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Resumo

Estudo dos mecanismos de fricção entre superfícies texturizadas

A necessidade de reduzir o impacto ambiental das atividades humanas lidera o esforço coletivo na procura

pela redução do atrito entre as partes móveis em contato lubrificado em dispositivos mecânicos, como

motores de combustão. Entre as várias soluções possíveis, a investigação em tribologia identificou as téc-

nicas de texturização de superfície entre as mais promissoras na redução do atrito. Nesse sentido grande

parte dos esforços científicos tem sido na procura pela melhor textura que reduza a fricção para uma de-

terminada aplicação. Embora tenham sido testadas diversas texturas com padrões regulares e também

texturas inspiradas na natureza, a identificação da textura otíma é puramente baseada em abordagens

de tentativa e erro. Estas experiências tem um custo em tempo e também monetário intrínsecamente

associado, o que torna este problema de otimização ineficiente. Métodos numéricos podem certamente

acelerar este processo, mas ainda assim o problema de otimização da textura é demasiado complexo

para ser resolvido diretamente, devido ao tamanho do conjunto de texturas possíveis e pela relação não

óbvia entre texturas e atrito.

Nesta tese, desenvolvemos e aplicamos uma ferramenta baseada em aprendizagem automática para

superar estas limitações e resolver o problema de otimização da textura. A nossa abordagem consiste na

implementação de uma rede neuronal (DNN) capaz de previsões precisas em comparação com aborda-

gens experimentais e numéricas, estas tipicamente são lentas e ineficazes à base de tentativa e erro. Para

gerar o conjunto de dados para treino da DNN de forma precisa e rápida, desenvolvemos uma ferramenta

baseada no método de elementos finitos para a resolução da equação de Reynolds. A nossa imple-

mentação resulta na produção de resultados até duas ordens de magnitude mais rápidamente quando

comparadas às alternativas na literatura. Graças à inclusão da iteração inexata de Newton que permite

um tratamento correto dos limites das regiões de cavitação conseguimos a obtenção de resultados fisi-

camente robustos. Finalmente, usamos a DNN para calcular o atrito para todos os padrões possíveis no

espaço de configuração da textura, reduzindo assim o problema de otimização da textura a uma simples

operação de procura de informação.

O objetivo desta tese é demonstrar como as técnicas numéricas e de aprendizagem automática podem

resolver problemas de outra forma intratáveis, mas também apresentar a aprendizagem automática como

uma opção viável e bem-sucedida na investigação em física, particularmente em problemas de otimização.

Palavras-chave: fricção, texturização, tribologia, método dos elementos finitos, aprendizagem automática.
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Abstract

Study of friction mechanisms between texturized surfaces

The need of reducing the environmental footprint of human activities is leading the demand for friction

reduction between moving parts in lubricated contact in mechanical devices, such as combustion engines.

Within the various possibilities, research on tribology has identified surface texturing techniques among

the most promising ones. In this regard, much effort is put in looking for the best friction-reducing texture

in a specific application. Even if diverse textures, from regular patterns to nature-inspired ones, have

been tested, the identification of the best performing one is still based upon a trial and error approach.

Such experiments have a high cost in time and money, and are intrinsically unable to find the best friction-

reducing pattern. Numerical methods can certainly speed up this process, but still the texture optimization

problem is too complex to be directly solved, because of the size of the set of possible textures and by the

non obvious relationship between textures and friction.

In this thesis, we develop and apply a machine learning based tool to overcome these limitations

and solve the texture optimization problem. Our machine learning approach consists in a deep neural

network (DNN) capable of accurate predictions compared to otherwise slow and ineffective trial-and-error

experimental and numerical approaches. To generate the necessary training data set for the DNN in

an accurate and fast way, we developed a finite element method solver for the Reynolds equation. Our

implementation results in speedups of up to two orders of magnitude when compared to alternatives in

literature, while remaining physically accurate thanks to the inclusion of the Inexact Newton iteration that

allows for a correct treatment of the cavitation boundaries. Finally, we use the DNN to solve the inverse

problem, by calculating the coefficient of friction curve for all the possible patterns in the given texture

space, thereby reducing the texture optimization problem to a simple data search.

The aim of this thesis is not only to demonstrate how numerical and machine learning techniques can

solve otherwise untractable problems, but also to introduce machine learning as a viable and successful

option in physics research, particularly in optimization problems.

Keywords: friction, texturing, tribology, finite element method, machine learning.
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Chapter 1

Introduction

Friction and wear are ubiquitous phenomena and have profound and tangible effects in our environment.

On a large scale, they contribute in shaping our world through a large series of phenomena, which directly

affects our environment. For instance, the consistent erosion from high velocity flow on the river bed

causes rivers to change their course [3]; the erosion of seabed causes its roughness to change, inducing

alterations on wave formation patterns [4, 5] which must be taken into account for seaside construction

safety. The presence of friction is fundamental to interact with the environment: without it we could not

walk or hold any object, making our living impossible. As humans, we even evolved to detect friction with

our tongue, for example, to avoid foods that could wear our teeth significantly [6].

As friction is a natural component of our world, animals have learned how to adapt to it through

many methods, through millions of years of evolution. Common fishes display remarkable capabilities of

reducing drag while swimming by secreting mucous, studies have shown that some species are capable

of reducing drag by up to 66% [7] improving swimming speed, stamina and helping with safety from

predators. The top part of the body of orcas, sharks, manta rays and dusky dolphins evolved to be darker

when compared to the bottom part of their body, so that, by absorbing a higher quantity of radiation

thus increasing their skin temperature they alter the conditions of boundary flow. Interestingly, numerical

calculations in [8] demonstrated that this coloring scheme actually reduces drag.

Apart from color and substances secretion, one of the most effective way in which nature controls

friction is by surface texturing. The skin of snakes and certain lizards developed scales that reduce dry

contact friction, the effect of which has been successfully replicated experimentally with different materials

and has been shown to provide a significant friction reduction [9]. The same reduction has been observed

in sharks, whose skin is covered by denticles which, combined with the secretion of mucous, provides an

effective drag reduction [10]. Conversely, specific patterns found in tree toads feet have been shown to

1



Chapter 1 Section 1.0

increase friction, thus granting them a better grip on vertical surfaces [11], the same principle is behind

the amazing capability of geckos to get grip and walk on glass [12]. Hence, nature through evolution,

found that surface texturing is an extremely effective way to control friction, both in reducing it as for

water-based life, or to increase it to allow grip on vertical surfaces. As we will see below, one of the most

important fields in which we can draw inspiration from nature is surface engineering.

Concerning our activity as humans, friction reduction is nowadays more important than ever, since

it directly relates with the reduction of our environmental impact. Transportation is one of the largest

industries, as well as one of the most responsible ones in polluting emissions, and more than a third of all

fuel energy in passenger cars worldwide is used with the sole purpose of overcoming friction forces [13].

Advancements in the study of friction and wear, termed tribology by Jost [14], allowed us to consis-

tently perform measurements of these quantities in controlled laboratory conditions, and opened the way

to the study of those mechanism that could reduce - or increase - friction[15]. Tribometers in configura-

tions such as pin-on-disc with lubricated contacting surfaces were a major developments in experimental

tribology [16]. By quantifying friction as a function of the relative sliding speed of the contacting surfaces,

a curve that is a major fundamental concept in tribology [17] can be drawn. The Stribeck curve, as it is

called, allowed for direct experimental insight into the different regimes of friction [18].

The main advancement of tribology as a field began mainly as an effort to reduce overall costs within

the industrial sectors, in particular the transportation and energy sectors [19]. Through means of careful

analysis of the current methodology available in tribology, the report by Jost et al. [14] and many following

studies [20, 21] estimated potential savings in terms of total GDP of up to 1.4% [22] in industrialized

countries. Particularly, in the transportation, energy and utilities sectors, where the application of new

friction and wear reducing techniques were estimated to potentially save upwards of 11% of total energy

expenses in first world countries [20, 22]. The combined impact in industry led to a rampant investment

in research and development of new techniques that were proven to be incredible return-on-investment

opportunities [19]. Quite recently in fact, research and development into environmentally friendly options

came to the forefront in friction optimization due to European legislation (EURO 6) within the automobile

industry additives banning the use of lubricants and surface coatings containing substances such as

phosphorus and zinc [23]. Concerning its potential impact, advances in the field of tribology are important

in addressing environmental and economical challenges as a society.

The reduction of friction between lubricated parts in contact within mechanical equipment, such as

engine pistons and bearings, increasing their lifetimes and reducing friction losses is one of the fields

in which tribology is more active [24]. In the interest of this goal, research on tribology has developed
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different approaches such as the use of surface coatings [25, 26], research and devolopment of novel

lubricant formulations [26] and finally the application of surface modification techniques [27]. There has

also been a push in tribology research for the combination of multiple techniques [28].

As a matter of fact, thanks to advances in texturing techniques [21] leading to more efficient textured

surface generation processes, and its environmentally friendly nature, surface texturing has been launched

into the front-line of the global research effort in tribology [18]. Surface texturing combined with lubrication

provides a very wide range of possible parameters that have a great impact on the overall performance of

the system in contact [29]. When the goal is the optimization of a certain process, a wide variety of degrees

of freedom is generally preferred, turning surface texturing into a major candidate for friction reduction,

and even nature-inspired textures have been employed successfully [11]. However, the study of textured

surfaces is a process with high associated costs, which typically requires pristine laser textured samples

and complex experimental setups. Moreover, it is affected by substandard reproducibility of results, be-

cause the samples are subject to significant wear at every experimental run, which can significantly affect

the outcomes [30].

Due to this, research and the resulting literature within the field of surface texturing has largely moved

to a combination of numerical and experimental work [18]. Numerical simulations offer a natural way

to tackle this problem, being significantly cheaper, faster and more easily reproducible with respect to

experiments. The easy numerical representation of textured samples is also a major point as it allows

us, for example, to easily reproduce experiments with bio-inspired textures [9] that are typically hard to

manufacture and therefore experimentally harder to test.

There is a growing interest in numerical simulations [18] to perform the texture optimization of hydro-

dynamic lubrication problems by solving simplified models that use the Reynolds equation [31] derived

from the more general, and computationally much more demanding, Navier-Stokes equations [32]. In

[33], a finite element solver for the contact mechanics was employed together with a Reynolds equation

solver to solve complex elastic-hydrodynamic (EHD) systems. Through coupling of the governing Reynolds

equation with an energy equation, thermodynamic effects were also considered by Habchi et al. [34] for

Newtonian fluids. The full compressible Navier-Stokes equations were also solved by Bruyere et al. [35]

providing full physical description even across the lubrication film height. Effective methods combining

both experimental and numerical work have also been developed to predict friction in pin-on-disc systems

[36, 37] allowing also the study of a surface design made by rows of dimples, which are essentially wells

in the material carved in by laser pulses. These dimples were placed on a texture with a particular shift

between consecutive rows, and it was shown that there is an optimal shift value that minimizes friction
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within the mixed lubrication regime. Other parameters are also commonly considered in research works,

such as dimple shape, dimple density, dimple depth and dimple radius [21, 37, 38, 39]. In any case, a

consensus on the underlying mechanisms behind friction reduction has not been reached within the sci-

entific community. Moreover, neither of the above attempts at an approach to the optimization problem,

that is, finding the best friction-reducing texture given a set of changing texture-defining parameters have

been successful. One should calculate the Stribeck curve for every possible texture, the number of which

can be exceedingly large to attempt a solution with standard numerical techniques.

In some of the previously mentioned numerical methods, a common pitfall in terms of physical ac-

curacy is the exclusion of considerations about cavitation, as the pressure drop in the lubricant film can

lead to the formation of vapor-filled cavities [40]. These cavities are crucial when combating friction and

especially wear as they are one of the major driving forces behind the wearing out of contacting surfaces

[41]. This exclusion from the numerical problem is due to the sharp increase in complexity required by its

presence. The proper treatment of cavitation boundaries drastically changes the nature of the numerical

problem into what is commonly known as a linear complementarity problem [42]. With increased compu-

tational complexity the required computational power also increases, because in this case the numerical

problem requires a more careful treatment which typically leads to slower convergence [2, 43].

The introduction of exact treatments of cavitation boundaries, as the Fischer-Burmeister-Newton-Schur

(FBNS) algorithm [44] represented an important step in solving lubricated contact problems by developing

a mass-conserving cavitation scheme, which was further improved with the introduction of the inexact

Newton iteration (INE) [2]. Unlike the former, the latter ensures that the non-negativity conditions of the

linear complementarity problem are correctly treated, meaning that the solution is always reasonable from

a physical point of view. In addition, the INE method presents an overall speed increase over previous

methods, such as FBNS, of up to two orders of magnitude [2]. However, even considering the most recent

advances in numerical methods, such as the INE implementation, the finding of an optimal texture within

a texture optimization technique remains out of reach for classical approaches.

Machine learning encompasses a range of algorithms and modeling tools used for large data process-

ing tasks and it is still relatively new as a wide-spread tool for physics research [45, 46]. It has two typical

applications, being classification and regression problems. For example, in [47], a network was trained

in order to attempt the classification of the phases of matter using Monte Carlo simulations of matter at

different phases and temperatures. Extrapolating this classification to configurations not present in the

training set lead to the possible determination of phase transitions and respective order parameters. In

[48], recurrent neural networks were used to predict trajectories of chaotic dynamical systems for use in
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weather prediction. In the field of optics, a deep neural network (DNN) was trained to replace, to a certain

degree, a complex solver for the Maxwell equations [49], and was shown to be extremely fast in providing

solutions.

The possibility of replacing complex systems of equations such as the Maxwell and Navier-Stokes

equations and their respective boundary conditions with simple deep neural networks is very appealing.

However, its success as a replacement for a fully fledged numerical simulation largely depends on the

quality of its training, which is still entirely a physics problem. As noted in [50], while we can develop

DNNs capable of accurately predicting results from a physics problem, the DNN itself is not capable of

learning physics, it is only capable of predicting trends based on past experience. Results obtained from

a DNN application should always be treated and regarded with this consideration in mind.

The aim of this thesis is to show how we can apply machine learning techniques to provide a fast

and accurate solution for the texture optimization problem. To our knowledge, this approach is novel

in the field of tribology. To achieve this, we will replace the traditional numerical method of solving the

Reynolds equations which governs hydrodynamic lubrication problems, with a deep neural network (DNN)

that, given a textured surface, is capable of predicting the corresponding Stribeck curves, with an accuracy

level comparable to direct solution methods, but in a tiny fraction of their solving time. Since good quality

data is required to train the DNN properly, we will develop a finite element method direct solver that is

faster than the existing implementations and correctly calculates the cavitation regions by implementing

the INE algorithm. Next, the direct solver will be used to generate the training data set and a DNN will

be trained upon it, its performance will be evaluated. Finally, we will show how the DNN can be used

to calculate the Stribeck curves for each one of the possible patterns in a 5x5 array of dimples, thereby

reducing the texture optimization problem to a data search, some notes on possible future work to do with

the texture optimization problem will also be given.
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Chapter 2

Theoretical foundations and methods

This chapter provides an introduction of the main concepts used in this thesis, and details the methods

adopted. Firstly, the definition of friction and wear, the different friction regimes in lubricated contacts

and the governing equations of the hydrodynamic lubricated contact are introduced. Then, the finite

element method technique is discussed and finally the main ideas behind machine learning and deep

neural networks, as well as how they are implemented, are given.

2.1 Friction and wear

Kinetic friction occurs when two surfaces in contact move relative to each other. When a normal force

FN is applied to the surfaces to press them together, a friction force Ff is generated, which is linearly

proportional to the normal force. The proportionality constant is known as the coefficient of friction µf :

Ff = µfFN . (2.1)

In most industrially relevant applications, lubricant is always used to reduce friction between moving

parts, where the lubricant is a fluid with desired characteristics. Thus, for the remainder of this work,

lubricated contacts will always be assumed, unless otherwise specified.

The coefficient of friction is typically measured using a tribometer, a device that recreates the sliding

motion of the surfaces and, given a known external load (the normal force), measures the friction force

Ff , allowing to derive the coefficient of friction. A diagram representing a tribometer is reported in figure

1. Its configuration depends on which of the surfaces are in motion, the direction of the motion and of

the type of contact, which can be conformal when the two surfaces are flat or non-conformal when one of

the surfaces is curved. A measurement of the applied load FN and the tangential force in the system Ff

allows us to compute the coefficient of friction µf .
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Figure 1: Schematic representation of a tribometer used to measure the coefficient of friction for a moving untextured

surface in contact with a still non-conformal surface.

Considering different sliding velocities U for fixed applied force and lubricant, the tribometer can be

used to measure the Stribeck curve, which reports the coefficient of friction as a function of the dimen-

sionless quantity H , termed the Hersey number and defined as:

H =
µU

FN

. (2.2)

0 0.2 0.4 0.6 0.8 1

·10−4

0

0.1

0.2

0.3

Boundary Mixed Hydrodynamic

H

µ
f

Figure 2: Stribeck curve as a function of the dimensionless Hersey number, the curve is split between three friction

regimes: boundary friction region; mixed friction region; hydrodynamic friction region;

A typical Stribeck curve is shown in figure 2, where three different regimes of friction can be clearly

distinguished. For low H , the boundary friction regime (in red) is characterized by a nearly dry contact,
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meaning that the surfaces are very close and there is almost no lubricant between them. In dry contacts,

friction forces are caused by the interlocking roughnesses of the two surfaces, yet at a deeper level,

interactions at the molecular scale are also relevant, including changes in the composition of the surfaces

due to reactions between themselves or with molecules present in the environment. At intermediate H ,

we can identify the mixed friction regime (in green). Although the surfaces can be regarded as still in

contact, a drop in friction is observed due to presence of a lubricant film between them, which provides

an additional hydrodynamic lift that counteracts the applied load. Finally, at large H , the hydrodynamic

friction regime (in blue) is characterized by the absence of contact between the surfaces, while the applied

load is entirely countered by the hydrodynamic lift of the lubricant. An increase in friction is observed

again, but in this case its origin is hydrodynamic.

2.2 Reynolds equation

2.2.1 Derivation from Navier-Stokes

Within the lubricant film, the Navier-Stokes equations provide the most accurate way to model the physics

of the fluid. However, with simple considerations in relation to hydrodynamic lubrication problems the

Navier-Stokes equations can be simplified into a more commonly utilized formulation. The Reynolds equa-

tion which follows from the Navier Stokes has two very important advantages, it is easier to implement

and less computationally complex [18].

0

100

0
50

100
150

0

1

2

h(x, z)

x
z

y

Figure 3: Schematic representation of the thin film height h(x, z) for two contacting rough surfaces. The charac-

teristic lengths for x and z are considered much bigger than h(x, z).
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Consider a thin film of lubricant between two surfaces, as represented in figure 3. The characteristic

dimensions of the surfaces are Lxz in the x and z direction. The function h(x, z) represents the distance

between the two surfaces in the y direction and defines a characteristic length Ly approximately equal to

the maximum value of h(x, z).

Assuming a steady-state and incompressible flow of the lubricant film it is possible to write the Navier-

Stokes equations as follows [51]:

{ ∇ · ~u = 0

ρ (~u ·∇) ~u+∇p = µ∇2~u ,

(2.3)

(2.4)

where ~u = (ux, uy, uz) is the lubricant flow velocity vector, p is the film pressure, ρ is the density of

the lubricant and µ the lubricant viscosity. In order to derive the Reynolds equation from the set of 4

Navier-Stokes equations it is easier to consider their dimensionless version, obtained using the following

relations: 

x̃ =
x

Lxz

ũx =
ux
Uxz

ỹ =
x

Ly

ũy =
uy
Uy

z̃ =
x

Lxz

ũz =
uz
Uxz

,

(2.5)

(2.6)

(2.7)

where Uxz and Uy are characteristic velocities defined along the x, z and y axes. To obtain a dimension-

less pressure we define the Reynolds number as

Re =
ρUxzLy

µ
, (2.8)

such that

p̃ = Reε
p

ρU2
xz

where ε =
Ly

Lxz

. (2.9)

By substituting the coordinates and velocities in their dimensionless form into equation (2.3) and consid-

ering that Uy =
Ly

Lxz
Uxz holds we obtain

∂ũx
∂x

+
∂ũy
∂y

+
∂ũz
∂z

= 0 . (2.10)

Finally, replacing the dimensionless variables into equations (2.4) and dropping the tilde notation for clarity

brings us to the set of equations

Reε

(
ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

)
= −∂p

∂x
+
∂2ux
∂y2

+ ε2
(
∂2ux
∂x2

+
∂2ux
∂z2

)
ε2
[
Reε

(
ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

)
− ∂2uy

∂y2
− ε2

(
∂2uy
∂x2

+
∂2uy
∂z2

)]
= −∂p

∂y

Reε

(
ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

)
= −∂p

∂z
+
∂2uz
∂y2

+ ε2
(
∂2uz
∂x2

+
∂2uz
∂z2

)
(2.11)

(2.12)

(2.13)
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To further simplify these equations the following considerations are made: the lubricant viscosity is

constant, the characteristic distances in the x, z directions are much larger than in the y direction, such

that ε → 0; a small Reynolds number is assumed, such that a laminar flow regime is established and

Reε→ 0. Dropping the irrelevant terms and going back to the dimensional forms we get

∂p

∂x
= µ

∂2ux
∂y2

∂p

∂z
= µ

∂2uz
∂y2

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 .

(2.14)

(2.15)

(2.16)

Since the pressure is constant across the thin film we can perform an integration twice and by con-

sidering that the surfaces move only along the x direction, such that

{
ux(0) = U1; ux(h) = U2

uz(0) = 0; uz(h) = 0 ,

(2.17)

(2.18)

the double integration yields
ux =

1

2µ

∂p

∂x

(
y2 − yh

)
+
(
1− y

h

)
U1 +

y

h
U2

uz =
1

2µ

∂p

∂z

(
y2 − yh

)
.

(2.19)

(2.20)

The average value of uy across the film is simply

uy =

∫ h

0

(x, z)uy dy =
dh

dt
, (2.21)

since we are considering a steady state solution we have uy = 0. By performing the same integration

over the film in the continuity equation (2.16) we get

0 = −
∫ h

0

(x, z)
∂ux
∂x

dy −
∫ h

0

(x, z)
∂uz
∂z

dy . (2.22)

Finally, substituting the relevant terms and performing the integrations yields the Reynolds equation

[31] which allows us to compute the pressure profile p given a thin film height h(x, z) and adequate

boundary conditions

∇ ·
(
h3∇p− 6µ~Uh

)
= 0 (2.23)

where ~U is defined as the relative sliding velocity of the surfaces, normally chosen to only have an x

component.
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2.2.2 Cavitation

Equation (2.23) was derived under a set of precise hypotheses, and it clearly is an approximation of the

Navier-Stokes equation, meaning that any results computed from it are considered valid only if the problem

falls under the conditions defined as follows:

• Density ρ, viscosity µ and temperature T are constant across and through out the lubricant film.

• Pressure p is constant across the lubricant film.

• The physical dimension of the gap between the contacting surfaces is considered negligible when

compared to the physical dimensions of the contacting surfaces (thin film approximation).

• The flow within the film is considered to be laminar which corresponds to low Reynolds numbers.

• Inertial effects which lead to the deformation of the sliding surfaces are entirely neglected.

Under these conditions, the problem can be described by the Reynolds equation which allows us to cor-

rectly compute the lubricant pressure profile p:

∇ ·
(
ρh3∇p

)
= 6µ~U ·∇ (ρh) . (2.24)

Without any loss of generality we can set the relative sliding velocity as being always directed along the x

axis such that

∇ ·
(
ρh3∇p

)
= 6µU

∂(ρh)

∂x
. (2.25)

In some conditions, especially in divergent regions where ∂h
∂x

< 0, it is common to observe cavita-

tion, which consists in the formation of vapour filled cavities within the fluid. Using the cavitation model

introduced by Elrod and Adams in [43] based on the Jakobsson-Floberg-Olsson (JFO) model [52], we can

rewrite the equation in terms of pressure p and cavitation fraction θ as follows

∇ ·
(
h3∇p

)
+ 6µU

∂(hθ)

∂x
= 6µU

∂h

∂x
. (2.26)

The cavitation fraction is defined as

θ =
ρ0 − ρ

ρ0
(2.27)

in active regions (without cavitation) where p > 0 the film density ρ is that of the reference ρ0 while in

inactive regions (with cavitation) we have p = 0 and ρ is no longer equal to the reference ρ0 as the fluid

is a mixture of liquid/gas.
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These cavitation considerations complement equation (2.26) providing a closed set of equations that

allow us to determine both the pressure p and cavitation fraction θ, this constitutes a linear complemen-

tarity problem (LCP) [42], we thus look to solve the following set of equations:

∇ ·
(
h3∇p

)
+ 6µU

∂(hθ)

∂x
= 6µU

∂h

∂x

pθ = 0

p ≥ 0

θ ≥ 0 .

(2.28)

(2.29)

(2.30)

(2.31)

2.2.3 Contact model

Overall friction in the system exists due to two components: pressure gradients present within the film

and the direct interaction between asperities in the contacting surfaces. To account for both of these

components we have to model how the surfaces interact down to the asperity scale. The contact model

used in this work is that of the Greenwood and Tripp model [53], where the overall roughness is considered

to be on both contacting surfaces. They show with this model that the load and area of contact remain

independent of the detailed aspects of asperities in the surfaces, achieving a good approximation of real

behavior with simple considerations.

z1

z2

dz

Figure 4: Schematic contact of two rough surfaces, all asperities are assumed to have the same shape, z1 and

z2 are the reference planes of each surface corresponding to the average height of their roughness and d is the

distance between these references.

The contact between rough surfaces can be seen microscopically as pairs of asperities modeled as

identical contacting pairs of hills. These asperities are assumed to have a paraboloidal shape with an
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average radius of curvature η, a distribution along both surfaces of density k and a gaussian asperity

height distribution with standard deviation σ.

The sliding surface has a load F applied in the normal direction to the sliding, this force is opposed by

two contributions: the hydrodynamic pressure and the load carried by the interaction between the rough

asperities

W = Wh +Wa (2.32)

where the load carried by the lubricant film is the direct integral of the generated pressure we calculate

by solving the Reynolds equation

Wh =

∫
Ω

p dΩ . (2.33)

The load carried by the interaction between asperities can be written as [53]

Wa =
16
√
2

5
π(ηkσ)2

√
σ

k
E

′
F5/2

(
h

σ

)
(2.34)

the dimensionless parameters ηkσ are known as the roughness parameter, the term σ/k is the typical

asperity slope, h/σ is the Stribeck oil film parameter typically denoted by λ, E
′
is the reduced (effective)

elastic Young modulus of the contacting surface pair. The statistical function F5/2(λ) introduces the

Gaussian distribution of asperities which can be calculated from a parametric fit such as in [54].

The apparent contact area between the contacting surfaces can be obtained from the cavitation frac-

tion profile θ, in regions where θ ≈ 0 we have a fluid lubricant region

A(x, y) =

{
0 if θ(x, y) = 0

1 if θ(x, y) > 0

however, the asperity contact area itself is calculated as [54]

Aa = π2(ηkσ)2AF2

(
h

σ

)
, (2.35)

where the statistical function F2(λ) can be estimated with a parametric fit such as in [54]. The asperity

contact area is much smaller than the apparent contact area, so the viscous contact area Av can be

written as

Av = A− Aa ≈ A . (2.36)

In the mixed regime of lubrication there are two contributions to overall friction: viscous shear of the

lubricant and interactions between asperities

ftotal = fviscous + fboundary , (2.37)
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the viscous shear of the lubricant can be obtained as a function of the lubricant film height h

τ =
h

2

∂p

∂x
+
Uµ

h
, (2.38)

and the viscous friction is calculated as

fv = τAv ≈ τA . (2.39)

The boundary friction is obtained as a sum of two contributions: the direct contact of asperities and

the non-Newtonian shear introduced by a thin film of lubricant entrapped between the interspatial cavities

of asperities. We can write boundary friction as

fb = τ0Aa + ξWa (2.40)

τ0 is the Eyring shear stress,Wa is the load carried by asperities and ξ is the pressure coefficient of the

boundary shear stress [51].

We can then calculate the total friction force as a sum given by

ft = τA+ τ0Aa + ξWa , (2.41)

the coefficient of friction can be calculated by integrating over the domain Ω

µf =
1

FA

∫
Ω

ft dΩ (2.42)

where F is the applied load and A is the area of the domain.

2.3 Finite element method

2.3.1 Basic concepts

The finite element method is a powerful tool in its application to real world problems that involve com-

plicated physics and geometry [55]. A complex domain defined by an arbitrarily curved boundary which

is typically impossible to represent under finite difference methods is split up into a collection of simple

subdomains called finite elements. It is in fact easier to represent a complicated function as a piecewise

collection of polynomials, as represented in figure 5.
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uapprox(x) =
∑N=5

e=1 ceφe(x)

x

u
(x
)

Figure 5: Piecewise first order approximation of a function u(x) by a collection of 5 elements.

The coefficients ce are entirely determined by satisfying the governing equations we are attempting to

solve. The finite element method (FEM) steps are as follows:

• Divide the domain geometry into subdomains called finite elements, this collection is called finite

element mesh.

• Seek an approximation of the solution as a linear combination of basis functions in these finite

elements and derive the algebraic relations between nodal values of the solution for each element.

• Assemble the elements into a global system that fully determines the solution as a whole.

The finite element method can be viewed as an elementwise application of a variational formulation

method [55], in theory our goal is to build a functional with respect to the variables that includes the gov-

erning equations of our problem, therefore by minimizing this functional form of the problem we approach

the nodal solutions of our governing equations.

Consider a domain x ∈ [0, L] and a simple differential equation commonly appearing in heat ex-

change problems

− ∂

∂x

[
a(x)

∂u

∂x

]
= f(x) , (2.43)

for the function u(x) subject to known boundary conditions

u(0) = u(L) = u0 , (2.44)

suppose we seek an approximation of u(x) in the form

u(x) ≈ uN(x) = φ0(x) +
N∑
j=1

cjφj(x) , (2.45)
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where φj(x) are the element basis functions. We must find the set of coefficients cj that satisfy the

differential equation (2.43), by substituting the approximation of u(x) we obtain

− ∂

∂x

[
a(x)

∂uN
∂x

]
= f(x) , (2.46)

since we are now working with an approximate solution the equality is not entirely satisfied so we are

working with a residual R(x, cj) that depends on coefficients cj

R(x, cj) = − ∂

∂x

[
a(x)

∂uN
∂x

]
− f(x) . (2.47)

A way to determine the coefficients cj is to require them to vanish in a weighted residual sense∫ L

0

wi(x)R(x, cj) dx = 0 (2.48)

wherewi(x) are a set of linearly independent functions called weight functions. There exist several special

cases of the weighted residual method that are distinguishable by the option of weight functions [55], some

are listed as follows

• Petrov-Galerkin FEM: wi(x) ≡ ψi(x), where ψi(x) is an element basis set of functions different

from the set φi(x).

• Galerkin FEM: wi(x) ≡ φi(x)

• Least-Squares FEM: wi(x) ≡ ∂
∂x

[
a(x)∂φi

∂x

]
• Collocation FEM: wi(x) ≡ δ(x− xi)

2.3.2 Reynolds equation weak form

Consider the Reynolds equation (2.26) we derived previously, together with appropriate boundary condi-

tions it is known as the strong form of the problem, considering Dirichlet boundary conditions:
∇ ·

(
h3∇p

)
+ 6µU

∂(hθ)

∂x
= 6µU

∂h

∂x

p(Γ) = p0

θ(Γ) = θ0

(2.49)

(2.50)

(2.51)

where Γ signifies the boundary of the domain Ω. Our approach will be to utilize the weighted residual

Galerkin finite element method (GFEM) [56] to derive the weak form of the Reynolds equation, the weighted

residual can be written as∫
Ω

w

[
∇ ·

(
h3∇p

)
+ 6µU

∂(hθ)

∂x
− 6µU

∂h

∂x

]
dΩ = 0 . (2.52)
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Considering the first term of the integral we can write it as∫
Ω

w∇ ·
(
h3∇p

)
dΩ =

∫
Ω

w(∇h3) · (∇p) dΩ +

∫
Ω

wh3∇2p dΩ (2.53)

where the divergence theorem allows us to rewrite the second order derivative term in the previous equation

as ∫
Ω

wh3∇2p dΩ = −
∫
Ω

(∇
(
wh3

)
) · (∇p) dΩ +

∫
Γ

h3(∇p) · n̂ dΓ

= −
∫
Ω

h3(∇w) · (∇p) dΩ−
∫
Ω

3h2w(∇h) · (∇p) dΩ , (2.54)

the boundary Γ term can be dropped in the case of Dirichlet boundary conditions, however, it is necessary

to set Neumann or mixed boundary conditions. Substituting equation (2.54) into equation (2.53) the weak

form of the term reads ∫
Ω

w∇ ·
(
h3∇p

)
dΩ = −

∫
Ω

h3(∇w) · (∇p) dΩ . (2.55)

Only first order derivatives of the relevant variables are present in the equation thus we have derived

the weak form of the Reynolds equation, which reads∫
Ω

h3(∇w) · (∇p) dΩ− 6µU

∫
Ω

w
∂(hθ)

∂x
dΩ + 6µU

∫
Ω

w
∂h

∂x
dΩ = 0 , (2.56)

the approximate solutions for pressure p and cavitation fraction θ can be written as
pN =

N∑
j=1

pjφj(x, y)

θN =
N∑
j=1

θjφj(x, y)

(2.57)

(2.58)

where N is the number of finite elements and φj are the finite element basis functions.

Considering the GFEM where the weight functions are chosen to correspond to the element basis set

and substituting the approximate solutions of pressure and cavitation fraction into the weak form of the

Reynolds equation we obtain a set of N equations of the form

K
e

pp
e +K

e

θθ
e = ce , (2.59)

subject to the conditions p · θ = 0, p ≥ 0 and θ ≥ 0, where

Ke,p
ij =

∫
Ωe

h3 (∇φi ·∇φj) dΩe (2.60)

Ke,θ
ij = −6µU

∫
Ωe

φi
∂(hφj)

∂x
dΩe (2.61)

cei = −6µU

∫
Ωe

φj
∂h

∂x
dΩe (2.62)
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where Ωe refers to the single j-th finite element domain.

The standard GFEM method described so far introduces a truncation error for hyperbolic equations

[57] in the form of a diffusive operator. In regions where cavitation is present the equation becomes

hyperbolic which results in oscillatory solutions. In order to mitigate these effects an alternative method is

utilized. The streamline upwind Petrov-Galerkin (SUPG) finite element method introduces a modification

to the Galerkin finite element which is equivalent to introducing artificial diffusion to the equation, this

modification results in a stabilized solution for cavitation.

The stabilization term is added to the weak form of the Reynolds equation as an extra term of the form∫
Ω

P(w) τ R(θ) dΩ , (2.63)

for SUPG stabilization we have 

P(w) = U
∂w

∂x

τ =
β∆x

2U

R(θ) = −6µU
∂(hθ)

∂x

(2.64)

(2.65)

(2.66)

where∆x defines the largest x component of a finite element distance in the finite element mesh and β is

a parameter that controls the amount of artificial diffusion. We obtain an altered and stabilized coefficient

matrix written as

Kθ
ij = −6µU

∫
Ωe

(
φi +

1

2
β∆x

∂φi

∂x

)
∂(hφj)

∂x
dΩe . (2.67)

For a triangular first order element (3 local nodes) with local element coordinates (ξ, η) the basis

functions φi are defined as follows

ξ

η

φ1 φ2

φ3

Counter clockwise ordering 1-3

φ1(ξ, η) = ξ

φ2(ξ, η) = η

φ3(ξ, η) = 1− ξ − η

Figure 6: Triangular first order element in coordinate space (ξ, η) and respective basis functions. The element in

regular cartesian coordinates is translated through the use of a Jacobian to its local coordinates and vice-versa.

In 2D we can write the cartesian coordinates (x, y) in terms of the element local coordinates (ξ, η)
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as a linear combination of the previously defined basis function as follows
x(ξ, η) =

Nh∑
j=1

xejφj(ξ, η)

y(ξ, η) =

Nh∑
j=1

yejφj(ξ, η) ,

(2.68)

(2.69)

where Nh is the node number of an element and (xej , y
e
h) are the known nodal cartesian coordinates.

We can express (ξ, η) derivatives of the basis functions in terms of the (x, y) derivatives as∂φi

∂ξ

∂φi

∂η

 =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∂φi

∂x

∂φi

∂y

 (2.70)

we can identify the 2× 2 matrix as the Jacobian coordinate transformation matrix J e, the entries of the

Jacobianmatrix can be calculated from equation (2.68). In order to convert the derivatives in our coefficient

integrals to be in terms of (ξ, η) we require the inverse Jacobian J
−1

e which is trivially calculated as a

2× 2 matrix.

The full form of the Kp
ij coefficient matrix in terms of (ξ, η) for example can now be written as

Ke,p
ij = −6µU

∫ 1

−1

∫ 1

−1

h3(ξ, η)

[(
J−1
e,11

∂φi

∂ξ
+ J−1

e,12

∂φi

∂η

)(
J−1
e,11

∂φj

∂ξ
+ J−1

e,12

∂φj

∂η

)
+

(
J−1
e,21

∂φi

∂ξ
+ J−1

e,22

∂φi

∂η

)(
J−1
e,21

∂φj

∂ξ
+ J−1

e,22

∂φj

∂η

)]
|Je| dξ dη

(2.71)

where h(ξ, η) is the shortened notation of h(x(ξ, η), y(ξ, η)). This transformation into local element

coordinates enables us to utilize Gauss quadrature integration [57] to compute the coefficients.

The assembly of the finite element coefficient matrices into the global system is done through a local-

to-global mapping matrix that translates a local element numbering into a global node numbering.

2.3.3 Inexact Newton method

The inexact Newton iteration was shown in [2] to be an effective and efficient way to solve the LCP problem.

In the following a brief report of the INE iteration steps is given. We can cleverly rewrite our set of coupled

equations and conditions as

Ψ(p,θ) = 0 (2.72)

p ≥ 0; θ ≥ 0 , (2.73)
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in which

Ψ(p,θ) =

Ψ0(p,θ)

P Θê

 =

Kpp+Kθθ − c

P Θê

 (2.74)

and where diagonal matrices P andΘ have the values of p and θ as their entries, and ê represents the

unit vector.

The Newton iteration is defined aspk+1

θk+1

 =

pk

θk

+ αk

∆pk

∆θk

 ; k = 0, 1, 2, ... (2.75)

where (∆pk,∆θk) are the updates for each iteration dampened by a factor αk and are calculated by

solving the linear system

Jk(p,θ)

∆pk

∆θk

 = −Ψk(p,θ) , (2.76)

As described in [2], a common pitfall with this method is a stalling of the iteration leading to convergence

failure. To avoid this, a perturbation term ηkẽ with ẽ =

0

1

 is included:

Jk(p,θ)

∆pk

∆θk

 = −Ψk(p,θ) + ηkẽ . (2.77)

The perturbation coefficient ηk is defined as

ηk = σkµk , (2.78)

where σk ∈ [0, 1] is the forcing parameter and µk is a parameter in the range

pk · θk

N
≤ µk ≤

∥∥Ψk(p,θ)
∥∥

√
N

. (2.79)

The choice of relaxation parameter αk is required to enforce the convergence of the method and this

choice is composed of 3 conditions or steps: feasibility, centrality and backtracking.

The feasibility condition provides the initial value of αk and reads

αk = min

(
min
∆pki <0

−pki
∆pki

, min
∆θki <0

−θki
∆θki

, 1

)
, (2.80)

this guarantees that conditions p ≥ 0 and θ ≥ 0 are both satisfied after each iteration.

The centrality conditions define the coefficient ηk in the forcing term and ensure pk and θk are

bounded away from p = 0 and θ = 0 and are defined as

φk
1(αk) = min

(
pk(αk) ◦ θk(αk)

)
− γkτ1

N
pk(αk) · θk(αk) ≥ 0

φk
2(αk) = pk(αk) · θk(αk)− γkτ2

∥∥Ψk
0(p(αk),θ(αk))

∥∥ ≥ 0 , (2.81)
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where

τmax
1 = N

min (p0 ◦ θ0)

p0 · θ0
; τmax

2 =
p0 · θ0

‖Ψ0
0(p,θ)‖

(2.82)

and γk ∈ [0.5, 1.0]. The centrality conditions also impose a lower bound for the forcing parameter:

σk > max

(
δk

√
N + τ1γk
1− τ1γk

, δk

√
N + τ2γk√

N

)
, (2.83)

a recursive reduction of αk can be used to find a value that satisfies both conditions (2.81).

The backtracking condition is an additional safeguard that reduces the value of αk by a factor λt with

λ ∈ [0, 1] and t a non-negative integer that increases per iteration until the following condition is met

∥∥Ψ(pk + αk∆pk,θk + αk∆θk)
∥∥ ≤ (1− βαk(1− σk − δk))

∥∥Ψ(pk,θk)
∥∥ , (2.84)

where β ∈ [0, 1] and σk + δk = 1.

The parameters described within this section are set as follows for every case in the validation, the

results and the data generation that was obtained

σk = min
(
0.01

∥∥Ψk(p,θ)
∥∥, 0.9)

δk = min

 σk

N max (
√
N+τ1+γk
1−τ1γk

,
√
N+τ2γk√

N
)

 . (2.85)

τ1 τ2 µk β λ γk

min (0.5 τmax
2 × 10−7, 0.99) τmax

2 × 10−7 µmax
k 10−4 0.5 0.5

Table 1: Parameters utilized in the numerical experiments described in [2] for validation of the INE method imple-

mentation.

The stopping criteria for the INE iteration is defined as

c1 =
∥∥Ψk+1(p,θ)

∥∥ ≤ ε1

c2 =

∥∥∥∥∥∥αk

∆pk

∆θk

∥∥∥∥∥∥ ≤ ε2 , (2.86)

where ε1, ε2 define the convergence threshold of the solver.
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2.4 Machine learning

2.4.1 Basic concepts

Consider we have a problem P that requires an answer (or output O) for a set of parameters (or input)

I . Consider a set of algorithms A that correctly solves our problem P with varying degrees of efficiency

and accuracy, ideally we are most interested in the algorithm Ak ∈ A that achieves the most accurate

answer in the most efficient way, this is of course considering however that we know the set of algorithms

A.

For some problems P we do not know an algorithm that is capable of solving the problem, however

for many others we know some algorithms but they can be impossibly inefficient to be of practical use.

One example of this is spam filters [58] for e-mail clients, the input I is the e-mail itself, the problem

P is simply stated as ”Is the e-mail I spam?” and the output O is a binary response, yes or no. As

simple as a problem like this might seem, it depends entirely on what the individual considers to be spam,

therefore there is no clear and objective way to define a set of instructions capable of solving the problem.

Despite this, we can provide millions of examples of spam and non-spam e-mails in such a way that we

can systematically learn from these by letting a computer for example, artificially extract the algorithm just

from the raw data. Obviously the ”algorithm” we are extracting from data will not be a perfect solution

to the problem, yet it might be a good approximation supported by a degree of accuracy that we can

calculate. This process of automated learning is commonly known as machine learning (ML).

2.4.2 Types of machine learning applications

Machine learning applications are commonly split into two main categories: classification problems, where

to a given input I is assigned a class, for example numerical handwritting recognition (figure 7), and

regression problems of which a good example is the objective of this thesis, that is fitting a set of surface-

defining parameters to a Stribeck curve, a highly non-linear problem.

In the case of figure 7 the correct digit class is 6, and the prediction is commonly associated with

a probability of being the correct class, meaning that we have an implicit accuracy associated with the

prediction.

In the context of this thesis, we considered a regression application, a simple example of which is

that of performing fits to data, meaning that the application takes a collection of N points (xi, yi) and
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provides a fit function f(xi) that closely describes the real output yi

ypredi ≡ f(xi) (2.87)

Figure 7: Handwritten 6 for which the classification ML application should give a correct prediction.

The accuracy of the fit function in describing the input can be judged by direct comparison between

the predicted values and the input values, for example with the root mean squared error (RMSE) defined

as follows

σi =

√(
ypredi − yi

)2
, (2.88)

we can take the overall prediction error for new input I to be the maximum RMSE or the average RMSE

both defined respectively as

σmax = maxσ (2.89)

σavg =

√∑N
i=1

(
ypredi − yi

)2
N

. (2.90)

2.4.3 Perceptron

The simplest automated learning unit is the perceptron, schematically represented in figure 8. The inputs

xi are associated with a connection weight wi ∈ < and the output is computed as follows

y = f

(
w0 +

n∑
i=1

wixi

)
, (2.91)

this process can also be written in vector form:

y = f
(
wTx

)
. (2.92)
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The function f is commonly referred to as the activation function, which can be a step-like function such

as

Θ(x) =

1 if x ≥ 0

0 if x < 0 .

(2.93)

More complex functions might be considered as activation functions, such as non-linear activation func-

tions which allow small networks of perceptrons to compute nontrivial behavior. Indeed, research on

activation functions is a very active area in the research of the machine learning field as they have been

shown to have a significant effect on the efficiency of certain learning problems [59].

x2

x1

x0 = 1

...

xn

∑
∑n

i=0wixi

w2

w1

w0

...

wn

y

inputs

weights

activation function

Figure 8: Simple perceptron, xi are the input values, x0 = 1 is the bias, wi are the weight connections and y is

the output value.

Consider a set ofK ≥ 2 perceptrons, fully connected with inputs xj and connections wij from input

j to perceptron i, schematically shown in figure 9. The output of perceptron i can be computed as

yi = f

(
wi0 +

n∑
j=1

wijxj

)
, (2.94)

or

y = f (Wx) , (2.95)

whereW is a matrix whose rows are the weight vectorwi of perceptron i, in the case of figure 9 we have

W as a 2× n+ 1 matrix.
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x2

x1

x0 = 1

...

xn

∑
0∑n

j=0w0jxj

∑
1∑n

j=0w1jxj

y0

y1

inputs weights
activation functions

Figure 9: Set of two perceptrons, xj are the input values, x0 = 1 is the bias, wij are the weight connections from

input j to perceptron i and yi is the output value.

Considering a single perceptron with randomized initial weightsw for a input x, we can compute the

perceptrons output with equation (2.92), defining a loss function E(y, yp) that compares the perceptron

output yp with the desired output y. Aiming for the smallest possible difference between the predicted

output yp and the true output y we expect to find the minimum of the loss function E(y, yp), which is

a function of the weights. However, the global minimum in real applications is incredibly hard to find, in

most cases we reach local minima.

The training of the perceptron is typically done by consistently updating the weights in order to find a

minimum of the loss function. If we update weight wj by considering the negative derivative of the loss

function we should step closer to the minimum of the loss function. In theory, this update should be done

in small portions in order to not overshoot it, thus we write the weight update

∆wj = −η∂L(y, yp)
∂wj

(2.96)

where η is the learning rate, this method of weight updating is referred to as stochastic gradient descent

(SGD).

Typically a small learning rate, while ensuring that it is less likely that we miss local minima due to

shorter updates along the slope of the loss function, takes a much longer time to converge. It can also

converge toward plateau-like regions that stall learning. Large learning rates can lead to overshooting the

local minima as well as completely diverging in loss which leads to a failure in convergence.

25



Chapter 2 Section 2.4

We can further write equation (2.96) as follows, by using the chain rule

∆wj = −η∂L(y, yp)
∂yp

∂yp
∂wj

, (2.97)

from equation (2.91) we have

∂yp
∂wj

= f
′

(
n∑

i=0

wixi

)
xj , (2.98)

where x0 = 1 for the bias weight. The bias of a layer is extremely important particularly for regression

problems, the reason why is clearer by considering a single neuron and input and the resulting weighted

sum

y = a x+ b , (2.99)

with the bias term we fit a function that has control over slope as well as intercept, then the bias can be

seen as one more input representing the part of the output that is actually independent from the input (a

sort of background).

Substituting into equation (2.97) we have a generalized way to determine the update for weight j

∆wj = −η∂L(y, yp)
∂yp

f
′

(
n∑

i=0

wixi

)
xj . (2.100)

Lets consider a special case where we define the loss function and activation function to be

L(y, yp) =
1

2
(y − yp)

2
(2.101)

f(x) = x (2.102)

f
′
(x) = 1 (2.103)

the update for weight j can be computed as

∆wj = η (y − yp)xj . (2.104)

In the following section we will describe how to generalize SGD to a network of perceptrons which can

learn and adapt to non-linear behavior.

2.4.4 Deep neural network

A deep neural network (DNN) is essentially a mathematical function F that takes input x and predicts

output y. They are trained based on statistical techniques [58] such as supervised, unsupervised and

adversarial learning among others.
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Perceptrons are limited in what they can predict, because there is only a single layer of weights that

can only approximate linear behavior and cannot solve any sort of nonlinear problem. This limitation is not

present if we consider a network of interconnected perceptrons, which are in this case called ”neurons”

due to their resemblance with biological neuron functions. Let us consider an input x with k entries,

with weighted connections to N1 perceptron-like weighted sum plus their associated activation functions.

The output y1 of these N1 neurons further connects in a weighted sense to additional N2 neurons,

constituting what is regarded as a ”feed-forward” network with hidden layers between input and output,

as it is visualized in figure (10). Deep neural networks are networks that contain a number of inner layers

and are perfectly capable of solving non-linear regression problems.

Consider a deep neural network with 2 hidden layers, withNh1 andNh2 neurons respectively, an input

layer withNi neurons and output layer withNo neurons. This means that 3 sets of weighted connections

exist, between the input layer and first hidden layer, between the first hidden layer and the second hidden

layer and finally between the second hidden layer and the output layer.

Figure 10: Schematic representation of a deep neural network [1], consisting of 2 hidden layers with 5 neurons +

1 bias neuron each, the colored connections represent the value of weights in the range [−1, 1].

As the input layer does not have weighted connections to it, its the output is simply the input x, the input

neurons perform no calculations. As shown in equation (2.95) we can obtain the first hidden layer output

by computing

yh1 = σh1 (Wih1yi) , (2.105)

where yh1 is the output of the first hidden layer, σ1 is the activation function of the first hidden layer,Wih1

are the weights from input layer to the first hidden layer and yi is the output of the input layer (which is

the original input).
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We can similarly write the same equation for the output of the second hidden layer and finally the

output layer, as a whole we can write the final output of the network as

yo = σo (Wh2oσh2 (Wh1h2σh1 (Wih1yi))) (2.106)

this computation is known as the feed-forward algorithm [60] of a deep neural network. Naturally for a

randomly generated set of weights, the output yo will be random when compared to the expected output

after learning.

2.4.5 Learning algorithm

As explained previously, in order to train the perceptron we sequentially attempt to match its output yp

given an input x to the expected output y, this is done by slowly changing the weights of the perceptron

by minimizing a given loss function. Consider we have a set of data with N entries, with these entries

consisting of pairs (xk,yk), if the complete loss function L is defined as

L ≡ L(yp
k,yk) , (2.107)

which is calculated from a single pair (yp
k,yk) we can expect the learning rate to be slow as the algorithm

is attempting to adjust only to a single pair per step. An ideal choice is the following complete loss function

L =
N∑
k=0

L(yp
k,yk) . (2.108)

In which the complete loss function is a function of the entire data set. However, whereas this approach

is the most complete, as the weight updates would adjust to the entire data set, it is too computationally

demanding for realistic applications with hundreds of thousands of data samples and very large complex

networks.

A common compromise is to split up the set of N entries into small batches Nb typically being 32

samples in most applications [61], such that each step computes a complete loss function as

L =
∑

k∈batch

L(yp
k,yk) (2.109)

which results in significantly faster convergence of the learning while remaining computationally feasible.

For the sake of simplicity when discussing the main learning algorithm of deep neural networks we will

consider the loss function as defined in (2.107).

Consider an arbitrary network with layers 0, 1, 2, . . . , L− 1, L where L is the total number of layers

with N0, N1, N2, . . . , NL−1, NL neurons in layer L, defining aL as the activation of layer L, aL−1 as
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the activation of layer L−1, weightsW L as the weights that connectL−1 toL and σL as the activation

function for layer L we can compute aL as follows

aL = σL
(
zL
)
, (2.110)

where

zL = W LaL−1 . (2.111)

Let us focus on layer L as the output layer, during training we provide a set of data (xk,yk) the input

of which is fed through the network providing a prediction aL. The loss when compared to yk can be

computed by the loss function L(aL,yk), utilizing the chain rule we can compute the derivative of the

loss function L with respect to weightWL
jk

∂L
∂WL

jk

=
∂L
∂aLj

∂aLj
∂zLj

∂zLj
∂WL

jk

(2.112)

following the stochastic gradient descent process described in section 2.4.3 we can use as an update for

weightWL
jk

∆WL
jk = −η ∂L

∂WL
jk

, (2.113)

where η is the learning rate.

We can also compute the derivative of the loss functionL with respect to the activation of the previous

layer L− 1

∂L
∂aL−1

k

=

NL∑
j=0

∂zLj

∂aL−1
k

∂aLj
∂zLj

∂L
∂aLj

, (2.114)

the summation over all neurons in layer L is necessary as the activation aL−1
k has a connection to NL

neurons in layer L. This means that computing the derivative of the loss function L with respect to weight

WL−1
jk becomes trivial

∂L
∂WL−1

jk

=
∂zL−1

j

∂WL−1
jk

∂aL−1
j

∂zL−1
j

∂L
∂aL−1

j

=
∂zL−1

j

∂WL−1
jk

∂aL−1
j

∂zL−1
j

(
NL∑
m=0

∂zLm
∂aL−1

j

∂aLm
∂zLm

∂L
∂aLm

)
. (2.115)

This method can be repeated for layers L − 2, L − 3, . . . , 0 which allows us to compute update

weights for every layer in our network, this process is known as back-propagation.

Consider an example network with 3 layers (for simplicity we are ignoring bias units), represented in

figure 11, where the output layer is layer L, the hidden layer is layer L− 1 and the loss function we will

consider is defined as

L(aL, y) =
1

2

NL∑
j=0

(
yj − aLj

)2
. (2.116)
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Importantly, let us mention the dimensions of our quantities: the weight matrix W L has dimensions

2× 4,W L−1 has dimensions 4× 3, aL is a column vector with 2 entries (corresponding to the output),

aL−1 is a column vector with 4 entries.

To update all weights in our network we have to compute in total 20 weight updates, considering the

activation function σL(z) = z (linear activation) we can obtain an equation for the update of weightWL
jk

for our network

∆WL
jk = −η ∂L

∂WL
jk

= ηaL−1
k

(
yj − aLj

)
= ηaL−1 ·

(
y − aL

)
(2.117)

Figure 11: Schematic representation of a deep neural network [1], consisting of 1 hidden layer with 4 neurons + 1

bias neuron (hidden for visibility), the colored connections represent the value of weights in the range [−1, 1].

Utilizing equation (2.115) and considering the activation function σL−1(z) = tanh z we can similarly

calculate the weight updates for layer L− 1

∆WL−1
jk = −η ∂L

∂WL−1
jk

= ηxk

[
1− tanh2

(
NL−1∑
n=0

WL−1
jn xn

)]
NL∑
m=0

WL
mj

(
ym − aLm

)
= η x ·

[(
1N0 − tanh2

(
W L−1x

))
�W L(y − aL)

]
, (2.118)

where 1N0 is the identity vector of N0 = 3 entries, � is the matrix elementwise multiplication operator.

This set of equations that define the update weights of layer L and layer L − 1 as well as the learning

rate allow for the systematic training of our network to our data set.
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Chapter 3

FELINE: a Reynolds equation solver

In chapters 1 and 2 we discussed the importance of the Reynolds equation solver in the context of texture

optimization as obtaining the film pressure profile is fundamental to compute friction in a system. The

work developed in this chapter details our implementation of a fast and robust Reynolds equation solver

termed FELINE, based on a FEM implementation of the inexact newton method to deal with the linear

complementarity problems (LCP) that naturally arise from the introduction of cavitation. A noticeable

improvement in speed is observed when compared to similar work in literature while enforcing physically

correct treatment of the boundary of cavitation regions.

3.1 Results

In this section, results pertaining to the utilization of FELINE are shown, ranging from a set of problems

explored in [2] that are used as validation for the solver to others we identified to be of industrial interest

that used dimpled textures. A benchmark of the solver is also provided to show the performance increase

of our solution when compared to existing solvers.

The INE solver was implemented in C++17 utilizing the linear algebra library Armadillo [62][63]. The

inner solver of choice is SuperLU [64], a sparse direct solver preceded by an equilibration of the sparse

Jacobian matrix to help reduce computation times.

3.1.1 Validation

To allow for a direct comparison with the results reported by Mezzadri and Galligani [2], we used their same

algorithm parameters, which are reported in table 1, page 21. However, we note that those parameters

can, and should, be optimized to achieve faster convergence times in real applications.
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To validate our results, we considered a 2D square domain of length L = 100µm, a lubricant

viscosity µ = 0.015 Pa · s and a relative surface sliding velocity U = 5 × 10−3 m · s−1 and we

ran three different test cases matching problems 1-3 of [2]. We can define a Convergent-Divergent (C-D)

profile and a Divergent-Convergent (D-C) profile according to the following function

h±(x, y) = ±hmax − hmin

2
sin

(
2πx

L
+
π

2

)
+ 2 (hmax − hmin) , (3.1)

with hmax = 0.025 µm and hmin = 0.015 µm, that, when combined with the different boundary

conditions, allows us to define three test cases according to table 2.

Problem Profile pdΩ θdΩ

1 h+(x, y) 0 0

2 h+(x, y) 1 0

3 h−(x, y) 1 0

Table 2: Test case definition where C-D ≡ h+(x, y), D-C ≡ h−(x, y) and pdΩ and θdΩ are the values of p and

θ at the domain boundary.

The following solutions were obtained in a 200 × 200 element mesh, with 2D and sliced pressure

and cavitation profiles for problem 1 shown in figures 12 and 13. Our results are in excellent agreement

with profiles of references [2] (in figure 18 page, 36) and [65]. The 2D and sliced results for problem 2

and 3 are shown in figures (14, 15) and (16, 17) respectively, closely matching the 1D profiles of [2].

The difference in pressure magnitudes are due to the fact that, in [2] these problems are solved in

1D while we are solving them in 2D. We further notice that the cavitation is correctly reproduced where

expected, that is in correspondence of divergent profile region.

It is also important to highlight that in every solved example the complementarity conditions were

obeyed at every iteration, thus providing a robust physical solution. The feasibility condition was sufficient

to fulfill the complementarity conditions in these 3 cases, although centrality and backtracking might be

necessary to ensure convergence in more complex cases. The cavitation model and inexact Newton

iteration method implemented in this work ensure physically realistic solutions.

After direct comparison with the results reported in [2] we concluded that the solver performs correctly

when predicting pressure and correctly treating the cavitation boundaries by ensuring the non-negativity

conditions. In the following section we will detail some more realistic and possibly industrially relevant

cases that our solver also handles correctly.
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Figure 12: Surface plots of h/hmax(x, y), p(x, y) and θ of problem 1 solved in a 200× 200 element mesh.

Figure 13: Plots of a slice at y = 50 µm of h/hmax(x, y), p(x, y) and θ of problem 1 solved in a 200 × 200

element mesh.
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Figure 14: Surface plots of h/hmax(x, y), p(x, y) and θ(x, y) of problem 2 solved in a 200x200 element mesh.

Figure 15: Plots of a slice at y = 50µm of h/hmax(x, y), p(x, y) and θ(x, y) of problem 2 solved in a 200×200

element mesh.
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Figure 16: Surface plots of h/hmax(x, y), p(x, y) and θ(x, y) of problem 3 solved in a 200 × 200 element

mesh.

Figure 17: Plots of a slice at y = 50 µm of h/hmax(x, y), p(x, y) and θ of problem 3 solved in a 200 × 200

element mesh.
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Figure 18: Solution profiles of the Reynolds equation in a 1D setup in [2] for the 3 cases described in table 2. r in

these plots refers to our cavitation fraction θ. Reproduced with permission from [2].

3.1.2 Dimpled textures

The code was also tested for a dimpled texture, which is an example of a texture of industrial relevance.

For this particular case, we consider a set of 9 equally spaced dimples, with depth Dd = 10 µm and

radius Dr = 60 µm, placed on a parabolic profile

h(x, y) = 0.1 + 2× 10−5 · (x− 500)2 (µm). (3.2)

Considering a 2D square domain of side L = 1000 µm, lubricant viscosity µ = 0.035 Pa · s and

relative sliding velocity U = 4.3×10−2 m ·s−1 the resulting height, pressure, and cavitation 2D profiles

and 1D slice at y = 500 µm are shown in figures 19 and 20 respectively.

One can observe that the central cavitation region is diminished along with pressure. Notice also that

dimples far from the center have a much lower influence on pressure as they are relatively far away from

the contact region, where the fluid pressure is maximal.
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Figure 19: Surface plots of h/hmax(x, y), p(x, y) in atm and θ of the dimpled texture solved in a 200 × 200

element mesh.

Figure 20: Normalized plots of a slice at y = 500 µm of h/hmax(x, y), p/pmax(x, y) and θ of the dimpled

texture solved in a 200× 200 element mesh.

To further verify the robustness of our implementation, we calculated the pressure/cavitation profiles

for a set of 9 equally spaced inverted dimples with depthDd = 1 µm and radiusDr = 100 µm placed

on a parabolic profile

h(x, y) = 1.05 + 0.2× 10−5 · (x− 500)2. (µm) (3.3)

Considering a 2D square domain of side L = 1000 µm, lubricant viscosity µ = 0.035 Pa · s and

relative sliding velocity U = 4.3× 10−1 m · s−1 the resulting normalized height, pressure and cavitation

2D profiles and 1D slice at y = 500 µm are shown in figures 21 and 22 respectively.
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Figure 21: Surface plots of h/hmax(x, y), p(x, y) in atm and θ of the inverted dimpled texture solved in a

200× 200 element mesh.

This is typically a hard to solve problem as the inverted dimples introduce very localized contacts

between the surfaces as seen in figure 21, hence extremely high pressures at the dimple peaks are found.

For each of the inverted dimples, a cavitation region is generated.

Figure 22: Normalized plots of a slice at y = 500 µm of h/hmax(x, y), p/pmax(x, y) and θ of the inverted

dimpled texture solved in a 200× 200 element mesh.

This demonstrates that FELINE is robust enough to successfully solve complex cases, with the cen-

trality condition being called twice and taking around the double of the number of iterations to achieve

convergence compared to the previous example.

3.1.3 Benchmark

To assess the performance of FELINE, we ran the code for a dimpled texture case and increasing mesh

sizes N × N on a single core of a Intel(R) Xeon(R) CPU E5-2697 v2. The number of iterations, total
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execution time and convergence parameters defined in equations (2.86) are shown in 3.

From the reported times, we can see that the solver is rather fast even if, as expected the computational

times increase exponentially with mesh size since the Jacobian matrix scales as N2. FELINE also shows

an impressive 100-fold speedup when compared with the results of a 100× 100 mesh reported in [2].

Mesh size Total computation time (s) Iterations C1, C2 defined in (2.86)

50 1.51 19 5.45× 10−10, 6.79× 10−5

100 6.07 24 4.04× 10−11, 2.76× 10−5

150 16.8 24 8.36× 10−12, 2.76× 10−5

200 49.6 26 1.24× 10−11, 9.73× 10−5

250 87.2 29 4.82× 10−11, 6.91× 10−5

Table 3: Benchmark of the INE algorithm results utilizing SuperLU for varying levels of mesh coarseness.

Figure 23: Plots of: (a) a slice at y = 500 µm of h/hmax(x, y), p(x, y) in atm; (b) a slice at y = 500 µm of

h/hmax(x, y), θ(x, y) of the dimpled texture solved in a N ×N element mesh.

The effect of mesh coarseness on the solution correctness was verified. In figure 23 the pressure and

cavitation profiles at y = 500 µm is shown for different mesh sizes. The main difference in the pressure

profile is in the region at 400 ≤ x ≤ 600, where smaller mesh sizes appear to overestimate the pressure

within the dimple region, while severely underestimating the first pressure peak at x = 400. Concerning

cavitation, the region observed at x ≈ 450 is completely absent forN = 50, while for all the other cases

the cavitation region boundaries are matching.
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3.2 Stribeck curve

3.2.1 Equilibrium between load and lift

In chapter 2 we discussed how to compute a coefficient of friction from results obtained by solving the

Reynolds equation, namely from the pressure profile p and cavitation fraction θ and a set of friction

parameters. In this section we will discuss results obtained utilizing this process together with FELINE.

Much of the thesis goal is to explore a optimization strategy that deals with a textured surface that

can be parameterized quite simply in order to reduce friction in the system. The surface profile h(x, y)

can lead to the equation system turning singular if ∂h
∂x

= 0, by definition we introduce a term hp(x, y)

such that
∂hp

∂x
6= 0 ensuring a non-conformal contact. The portion of the profile we attempt to optimize is

added to the parabolic non-conformal part as

h(x, y) = hmin + hp(x, y) + htex(x, y) , (3.4)

where hmin is the minimum distance established by hydrodynamic lift from any point in the texture to

the sliding surface, ensuring we are not in a dry contact regime. In htex(x, y) we encode the particular

texture we look to study.

As previously discussed, FELINE provides a framework to solve and therefore obtain pressure and

cavitation fraction profiles for a given height profile h(x, y) and sliding speed U , which allows us, as

discussed in chapter 2, to compute hydrodynamic lift and friction. For a given applied load to the surfaces

FN we look for the equilibrium situation where the hydrodynamic and contact lift counterbalance the

applied load. We follow the process described in figure 24 to obtain a coefficient of friction of the system for

a loadFN , a range of Hersey numbers, a height profile h(x, y) and known surface roughness parameters.

Set hmin, U = H FL
µ Initialize h(x, y) Solve for p, θ

Compute lift WCompute µfIf |W − FN | ≥ ε restart

Compute new hmin = 1
2

[
hmin + hmin

(
1 + W−FN

FN

)]

Figure 24: Flowchart of the process of determining the coefficient of friction, the iteration is considered complete if

|W − FN | ≤ ε providing a converged value of µf .
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3.2.2 Dimpled textures

Consider the following setup: a 2D square domain of dimensions Lx ≡ Ly = 1mm, lubricant viscosity

µ = 0.035 Pa s, applied load FN = 1.5 N and the non-conformal component of the height profile is

defined as

hp(x, y) = 2.0× 10−5 (x− Lx/2)
2 (µm) . (3.5)

The texture profile htex(x, y) is constructed by placing at (x0, y0) dimples of square cosine line-shape

with depthDd and radiusDr. The dimples are placed within a square 5×5 grid leaving a 50 µm border

around the texture, as it is represented in figure 25.
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Figure 25: Height profile htex(x, y) generated by a 5 × 5 grid of dimples with Dd = 6 µm and Dr = 60 µm

with a 50 µm border.

We studied the effect of varying Dr and keeping Dd = 6 µm fixed in the overall Stribeck curve of the

system, and in figure 26 we represent a set of Stribeck curves for a few different dimple radii within a

Hersey number range H ∈ [10−5, 10−2].

It is immediately obvious that the dimple radius has effects both in the mixed and hydrodynamic

regimes of lubrication, up to 30% for some Hersey numbers. In order better quantify these differences

we must set a reference: the untextured case of this setup where htex(x, y) = 0 can show us whether

the texturing works to reduce friction as well as which radii does so most effectively.

Defining Stribeck curve of the untextured case to be µ0
f (H) and the textured Stribeck curve of dimple

radius Dr to be µDr
f (H) we can calculate the deviation from this curve as a simple difference

∆µDr
f (H) = µDr

f (H)− µ0
f (H) , (3.6)

where if∆µDr
f (H) < 0 the texture is successful in reducing the friction in the system at a specific Hersey

number H .
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Figure 26: Stribeck curves of the fully dimpled case described in this section with varying dimple radius in µm as

well as the flat untextured case.

If the interest is global reduction of friction (not regime dependent) we can study the overall deviation

of coefficient of friction over the entire Hersey spectra, as follows

MDr
f =

∫
∆µDr

f (H) dH (3.7)

for a range of 10 dimple depths from 40 µm to 80 µm we plot in figure 27 the deviation from the reference

untextured case as defined in 3.6.

Figure 27: Difference between Stribeck curves of varying dimple radius (inµm) textures and the reference untextured

surface.
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In general over the entire Stribeck curve no texture performs better overall than the flat case, as we

can see by computingMDr
f for each dimple radius, as shown in figure 28. This means that if the goal is

to operate a part under different lubrication regimes it is unlikely that a full dimpled would be of any use.

Figure 28: Total coefficient of friction difference between dimpled cases with radius Dr and the flat case defined in

equation 3.7 for the mixed and hydrodynamic regions.

Figure 29: Total coefficient of friction difference between dimpled cases with radius Dr and the flat case defined in

equation 3.7 for the mixed region.

However, assuming that we are only working with one lubrication regime, then it can be interesting

to assess the behavior and performance of the textures. Setting the mixed lubrication regime to be in the

interval of Hersey number from 0 to 0.002 we calculated equation 3.7 as shown in figure 29. By isolating
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the mixed regime we can highlight a particular trend: for Dr < 65 µm there is no qualitative effect of

lowering or increasing the dimple radius, however from 65 µm to 80 µm we see a sharp decrease in

overall friction in the mixed regime. This decrease results inDr = 80 µm showing improvement over the

flat case in the mixed region, this is associated with textures acting as lubricant reservoirs, which typically

leads to higher radii performing better in the mixed lubrication regime.

Figure 30: Stribeck minimum coordinates of the fully dimpled case described in this section with varying dimple

depth in µm as well as the flat untextured case.

It is also possible to check how the minimum of the Stribeck curves changes with dimple radius to

have an idea of the overall position of the mixed region. The coordinates of the minimum of each curve are

represented in figure 30. Clearly there is leftwards trend with growing dimple radius as well as decreasing

magnitude of the minimum, however, it is important to highlight that for 75.6 µm and 80 µm we seem

to miss the growing behavior of the coefficient of friction in the region where H < 10−5.

We can perform similar simulations but varying the dimple depth instead of the dimple radius, by

keepingDr = 60 µm and allowingDd a range from 6 µm to 12 µm. We plotted the resulting Stribeck

curves in figure 31.
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Figure 31: Stribeck curves of the fully dimpled case described in this section with varying dimple depth in µm as

well as the flat untextured case.

Compared to the change in dimple radius in figure 26 we can see that the change in dimple depth

has a less significant effect in the Stribeck curves, since the overall change with dimple depth between

curves is under 4%. The overall change when compared to the flat case is represented in figure 32.

Figure 32: Difference between Stribeck curves of varying dimple depth (in µm) textures and the reference untextured

surface.
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Figure 33: Minimum position for the flat case in black, for the radii cases in blue and for the depth cases in orange.

A difference in impact is apparent from the relative movement of the minimum in terms of the relevant parameter.

It is quite intuitive from figure 32 that in general none of the textures performs better than the flat

case. It is worth noting that while there was one texture with varying Dr which performed better up to

H = 0.002, every texture with varying Dd performs worse in this range, indicating that changing the

radii provides a larger impact over the Stribeck curves, represented in figure 33. This means that we can

regard the dimple radius as a more promising parameter to optimize, while neglecting the dimple depth.

3.2.3 Friction optimization

A crucial problem is to minimize the friction while maximizing the lift, at some regimes or at others. In

principle, this could be achieved by applying a texture which has been optimized for some conditions

(viscosity, load, etc..). However, since the relationship between textures and Stribeck curves is not clear,

finding the optimal texture is practically impossible with direct approaches. For instance, in the previous

section only two cases have been discussed: a flat untextured case and a fully dimpled texture case.

However, considering the same setup of a 5 × 5 grid of dimples, if we allow the possibility of placing or

not a dimple at spot (i, j) where i, j = 0, 1, ..., 4 in the grid we have a total of 225 ≈ 33million possible

textures. Simple considerations of symmetry in the Reynolds equations allow us to reduce the number

of possible textures by half. Textures P and P ′ in figure 34 are entirely equivalent. A mirror reflection

along the x axis and at y = Ly/2, Ly being the length along y, for any pattern P results in an equivalent

pattern P ′ that yields the same Stribeck curve as shown in figure 35.
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Since flat and fully dimpled textures do not have a distinguishable mirrored equivalent, the total number

of different possible Stribeck curves is approximately 225/2 ≈ 1.68 × 107 which constitutes a close

enough approximation for simplicity. This way, we reduced by half the number of possible textures, but

the set is still large.

Figure 34: Regular pattern P and mirrored result P ′ represented as a dimple mapping where (Dx, Dy) are the

coordinates of the dimple map and the colors give information about the placement (or not) of a dimple at (Dx, Dy):

yellow means an existing dimple and purple a free spot.

Figure 35: Regular pattern P and mirrored result P ′ stribeck curves, shows the symmetric property of the Reynolds

equation.
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This calculation does not consider parameters such as Dd and Dr which can be considered global,

such that they apply to every dimple, or local where each dimple k has a set of parameters (Dk
d , D

k
r ).

Consider a range of 10 possible values for both Dd and Dr that apply locally to each dimple, the total

number of possible textures considering symmetry is

N =
1

2
(2× 10× 10)25 ≈ 1.68× 1057 , (3.8)

this number is 50 orders of magnitude bigger than the possibilities without the two dimple parameters.

A simpler yet still interesting configuration is to consider as discussed in previous sections that depths

Dd have a negligible impact on the Stribeck curves when compared to the radii Dr. As such we can

remove a degree of freedom, and we can also assume that the parameter Dr is global, such that all

dimples in the texture have radius Dr. With these considerations in mind and considering 10 possible

values of Dr there are now

N =
1

2
10× 225 ≈ 1.68× 108 , (3.9)

possible configurations. Still there are an order of magnitude more configurations than our first consider-

ation but it does include the physics of the dimple radii. For each global parameter that we add with n

possible values, we multiply the configuration space of the problem by n.

Keeping in mind our benchmark of FELINE in chapter 2, the computation of a Stribeck curve takes

anywhere from 15 to 20 minutes, even considering the best possible scenario and assuming it takes 10

minutes per curve, if our goal was to compute our entire configuration space (3.9) in order to find the

best performing configuration, the total amount of time required would be above 3000 years. This clearly

demonstrates that to solve the texture optimization problem a better and faster approach is needed. The

next chapter will address exactly this point, showing how this can be achieved by a machine learning

application.
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Deep neural network

In chapters 2 and 3 we discussed the details of our implementation of a fast and robust Reynolds equation

solver termed FELINE and showed its powerful capabilities for the calculation of Stribeck curves. In section

3.2.3 we demonstrated that while the solver is an improvement in terms of speed and accuracy when

compared with existing solutions, it is still too slow to be directly used in our optimization problem. In

this chapter we will apply the fundamental concepts of machine learning discussed in chapter 2 to our

problem, namely we will design, train and use a deep neural network to replace our FELINE solver and

use it to solve the pattern optimization problem.

4.1 The forward problem

4.1.1 Definition

In this section, we will define the forward problem in terms of the parameters of the physical problem

and introduce the dimensions of our problem, such as data set size and ratio of data set to configuration

space. Furthermore, we will show the training process for a variety of neural network configurations in

order to give some insight into the neural network functioning. Finally, we will show results that validate

our neural network. For the implementation of the work done within this chapter, we used commonly

available libraries in Python and the machine learning library TensorFlow [66].

To train our neural network we need to carefully define the problem that we are trying to solve. As

there exist a large set of parameters that we could theoretically use to describe the problem, such as the

texture dimensions, the type of pattern, the pattern specific parameters, the load applied to the system,

the lubricant in use, etc., we restricted the set to a relatively small number to simplify the optimization
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problem. Otherwise, as discussed in section 3.2.3, the configuration space of our problem might become

far too big to be solvable even by machine learning methods, due to time or data constraints.

Thus, we consider the following fixed parameters for our problem: a texture with fixed dimensions

(Lx, Ly) where Lx = Ly = 1 mm, a fixed grid-like dimpled texture with grid dimensions (Dx, Dy)

where Dx = Dy = 5, a fixed lubricant viscosity µ = 0.035 Pa s, fixed non-conformal profile and fixed

roughness parameters (among other surface related parameters). The reason why these parameters are

considered fixed is because they are problem specific, meaning that one can retrain the network for any

given problem by adjusting these parameters during data generation. The more important point is to

ensure that we are capable of obtaining a network that provides Stribeck curves for problems with varying

dimple placement and dimple radius, which can be used for the texture optimization problem.

The variables in our system (or, in a machine learning sense, inputs) are: a 5× 5 grid Dmap corre-

sponding to dimple placement, where a 1 corresponds to placing a dimple in the texture and 0 not placing

a dimple and a value for the global dimple radiusDr, this in total means 26 input variables for our network

{Dmap, Dr}.

Figure 36: Fit versus data for the flat Stribeck curve case detailed in chapter 3.

More importantly, let us discuss the output of the network. In chapter 3, the resulting Stribeck curves

were functions plotted fromN coefficient of friction values calculated by the solver forN Hersey numbers.

It is possible for certain input values {Dmap, Dr} that the solver fails. This failure typically happens closer

to the edge between the mixed lubrication regime and the contact lubrication regime as it falls outside the

validity of our solver.
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The issue arising from this possibility is that if we choose to calculate a Stribeck curve composed of

N points we may not obtain N points in every case. To circumvent this problem we identified a fitting

function that allowed us to represent a Stribeck curve with an arbitrary number of points with only a set

of k < N parameters. Specifically, we fitted the Stribeck curve to a rational polynomial, defined as:

fm
n (x) =

p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1

xm + q1xm−1 + · · ·+ qm−1x+ qm
(4.1)

where n,m are the fit degrees and p, q are the fit coefficients. We identified f 3
3 to be the most promising

compromise between RMSE of the fit and the number of parameters, an example of this fit function is

represented in figure 36. In summary: we have an input composed of 26 parameters representing the

dimple placement and dimple radius and an output composed of 7 parameters that lets us to reconstruct

a fit for the corresponding Stribeck function.

When looking in literature for similar applications of machine learning to physics problems we identified

a recent work [49] that dealt with a problem of similar dimensions with configuration space approximately

four times larger than ours. Considering the magnitude of their problem and the size of their training data

set, it is possible to have a qualitative estimation on how much data the training of our network would

require. In [49] the training was performed using ≈ 21000 data points, corresponding to ≈ 0.002% of

the total configuration space. In our case, we computed a total of around 120000 Stribeck curves from

randomly generated dimple patterns and 12 possible radii within in a range of Dr ∈ [40, 80] µm. This

corresponds to≈ 0.03% of the total configuration space, a much larger percentage than the one in [49],

indicating that the amount of training data should be enough to obtain a well-behaved DNN. Clearly, an

a posteriori check of this can be made once the network is trained. This data generation was done in

approximately 300 simultaneously running processes in Intel(R) Xeon(R) CPU E5-2697 v2 cores for 11

days in total.

4.1.2 Data treatment

For a rational fit one common problem is that the parameters have wildly different magnitudes, a fact

which is not ideal when it comes to the learning process of the network, because the step sizes calculated

in the stochastic gradient descent (SGD) method used during the training process can wildly change for

each feature. Scaling the data set in such a way that every parameter has the same order of magnitude

helps to ensure that the steps in SGD are smoother. This greaty reduces the time required to achieve

learning convergence. Hence, we applied a standard scaling to the input and output on our data points,

which essentially converts the parameter values to their z-score [67], which is a measure of how far a data
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point deviates from the mean of the data set and is defined as

zk =
xk − xk
σk

, (4.2)

One of the key factors for a successful training of a machine learning application is good quality data,

because outliers in data lead to networks that are unable to adapt to the full spectra of the data set. Thus,

we evaluated the quality of our data by employing the z-score test.

After organizing and representing in histograms the individual output parameters that reconstruct the

Stribeck curve fit, we noticed that each distribution had outliers. Investigating this issue, we realized that

for larger dimple radius cases (approaching 80 µm) the respective Stribeck curve within the mixed region

became flatter, leading to a fit that was noticeably different with respect to all the other Stribeck curves.

This is due to the fixed range of Hersey numbers we used in our calculations, which is not adjusted to the

leftwards minimum shift occurring for increasing dimple radius (see figure 33 page 46).

Figure 37: Histogram representation of each fit parameter from the 120000 case data set after removing the outliers.

Even if the outlier data removing procedure improves the overall learning, it makes the network perform

worse for cases with larger dimple radius, because these are the cases mainly affected by the outlier

removal. Considering a data rejection threshold of 3σ, where σ is the standard deviation for parameter
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p, we removed the data point from the data set if |Z| > 3σ where Z is the z-score. After cleanup, the

histograms of each of the 7 parameters in our data set, which are represented in figure 37, were entirely

free of outlier cases.

As discussed in 3.2.3 we have a mirror symmetry along the x-axis at y = 0.5L in our system, so that

for any given pattern P there exists a pattern P ′ that generates an identical Stribeck curve S. To make

sure that this symmetry is enforced during the training of our network, we associated each Stribeck curve

with its two symmetrically equivalent textures, resulting in a total of ≈ 240000 data points.

4.1.3 Training

To train the network we must divide the data into two sets: a training and a validation set. From our full

data set we randomly selected 90% of cases to constitute the training set and the remaining 10% of cases

were left as validation set. The purpose of the validation set is to assess how the network is generalizing

the problem to data it has not been trained for. This is an important sanity check because, in principle, it is

possible to obtain a network that performs very well within our training data, but terribly for any data it has

not yet seen, an issue commonly known as overfitting. By distinguishing the training loss and validation

loss we can tune the network parameters (such as number of layers/neurons) to prevent overfitting.

Figure 38: Learning rate polling for 3 different neural network models consisting of different numbers of layers and

amounts of neurons in each layer respectively. The activation function utilized across every hidden layer was the

ReLU function.

The loss function of the network is the mean squared error (MSE) defined in equation 2.90, while
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the activation function used across every hidden layer is the ReLU function [68] and the loss function

optimization algorithm is the stochastic gradient descent. These choices are safe and common options for

regression problems [69]. More sophisticated learning algorithms such as Adam [70] can lead to faster

convergence of the learning process, however these are typically applied to larger scale problems, which

is not our case. In the present work we are mostly interested in demonstrating the feasibility and reliability

of machine learning applications to texture optimization problems rather than finding the fastest algorithm.

To identify the best learning rate we adopted a technique called learning rate polling [71]. The main

idea is to compare the loss of a neural network modelM after N steps of learning for different learning

rates η. We polled the loss in terms of learning rate of 3 distinct neural network models, with different layer

counts and neuron counts per layer. After 10 steps (or epochs) we stopped the learning and determined

the corresponding loss, we performed this analysis for our 3 networks and represented the corresponding

losses in figure 38. By finding the minimum of each of these curves we can determine the optimal learning

rate for each network model. We trained these 3 networks with their respective optimal learning rate for

a total of 100 epochs and the respective training loss and validation loss over these 100 epochs are

represented in figure 39.

Figure 39: Learning curves of training and validation loss for 3 different neural network models consisting of different

numbers of layers and amounts of neurons in each layer respectively.The solid lines are a moving average of the

real losses, allowing to see more clearly the performance of each network model.

As one can see in figure 39, the learning process is not a simple descent to convergence but a clear

stochastic process. Although it is possible to train the networks for more than 100 epochs, the rate at

which they learn afterwards is minimal when compared to these first 100 epochs. The orange model
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appears to perform better in the training data set after 100 epochs, however it is slightly outperformed

by the blue model in validation loss, which provides the smallest validation set loss after 100 epochs of

training.

After observing these curves, we decided to adopt the blue model in figure 39, which is composed of

six inner layers with a maximum layer number of neurons (128) in inner layers 3 and 4. Once the training

is completed, to validate the DNN performance we must take a set of cases from the validation set and

compare the data to the DNN output. In the next section we will explore some comparisons between the

DNN results and the solver direct ouptut.

4.1.4 Results

In order to verify that our DNN accurately predicts results calculated by the solver, which are our reference

data, we selected six random cases from the validation data set and plotted both the solver results and the

DNN predictions in figure 40. We can see that the DNN accurately predicts the cases with a significant

deviation only in the hydrodynamic region of the Stribeck curve. Since the relevant region in real life

applications is the mixed region, for cases of interest the DNN provides an incredibly accurate results, as

it will be clear below.

Figure 40: Comparison between the results calculated by the DNN after training and the data from the solver for

random arrangements of dimples and dimple radii. The RMSE value provides a measurement for the performance

of the DNN.
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The RMSE associated with each of the cases also provides us with an estimate on the average deviation

from data: since the units of the RMSE are that of the coefficient of friction, this means we deviate at most

2% from the solver result in the case at the top left.

In order to identify a more useful measurement of the DNN error we computed the RMSE from data

for each case in the validation set. By representing these in a histogram, as plotted in figure 41, we can

see how the RMSE is distributed and we can estimate an average RMSE for the whole network. By plotting

the RMSE for the full Stribeck curve, and by specifying it for the mixed and hydrodynamic regions, it is

possible to see that the DNN performs better in the mixed region, thus supporting our previous claim.

Figure 41: RMSE distributions and median for the total Stribeck, mixed region and hydrodynamic region. This result

shows us that the DNN performs slightly better for the mixed region of the Stribeck curve.

The measured median RMSE for the entire Stribeck curve is 4.4× 10−4, for the mixed region of the

Stribeck curve defined as H ∈ [0, 0.002] it is 2.8 × 10−4 and for the hydrodynamic region defined as

H ∈ [0.002, 0.01] it is 4.0× 10−4.

In section 3.2.2 we showed the Stribeck curves for a fully dimpled texture case displayed a peculiar

trend for increasing radii, with the minimum of the curve shifting leftwards and for cases closer to Dr =

80 µm the curves flattening out more in the mixed region. Importantly, during the discussion about the

data treatment we mentioned that, due to this trend, some cases with Dr ≈ 80 µm became outliers in

data and were consequently removed. The fully dimpled case with Dr → 80 µm is at the boundaries

of the configuration space, with the data treatment it is likely to be the worst performing case of the DNN
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prediction when compared to data.

To verify that even in these extreme cases the network is still robust enough to capture the trends of

the underlying physics we performed the same analysis as in 3.2.2 for the range of radii and represented

the results in figure 42. What we observed was that while the DNN results differ significantly from the

solver results in this extreme case the trend of shifting minimum positions and flattening of the curves is

still present and well represented. However, forDr > 71.1 µm we were not able to obtain good enough

results due to these cases being outliers in terms of the fit and being the least data supported cases in

the entire data set.

Figure 42: Stribeck curves calculated by the DNN of the fully dimpled case from section 3.2.2 with varying dimple

radius in µm as well as the flat untextured case.

Since we have established that our DNN replacement for the FELINE solver works sufficiently well in

predicting results it is also important to establish an idea of its performance when compared to the direct

solver. We estimated that it would take more than 3000 years to fully compute our entire configuration

space using FELINE on the same hardware we used to produce the benchmark in section 3.1.3. In com-

parison, our DNN running on a single core of a AMD Ryzen™ 5 3580U CPU, a low-power cpu used in

consumer laptops, takes only about 2 hours to fully compute the configuration space with approximately

200 million distinct possible cases. This results in approximately a 25 million times speedup when com-

pared to the regular solver. The next section will explore how we can take advantage of this speed up in

performance.
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4.2 Inverse problem

4.2.1 Algorithm

In this section, we will discuss how we can take advantage of the performance our DNN by solving the

texture optimization problem for the particular system we have defined in the forward problem section. The

goal is to use our DNN to solve every possible configuration in our configuration space, of size N ≈ 400

million. This is done by first generating a matrix containing all possible configurations of dimples and

radii. We can take advantage of the fact that we can represent each case as a binary number from 0

to 225 combined with a range of allowed dimple radii that should fall within the training range Dr ∈

[40, ..., 80] µm to easily represent our configuration space. For example, a randomly generated dimple

case with dimple radius 50 µm would be represented as follows:

0101100001010011110110100 50 . (4.3)

The entries of the matrix for pattern 0 for a particular range of possible dimple radiiDr ∈ [40, 50, 60] µm,

have the form:

0000000000000000000000000 40

0000000000000000000000000 50

0000000000000000000000000 60

and for pattern 522,

1000001010000000000000000 40

1000001010000000000000000 50

1000001010000000000000000 60

To obtain the dimple map from one of these entries we can reshape the 25 bit array into a 5 × 5

matrix in a row-major sense, to comply with the standard set by the solver and DNN. The random pattern

in (4.3) would take the following form

00011

10110

00011

10000

11110
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In the following discussion, we will consider the full configuration space of the dimple mapping and a

range of 12 possible dimple radii contained in the range [40, 80] as our input matrix. However, we need

to prepare this data for use with our DNN. As discussed in section 4.1.2, we scaled our data so that both

our input and output features have the same order of magnitude. By using the same scaling function that

was determined during training, we can scale our matrix of input data and allow the DNN to predict the

fit functions for all Stribeck curves. One can calculate the total amount of data we have to store: with 12

dimple radii for each possible pattern (225), we have a total of 402653184 entries with 26 parameters

each in our input matrix, the total amount of storage memory required to store this information is 78 GB.

To speed up the calculation of Stribeck curves for such a massive matrix of data, we have split the data

into 32 equally sized chunks that can be processed in parallel. This way, each process can calculate the

Stribeck curves without memory constraints while also providing an overall faster process than processing

the full matrix at once. With each of the 32 distinct chunks of Stribeck curves determined, we can collate

the information into a single Stribeck curve fit parameter table.

4.2.2 Results

Since we calculated the stibeck curve for each possible configuration, we are now in the condition to

perform the texture optimization. The user can specify the optimization criteria: in this case, we will

consider the best performing pattern to be the one that generates the Stribeck curve with the lowest value

of the coefficient of friction. To determine the minimum of each Stribeck curve, one can take advantage

of the fact that the fit is a well-behaved function in the Hersey number interval we have calculated, this

condition being guaranteed by the outlier removal data treatment. Since we know the analytical derivative

of each fit, determining the minimum of the Stribeck curve is a simple root-finding problem, for which we

can employ fast root finding algorithms such as Brent’s method [72] [73], which is valid for intervals [a, b]

where:

f(a) · f(b) < 0 , (4.4)

a condition which the fit applied to our Stribeck curves fulfills.

After determining the minimum position of every single possible case in our configuration space, we

can simply perform a linear search through the list to find the smallest possible Stribeck curve minimum.

This process can also take advantage of parallelization. In figure 43 we represent the predicted best

performing pattern with a dimple radiusDr = 72.7 µm, the respective Stribeck curves computed by the

DNN and FELINE and the ”control” Stribeck curve generated by a flat surface for performance comparison.
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As we can see, the predicted Stribeck curve for the pattern appears to vastly outperform the flat un-

textured case. We can also see that the Stribeck curve calculated by FELINE looks entirely different from

the DNN prediction, going against our demonstration in section 4.1.4, where our DNN performed quite

remarkably for the validation set, supposedly validating the network performance for the entire configura-

tion space. As we know from the discussion in section 4.1.2, we identified and removed outliers in data

through use of pure statistical analysis (the z-score test).

Figure 43: (a) predicted best performing pattern with dimple radius Dr = 72.7 µm. (b) corresponding Stribeck

curve in orange computed with the DNN; Stribeck curve in blue computed with FELINE; non-textured surface as a

control for friction minimization.

The reason why the RMSE distribution in section 4.1.4 doesn’t appear to have outliers with such

disagreement is entirely due to the fact that the validation set itself is clean from them. It is thus important

in such scenarios that we do not forget the physics behind such calculations. While statistical analysis of

data in deep neural network training is certainly one key for its success, the real key to obtaining good

results in this scenario comes from purely physical arguments. As a matter of fact, removing outlier cases

and training the network while afterwards attempting to apply the brute-force search method in a range that

certainly includes them is inherently doomed to fail, because we are essentially attempting to extrapolate

a behaviour our network was not trained for.

Furthermore we must shed light on the physical reasons why cases with high dimple radius were not

adapting well to our network. Since we observed a leftwards moving minimum of the Stribeck curve (see

section 3.2.2), this meant that these cases were likely moving towards a dry contact regime for lower

60



Chapter 4 Section 4.2

Hersey numbers. Which we statistically identified as the appearance of outliers in fit parameters, due

to the curve flattening. In this regime, the Reynolds equation and the Greenwood-Tripp contact model

might not apply. To verify this, we decided to carefully look at the pressure profiles that the solver was

calculating, by randomly choosing a dimpled case with a dimple radius Dr = 80 µm, and representing

the resulting maximal pressure and cavitation fraction found at each Hersey number in figure 44.

We found that, due to the increasing dimple radius, meaning also an increase in the dimple to total

area ratio, the effective contact area between the texture and the moving surface became very localized.

This localization of contact leads to exponentially high pressure points for lower Hersey numbers, as the

minimal distance between the surfaces is lower. At pressures of over 20 − 25 atm we can no longer

guarantee the validity of the Reynolds equation, from figure 44 we can see pressures of up to 250 atm.

Meaning that these cases cannot be treated in a physically correct way by our solver, and thus have no

place in our training set.

Figure 44: Evolution of maximum pressure and cavitation with respect to Hersey number for a randomly dimpled

texture with dimple radius Dr = 80 µm.

To verify that our brute-force search method still yields good results, we limited our dimple radius range

to 10 values in the intervalDr ∈ [40, 60] µm. Once again, we generated our input matrix by combining

the total pattern configuration space with the 10 possible dimple radii, and then we scaled it according to

the same scaling function used in the DNN training. After providing the correctly scaled input matrix to

the DNN, we obtained the output matrix containing the corresponding Stribeck curve fits and from these

we computed the minimum of each Stribeck curve. After a linear search we identified a family of patterns

that yield the best reduction to the Stribeck curve minimum, the most effective of which is represented in

figure 45 and has dimple radius Dr = 60 µm. We also represented the corresponding Stribeck curves
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computed by the DNN and FELINE as well as the flat case for texturing performance comparisons.

Figure 45: (a) correctly predicted best performing pattern with dimple radiusDr = 60 µm. (b) respective Stribeck

curve in orange computed with the DNN; Stribeck curve in blue computed with FELINE; non-textured surface as a

control for friction minimization.

At its peak of friction reduction, the optimized texture outperforms the flat case by up to 20%. More-

over, our predicted optimal solution is in excellent agreement with the corresponding direct solver calcu-

lation. This is perhaps the most critical point of our method, because in order for the brute-force search

method to be reliable, its predictions must agree with the solver output.

Figure 46: Evolution of maximum pressure and cavitation with respect to Hersey number for our bruteforce search

method optimized pattern with Dr = 80 µm and the flat texture.
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The optimal pattern is made by a row of dimples normal to the sliding direction after the contact.

Similarly to the analysis done in figure 44, one can look at the maximum pressure and maximum cav-

itation fraction as a function of the Hersey number for our optimized pattern to gain insight into how it

achieves friction reduction. In figure 46 we represented this for both the optimized pattern and flat sur-

face, for comparison purposes. We observed that in terms of pressure, our optimized pattern achieves

smaller maximum values in the mixed region pressures, while slightly larger values are found in the hy-

drodynamic region. In terms of cavitation, we have a noticeable increase in maximum cavitation fraction

in the hydrodynamic region while observing a steep decrease in the mixed region. This sharp decrease in

maximum cavitation fraction occurs within the mixed region, that is in the regime in which our optimized

pattern vastly outperforms the flat texture. We can choose a Hersey number within the mixed region of

the Stribeck curves in order to visually verify this cavitation region decrease. For H = 1.1 × 103 we

represented the optimized texture and drew the cavitation boundaries for both the optimized texture and

flat texture in figure 47. With this representation of the cavitation boundaries we have shown how the

optimized texture determined by the brute-force search method decreases overall friction in the mixed

regime.

Figure 47: Representation of the optimized texture h, and countours for θ = 0.01 for both the flat textured case

and optimized texture case, allowing us to visualize a clear reduction of the cavitation boundary.

The effect of texturing applied after the contact region has been noted previously[38, 39], and thus the

best performing pattern might also have been guessed before any calculation, however, since we could

not manually check each and every pattern, we could not conclude this for certain. What the brute-force
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search method combined with our DNN has allowed is an efficient texture optimization process. Not only

it does provide us with the best-performing textures according to our requests, but also ensures that those

are the best among all the possible ones within the configuration space.

A powerful feature of this texture optimization method is that it provides a family of optimal/close to

optimal patterns. In the maximal friction reducing case, however, it is clear from figure 48 that the optimal

patterns follow the same trend of placing a column of dimples after the contact region.

Figure 48: Family of 9 patterns with the best performance excluding the one analyzed in chapter 4. These patterns

are closely related to the optimal pattern determined by the brute-force search method.

The dimples at the first column which make up this set of 9 close to optimal patterns hardly have any
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effect on friction, when compared to the column of dimples after contact, because they are too far from

the contact region and they are placed in a region where cavitation does not occur. The Stribeck curves

generated by these patterns generate are extremely close to the one generated by the optimal pattern.

Figure 49: Family of 9 patterns with displayng the worst performance in terms of friction reduction.

It is also worth checking which patterns generate the largest mixed region minimum value of the

coefficient of friction, which would be the worst performing case in terms of our previous minimum search.

In fact, in some applications an increase of friction is desired, such as in [74, 75]. To do this, we performed

a linear search for the highest minima and represented the found patterns in figure 49. Conversely to the

best performing case, these patterns have in most cases a dimple radius of was 40 µm. We also notice
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that patterns are related to the best reducing pattern in the sense that they appear to avoid dimples on

the column right after contact.

We can now compare the flat case with the best and worst performing textured cases, represented in

figure 50, giving us the full idea of how much surface texturing truly influences friction, therefore showing

its potential as a friction manipulation tool. This representation of the cases can also be interpreted as a

window into how much more room for failure rather than success there is in texturing for friction reduction.

In absolute terms, the percent difference between the worst case and flat compared to the best case and

flat is considerably higher through the entire curve.

Figure 50: Stribeck curve comparison between the flat, worst and best pattern cases determined by the brute-force

search method.
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Conclusions

During the state of the art discussion in chapter 1, we concluded that despite the recent developments

in traditional numerical methods utilized to solve the Reynolds equation and allowing for the prediction

of friction between moving parts in contacts, a direct optimization of surface parameters for a specific

application is still unreliable, being based upon a trial-and-error approach. Due to this fact, we proposed

a novel approach to this problem, based upon a machine learning application.

Firstly, we implemented and validated a robust and extremely fast Reynolds equation solver, which

uses the finite element method combined with the novel inexact Newton iteration and a mass-conserving

cavitation scheme. We showed that it performed successfully both against common cases in literature as

well as industrially relevant cases, providing physically accurate results that correctly describe cavitation

regions and ensure the non-negativity conditions. Further, we described how we could use the solver

combined with a surface contact scheme to consistently predict friction stemming from hydrodynamic and

asperity contact, which are calculated using coefficients that can be approximated through experimental

data fitting. We verified that our friction calculations correctly took into account the surface geometry. We

studied the effect of both dimple radius and depth on the Stribeck curves, concluding that the effect of

radius is more apparent and significant, thus making it a promising candidate as an optimization variable.

The overall physical accuracy of our Stribeck curve solver, coupled with its excellent performance

in terms of timing, allowed us to calculate the large number of data points requested in the deep neural

network (DNN) training, while ensuring the data quality. After generating a total of more than 120 thousand

distinct randomly generated grid of dimples we solved these cases and obtained the corresponding Stribeck

curves. The DNN that we trained upon this data is capable of predicting Stribeck curves for textured

dimples in milliseconds, with a very high degree of accuracy when compared with direct solver results.

Finally, we showed how we could take advantage of our newly trained DNN and its extremely fast
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prediction speeds to predict the Stribeck curves for all the possible configurations of our problem, a

task that would have been required thousands of years of computation time. This allowed the texture

optimization problem to be treated as a a linear search on the dictionary of the predicted Stribeck curves,

and we provided two practical examples of this.

The introduction of machine learning into physics is still a recent event in the grand scheme of things,

while it has been studied, understood and consistently applied over the years to other fields. We must

never forget that the networks can only learn correctly if we teach them correctly, and as such, a close eye

on the physics at hand is necessary to ensure successful applications of the technique [76]. Particularly

that of the physical limitations of our models and data, as we experienced during the development of our

brute-force search method.

As further work, a generalization of the direct Reynolds solver in terms of mesh manipulation and also

optimization work could provide us with the possibility of tackling more complex cases while remaining

computationally competitive and perhaps even achieving greater levels of speed. this could provide us

with the capability to attempt more sophisticated approaches to the texture optimization process such as

the training of a deep neural network that would be capable of predicting the texturing pattern in terms of

a full, or portioned Stribeck curve, in other words the inverse problem. This would largely eliminate the

need for large computations that occur through the brute-force search methods. However, due to a leap in

complexity it could possibly require more advanced machine learning strategies such as adversarial neural

networks [71] and possibly extremely large data sets. One major problem is the existence of a one-to-many

mapping of solutions as there can be a set of textures that generate very similar Stribeck curve solutions.

A few cases of this were observed during discussion in chapter 4 of this thesis with closely related textures

of the optimal Stribeck curve.

The introduction of machine learning and its successful application and validation in the field of tribol-

ogy represents the main achievement of the present work. Showing that it is indeed a powerful tool that

can be used to help us manipulate friction in novel ways can create an incentive for the pursuit of further

exploration of the technique, both in tribology and physics as a whole.
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