.com/Checkmarx/kics
25 https://github.com/zegl/kube-score
26 https://github.com/rodjek/puppet-lint
27 https://github.com/wayfair/terrafirma
28 https://github.com/accurics/terrascan
29 https://github.com/terraform-linters/tflint
30 https://github.com/tfsec/tfsec
31 https://wave-support.aquasec.com/support/home
32 https://snyk.io/product/infrastructure-as-code-security/

https://github.com/ansible-community/ansible-lint
https://github.com/stelligent/cfn_nag
https://github.com/Skyscanner/cfripper
https://github.com/bridgecrewio/checkov
https://github.com/hadolint/hadolint
https://github.com/Checkmarx/kics
https://github.com/zegl/kube-score
https://github.com/rodjek/puppet-lint
https://github.com/wayfair/terrafirma
https://github.com/accurics/terrascan
https://github.com/terraform-linters/tflint
https://github.com/tfsec/tfsec
https://wave-support.aquasec.com/support/home
https://snyk.io/product/infrastructure-as-code-security/

2.2. Related Work 16

2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure

Currently, on the market, there are plenty of dynamic analysis tools capable of inferring data about the

infrastructure of the system and finding security issues. These tools can have different features, such as

compliance checks, incident response, malware detection, misconfigurations identification, network man-

agement, run-time defense, threat detection, and vulnerability management, among others. However, their

main goal is to ensure best practices to prevent security flaws.

2.2.3.1 Commercial Tools

Currently, several commercial dynamic analysis tools for cloud-based infrastructure are available. All of

them implement security checks on the cloud environments that they support, providing several features.

See Table 4 (note that the provider’s coverage in the table only considers AWS, AZURE, or GCP).

For instance, Bridgecrew33 offers a platform that permits finding and fixing issues in the cloud. It is

possible to infer AWS, Kubernetes, GCP, and Azure misconfigurations in run-time through policies. These

policies cover various categories, such as logging, networking, secrets, identity and access management,

and others.

Consider a scenario where this platform should check compliance and the security of an AWS account.

As a requirement, the user only needs to launch an instance (associated with Bridgecrew) in their AWS

account. Figure 2 represents an example of which incidents can be possibly detected.

33 https://bridgecrew.io/

https://bridgecrew.io/

2.2. Related Work 17

Figure 2: Example of incidents that can be detected with Bridgecrew.

Prisma Cloud34 provides vulnerability management, compliance checks, runtime-defense, network visi-

bility, incident response, and forensics in AWS, AZURE, GCP, and Alibaba Cloud.

Aqua Enterprise35 scans container images supported on vulnerability data sources in AWS, AZURE, GCP,

and Oracle Cloud Infrastructure. Furthermore, this tool finds malware and misconfigurations.

Cloud One - Conformity36 contributes to real-time monitoring and auto-remediation in AWS and Microsoft

Azure environments.

Table 4: Commercial dynamic analysis tools for cloud-based infrastructure.
Tool name Cloud provider’s coverage
Bridgecrew AWS, AZURE, and GCP

Prisma Cloud AWS, AZURE, and GCP
Aqua Enterprise AWS, AZURE, and GCP

Cloud One - Conformity AWS, AZURE

34 https://docs.paloaltonetworks.com/prisma/prisma-cloud.html
35 https://www.aquasec.com/demo/
36 https://www.cloudconformity.com/

https://docs.paloaltonetworks.com/prisma/prisma-cloud.html
https://www.aquasec.com/demo/
https://www.cloudconformity.com/

2.3. Summary 18

2.2.3.2 Open Source Tools

Apart from the closed source tools, several open source tools also scan cloud environments, such as Cloud

Reports37, Prowler38, and Scout Suite39. All the tools in Table 5 implement security checks on the cloud

environments that they support and provide reporting. Note that the provider’s coverage in the table below

only considers AWS, AZURE, or GCP.

Table 5: Open source dynamic analysis tools for cloud-based infrastructure.
Tool name Cloud provider’s coverage
Cloud Reports AWS

Prowler AWS
Scout Suite AWS, AZURE, and GCP

2.3 S umma r y

Infrastructure as Code appears in the cloud community as an innovative and easiest way of infrastructure

configuration and management. As suggested by its name, this technology allows the configuration and

management of the infrastructure through the development and execution of scripts instead of traditional

interactive tools — such as command line — or cloud provider web interfaces.

This new method of dealing with infrastructure is very promising since it seems to be faster compared to

other alternatives due to its re-usability. Moreover, it provides the implementation of software engineering

practices, which seems to be the main advantage of its use.

The community that uses IaC faces challenges related to the quality and security of the code. As the

platforms that provide this technology are recent and unique, there is a lot to explore in their code structures.

The best answer to code improvement seems to be the static analysis tools for IaC.

However, these types of tools have their limitations when compared to dynamic analysis tools for the

cloud, resulting in a gap that needs to be bridged between them. The next chapter explores how to bridge

the gap in two contexts: Access Control and Network Security.

37 https://github.com/tensult/cloud-reports
38 https://github.com/prowler-cloud/prowler
39 https://github.com/nccgroup/ScoutSuite

https://github.com/tensult/cloud-reports
https://github.com/prowler-cloud/prowler
https://github.com/nccgroup/ScoutSuite

3

K I C S : A C A S E S T U D Y

As discussed in Section 2.1.5, static analysis has its limitations, which results in a gap between static analysis

tools for IaC and dynamic analysis tools for cloud-based infrastructure. For that reason, this chapter details

the case study of the present dissertation, i.e., a comparison between static analysis tools for IaC and

dynamic analysis tools for cloud-based infrastructure. The main focus of this analysis is the collection of

security queries (see Section 2.1.4) only covered by dynamic analysis tools for cloud-based infrastructure.

This study is also a contribution to KICS, an open source tool for static code analysis of IaC solutions,

provided by Checkmarx. See Section 3.2 and Section 3.3 for information about the tool.

3.1 S t a t i c A n a l y s i s To o l s v s . D y n am i c A n a l y s i s To o l s

Firstly, this section presents the methodology followed in this dissertation, describing the selection criteria

regarding the security context, coverage of IaC technologies, and coverage of cloud infrastructure providers.

Lastly, it represents the security queries in table format and highlights the results of the study.

3.1.1 Methodology

First of all, the triage of which security contexts are covered takes place (see Section 2.1.4). The main focus

is on Access Control, which includes all security queries that prevent untrusted individuals and restrict

access permissions to data in an environment (Access Control queries).

Secondly, this study also covers a secondary security context, Network Security. This category includes

all security queries that protect the connection of an environment (Network Security queries). However, as

presented in Section 2.1.4, there are other security query categories that can cover cases like encryption best

practices in a network (Encryption category). In these cases, these kinds of security queries are excluded.

The next step consists of identifying what possible Access Control related services are made available

by cloud infrastructure providers. It should be noted that the same applies to the Network Security context.

This step considers two types of services:

19

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 20

• Services directly related to each category: It includes vital services for the implementation of

the security queries category.

Regarding Access Control, examples of them are Identity and Access Management (IAM) and API

Gateway services. However, this study can include security queries that embrace other security

queries categories since it is relevant to protect both services.

Concerning Network Security, services related to Virtual Private Network and Security Group, stand

out, for example.

• Services indirectly related to each category: Services where it is crucial to apply the category

best practices.

Concerning Access Control, for example, if someone launches an Amazon S3 bucket on an AWS

cloud infrastructure environment, one must keep in mind its permissions to prevent leaking private

information. Simple practices such as restricting write permissions are sometimes disregarded, but

they should not be.

Regarding Network Security, for example, if someone launches a Relational Database Service that

uses the default port, an attacker can trivially guess it, thus endangering the network security of the

environment.

After the identification of the services and before selecting the tools to explore, it is necessary to consider

the common bond between the static analysis tools for IaC and dynamic analysis tools for cloud-based

infrastructure: cloud providers. The chosen cloud providers are AWS, AZURE, and GCP since they are the

leading cloud providers on the market.

In addition, it is also important to choose the IaC technologies. The IaC technologies chosen are Ansible,

CloudFormation, and Terraform since all of them have detailed documentation and their configuration is

very intuitive.

The selection criteria applied to the static analysis tools for IaC presented in Table 3 is the following:

• Coverage of IaC technologies: It is immediately discarded tools that do not cover at least one

of the IaC technologies chosen, such as Haskell Dockerfile Linter, Kube-Score, and Puppet Linter.

• Coverage of cloud infrastructure providers: It is not immediately discarded any tool through

this parameter since all the target tools cover at least one of the chosen providers (AWS, AZURE,

and/or GCP).

On the other hand, the selection criteria applied to dynamic analysis tools for cloud-based infrastructure

mentioned in Section 2.2.3 is the following:

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 21

• Coverage of cloud infrastructure providers: It is not immediately discarded any tool through

this parameter since all the target tools cover at least one of the chosen providers (AWS, AZURE,

and/or GCP).

After the application of the two selection criteria and considering the documentation available, the tools

chosen for this study are:

• Static analysis tools for IaC: CFN_NAG, Checkov, KICS, Terrascan, and TFSec.

• Dynamic Analysis Tools for Cloud-Based Infrastructure: Aqua, Cloud Reports, Cloud Confor-

mity, Prowler, and Scout Suite.

As the final step, it is time to choose how to study these tools. One option is the observation of the tools

in action. Alternatively, another option is reading documents.

The first alternative would be, in practice, unsatisfactory, since access to the selected commercial tools

will be limited to free demos.

The process of obtaining them is not always easy, and their usage period is also limited. Moreover, the

free demos do not have all the features compared to the paid solution. Additionally, dynamic analysis tools

for cloud-based infrastructure require cloud accounts, which also involves monetary costs.

Although the second option is dependent on the interpretation of the documentation and how up-to-date

it is, which can result in (hopefully) minor inaccuracies, it seems to be the best way to better analyze all

tools equally. Therefore, this study is based on reading documents from around the end of 2020. See the

results in Section 3.1.2.

3.1.2 Results

As mentioned in the previous section, the case study is based on reading the available documentation for

the selected tools and extracting information regarding the set of security queries provided by each tool.

The procedure to collect the security queries only covered by dynamic analysis tools for cloud-based

infrastructure involves the following steps:

• Data collection: Consists of studying the reading documents and listing the security queries ac-

cording to the methodology defined in the previous section.

• Comparison between static analysis tools for IaC and dynamic analysis tools for cloud-

based infrastructure: Identification of what tools cover each security query.

• Identification of security queries only covered by dynamic analysis tools for cloud-based

infrastructure: Identification of what security queries are not covered by any static analysis tool

for IaC.

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 22

Based on our understanding, this case study reports 150 security queries as a gap between static analysis

tools for IaC and dynamic analysis tools for cloud-based infrastructure through Tables 6, 7, 8, 9, 10, 11, 12,

and 13. From this set, 78 of them are related to Access Control and 72 to Network Security.

The results are grouped in the following tables accordingly to the cloud provider and context. In each

table, the collected security queries (as a gap between static analysis tools for IaC and dynamic analysis

tools for cloud-based infrastructure) are shown in gray.

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 23

Table 6: [AWS] Access Control context - Part I.
This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

St
ati

cA
na

lys
is

Dy
na

m
ic
An

aly
sis

An
sib

le
Cl
ou

dF
or
m
ati

on
Te
rra

for
m

KI
CS

CF
N_

NA
G

Ch
ec
ko
v

KI
CS

Ch
ec
ko
v

KI
CS

Te
rra

sc
an

TF
Se

c
Aq

ua
Cl
ou

d
Co

nfo
rm

ity
Cl
ou

dR
ep

or
ts

Pr
ow

ler
Sc

ou
tS
uit

e
Au

to
Sc

ali
ng

[A
WS

_A
C_

01
]A

pp
-tie

rA
uto

Sc
ali
ng

Gr
ou

p
(A
SG

)l
au

nc
h
co
nf
igu

ra
tio

ns
wi
th
ou

tI
AM

ro
les

3
3

[A
WS

_A
C_

02
]W

eb
-tie

rA
uto

Sc
ali
ng

Gr
ou

p
(A
SG

)l
au

nc
h
co
nf
igu

ra
tio

ns
wi
th
ou

tI
AM

ro
les

3
3

AP
IG

ate
wa

y
[A
WS

_A
C_

03
]A

PI
Ga

tew
ay

AP
Is

tag
es

do
no

th
av
eX

-R
ay

tra
cin

ge
na

ble
d

3
3

3
3

3
3

3
3

[A
WS

_A
C_

04
]A

PI
Ga

tew
ay

AP
Is

tag
es

do
no

th
av
ed

eta
ile
d
Cl
ou

d
Wa

tch
m
etr

ics
en

ab
led

3
3

3
3

3
3

[A
WS

_A
C_

05
]A

PI
Ga

tew
ay

do
es

no
th

av
ea

cc
es
sl
og

gin
ge

na
ble

d
3

3
3

3
3

3

[A
WS

_A
C_

06
]A

PI
Ga

tew
ay

do
es

no
th

av
ec

on
ten

te
nc

od
ing

en
ab

led
3

3
3

3

[A
WS

_A
C_

07
]A

PI
Ga

tew
ay

en
dp

oin
ts

ar
en

ot
pr
iva

te
3

3
3

3
3

3
3

[A
WS

_A
C_

08
]A

PI
Ga

tew
ay

is
no

ta
ss
oc
iat

ed
wi
th

aW
eb

Ap
pli
ca
tio

n
Fir

ew
all

3
3

[A
WS

_A
C_

09
]A

PI
Ga

tew
ay

sta
ge
sw

ith
ou

tc
lie
nt

ce
rti
fic
ate

s
3

3
3

3
3

3

[A
WS

_A
C_

10
]A

PI
Ga

tew
ay

wi
th
ou

tc
on

fig
ur
ed

au
th
or
ize

r
3

Ce
rti
fic
ate

Ma
na

ge
r

[A
WS

_A
C_

11
]C

er
tifi

ca
te

ha
se

xp
ire

d
3

3
3

3
3

Cl
ou

dF
or
m
ati

on
St
ac
k

[A
WS

_A
C_

12
]C

lou
dF

or
m
ati

on
St
ac
kw

ith
ou

tle
as
tp

riv
ile
ge
sI

AM
Ro

le
3

3

[A
WS

_A
C_

13
]C

lou
dF

or
m
ati

on
St
ac
kw

ith
ou

tp
oli
cy

3
3

Cl
ou

dW
atc

h
Ev
en

tB
us

[A
WS

_A
C_

14
]C

lou
dW

atc
h
Ev
en

tB
us

all
ow

su
nk

no
wn

cro
ss
-ac

co
un

ta
cc
es
sf

or
de

liv
er
yo

fe
ve
nt
s

3

EC
R
Re

po
sit
or
y

[A
WS

_A
C_

15
]E

CR
Re

po
sit
or
ya

llo
ws

un
kn

ow
n
cro

ss
ac
co
un

ta
cc
es
s

3

[A
WS

_A
C_

16
]E

CR
Re

po
sit
or
yp

oli
cy

do
es

no
tli

m
ita

cc
es
so

nly
to

kn
ow

n
IA
M

en
titi

es
3

3
3

3
3

3
3

3
3

Ela
sti
cs
ea

rch
[A
WS

_A
C_

17
]E

las
tic
se
ar
ch

all
ow

su
nk

no
wn

cro
ss

ac
co
un

ta
cc
es
s

3

[A
WS

_A
C_

18
]E

las
tic
se
ar
ch

wi
th
ou

tI
AM

Au
th
en

tic
ati

on
3

La
m
bd

aF
un

cti
on

[A
WS

_A
C_

19
]L

am
bd

aF
un

cti
on

all
ow

su
nk

no
wn

cro
ss

ac
co
un

ta
cc
es
s

3

[A
WS

_A
C_

20
]L

am
bd

aF
un

cti
on

wi
th

ad
m
in

pr
ivi
leg

es
3

3

MQ
[A
WS

_A
C_

21
]M

Q
br
ok
er
sa

re
pu

bli
cly

ac
ce
ss
ibl
e

3
3

3

Re
lat

ion
al

Da
tab

as
eS

er
vic

e
[A
WS

_A
C_

22
]R

DS
da

tab
as
ei

ns
tan

ce
is
pu

bli
cly

ac
ce
ss
ibl
e

3
3

3
3

3
3

3
3

3

Re
ds
hif

t
[A
WS

_A
C_

23
]R

ed
sh

ift
clu

ste
ri
sp

ub
lic
ly
ac
ce
ss
ibl
e

3
3

3
3

3
3

3
3

3
3

Ne
ptu

ne
Cl
us

ter
[A
WS

_A
C_

24
]N

ep
tu
ne

Cl
us

ter
wi
th
ou

tI
AM

Da
tab

as
eA

ut
he

nt
ica

tio
n
dis

ab
led

3

S3
Bu

ck
et

[A
WS

_A
C_

25
]S

3
Bu

ck
et

all
ow

s’
FU

LL
_C

ON
TR

OL
’a

cc
es
s

3
3

[A
WS

_A
C_

26
]S

3
Bu

ck
et

all
ow

s’
RE

AD
’a

cc
es
s

3
3

3
3

3
3

3
3

[A
WS

_A
C_

27
]S

3
Bu

ck
et

all
ow

s’
RE

AD
_A

CP
’a

cc
es
s

3
3

[A
WS

_A
C_

28
]S

3
Bu

ck
et

all
ow

s’
WR

ITE
’a

cc
es
s

3
3

3
3

3
3

3
3

[A
WS

_A
C_

29
]S

3
Bu

ck
et

all
ow

s’
WR

ITE
_A

CP
’a

cc
es
s

3
3

3
3

[A
WS

_A
C_

30
]S

3
Bu

ck
et

all
ow

su
nk

no
wn

cro
ss

ac
co
un

ta
cc
es
s

3

Sim
ple

Em
ail

Se
rvi

ce
[A
WS

_A
C_

31
]S

im
ple

Em
ail

Se
rvi

ce
all
ow

su
nk

no
wn

cro
ss

ac
co
un

ta
cc
es
s

3

[A
WS

_A
C_

32
]S

im
ple

Em
ail

Se
rvi

ce
wi
th

pu
bli
ca

cc
es
s

3
3

Sim
ple

Qu
eu

eS
er
vic

e
[A
WS

_A
C_

33
]S

im
ple

Qu
eu

eS
er
vic

ea
llo
ws

un
kn

ow
n
cro

ss
ac
co
un

ta
cc
es
s

3
3

[A
WS

_A
C_

34
]S

im
ple

Qu
eu

eS
er
vic

ew
ith

pu
bli
ca

cc
es
s

3
3

3
3

3
3

3
3

3
3

IA
M

Ac
ce
ss

An
aly

ze
r

[A
WS

_A
C_

35
]I
AM

Ac
ce
ss

An
aly

ze
ri
sd

isa
ble

d
3

IA
M

Ac
ce
ss

Ke
y

[A
WS

_A
C_

36
]I
AM

Ac
ce
ss

Ke
yw

ith
sh

or
tr
ota

tio
n

3
3

3
3

3

[A
WS

_A
C_

37
]I
AM

Ac
ce
ss

Ke
yu

nu
se
d
for

ag
ive

n
tim

ef
ra
m
e

3
3

3
3

3

IA
M

EC
2
Ro

le
[A
WS

_A
C_

38
]E

C2
Ins

tan
ce

wi
th
ou

tI
AM

Ro
le

3
3

3
3

IA
M

Gr
ou

p
[A
WS

_A
C_

39
]I
AM

Gr
ou

p
wi
th

ad
m
in

pr
ivi
leg

es
3

3
3

3
3

[A
WS

_A
C_

40
]I
AM

Gr
ou

p
wi
th

inl
ine

po
lic
ies

3
3

3
3

[A
WS

_A
C_

41
]I
AM

Gr
ou

p
wi
th
ou

tu
se
rs

3
3

3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 24

Table 7: [AWS] Access Control Part II.
This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

St
ati

cA
na

lys
is

Dy
na

m
ic
An

aly
sis

An
sib

le
Cl
ou

dF
or
m
ati

on
Te
rra

for
m

KI
CS

CF
N_

NA
G

Ch
ec
ko
v

KI
CS

Ch
ec
ko
v

KI
CS

Te
rra

sc
an

TF
Se

c
Aq

ua
Cl
ou

d
Co

nfo
rm

ity
Cl
ou

dR
ep

or
ts

Pr
ow

ler
Sc

ou
tS
uit

e
IA
M

Pa
ss
wo

rd
Po

lic
y

[A
WS

_A
C_

42
]I
AM

Pa
ss
wo

rd
Po

lic
ya

llo
ws

th
er

eu
se

of
pa

ss
wo

rd
s

3
3

3
3

3
3

3
3

3
3

[A
WS

_A
C_

43
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
ex
pir

ati
on

dis
ab

led
3

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

44
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
hig

h
ex
pir

ati
on

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

45
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
m
ini
m
um

pa
ss
wo

rd
len

gth
too

sh
or
t

3
3

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

46
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
ou

tlo
we

rca
se

3
3

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

47
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
ou

tn
um

be
r

3
3

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

48
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
ou

ts
ym

bo
l

3
3

3
3

3
3

3
3

3
3

[A
WS

_A
C_

49
]I
AM

Pa
ss
wo

rd
Po

lic
yw

ith
ou

tu
pp

er
ca
se

3
3

3
3

3
3

3
3

3
3

3

IA
M

Po
lic
y

[A
WS

_A
C_

50
]I
AM

po
lic
ya

llo
ws

All
ow

+N
otA

cti
on

3
3

[A
WS

_A
C_

51
]I
AM

Po
lic
ya

tta
ch

ed
to

us
er

3
3

3
3

3
3

[A
WS

_A
C_

52
]I
AM

Po
lic
yw

ith
’*’

3
3

3
3

3
3

3

IA
M

Ro
le

[A
WS

_A
C_

53
]C

ro
ss
-A
cc
ou

nt
IA
M

As
su

m
eR

ole
Po

lic
yw

ith
ou

te
xte

rn
al

ID
an

d
MF

A
3

3
3

3

[A
WS

_A
C_

54
]I
AM

As
su

m
eR

ole
Po

lic
yw

ith
ou

tM
FA

3

[A
WS

_A
C_

55
]I
AM

Ro
le

all
ow

sa
llp

rin
cip

als
to

as
su

m
e

3
3

3
3

3
3

[A
WS

_A
C_

56
]I
AM

ro
le

no
tu

se
d
for

ag
ive

n
tim

ef
ra
m
e

3

[A
WS

_A
C_

57
]I
AM

Ro
le

wi
th
ou

tle
as
tp

riv
ile
ge
s

3
3

3
3

3
3

[A
WS

_A
C_

58
]I
AM

Su
pp

or
tR

ole
no

ta
cti
ve

3
3

3

[A
WS

_A
C_

59
]U

nt
ru
ste

d
cro

ss
-ac

co
un

tI
AM

ro
les

in
us

e
3

IA
M

Ro
ot

Ac
co
un

t
[A
WS

_A
C_

60
]I
AM

Ro
ot

Ac
co
un

th
as

ac
tiv
ek

ey
s

3
3

3
3

3
3

3
3

3

[A
WS

_A
C_

61
]I
AM

Ro
ot

Ac
co
un

th
as

ac
tiv
eX

.5
09

ce
rts

3
3

3

[A
WS

_A
C_

62
]I
AM

Ro
ot

Ac
co
un

tu
se
d
re
ce
nt
ly

3
3

3
3

[A
WS

_A
C_

63
]I
AM

Ro
ot

Ac
co
un

tw
ith

ou
th

ar
dw

ar
eM

FA
3

3
3

3
3

[A
WS

_A
C_

64
]I
AM

Ro
ot

Ac
co
un

tw
ith

ou
tM

FA
3

3
3

3
3

3
3

IA
M

SA
ML

Pr
ov
ide

r
[A
WS

_A
C_

65
]I
nv
ali
d
IA
M

Ide
nt
ity

Pr
ov
ide

ri
n
us

e
3

IA
M

Se
rve

rC
er
tifi

ca
te

[A
WS

_A
C_

66
]C

er
tifi

ca
te

us
es

aR
SA

ke
yw

ith
al

en
gth

eq
ua

lto
or

hig
he

rt
ha

n
25

6
by
tes

3

IA
M

Us
er

[A
WS

_A
C_

67
]I
AM

Us
er

ha
sb

ee
n
ina

cti
ve

for
al

on
gp

er
iod

of
tim

e
3

3

[A
WS

_A
C_

68
]I
AM

Us
er

na
m
ei

nv
ali
d

3

[A
WS

_A
C_

69
]I
AM

Us
er

no
tin

th
ec

ate
go

ry
gr
ou

p
3

3
3

3

[A
WS

_A
C_

70
]I
AM

Us
er

us
es

m
or
et

ha
n
on

ea
cc
es
sk

ey
3

3
3

3

[A
WS

_A
C_

71
]I
AM

Us
er

wi
th

ac
on

so
le

pa
ss
wo

rd
an

d
ac
ce
ss

ke
ys

3
3

3
3

[A
WS

_A
C_

72
]I
AM

Us
er

wi
th

ac
ce
ss

ke
ys

cre
ate

d
du

rin
gi

nit
ial

se
tu
p
an

d
no

tu
se
d

3
3

3
3

[A
WS

_A
C_

73
]I
AM

Us
er

wi
th

ad
m
in

pr
ivi
leg

es
3

3

[A
WS

_A
C_

74
]I
AM

Us
er

wi
th

AW
S
Co

ns
ole

ac
ce
ss

ha
ve

Mu
lti-
Fa

cto
rA

ut
he

nt
ica

tio
n
(M

FA
)d

isa
ble

d
3

3
3

[A
WS

_A
C_

75
]I
AM

Us
er

wi
th

Ca
na

ry
Ac

ce
ss

To
ke
n
in

us
e

3
3

[A
WS

_A
C_

76
]I
AM

Us
er

wi
th

po
lic
ies

3
3

3
3

3
3

3
3

[A
WS

_A
C_

77
]I
AM

Us
er

wi
th
ou

tM
ult

i-F
ac
tor

Au
th
en

tic
ati

on
(M

FA
)

3
3

3
3

3

[A
WS

_A
C_

78
]N

oI
AM

Us
er

cu
rre

nt
ly
us

ed
to

ac
ce
ss

to
th
eA

WS
ac
co
un

t
3

[A
WS

_A
C_

79
]T

oo
m
an

ya
dm

in
us

er
s

3
3

[A
WS

_A
C_

80
]U

na
pp

ro
ve
d
IA
M

Us
er

ex
ist
en

ce
3

[A
WS

_A
C_

81
]U

na
ut
ho

riz
ed

IA
M

Us
er

ed
its

IA
M

ac
ce
ss

po
lic
ies

3
3

[A
WS

_A
C_

82
]U

nu
se
d
IA
M

us
er

3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 25

Table 8: [AZURE] Access Control context.
This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

St
at
ic
An

al
ys
is

D
yn
am

ic
An

al
ys
is

An
si
bl
e

Te
rr
af
or
m

KI
CS

Ch
ec
ko
v

KI
CS

Te
rr
as
ca
n

Aq
ua

Cl
ou

d
Co

nf
or
m
ity

Sc
ou

tS
ui
te

Ac
tiv
e
D
ire

ct
or
y

[A
ZU

RE
_A

C_
01

]A
dd

in
g
Ga

lle
ry

Ap
ps

to
Ac

ce
ss

Pa
ne

ln
ot

re
st
ric

te
d

3

[A
ZU

RE
_A

C_
02

]A
pp

lic
at
io
n
Re

gi
st
ra
tio

n
fo
rn

on
-p
riv
ile
ge
d
us

er
s
no

tr
es
tri
ct
ed

3

[A
ZU

RE
_A

C_
03

]A
ut
he

nt
ic
at
io
n
re
co
nf
irm

at
io
n
di
sa
bl
ed

3

[A
ZU

RE
_A

C_
04

]D
ua

lI
de

nt
ifi
ca
tio

n
fo
rp

as
sw

or
d
re
se
td

is
ab

le
d

3

[A
ZU

RE
_A

C_
05

]G
ue

st
us

er
s
in

us
e

3
3

3
3

3

[A
ZU

RE
_A

C_
06

]G
ue

st
U
se
ri
nv
ita

tio
ns

no
tr
es
tri
ct
ed

3

[A
ZU

RE
_A

C_
07

]I
nv
ita

tio
ns

no
to

nl
y
to

ad
m
in
is
tra

to
rs

3

[A
ZU

RE
_A

C_
08

]M
ul
ti-
Fa

ct
or

Au
th
en

tic
at
io
n
fo
rp

riv
ile
ge
d
us

er
s
di
sa
bl
ed

3

[A
ZU

RE
_A

C_
09

]M
ul
ti-
Fa

ct
or

Au
th
en

tic
at
io
n
fo
rn

on
-p
riv

ile
ge
d
us

er
s
di
sa
bl
ed

3

[A
ZU

RE
_A

C_
10

]N
on

-A
dm

in
Ac

ce
ss

to
Ad

m
in
is
tra

tio
n
Po

rt
al

no
tr
es
tri
ct
ed

3

[A
ZU

RE
_A

C_
11

]N
ot

al
lo
w
on

ly
ad

m
in
is
tra

to
rs

to
m
an

ag
e
O
ffi
ce

36
5
gr
ou

ps
3

[A
ZU

RE
_A

C_
12

]N
ot

al
lo
w
on

ly
ad

m
in
is
tra

to
rs

to
cr
ea

te
se
cu

rit
y
gr
ou

ps
3

[A
ZU

RE
_A

C_
13

]O
ffi
ce

36
5
Gr
ou

p
Cr
ea

tio
n
no

tr
es
tri
ct
ed

on
ly
to

ad
m
in
is
tra

to
rs

3

[A
ZU

RE
_A

C_
14

]P
as
sw

or
d
w
ith

ou
tu

pp
er
ca
se

le
tte

r
3

[A
ZU

RE
_A

C_
15

]P
as
sw

or
d
w
ith

ou
tm

in
im

um
le
ng

th
3

[A
ZU

RE
_A

C_
16

]P
as
sw

or
d
w
ith

ou
tn

um
be

rs
3

[A
ZU

RE
_A

C_
17

]P
as
sw

or
d
w
ith

ou
ts

ym
bo

l
3

[A
ZU

RE
_A

C_
18

]P
as
sw

or
d
w
ith

ou
tu

pp
er
ca
se

le
tte

r
3

[A
ZU

RE
_A

C_
19

]R
eq

ui
re

M
FA

to
Jo
in

D
ev
ic
es

di
sa
bl
ed

3

[A
ZU

RE
_A

C_
20

]R
em

em
be

rin
g
M
ul
ti-
Fa

ct
or

Au
th
en

tic
at
io
n
en

ab
le
d

3

[A
ZU

RE
_A

C_
21

]R
ol
e
As

si
gn

m
en

tn
ot

lim
it
Gu

es
tU

se
rp

er
m
is
si
on

s
3

[A
ZU

RE
_A

C_
22

]R
ol
e
D
ef
in
iti
on

al
lo
w
s
cu

st
om

ro
le

cr
ea

tio
n

3
3

[A
ZU

RE
_A

C_
23

]S
el
f-S

er
vi
ce

gr
ou

p
m
an

ag
em

en
te

na
bl
ed

3

Ap
p
Se

rv
ic
e

[A
ZU

RE
_A

C_
24

]A
pp

Se
rv
ic
e
au

th
en

tic
at
io
n
di
sa
bl
ed

3
3

3
3

[A
ZU

RE
_A

C_
25

]A
pp

Se
rv
ic
e
w
eb

ap
pl
ic
at
io
ns

w
ith

ou
tc

lie
nt

ce
rti
fic
at
es

3
3

3
3

[A
ZU

RE
_A

C_
26

]A
pp

Se
rv
ic
e
w
ith

ou
tm

an
ag

ed
se
rv
ic
e
id
en

tit
y

3
3

3
3

Bl
ob

Se
rv
ic
e

[A
ZU

RE
_A

C_
27

]B
lo
b
co
nt
ai
ne

ra
llo
w
s
pu

bl
ic
ac
ce
ss

3
3

3
3

3
3

3

Co
nt
ai
ne

rR
eg

is
try

[A
ZU

RE
_A

C_
28

]C
on

ta
in
er

re
gi
st
ry

w
ith

ad
m
in

en
ab

le
d

3
3

3
3

Fi
le

Se
rv
ic
e

[A
ZU

RE
_A

C_
29

]F
ile

se
rv
ic
e
al
lo
w
s
al
lA

CL
pe

rm
is
si
on

s
3

Ku
be

rn
et
es

Se
rv
ic
e

[A
ZU

RE
_A

C_
30

]K
ub

er
ne

te
s
cl
us

te
rw

ith
ou

tR
BA

C
3

3
3

3
3

Po
st
gr
eS

Q
L
Se

rv
er

[A
ZU

RE
_A

C_
31

]P
os
tg
re
SQ

L
Au

th
en

tic
at
io
n
w
ith

ou
tA

zu
re

Ac
tiv
e
D
ire

ct
or
y
ad

m
in

3

Q
ue

ue
Se

rv
ic
e

[A
ZU

RE
_A

C_
32

]Q
ue

ue
Se

rv
ic
e
al
lo
w
s
al
lA

CL
pe

rm
is
si
on

s
3

SQ
L
Se

rv
er

[A
ZU

RE
_A

C_
33

]S
Q
L
Se

rv
er

ha
s
em

ai
la

cc
ou

nt
ad

m
in
s
di
sa
bl
ed

3

[A
ZU

RE
_A

C_
34

]S
Q
L
Se

rv
er

al
lo
w
s
pu

bl
ic
ac
ce
ss

3

[A
ZU

RE
_A

C_
35

]S
Q
L
Se

rv
er

w
ith

ou
tA

zu
re

Ac
tiv
e
D
ire

ct
or
y
ad

m
in

3
3

St
or
ag

e
Ac

co
un

t
[A
ZU

RE
_A

C_
36

]A
ct
iv
ity

Lo
g
Co

nt
ai
ne

rh
av
e
pu

bl
ic
re
ad

ac
ce
ss

3
3

3
3

3
3

[A
ZU

RE
_A

C_
37

]I
de

nt
ity
-b
as
ed

D
ire

ct
or
y
Se

rv
ic
e
fo
rA

zu
re

Fi
le

Au
th
en

tic
at
io
n
is
en

ab
le
d
fo
ra

ll
Az

ur
e
Fi
le
s

3

[A
ZU

RE
_A

C_
38

]T
ru
st
ed

M
ic
ro
so
ft
Se

rv
ic
es

ac
ce
ss

di
sa
bl
ed

on
st
or
ag

e
ac
co
un

t
3

3
3

3
3

3

Ta
bl
e
Se

rv
ic
e

[A
ZU

RE
_A

C_
39

]T
ab

le
Se

rv
ic
e
al
lo
w
s
al
lA

CL
pe

rm
is
si
on

s
3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 26

Table 9: [GCP] Access Control context.
This table can embrace other security queries categories than Access Control that are considered relevant for the study context.

St
at
ic
An

al
ys
is

Dy
na

m
ic
An

al
ys
is

An
sib

le
Te
rra

fo
rm

KI
CS

Ch
ec
ko
v

KI
CS

Te
rra

sc
an

Aq
ua

Cl
ou

d
Co

nf
or
m
ity

Sc
ou

tS
ui
te

Bi
gQ

ue
ry

[G
CP

_A
C_

01
]B

ig
Qu

er
y
Da

ta
se
ti
s
an

on
ym

ou
sly

or
pu

bl
ic
ly
ac
ce
ss
ib
le

3
3

3
3

3

Cl
ou

d
SQ

L
[G
CP

_A
C_

02
]C

lo
ud

M
yS

QL
da

ta
ba

se
in
st
an

ce
ha

s
”C

on
ta
in
ed

Da
ta
ba

se
Au

th
en

tic
at
io
n”

fla
g
di
sa
bl
ed

3
3

[G
CP

_A
C_

03
]C

lo
ud

M
yS

QL
da

ta
ba

se
in
st
an

ce
ha

s
”C

ro
ss

DB
Ow

ne
rs
hi
p
Ch

ai
ni
ng

”
fla

g
di
sa
bl
ed

3
3

[G
CP

_A
C_

04
]C

lo
ud

M
yS

QL
da

ta
ba

se
in
st
an

ce
is
pu

bl
ic
ly
ac
ce
ss
ib
le

3
3

3
3

3
3

3

[G
CP

_A
C_

05
]C

lo
ud

M
yS

QL
da

ta
ba

se
in
st
an

ce
wi
th

ad
m
in
is
tra

tiv
e
us

er
wi
th
ou

tp
as
sw

or
d

3

Co
m
pu

te
En

gi
ne

[G
CP

_A
C_

06
]G

CP
Pr
oj
ec
ts

wi
th
ou

tO
S
Lo

gi
n

3
3

3
3

3
3

[G
CP

_A
C_

07
]V

M
in
st
an

ce
s
as
so
ci
at
ed

wi
th

th
e
de

fa
ul
tG

CP
se
rv
ic
e
ac
co
un

t
3

3
3

3
3

3

[G
CP

_A
C_

08
]V

M
in
st
an

ce
s
wi
th
ou

tS
hi
el
de

d
VM

se
cu

rit
y
fe
at
ur
e

3
3

3
3

3

Cl
ou

d
St
or
ag

e
Bu

ck
et

[G
CP

_A
C_

09
]C

lo
ud

St
or
ag

e
Bu

ck
et

is
an

on
ym

ou
sly

or
pu

bl
ic
ly
ac
ce
ss
ib
le

3
3

3
3

[G
CP

_A
C_

10
]C

lo
ud

St
or
ag

e
Bu

ck
et

wi
th
ou

tu
ni
fo
rm

bu
ck
et
-le
ve
la

cc
es
s

3
3

3
3

IA
M

[G
CP

_A
C_

11
]A

dm
in

wi
th
ou

ts
ec
ur
ity

ke
y
en

fo
rc
em

en
t

3

[G
CP

_A
C_

12
]G

m
ai
la

cc
ou

nt
s
in

us
e

3
3

3
3

3

[G
CP

_A
C_

13
]I
AM

Po
lic
y
W
ith

Im
pr
op

er
ly
Pr
ivi
le
ge
s

3
3

[G
CP

_A
C_

14
]S

er
vic

e
ac
co
un

tk
ey

no
tm

an
ag

ed
by

Go
og

le
3

[G
CP

_A
C_

15
]U

se
rm

an
ag

ed
se
rv
ic
e
ac
co
un

tk
ey
s
in

us
e

3
3

[G
CP

_A
C_

16
]U

se
rw

ith
IA
M

ro
le

3

[G
CP

_A
C_

17
]U

se
rw

ith
KM

S
ad

m
in

an
d
cr
yp
to

ke
y
ro
le
s

3

[G
CP

_A
C_

18
]U

se
rw

ith
se
rv
ic
e
ac
co
un

tr
ol
e
an

d/
or

se
rv
ic
e
ad

m
in

ro
le

3
3

3
3

3
3

3

[G
CP

_A
C_

19
]U

se
rw

ith
se
rv
ic
e
ac
co
un

tu
se
ro

rs
er
vic

e
ac
co
un

tt
ok
en

cr
ea

to
rr
ol
es

3
3

3
3

3

[G
CP

_A
C_

20
]U

se
rw

ith
ou

tM
FA

3

KM
S

[G
CP

_A
C_

21
]K

M
S
cr
yp
to

ke
y
is
pu

bl
ic
ly
ac
ce
ss
ib
le

3

[G
CP

_A
C_

22
]K

M
S
cr
yp
to

ke
y
wi
th
ou

tr
ot
at
io
n
pe

rio
d

3
3

3
3

3
3

Ku
be

rn
et
es

[G
CP

_A
C_

23
]K

ub
er
ne

te
s
en

gi
ne

cl
us

te
rs

us
in
g
th
e
de

fa
ul
ts

er
vic

e
ac
co
un

t
3

3

[G
CP

_A
C_

24
]K

ub
er
ne

te
s
en

gi
ne

cl
us

te
rs

wi
th

ba
sic

au
th
en

tic
at
io
n
di
sa
bl
ed

3
3

3
3

3
3

[G
CP

_A
C_

25
]K

ub
er
ne

te
s
en

gi
ne

cl
us

te
rs

wi
th

cl
ie
nt

ce
rti
fic
at
e
di
sa
bl
ed

3
3

3
3

3

[G
CP

_A
C_

26
]K

ub
er
ne

te
s
en

gi
ne

cl
us

te
rs

wi
th

le
ga

cy
au

th
or
iza

tio
n
di
sa
bl
ed

3
3

3
3

3
3

[G
CP

_A
C_

27
]K

ub
er
ne

te
s
en

gi
ne

cl
us

te
rs

wi
th

m
as
te
ra

ut
he

nt
ic
at
io
n
di
sa
bl
ed

3
3

3
3

3
3

3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 27

Table 10: [AWS] Network Security context - Part I.

St
at
ic
An

al
ys
is

Dy
na

m
ic
An

al
ys
is

An
sib

le
Cl
ou

dF
or
m
at
io
n

Te
rra

fo
rm

KI
CS

CF
N_

NA
G

Ch
ec
ko
v

KI
CS

Ch
ec
ko
v

KI
CS

Te
rra

sc
an

TF
Se

c
Aq

ua
Cl
ou

d
Co

nf
or
m
ity

Cl
ou

dR
ep

or
ts

Pr
ow

ler
Sc

ou
tS
ui
te

Au
to

Sc
al
in
g

[A
W
S_

NS
_0

1]
La

un
ch

Co
nf
igu

ra
tio

n
wi
th
ou

ta
ct
ive

Se
cu

rit
y
Gr
ou

ps
3

3

Cl
ou

dF
ro
nt

[A
W
S_

NS
_0

2]
Cl
ou

df
ro
nt

Co
nt
en

tD
ist
rib

ut
io
n
Ne

tw
or
k
no

ti
n
us

e
3

3
3

3

[A
W
S_

NS
_0

3]
Cl
ou

dF
ro
nt

wi
th
ou

tW
AF

3
3

3
3

3
3

3
3

3

EC
2

[A
W
S_

NS
_0

4]
Co

m
m
un

ica
tio

n
be

tw
ee

n
pu

bl
ic
an

d
pr
iva

te
VP

C
tie

rs
en

ab
led

3

[A
W
S_

NS
_0

5]
De

fa
ul
tE

C2
se
cu

rit
y
gr
ou

p
ar
e
in

us
e

3
3

3

[A
W
S_

NS
_0

6]
De

fa
ul
tE

C2
se
cu

rit
y
gr
ou

ps
do

no
tr
es
tri
ct

al
lt
ra
ffi
c

3
3

3
3

3
3

[A
W
S_

NS
_0

7]
De

fa
ul
tV

PC
in

us
e
fo
rE

C2
in
st
an

ce
3

3
3

[A
W
S_

NS
_0

8]
EC

2
in
st
an

ce
is
de

pl
oy
ed

wi
th
in

th
e
AW

S
EC

2-
VP

C
pl
at
fo
rm

in
st
ea

d
of

EC
2-
Cl
as
sic

pl
at
fo
rm

3
3

[A
W
S_

NS
_0

9]
EC

2
in
st
an

ce
is
ru
nn

in
g
in

pu
bl
ic
su

bn
et

3
3

[A
W
S_

NS
_1

0]
EC

2
in
st
an

ce
wi
th

pu
bl
ic
IP

3
3

3
3

3
3

[A
W
S_

NS
_1

1]
EC

2
se
cu

rit
y
gr
ou

p
wi
th

op
en

ra
ng

e
of

po
rts

to
al
low

in
co
m
in
g
tra

ffi
c

3
3

3

[A
W
S_

NS
_1

2]
Op

en
TC

P
an

d
UD

P
po

rt
53

(D
NS

)
3

3
3

3

[A
W
S_

NS
_1

3]
Op

en
TC

P
po

rt
13

5
(R
PC

)
3

3
3

3
3

[A
W
S_

NS
_1

4]
Op

en
TC

P
po

rt
14

33
or

UD
P
po

rt
14

34
(M

icr
os
of
tS

QL
Se

rv
er
)

3
3

3
3

3
3

[A
W
S_

NS
_1

5]
Op

en
TC

P
po

rt
15

21
(O
ra
cle

Da
ta
ba

se
)

3
3

3
3

3
3

[A
W
S_

NS
_1

6]
Op

en
TC

P
po

rt
15

22
(O
ra
cle

Au
to

Da
ta

W
ar
eh

ou
se
)

3

[A
W
S_

NS
_1

7]
Op

en
TC

P
po

rt
20

an
d
21

(F
TP

)
3

3

[A
W
S_

NS
_1

8]
Op

en
TC

P
po

rt
22

(S
SH

)
3

3
3

3
3

3
3

3

[A
W
S_

NS
_1

9]
Op

en
TC

P
po

rt
23

(T
eln

et
)

3
3

3
3

[A
W
S_

NS
_2

0]
Op

en
TC

P
po

rt
23

75
or

23
76

(D
oc
ke
r)

3

[A
W
S_

NS
_2

1]
Op

en
TC

P
po

rt
25

(S
M
TP

)
3

3
3

3

[A
W
S_

NS
_2

2]
Op

en
TC

P
po

rt
27

01
7
(M

on
go

DB
)

3
3

3
3

[A
W
S_

NS
_2

3]
Op

en
TC

P
po

rt
33

06
(M

yS
QL

Da
ta
ba

se
)

3
3

3
3

3
3

3

[A
W
S_

NS
_2

4]
Op

en
TC

P
po

rt
33

89
(R
DP

)
3

3
3

3
3

3
3

3

[A
W
S_

NS
_2

5]
Op

en
TC

P
po

rt
44

3
(H

TT
PS

)
3

[A
W
S_

NS
_2

6]
Op

en
TC

P
po

rt
44

5
(W

in
do

ws
SM

B
ov
er

TC
P)

3
3

3

[A
W
S_

NS
_2

7]
Op

en
TC

P
po

rt
50

07
0
an

d
50

47
0
(H

ad
oo

p/
HD

FS
Na

m
eN

od
e
W
eb

UI
se
rv
ice

)
3

[A
W
S_

NS
_2

8]
Op

en
TC

P
po

rt
54

32
(P
os
tg
re
SQ

L
Da

ta
ba

se
Se

rv
er
)

3
3

3
3

3
3

3

[A
W
S_

NS
_2

9]
Op

en
TC

P
po

rt
55

00
(V
NC

Cl
ien

t)
3

3
3

[A
W
S_

NS
_3

0]
Op

en
TC

P
po

rt
56

01
(K
ib
an

a)
3

3

[A
W
S_

NS
_3

1]
Op

en
TC

P
po

rt
59

00
(V
NC

Se
rv
er
)

3
3

3

[A
W
S_

NS
_3

2]
Op

en
TC

P
po

rt
63

79
(R
ed

is)
3

3
3

3

[A
W
S_

NS
_3

3]
Op

en
TC

P
po

rt
61

62
1,

71
99

,9
16

0
or

88
88

(C
as
sa
nd

ra
)

3
3

3
3

[A
W
S_

NS
_3

4]
Op

en
TC

P
po

rt
80

(H
TT

P)
3

3
3

3
3

[A
W
S_

NS
_3

5]
Op

en
TC

P
po

rt
80

20
(H

DF
S
Na

m
eN

od
e
m
et
ad

at
a
se
rv
ice

)
3

[A
W
S_

NS
_3

6]
Op

en
TC

P
po

rts
45

05
or

45
06

(S
al
tm

as
te
r)

3
3

3
3

[A
W
S_

NS
_3

7]
Op

en
TC

P
po

rt
92

00
(E
la
st
ics

ea
rc
h)

3
3

3
3

3

[A
W
S_

NS
_3

8]
Op

en
TC

P/
UD

P
po

rt
11

21
1
(M

em
ca
ch

ed
)

3
3

3
3

[A
W
S_

NS
_3

9]
Op

en
UD

P
po

rt
13

7
or

13
8
(N
et
BI
OS

)
3

3
3

3
3

[A
W
S_

NS
_4

0]
Op

en
UD

P
po

rt
44

5
(C
IF
S)

3
3

3
3

[A
W
S_

NS
_4

1]
Se

cu
rit
y
gr
ou

p
un

us
ed

3
3

3
3

[A
W
S_

NS
_4

2]
Un

re
st
ric

te
d
in
gr
es
s

3
3

3
3

3
3

3
3

3
3

3

[A
W
S_

NS
_4

3]
Un

re
st
ric

te
d
in
gr
es
s
ac
ce
ss

fro
m

RF
C-
19

18
CI
DR

s
3

3
3

[A
W
S_

NS
_4

4]
Un

re
st
ric

te
d
in
gr
es
s
ac
ce
ss

to
un

co
m
m
on

TC
P/

UD
P
po

rts
3

3
3

3
3

[A
W
S_

NS
_4

5]
Un

re
st
ric

te
d
in
gr
es
s
ac
ce
ss

us
in
g
In
te
rn
et

Co
nt
ro
lM

es
sa
ge

Pr
ot
oc
ol

(IC
M
P)

3
3

[A
W
S_

NS
_4

6]
Un

re
st
ric

te
d
ou

tb
ou

nd
/e

gr
es
s
ac
ce
ss

3
3

3
3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 28

Table 11: [AWS] Network Security - Part II.

Sta
tic

An
aly

sis
Dy

na
mi

cA
na

lys
is

An
sib

le
Clo

ud
Fo

rm
ati

on
Ter

raf
orm

KIC
S

CF
N_

NA
G

Ch
eck

ov
KIC

S
Ch

eck
ov

KIC
S

Ter
ras

ca
n

TF
Se

c
Aq

ua
Clo

ud
Co

nfo
rm

ity
Clo

ud
Re

po
rts

Pro
wle

r
Sc

ou
tSu

ite
Ela

stic
Ku

be
rne

tes
Se

rvi
ce

[AW
S_

NS
_4

7]
EK

Sc
lus

ter
en

dp
oin

ta
cce

ss
isp

ub
lic

3
3

3
3

3
3

3

Lo
ad

Ba
lan

cer
[AW

S_
NS

_4
8]

Lo
ad

Ba
lan

cer
wit

ho
ut

We
bA

pp
lica

tio
nF

ire
wa

ll
3

3
3

3
3

EM
R

[AW
S_

NS
_4

9]
EM

Rc
lus

ter
sa

re
no

tla
un

ch
ed

in
aV

irtu
al

Pri
vat

eC
lou

d
3

Ela
stiC

ach
e

[AW
S_

NS
_5

0]
Ela

stiC
ach

ec
lus

ter
sa

re
no

td
ep

loy
ed

int
oa

Vir
tua

lP
riv
ate

Clo
ud

3

[AW
S_

NS
_5

1]
Ela

stiC
ach

ec
lus

ter
sa

re
us

ing
the

de
fau

ltp
ort

ss
et

for
Re

dis
an

dM
em

ca
ch

ed
ca
ch

ee
ng

ine
s

3

Ela
stic

sea
rch

[AW
S_

NS
_5

2]
Ela

stic
sea

rch
do

ma
ins

are
no

ta
cce

ssi
ble

fro
m

aV
irtu

al
Pri

vat
eC

lou
d

3
3

3
3

[AW
S_

NS
_5

3]
Ela

stic
sea

rch
isn

ot
ac
ces

sib
le

on
lyf

rom
saf

elis
ted

IP
ad

dre
sse

s
3

La
mb

da
[AW

S_
NS

_5
4]

La
mb

da
fun

cti
on

sa
re

no
tc

on
fig

ure
dt

oa
cce

ss
res

ou
rce

sin
aV

irtu
al

Pri
vat

eC
lou

d
3

3
3

3
3

MQ
[AW

S_
NS

_5
5]

MQ
bro

ker
sa

re
no

tu
sin

gt
he

ne
two

rk
of

bro
ker

sc
on

fig
ura

tio
n

3

Ne
two

rk
Fir

ew
all

[AW
S_

NS
_5

6]
VP

Cs
are

no
tu

sin
gA

WS
Ne

two
rk

Fir
ew

all
3

Re
lat

ion
al

Da
tab

ase
Se

rvi
ce

[AW
S_

NS
_5

7]
RD

Sd
ata

ba
se

ins
tan

ce
isa

sso
cia

ted
wit

hp
ub

lic
su

bn
et

3

[AW
S_

NS
_5

8]
RD

Sd
ata

ba
se

ins
tan

ce
isu

sin
gt

he
de

fau
ltp

ort
s

3

[AW
S_

NS
_5

9]
RD

Ss
ecu

rity
gro

up
allo

ws
all

IP
ad

res
ses

3
3

Re
ds
hif

t
[AW

S_
NS

_6
0]

Re
ds
hif

tc
lus

ter
isn

ot
lau

nc
he

dw
ith

in
aV

irtu
al

Pri
vat

eC
lou

d
3

3
3

[AW
S_

NS
_6

1]
Re

ds
hif

tc
lus

ter
isu

sin
gp

ort
54

39
(de

fau
ltp

ort
)fo

rd
ata

ba
se

ac
ces

s
3

[AW
S_

NS
_6

2]
Re

ds
hif

ts
ecu

rity
gro

up
allo

ws
all

tra
ffic

3
3

Ro
ute

53
[AW

S_
NS

_6
3]

Do
ma

in
na

me
sw

ith
ou

tT
ran

sfe
rL

ock
3

3
3

3

[AW
S_

NS
_6

4]
Ro

ute
53

DN
Ss

erv
ice

isn
ot

in
us

e
3

[AW
S_

NS
_6

5]
Ro

ute
53

do
ma

ins
ha

sP
riv
ac
yP

rot
ect

ion
dis

ab
led

3

[AW
S_

NS
_6

6]
Ro

ute
53

do
ma

ins
na

me
sh

as
exp

ire
d

3
3

3

[AW
S_

NS
_6

7]
Ro

ute
53

ho
ste

dz
on

es
wit

hd
an

glin
gD

NS
rec

ord
s

3

[AW
S_

NS
_6

8]
Ro

ute
53

ser
vic

ed
oe

sn
ot

au
tom

ati
ca
lly

ren
ew

do
ma

in
na

me
s

3
3

3

[AW
S_

NS
_6

9]
Se

nd
er

Po
licy

Fra
me

wo
rk

isn
ot

us
ed

3

[AW
S_

NS
_7

0]
Se

nd
er

Po
licy

Fra
me

wo
rk

rec
ord

un
de

fin
ed

for
MX

DN
Sr

eco
rd

3

Sim
ple

Em
ail

Se
rvi

ce
[AW

S_
NS

_7
1]

SE
Sw

ith
ou

tD
KIM

sig
nin

g
3

3
3

Sa
ge
Ma

ker
[AW

S_
NS

_7
2]

Sa
ge
Ma

ker
wit

h’
Dir

ect
Int

ern
et

Ac
ces

s’
en

ab
led

3
3

3
3

3

[AW
S_

NS
_7

3]
Sa

ge
Ma

ker
no

teb
oo

ki
ns

tan
ces

are
no

tru
nn

ing
ins

ide
aV

irtu
al

Pri
vat

eC
lou

d
3

3
3

Sh
ield

[AW
S_

NS
_7

4]
Sh

ield
Ad

van
ced

no
tin

us
e

3
3

Tra
ns

fer
[AW

S_
NS

_7
5]

Tra
ns

fer
for

SF
TP

ser
ver

sa
re

no
tu

sin
gA

WS
Pri

vat
eL

ink
3

3
3

Vir
tua

lP
riv
ate

Clo
ud

[AW
S_

NS
_7

6]
Ne

two
rk

AC
La

llow
sin

bo
un

d/
ing

res
st

raf
fic

to
po

rt2
2

3
3

3

[AW
S_

NS
_7

7]
Ne

two
rk

AC
La

llow
sin

bo
un

d/
ing

res
st

raf
fic

to
po

rt3
38

9
3

3
3

[AW
S_

NS
_7

8]
Ne

two
rk

AC
La

llow
sin

bo
un

d/
ing

res
st

raf
fic

to
all

po
rts

3
3

3
3

3

[AW
S_

NS
_7

9]
Ne

two
rk

AC
La

llow
so

utb
ou

nd
/e

gre
ss

tra
ffic

to
all

po
rts

3
3

3
3

[AW
S_

NS
_8

0]
Ne

two
rk

AC
LD

EN
Yr

ule
sa

re
no

te
ffe

cti
ve

wit
hin

the
VP

Cc
on

fig
ura

tio
n

3
3

3

[AW
S_

NS
_8

1]
Vir

tua
lP

riv
ate

Ne
two

rk
(VP

N)
tun

ne
lsi

sn
ot

UP
3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 29

Table 12: [AZURE] Network Security.

St
ati

cA
na

lys
is

Dy
na

m
ic
An

aly
sis

An
sib

le
Te
rra

for
m

KI
CS

Ch
ec
ko
v

KI
CS

Te
rra

sc
an

Aq
ua

Cl
ou

dC
on

for
m
ity

Sc
ou

tS
uit

e
Co

sm
os

DB
[A
ZU

RE
_N

S_
01

]C
os
m
os

DB
do

es
no

td
en

yp
ub

lic
ac
ce
ss

3
3

Ne
tw
or
kS

ec
ur
ity

Gr
ou

ps
[A
ZU

RE
_N

S_
02

]N
etw

or
kS

ec
ur
ity

Gr
ou

pe
xp
os
ea

llp
or
ts

to
the

pu
bli
c

3
3

3
3

[A
ZU

RE
_N

S_
03

]N
etw

or
kW

atc
he

rd
isa

ble
d

3
3

3
3

3

[A
ZU

RE
_N

S_
04

]O
pe

nT
CP

an
dU

DP
po

rt
53

(D
NS

)
3

3
3

3

[A
ZU

RE
_N

S_
05

]O
pe

nT
CP

po
rt
13

5
(R
PC

)
3

3
3

3

[A
ZU

RE
_N

S_
06

]O
pe

nT
CP

po
rt
14

33
or

UD
P
po

rt
14

34
(M

icr
os
oft

SQ
LS

er
ve
r)

3
3

3
3

3

[A
ZU

RE
_N

S_
07

]O
pe

nT
CP

po
rt
15

21
(O
ra
cle

Da
tab

as
e)

3
3

3
3

[A
ZU

RE
_N

S_
08

]O
pe

nT
CP

po
rt
15

22
(O
ra
cle

Au
to

Da
ta

Wa
reh

ou
se
)

3

[A
ZU

RE
_N

S_
09

]O
pe

nT
CP

po
rt
20

an
d2

1
(FT

P)
3

3

[A
ZU

RE
_N

S_
10

]O
pe

nT
CP

po
rt
22

(S
SH

)
3

3
3

3
3

3

[A
ZU

RE
_N

S_
11

]O
pe

nT
CP

po
rt
23

(Te
lne

t)
3

3
3

3

[A
ZU

RE
_N

S_
12

]O
pe

nT
CP

po
rt
23

75
or

23
76

(D
oc
ke
r)

3

[A
ZU

RE
_N

S_
13

]O
pe

nT
CP

po
rt
25

(S
MT

P)
3

3
3

3

[A
ZU

RE
_N

S_
14

]O
pe

nT
CP

po
rt
33

06
(M

yS
QL

Da
tab

as
e)

3
3

3
3

3

[A
ZU

RE
_N

S_
15

]O
pe

nT
CP

po
rt
33

89
(R
DP

)
3

3
3

3
3

3

[A
ZU

RE
_N

S_
16

]O
pe

nT
CP

po
rt
44

5
(W

ind
ow

sS
MB

ov
er

TC
P)

3
3

3
3

[A
ZU

RE
_N

S_
17

]O
pe

nT
CP

po
rt
50

07
0
an

d5
04

70
(H

ad
oo

p/
HD

FS
Na

m
eN

od
eW

eb
UI

se
rvi

ce
)

3

[A
ZU

RE
_N

S_
18

]O
pe

nT
CP

po
rt
54

32
(P
os
tgr

eS
QL

Da
tab

as
eS

er
ve
r)

3
3

3
3

3

[A
ZU

RE
_N

S_
19

]O
pe

nT
CP

po
rt
55

00
(V
NC

Cl
ien

t)
3

3
3

3

[A
ZU

RE
_N

S_
20

]O
pe

nT
CP

po
rt
56

01
(K
iba

na
)

3

[A
ZU

RE
_N

S_
21

]O
pe

nT
CP

po
rt
59

00
(V
NC

Se
rve

r)
3

3
3

3

[A
ZU

RE
_N

S_
22

]O
pe

nT
CP

po
rt
80

20
(H

DF
S
Na

m
eN

od
em

eta
da

ta
se
rvi

ce
)

3

[A
ZU

RE
_N

S_
23

]O
pe

nT
CP

po
rts

45
05

or
45

06
(S
alt

m
as
ter

)
3

3
3

3

[A
ZU

RE
_N

S_
24

]O
pe

nU
DP

po
rt
13

7
or

13
8
(N
etB

IO
S)

3
3

3
3

[A
ZU

RE
_N

S_
25

]O
pe

nU
DP

po
rt
44

5
(C
IFS

)
3

3

SQ
L

[A
ZU

RE
_N

S_
26

]S
QL

Se
rve

ra
llo
ws

ing
res

sf
rom

0.
0.
0.
0/

0
3

3
3

3
3

3

[A
ZU

RE
_N

S_
27

]S
QL

Se
rve

ri
sp

ub
lic
ly
ac
ce
ss
ibl
e

3
3

3

Sto
ra
ge

Ac
co
un

ts
[A
ZU

RE
_N

S_
28

]S
tor

ag
eA

cc
ou

nt
is
no

tr
es
tri
cte

dt
ok

no
wn

ne
tw
or
ks

3
3

3
3

3

Vir
tua

lN
etw

or
ks

[A
ZU

RE
_N

S_
29

]V
irt
ua

lN
etw

or
kw

ith
DD

oS
sta

nd
ard

pr
ote

cti
on

dis
ab

led
3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 30

Table 13: [GCP] Network Security context.

S
ta
ti
c
A
n
a
ly
si
s

D
yn
a
m
ic
A
n
a
ly
si
s

A
n
si
b
le

Te
rr
af
or
m

K
IC
S

C
h
ec
ko
v

K
IC
S

Te
rr
as
ca
n

A
qu

a
C
lo
u
d
C
on

fo
rm

ity
S
co
u
tS
u
ite

C
lo
u
d
S
Q
L

[G
C
P
_
N
S
_
01

]
C
lo
u
d
S
Q
L
d
at
ab

as
e
in
st
an

ce
h
as

p
u
b
lic

IP
ad

d
re
ss
es

3
3

[G
C
P
_
N
S
_
0
2
]
C
lo
u
d
S
Q
L
d
at
ab

as
e
in
st
an

ce
is
w
id
e
op

en
to

th
e
In
te
rn
et

3
3

3
3

3
3

C
om

p
u
te

E
n
gi
n
e

[G
C
P
_
N
S
_
0
3
]
V
M

in
st
an

ce
h
as

”B
lo
ck

P
ro
je
ct
-w
id
e
S
S
H
ke
ys
”
d
is
ab

le
d

3
3

3
3

3

[G
C
P
_
N
S
_
0
4
]
V
M

in
st
an

ce
h
as

”E
n
ab

le
co
n
n
ec
tin

g
to

se
ri
al

p
or
ts
”
en

ab
le
d

3
3

3
3

3
3

[G
C
P
_
N
S
_
0
5
]
V
M

in
st
an

ce
h
as

p
u
b
lic

IP
ad

d
re
ss
es

3
3

3

[G
C
P
_
N
S
_
0
6
]
V
M

in
st
an

ce
is
u
si
n
g
a
d
ef
au

lt
fir
ew

al
lr
u
le

3

[G
C
P
_
N
S
_
0
7
]
V
M

in
st
an

ce
is
u
si
n
g
a
fir
ew

al
lr
u
le

th
at

al
lo
w
s
al
lp

or
ts

3

[G
C
P
_
N
S
_
0
8
]
V
M

in
st
an

ce
is
u
si
n
g
a
fir
ew

al
lr
u
le

th
at

u
se
s
p
or
t
ra
n
ge
s

3

[G
C
P
_
N
S
_
0
9
]
V
M

in
st
an

ce
la
u
n
ch

ed
w
ith

”S
h
ie
ld
ed

V
M
”
d
is
ab

le
d

3
3

3
3

3

[G
C
P
_
N
S
_
10

]
V
M

in
st
an

ce
w
ith

IP
Fo

rw
ar
d
in
g
en

ab
le
d

3
3

3
3

3
3

D
N
S

[G
C
P
_
N
S
_
11

]
D
N
S
S
ec
u
ri
ty

is
d
is
ab

le
d

3
3

3
3

3

K
u
b
er
n
et
es

E
n
gi
n
e

[G
C
P
_
N
S
_
1
2
]
K
u
b
er
n
et
es

E
n
gi
n
e
cl
u
st
er

h
as

al
ia
s
IP

ra
n
ge
s
d
is
ab

le
d

3
3

3
3

3

[G
C
P
_
N
S
_
13

]
K
u
b
er
n
et
es

E
n
gi
n
e
cl
u
st
er

w
ith

p
ri
va
te

cl
u
st
er

d
is
ab

le
d

3
3

3
3

3

[G
C
P
_
N
S
_
14

]
K
u
b
er
n
et
es

E
n
gi
n
e
cl
u
st
er

w
ith

ou
t
n
et
w
or
k
p
ol
ic
y
en

ab
le
d

3
3

3
3

3
3

[G
C
P
_
N
S
_
15

]
K
u
b
er
n
et
es

E
n
gi
n
e
cl
u
st
er

w
ith

ou
t
p
ri
va
te

en
d
p
oi
n
t

3
3

3

N
et
w
or
k

[G
C
P
_
N
S
_
16

]
D
ef
au

lt
n
et
w
or
k
in

u
se

3
3

3

[G
C
P
_
N
S
_
17

]
O
p
en

TC
P
an

d
U
D
P
p
or
t
5
3
(D
N
S
)

3
3

[G
C
P
_
N
S
_
18

]
O
p
en

TC
P
p
or
t
13

5
(R
P
C
)

3
3

[G
C
P
_
N
S
_
19

]
O
p
en

TC
P
p
or
t
14

3
3
or

U
D
P
p
or
t
14

3
4
(M

ic
ro
so
ft
S
Q
L
S
er
ve
r)

3
3

[G
C
P
_
N
S
_
2
0
]
O
p
en

TC
P
p
or
t
15

21
(O
ra
cl
e
D
at
ab

as
e)

3
3

[G
C
P
_
N
S
_
21

]
O
p
en

TC
P
p
or
t
15

2
2
(O
ra
cl
e
A
u
to

D
at
a
W
ar
eh

ou
se
)

3
3

[G
C
P
_
N
S
_
2
2
]
O
p
en

TC
P
p
or
t
2
0
an

d
21

(F
TP

)
3

3

[G
C
P
_
N
S
_
2
3
]
O
p
en

TC
P
p
or
t
2
2
(S
S
H
)

3
3

3
3

3

[G
C
P
_
N
S
_
24

]
O
p
en

TC
P
p
or
t
2
3
(T
el
n
et
)

3

[G
C
P
_
N
S
_
2
5
]
O
p
en

TC
P
p
or
t
2
3
75

or
2
3
76

(D
oc
ke
r)

3
3

[G
C
P
_
N
S
_
2
6
]
O
p
en

TC
P
p
or
t
2
5
(S
M
TP

)
3

3

[G
C
P
_
N
S
_
2
7
]
O
p
en

TC
P
p
or
t
2
7
01

7
(M

on
go

D
B
)

3

[G
C
P
_
N
S
_
2
8
]
O
p
en

TC
P
p
or
t
3
3
0
6
(M

yS
Q
L
D
at
ab

as
e)

3
3

[G
C
P
_
N
S
_
2
9
]
O
p
en

TC
P
p
or
t
3
3
8
9
(R
D
P
)

3
3

3
3

3
3

[G
C
P
_
N
S
_
3
0
]
O
p
en

TC
P
p
or
t
4
4
5
(W

in
d
ow

s
S
M
B
ov
er

TC
P
)

3
3

[G
C
P
_
N
S
_
31

]
O
p
en

TC
P
p
or
t
5
0
0
7
0
an

d
5
0
47

0
(H

ad
oo

p
/H

D
F
S
N
am

eN
od

e
W
eb

U
I
se
rv
ic
e)

3
3

[G
C
P
_
N
S
_
3
2
]
O
p
en

TC
P
p
or
t
5
4
3
2
(P
os
tg
re
S
Q
L
D
at
ab

as
e
S
er
ve
r)

3
3

[G
C
P
_
N
S
_
3
3
]
O
p
en

TC
P
p
or
t
5
5
0
0
(V
N
C
C
lie
n
t)

3
3

[G
C
P
_
N
S
_
3
4
]
O
p
en

TC
P
p
or
t
5
6
01

(K
ib
an

a)
3

3

[G
C
P
_
N
S
_
3
5
]
O
p
en

TC
P
p
or
t
5
9
0
0
(V
N
C
S
er
ve
r)

3
3

[G
C
P
_
N
S
_
3
6
]
O
p
en

TC
P
p
or
t
6
3
7
9
(R
ed

is
)

3

[G
C
P
_
N
S
_
3
7
]
O
p
en

TC
P
p
or
t
7
0
01

(C
as
sa
n
d
ra
)

3

[G
C
P
_
N
S
_
3
8
]
O
p
en

TC
P
p
or
t
8
0
2
0
(H

D
F
S
N
am

eN
od

e
m
et
ad

at
a
se
rv
ic
e)

3
3

[G
C
P
_
N
S
_
3
9
]
O
p
en

TC
P
p
or
ts

4
5
0
5
or

4
5
0
6
(S
al
t
m
as
te
r)

3
3

[G
C
P
_
N
S
_
4
0
]
O
p
en

U
D
P
p
or
t
13

7
or

13
8
(N
et
B
IO
S
)

3
3

[G
C
P
_
N
S
_
41

]
O
p
en

U
D
P
p
or
t
4
4
5
(C
IF
S
)

3

[G
C
P
_
N
S
_
4
2
]
R
an

ge
of

p
or
ts

op
en

ed
to

al
lo
w
in
co
m
in
g
tr
af
fic

3
3

[G
C
P
_
N
S
_
4
3
]
S
u
b
n
et

h
as

P
ri
va
te

G
oo

gl
e
A
cc
es
s
d
is
ab

le
d

3

[G
C
P
_
N
S
_
4
4
]
U
n
re
st
ri
ct
ed

in
b
ou

n
d
u
si
n
g
In
te
rn
et

C
on

tr
ol

M
es
sa
ge

P
ro
to
co
l(
IC
M
P
)

3

[G
C
P
_
N
S
_
4
5
]
U
n
re
st
ri
ct
ed

in
gr
es
s
ac
ce
ss

to
u
n
co
m
m
on

TC
P
/U

D
P
p
or
ts

3

[G
C
P
_
N
S
_
4
6
]
U
n
re
st
ri
ct
ed

ou
tb
ou

n
d
/e

gr
es
s
ac
ce
ss

3

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 31

Table 14 presents the 150 security queries collected as a gap between static analysis tools for IaC and

dynamic analysis tools for cloud-based infrastructure (see Tables 6, 7, 8, 9, 10, 11, 12, and 13). All of

them are categorized according to the IaC problem, based on the understanding of misconfiguration and

non-compliance problems definition (see Section 2.1.3).

The non-compliance problems are identified through the mapping of the collected security queries with

the CIS Amazon Web Services Foundations Benchmark v1.4.0, CIS Microsoft Azure Foundations Bench-

mark v1.4.0, and CIS Google Cloud Platform Foundation Benchmark v1.4.0. They are labeled as ”non-

compliance” in the column ”IaC Problem”, pointing to the number item of the CIS benchmark (e.g., non-

compliance (<item-number>)).

On the other hand, the misconfigurations problems are labeled as ”misconfiguration”. The identification

of them is done by excluding the security queries as a non-compliance problem since this type of problem

can cover any unsafe configuration.

3.1. Static Analysis Tools vs. Dynamic Analysis Tools 32

Table 14: Collected security queries according to IaC problem.
Security Query ID IaC Problem Security Query ID IaC Problem Security Query ID IaC Problem

[AWS_AC_01] misconfiguration [AWS_NS_30] misconfiguration [AZURE_AC_37] misconfiguration
[AWS_AC_02] misconfiguration [AWS_NS_35] misconfiguration [AZURE_AC_39] misconfiguration
[AWS_AC_08] misconfiguration [AWS_NS_43] misconfiguration [AZURE_NS_08] misconfiguration
[AWS_AC_10] misconfiguration [AWS_NS_45] misconfiguration [AZURE_NS_09] misconfiguration
[AWS_AC_11] non-compliance (1.19) [AWS_NS_49] misconfiguration [AZURE_NS_12] misconfiguration
[AWS_AC_12] misconfiguration [AWS_NS_50] misconfiguration [AZURE_NS_17] misconfiguration
[AWS_AC_14] misconfiguration [AWS_NS_51] misconfiguration [AZURE_NS_20] misconfiguration
[AWS_AC_15] misconfiguration [AWS_NS_53] misconfiguration [AZURE_NS_22] misconfiguration
[AWS_AC_17] misconfiguration [AWS_NS_55] misconfiguration [AZURE_NS_29] misconfiguration
[AWS_AC_18] misconfiguration [AWS_NS_56] misconfiguration [GCP_AC_05] non-compliance (6.1.1)
[AWS_AC_19] misconfiguration [AWS_NS_57] misconfiguration [GCP_AC_11] non-compliance (1.3)
[AWS_AC_24] misconfiguration [AWS_NS_58] misconfiguration [GCP_AC_13] misconfiguration
[AWS_AC_25] misconfiguration [AWS_NS_61] misconfiguration [GCP_AC_14] non-compliance (1.4)
[AWS_AC_27] misconfiguration [AWS_NS_63] misconfiguration [GCP_AC_15] misconfiguration
[AWS_AC_30] misconfiguration [AWS_NS_64] misconfiguration [GCP_AC_16] misconfiguration
[AWS_AC_31] misconfiguration [AWS_NS_65] misconfiguration [GCP_AC_17] misconfiguration
[AWS_AC_32] misconfiguration [AWS_NS_66] misconfiguration [GCP_AC_20] misconfiguration
[AWS_AC_33] misconfiguration [AWS_NS_67] misconfiguration [GCP_AC_21] non-compliance (1.9)
[AWS_AC_35] non-compliance (1.20) [AWS_NS_68] misconfiguration [GCP_AC_23] misconfiguration
[AWS_AC_36] non-compliance (1.14) [AWS_NS_69] misconfiguration [GCP_NS_06] misconfiguration
[AWS_AC_37] non-compliance (1.12) [AWS_NS_70] misconfiguration [GCP_NS_07] misconfiguration
[AWS_AC_41] misconfiguration [AWS_NS_71] misconfiguration [GCP_NS_08] misconfiguration
[AWS_AC_53] misconfiguration [AWS_NS_74] misconfiguration [GCP_NS_17] misconfiguration
[AWS_AC_54] misconfiguration [AWS_NS_81] misconfiguration [GCP_NS_18] misconfiguration
[AWS_AC_56] misconfiguration [AZURE_AC_01] misconfiguration [GCP_NS_19] misconfiguration
[AWS_AC_58] non-compliance (1.17) [AZURE_AC_02] misconfiguration [GCP_NS_20] misconfiguration
[AWS_AC_59] misconfiguration [AZURE_AC_03] misconfiguration [GCP_NS_21] misconfiguration
[AWS_AC_61] misconfiguration [AZURE_AC_04] misconfiguration [GCP_NS_22] misconfiguration
[AWS_AC_62] misconfiguration [AZURE_AC_06] non-compliance (1.12) [GCP_NS_24] misconfiguration
[AWS_AC_65] misconfiguration [AZURE_AC_07] misconfiguration [GCP_NS_25] misconfiguration
[AWS_AC_66] misconfiguration [AZURE_AC_08] non-compliance (1.1) [GCP_NS_26] misconfiguration
[AWS_AC_67] misconfiguration [AZURE_AC_09] non-compliance (1.2) [GCP_NS_27] misconfiguration
[AWS_AC_68] misconfiguration [AZURE_AC_10] misconfiguration [GCP_NS_28] misconfiguration
[AWS_AC_72] non-compliance (1.11) [AZURE_AC_11] misconfiguration [GCP_NS_30] misconfiguration
[AWS_AC_75] misconfiguration [AZURE_AC_12] misconfiguration [GCP_NS_31] misconfiguration
[AWS_AC_78] misconfiguration [AZURE_AC_13] non-compliance (1.18) [GCP_NS_32] misconfiguration
[AWS_AC_79] misconfiguration [AZURE_AC_14] misconfiguration [GCP_NS_33] misconfiguration
[AWS_AC_80] misconfiguration [AZURE_AC_15] misconfiguration [GCP_NS_34] misconfiguration
[AWS_AC_81] misconfiguration [AZURE_AC_16] misconfiguration [GCP_NS_35] misconfiguration
[AWS_AC_82] misconfiguration [AZURE_AC_17] misconfiguration [GCP_NS_36] misconfiguration
[AWS_NS_01] misconfiguration [AZURE_AC_18] misconfiguration [GCP_NS_37] misconfiguration
[AWS_NS_04] misconfiguration [AZURE_AC_19] non-compliance (1.19) [GCP_NS_38] misconfiguration
[AWS_NS_05] misconfiguration [AZURE_AC_20] misconfiguration [GCP_NS_39] misconfiguration
[AWS_NS_07] misconfiguration [AZURE_AC_21] non-compliance (1.12) [GCP_NS_40] misconfiguration
[AWS_NS_08] misconfiguration [AZURE_AC_22] misconfiguration [GCP_NS_41] misconfiguration
[AWS_NS_16] misconfiguration [AZURE_AC_23] misconfiguration [GCP_NS_42] misconfiguration
[AWS_NS_17] misconfiguration [AZURE_AC_29] misconfiguration [GCP_NS_43] misconfiguration
[AWS_NS_20] misconfiguration [AZURE_AC_31] non-compliance (4.5) [GCP_NS_44] misconfiguration
[AWS_NS_25] misconfiguration [AZURE_AC_32] misconfiguration [GCP_NS_45] misconfiguration
[AWS_NS_27] misconfiguration [AZURE_AC_35] non-compliance (4.5) [GCP_NS_46] misconfiguration

3.2. Why KICS 33

3.2 Why K I CS

The present dissertation is developed in a collaboration with Checkmarx. As stated on the Checkmarx

website, this company is a global leader in software security solutions for DevOps. Of the several products

that this well-known company provides, KICS (Keeping Infrastructure as Code Secure) is its first open source

one.

This Checkmarx solution was created to provide an automatic way of identifying IaC issues. In this way,

the development teams can fix the IaC issues quickly and easily rather than relying on manual code reviews.

Since Checkmarx advocates open source projects, KICS was launched as an open source tool to allow

the community to keep Infrastructure as Code more secure together with the company, for free, by allowing

the community to interact and contribute to KICS. The KICS source code is available in the KICS GitHub

repository1.

Available since 2020, KICS is attracting more and more users as time goes by for being such an attractive

open source tool: as stated in Section 2.2.2, KICS is one of the few tools that cover several IaC solutions

(Ansible, CloudFormation, Docker, Kubernetes, and Terraform, among others), which makes it so appealing.

3.3 K I CS O v e r v i ew

Provided by Checkmarx, KICS (Keeping Infrastructure as Code Secure) is an open source tool for static code

analysis of IaC solutions (Ansible, CloudFormation, Docker, Kubernetes, and Terraform, among others).

Its main goal consists of preventing security vulnerabilities, misconfiguration, and non-compliance prob-

lems in various categories2 through over 1000 security queries. Each security query detects the presence

of the security issue in question. See Section 2.1.4 to obtain further information.

3.3.1 Architecture

This section describes the five main components that make up the KICS architecture, as shown in Figure

3. All of them are written in Golang, using Open Policy Agent (OPA)/REGO for security queries.

Open Policy Agent3 is an open source engine that provides the development of policies as code, using a

declarative policy language (REGO4) to write them. The policies are used in decision-making processes for

structured documents.

1 https://github.com/Checkmarx/kics
2 Access Control, Backup, Best Practices, Build Process, Encryption, Insecure Configurations, Insecure Defaults, Networking and Firewall, Observability, Resource

Management, Secret Management, Structure and Semantics, andSupply-Chain

3 https://www.openpolicyagent.org/
4 https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego

https://github.com/Checkmarx/kics
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/##what-is-rego

3.3. KICS Overview 34

Figure 3: KICS Architecture (Source: KICS Website).

3.3.2 Command Line Interface

The Command Line Interface (CLI) controls KICS scan behavior. There are several features available, such

as:

• Cloud provider(s) restriction: The scan can be restricted to queries related to the chosen cloud

provider(s). Valid values are aws, azure, and gcp.

• Category exclusion: The scan can exclude a set of categories.

• Queries exclusion: The scan can exclude a set of queries.

• Queries inclusion: The scan can include a set of queries.

• Report format: The results can be reported in many formats.

3.3.3 Core

Acting as the KICS engine, the core incorporates several agents that are dependent on the Service Parser.

Together, these agents are responsible for parsing the files into a payload and storing it.

The Service Parser is responsible for converting the IaC files into JSON format (payload). Since the

REGO queries require a structured data as input, which is the case of JSON, the IaC samples need to be

normalized into structured data according to each IaC solution (see Section 3.3.4).

3.3. KICS Overview 35

3.3.4 IaC Solutions

KICS covers several IaC solutions, such as Ansible, CloudFormation, Docker, Kubernetes, and Terraform,

among others. These solutions do not have a common configuration file extension, as can be seen in Table

15:

Table 15: IaC solutions configuration file extension.
IaC solution Configuration file extension

Ansible .yaml
CloudFormation .yaml &.json

Dockerfile .dockerfile
Helm .yaml

Kubernetes .yaml
OpenAPI .yaml &.json
Terraform .tf

Although some of them have the same file extension, all have different specifications that require a

specific conversion for each IaC provider into a normalized JSON format (payload). The responsible for that

task is the Service Parser.

As an example of a payload, see Listing 5 which represents the payload of Listing 6.

{

"document": [

{

"file": "positive1.tf",

"id": "5835e708-66dc-4bb9-b219-6772d9d2d77a",

"resource": {

"aws_instance": {

"positive1": {

"ami": "ami-003634241a8fcdec0",

"instance_type": "t2.micro"

}

}

}

}

]

}

3.3. KICS Overview 36

Listing 5: Payload example.

resource "aws_instance" "positive1" {

ami = "ami-003634241a8fcdec0"

instance_type = "t2.micro"

}

Listing 6: Terraform file example.

3.3.5 Queries Execution Engine

The Queries Execution Engine is the component responsible for applying the REGO queries against the

normalized JSON. All the KICS queries are developed and organized according to the IaC technology and

cloud provider (AWS, AZURE, and GCP), as can be seen in Listing 7.

- <technology>

|- <provider>

| |- <queryfolder>

| | |- test

| | | |- positive<.ext>

| | | |- negative<.ext>

| | | |- positive_expected_result.json

| | |- metadata.json

| | |- query.rego

Listing 7: Query file tree.

Each query is composed of:

• metadata.json: Describes the relevant aspects of the query: id, query name, severity, category,

description text, description URL, and platform. For an example, see Listing 8.

{

"id": "a31a5a29 -718a-4ff4-8001-a69e5e4d029e",

3.3. KICS Overview 37

"queryName": "Instance With No VPC",

"severity": "MEDIUM",

"category": "Insecure Configurations",

"descriptionText": "Instance should be configured in VPC (Virtual Private Cloud)",

"descriptionUrl": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/

resources/instance",

"platform": "Terraform"

}

Listing 8: Metadata example.

• query.rego: Establishes the policy to verify the vulnerability and delineates the result. The result

includes the document id, search key (specific data used to verify the vulnerability presence), issue

type (indicates if the attribute is missing, redundant, or incorrect), expected value, and actual value.

For example, Listing 9 presents a query that reports a vulnerability if the attribute ’vpc_security_-

group_ids’ of the resource ’aws_instance’ is undefined.

package Cx

CxPolicy[result] {

resource := input.document[i].resource.aws_instance[name]

not resource.vpc_security_group_ids

result := {

"documentId": input.document[i].id,

"searchKey": sprintf("aws_instance[%s]", [name]),

"issueType": "MissingAttribute",

"keyExpectedValue": "Attribute 'vpc_security_group_ids' is set",

"keyActualValue": "Attribute 'vpc_security_group_ids' is undefined",

}

}

Listing 9: Query example.

• test folder: Includes positive and negative IaC samples as test cases (further information will be

provided in Section 5.3).

3.3. KICS Overview 38

3.3.6 Results

The results are available in two forms: presented in the Command Line Interface (CLI) and saved in a few

different file formats. In the CLI, the number of files scanned, parsed files, queries loaded, queries failed to

execute, results summary (results total categorized by severity), scan duration (in seconds), and information

about the results of each query failed is reported. As an example, see Figure 4.

Figure 4: KICS results in Command Line Interface (CLI).

On the other hand, apart from the features reported in CLI, the results can be written in different file

formats, such as JSON, and provide more detailed information regarding the execution of each query. As

an example, see the Listing 10.

{

"files_scanned": 4,

"files_parsed": 4,

"files_failed_to_scan": 0,

"queries_total": 1,

"queries_failed_to_execute": 0,

"queries_failed_to_compute_similarity_id": 0,

"queries": [

{

"query_name": "Instance With No VPC",

"query_id": "a31a5a29 -718a-4ff4-8001-a69e5e4d029e",

3.3. KICS Overview 39

"query_url": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources

/instance",

"severity": "MEDIUM",

"platform": "Terraform",

"files": [

{

"file_name": "C:/Users/rafaelas/Desktop/kics2/kics/assets/queries/terraform/aws/

instance_with_no_vpc/test/positive.tf",

"similarity_id": "f19ca5c67792801cd7295f65fcc54172c625ee1b5c4f2ce3730b1dc3bc6b8139",

"line": 1,

"issue_type": "MissingAttribute",

"search_key": "aws_instance[positive1]",

"search_value": "",

"expected_value": "Attribute 'vpc_security_group_ids' is set",

"actual_value": "Attribute 'vpc_security_group_ids' is undefined",

"value": null

}

],

"category": "Insecure Configurations",

"description": "Instance should be configured in VPC (Virtual Private Cloud)"

}

],

"scan_id": "console",

"severity_counters": {

"HIGH": 0,

"INFO": 0,

"LOW": 0,

"MEDIUM": 1

},

"total_counter": 1

}

Listing 10: KICS results in a JSON report.

3.4. The Problem 40

3.4 T h e P r o b l em

As presented in Chapter 2, the community that uses IaC technologies faces challenges related to the IaC

scripts. During the development of IaC scripts, inadvertent infrastructuremisconfigurations, non-compliance

problems, or security vulnerabilities can occur. It can arise from a lack of the best security practices in

IaC, misconfigurations, code smells, security smells, or even due to bugs in the code. This concerns the

developers, especially the testability of the IaC scripts.

The best way of preventing all the issues mentioned above, before IaC scripts are executed, is to use a

static analysis tool for IaC. However, as concluded in Chapter 3, there is a gap between the static analysis

tools for IaC and dynamic tools for cloud-based infrastructure.

Unfortunately, the definition of solutions to bridge the gap between static analysis tools for IaC and

dynamic analysis tools for cloud-based infrastructure in a static approach has its limitations. The main one

is the fact that this approach is not capable of identifying possible vulnerabilities, misconfiguration, and non-

compliance problems that require a run-time environment. For example, a static approach cannot identify

the period of user inactivity through IaC technology. This approach does not have access to all the account

information of the cloud infrastructure provider. If it does, it is no longer a static approach since it is just

available in a run-time environment (cloud-based infrastructure provider account).

Another limitation is the coverage of the resources. IaC technologies do not provide all the resources

made available by the cloud providers. This limits the static approach implementation since it does not

have the same resources as a run-time environment. Furthermore, sometimes, it does not provide all the

resource information made available by the cloud providers.

Although challenging, this dissertation study explores how some dynamic security queries can be adapted

to a static approach.

3.5 Ch a l l e n g e s

3.5.1 Filtration of the Collected Security Queries

The first challenge is the filtration of the collected security queries presented in Section 3.1.2. This step

requires a crucial understanding of whether it is possible to verify each query in a static approach and

discard it otherwise. This may sound easy, but there are a few obstacles that need to be tackled:

• Lack of IaC documentation: As a very recent technological field, information and documentation

are lacking, which impacts the study process.

3.6. Summary 41

• Static analysis limitations: As mentioned above, a static approach cannot access information

available only in a run-time environment. Because of that, some security queries are simply impos-

sible to verify.

• Differences between the chosen IaC technologies: Every technology has its specifications

and services available, requiring a specific implementation. In some cases, it is impossible to imple-

ment the same security query in all technologies. In the worst-case scenarios, it is not possible to

implement under no technology.

3.5.2 Implementation of the Selected Security Queries

The lack of knowledge of the involved technologies can be challenging since this requires a time-consuming

documentation review about all of them.

Concerning the selected IaC technologies (Ansible, CloudFormation, and Terraform), all of them have

their specifications which can demand different implementation methods for the same check. For instance,

for the same role, it can be necessary to analyze one resource in Terraform and Ansible, and two in Cloud-

Formation. Therefore, different implementation methods entail more time, creativity, and effort.

Regarding the contribution of new security queries for KICS, it is necessary to understand how this tool

works and understand the languages involved in KICS queries development, i.e. JSON and OPA (REGO).

Furthermore, if the study implies adding more information to the JSON payload used in KICS queries,

understanding the KICS engine is also fundamental. It requires studying its parser to figure out where to

add the necessary information, as well as the programming language it uses (Go).

3.6 S umma r y

This chapter details the core study of the present dissertation, i.e., it discusses the gap between the chosen

static analysis tools for IaC and dynamic analysis tools for cloud-based infrastructure, from the methodolog-

ical approach to the results. The main focus is on Access Control, but it also includes Network Security.

It identifies 150 missing security checks between the chosen static analysis tools for IaC and dynamic

analysis tools for cloud-based infrastructure. A total of 78 of them are related to Access Control and 72 to

Network Security.

Moreover, it explains why KICS is the chosen tool for the practical contribution of this dissertation and

how it works. It also highlights the challenges that must be addressed during the implementation of security

queries. Among them, the lack of documentation, static analysis limitations, differences between the IaC

technologies chosen, and the lack of knowledge of the involved technologies stand out.

3.6. Summary 42

The next chapter discusses possible solutions for the collected queries, describing how they can be or

cannot be implemented in KICS.

4

F I T T I N G N EW S E C U R I T Y Q U E R I E S I N TO K I C S

The present chapter presents the core developments of this dissertation. In other words, the discussion

about the solutions for how the collected security queries can be applied to KICS.

4.1 I n t r o d u c t i o n

Section 3.1 reports 150 security queries as a gap between static analysis tools for IaC and dynamic analysis

tools for cloud-based infrastructure.

The implementation of these security queries in KICS requires contribution mainly in KICS Queries. How-

ever, in some cases, it also entails contribution to KICS Parser, as discussed in Section 4.2.2 and Section

4.2.3.

Unfortunately, not all the security queries have viable solutions to KICS. For more detailed information,

see Section 4.3.

4.2 Imp l emen t i n g t h e S e c u r i t y Q u e r i e s

This section describes and discusses the development of the security queries reported as a gap between

static analysis tools for IaC and dynamic analysis tools for cloud-based infrastructure (see Section 3.1).

Each security query development highlights the description and the approach attached to itself. The

query description is a brief description of the query, which points out why it is relevant. In contrast, the

query approach indicates the implementation steps and the correspondent IaC technology target.

Each query also refers to a table, identifying the resource(s) and attribute(s) used for its implementation

in each platform.

As mentioned in Section 3.1.1, the selected IaC technologies are Ansible, CloudFormation, and Terraform.

Besides, the selected providers are AWS, AZURE, and GCP. Note that Ansible and Terraform cover all the

providers, but CloudFormation only covers AWS.

43

4.2. Implementing the Security Queries 44

There are cases where it is impossible to implement the query on a specific platform. Sometimes because

the specific platform does not support a specific resource necessary for the solution. Others because the

specific platform supports the specific resource necessary for the solution, but the specific resource does

not provide enough settings to perform the solution. In these scenarios, the platform is not referenced in

the table.

4.2.1 [AWS_AC_08] API Gateway without WAF

Query description: AWS Web Application Firewall (WAF) provides protection assistance for web applica-

tions or APIs against known web exploits, like Cross-Site Request Forgery (CSRF) or SQL injections. This

kind of attack can call into question the CIA (Confidentiality, Integrity, and Availability) Triad. That said, when

WAF is integrated with AWS API Gateway, it will provide extra protection against it.

Query approach: To verify if WAF is implemented for API Gateway, it is necessary to check if the resource

related to API Gateway Stage is associated with a resource related to WAF Web ACL.

Table 16: [AWS_AC_08] API Gateway without WAF.
Platform Resource(s) Attributes

Ansible

community.aws.aws_api_gateway (1),
aws_api_gateway (1),

community.aws.wafv2_resources (2),
and wafv2_resources (2)

stage (1) and arn (2)

CloudFormation
AWS::ApiGateway::Stage (1) and

AWS::WAFv2::WebACLAssociation (2)
Properties.StageName (1) and
Properties.ResourceArn (2)

Terraform
aws_api_gateway_stage (1) and

aws_wafregional_web_acl_association (2)
resource_arn (2)

4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer

Query description: AWS provides two types of authorizers to restrict an API: Lambda authorizers1 (also

known as ”custom authorizers”) and Amazon Cognito user pool2.

Both are essential to confer a more robust authorization mechanism. If none of these services is defined,

the API Gateway could have security issues since IAM roles and policies might not be sufficient. Therefore,

it is relevant to verify if an API Gateway does not have a configured Authorizer.

Query approach: Unlike Terraform and CloudFormation, Ansible does not provide a resource related to

AWS API Gateway Authorizer. For that reason, this query for Ansible requires a complex implementation.

1 https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
2 https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

4.2. Implementing the Security Queries 45

Since this platform provides two resources related to AWS API Gateway (community.aws.aws_api_gateway3

and aws_api_gateway4) that allow configuration of swagger definitions for API, the verification can be done

through a swagger attribute (swagger_file, swagger_dict or swagger_text). If the swagger attribute does not

have the extension ’x-amazon-apigateway-authorizer’5 set in the security definitions, the AWS API Gateway

does not have an authorizer configured. However, this is not enough.

This attribute only refers to the file name that contains the swagger definitions. To access the information

about the presence of the extension ’x-amazon-apigateway-authorizer’, the KICS parser needs to be modified.

In the swagger attribute of the AWS API Gateway resource, the parser has to add the content of the swagger

file.

The algorithm to be followed in order to implement this modification is:

1. Get the file path

a) Verify if the content of ’swagger_file’ is a fully valid path through function ’Stat’ of package

’os’6.

b) If so, the file path is ready. If not, the ’swagger_file’ could be an incomplete path. In that

case, it is necessary to get the directory of the Ansible template and join it to the content of

’swagger_file’ through functions ’Dir’ and ’Join’ of package ’filepath’7.

2. Read and add the file content

a) Read the file through function ’Unmarshal’ of packages ’json’8 or ’yaml’9 in case of being a

JSON or a YAML file, respectively.

b) Add the content read to the ’swagger_file’ attribute.

For Terraform and CloudFormation, it is only necessary to verify if the AWS API Gateway resource has an

AWS API Gateway Authorizer associated.

3 https://docs.ansible.com/ansible/latest/collections/community/aws/aws_api_gateway_module.html
4 https://docs.ansible.com/ansible/2.4/aws_api_gateway_module.html
5 https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions-authorizer.html
6 https://golang.org/pkg/os/
7 https://golang.org/pkg/path/filepath/
8 https://golang.org/pkg/encoding/json/
9 https://pkg.go.dev/gopkg.in/yaml.v3

https://docs.ansible.com/ansible/latest/collections/community/aws/aws_api_gateway_module.html
https://docs.ansible.com/ansible/2.4/aws_api_gateway_module.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions-authorizer.html
https://golang.org/pkg/os/
https://golang.org/pkg/path/filepath/
https://golang.org/pkg/encoding/json/
https://pkg.go.dev/gopkg.in/yaml.v3

4.2. Implementing the Security Queries 46

Table 17: [AWS_AC_10] API Gateway Without Configured Authorizer.
Platform Resource(s) Attribute(s)

Ansible
community.aws.aws_api_gateway

and aws_api_gateway
swagger_dict, swagger_file,

and swagger_text

CloudFormation

AWS::ApiGateway::RestApi,
AWS::ApiGateway::Authorizer (1),

AWS::ApiGatewayV2::Api,
and AWS::ApiGatewayV2::Authorizer (2)

Properties.RestApiId (1)
and Properties.ApiId (2)

Terraform
aws_api_gateway_authorizer

and aws_api_gateway_rest_api (1)
rest_api_id (1)

4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than 256

Query description: RSA Key length is commonly set to 1024, 2048, or 4096 bits. However, according

to the National Institute of Standards and Technology (NIST)10, the length of an RSA key should be at least

2048-bit.

With the technological innovation related to hardware (computing power), the 1024-bit RSA key is no

longer considered to be safe. For that reason, it is a best practice to check if any certificate has a 1024-bit

RSA key.

In addition to that, expired certificates could lead to security issues (man-in-the-middle attacks), credibility

reduction, and errors in the run-time environment. All of these inconveniences should be avoided.

Query approach: These queries seem to be only possible to implement in Ansible and Terraform since

no resource was found to import an existing certificate in CloudFormation.

As the attribute related to the certificate file only mentions the file name, the implementation approach

requires a modification to the KICS Parser. The steps to be followed are as follows:

1. Get the file path

a) Similar to 4.2.2.

2. Read the certificate

a) Through packages ’os’, ’pem’11 and ’x509’12.

3. Add the information about the expiration date and the RSA Key bytes

a) Through functions ’NotAfter’ and ’PublicKey’ of package ’x509’.

10 https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
11 https://golang.org/pkg/encoding/pem/
12 https://golang.org/pkg/crypto/x509/

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://golang.org/pkg/encoding/pem/
https://golang.org/pkg/crypto/x509/

4.2. Implementing the Security Queries 47

With this modification, it is possible to verify if the certificate uses an RSA key length lower than 256

bytes. Furthermore, it is possible to verify if the certificate has expired.

Table 18: [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than
256.

Platform Resource(s) Attribute
Ansible community.aws.aws_acm certificate

Terraform
aws_api_gateway_domain_name,

aws_iam_server_certificate,
and aws_acm_certificate

certificate_body

4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication

Query description: Elasticsearch should ensure IAM Authentication to prevent public access.

Query approach: It is necessary to check if the policy related to Elasticsearch allows any Principal. In

the case of CloudFormation, the verification is done directly in the resource ’AWS::Elasticsearch::Domain’

through ’Properties.AccessPolicies’.

On the other hand, in Terraform, it is necessary to check the ’aws_elasticsearch_domain_policy’ attached

to the ’aws_elasticsearch_domain’.

Table 19: [AWS_AC_18] Elasticsearch Without IAM Authentication.
Platform Resource Attribute(s)

CloudFormation AWS::Elasticsearch::Domain Properties.AccessPolicies

Terraform
aws_elasticsearch_domain and

aws_elasticsearch_domain_policy (1)
domain_name (1) and
access_policies (1)

4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled

Query description: Neptune Cluster should have IAM Database Authentication enabled to ensure the use

of IAM in database access.

Query approach: It is only necessary to check if the resource related to Neptune Cluster has IAM Database

Authentication enabled.

Table 20: [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled.
Platform Resource Attribute

CloudFormation AWS::Neptune::DBCluster Properties.IamAuthEnabled
Terraform aws_neptune_cluster iam_database_authentication_enabled

4.2. Implementing the Security Queries 48

4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions

Query description: Simple Email Service (SES) should not allow all actions to all principals in order to

grant the least possible privileges.

Query approach: In the policy of an SES, this query searches if all principals have permission to perform

all actions. In such a scenario, the statement effect is set to ’allow’, the statement action is set to ’*’, and

the statement principal contains ’*’. See Listing 11 as an example.

{

"Version": "2012-10-17",

"Statement": [

{

"Action": "*",

"Principal": {

"AWS": "*"

},

"Effect": "Allow",

"Resource": "*",

"Sid": ""

}

]

}

Listing 11: All actions to all principals.

Table 21: [AWS_AC_32] SES Policy With Allowed IAM Actions.
Platform Resource(s) Attributes

Ansible
community.aws.aws_ses_identity_policy

and aws_ses_identity_policy
policy

Terraform aws_ses_identity_policy policy

4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined

Query description: AWS IAM Access Analyzer is part of Identity and Access Management (IAM) features

that attempts to identify unintentional access to the resources and data in an AWS cloud environment.

Query approach: It checks if the resource related to IAM Access Analyzer is undefined in the entire project.

4.2. Implementing the Security Queries 49

Table 22: [AWS_AC_35] IAM Access Analyzer Undefined.
Platform Resource

CloudFormation AWS::AccessAnalyzer::Analyzer
Terraform aws_accessanalyzer_analyzer

4.2.8 [AWS_AC_41] IAM Group Without Users

Query description: Having an IAM Group without at least one user attached is pointless since every policy

defined to it will not be used. It does not represent an immediate risk but could be in the future if the group

fades to oblivion and an unauthorized user is able to attach herself to it.

Query approach: This query implies one implementation method for each platform. In an Ansible ap-

proach, it is necessary to check if the attribute ’users’ exists and is not empty in the AWS IAM Group.

However, different from Ansible, the resource AWS IAM Group provides by CloudFormation and Terraform

does not have an attribute directly related to users. So, for Terraform, it is necessary to check if an AWS

IAM Group is not associated with an AWS IAM Group Membership (that has at least one user set).

On the other hand, for CloudFormation, it is necessary to check if an AWS IAM Group is in the groups of

an AWS IAM User.

Table 23: [AWS_AC_41] IAM Group Without Users.
Platform Resource Attribute
Ansible community.aws.iam_group and iam_group users

CloudFormation AWS::IAM::Group and AWS::IAM::User (1) Properties.Groups (1)
Terraform aws_iam_group and aws_iam_group_membership (1) group (1)

4.2.9 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA

Query description: Cross-account access allows resource sharing from a specific account to a third-party

entity (external account users). That said, it is crucial to ensure the protection of cross-account access.

For that, there are two mechanisms: (1) MFA (Multi-Factor Authentication) which combine two factors,

the credentials, and the MFA device; (2) External ID, a third-party entity identifier that the IAM role uses to

ensure the cross-account identity.

Query approach: The best way of giving cross-account access is through an IAM Assume Role policy

since it supplies temporary credentials to the cross-account. So, this query verifies if MFA or External ID are

not defined correctly in this kind of policy. Listing 12 and Listing 13 represent an example of a correct MFA

and External ID configuration, respectively:

4.2. Implementing the Security Queries 50

{

"Version": "2012-10-17",

"Statement": [

{

"Action": "sts:AssumeRole",

"Principal": {

"AWS": "arn:aws:iam::987654321145:root"

},

"Effect": "Allow",

"Resource": "*",

"Sid": "",

"Condition": {

"Bool": {

"aws:MultiFactorAuthPresent": "true"

}

}

}

]

}

Listing 12: MFA configuration.

{

"Version": "2012-10-17",

"Statement": [

{

"Action": "sts:AssumeRole",

"Principal": {

"AWS": "arn:aws:iam::987654321145:root"

},

"Effect": "Allow",

"Resource": "*",

"Sid": "",

"Condition": {

"StringEquals": {

"sts:ExternalId": "98765"

4.2. Implementing the Security Queries 51

}

}

}

]

}

Listing 13: External ID configuration.

Table 24: [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA.
Platform Resource(s) Attribute

Ansible
community.aws.iam_role

and iam_role
assume_role_policy_document

CloudFormation AWS::IAM::Role Properties.AssumeRolePolicyDocument
Terraform aws_iam_role assume_role_policy

4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in use for EC2

instance

Query description: Using default security groups in an EC2 instance can result in unrestricted access

since this type of security group is commonly too permissive. The same applies to the use of default VPC

in an EC2 instance.

To avoid malicious attacks that take advantage of unrestricted access, an EC2 should use a specific

security group/VPC for its context.

Query description: These queries verify if an EC2 instance is associated with a security group/VPC

named as default, respectively.

Table 25: [AWS_NS_05] Default EC2 security group are in use.
Platform Resources Attributes

Ansible
amazon.aws.ec2

and ec2
group

and group_id

CloudFormation AWS::EC2::Instance
Properties.SecurityGroups

and Properties.SecurityGroupsIds

Terraform aws_instance
security_groups

and vpc_security_group_ids

4.2. Implementing the Security Queries 52

Table 26: [AWS_NS_07] Default VPC in use for EC2 instance.
Platform Resources Attributes

Ansible

amazon.aws.ec2 (1),
ec2 (1),

amazon.aws.ec2_vpc_subnet (2),
and ec2_vpc_subnet (2)

vpc_subnet_id (1)
and vpc_id (2)

CloudFormation
AWS::EC2::Instance (1)

and AWS::EC2::Subnet (2)
Properties.SubnetId (1)
and Properties.VpcId (2)

Terraform
aws_instance (1)

and aws_subnet (2)
subnet_id (1)
and vpc_id (2)

4.2.11 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without VPC

Query description: Virtual Private Cloud (VPC) provides several benefits for a network environment. One

of the most relevant ones is most likely the prevention of Internet exposure. That said, both ElastiCache

and Elastic MapReduce (EMR) should use VPC to endow security.

Query approach: Regarding ElastiCache, the existence of a subnet group informs if a VPC is attached to

it. In contrast, in EMR, the presence of the subnet identifier indicates the use of VPC. Therefore, the first

query verifies if ElastiCache does not define the attribute related to the subnet group. The same strategy

applies to the EMR query but searches for subnet identifier definition.

Table 27: [AWS_NS_49] Elastic MapReduce Without VPC.
Platform Resource Attribute

CloudFormation AWS::EMR::Cluster Properties.Instances.Ec2SubnetId(s)
Terraform aws_emr_cluster subnet_id(s)

Table 28: [AWS_NS_50] ElastiCache Without VPC.
Platform Resource(s) Attribute

Ansible
community.aws.elasticache

and elasticache
cache_subnet_group

CloudFormation AWS::ElastiCache::CacheCluster Properties.CacheSubnetGroupName
Terraform aws_elasticache_cluster subnet_group_name

4.2. Implementing the Security Queries 53

4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database Service (RDS)

Using Default Port & [AWS_NS_61] Redshift Using Default Port

Query description: When using a default port, an attacker can trivially guess it, which could pose a risk to

the network security of the environment. Although replacing the default port does not prevent port scanning

and subsequent attacks, it makes malicious actions a little harder to carry out.

Query approach: For each environment, this query verifies if the correspondent default port is in use.

Table 29 lists the default port for the contexts in question.

Table 29: Default ports.
Environment Default Port

ElastiCache (memcached) 11211
ElastiCache (redis) 6379

RDS (aurora) 3306
RDS (aurora-mysql) 3306

RDS (aurora-postgresql) 3306
RDS (mariadb) 3306
RDS (mysql) 3306

RDS (oracle-ee) 1521
RDS (oracle-ee-cdb) 1521

Environment Default Port
RDS (oracle-se2) 1521

RDS (oracle-se2-cdb) 1521
RDS (postgres) 5432

RDS (sqlserver-ee) 1433
RDS (sqlserver-se) 1433
RDS (sqlserver-ex) 1433
RDS (sqlserver-web) 1433

Redshift 5439

Table 30: [AWS_NS_51] ElastiCache Using Default Port.
Platform Resource(s) Attributes

Ansible
community.aws.elasticache

and elasticache
engine and cache_port

CloudFormation AWS::ElastiCache::ReplicationGroup Properties.Engine and Properties.Port
Terraform aws_elasticache_cluster engine and port

Table 31: [AWS_NS_58] Relational Database Service (RDS) Using Default Port.
Platform Resource(s) Attributes

Ansible
community.aws.rds_instance

and rds_instance
engine and port

CloudFormation AWS::RDS::DBInstance Properties.Engine and Properties.Port
Terraform aws_db_instance engine and port

4.2. Implementing the Security Queries 54

Table 32: [AWS_NS_61] Redshift Using Default Port.
Platform Resource(s) Attributes

Ansible
community.aws.redshift

and redshift
port

CloudFormation AWS::Redshift::Cluster Properties.Port
Terraform aws_redshift_cluster port

4.2.13 [AWS_NS_56] VPC Without Network Firewall

Query description: AWS Network Firewall provides additional network protection to a VPC, such as traffic

filtering and intrusion detection. That said, each VPC should be associated with an AWS Network Firewall.

Query approach: For each resource related to VPC, this query verifies if there is a Network Firewall

attached to it.

Table 33: [AWS_NS_56] VPC Without Network Firewall.
Platform Resource(s) Attributes

CloudFormation
AWS::EC2::VPC

and AWS::NetworkFirewall::Firewall (1)
Properties.VpcId (1)

Terraform
aws_vpc

and aws_networkfirewall_firewall (1)
vpc_id (1)

4.2.14 [AWS_NS_57] RDS Associated with Public Subnet

Query description: When a Relational Database Service (RDS) is associated with a public subnet, it can

become a target for malicious requests since it is exposed to the entire Internet.

Query approach: Each RDS is associated with a subnet group constituted by a set of subnets. This

query checks if at least one of them is public (CIDR block or IPv6 CIDR block set to ”0.0.0.0/0” or ”::/0”,

respectively).

4.2. Implementing the Security Queries 55

Table 34: [AWS_NS_57] RDS Associated with Public Subnet.
Platform Resources Attributes

Ansible

community.aws.rds_instance (1),
rds_instance (1),

community.aws.rds_subnet_group (2),
rds_subnet_group (2),

amazon.aws.ec2_vpc_subnet (3),
and ec2_vpc_subnet (3)

db_subnet_group_name (1),
subnet_group (1),

name (2),
subnets (2),
cidr (3),

and ipv6_cidr (3)

CloudFormation
AWS::RDS::DBInstance (1),

AWS::RDS::DBSubnetGroup (2),
and AWS::EC2::Subnet (3)

Properties.DBSubnetGroupName (1),
Properties.SubnetIds (2),
Properties.CidrBlock (3),

and Properties.Ipv6CidrBlock (3)

Terraform
aws_db_instance (1),

aws_db_subnet_group (2),
and aws_subnet (3)

db_subnet_group_name (1),
subnet_ids (2),
cidr_block (3),

and ipv6_cidr_block (3)

4.2.15 [AWS_NS_74] Shield Advanced Not In Use

Query description: AWS Shield protects against Distributed Denial of Service (DDoS) attacks on applica-

tions. Two plans enable this service: AWS Shield Standard and AWS Shield Advanced.

As the name suggests, AWS Shield Standard provides defense against common attacks. This protection

occurs in the network and transport layer (layers 3 and 4 of the OSI model, respectively).

In contrast, AWS Shield Advanced, in addition to these layers, also offers protection at higher levels of the

OSI model and detects uncommon attacks. For that reason, to achieve the maximum protection possible

for an application, AWS Shield Advanced should be used.

Query approach: AWS Shield Advanced is available for Amazon Route 53 hosted zone, AWS Global

Accelerator accelerator, Elastic IP Address, Elastic Load Balancing, and Amazon CloudFront Distribution.

That said, this query should verify if any of them, when defined, is not protected by AWS Shield Advanced.

4.2. Implementing the Security Queries 56

Table 35: [AWS_NS_74] Shield Advanced Not In Use.
Platform Resources Attributes

CloudFormation

AWS::CloudFront::Distribution,
AWS::ElasticLoadBalancing::LoadBalancer,

AWS::GlobalAccelerator::Accelerator,
AWS::EC2::EIP, AWS::Route53::HostedZone,

and AWS::FMS::Policy (1)

Properties (1)

Terraform

aws_cloudfront_distribution,
aws_lb,

aws_globalaccelerator_accelerator,
aws_eip,

aws_route53_zone,
and aws_shield_protection (1)

resource_arn (1)

4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions

Query description: Role Assignment should limit guest user permissions in order to grant the least

privileges.

Query approach: It checks if each resource related to Role Assignment does not limit permissions for

guest users. For that, it is necessary to check the associated resource related to Role Definition.

Table 36: [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions.
Platform Resources Attributes

Terraform
azurerm_role_assignment (1) and

azurerm_role_definition (2)
role_definition_id (1) and

permissions.not_actions (2)

4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation

Query description: Role Definition should not allow custom role creation in order to grant the least

privileges.

Query approach: It checks if each resource related to Role Definition has all permissions set (represented

by ’*’) or has the permission to write custom roles (’Microsoft.Authorization/roleDefinitions/write’).

Table 37: [AZURE_AC_22] Role Definition Allows Custom Role Creation.
Platform Resource Attribute
Ansible azure_rm_roledefinition permissions.actions

Terraform azurerm_role_definition permissions.actions

4.2. Implementing the Security Queries 57

4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions

Query description: Storage Share File should set the least privileges. In other words, it should not allow

all ACL (Access Control List) permissions — r (read), w (write), d (delete), and l (list).

Query approach: The resource related to the Storage Share File is associated with the resource related

to Storage Share (where the permissions are set). It is important to check if the Storage Share allows all

ACL (Access Control List) permissions — r (read), w (write), d (delete), and l (list).

Table 38: [AZURE_AC_29] Storage Share File Allows All ACL Permissions.
Platform Resources Attributes

Terraform
azurerm_storage_share_file (1)
and azurerm_storage_share (2)

storage_share_id (1) and
acl.access_policy.permissions (2)

4.2.19 [AZURE_AC_39] Storage Table Allows All ACL Permissions

Query description: Storage Table should set the least privileges. In other words, it should not allow all

ACL (Access Control List) permissions — r (read), w (write), d (delete), and l (list).

Query approach: It checks if the resources related to Storage Table allow all ACL (Access Control List)

permissions — r (read), w (write), d (delete), and l (list).

Table 39: [AZURE_AC_39] Storage Table Allows All ACL Permissions.
Platform Resource Attribute
Terraform azurerm_storage_table acl.access_policy.permissions

4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled

Query description: Virtual Network should have a Distributed Denial-of-Service (DDoS) Protection Plan

enabled to be protected against denial of service (DoS) attacks.

Query approach: It checks if the resource related to Virtual Network disables the DDoS Protection Plan.

There are two ways to verify this: (1) DDoS Protection Plan configuration is not defined; (2) DDoS Protection

Plan configuration is defined but disabled.

Table 40: [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled.
Platform Resource Attribute
Terraform azurerm_virtual_network ddos_protection_plan.enable

4.2. Implementing the Security Queries 58

4.2.21 [GCP_AC_13] Service Account With Improper Privileges

Query description: Service Account should not have admin, editor, owner, or write privileges in order to

grant the least privileges.

Query approach: It checks if service account users have improper privileges: admin, owner, or editor.

Table 41: [GCP_AC_13] Service Account With Improper Privileges.
Platform Resources Attributes

Terraform
google_iam_policy (1),

google_project_iam_binding (2) and
google_project_iam_member (2)

binding.role (1)
and role (2)

4.2.22 [GCP_AC_16] IAM Role Assigned to User

Query description: As a best practice, it is better to assign a role to a group. Adding or removing members

to a group seems easier than creating, updating, or removing an IAM role to a user.

Query approach: It is only necessary to check if a resource related to IAM Role is assigned to a user.

Table 42: [GCP_AC_16] IAM Role Assigned to User.
Platform Resources Attributes

Terraform
data.google_iam_policy,

google_project_iam_binding,
and google_project_iam_member

binding and role

4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles

Query description: IAM Policy should not have KMS admin and CryptoKey roles. This check ensures the

separation of responsibilities. The KMS admin role (’roles/cloudkms.admin’) allows full access to Cloud

KMS resources, except to the operations allowed by CryptoKey roles (’roles/cloudkms.cryptoKeyDecrypter’,

’roles/cloudkms.cryptoKeyEncrypter’, or ’roles/cloudkms.cryptoKeyEncrypterDecrypter’).

Query approach: It checks if users have both KMS admin and CryptoKey roles set.

Table 43: [GCP_AC_17] User with KMS Admin and CryptoKey Rules.
Platform Resources Attributes
Terraform google_project_iam_policy policy_data

4.2. Implementing the Security Queries 59

4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible

Query description: The policy associated with the KMS crypto key should restrict public access. If not,

anyone can access the KMS crypto key and the data encrypted with them.

Query approach: In order to verify if the KMS crypto key is publicly accessible, it is necessary to check if

the policy attached to it allows ”allUsers” or ”allAuthenticatedUsers”.

Table 44: [GCP_AC_21] KMS Crypto Key is Publicly Accessible.
Platform Resources Attributes

Terraform
google_kms_crypto_key_iam_policy (1)

and google_iam_policy (2)
policy_data (1)

and binding.members (2)

4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account

Query description: When using a default service account, the principle of least privilege is not assured,

which can lead to malicious attacks on the container cluster. That said, a container cluster should use a

custom service account that has the least privileges to run it.

Query approach: This query verifies if the resource related to the container cluster does not define the

service account or uses a service account named as default.

Table 45: [GCP_AC_23] Container Cluster Using Default Service Account.
Platform Resource(s) Attribute

Ansible
google.cloud.gcp_container_cluster

and gcp_container_cluster
node_config.service_account

Terraform google_container_cluster node_config.service_account

4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule

Query description: Using a default firewall rule can undermine the principle of least privilege since default

firewall rules are not defined for a specific context. That said, a Compute Network should not use default

firewall rules.

Query approach: This query verifies if a Google Compute Network is associated with a Google Compute

Firewall named as default.

4.2. Implementing the Security Queries 60

Table 46: [GCP_NS_06] Google Compute Network Using Default Firewall Rule.
Platform Resources Attributes

Ansible

google.cloud.gcp_compute_firewall,
gcp_compute_firewall,

google.cloud.gcp_compute_network (1),
and gcp_compute_network (1)

name (1)
and network (1)

Terraform
google_compute_network

and google_compute_firewall (1)
network (1)
and name (1)

4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_08]

Google Compute Network Using Firewall Rule that Allows Port Range

Query description: When a Google Compute Network uses a firewall rule that allows all ports, an attacker

can trivially guess the port and perform malicious attacks. The same can happen when the firewall rule

allows a port range since some ports can be unintentionally exposed.

Query approach: For each resource related to Google Compute Network, these queries verify if it is

associated with a firewall rule that allows all ports (matches 0-65535) or a range of ports (matches the

regex [0-9]+-[0-9]+), respectively.

Table 47: [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_-
08] Google Compute Network Using Firewall Rule that Allows Port Range.

Platform Resources Attributes

Ansible

google.cloud.gcp_compute_firewall,
gcp_compute_firewall,

google.cloud.gcp_compute_network (1),
and gcp_compute_network (1)

direction (1),
allowed.ports (1),
and network (1)

Terraform
google_compute_network

and google_compute_firewall (1)

direction (1),
allow.ports (1),
and network (1)

4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled

Query description: Virtual machines in a Compute Subnetwork without external IP addresses can only

send traffic to the internal network. However, they can access Google APIs and services through Private

Google Access enablement.

Query approach: This query verifies if Private Google Access is enabled to ensure that VMs without

external IP addresses can access Google APIs and services.

4.3. Discarded Queries 61

Table 48: [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled.
Platform Resources Attributes

Ansible
google.cloud.gcp_compute_subnetwork

and gcp_compute_subnetwork
private_ip_google_access

Terraform google_compute_subnetwork private_ip_google_access

4.3 D i s c a r d e d Qu e r i e s

Around 77% of the collected security queries could not be implemented in KICS. This value reflects the

discarding process in action.

The discarding process raises a few sets of reasons responsible for discarding 77% of the collected

security queries. These sets of reasons can be categorized in the following scopes:

• Dynamic scope: Scope related to information that can be only accessible in a dynamic environment.

In other words, the data is only available in a run-time environment. As a case in point, the information

related to the cloud account and the availability of its services.

Regarding Access Control, the time of user inactivity in the account, for example, is not accessible

for an IaC static approach. Concerning Network Security, knowing if a VPC tunnel is ”UP” is also

impossible since there is no access to the real-time state of the VPC in an IaC static approach.

• Known IaC scope: Scope related to similar information already available in an IaC static approach

for the same resource.

Regarding Access Control, there are already available IaC queries that verify if a user has admin

privileges. So, for the context of the gap, the verification of several users with admin privileges is not

that relevant since some static analysis tools for IaC already handle similar cases.

Concerning Network Security, the study case reports that the target IaC tools do not verify if an FTP

port is ”open” in an AWS Security Group. However, some of the target IaC tools check it for an SSH

port. For the context of bridging this gap, verifying if an FTP port is open in an AWS Security Group

is not that relevant for the same reason indicated above.

• Inapplicable IaC scope: Scope related to information that does not make sense to implement in

an IaC static approach.

Regarding Access Control, the developers writing IaC scripts, keep in mind which specific users can

access the defined environment. That said, custom queries, where the IaC developer needs to refer

to the ”allowed” users, do not make sense.

4.3. Discarded Queries 62

Concerning Networking Security, as an assumption, no IaC developer will create an AWS Auto Scaling

Group and associate it to an inactive AWS Security Group. And even if the developer does that, there

is no way to infer it by an IaC static approach.

• Unknown scope: Scope related to information that seems to not be accessible in an IaC static

approach. Several reasons can justify this statement, such as the lack of service support, information

about a specific service, or documentation from the target IaC technologies.

Table 49 classifies the queries according to ”dynamic”, ”known”, ”inapplicable”, and ”unknown” scopes.

Queries are represented according to the ID defined in Section 3.1.2.

4.3. Discarded Queries 63

Table 49: List of the discarded queries according to ”dynamic”, ”known”, ”inapplicable”, and ”unknown”
scopes.

Dynamic Known IaC Inapplicable IaC Unknown
[AWS_AC_37] [AWS_AC_12] [AWS_AC_14] [AWS_AC_01]
[AWS_AC_56] [AWS_AC_25] [AWS_AC_15] [AWS_AC_02]
[AWS_AC_62] [AWS_AC_27] [AWS_AC_17] [AWS_AC_36]
[AWS_AC_67] [AWS_AC_54] [AWS_AC_19] [AWS_AC_58]
[AWS_AC_72] [AWS_AC_79] [AWS_AC_30] [AWS_AC_61]
[AWS_AC_75] [AWS_NS_16] [AWS_AC_31] [AWS_AC_65]
[AWS_NS_67] [AWS_NS_17] [AWS_AC_33] [AWS_NS_04]
[AWS_NS_81] [AWS_NS_20] [AWS_AC_59] [AWS_NS_08]

[AWS_NS_25] [AWS_AC_68] [AWS_NS_55]
[AWS_NS_27] [AWS_AC_78] [AWS_NS_63]
[AWS_NS_30] [AWS_AC_80] [AWS_NS_64]
[AWS_NS_35] [AWS_AC_81] [AWS_NS_65]
[AWS_NS_43] [AWS_AC_82] [AWS_NS_66]
[AWS_NS_45] [AWS_NS_01] [AWS_NS_68]

[AZURE_NS_08] [AWS_NS_53] [AWS_NS_69]
[AZURE_NS_09] [AWS_NS_70]
[AZURE_NS_12] [AWS_NS_71]
[AZURE_NS_17] [AZURE_AC_01]
[AZURE_NS_20] [AZURE_AC_02]
[AZURE_NS_22] [AZURE_AC_03]
[GCP_NS_17] [AZURE_AC_04]
[GCP_NS_18] [AZURE_AC_06]
[GCP_NS_19] [AZURE_AC_07]
[GCP_NS_20] [AZURE_AC_08]
[GCP_NS_21] [AZURE_AC_09]
[GCP_NS_22] [AZURE_AC_10]
[GCP_NS_24] [AZURE_AC_11]
[GCP_NS_25] [AZURE_AC_12]
[GCP_NS_26] [AZURE_AC_13]
[GCP_NS_27] [AZURE_AC_14]
[GCP_NS_28] [AZURE_AC_15]
[GCP_NS_30] [AZURE_AC_16]
[GCP_NS_31] [AZURE_AC_17]
[GCP_NS_32] [AZURE_AC_18]
[GCP_NS_33] [AZURE_AC_19]
[GCP_NS_34] [AZURE_AC_20]
[GCP_NS_35] [AZURE_AC_23]
[GCP_NS_36] [AZURE_AC_31]
[GCP_NS_37] [AZURE_AC_32]
[GCP_NS_38] [AZURE_AC_35]
[GCP_NS_39] [AZURE_AC_37]
[GCP_NS_40] [GCP_AC_05]
[GCP_NS_41] [GCP_AC_11]
[GCP_NS_42] [GCP_AC_14]
[GCP_NS_44] [GCP_AC_15]
[GCP_NS_45] [GCP_AC_20]
[GCP_NS_46]

4.4. Summary 64

4.4 S umma r y

This chapter presents the discussion about the availability and current (wherever possible) development

of the 150 collected security queries (as a gap between static analysis tools for IaC and dynamic analysis

tools for cloud-based infrastructure) to KICS (Section 3). It involves the implementation process and the

subjacent discarding process.

Around 23% (34) of the 150 collected security queries have been found to have practical solutions. Al-

though this number can be considered of low value, it reflects the possibility to adapt the security queries

”only” collected by dynamic analysis tools for cloud-based infrastructure to static analysis tools for IaC, in

the context of the present dissertation.

On the other hand, around 77% (116) of the collected security queries does not have viable solutions. This

value reflects the discarding process in action. From it, a few sets of reasons that result in four scopes can

be noticed: (i) dynamic scope related to information that can be only accessible in a dynamic environment,

(ii) known IaC scope related to similar information already available in an IaC static approach for the same

resource, (iii) inapplicable IaC scope related to information that does not make sense to implement in

an IaC static approach, (iv) unknown scope related to information that seems to not be accessible in an

IaC static approach until the moment.

5

E X T E N D I N G K I C S

This chapter addresses necessary contributions to the KICS GitHub repository to implement the security

queries described in Chapter 4. Therefore, it lists all the solutions implemented and contributed to KICS,

including the KICS GitHub pull request related to each one, as can be seen in Table 50. Note that all the

security queries listed in the table are already in the KICS GitHub repository master branch.

5.1 S e t u p o f t h e K I CS De v e l o pmen t E n v i r o nmen t

Before the contribution of all the solutions to KICS, it is necessary to prepare the KICS development envi-

ronment. For that, it is necessary to check the following steps:

1. Fork the KICS GitHub repository: Click on the ”Fork” button of the KICS GitHub repository and

create the fork.

Figure 5: KICS GitHub repository fork.

2. Clone the fork locally: In the forked repository, click on the ”Code” button and copy paste the link,

as can be seen in Figure 6. After that, it is necessary to run the command ‘git clone <clone_link>‘.

65

5.2. Development of the Security Queries 66

Figure 6: KICS GitHub repository fork clone link.

3. Verify if the setup is ready: Check for any necessary dependencies by running ‘go run –tags dev

./cmd/console/main.go scan‘, in the KICS folder, for example.

5.2 D e v e l o pmen t o f t h e S e c u r i t y Q u e r i e s

As a best practice, the development of each solution to KICS requires a specific branch. The branch can

be created by running ‘git checkout -b <branch_name>‘ inside the KICS cloned folder. However, before the

creation of the branch, another best practice is to run ‘git pull‘ in the KICS master branch.

Before initiating the development of the security queries, it is necessary to keep in mind the guidelines

presented in Section 3.3.5 and understand the gold of the security query. Each security query should be

composed of metadata.json, query.rego, and the test folder.

5.2.1 Metadata File

The metadata.json documents all the relevant aspects of the security query. See a brief explanation of them

below:

• ID: Should be unique and can be generated by the command ‘go run ./cmd/console/main.go

generate-id‘.

• Query Name: Should clearly indicate what the security query finds.

5.2. Development of the Security Queries 67

• Severity: Should indicate the severity related to the security query. KICS considers INFO, LOW,

MEDIUM, and HIGH for this field.

• Category: Should indicate what security domain fits better for the security query. KICS considers the

following: Access Control, Availability, Backup, Best Practices, Build Process, Encryption, Insecure

Configurations, Insecure Defaults, Networking and Firewall, Observability, Resource Management,

Secret Management, and Supply-Chain.

• Description text: Should suggest how to remediate the configuration.

• Description URL: Should point to the IaC platform documentation.

• Platform: Should point to the target IaC platform.

5.2.2 Query File

The security queries in KICS are written in REGO (See Section 3.3.1). Since the input of the REGO policies

requires structured data, KICS parses all the IaC platforms files in a JSON payload (See Section 3.3.3).

Although it is possible to develop the security queries directly in KICS and test them, the use of the REGO

Playground1 is very useful and intuitive as a first step. A helpful REGO Playground setting is the ”Coverage”

button that indicates whether or not the statements have been evaluated, as can be seen in Figure 7.

Figure 7: REGO Playground.

1 https://play.openpolicyagent.org/

https://play.openpolicyagent.org/

5.2. Development of the Security Queries 68

The content of the query.rego is composed of all the policies necessary to cover the goal of the target

security query. Each policy should return a result composed of:

• Search key: Applies Levenshtein distance to find where the ”vulnerability” occurs in the original file.

• Issue type: indicates the issue found by the policy: (i) IncorrectValue, (ii) MissingAttribute, (iii) Re-

dundantAttribute.

• Key expected value: Presents a recommendation as an expected configuration.

• Key actual value: Presents the actual configuration found by the policy.

In addition to the guidelines presented above, there are a few more that should be considered during the

development of the security queries. Among them it highlights:

• Understand the goal(s) of the security query.

• Create the payload of an IaC script related to the target IaC technology to understand how KICS

parses the specific IaC technology files. This guideline is important to understand how to access the

information in the development of the security queries.

• Study the existing KICS queries to understand its specifications: each platform have a specific set of

security queries.

• Use of the ‘package Cx‘.

• Explore the KICS queries libraries and use them (if necessary).

5.2.3 Security Query Development Example

As a use case, focus on the Terraform solution for the security query [AWS_AC_24] ”Neptune Cluster With

IAM Database Authentication Disabled”, presented in Section 4.2.5. The security query should verify if the

field ‘iam_database_authentication_enabled‘ is enabled in the resource ‘aws_neptune_cluster‘.

When using the REGO Playground, the input should contain the configuration target of analysis. In the

query example, the input should point to the configuration of the resource ‘aws_neptune_cluster‘. In KICS,

the input can be generated through the following command ‘go run ./cmd/console/main.go scan -p <file_-

path> -d payload‘. As an example, see the payload of the file presented in Listing 14:

{

"document": [

{

5.2. Development of the Security Queries 69

"file": "positive.tf",

"id": "388a0fa0-bbda-49f9-bbe3-aec598321743",

"resource": {

"aws_neptune_cluster": {

"positive1": {

"apply_immediately": true,

"backup_retention_period": 5,

"cluster_identifier": "neptune-cluster-demo",

"engine": "neptune",

"preferred_backup_window": "07:00-09:00",

"skip_final_snapshot": true,

"storage_encrypted": true

}

}

}

}

]

}

Listing 14: Payload example.

After obtaining the payload, it is time to develop the query. For this query, it is necessary to develop two

policies. One that verifies if the field ‘iam_database_authentication_enabled‘ is undefined and another one

that checks if the field ‘iam_database_authentication_enabled‘ is set to false in the resource ‘aws_neptune_-

cluster‘. Since the payload presents a configuration with the field ‘iam_database_authentication_enabled‘

undefined in the resource ‘aws_neptune_cluster‘, it should satisfy the first policy. So, it is expected that

the output presents results. See Figure 8.

5.2. Development of the Security Queries 70

Figure 8: REGO Playground.

After using the REGO Playground and validating all the policies, it is necessary to create a branch in KICS

and start to add the query. The query should be added according to the platform and cloud provider. In this

case, it should be added in ‘kics/assets/queries/terraform/aws‘. Remember the query file tree structure

in Section 3.3.5 and see the content of the metadata.json and the query.rego for this query:

• metadata.json

{

"id": "c91d7ea0-d4d1-403b-8fe1-c9961ac082c5",

"queryName": "Neptune Cluster With IAM Database Authentication Disabled",

"severity": "MEDIUM",

"category": "Access Control",

"descriptionText": "Neptune Cluster should have IAM Database Authentication enabled",

"descriptionUrl": "https://registry.terraform.io/providers/hashicorp/aws/latest/docs/

resources/neptune_cluster#storage_encrypted",

"platform": "Terraform",

"descriptionID": "88b26e61",

"cloudProvider": "aws"

}

Listing 15: metadata.json of the query ”Neptune Cluster With IAM Database Authentication Disabled”.

5.2. Development of the Security Queries 71

• query.rego: In this query example, to verify if the field ‘iam_database_authentication_enabled‘ is

enabled in the resource ‘aws_neptune_cluster‘, it is necessary to check if the field is undefined or

set to false.

package Cx

CxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster[name]

object.get(password_policy, "iam_database_authentication_enabled",

"undefined") == "undefined"

result := {

"documentId": input.document[i].id,

"searchKey": sprintf("aws_neptune_cluster[%s]", [name]),

"issueType": "MissingAttribute",

"keyExpectedValue": "'iam_database_authentication_enabled' is set to true",

"keyActualValue": "'iam_database_authentication_enabled' is undefined",

}

}

CxPolicy[result] {

password_policy := input.document[i].resource.aws_neptune_cluster[name]

password_policy.iam_database_authentication_enabled == false

result := {

"documentId": input.document[i].id,

"searchKey": sprintf("aws_neptune_cluster[%s].iam_database_authentication_enabled", [

name]),

"issueType": "IncorrectValue",

"keyExpectedValue": "'iam_database_authentication_enabled' is set to true",

"keyActualValue": "'iam_database_authentication_enabled' is set to false",

}

}

Listing 16: query.rego of the query ”Neptune Cluster With IAM Database Authentication Disabled”.

5.3. Tests 72

5.3 Te s t s

As mentioned in the previous section and in Section 3.3.5, a KICS query is also composed of the test folder.

For testing proposes, KICS requires that each query should have a folder named ”test”. This folder should

contain positive and negative IaC samples as test cases. Additionally, it should have a JSON file with the

expected results of the query against the samples. See the Listening 17.

- test

| |- positive<.ext>

| |- negative<.ext>

| |- positive_expected_result.json

Listing 17: Test folder tree.

The positive samples present vulnerable configurations that the security query should find. Focusing

on query [AWS_AC_24] ”Neptune Cluster With IAM Database Authentication Disabled” for Terraform, for

example, ”positive1.tf” should set a resource ’aws_neptune_cluster’ with ’iam_database_authentication_-

enabled’ undefined. See the Listing 18.

resource "aws_neptune_cluster" "positive1" {

cluster_identifier = "neptune-cluster-demo"

engine = "neptune"

backup_retention_period = 5

preferred_backup_window = "07:00-09:00"

skip_final_snapshot = true

apply_immediately = true

storage_encrypted = true

}

Listing 18: Positive sample example (’positive1.tf’).

Additionally, ”positive2.tf” should set a ’aws_neptune_cluster’ with ’iam_database_authentication_en-

abled’ set to false, for example. See the Listing 19.

resource "aws_neptune_cluster" "positive2" {

cluster_identifier = "neptune-cluster-demo"

engine = "neptune"

iam_database_authentication_enabled = false

backup_retention_period = 5

5.3. Tests 73

preferred_backup_window = "07:00-09:00"

skip_final_snapshot = true

apply_immediately = true

storage_encrypted = true

}

Listing 19: Positive sample example (’positive2.tf’).

On the other hand, negative samples suggest a recommended configuration to avoid the vulnerability.

In the present case, ’negative.tf’ should set a ’aws_neptune_cluster’ with ’iam_database_authentication_-

enabled’ set to true. As an example, see the Listing 20.

resource "aws_neptune_cluster" "negative" {

cluster_identifier = "neptune-cluster-demo"

engine = "neptune"

iam_database_authentication_enabled = true

backup_retention_period = 5

preferred_backup_window = "07:00-09:00"

skip_final_snapshot = true

apply_immediately = true

storage_encrypted = true

}

Listing 20: Negative sample example (’negative.tf’).

Finally, it should also contain the ’positive_expected_result.json’, which indicates where the positives

files have the vulnerability. As an example, see the Listing 21.

[

{

"queryName": "Neptune Cluster With IAM Database Authentication Disabled",

"severity": "MEDIUM",

"line": 1,

"fileName": "positive1.tf"

},

{

"queryName": "Neptune Cluster With IAM Database Authentication Disabled",

"severity": "MEDIUM",

5.4. Creation of the Pull Request 74

"line": 4,

"fileName": "positive2.tf"

}

]

Listing 21: Positive expected result sample example (’positive_expected_result.json’).

The test folder is essential for the validation of the query. When running the test folder of the query

against the target query, it is expected that the scan returns the results presented in the ‘positive_expected_-

result.json‘. To test that, the command ‘go run –tags dev ./cmd/console/main.go scan -p <query_query>

-q <query_path>‘ needs to be run inside the ‘kics‘ folder.

Additionally to that, it is necessary to run the command ‘go test ./test‘ to ensure that the query follows

all the KICS requirements. However, in the KICS GitHub pull request, there are KICS GitHub actions that

verify if the query follows all the requirements.

5.4 C r e a t i o n o f t h e P u l l R e qu e s t

The security query should pass all the KICS queries tests to be ready for the pull request. After that, the

following steps are required:

1. Commit and push the changes.

2. Submit the pull request on KICS GitHub repository.

Figure 9: Pull request.

5.5. Contribution Overview 75

3. Wait for the pull request review.

4. Wait for the merge of the pull request.

5.5 C o n t r i b u t i o n O v e r v i ew

In total, the work done in this dissertation contributes 71 new security queries to KICS, 34 of them for

Terraform, 20 for Ansible, and 17 for CloudFormation. Table 50 presents all the security queries contributed

to KICS, including the KICS GitHub pull request(s) related to each one.

The comparison of these values can only be considered fair between the same cloud provider(s) as the

target of the dissertation study (AWS, AZURE, and GCP). From the 34 queries implemented for Terraform,

20 are related to AWS, 5 to AZURE, and 9 to GCP. On the other hand, from the 20 queries implemented for

Ansible, 14 are related to AWS, 1 to AZURE, and 5 to GCP. As CloudFormation only covers AWS, all the 17

queries are related to AWS.

Overall, there are no significant discrepancies between the number of queries per cloud provider. How-

ever, Terraform stands out in all of them. The higher value for Terraform seems to suggest that this platform

provides more relevant information about cloud services than the others.

5.5. Contribution Overview 76

Table 50: List of security queries contributed to KICS.

P
la
tf
o
rm

s
P
u
ll
R
e
q
u
e
st
(s
)

A
n
si
b
le

C
lo
u
d
Fo

rm
at
io
n

Te
rr
af
or
m

[A
W
S
_
A
C
_
0
8
]
A
P
I
G
at
ew

ay
w
ith

ou
t
W
A
F

3
3

3
#
4
5
4
7

[A
W
S
_
A
C
_
10

]
A
P
I
G
at
ew

ay
W
ith

ou
t
C
on

fig
u
re
d
A
u
th
or
iz
er

3
3

3
#
2
9
6
0
#
4
7
2
7

[A
W
S
_
A
C
_
11

]
C
er
tif
ic
at
e
H
as

E
xp
ir
ed

3
3

#
2
9
6
0
#
4
0
4
4

[A
W
S
_
A
C
_
1
8
]
E
la
st
ic
se
ar
ch

W
ith

ou
t
IA
M

A
u
th
en

tic
at
io
n

3
3

#
4
6
8
9

[A
W
S
_
A
C
_
24

]
N
ep

tu
n
e
C
lu
st
er

W
ith

IA
M

D
at
ab

as
e
A
u
th
en

tic
at
io
n
D
is
ab

le
d

3
3

#
3
6
5
4

[A
W
S
_
A
C
_
3
2
]
S
E
S
P
ol
ic
y
W
ith

A
llo
w
ed

IA
M

A
ct
io
n
s

3
3

#
4
5
4
8

[A
W
S
_
A
C
_
3
5
]
IA
M

A
cc
es
s
A
n
al
yz
er

U
n
d
ef
in
ed

3
3

#
4
6
6
0
#
4
7
7
2

[A
W
S
_
A
C
_
41

]
IA
M

G
ro
u
p
W
ith

ou
t
U
se
rs

3
3

3
#
3
81

5
[A
W
S
_
A
C
_
5
3
]
C
ro
ss
-A
cc
ou

n
t
IA
M

A
ss
u
m
e
R
ol
e
P
ol
ic
y
W
ith

ou
t
E
xt
er
n
al
Id

or
M
FA

3
3

3
#
4
5
4
6

[A
W
S
_
A
C
_
6
6
]
C
er
tif
ic
at
e
R
S
A
K
ey

B
yt
es

Lo
w
er

T
h
an

2
5
6

3
3

#
2
9
6
0
#
3
0
8
9

[A
W
S
_
N
S
_
0
5
]
D
ef
au

lt
E
C
2
se
cu

ri
ty

gr
ou

p
ar
e
in

u
se

3
3

3
#
4
5
7
0

[A
W
S
_
N
S
_
0
7
]
D
ef
au

lt
V
P
C
in

u
se

fo
r
E
C
2
in
st
an

ce
3

3
3

#
4
7
3
8

[A
W
S
_
N
S
_
4
9
]
E
la
st
ic
M
ap

R
ed

u
ce

W
ith

ou
t
V
P
C

3
3

#
4
5
71

[A
W
S
_
N
S
_
5
0
]
E
la
st
iC
ac
h
e
W
ith

ou
t
V
P
C

3
3

3
#
4
5
7
2

[A
W
S
_
N
S
_
51

]
E
la
st
iC
ac
h
e
U
si
n
g
D
ef
au

lt
P
or
t

3
3

3
#
4
5
24

[A
W
S
_
N
S
_
5
6
]
V
P
C
W
ith

ou
t
N
et
w
or
k
F
ir
ew

al
l

3
3

#
4
5
6
9

[A
W
S
_
N
S
_
5
7
]
R
D
S
A
ss
oc
ia
te
d
w
ith

P
u
b
lic

S
u
b
n
et

3
3

3
#
4
7
3
7

[A
W
S
_
N
S
_
5
8
]
R
el
at
io
n
al

D
at
ab

as
e
S
er
vi
ce

(R
D
S
)
U
si
n
g
D
ef
au

lt
P
or
t

3
3

3
#
4
5
2
2

[A
W
S
_
N
S
_
61

]
R
ed

sh
if
t
U
si
n
g
D
ef
au

lt
P
or
t

3
3

3
#
4
6
5
6

[A
W
S
_
N
S
_
74

]
S
h
ie
ld

A
d
va
n
ce
d
N
ot

In
U
se

3
3

#
4
5
4
5

[A
ZU

R
E
_
A
C
_
21

]
R
ol
e
A
ss
ig
n
m
en

t
N
ot

Li
m
it
G
u
es
t
U
se
r
P
er
m
is
si
on

s
3

#
3
8
0
5

[A
ZU

R
E
_
A
C
_
2
2
]
R
ol
e
D
ef
in
iti
on

A
llo
w
s
C
u
st
om

R
ol
e
C
re
at
io
n

3
3

#
3
6
6
0
#
5
41
7

[A
ZU

R
E
_
A
C
_
2
9
]
S
to
ra
ge

S
h
ar
e
F
ile

A
llo
w
s
A
ll
A
C
L
P
er
m
is
si
on

s
3

#
3
6
5
6

[A
ZU

R
E
_
A
C
_
3
9
]
S
to
ra
ge

Ta
b
le

A
llo
w
s
A
ll
A
C
L
P
er
m
is
si
on

s
3

#
3
6
5
8

[A
ZU

R
E
_
N
S
_
2
9
]
V
ir
tu
al

N
et
w
or
k
w
ith

D
D
oS

P
ro
te
ct
io
n
P
la
n
D
is
ab

le
d

3
#
4
5
0
9

[G
C
P
_
A
C
_
13

]
S
er
vi
ce

A
cc
ou

n
t
W
ith

Im
p
ro
p
er

P
ri
vi
le
ge
s

3
#
4
51

6
[G
C
P
_
A
C
_
16

]
IA
M

R
ol
e
A
ss
ig
n
ed

to
U
se
r

3
#
4
51

7
[G
C
P
_
A
C
_
17

]
U
se
r
w
ith

K
M
S
A
d
m
in

an
d
C
ry
p
to
K
ey

R
ol
es

3
#
4
6
5
7

[G
C
P
_
A
C
_
21

]
K
M
S
C
ry
p
to

K
ey

is
P
u
b
lic
ly
A
cc
es
si
b
le

3
#
4
51
4

[G
C
P
_
A
C
_
2
3
]
C
on

ta
in
er

C
lu
st
er

U
si
n
g
D
ef
au

lt
S
er
vi
ce

A
cc
ou

n
t

3
3

#
4
51

5
[G
C
P
_
N
S
_
0
6
]
C
om

p
u
te

N
et
w
or
k
u
se
s
a
d
ef
au

lt
fir
ew

al
lr
u
le

3
3

#
4
51

3
[G
C
P
_
N
S
_
0
7
]
G
oo

gl
e
C
om

p
u
te

N
et
w
or
k
U
si
n
g
F
ir
ew

al
lR

u
le

th
at

A
llo
w
s
A
ll
P
or
ts

3
3

#
4
51

2
[G
C
P
_
N
S
_
0
8
]
G
oo

gl
e
C
om

p
u
te

N
et
w
or
k
U
si
n
g
F
ir
ew

al
lR

u
le

th
at

A
llo
w
s
P
or
t
R
an

ge
3

3
#
4
51
1

[G
C
P
_
N
S
_
4
3
]
C
om

p
u
te

S
u
b
n
et
w
or
k
w
ith

P
ri
va
te

G
oo

gl
e
A
cc
es
s
D
is
ab

le
d

3
3

#
4
51

0

https://github.com/Checkmarx/kics/pull/4547
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/4727
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/4044
https://github.com/Checkmarx/kics/pull/4689
https://github.com/Checkmarx/kics/pull/3654
https://github.com/Checkmarx/kics/pull/4548
https://github.com/Checkmarx/kics/pull/4660
https://github.com/Checkmarx/kics/pull/4772
https://github.com/Checkmarx/kics/pull/3815
https://github.com/Checkmarx/kics/pull/4546
https://github.com/Checkmarx/kics/pull/2960
https://github.com/Checkmarx/kics/pull/3089
https://github.com/Checkmarx/kics/pull/4570
https://github.com/Checkmarx/kics/pull/4738
https://github.com/Checkmarx/kics/pull/4571
https://github.com/Checkmarx/kics/pull/4572
https://github.com/Checkmarx/kics/pull/4524
https://github.com/Checkmarx/kics/pull/4569
https://github.com/Checkmarx/kics/pull/4737
https://github.com/Checkmarx/kics/pull/4522
https://github.com/Checkmarx/kics/pull/4656
https://github.com/Checkmarx/kics/pull/4545
https://github.com/Checkmarx/kics/pull/3805
https://github.com/Checkmarx/kics/pull/3660
https://github.com/Checkmarx/kics/pull/5417
https://github.com/Checkmarx/kics/pull/3656
https://github.com/Checkmarx/kics/pull/3658
https://github.com/Checkmarx/kics/pull/4509
https://github.com/Checkmarx/kics/pull/4516
https://github.com/Checkmarx/kics/pull/4517
https://github.com/Checkmarx/kics/pull/4657
https://github.com/Checkmarx/kics/pull/4514
https://github.com/Checkmarx/kics/pull/4515
https://github.com/Checkmarx/kics/pull/4513
https://github.com/Checkmarx/kics/pull/4512
https://github.com/Checkmarx/kics/pull/4511
https://github.com/Checkmarx/kics/pull/4510

6

C O N C L U S I O N S A N D F U T U R E WO R K

This chapter presents the conclusions of this dissertation, focusing on contributions to KICS and the prospect

for future work.

6.1 C o n c l u s i o n s

By analyzing misconfiguration and non-compliance problems in Infrastructure as Code, this dissertation

proves the viability of adapting relevant security queries that were only collected by dynamic analysis tools

for cloud-based infrastructure to static analysis tools for IaC. The 150 security queries that the present

study reports as a gap between static analysis tools for IaC and dynamic analysis tools for cloud-based

infrastructure in Access Control and Network Security context supports this statement.

This study contributes around 23% of the collected security queries to KICS for at least one platform,

resulting in 71 new security queries to this open source tool. Although the percentage is one-third of the

total, this value validates the dissertation study.

This discussion also raises relevant observations regarding 77% of the collected security queries. This

value reflects the discarding process that identified a set of reasons that result in four scopes: (i) dynamic

scope related to information that can be only accessible in a dynamic environment, (ii) known IaC scope

related to similar information already available in an IaC static approach for the same resource, (iii) inappli-

cable IaC scope related to information that does not make sense to implement in an IaC static approach,

(iv) unknown scope related to information that seems to not be accessible in an IaC static approach until

the moment.

All the scopes mentioned above sustain strong motives responsible for 77% of the collected security

queries without a solution. It also reveals how challenging it can be to find the exploited scope that fills the

collected security queries with solutions (in this study, represented by 23%).

In conclusion, the contribution of 23% of the collected queries to KICS not only validates this work but

can also be considered a successful achievement.

77

6.2. Future Work 78

6.2 Fu t u r e Wo r k

As a prospect for future work, the case study of this dissertation can take the following approaches:

• Cover other fields: The present case study covers Access Control and Network Security contexts,

which mainly focuses on security query categories like Access Control and Network Security. It would

also be relevant to cover many others, such as Backup, Encryption, etc. (see Section 2.1.4).

• Cross results in the same context: The results of the case study are grouped in tables accord-

ingly to the cloud provider and security query category, as can be seen in Section 3.1.2. These tables

are analyzed individually.

Another approach can be crossing the tables related to the same security query category. For ex-

ample, focus on the tables associated with Access Control context (Tables 6, 7, 8, and 9). Tables 6

and 7 are related to AWS, Table 8 to AZURE, and Table 9 to GCP. The collected security queries in

Table 6 and Table 7 (AWS), if not implemented either in Table 8 (AZURE) or Table 9 (GCP), can be

collected for implementation in either AZURE or GCP context and vice-versa.

• Cover other platforms: Platforms like Docker and Kubernetes, for example, are potential targets

to compare the security queries covered by dynamic analysis for cloud-based infrastructure and static

analysis tools for IaC.

• Repeat the same case study in the future: Technology is moving at a fast pace. Updates of

the tools are constant, which almost certainly include new security queries. The repetition of the

case study, some time from now, can result in the collection of new security queries only covered by

dynamic analysis tools for cloud-based infrastructure.

R E F E R E N C E S

Almuairfi, S. and Alenezi, M. (2020), ‘Security controls in infrastructure as code’, Computer Fraud Security

(10), 13 – 19.

URL: https://www.sciencedirect.com/science/article/pii/S1361372320301093

Bai, X., Li, M., Chen, B., Tsai, W. and Gao, J. (2011), Cloud testing tools, in ‘Proceedings of 2011 IEEE 6th

International Symposium on Service Oriented System (SOSE)’, pp. 1–12.

Brikman, Y. (2019), Terraform: Up & Running: Writing Infrastructure as Code, O’Reilly Media.

URL: https://books.google.pt/books?id=57ytDwAAQBAJ

Guerriero, M., Garriga, M., Tamburri, D. A. and Palomba, F. (2019), Adoption, support, and challenges

of infrastructure-as-code: Insights from industry, in ‘2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME)’, pp. 580–589.

Rahman, A., Mahdavi-Hezaveh, R. and Williams, L. (2019), ‘A systematic mapping study of infrastructure

as code research’, Information and Software Technology pp. 65 – 77.

URL: http://www.sciencedirect.com/science/article/pii/S0950584918302507

Rahman, A., Parnin, C. and Williams, L. (2019), The seven sins: Security smells in infrastructure as code

scripts, in ‘2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)’, pp. 164–175.

Schwarz, J., Steffens, A. and Lichter, H. (2018), Code smells in infrastructure as code, in ‘2018 11th Inter-

national Conference on the Quality of Information and Communications Technology (QUATIC)’, pp. 220–

228.

Sharma, T., Fragkoulis, M. and Spinellis, D. (2016), Does your configuration code smell?, pp. 189–200.

Silva, C. E. and Campos, J. C. (2013), ‘Combining static and dynamic analysis for the reverse engineering of

web applications’, Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive computing

systems - EICS 13 .

79

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Methodology Approach
	1.5 Document Structure

	2 Infrastructure as Code
	2.1 Main Concepts
	2.1.1 Infrastructure as Code
	2.1.2 Code and Security Smells
	2.1.3 IaC Misconfiguration and Non-Compliance Problems
	2.1.4 Security Query
	2.1.5 Static Analysis vs. Dynamic Analysis

	2.2 Related Work
	2.2.1 Prior Work on IaC Scripts
	2.2.2 Scanning IaC Scripts using Static Code Analysis Tools
	2.2.3 Dynamic Analysis Tools for Cloud-Based Infrastructure
	2.2.3.1 Commercial Tools
	2.2.3.2 Open Source Tools

	2.3 Summary

	3 KICS: A Case Study
	3.1 Static Analysis Tools vs. Dynamic Analysis Tools
	3.1.1 Methodology
	3.1.2 Results

	3.2 Why KICS
	3.3 KICS Overview
	3.3.1 Architecture
	3.3.2 Command Line Interface
	3.3.3 Core
	3.3.4 IaC Solutions
	3.3.5 Queries Execution Engine
	3.3.6 Results

	3.4 The Problem
	3.5 Challenges
	3.5.1 Filtration of the Collected Security Queries
	3.5.2 Implementation of the Selected Security Queries

	3.6 Summary

	4 Fitting New Security Queries Into KICS
	4.1 Introduction
	4.2 Implementing the Security Queries
	4.2.1 [AWS_AC_08] API Gateway without WAF
	4.2.2 [AWS_AC_10] API Gateway Without Configured Authorizer
	4.2.3 [AWS_AC_11] Certificate Has Expired & [AWS_AC_66] Certificate RSA Key Bytes Lower Than 256
	4.2.4 [AWS_AC_18] Elasticsearch Without IAM Authentication
	4.2.5 [AWS_AC_24] Neptune Cluster With IAM Database Authentication Disabled
	4.2.6 [AWS_AC_32] SES Policy With Allowed IAM Actions
	4.2.7 [AWS_AC_35] IAM Access Analyzer Undefined
	4.2.8 [AWS_AC_41] IAM Group Without Users
	4.2.9 [AWS_AC_53] Cross-Account IAM Assume Role Policy Without ExternalId or MFA
	4.2.10 [AWS_NS_05] Default EC2 security group are in use & [AWS_NS_07] Default VPC in use for EC2 instance
	4.2.11 [AWS_NS_49] Elastic MapReduce Without VPC & [AWS_NS_50] ElastiCache Without VPC
	4.2.12 [AWS_NS_51] ElastiCache Using Default Port & [AWS_NS_58] Relational Database Service (RDS) Using Default Port & [AWS_NS_61] Redshift Using Default Port
	4.2.13 [AWS_NS_56] VPC Without Network Firewall
	4.2.14 [AWS_NS_57] RDS Associated with Public Subnet
	4.2.15 [AWS_NS_74] Shield Advanced Not In Use
	4.2.16 [AZURE_AC_21] Role Assignment Not Limit Guest User Permissions
	4.2.17 [AZURE_AC_22] Role Definition Allows Custom Role Creation
	4.2.18 [AZURE_AC_29] Storage Share File Allows All ACL Permissions
	4.2.19 [AZURE_AC_39] Storage Table Allows All ACL Permissions
	4.2.20 [AZURE_NS_29] Virtual Network with DDoS Protection Plan Disabled
	4.2.21 [GCP_AC_13] Service Account With Improper Privileges
	4.2.22 [GCP_AC_16] IAM Role Assigned to User
	4.2.23 [GCP_AC_17] User with KMS Admin and CryptoKey Roles
	4.2.24 [GCP_AC_21] KMS Crypto Key is Publicly Accessible
	4.2.25 [GCP_AC_23] Container Cluster Using Default Service Account
	4.2.26 [GCP_NS_06] Google Compute Network Using Default Firewall Rule
	4.2.27 [GCP_NS_07] Google Compute Network Using Firewall Rule that Allows All Ports & [GCP_NS_08] Google Compute Network Using Firewall Rule that Allows Port Range
	4.2.28 [GCP_NS_43] Compute Subnetwork with Private Google Access Disabled

	4.3 Discarded Queries
	4.4 Summary

	5 Extending KICS
	5.1 Setup of the KICS Development Environment
	5.2 Development of the Security Queries
	5.2.1 Metadata File
	5.2.2 Query File
	5.2.3 Security Query Development Example

	5.3 Tests
	5.4 Creation of the Pull Request
	5.5 Contribution Overview

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future Work

	References

