
Universidade do Minho
Escola de Engenharia

Bruno Manuel Chaves Martins

Cloud-based IoT as a Service

dezembro de 2021U
M

in
ho

 |
 2

02
1

Br
un

o
M

an
ue

l C
ha

ve
s

M
ar

tin
s

C
lo

ud
-b

as
ed

 Io
T

as
 a

 S
er

vi
ce

Bruno Manuel Chaves Martins

Cloud-based IoT as a Service

Dissertação de Mestrado
Mestrado Integrado em Engenharia Informática

Trabalho efetuado sob a orientação do(a)
Paulo Jorge Freitas de Oliveira Novais
Bruno Filipe Martins Fernandes

Universidade do Minho
Escola de Engenharia

dezembro de 2021

Direitos de Autor e Condições de Utilização do

Trabalho por Terceiros

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade

do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição

CC BY

https://creativecommons.org/licenses/by/4.0/

i

Acknowledgments

In the first place, I would like to thank my supervisor, professor Paulo Novais for accepting me and the

suggested topic and, for guiding me during its development providing every tool I needed to perform great

work. The amount of technical knowledge I acquired during this time was huge, and for that, I’m forever

grateful.

I want to thank my family for always supporting me in every aspect of the walk I began all these years

ago. Their motivation and belief in me were critical for my success. Without them, this major achievement

in my life wouldn’t be possible.

I also would like to thank professor Bruno Fernandes, who performed a key part by helping me every

step of the way and by always being available to steer me in the right direction when I needed it. His

wisdom and words of encouragement were crucial to making me perform at my best.

To my closest friends, who were always there when I needed it, cheering me on this journey and

helping me get through some stressful moments.

Bruno Martins

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iii

Resumo

IoT como um serviço baseado na Cloud

Internet of Things (IoT), está-se a tornar cada vez mais parte das nossas vidas e, quando aliada a

computação na Cloud, torna-se uma ferramenta muito poderosa devido a remover stress computacional

de pequenas placas ineficientes. Software como um serviço já representa uma grande parte do nosso

dia-a-dia com empresas como a Netflix a aplicar o conceito de forma muito bem-sucedida. No contexto

de IoT, este conceito ainda não está globalmente disseminado.

A natureza heterogénea dos dispositivos representa um grande desafio para os conseguir integrar num

sistema na Cloud. Os diferentes formatos e tipos de dados enviados para um middleware são difíceis de

processar e, como consequência, leva a que exista uma grande pressão no programador para que todos

os sensores sejam suportados.

Ao longo deste estudo são exploradas variadas arquiteturas de forma a ser possível desenhar um

sistema eficiente e, como os diferentes protocolos de comunicação afetam a rede em termos de overhead

e fiabilidade. O sistema concebido, baseado em toda o estudo realizado, consiste numa aplicação para

salas inteligentes que infere quantas pessoas estão lá dentro através de Probes de WiFi, disponibiliza essa

informação a utilizadores e é verificada a possbilidade de utilização de algoritmos de Machine Learning

como forma de optimizar resultados. O sistema desenhado permite aos programadores adicionar outros

dispositivos sem ter de se preocupar como as mensagens são recebidas, apenas necessitando de adi-

cionar a lógica que extrai o conhecimento dos dados. No que toca à área de crowdsensing deste trabalho,

a precisão do sistema foi melhorada quando comparando com outros algoritmos estudados.

Palavras-chave: Processamento na Nuvem, Internet das Coisas, Aprendizagem automática, Soft-

ware como um Serviço, Sondagem de Wifi

iv

Abstract

Cloud-based IoT as a Service

Internet of Things, or IoT, is becoming more and more a part of our lives and when allied with cloud

computing it becomes a very powerful tool by removing the computing stress from the small energy-

efficient boards. Software as a Service is already a major part of our day-to-day lives with companies like

Netflix successfully applying this concept. In IoT this type of concept is not widely applied.

The heterogeneous nature of devices poses a big challenge to integrate them in a cloud system, the

different data and formats sent to a middleware are hard to process and puts pressure on the developer

to ensure all sensors are supported.

Throughout this study we explore and design different types of architectures for efficient applications

and how the different communication protocols affect the network when it comes to overhead and reli-

ability. The conceived system, theoretically grounded on the research work, consists of a smart room

application that senses how many people are inside a space through the process of WiFi Probing makes

that information available to a user and makes use Machine Learning algorithms as a way to improve

results. The design system allows developers to easily add new types of devices to the network without

needing to worry how the messages are received, only needing to add domain logic to extract knowledge

from the data. Regarding the crowdsensing aspect of this work, the accuracy of the system was improved

when compared to other algorithm.

Keywords: Cloud, Internet of Things, Machine Learning, Software as a Service, WiFi Probing.

v

Contents

Direitos de Autor e Condições de Utilização do Trabalho por Terceiros i

Acknowledgments ii

Statement of Integrity iii

Resumo iv

Abstract v

List of Acronyms ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Goals . 2

1.3 Research Hypothesis . 2

1.4 The Case Study . 2

1.4.1 Problems . 3

1.4.2 Challenges . 3

1.4.3 Requirements . 4

1.5 Research Methodology . 4

1.6 Document Structure . 5

2 State of the art 7

2.1 IoT integration with the Cloud . 7

2.1.1 Architectures . 7

2.1.2 Middleware . 11

vi

2.1.2.1 Challenges middlewares attempts to resolve 11

2.1.3 Communication . 14

2.1.3.1 MQTT . 14

2.1.3.2 CoAP . 16

2.1.3.3 AMQP . 17

2.1.4 Deployment . 17

2.1.5 Secure IoT and Cloud interactions . 18

2.2 Crowdsensing . 19

2.2.1 WiFi Probing . 19

2.2.2 Bluetooth . 21

2.3 Machine Learning . 22

2.3.1 Evaluation Metrics . 22

3 System Architecture and Implementation 25

3.1 Overall architectural design . 25

3.2 Physical Layer . 26

3.2.1 Devices . 27

3.2.2 Probe Request Detection . 27

3.3 Middleware . 29

3.3.1 Architecture . 29

3.3.2 Module breakdown . 30

3.3.2.1 Communication . 30

3.3.2.2 Persistence . 32

3.3.2.3 API . 33

3.3.2.4 Authentication . 33

3.3.2.5 Status . 33

3.4 Business Logic . 37

3.4.1 Architecture . 37

3.4.2 Module Breakdown . 39

3.4.2.1 Models . 39

3.4.2.2 Manager . 39

3.4.2.3 Database . 40

3.4.2.4 Message Client . 40

3.4.2.5 API . 40

3.4.3 User Interface . 41

3.4.4 Machine Learning Service interactions . 43

3.5 Communication Patterns . 44

3.5.1 Sensor to Cloud communication . 44

3.5.2 Secure IoT communication . 46

vii

3.5.3 Service to Service communication . 46

4 Results and Discussion 48

4.1 Introduction . 48

4.2 Finding the best Cleanup Delta and RSSI . 48

4.2.1 RSSI . 48

4.2.2 Cleanup Delta . 51

4.3 Overall system’s performance . 53

4.3.1 Performance without Machine Learning Improvements 53

4.3.2 Performance with Machine Learning . 54

4.4 Summary . 57

5 Conclusions 58

5.1 Final Considerations . 58

5.2 Future Work . 59

Bibliography 61

viii

List of Acronyms

AMQP Advanced Message Queuing Protocol. 17, 44, 46, 47

ANN Artificial Neural Network. 22

AP Access Point. 20, 28

API Application Programming Interface. 12, 43, 46, 58

BLE Bluetooth Low Energy. 21

CoAP Constrained Application Protocol. 14, 16, 17

HTTP Hypertext Transfer Protocol. 13, 16

IoT Internet of Things. iv, v, 1–3, 5, 7, 10–16, 18, 22, 25, 26, 29, 32, 33, 44, 57–59

JSON JavaScript Object Notation. xiv, 13, 28, 32, 36, 40

MAC Media Access Control. 3, 20, 27, 38

ML Machine Learning. 2, 3, 5, 7, 12, 22, 33, 43, 48, 53, 55–57, 59

MQTT Message Queuing Telemetry Transport. xi, xiii, xiv, 14–18, 26, 31, 44–46

REST RESTful. 40, 58

RSSI Received Signal Strength Indication. xii, 3, 20, 21, 27, 48–51, 53

SaaS Software as a Service. 1, 2, 32, 58

SOA Service Oriented Architecture. 9, 12, 29, 30, 37

TCP Transmission Control Protocol. 17

ix

UDP User Datagram Protocol. 16, 17

WSN Wireless Sensor Network. 1

XML Extensible Markup Language. 13

x

List of Figures

1 Iterative and incremental development model. Obtained from Ibrahim (2020). 4

2 CRISP-DM cycle. Obtained from Chapman et al. (2000). 5

3 Three Layer Architecture diagram. 9

4 Five Layer Architecture diagram. 10

5 Software defined units diagram. Obtained from Asir et al. (2016). 11

6 Architecture overview of Message Queuing Telemetry Transport (MQTT). Obtained from

MQTT.org. 15

7 Smartphone number growth between 2017 and 2019. Obtained from Gu (2019). 19

8 WiFi Probing schema. 20

9 Unique requests vs Observed people. Obtained from Fernandes et al. (2018). 21

10 Flow of Reinforcement Learning algorithms. 23

11 High-level architecture design. 26

12 AZDelivery NodeMCU Lolin V3 Module ESP8266 ESP-12F. 27

13 Probe Requests captured by a NodeMCU Lolin V3 Module ESP8266 ESP-12F sensor. . . 27

14 Middleware service architecture modules. 30

15 Firestore data snapshot. 32

16 Algorithm to detect a device presence. 34

17 Algorithm to detect a presence potential exit. 34

18 Algorithm to confirm a presence exit. 35

19 Algorithm to detect a misread presence. 35

20 Business Logic service architecture . 38

21 Business Logic database diagram . 38

22 See current occupation . 41

23 Historical presences data last month . 42

24 Modal to add a Sensor to the system. 42

25 Modal to add a Room to the system. 43

26 Estimation request flow diagram. 43

xi

27 Channels and message flow diagram. 45

28 Token request flow. 46

29 Kafka architecture diagram. Obtained from John and Liu (2017). 47

30 RabbitMQ architecture diagram. Obtained from John and Liu (2017). 47

31 RabbitMQ message flow diagram in the system. 47

32 Experiment results with Received Signal Strength Indication (RSSI) unlimited. 49

33 Experiment results with RSSI limit equal to 90. 50

34 Experiment results with RSSI limit equal to 8 0. 50

35 Experiment results with delta equal to 1 minute. 51

36 Experiment results with delta equal to 2 minutes. 52

37 Experiment results with delta equal to 3 minutes. 52

38 Experiment results with delta equal to 4 minutes. 53

39 Overall performance experiment. 54

40 Scatter plot on Inferred Presences and Probe Requests number. 55

41 Scatter plot on Actual Presences and Probe Requests number. 56

xii

List of Tables

1 Confusion Matrix . 23

2 Different available MQTT brokers. 45

3 Dataset sample. 54

4 Results after Linear Regression applied. 56

xiii

List of Listings

1 Probe Request code. Obtained from Brunofmf. 28

2 Serialized JSON options. 28

3 Callback function for MQTT message handling. 31

4 Function that publishes token. 31

5 Function that publishes messages for Business Logic to consume. 31

6 Example of JavaScript Object Notation (JSON) saved in Firestore. 32

7 Example of JSON message sent to Business Logic. 36

8 Example of Mutex usage when cleaning the Potential Departure structure. 36

9 Example of test of function CleanUpPotDeparture. 36

10 Interface contract to accomplish persistence. 39

11 Interface contract allow Message Queues clients. 39

xiv

Chapter 1
Introduction

In this chapter, it will be addressed the context and motivation of this work, as well as the project’s

objectives and research methodology. Finally, the paper structure will be described.

1.1 Context and Motivation

Internet of Things or IoT, is the expression that describes the interconnectivity of objects and sensors to

the internet to create a grid of devices that collect, share, and, in some cases, actuate in the environment to

provide a better surrounding (Asir et al., 2016). These types of technologies are already deeply ingrained in

our society, from smart home appliances to sensors spread all around cities to track many society metrics

(Fernandes et al., 2020a). For example, Yuan et al. (2011) studied crowd density and distribution basing

their research in Wireless Sensor Network (WSN) affirming that this kind of research is critical in human

safety monitoring, traffic awareness, smart tours in museums and in a variety of others applications. The

growth of the use of these technologies is exposing many challenges still open in the realm of what types

of technologies to utilize, what is the best architecture to apply in each scenario (Naveen, 2016), and the

repercussions of deployment, and on non-functional requirements.

Software as a Service (SaaS), is a somewhat old concept but widely spread nowadays. It consists

of a company producing its own services and software to provide to a customer for a fee. These end-to-

end solutions usually are provided via the web to the client and nowadays represent a large part of the

market cap in IoT. It is projected that IoT as a service will grow to the extent as software as a service has

become (Asir et al., 2016). Cloud computing is a major pillar of SaaS strategies because only with a robust

infrastructure, a company can provide a service with the level of quality that is needed nowadays.

The integration of IoT and the Cloud is a challenge in itself, although the Cloud allows an elastic runtime

infrastructure, self-service, and offers fine-grained IoT resources when systems scale, a whole new array of

problems need to be addressed such as configuring new resources when they need to be added and how

to scale down in off-peak times (Asir et al., 2016). IoT and Cloud are very different types of technologies in

a sense that IoT is characterized by many distributed devices with limited computing abilities and storage

and Cloud computing is described as a network with close to unlimited storage capabilities and processing

1

CHAPTER 1. INTRODUCTION

capabilities (Atlam et al., 2017).

1.2 Goals

The main objectives of this thesis are:

• Evaluate the different kinds of approaches to IoT and SaaS based on the Cloud in various contexts;

• Implement an end-to-end Cloud-based IoT as a Service system utilizing sensors that are as minimally

intrusive as possible;

• Understand how to integrate a heterogeneous physical layer with a Cloud-based system with the

proper protocols ensuring that adding different types of sensors when needed is a seamless action;

• Compare and choose the correct types of communication patterns and protocols that can be applied

in each scenario;

• Understand Machine Learning (ML) algorithms in an IoT environment that produces data in real-

time.

The case study of this work will be in the realm of smart rooms. It is a mostly unexplored side of

informing people on what is the state of the room regarding the occupancy levels. The spaces where this

system might be implemented consist, for example, of coworking spaces, library study spaces, or offices.

1.3 Research Hypothesis

This work aims to validate that IoT and the Cloud are two concepts that can easily be integrated, more

specifically in the context of smart rooms approaching the problem from an architectural point of view. On

the other hand, the results of this study, in the realm of smart rooms, can improve the quality of life of

people by informing them about a number of variables that can be sensed. Lastly, the usage of sensors

as minimally intrusive as possible is also a big key takeaway of this thesis.

1.4 The Case Study

This thesis case study is to develop and end to end solution that can infer how many people are

inside a room in every moment using non invasive sensors and create a solution to inform other people

or systems of that state.

2

CHAPTER 1. INTRODUCTION

1.4.1 Problems

The problem that this is attempting to solve falls into two categories. The major problem is the inte-

gration of heterogeneous IoT devices, each one with its characteristics, with the Cloud to provide a service.

The secondary problem is related to crowdsensing, the lack of solutions that can easily infer how many

people are in an indoor space shows space for investigation and improvement.

IoT integration with the Cloud has a lot of unanswered questions, and even the ones that have a solution

are not always widely accepted as the best. The middleware layer that aggregates the data from different

sensors shows the most space for improvement. Currently, there are no standardized norms to construct

a middleware for IoT systems. The choice of communication protocol is one of the few problems that have

a standardized set of solutions to select. To create a service around IoT is needed a solid architecture that

can accommodate certain requirements such as elasticity and scalability. Depending on the problem at

hand the answer might be very different. When creating an IoT service is expected a maximization of use

with the data gathered. To do so, the creation of a ML algorithm is a way of doing it. This brings out a new

problem from an architectural point of view.

The second part of this works problem is crowdsensing. Various types of approaches were analysed,

with different sensors, accuracy, and even costs. The developed solution regarding the case study will

try to take into account every problem to have a system that preserves the privacy of people, leverages

technology to be cost-effective when gathering the data, and other key aspects.

1.4.2 Challenges

In the Cloud and IoT side of things, the choice and design of architecture is the major challenge.

This decision is one of the most complex choices because it creates constraints that can impact future

development. To roll back an architecture after development has already begun is very costly and might

put the whole work in danger. In the communication side of things, there are standardized options to follow

when deciding on what protocol to utilize but there is still the need to analyze the if deployment environment

can handle the constraints imposed by some of them in terms of memory usage and, network latency and

bandwidth.

From a crowdsensing point of view, the creation of a system that infers the presence of people indoors

is an intricate process. Because this work aims to be non-intrusive, the use of WiFi probing is one of,

if not, the only option to do so. When sensing through WiFi is very difficult to set an RSSI threshold to

decide if a person is inside or left the room but is still near. Nowadays, with Media Access Control (MAC)

randomization implementation in devices such as smartphones becomes more difficult to conclude if a

certain MAC belongs to one person.

The implementation of ML is always a challenge no matter the field. The choice of an algorithm that

suits the problem must be backed by research to avoid any future surprises that may lead to poor results.

Like in the architecture choice, a late major change in this component is very costly and difficult.

3

CHAPTER 1. INTRODUCTION

1.4.3 Requirements

Being outlined the case study and, the problems and challenges attached to it the following require-

ments must be implemented in the proof of concept:

• Detect the presence of devices and associate them to people in an non-intrusive way;

• Sensors send data through the internet not relying on local networks;

• Sensor abstraction, only the data sent must obey to some parameters;

• Management and authentication of sensors;

• Management of different rooms in which the sensors are deployed;

• Offer historic data;

• Develop a web app to show real time data and previous history.

1.5 Research Methodology

For the platform execution, is used an interactive and incremental development approach. This means

that each development cycle, or iteration, includes a new functionality but, previously implemented features

can be modified to fix undetected problems in previous cycles (Vijayalakshmi, 2011). In Figure 1 is a

detailed diagram of the iterative and incremental development model.

Figure 1: Iterative and incremental development model. Obtained from Ibrahim (2020).

The first task to achieve the platform goal is deciding a general architecture for the system evaluating

the different possibilities to make an adequate choice.

While designing the system’s architecture the approach to the development will be bottom-up, con-

centrating efforts on the sensing of the room and only moving to the next component after a solid base is

established. The development of the physical layer can be done along side the architecture because the

embedded code in sensors is not subject to architectural constraints in the early stages.

The next component will be a middleware to allow integration with the Cloud. This layer of the system,

according to all research performed until this point, will be critical to the success of the system.

4

CHAPTER 1. INTRODUCTION

Afterward, the focus will be shifted to the ML model to ensure all knowledge gathered from the sensed

data is utilized to provide the users of the system a better experience. The conception of these types

of models have a development cycle of their. This project will develop all ML components following the

Cross-Industry Standard Process for Data Mining (CRISP-DM) to achieve the best results possible. The

different cycles and phases of this process are shown in Figure 2.

Figure 2: CRISP-DM cycle. Obtained from Chapman et al. (2000).

Lastly, to be able to provide a service, a business component will be developed as well as a website

to be accessed by users to check the state of rooms where the system is deployed.

1.6 Document Structure

The current chapter (number one) makes an introduction to this work. Also explains, from different

perspectives, the problem, and its challenges in order to find possible problems that may surface in the

future as well as the soon to be developed work in this dissertation and the methodologies that will be

followed. The rest of the document is composed of four more chapters.

Chapter number two reviews the state of the art and other relevant research to this thesis. Beginning

with an overview of IoT and Cloud architectures to achieve integration between the two. After it’s ana-

lyzed crowdsensing research with focus on WiFi techniques, and, at the end of the chapter is made an

investigation on the ML topic.

Chapter number three describes the developed work as well as a detailed insight on most decisions

take throughout, regarding technologies architectural patterns and algorithms.

5

CHAPTER 1. INTRODUCTION

Chapter number four presents the results of the previous chapter and some improvements made to

optimize the final result.

Chapter number five presents the conclusions taken from this work as well as considerations for a

future work.

6

Chapter 2
State of the art

This chapter addresses the current state of the art concerning the relevant topics of research related

to this work, more specifically how crowdsensing can be performed in smart environments, IoT integration

with the cloud and also ML techniques that are applied in an IoT context.

2.1 IoT integration with the Cloud

In the realm of IoT architectures, there are two that stand out, Cloud and Fog. A Cloud-based architec-

ture offers flexibility and scalability as well as infrastructure, platforms, software, and storage, the Cloud

also offers the possibility of data-mining, ML, and data visualization services (Sethi and Sarangi, 2017). On

the other hand, in a fog architecture approach, sensors perform work that is otherwise done by servers,

such as, processing data and analyzing it (Asir et al., 2016). As this work has in its goals to remove stress

from sensors and move it to more powerful machines, from now on, only the Cloud will be considered.

2.1.1 Architectures

From an architectural point of view, the majority of systems are based on a monolithic architecture

according to Lai et al. (2019), currently, this is not the most efficient way of handling the large amount

of data gathered by sensors because a monolithic approach is not easily scalable or deployed. This type

of system has its advantages, not dealing with a massively distributed system of various services is one

of them. However, microservices architectures are in rapid growth due to some advantages. Lai et al.

(2019) states that microservices, due to their distributed environment are a more resilient solution, given

that if the system is well-engineered a failure of a component doesn’t mean the failure of the system as

a whole. Scalability, a topic mentioned earlier normally, is less of a hassle because we are dealing with

smaller components often in a container (Pahl et al., 2020).

Al-Debagy and Martinek (2019) performed a comparative analysis between a monolithic and microser-

vices approach. At the beginning of this work is stated that microservices can rely on different technologies

to achieve a set of desired goals, as mentioned earlier if one part of the system fails it doesn’t affect the

7

CHAPTER 2. STATE OF THE ART

rest of the system, scaling is more accessible in microservices when compared to monolithic applications,

deployment is easier allowing each service to be deployed independently and lastly, it helps companies

aligning its architecture with their organizational structure reducing human costs. Furthermore, this work

executed three types of scenarios to compare to each other. JHipster was chosen to produce web appli-

cations used in these tests. To determine performance differences was utilized JMeter. The metrics used

for this comparison were response time and throughput. Response time is the time difference between a

request and its reply. Throughput is the number of requests that can be satisfied per second. The first sce-

nario was load testing, it started with 100 threads increased gradually every 2 minutes until 7000 threads

were reached. In the second scenario was performed concurrency testing in which every service was used

at the same time starting with sending 100 requests to each service increasing this value gradually until

1000 requests for each service were met. Finally, in the third scenario was tested the endurance of the

systems starting with 1000 threads increased gradually every 10 min, in this final test it was analyzed

two different service discovery technologies Consul and Eureka. After this experiment the following results

were recorded:

• Load Testing: The results showed similar performance between microservices and monolithic

architectures. Regarding throughput the monolithic application started better when the number of

threads was 100, that is due to the communication between services in microservices but when the

number of requests was increased the responses per second became even. In the later stages, the

performance deteriorated steadily and on average, the difference between the two architecture was

a marginal 0.87%. Response time was another measured metric, there was not a big difference, the

response time increased linearly as the requests grew. The final metric was the number of fulfilled

requests per thread, the monolithic architecture started with the slightest advantage in a small

number of threads environment, but when the number of threads was increased both architectures

started sending fewer responses, in the end, microservices were able to respond to more threads

in comparison to the monolithic architecture;

• Concurrency Testing: In this test, regarding throughput, the monolithic architecture performed

better than the microservices one, it showed a 6% better performance on average, this result is con-

tradicting some other studies. When it comes to response time difference there was no significant

difference;

• Endurance test: This test showed that Consul is a better tool for service discovery than Eureka

having significantly higher throughput and lower average response time.

This work concluded that under normal load these two architectures have similar performance, when

loads are small a monolithic architecture is recommended otherwise a microservices approach should

be considered. Regarding the service discovery aspect, although not crucial to this thesis, showed that

Consul offers better performance services.

From a components point of view, there isn’t a consensus on how responsibilities should be shared

among the different modules but a layered component architecture was recurrent in the approaches ana-

8

CHAPTER 2. STATE OF THE ART

lyzed. The number of layers may vary but according to Sethi and Sarangi (2017), between 3 and 5 layers

is an appropriate division.

Lin et al. (2017) performed a survey analyzing different kinds of layered architectures. This work

stated that when using three layers they should be divided as follows: Perception layer, Network layer, and

Application layer. The Perception layer is composed of the sensors and actuators present in the system,

this is the bottom layer that interacted with the environment in the real world, this component has the

responsibility of gathering data that will later be sent to the layers above, this layer is the the ”Things”

in Internet of Things. The Network layer can also be named transportation layer, serves as the receiver

of information from the Perception layer and then is its job to distribute it to desired applications through

efficient routing connecting sensors with servers, this layer can also perform some kind of data processing

to make transportation easier. Finally, the Application layer, or Business layer, is responsible for receiving

data from the Network layer and perform the desired actions to fulfill the objectives of the system. These

goals can range from using the data received to train and make predictions about a future state of the

environmental surroundings, the sensors to the display and storage of relevant live data for future human

analysis. Figure 3 illustrates this the placement of each component.

Figure 3: Three Layer Architecture diagram.

The same survey includes a Service Oriented Architecture (SOA), focusing on designing an orchestrated

set of services in which making reusability a major part of this type of architecture. When it comes to layers,

is added one, a Service layer, between the Application and Network layer. The Service layer acts as an

interface or middleware to perform various tasks such as service discovery or service management making

sure the service is provided efficiently.

Sethi and Sarangi (2017) proposes two types of layered architectures, the same three layers Lin et al.

(2017) analyzed and another five-layer. In this five-layer architecture, the Application and Perception layers

remain the same and are added three more layers, the Transport, Processing, and Business layer. The

Transport layer is responsible for the transmission of data between the Perception and Processing layers

through networks, this layer differs from the network because there isn’t any processing happening here.

The Processing layer, also called a middleware layer, analyses, and stores large amounts of data trans-

ported from the perception layer through the transport layer. The Business layer manages the system as a

9

CHAPTER 2. STATE OF THE ART

whole, from the user’s privacy to the IoT system and profit models. In Figure 4 can be seen the reshaped

architecture.

Figure 4: Five Layer Architecture diagram.

Architectures aren’t one size fits all but, for example, El Hakim (2018) analyses IoT’s ecosystems and

presents the same Five-layer architecture as a general approach to this type of problem.

Nastic et al. (2014) looks at the integration of IoT with the Cloud in a finer detail introducing Software-

Defined IoT units. These units are an abstraction of low-level components allowing the creation of a well-

defined API interface allowing a fine grain resource network. Asir et al. (2016) also performed research on

how IoT infrastructure, including Sensors, Actuators, Communication Brokers and Gateways are becoming

software-defined and controlled. These small units can be controlled and provisioned in runtime via well-

defined API layers, they also encapsulate functional requirements and non-functional requirements in each

one. The units can be based on OS-virtualization such as Virtual Machines or in a container-based solution.

In Figure 5 can be seen as a generalized diagram of this concept.

Summarizing Nastic et al. (2014) work, the principles of Software Defined IoT are:

• API encapsulation;

• Fine grain consumption;

• Policy based configuration and specification;

• Automated provisioning;

• Cost awareness;

• Elasticity support.

10

CHAPTER 2. STATE OF THE ART

Figure 5: Software defined units diagram. Obtained from Asir et al. (2016).

2.1.2 Middleware

When it comes to integrating sensors and actuators a middleware layer is often needed in order to

convert data coming from the sensors to a more friendly format (Lin et al., 2017; Preuveneers and Novais,

2012). This is what it’s called interoperability, Desai et al. (2014) divided interoperability into three fields:

• Network Layer Interoperability;

• Semantic Interoperability;

• Syntactical Interoperability.

Network interoperability can be defined as the network protocols needed to maintain a connection between

physical devices, these protocols range from Bluetooth through ZWave and ZigBee. Semantic interoper-

ability refers to the different data formats that are produced from heterogeneous nodes and need to be

aggregated into a format that contains a level of semantic annotation, this process requires a lot of manual

human work to develop an application. Syntactical interoperability refers to the communication process

present in the IoT field that allows the physical layer to stay connected to the cloud layers of systems.

Sethi and Sarangi (2017) work analyzed the challenges addressed by middleware and solutions avail-

able to build a strong IoT application.

2.1.2.1 Challenges middlewares attempts to resolve

Interoperability and programming abstractions are two of the biggest problems in IoT, every middleware

work analyzed mentioned this, the orchestrated collaboration between different devices, protocols, and

technologies.

11

CHAPTER 2. STATE OF THE ART

Device discovery and management, all devices present in the network need to be interconnected and

aware of neighboring devices as well as the services they provide. This solution must be scalable because

the number of devices interconnected are never the same and can increase rapidly in some cases, the

system must be prepared for this to happen. Middlewares typically mitigate this with discovery Application

Programming Interface (API) that allow the listing of devices. Load balancing is also a main concern in this

feature because a middleware should manage devices battery levels if needed as well as error reporting

to users.

Scalability, as mentioned above, the number of devices can escalate quickly and all of those nodes

are expected to communicate with each other, it’s the middleware’s job to manage this by adapting infras-

tructure when required.

Big data and analytics, sensors in an IoT environment, normally, collect a large amount of data that

needs to be normalized, processed, and sometimes display to the user. Sometimes due to intermittent

connectivity to the processing units of the system that information might be incomplete, by using ML and

big data algorithms, a middleware should take this into account.

Security and privacy, typically IoT systems are present to measure some of society metrics, whether

it’s on a more personal level or in a more general way. As such middleware should address these concerns

mechanisms like user authentication and data anonymization. Cloud service, the cloud is one of the most

important parts of IoT systems because Most data is stored and analyzed in a cloud context, a middleware

should let users leverage and make the most out of this cloud environment.

Context detection, the data collected from these sensors comes with various types of meaning and it

needs to be extracted the context to make better decisions when it comes to process it and build better

systems.

Already there are some middleware technologies available in the market that try to mitigate some of

the challenges mentioned, some examples are OpenIoT, Oracle’s Fusion Middleware and Hydra. Most

middlewares fall into one of the following categories based on their design.

Event based, in this method, the interaction between components is made through events generated

by producers and processed by consumers. In general, this architecture is similar to the publish/subscribe

system.

Service oriented, this type of middleware is based on SOA, this means that there are multiple compo-

nents in the system that can be accessed by interfaces, the resources available through these interfaces

are observed as services providers. This class of middlewares publishes their functionalities and details

in an accessible repository making it discoverable to consumers

Database oriented, in this approach the network of sensors is viewed as a virtual relational database

that can be queried, the extraction of information is made easy but this type of middleware has difficulties

scaling due to their centralized model.

Semantic, this middleware gives priority to the interoperation of devices that communicate using vari-

ous types of data formats. For this, it is needed an interface that has many adapters capable of supporting

many formats and ontologies, as many as the different types of devices the system contains.

Application specific, this type of middleware exists because, sometimes, is needed a fine-tuned piece

12

CHAPTER 2. STATE OF THE ART

of software to meet the requirements at hand. This might mean that the middleware is tightly coupled

with the middleware and is not trying to generalize a solution.

This study concludes that although some middleware technologies have grown and gained maturity

although there is still lots of work to do to create a more generalized approach that fits more requirements

and solves most of the existing challenges.

Ibrahim and A Rashid (2019) developed work about a lightweight middleware to accelerate the devel-

opment of IoT platforms by developers who are not experts on pervasive computing. To do so, the authors

propose a future-proof lightweight middleware that can be hosted easily in many data centers and provides

an efficient way of sharing resources. The referred work based their general architecture in the layered

approach having the physical, gateway, middleware, and application layers, in this order from the bottom

up. This choice was supported by the requirements at hand.

Actor-based architecture is the middleware structure utilized. This allows a distributed solution in

which the middleware can be deployed in every layer of the system depending on the needs at a certain

moment. The technology utilized for this work was NodeJS due to its simplicity. The system is based on

a RESTful service for the client, and the communication between the server and client is made through

Hypertext Transfer Protocol (HTTP) using a JSON data format. This middleware exposed GET, PUT, POST,

and DELETE requests.

To measure performance and results were made a series of requests assessing the response time

and response size. To make the desired requests it was used POSTMAN. The GET requests averaged a

response time of 275 milliseconds and a response size of 582 bytes, the POST requests averaged 762

milliseconds of response time and 578 bytes of response size.

This study concluded that the proposed middleware has advantages over other middlewares due to

the use of JSON instead of Extensible Markup Language (XML) in the security side of things. The authors

also note that in a SOA based architecture, where multiple nodes are deployed, this solution has the upper

hand when compared to more mainstream commercial options. These are usually developed in Java,

the same middleware in NodeJS occupies 74MB of memory when compared to 180MB of a similar Java

system.

There are market solutions that try to address the challenges and have developed useful features to

the integration between the cloud and IoT devices. Ngu et al. (2016) made a survey analyzing the different

characteristics of this type of software.

Hydra, is a service-based IoT middleware funded by the European Union to develop a platform for

embedded systems. A web service is provided as a way to agglomerate all physical devices into applications

and then be able to control it no matter their network capabilities or technologies. This software offers

service discoverability by using ontologies that semantically describe the features of the IoT devices. These

services are offered by a low-level SDK. The uses of this middleware framework are mostly in agriculture,

smart homes, and healthcare.

Global Sensor Networks, is also a service-based middleware that attempts to deliver integration, shar-

ing, and deployment of heterogeneous IoT devices. This middleware is based on the virtualization of

sensors to specify XML descriptors for deployment. This implementation follows a container architecture

13

CHAPTER 2. STATE OF THE ART

to allow lifecycle management of sensors, including persistency, security, and event processing to name

a few. The virtual sensors can be accessed by an API or other RESTful service.

Google fit, is a cloud-basedmiddleware for the fitness and health ecosystem. By providing an API allows

users to control their data and build apps on top of this software. The main communication protocol with

sensors is Bluetooth or the implementation of a specific method by the developer. This middleware only

provides fitness and health functionalities not allowing it to escalate and be used in a more generalized

way.

Xively is considered a cloud-based middleware. It provides a web application to connect sensors with

the cloud and allow users to extract the sensor data at any time. In this software is assured scalability

in every action. Database services are in this software package. For ease of integration in companies,

this middleware provides interfaces to use in Customer Relationship Management, Enterprise Resource

Planning, and Business Intelligence software. Not everything is as seamless as it appears, integrating this

service in an enterprise environment requires good programming skills.

Calvin is an open-source middleware developed by Ericsson. It combines an actor-oriented model

and flow-based computing into a hybrid framework to build IoT applications. The actor model follows an

asynchronous atomic callback pattern to achieve a high-performance interaction. This makes Calvin a

lightweight middleware with minimal latency and good resource management.

NodeRED is another open-source option design by IBM. As the name suggests, it’s based around

NodeJS leading to a lightweight fingerprint and, therefore enables it to run in the system’s edge. The

strength of this system is the Graphical User Interface allowing users to drag-and-drop components creating

IoT applications. To integrate this service on devices, some libraries provide these features, including

authentication via password.

In conclusion, there are many middleware options in the market, commercial, and open-source that

provide useful functionalities. All are different from each other, providing different types of communication

interfaces and architecture implementations to cover as many requirements as needed. Nonetheless,

generally, is difficult to integrate them in heterogeneous environments.

2.1.3 Communication

When it comes to devices communicating with the cloud, there are already two main patterns es-

tablished. MQTT and Constrained Application Protocol (CoAP) are lightweight communication protocols

that allow data transfer from devices at the edge to centralized servers. MQTT uses a publish/subscribe

system, and CoAP allows a request/response system. In the next sections is a detailed analysis of both.

2.1.3.1 MQTT

According to the official website MQTT.org, MQTT, is a machine-to-machine communication protocol

based around TCP/IP protocol. This protocol was developed by IBM. Publish/subscribe is the base ar-

chitecture for MQTT, a one-to-many connection to efficiently distribute messages. It allows bidirectional

communication, either cloud to device or device to the cloud. All these communications are secure by

14

CHAPTER 2. STATE OF THE ART

using a TLS encryption of messages and by requiring authentication by the client via a safe protocol such

as OAuth for example. MQTT clients are small allowing them to be easily supported by microcontrollers

consuming little resources and maintaining small headers. The size of a packet is as small as two bytes,

causing little stress to the network, even in unreliable connections. The persistence sessions between the

broker and the client reduces time by not requiring a re-connection every time a message is sent. In Figure

6, there is an overview of this protocol.

Figure 6: Architecture overview of MQTT. Obtained from MQTT.org.

Soni and Makwana (2017) analyzed the different features of MQTT, the following were highlighted:

• Publish/subscribe: Clients subscribe a topic and receive messages when a publisher sends data to

that same topic. Clients can also publish data on a topic, the publisher can access hose messages;

• Topics: A hierarchy structure is created with topics, and subscribers read messages published by

producers there;

• Quality of Service levels: QoS is the agreed-upon security in the distribution of data between parts

in the system. QoS0 represents a message that is sent at most one time and it’s not assured that

a subscriber gets it. QoS1 means that a message is sent at least one time, and the subscriber

might get several replicated messages. In QoS2 mode, a message is sent precisely one time and

its reception is assured by having a 4-way handshake;

• Retained messages: After a broker distributes a message to subscribers in a topic, saves it. When

a new subscriber enters the topic, they get all previous messages;

• Clean sessions and reliable connection: When a subscriber enters the broker’s system its created

a permanent clean session. If the client leaves and then joins again, all previous non-received

messages are delivered;

• Wills: This is a message sent from the client to the broker informing him that if a sudden discon-

nection occurs they must publish that message in the topic to inform other clients.

MQTT offers flexibility when it comes to the message format. Any data format is supported. The

developer has to choose a suitable pattern to send information.

Atmoko et al. (2017) compared this protocol with a simple request/response HTTP protocol in a IoT

experiment. This experiment consisted in sending temperature and humidity values to a mobile app and

15

CHAPTER 2. STATE OF THE ART

a web app. The values received were also registered in a database. The subscribing app communicated

with the broker via web-socket. To make the temperature and humidity sensor connected to the broker,

the author used a ESP-8266 board.

The experiment consisted in reading values from the sensor for sixty seconds and record those values

in the database, this process was repeated six times for each protocol.

The results achieved were very clear, MQTT sent, on average during one minute, 6520 data objects

to be save in the database compared to 934 transmitted by HTTP.

In conclusion, this study shows that is clear that a traditional protocol is very inefficient when compared

to MQTT.

2.1.3.2 CoAP

According to Bormann, Constrained Application Protocol is rapidly becoming one of the standards

when it comes to Machine-to-Machine communication in an IoT environment. This protocol was developed

by the Constrained RESTful Environments workgroup at the Internet Engineering Task Force. CoAP is

modeled after REST and makes available to its user’s resource methods such as GET, POST, PUT and

DELETE. The goal of this protocol is to work on low resources microcontrollers with 10KiB of RAM and 100

KiB of code space. Since CoAP is so similar to HTTP because of their shared REST model, the integration

of this protocol in applications or web clients has a high level of simplicity. One important aspect is that it

doesn’t enforce a data model. The data frame is agnostic to the payload it carries. One less highlighted

feature of CoAP is the support for resource/observe architecture (similar to publish/subscribe). This is

accomplished by, instead of having topics exists a URI, a Universal Resource Identifier. The subscriber

subscribes to a resource with a specific URI and the publisher puts data in that same URI resource for

subscribers to access.

CoAP relies on User Datagram Protocol (UDP) as a transport protocol and DTLS, Datagram Trans-

port Layer Security, to maintain security. By using, UDP the communication network might seem un-

reliable, but, CoAP implements a ”confirmable”, ”non-confirmable” system. When a message sent is

”confirmable”, the receiver must respond with an ACK as soon as the packet is received. If a message is

”non-confirmable”, there are no guarantees that a receiver got the message (Bormann et al., 2012).

Thangavel et al. (2014) compared the performance between CoAP and MQTT. This study focused on

two metrics delay, and total data transferred per message in bytes. The setup consisted of one laptop

running both the CoAP and MQTT servers, a single board computer running a common middleware that

acted as the publisher, and a netbook to emulate a loss of packets in the network. All messages were

routed through the netbook before reaching the broker to perform the packet loss. Wireshark was utilized

to record the number of transfered bytes. The QoS level of MQTT was QoS1.

The results achieved demonstrate a 100% ratio of messages delivered in one broker and one server

environment with packet loss. We can conclude that the retransmission process is optimized on both

protocols. Now looking at the delay variable, MQTT performed better when the loss of packets was low,

CoAP was the clear winner when the loss of packets increased with a lower delay between messages. This

16

CHAPTER 2. STATE OF THE ART

can be explained because MQTT relies on Transmission Control Protocol (TCP), a much heavier protocol

comparing to UDP used by CoAP.

The total transferred data per message increased both in MQTT and CoAP environments. The increase

was linear in both protocols until the packet loss reached 25%, and MQTT’s total transferred size jumped

considerably from 800 bytes to over 1200 bytes compared to CoAP’s jump from 500 bytes to 600 bytes.

The base size was different between protocols, CoAP was much lower, starting at 300 bytes, and MQTT

starting at just under 600 bytes.

In conclusion, CoAP is a better protocol in a less reliable network with lower bandwidth resulting in

lower transferred bytes and lower delay. If the network is fast and reliable MQTT shows lower delay and,

because the network shows higher levels of bandwidth, the overhead caused by TCP is not relevant.

2.1.3.3 AMQP

One alternative to both MQTT and CoAP is Advanced Message Queuing Protocol (AMQP). This protocol

supports publish/subscribe and request/response architectures. According to AMQP, this protocol is

characterized as a lightweight machine-to-machine protocol developed by JPMorgan Chase. In its key

features are security, interoperability, reliability, and open-source.

Naik (2017) compared AMQP with MQTT and CoAP and concluded the following aspects. AMQP has

a higher message overhead and higher power consumption than both previous protocols. Also has higher

latency than MQTT and CoAP but achieves a higher level of reliability than CoAP although lower than MQTT

and inversely shows lower levels of interoperability than CoAP. Security and provisioning are where AMQP

shines having higher levels than MQTT and CoAP. When it comes to industry usage AMQP is more utilized

than CoAP but shows lower levels of standardization.

2.1.4 Deployment

To allow access to the developed system the deployment of all components in the cloud is necessary.

There are many options when it comes to hosting and all options can be classified as either Public Cloud

or Private Cloud (Bamiah and Brohi, 2011).

According to Charan et al. (2011), public clouds are the most common way of deploying apps. Servers

are made available by companies for users to access them in a pay-as-you-go manner. Companies such

as Amazon or Google let users choose the type of computing power they need for their systems and allow

a much easier way of scaling and sharing resources.

In Bamiah and Brohi (2011) is explained that a private cloud is an infrastructure dedicated to only

one organization. The resources available are not shared between groups and the physical servers can

be on-site or off-site. Normally, this is an expensive way of deployment because the organization needs to

lease or buy the servers.

Organizations with more resources normally have a hybrid deployment strategy having private servers

to host the critical infrastructure and all surrounding platforms are hosted in a public cloud. This archi-

tecture allows a highly available platform being able to host replicas of all systems across multiple servers

17

CHAPTER 2. STATE OF THE ART

(Charan et al., 2011).

2.1.5 Secure IoT and Cloud interactions

Nowadays security is a priority in every software system and IoT systems that is no exception. This

means that the data that flows from the sensors to the cloud needs some form of prior authentication

between the two parties to make sure that mainly the sensors are trustworthy.

El-hajj et al. (2019) analyzed and collected in a survey various forms of authentication identifying

different forms:

• Token-based;

• Public and private key encryption;

• Credentials;

Token-based authentication consists on relying on a piece of data called token generated by a server

respecting a certain protocol such as OAuth or OpenID.

Public and private key encryption involves the use of hashed asymmetric keys in order to make sure

that only the end recipient of a message can decrypt it with the matching key. In this survey is also

mentioned that symmetric keys can be used as well.

The credentials-based method makes use of the combination of username and password to authenti-

cate the parties involved when data is shared often using protocols like TLS or DTLS.

In Dammak et al. (2019) is detailed an implementation of a light weight token-based authentication in

which is developed a solution to maintain trust between user devices and IoT gateways. The breakdown

of the process is as follows:

1. Registration Authority (RA) distributes to each of the gateways and smart devices the gateway con-

tains a 160 bits token (with this token trust can be maintained between the smart devices and its

nodes);

2. User registers with the RA and receives a 128 bit token;

3. User token is shared with the gateway nodes and smart devices;

4. User logs in with the token and identity can be verified by both the gateways and smart devices.

This study goes on and concludes that this protocol provides a high level of anonymity, Perfect Forward

Secrecy and resilience.

Bhawiyuga et al. (2017) investigated how to integrate token based authentication in a MQTT broker

to ensure every message came from trusted devices bearing the authentication token. In this study, the

author claims that if the communications broker ensures the message comes from a trusted device, the

cloud is safe from processing data coming from undesired sources.

The flow of the broker authentication is as follows:

• Request token using a username and a password;

18

CHAPTER 2. STATE OF THE ART

• Authentication server asserts credentials;

• Authentication server sends token to device if credentials are valid;

• Device connects to broker using the token;

• Device ready to publish or receive messages;

This simple flow ensures the security of every message traded with the broker.

2.2 Crowdsensing

There is a considerable amount of research done analyzing different approaches on how to count

people indoors and outdoors. Some studies utilize invasive technologies such as cameras and others force

people to carry some kind of specific device that can be tracked. There are also less invasive methods that

have been analyzed by the community but, normally, they produce less accurate results when compared

to the more invasive ones. According to Yuan et al. (2011), the use of invasive technologies like cameras

are not only over invasive but also require a lot of computational power to process and retrieve useful

information, this author also refers that crowd estimation using wireless sensor networks can produce

better results than cameras in environments that are influenced negatively by light. As ethics is technology

is getting more important than ever this work will only contemplate non-invasive techniques to sense the

environment in a smart room.

2.2.1 WiFi Probing

Large numbers of studies were made around the topic ofWiFi Probing as this represents a passive and

non-invasive way of having the perception of how many devices are in an area and then trying to translate

that on knowing how many people that represents. The number of smartphones in the world, according

to Murphy (2019), has already surpassed the number of population in the world and, as seen in Figure

7, the number is increasing every year. With this data, it can be assumed that the majority of people

carry around their smartphone with the WiFi active. Although this work doesn’t rely only on smartphones

but also other devices such as computers or wearables, for example, this demonstrates the extent of WiFi

enable devices a person carries daily.

Figure 7: Smartphone number growth between 2017 and 2019. Obtained from Gu (2019).

19

CHAPTER 2. STATE OF THE ART

Regarding how WiFi probing works, it is built based on the IEEE 802.11 standard. A probe request

is made when the device has the WiFi interface active allowing it to send out request frames containing

information about itself to nearby access points, to inquire availability and information on how to connect

to them if there is an access point available for connection when it receives the request frame generates

a response frame with data about the Access Point (AP) that is sent to the device Zhou (2017), as seen

in Figure 8, this method is called active scanning. It’s also important to mention that inside the request

frame is the device’s MAC address allowing the AP to identify it. There is also passive scanning that is

performed by the AP sending out beacons to notify devices of its presence, for this work this method is

not relevant.

Figure 8: WiFi Probing schema.

The RSSI is also a relevant metric when probing the surrounding (Fernandes et al., 2018), helping to

decide on whether the device is inside the area of importance to the system.

Schauer et al. (2014) performed important work on combining different approaches to crowdsensing

pedestrian flow using probing requests. It relied on the MAC addresses received on probing requests

belonging to only one person and measuring movement by capturing the same MAC address in different

nodes of the system. The author developed more refined strategies on top of the initial one making use of

time and RSSI to improve his solution coming to a hybrid method of using MAC addresses, the time when

they were captured by the nodes with a RSSI value above a certain threshold. This threshold is very hard

to find due to the overlapping zones.

As nowadays security and privacy of data are very important smart devices manufacturers begun

to implement MAC address randomization in their software making it more difficult to identify a device

(Oliveira et al., 2019). Martin et al. (2017) conducted a study on MAC randomization and concluded

that ”MAC address randomization policies are neither universally implemented nor effective at eliminating

privacy concerns”. This randomization could harm some studies, such as Schauer et al. (2014), but the

fact is that it’s not widely spread or implemented.

The accuracy and range of WiFi probing outdoors were measured to an extent by Fernandes et al.

(2018), who performed a study with ESP8266 ESP-12E NodeMCU Amica board, low power and reduced

cost Arduino board. Fernandes et al. (2018) concluded that on an open area, a probe request is detected

as far as 27 meters from the sensor and within a circular area of 2290 square meters. On the accuracy

side, the author conducted an observation of the real world while the developed system was counting

probes and deciding whether they were unique or repeated, the results of this research are in Figure 9.

The figure above makes us conclude that according to Fernandes et al. (2018), we can have 92.8%

20

CHAPTER 2. STATE OF THE ART

Figure 9: Unique requests vs Observed people. Obtained from Fernandes et al. (2018).

accuracy when deciding if a probe is unique or is just a repeated request or a different device.

Most of the research analyzed focuses on outdoor spaces, Mehmood et al. (2019) studies crowdsens-

ing inside buses allowing us to extract more relevant information on how a system based around probe

requests would perform indoors. This study aims to design a system that estimates the occupancy of a

bus by using a combination of time, probe requests, and their RSSI. The solution proposed utilizes more

than one sensor that is capable of detecting probes. To solve this challenge the following algorithm was

developed:

• All sensors receive a probe request in a given time interval;

• All sensors receive an RSSI above a minimal defined threshold;

• The first and the last probe have a defined number of seconds apart;

• The request is detected at least a given minimum amount of times;

After several real-life tests, this study concluded that the use of only one sensor leads to results five

times greater than what was happening in the real world. The best results are when used either three or

four sensors concurrently. In particular, using four sensors resulted in only a 15% overestimation. This

overestimation proved a real challenge due to external influence in comparison to Fernandes et al. (2018)

underestimation outdoors.

2.2.2 Bluetooth

Bluetooth is also a non-intrusive way of crowdsensing. This method relies on smartphones having the

Bluetooth function enabled and set in discoverable mode. The second part of the last sentence is the more

difficult one. According to Weppner and Lukowicz (2013), the probability of detecting people through their

smartphone is about 10% meaning the accuracy of this method is low.

Another Bluetooth crowdsensing method is using Bluetooth Low Energy (BLE). It is a more invasive

technique because users are forced to carry small identifying items with them, making them visible to the

system. This is accomplished by using a Beacon like in Fernandes et al. (2018), these beacons are low

cost and long-lasting pieces incorporated in clothes as an example.

These methods, both smartphone Bluetooth detection and BLE have proven to be, in one case low

accuracy in normal conditions and, in the latter too invasive for the proof of concept idealized. This means

that no further research will be performed.

21

CHAPTER 2. STATE OF THE ART

2.3 Machine Learning

ML is soon becoming an essential part of IoT. The massive data that the sensors gather and store

are used to develop accurate ML models. ML can be described as a subset of Artificial Intelligence that,

without being explicitly programmed, makes some predictions based on data analysis and experience. ML

models are programmed to make small evolutions every time new data is inserted in them, and by doing

small increments improve the results. In the realm of ML learning paradigms, there are three main types:

Supervised, Unsupervised, and Reinforcement (Padala et al., 2019; Bansal and Sharma, 2020).

The goal of Supervised Learning is to create a mapping function in order to input a value and predict

an output. To create these types of models is necessary a training dataset containing input and output

values. The values present in the dataset can be categorized or continuous. After a dataset is built it’s

time to train the model to develop an accurate mapping function. When this process ends, the model

is ready to receive never-before-seen input values and predict their output (Bansal and Sharma, 2020).

Artificial Neural Network (ANN), are probably the most used and talked about algorithm when it comes

to ML. This model is helpful for pattern recognition, classification, clustering and predictions. Currently,

ANN, are becoming easier to use due to the rapid development of libraries such as Keras and Tensor Flow.

ANN’s are compose of independent layers, input, hidden and output, that contain nodes. The number of

nodes can be arbitrary in each layer. These nodes are connected to other nodes in the next layer and the

propagation of information between nodes is finalized with an output (Abiodun et al., 2018). Other very

effective algorithms may be used like, for example, Long Short-Term Memory Networks to make predictions

on time series problems (Oliveira et al., 2021).

Unsupervised Learning is a technique used for clustering and analyzes unlabeled datasets to discover

the patterns in its features. These models don’t have an expected output when are trained, instead, the

model apprehends the traits of the dataset. This method can be unpredictable and, when not set up

correctly, deliver bad results (Bansal and Sharma, 2020). In the real world, this approach has various

scenarios in which it is applicable, for example, to detect abnormal levels of pH in Wastewater Treatment

Plants water (Gigante et al., 2021).

Reinforcement Learning is a method taken from psychology where the action an agent takes is com-

pensated in a good or a bad way. The goal of these ML models is to maximize the reward given a set

of constraints and rules. The process of getting the maximum reward may take a while and, to avoid

agents from being stuck negatively, normally is introduced an exploratory variable. This means that in a

small percentage of actions, instead of taking the maximum reward route, it explores other options ran-

domly (Bansal and Sharma, 2020; Padala et al., 2019; Abdualgalil and Abraham, 2020). In Figure 10 is

a diagram representing this process.

2.3.1 Evaluation Metrics

To evalute the pergformance of a ML algorithm, there are a set of metrics that should be taken into

account. According to Abdualgalil and Abraham (2020) some of these metrics are:

22

CHAPTER 2. STATE OF THE ART

Figure 10: Flow of Reinforcement Learning algorithms.

• Classification Accuracy - is the ration between correct assumptions per total number of inputs.

Accuracy =
Number of Correct Assumptions
Number of Total Predictions

(1)

• Measures of evaluation - are accuracy, precision and recall, and are determined by the confusion

matrix shown in 1.

Predicted Class
P N

Actual
Class

P
True Positives

(TP)
False Negatives

(FN)

N
False Positives

(FP)
True Negatives

(TN)

Table 1: Confusion Matrix

– Accuracy, performs an evaluation to the system determining the percentage of right evalua-

tions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

– Precision, verifies the proportion of all positives that are real positives according to the total

number of positives

Precision =
TP

TP + FP
(3)

– Recall, calculates the proportion of actual positives measured correctly.

Recall =
TP

TP + FN
(4)

– F-measure, combines the recall values with the precision. If the F-measure is high the system

is well engineered and techniques are appropriate.

F-measure = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

23

CHAPTER 2. STATE OF THE ART

• Mean Absolute Error - is the average between the predicted values and the actual values, this alerts

us to the difference between the prediction and actual output.

Mean Absolute Error =
1

N

N∑
j=1

|yj − ŷj| (6)

• Mean Squared Error - is equivalent to Mean Absolute Error but it’s a squared average. The estimation

of gradient is easier with this method.

Mean Squared Error =
1

N

N∑
j=1

(yj − ŷj)
2 (7)

• Mean Relative Error - gives us the relative estimate between the predicted values and the actual

values.

Mean Relative Error =
1

N

N∑
j=1

∣∣∣∣ŷj − yj
ŷj

∣∣∣∣ (8)

24

Chapter 3
System Architecture and Implementation

This chapter aims to explain the architecture and its implementation starting with a more general

approach and afterwards diving down into each of the components as well as the techniques and commu-

nication patterns used to develop them.

3.1 Overall architectural design

After analyzing different strategies to design an architecture for this project’s IoT system all conclusions

pointed to a microservices architecture. This type of architecture allows more flexibility when it comes

to the development of the platform itself. The various components can be designed and implemented

separately allowing a more defined division of responsibilities in the system. When it comes to non-

functional requirements this approach has the disadvantage that it needs more effort to deploy various

systems instead of just a monolithic one, this con is eclipsed by the fact scalability is easier allowing

horizontal scaling compared to vertical if it was a monolithic system (De Lauretis, 2019).

The need for the system to be Cloud-based comes from the fact that, in this scenario, is needed

to maintain a state. If this state is managed by the edge devices, the CPU power needed to maintain

the state consistent across all devices was more than we could afford. Also, in a scenario where the

state was managed by devices, they needed to communicate to share information, putting strain on the

network. Using the Cloud as a central entity this network strain is similar, if not less, when sharing the

data produced by sensors. In addition to that using the cloud computing capabilities we gain a lot of CPU

power to effortlessly consume and process data.

In Figure 11 is a high-level overview of the system’s components.

25

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 11: High-level architecture design.

In the previous image it’s possible to see the breakdown of services and how they communicate. The

Sensor’s are the gatherers of environmental data and send them to the cloud with minimal processing. The

Middleware is the receiver of said data and processes it until it’s in a stage that can be easily utilized by other

services, all the data that comes to this layer is saved in a Google Cloud Firestore instance. The Secure

IoT provides the authentication service of the sensors managed by the Middleware, it uses a MongoDB

database to manage all the information it receives. The Business Logic service receives clean processed

data from theMiddleware andmaintains the service that is provided with the help of a PostgreSQL database

to store all business related data. Finally, the Machine Learning Service communicates with the Business

Logic to improve the results that are sent to the user. In the following sections is a more detailed explanation

of each component.

Go was the chosen development language, a compiled open-source programming language with sim-

ple syntax and efficiency to develop systems (Google). The developed system utilizes other technologies,

mainly in the message broker realm. Flespi is the MQTT broker, and RabbitMQ is another message broker

to communicate between services in the cloud.

3.2 Physical Layer

The Physical Layer is, as the name suggests, the part of the system that is in the physical environment

from where we want to extract data. It is the ”Things” in IoT. In the next subsection is a breakdown of

what type of sensors were utilized to perform what jobs to meet the requirements listed in the previous

26

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

chapters.

3.2.1 Devices

To perform the sensing of the crowd in indoor spaces the has been chosen the AZDelivery NodeMCU

Lolin V3 Module ESP8266 ESP-12F (shown in Figure 12). This board allows the detection of probe requests

from the 14 interfaces presentWiFi, containing the MAC address associated with the device it makes them.

This is a low cost Arduino board (4e/per board). It contains 4MB of flash memory and 64kB of SRAM,

this device is also low power.

Figure 12: AZDelivery NodeMCU Lolin V3 Module ESP8266 ESP-12F.

The development and setup of these devices were made through the Arduino IDE, an editor that

contains all the drivers and interfaces necessary for development in C++.

3.2.2 Probe Request Detection

Using a device like the one described in the previous section and with the help of open-source code

(Kalanda; Brunofmf), the system can detect probe requests coming from surrounding devices in the dif-

ferent WiFi channels. The developed code can identify the RSSI, the channel of WiFi, the MAC address,

and, if available the SSID. In Figure 13 is a screenshot of captured requests by a sensor.

Figure 13: Probe Requests captured by a NodeMCU Lolin V3 Module ESP8266 ESP-12F sensor.

27

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In listing 1 is a snippet of key code utilized to capture probe requests by the sensor module. It is

relevant to refer that this code is open-source produced by Brunofmf.

WiFiEventHandler probeRequestCaptureDataHandler;

void setup(){
...
probeRequestCaptureDataHandler = WiFi.onSoftAPModeProbeRequestReceived(&

onProbeRequestCaptureData);
..
}

void onProbeRequestCaptureData(const WiFiEventSoftAPModeProbeRequestReceived& evt) {
if(currIndex < ARRAY_SIZE){

if(newSighting(evt)){
probeArray[currIndex].mac = macToString(evt.mac);
probeArray[currIndex].rssi = evt.rssi;
probeArray[currIndex++].previousMillisDetected = millis();

}
} else{

Serial.println(F("*** Array Limit Achieved!! Send and clear it to process more
probe requests! ***"));

}
}

Listing 1: Probe Request code. Obtained from Brunofmf.

The code shown in Listing 1 is only the handler to a probe request, before this can be executed the

sensor is configured as a soft AP, meaning that if a device opens the WiFi list, a new network created by

the sensor is displayed. This configuration triggers devices to send probe requests to enquire about the

state of this network allowing the sensor to log those requests.

Because one of the goals of this thesis is to prove that low CPU power, energy efficient sensor modules

don’t need to process data and leave that job to the cloud that effortlessly does this job, all the data gathered

is sent to the cloud services almost untouched.

Before the data is sent through the proper channel the only processing needed to be done was the

serialization to a JSON format. This serialization can be done in two ways, one more simple when the

data to send does not exceeds 80 bytes and other more intricate due to the need to fragment the data into

smaller segments. In listing 2, are the serialization formats. One thing to note is that in the fragmented

JSON option, the content of the Data field, is a fragmented version of the simpler JSON option.

\\Simpler option
{

DeviceID: 1,
ProbeData: {

MacAddress: "0:0:0:0:0",
RSSI: "100",

28

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

PrevDetected: 123
}

}

\\Fragmented option
{

Id: 1,
Data: "data fragment",
End: 0

}

Listing 2: Serialized JSON options.

The need of fragmentation at first was not evident when testing the system in environments with very

few devices probing for available networks (0 to 3 devices). But when testing in a real world scenario with

more than 3 devices present in a room the data was not being sent to the cloud. This problem came down

to the library that was being used to publish the data (Industries) not allowing anything above 128 bytes

to be published.

3.3 Middleware

By definition a middleware is ”a type of software which manages and facilitates interactions between

applications across computing platforms” (Sunyaev, 2020). In this thesis particulate case, it manages

the interaction between sensors and a cloud service. This facilitation is needed due to the heterogeneous

qualities of sensors and, in services that require multiple types of edge devices interactions, the data

exchanged between them and the cloud has different formats. When it comes to the implementation, as

was seen in the State of the art chapter, that is very difficult because in IoT systems the problem is almost

certain to be specific to the context.

In this thesis system, the Middleware is the point of entry of data into the cloud. This means that is

the first chance of applying heavy processing and algorithms, taking full use of the power available in the

cloud.

3.3.1 Architecture

After analyzing the problem, its constraints, and types of middleware architectures the conclusion was

that an Event-Driven approach to this middleware has beneficial properties but, SOA, also has its strengths

in the particulate case of managing the sensors.

The Event-Driven approach seems the obvious choice to the systems Middleware architecture. This

choice is backed by the communication pattern used between the sensors and the cloud. Data is produced

when a probe request is detected by a sensor (event) and then sent to the cloud. The Middleware acts as

a consumer of data in the scenario. Another reason why an Event-Driven architecture suits this problem

29

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

is how we send processed data to other services. In this case, as we want the data to be processed and

showed in real-time, the Middleware needs to act as a producer of processed data for the Business Logic

to consume.

A SOA enters the debate because the system needs to manage its sensors and authenticate data

received by them. Traditionally, a SOA provides a set of interfaces to communicate synchronously with

other services and, in this scenario, that is one of the requirements to manage (add) sensors to the system

as well as checking if the data received belongs to a sensor inside the known network.

With the information described previously the choice of architecture evolved to a somewhat hybrid being

predominantly Event-Driven to manage all received data and all outgoing data except on the management

and authentication aspect that is Service-Oriented. According to the research performed regarding the

types of Middleware, calling this approach Application Specific is also valid. In Figure 14 is a breakdown

of modules inside the Middleware.

Figure 14: Middleware service architecture modules.

3.3.2 Module breakdown

3.3.2.1 Communication

The Communication module is in charge of maintaining all asynchronous communication between

cloud and devices and, between different services inside the cloud.

To receive data produced by sensors, the system creates a lightweight thread that subscribes to the

topic where messages are sent. After the reception of said data, there is a need to understand if the

message is complete or if it’s just a fragment in the callback function (Listing 3). If it’s a fragment, the

data is saved in a temporary structure until the whole message can be put together to be processed.

30

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Subsequently, a timestamp of the current server time is added to the data. This added field is needed

because in the current context the sensors utilized are unable to keep track of the current time without an

add-on.

var f MQTT.MessageHandler = func(client MQTT.Client, msg MQTT.Message) {
topic := msg.Topic()
payload := msg.Payload()
var result map[string]interface{}

_ = json.Unmarshal(payload, &result)
if result["Id"] != nil {

handleFragmentArrival(payload)
} else if result["DeviceID"] != nil {

createProbeData(payload, topic)
}

}

Listing 3: Callback function for MQTT message handling.

Another aspect where cloud to device communication is present is the management of devices, par-

ticulate when adding new sensors. After receiving a request to add a device, a credential token is sent to

the sensor through the communication broker. In this scenario, the cloud is the producer and, the sensor

is the subscriber. In Listing 4 is the Publish function.

func PublishToken(topic string, message string, client MQTT.Client) {
token := client.Publish(topic, 0, false, message)

if token.Wait() && token.Error() != nil {
log.Fatal(token.Error())

}
}

Listing 4: Function that publishes token.

Finally, after a message is received and processed, the information generated needs to be sent to the

Business Logic side of the service. The cloud acts as a producer and publishes the desired message in a

queue to accomplish that. From this queue, any service that has subscribed can consume messages. In

Listing 5 is the function that publishes these messages.

func (mq MQClient) PublishToQueue(queueName string, payload []byte) {
ch, err := mq.conn.Channel()
if err != nil {

log.Fatal(err)
}
err = ch.Publish(

"",
queueName,

31

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

false,
false,
amqp.Publishing{
ContentType: "application/json",
Body: payload,

},
)

if err != nil {
fmt.Println(err)

}
}

Listing 5: Function that publishes messages for Business Logic to consume.

3.3.2.2 Persistence

In the context of SaaS every piece of knowledge that can be extracted from the data is valuable and

in this scenario of IoT as a Service and a crowdsensing environment that is no different. To save the data

generated by the sensors was chosen a NoSQL Firestore database instance. This allows the system to

save data in JSON format making querying simple. In Lisiting 6 is an example of a JSON saved in the

database.

{
MacAdress: "00:00:00:00:00",
PrevDetected: 12345,
Rssi: "10",
Timestamp: march 8th 2021 15:30:30 UTC

}

Listing 6: Example of JSON saved in Firestore.

In Figure 15 is snapshot of how the data is organized in the Firestore database. The first column

represents the collection in which the data is going to be inserted, in this scenario the name of the sensor,

the second column is the unique identifier of the record and, in the third column, is the detailed data

information.

Figure 15: Firestore data snapshot.

32

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Although this data is not used in this service, is useful to to extract data and help build datasets to

enhance the accuracy of the crowdsensing algorithm using Machine Learning.

3.3.2.3 API

The need to manage devices in a IoT service is a priority. Users may want to extend their system’s

capabilities, and to perform this action, sometimes adding new devices is key. The designed system

enables the users to add new rooms to the service, and with that comes new sensors. To ensure all

sensors are known to the service, a Restfull HTTP API was developed with a single endpoint to make the

addition of sensors. The endpoint consists of a POST request where the device ID is in the body of the

request. This event triggers a chain of events, ending with a published token in a topic consumed by the

sensor.

To ensure the ML service has access to the number of probes made in a certain interval of time there

is another endpoint. A GET endpoint that returns the number of probe requests made in the last minute.

This is needed because the Middleware is the only service with access to Firestore.

3.3.2.4 Authentication

In these types of systems is needed to assure that the data received comes from trustworthy sources.

In the authentication module, every time the system received a message from sensors is verified the

existence of an access token and sent a request to the Secure IoT Service to make sure that the data

comes from a registered device in the system.

3.3.2.5 Status

The Status module is in charge of applying a detection algorithm that decides if a probe is coming

from a device associated to a person inside the room. Oliveira et al. (2019) researched the algorithm

utilized in this thesis. This method relies on three structures to monitor the state of a room. One saves

Potential Arrivals another, Arrivals, and, finally, one handles Potential Departures. The number of people

in a room is dictated by the size of the Arrival structure. In Figure 16 is an activity diagram of the detection

of presences in rooms.

The diagram displayed in Figure 16 only shows the detection of a presence. The second part of this

algorithm shows us how to detect an exit and when to clean potential arrivals for the structure not to

become cluttered with old data. This job is in charge of independent threads running while the system is

active. Figures 17, 18 and 19 show the cleanup algorithms of these managing structures.

33

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 16: Algorithm to detect a device presence.

Figure 17: Algorithm to detect a presence potential exit.

34

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 18: Algorithm to confirm a presence exit.

Figure 19: Algorithm to detect a misread presence.

35

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The Status module was also in charge of generating messages to send to the Business Logic when

existed a:

• Confirmed Presence (probe request from the same MAC is detected more than one time inside an

interval of 3 minutes or, MAC in Potential Departure);

• Potential Exit (probe request from the same MAC is in the Arrival structure but isn’t detected in 3

minutes)

In Listing 7 is an example of message informing the Business Logic of a change in a room state.

{
DeviceID: "123",
MacAdress: "00:00:00:00:00",
Active: true, //false in case of exit
Timestamp: march 8th 2021 15:30:30 UTC

}

Listing 7: Example of JSON message sent to Business Logic.

Since data is generated from sensors and at the same time cleanups are occurring, there is one

concern, two threads trying to access the same structure, one to insert or update data and another to

check and move/remove data. To mitigate this problem was designed a Mutex system (Mishra, 2018)

ensuring integrity when accessing the data structure that contains the state, guaranteeing that only one

thread can change it. In Listing 8 is a Mutex utilization example.

func (state RoomState) CleanPotDeparture() {
state.InUse.Lock()
for _, val := range state.PotDeparture {

if time.Since(val.Timestamp) > time.Minute*3 {
delete(state.PotDeparture, val.MacAddress)
State.mq.PublishToQueue(os.Getenv("queue"), val.ProbeDataToMsg(false))

}
}
state.InUse.Unlock()

}

Listing 8: Example of Mutex usage when cleaning the Potential Departure structure.

This piece of the middleware is the most critical for the service to work because it’s in here that the

algorithm detects the presence of people. This importance leads to the need for tests in this module.

Several unit tests were developed, achieving over 95% of code coverage in every file inside this module. In

Lisiting 9 is an example of the type of existent unit tests.

func TestCleanUpPotDeparture(t *testing.T){
status.InitializeRoomState(test.CreateMQClient())
status.State.PotDeparture[data.MacAddress] = data

36

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

status.State.PotDeparture[data1.MacAddress] = data1
status.State.CleanPotDeparture()

_, ok := status.State.PotDeparture["123"]
assert.Equal(t, false, ok)
_, ok = status.State.PotDeparture["1234"]
assert.Equal(t, true, ok)

}

Listing 9: Example of test of function CleanUpPotDeparture.

3.4 Business Logic

To transform a system into a as a Service software there needs to be a Business Logic component

that aggregates all business related concepts and provides a service. In this dissertation, the Business

Logic will provide a set of services, allowing the user to see real-time information, historic room state data

and manage its rooms and sensors.

3.4.1 Architecture

After reviewing the requirements that the Business Logic had to fulfill, there was an obvious choice of

architecture, SOA. This concept allows us to create a set of endpoints, enabling the user to send requests

to obtain information about the service.

Another key point of the design architecture is the onion/hexagon architecture (Khalil et al., 2016).

This type of design facilitates the implementation of key concepts such as the Dependency Inversion

Principle, inner layers provide interfaces and outer layers utilized them, the coupling points inwards and,

the implementation doesn’t depend on the infrastructure. In Figure 20 is a breakdown of this service.

37

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 20: Business Logic service architecture

As this system provides a service, there is the need to save data. This need is mitigated using a

relational database since all entities present in the system have a close relationship. There are three

models in the system:

• Sensor - A sensor is composed of an ID, a name and a RoomID identifying the room of the deploy-

ment;

• Room - A room is composed of a name and an ID;

• Presence - A Presence is composed of an ID, a MAC, a last detected time, an active marker and a

RoomID where the presence was detected.

PostgreSQL is the chosen relational database engine, is an open-source project widely spread and

utilized by the community. This engine provides data types for ease of use, as well as, data integrity,

concurrency, and extensibility, among other relevant features, making it a safe choice to store all of our

service data. In Figure 21 is the database diagram.

Figure 21: Business Logic database diagram

38

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

3.4.2 Module Breakdown

In this subsection is an explanation of all the modules individually of the service.

3.4.2.1 Models

The Models module houses the definition of the data structures representative of our domain objects

and respectively associated methods. In this system there are three models specified in the previous

subsection: Room, Presence, Sensor.

A Room is a place where resides a deployed system. A Presence is a device detection that can translate

into a human presence. A Sensor is the physical device that is present inside the Rooms that detects the

Presences.

3.4.2.2 Manager

TheManagermodule is responsible for being the bridge between our domain module (Models) and the

infrastructure/communication modules. This is accomplished with the definition of contracts that outer

layers need to follow to work with the system. In Listing 10 is the interface that the persistence package

needs to implement and in Listing 11 is the interface the Message Queue subscriber needs to implement.

type Store interface {
SaveNewRoom(room model.Room) error
GetRoomByName(roomName string) model.Room
SaveNewSensor(sensor model.Sensor, roomID int) error
SaveNewPresence(presence model.Presence, roomID int) error
GetRoomPresences(roomID int) []model.Presence
GetRoomBySensorName(sensorName string) model.Room
GetRooms() []model.Room
GetActivePresencesByRoom(roomName string) []model.Presence
GetAllPresencesByRoom(roomName string) []model.Presence
UpdatePresenceState(MAC string, state bool)
PresenceExists(MAC string, roomID int) bool
UpdatePresenceLastDetected(MAC string, timestamp time.Time, roomID int) error

}

Listing 10: Interface contract to accomplish persistence.

type Queue interface {
SubscribeToQueue(queueName string, channel chan []byte)

}

Listing 11: Interface contract allow Message Queues clients.

This module manages all the message arrivals deciding to save them appropriately. It can receive one

type of message, informing the system of a new/updated or exited presence. Before a message arrival

39

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

this module calls for the start of the subscriber, a thread that subscribes to a Queue that receives data

coming from the Middleware.

3.4.2.3 Database

This module maintains the connection to the database implementing all the SQL functions for inserting,

updating, or deleting data. These SQL definitions were all custom made for this software due to the lack

of simple, well-implemented open-source Object Relation Mapping tools. The most famous one in Go is

GORM (Go-Gorm), but it didn’t provide the flexibility and simplicity needed for the system and, as a result,

it was decided to implement a custom solution.

3.4.2.4 Message Client

The Message Client is a simple module that creates the Message Queue Client and subscribes to the

designated Queue. After the initialization of the client, sends the received messages to a channel for the

Manager to handle.

3.4.2.5 API

This module provides endpoints from which the User Interface can make requests and obtain data

to show users and, to manage rooms and sensors. This is accomplished by a REST HTTP interface that

provides access to available resources in the service. This API only provides basic needs for the service to

demonstrate it’s potential and doesn’t implement all RESTful (REST) actions. The resources, actions and

JSON specification are described in the next paragraphs.

The Room resource is in charge of creating and listing all rooms available. It’s actions are:

• GET /rooms

• POST /rooms

• GET /rooms/:id/status

• GET /rooms/:id/historical

For the POST action, the entry data is:

• name - string

For the GET action, the outgoing data format is:

• id - number

• name - string

The Sensor resource handles the registration of new sensors in the system. The only action is:

40

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

• POST /sensors

The incoming data must obey the following specification:

• roomName - string

• name - string

3.4.3 User Interface

To show the use of this service it was developed a simple Single Page Application Web-app using the

React-JS framework (ReactJs). This interface provides the current state of rooms, the possibility of adding

rooms and sensors and, historical data on the state of a room. The purpose of this prototype is to show

the potential and not a fully fledged service capable of authenticating users, having a back-office and a

very complex interface. The choice of a SPA was easy due to the request/response environment provided

by the service (Solovei et al., 2018). Every action of the API is available in the home page and with some

modals. In the next set of figures are screenshots of the UI.

In Figure 22 is the component that shows the current occupation.

Figure 22: See current occupation

41

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In Figure 23 is the chart that shows the historical data, the ”Delta” represents the data time, this day,

this week, or this month.

Figure 23: Historical presences data last month

In Figure 24 is the modal component containing a form to add a new sensor to the system.

Figure 24: Modal to add a Sensor to the system.

42

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In Figure 25 is the modal component containing a form to add a new room to the system.

Figure 25: Modal to add a Room to the system.

To enrich the users experience and information other charts like the one on Figure 23 could be applied

ML forecast algorithms. This would take advantage of previous historic data and try to predict the future

room states (Fernandes et al., 2020b, 2019).

3.4.4 Machine Learning Service interactions

The Machine Learning Service gives its estimation on how many people are inside a room given a

certain number of probe requests in an interval of time.

This Service exposes an API with one endpoint, a GET endpoint. When a request is made, it responds

with an estimation made by a ML model (further details on its implementation in the Results chapter).

In Figure 26 is the diagram representing how the interaction takes place.

Figure 26: Estimation request flow diagram.

After the response arrives, the Business Logic can calculate if the current estimation is too different

to the ML estimation and adjust its value to try to be more accurate.

43

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

3.5 Communication Patterns

This section will address the decisions behind the communication patterns and protocols in the differ-

ent aspects of the system. The first one is on Sensor to Cloud communication and, the second is Service

to Service communication within the Cloud.

3.5.1 Sensor to Cloud communication

Sensor to Cloud communication is an important factor when designing a cloud-based system. This

characteristic allows us to send unprocessed data to the server application for filtering and processing.

The IoT field already has a few agreed protocols, such as, AMQP, CoAP and MQTT.

As reviewed in the State of the Art chapter AMQP and CoAP offer similar features both, give the ability

to communicate through a request/response interface as well as a publish/subscribe system. When we

compare both, AMQP is slower at sending messages. MQTT also is a valid communication standard

enabling the construction of a publish/subscribe system. This feature is the only supported feature but

allows various types of QoS levels (0,1,2).

Because the system at hand has a seemingly low level of different types of messages traded, CoAP

or AMQP seemed like protocols that would have harmed the construction of the service adding unneces-

sary overhead. On the other hand, MQTT offered a simple way of rapidly setting up a message trading

environment mainly sensor to cloud as the system requires so, the choice fell on MQTT to be the standard

communication protocol present in the system. The Event-driven architecture present in the Middleware

component also greatly influenced this choice, given that in this type of architecture, message queues are

the main form of module communication.

To set up an MQTT protocol in the service, there is the need for a broker to manage channels, as well

as the messages sent through them. Ideally, this broker is hosted on the cloud for ease of use. Other

important features that the chosen broker should have are:

• Authentication process - to guarantee that the intervening parties are trusted;

• TLS/SSL - to maintain a secure connection;

• Multiple QoS - to have the desired degree of certainty that the sent message reaches the destination;

• Online interface - to allow for an easier experience when setting up the service and debugging;

• Free - as this is an academic project, there isn’t any funding to spend on resources.

In Table 2 is an overview of the research conducted online of different available brokers and their

features, these aren’t the only options but it shows the different existent types.

After reviewing the different options to intermediate the system’s communication, Flespi appeared like

a good option and, after experimenting with its interface, it was clear that it had the necessary features

for usage in the system.

44

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Broker Authentication TLS/SSL QoS 0,1,2 Cloud Interface Free
Mosquitto Yes Not standard All No Yes

Hive Yes Yes All Yes
Yes (100

devices max)
Flespi Yes Yes All Yes Yes
Azure Yes Yes All Yes No
AWS Yes Yes All Yes No

Table 2: Different available MQTT brokers.

One clever way Flespi stands out is the authentication system. It uses authentication tokens to guar-

antee the devices in the system are trusted. This is accomplished by having a Platform API that allows the

user of the service to perform requests whenever it needs to add a device or revalidate credentials.

For this case study, every sensor publishes messages that contain information about the environment

in the same channel. The fact that only one channel exists makes channel management and message

reading straightforward in the Middleware. Regarding the authentication tokens, the Middleware publishes

it in a private channel from which only the recipient subscribes, avoiding the need for other devices to

read it, maintaining a level of secrecy. In Figure 27 is a diagram representing the described channels and

message flow.

Figure 27: Channels and message flow diagram.

45

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

3.5.2 Secure IoT communication

To ensure that all messages come from trusted devices, the system needs to implement some form

of communication. After reviewing the options in the State of the Art section,token-based authentication

on the MQTT broker appeared to be a simple but effective solution to the problem.

The chosen broker (Flespi), already implements an API to fetch tokens from the authentication server

present in their service. This made the implementation of a secure system less difficult.

When a device is added to the system, is made a GET request to the Flespi server requesting a

new token. This token is subsequently used in every messaged that is published. In Figure 28 is the

authentication token flow.

Figure 28: Token request flow.

3.5.3 Service to Service communication

Service to Service communication, in this system, consists of sending messages from one Service to

another. As the design of the different systems are mainly event driven, it makes sense to use message

queues to trade the majority of messages. Message queues are nothing more that publish/subscribe

systems optimized to run in the cloud and offer different types of features such as elasticity and scalability

(El Rheddane et al., 2014).

To build a message queuing communication system based in the cloud two platforms choices stand

out. Kafka, a distributed open-source message streaming platform and AMQP based RabbitMQ, also an

open-source project that acts as a message broker.

Kafka supports a point-to-point architecture as well as pub-sub. Its internals is composed of Producers,

Topics, Partitions, and Consumers, offering performance over reliability and high throughput as well as

low latency (John and Liu, 2017), in Figure 29 is an overview of its architecture.

46

CHAPTER 3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 29: Kafka architecture diagram. Obtained from John and Liu (2017).

RabbitMQ, as previously stated, is based on AMQP. It aims to be the standard when it comes to

asynchronously message queuing by offering high standards of scalability, reliability, and manageability

(John and Liu, 2017). In Figure 30 is a breakdown of RabbitMQ’s architecture.

Figure 30: RabbitMQ architecture diagram. Obtained from John and Liu (2017).

Given the gathered information, as the system needs to be easily set up reliable, RabbitMQ was the

choice to build the communication system. A Docker Compose file was assembled to setup a local image

of a RabbitMQ broker to serve our system.

At this moment, there is only one replica of each Service (Middleware and Business Logic) so, there

only needs to be one Exchange and one Queue. If this system needs to grow in the future and, to manage

the addition of each service replicas, the broker configuration will necessitate extension to allow these

changes. In Figure 31 is the message flow between the Middleware and Business Logic.

Figure 31: RabbitMQ message flow diagram in the system.

47

Chapter 4
Results and Discussion

This chapter aims to show the obtained results and in what circumstances they were produced, as

well as, a discussion the most important metrics of the system and how they were optimized. Another

major focus of this chapter is to evaluate the performance of the chosen algorithm and the improvements

made to it.

4.1 Introduction

To evaluate the results of the developed system, the best way to do so is to go out and test it in a

real-world environment. All the results gathered in these experiments were done in group study rooms

where there was people traffic. Firstly, it will be exposed the results that lead to the chosen parameters of

the RSSI and Cleanup Delta in the cloud (to ascertain if people were passing by or left the room). Then an

overview of results and performance of the human detection algorithm already with the best parameters

and with the optimization of a ML model helping improve the performance.

4.2 Finding the best Cleanup Delta and RSSI

In the presence detection algorithm, the two main variables that are tunable to fit the circumstances

in which the system is are the Cleanup Delta and RSSI.

4.2.1 RSSI

The RSSI represents the range of capture of the sensor. This value is always between 0 and 100. If

it’s close to 0, the detected device is closer to the sensor. If it’s close to 100, it means that the device is

further away from the sensor. This value helps us to determine if the detected device is inside the room

we are analyzing.

To determine the best RSSI were performed three experiments inside a room. One experiment had

the RSSI threshold unlimited, which means that every WiFi probe detection is considered to be inside the

48

CHAPTER 4. RESULTS AND DISCUSSION

room. Other with the threshold being 90, meaning that every probe detection with the RSSI over this

number will be discarded and, a final one, where the threshold is 80. In the following Figures (32, 33, 34)

are charts with the results of the experiment, every two minutes after the system is active, was noted the

system estimation and, the actual number of presences in the room. It’s also relevant to note that, as the

Cleanup Delta experiments haven’t occurred, the delta was 2 minutes.

Figure 32: Experiment results with RSSI unlimited.

49

CHAPTER 4. RESULTS AND DISCUSSION

Figure 33: Experiment results with RSSI limit equal to 90.

Figure 34: Experiment results with RSSI limit equal to 8 0.

To assess the performance of each RSSI value was utilized the Mean Relative Error. For the experi-

ment without RSSI limit, the MRE was 0.33. This result might be due to capturing probe requests from

devices outside the room and assuming they are inside, it’s possible to see that, in the later stages of this

experiment, the algorithm overestimated the number of people inside the room. In the second experiment,

with the RSSI being 90, the MRE was 0.26. In Figure 33 is possible to see fluctuations above and below

50

CHAPTER 4. RESULTS AND DISCUSSION

the actual truth. In the last experiment, with the RSSI equal to 80, the MRE was 0.42. This result is

explainable because the RSSI value over-restricted the area of relevant probe request capture. In Figure

34 can be seen that, almost always, the system was underestimating the number of presences.

With the results of the experiments, it’s safe to conclude that the best RSSI value threshold is 90.

4.2.2 Cleanup Delta

The Cleanup Delta is the time interval where the system ismoving presences from structure to structure

to infer if they are inside the room, if they left or, if they never entered.

To get the best Cleanup Delta were performed four experiments with different delta times. The deltas

were 1 minute, 2 minutes, 3 minutes, and 4 minutes. Given that every 25 seconds, new information

arrives from the sensors, at first glance, before the experiment, these values appeared to be in the region

of the optimal delta. In Figures 35, 36, 36 and 38 are charts that show the experiment results, every two

minutes after the system is active was noted the system estimation and the actual number of presences

in the room to reach these values. Also, in this experiment the RSSI threshold was set to 90, the best

researched RSSI threshold.

Figure 35: Experiment results with delta equal to 1 minute.

51

CHAPTER 4. RESULTS AND DISCUSSION

Figure 36: Experiment results with delta equal to 2 minutes.

Figure 37: Experiment results with delta equal to 3 minutes.

To determine the best delta time to utilize was used the Mean Relative Error formula, the experiment

with the lowest error should be the best performer in the real world.

With the delta being equal to 1 minute, the relative error is 0.28, this is not a bad performance but,

it is lower than expected when compared to the results of other experiments. In the second experiment,

with the delta being equal to 2 minute, there is a significant improvement on performance dropping the

52

CHAPTER 4. RESULTS AND DISCUSSION

Figure 38: Experiment results with delta equal to 4 minutes.

relative error to 0.21. In the third experiment, is reached peak performance, with the delta being equal

to 3 minute the relative error is only 0.17. When the delta was set to 4 minutes, the performance of the

system was evidently bad, with a MRE over 1.

4.3 Overall system’s performance

In this section will be evaluated the overall performance with and without a ML improvements.

4.3.1 Performance without Machine Learning Improvements

To assess the performance of the system was performed a 1 hour and 15 minutes experiment in a

study room where people enter, leave, or pass by. It’s a high movement environment with the possibility

of several devices per person probing for available networks.

As evaluated before, the RSSI set was 90 and, the Cleanup Delta was set to 3 minutes. It’s also

relevant to mention that every 25 seconds, new data arrives from the sensor.

On the particular day of the experiment, the environment was very busy. The room was almost always

close to full capacity, with that being 20 people maximum. Like in the previous experiments, the inferred

presences and the real presences were toked every two minutes while the system was active.

In Figure 39 are the results of the experiment.

53

CHAPTER 4. RESULTS AND DISCUSSION

Figure 39: Overall performance experiment.

In this experiment, the Mean Relative Error was 0.179. Overall, the performance was good although it

can be seen that, in almost every moment, the system was under-reading the number of presences. That

can be explained by the fact the environment was a study room. Many people were focused on reading and

writing on paper and not using their smartphones. These days smartphones have mechanisms to save

battery when inactive, so they don’t probe for networks. This exponential back-off performed by devices

when inactive might be the reason why the system is under reading.

4.3.2 Performance with Machine Learning

To maximize the collected data usage was built a dataset. This dataset contains the captured time

of the data, the number of probe requests made in that time, the inferred presences, and the actual

presences.

The dataset construction was from the data gathered in the experiment displayed in Figure 39. In

Table 3 is a sample of the dataset.

Time Inferred Presences Real Presences Probe Requests Number
03:15:00 PM 10 15 46
03:17:00 PM 12 16 28
03:20:00 PM 9 15 51
03:22:00 PM 12 15 63
03:24:00 PM 13 14 47
03:26:00 PM 13 13 42
03:28:00 PM 13 14 38

Table 3: Dataset sample.

54

CHAPTER 4. RESULTS AND DISCUSSION

The previous dataset only has 39 entries. Seemingly lack of entries is due to the time needed to

perform experiments and data gathering. All data were collected by hand, having no way of automating

this.

The ML model applied was a simple one to demonstrate the potentialities of taking advantage of

every piece of data collected, the Linear Regression. Since, theoretically, the number of probe requests is

correlated to some people, it seems like a good model to implement.

One important column of the dataset is the Time in which the probe requests took place. If there were

more entries, this column was important to correlate the time of day with the busiest hours but, since the

sample is low, for the model training it was discarded.

On the following Figures 41 and 40 are some data visualization charts to see if, to the naked eye, can

be made conclusion.

Figure 40: Scatter plot on Inferred Presences and Probe Requests number.

55

CHAPTER 4. RESULTS AND DISCUSSION

Figure 41: Scatter plot on Actual Presences and Probe Requests number.

From the previous Figures, is hard to make correlations between the number of presences and the

number of probe requests. This proves the volatility and indeterministic way that different brands of devices

operate.

Nonetheless, Linear Regression was applied. The dataset shuffled and split 70/30, 70% training data

and 30% test data. Since the data values don’t differ in the order of magnitude, they are normalized.

To apply the regression was used the sklearn library Linear Model which provides the necessary tools

to train and test the model. After all the process, the results were satisfactory. In Table 4 are the results.

Inferred Presences Actual Presences Predicted Presences
11 13 13
11 14 13
14 16 15
12 17 14
11 15 13
10 13 13
12 13 14
11 15 13
12 14 14
9 15 12
11 11 13
8 11 11

Table 4: Results after Linear Regression applied.

As we can see in the previous Figure, the results with the ML model improved in a significant way.

Using the same metric as before, the Mean Relative Error, this time it was only 0.09, better than the

performance without ML of 0.17.

These results with more data, although the collection is very expansive, could be even better using

other ML models. The usage of the Time column if we had, for example, a week’s worth of data could be

56

CHAPTER 4. RESULTS AND DISCUSSION

very beneficial to try to predict patterns in the environment, for example, at lunch the room being more

empty because are eating outside.

4.4 Summary

In summary, this work fulfilled the expectations of the research hypothesis by integrating a edge devices

with a Cloud application using adequate patterns to assert an architecture and communications between

the different layers of the system. By taking advantage of Event-driven architecture, it was possible develop

a Middleware component that consumes data produced by sensors and leverages it to extract useful

information, in this case the state of rooms. That leads us into the second part of the hypothesis, that is

creating a service that informs people of the state of a room. This objective was accomplished by creating

a system that takes WiFi probes captured by sensors, applies an algorithm to calculate whether this probe

belongs to an unique person and maintains a state of how many people are inside a room at any given

time. One important aspect of this work is the use of non-intrusive sensors, meaning that the detection of

a human presence is done in a passive manner without explicit interaction between the Physical layer of

the system a person.

Finally, the goals of this work were accomplished, by doing an extensive research before starting any

kind of development, it was possible to evaluate how to approach the integration of IoT and the Cloud on

saas systems. That meant understanding in a deep manner how the different communication patterns are

applied and lead to a solid implementation of an end to end system. ML played a key role on optimizing

the data usage and improving the results and overall experience of the service.

57

Chapter 5
Conclusions

This dissertation was based around the integration between the Cloud and IoT with a Middleware

component and how architecture could be designed to provide a service. Another important aspect of this

work was understanding Crowdsensing to be able to provide a solid proof of concept that adds value to

the research performed.

Finally, this chapter is divided into two sections, one focusing on the main conclusions of this work

and its results, and, another that goes into what further work and investigation could be made.

5.1 Final Considerations

The main goal of this dissertation was to understand how to design a minimal intrusive IoT system that

could be integrated with a service provided by the Cloud. This meant implementing a proof of concept, an

end-to-end system that inferred how many people were inside a room at any given time.

The motivation behind this project came from the challenge that currently there is on integrating

physical devices, like sensors, for example, with Cloud services. There aren’t any generic Middlewares

that are capable to integrate different kinds of devices available to the community.

The implementation of the proof of concept proved to be important in the realm of this work because

allowed for two things. The first one tests all the studied concepts regarding communication between

sensors and the Cloud, different types of architectures, and other approaches. The second one expands

the spectrum of this dissertation by adding the Crowdsensing field of study.

Regarding the integration of IoT with the Cloud and building an end-to-end service the conclusions are

clear. The requirements need to be well defined to be clear on the choices that are needed to be made. If

the system requires constant data streaming, with an asynchronous generation of events from the Physical

layer the design of the system leans towards an Event-driven. Communication patterns like mqtt or other

types of message, queues are key to the success of these types of systems. When the system needs to

act in a request-response environment, a Service-Oriented approach is a way to go. The implementation

of REST API’s are the main building block for this approach.

In the SaaS side of this work, besides the architectures mentioned before, the internal design patterns

58

CHAPTER 5. CONCLUSIONS

implemented in the Business Logic were very important, especially the use of Dependency Inversion.

That allowed us to have a well-defined internal structure without the domain logic being dependent on

other modules or infrastructure. Another very important aspect was the implementation of tests during

the development in the Middleware layer, this part of the system was very delicate and, there was a

need to make sure the behavior was still the same when different iterations of decision algorithms were

experimented.

One area that shows room for improvement is the security of the devices and how we authenticate

them and their messages in the Cloud. There are some approaches, for example, the use of tokens, like it

was implemented in this project, but the research is still very much conceptual and difficult to implement

in more simple scenarios like the one we had at hand.

Regarding the topic of Crowdsensing, the implementation of the proof of concept was successful. The

level of accuracy was good enough to have an adequate perspective of what was happening in the room

and how many people were inside when the system was running. The result of 82% accuracy without using

ML optimizations was lower than expected when compared to the research performed, but at the same

time not too low. With the addition of a ML algorithm, even though it was a simple one, the performance

increased to 91%, meaning that it was the best accuracy seen when compared to the research. This leads

to conclude that the use of ML optimization algorithms is very powerful and should be considered when

conducting other related projects.

5.2 Future Work

The research and proof concept presented in this work already presents an insight into the realm

of IoT and its integration with the Cloud to design service, as well as a better algorithm to do indoors

Crowdsensing. Nonetheless, there are still improvements that can be made in both aspects.

In terms of delivering a service to consumers, some aspects were purposefully ignored, for example,

the implementation of a user authentication system to restrict who could access the information about the

state of the room. This research and implementation would be interesting because in an environment like

the one utilized, a public study room, this information can be accessed by everyone but, if we switch to a

similar environment like a company office, we probably don’t want that information publicly available.

Another aspect, already mentioned before, is the security integration between devices and the Cloud,

which still has a lot of room for improvement. More real-world applicable research is needed regarding

this topic.

In terms of optimizing the use of the data gathered, more ML algorithms can be applied. Currently,

only the real-time results are being optimized with these models but more could be done in the future.

For example, predicting the future states of the rooms. Since we have historical data we could provide a

system that forecasts how busy a room might be at any given moment of the future.

With all this being said, real-world deployment of the system would be a great test of the system,

seeing how it performs during extended periods, with peak times both in the Physical and the Business

layers. This means that the designed deployment needs to take into account non-functional requirements

59

CHAPTER 5. CONCLUSIONS

such as elasticity and scalability.

60

Bibliography

B. Abdualgalil and S. Abraham. Applications of machine learning algorithms and performance compari-

son: A review. In 2020 International Conference on Emerging Trends in Information Technology and

Engineering (ic-ETITE), pages 1–6, 2020. doi: 10.1109/ic-ETITE47903.2020.490.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad. State-of-the-art

in artificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018. ISSN 2405-8440.

doi: https://doi.org/10.1016/j.heliyon.2018.e00938. URL http://www.sciencedirect.com/
science/article/pii/S2405844018332067.

O. Al-Debagy and P. Martinek. A comparative review of microservices and monolithic architectures. 05

2019.

AMQP. Advanced messaging queuing protocol. URL https://www.amqp.org/about/what. (Ac-

cessed Jan. 15, 2021).

R. Asir, H. Manohar, W. Anandraj, and K. Sivaranjani. Iot as a service. International Conference on

Innovations in information, Embedded and Communication Systems (ICIIECS), 03 2016.

H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters, and G. B. Wills. Integration of cloud computing

with internet of things: Challenges and open issues. 2017 IEEE International Conference on In-

ternet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE

Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2017. doi:

10.1109/ithings-greencom-cpscom-smartdata.2017.105.

R. Atmoko, R. Riantini, and M. Hasin. Iot real time data acquisition using mqtt protocol. Journal of Physics:

Conference Series, 853:012003, 05 2017. doi: 10.1088/1742-6596/853/1/012003.

M. Bamiah and S. Brohi. Exploring the cloud deployment and service delivery models. International

Journal of Research and Reviews in Information Sciences, 3:2046–6439, 02 2011.

H. Bansal and K. Sharma. A review study on various algorithms of machine learning. International Journal

of Emerging Technologies and Innovative Research (www.jetir.org), 7(4):1065–1070, Apr 2020.

61

BIBLIOGRAPHY

A. Bhawiyuga, M. Data, and A. Warda. Architectural design of token based authentication of mqtt protocol in

constrained iot device. In 2017 11th International Conference on Telecommunication Systems Services

and Applications (TSSA), pages 1–4, 2017. doi: 10.1109/TSSA.2017.8272933.

C. Bormann. Constrained application protocol. URL https://coap.technology/. (Accessed Jun.

25, 2021).

C. Bormann, A. P. Castellani, and Z. Shelby. Coap: An application protocol for billions of tiny internet

nodes. IEEE Internet Computing, 16(2):62–67, 2012. doi: 10.1109/MIC.2012.29.

Brunofmf. brunofmf/crowd-sensing - github. URL https://github.com/brunofmf/
Crowd-Sensing. (Accessed Dec. 17, 2020).

P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. R. Shearer, and R. Wirth. Crisp-dm 1.0:

Step-by-step data mining guide. 2000.

N. R. G. Charan, S. T. Rao, and D. P. Srinivas. Deploying an application on the cloud. International Journal

of Advanced Computer Science and Applications, 2(5), 2011. doi: 10.14569/IJACSA.2011.020520.

URL http://dx.doi.org/10.14569/IJACSA.2011.020520.

M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci, and C. Gransart. Token-based lightweight

authentication to secure iot networks. In 2019 16th IEEE Annual Consumer Communications Networking

Conference (CCNC), pages 1–4, 2019. doi: 10.1109/CCNC.2019.8651825.

L. De Lauretis. From monolithic architecture to microservices architecture. In 2019 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), pages 93–96, 2019. doi: 10.

1109/ISSREW.2019.00050.

P. Desai, A. Sheth, and P. Anantharam. Semantic gateway as a service architecture for iot interoperability.

10 2014. doi: 10.1109/MobServ.2015.51.

M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni. A survey of internet of things (iot) authentication

schemes. Sensors, 19(5), 2019. ISSN 1424-8220. doi: 10.3390/s19051141. URL https://www.
mdpi.com/1424-8220/19/5/1141.

A. El Hakim. Internet of things (iot) system architecture and technologies, white paper. 03 2018. doi:

10.13140/RG.2.2.17046.19521.

A. El Rheddane, N. De Palma, A. Tchana, and D. Hagimont. Elastic message queues. In 2014 IEEE 7th

International Conference on Cloud Computing, pages 17–23, 2014. doi: 10.1109/CLOUD.2014.13.

B. Fernandes, F. Silva, C. Analide, and J. Neves. Crowd sensing for urban security in smart cities. Journal

of Universal Computer Science, 24:302–321, 06 2018.

62

BIBLIOGRAPHY

B. Fernandes, F. Silva, H. Alaiz Moreton, P. Novais, C. Analide, and J. Neves. Traffic Flow Forecasting

on Data-Scarce Environments Using ARIMA and LSTM Networks, pages 273–282. 04 2019. ISBN

978-3-030-16180-4. doi: 10.1007/978-3-030-16181-1_26.

B. Fernandes, J. Neves, and C. Analide. SafeCity: A Platform for Safer and Smarter Cities, pages 412–416.

06 2020a. ISBN 978-3-030-49777-4. doi: 10.1007/978-3-030-49778-1_37.

B. Fernandes, F. Silva, H. Alaiz Moreton, P. Novais, C. Analide, and J. Neves. Long short-term memory

networks for traffic flow forecasting: Exploring input variables, time frames and multi-step approaches.

Informatica, pages 1–27, 01 2020b. doi: 10.15388/20-INFOR431.

G. Firestore. Cloud firestore firebase. URL https://firebase.google.com/docs/firestore/.
(Accessed Jul. 26, 2021).

D. Gigante, P. Oliveira, B. Fernandes, F. Lopes, and P. Novais. Unsupervised learning approach for ph

anomaly detection in wastewater treatment plants. In H. Sanjurjo González, I. Pastor López, P. Gar-

cía Bringas, H. Quintián, and E. Corchado, editors, Hybrid Artificial Intelligent Systems, pages 588–599,

Cham, 2021. Springer International Publishing.

Go-Gorm. Orm library for golang. URL https://gorm.io/. (Accessed Apr. 19, 2021).

Google. Go is an open source programming language that makes it easy to build simple, reliable, and

efficient software. URL https://golang.org/. (Accessed Jun. 26, 2021).

T. Gu. Newzoo’s global mobile market report: Insights into the world’s 3.2 billion smartphone users, the

devices they use and the mobile games they play. Sep 2019.

A. Ibrahim and R. A Rashid. Lightweight iot middleware for rapid application development. TELKOMNIKA

(Telecommunication Computing Electronics and Control), 17, 01 2019. doi: 10.12928/telkomnika.

v17i3.11793.

I. Ibrahim. Iterative and incremental development analysis study of vocational career information systems.

11:13–24, 2020.

A. Industries. Adafruit mqtt library. URL https://github.com/adafruit/Adafruit_MQTT_
Library. (Accessed Jan. 17, 2021).

V. John and X. Liu. A survey of distributed message broker queues. 04 2017.

A. Kafka. Apache kafka. URL https://kafka.apache.org/. (Accessed Jul. 18, 2021).

Kalanda. Kalanda/esp8266-sniffer - github. URL https://github.com/kalanda/
esp8266-sniffer. (Accessed Jan. 5, 2021).

63

BIBLIOGRAPHY

M. E. Khalil, K. Ghani, and W. Khalil. Onion architecture: a new approach for xaas (every-thing-as-a service)

based virtual collaborations. In 2016 13th Learning and Technology Conference (L T), pages 1–7, 2016.

doi: 10.1109/LT.2016.7562859.

C. Lai, F. Boi, A. Buschettu, and R. Caboni. Iot and microservice architecture for multimobility in a smart

city. pages 238–242, 08 2019. doi: 10.1109/FiCloud.2019.00040.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. A survey on internet of things: Architecture,

enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, PP:1–1,

03 2017. doi: 10.1109/JIOT.2017.2683200.

J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins, E. Rye, and D. Brown. A study of

mac address randomization in mobile devices and when it fails. Proceedings on Privacy Enhancing

Technologies, 2017, 03 2017. doi: 10.1515/popets-2017-0054.

U. Mehmood, I. Moser, P. Prakash, and A. Banerjee. Occupancy estimation using wifi: A case study for

counting passengers on busses. 03 2019. doi: 10.1109/WF-IoT.2019.8767350.

D. Mishra. Performance Analysis of Deadlock Prevention and MUTEX Detection Algorithms in Distributed

Environment. 01 2018.

MQTT.org. The standard for iot messaging. URL https://mqtt.org/. (Accessed Jan. 12, 2021).

M. Murphy. Cellphones now outnumber the world’s population, Jan 2019. URL https://finance.
yahoo.com/news/cellphones-now-outnumber-world-population-210800857.
html.

N. Naik. Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp and http. In 2017

IEEE International Systems Engineering Symposium (ISSE), pages 1–7, 2017. doi: 10.1109/SysEng.

2017.8088251.

S. Nastic, S. Sehic, D. Le, H. Truong, and S. Dustdar. Provisioning software-defined iot cloud systems.

In 2014 International Conference on Future Internet of Things and Cloud, pages 288–295, 2014. doi:

10.1109/FiCloud.2014.52.

S. Naveen. Study of iot: Understanding iot architecture, applications, issues and challenges. May 2016.

A. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Sheng. Iot middleware: A survey on issues and enabling

technologies. IEEE Internet of Things Journal, PP:1–1, 10 2016. doi: 10.1109/JIOT.2016.2615180.

L. Oliveira, D. Schneider, J. Souza, and W. Shen. Mobile device detection through wifi probe request

analysis. IEEE Access, PP:1–1, 06 2019. doi: 10.1109/ACCESS.2019.2925406.

P. Oliveira, B. Fernandes, C. Analide, and P. Novais. Multi-step Ultraviolet Index Forecasting Using Long

Short-Term Memory Networks, pages 187–197. 01 2021. ISBN 978-3-030-53035-8. doi: 10.1007/

978-3-030-53036-5_20.

64

BIBLIOGRAPHY

V. S. Padala, K. Gandhi, and P. Dasari. Machine learning: the new language for applications. IAES

International Journal of Artificial Intelligence, 8:411–421, 2019.

C. Pahl, P. Jamshidi, and O. Zimmermann. Microservices and containers. 03 2020.

G. D. G. PostgreSQL. Postgresql: The world’s most advanced open source relational database. URL

https://www.postgresql.org/. (Accessed Aug. 12, 2021).

D. Preuveneers and P. Novais. A survey of software engineering best practices for the development of

smart applications in ambient intelligence. Journal of Ambient Intelligence and Smart Environments,

4:149–162, 08 2012. doi: 10.3233/AIS-2012-0150.

RabbitMQ. Messaging that just works. URL https://www.rabbitmq.com/. (Accessed Jul. 12, 2021).

ReactJs. React – a javascript library for building user interfaces. URL https://reactjs.org/. (Ac-

cessed Aug. 1, 2021).

L. Schauer, M. Werner, and P. Marcus. Estimating crowd densities and pedestrian flows using wi-fi and

bluetooth. 01 2014. doi: 10.4108/icst.mobiquitous.2014.257870.

P. Sethi and S. Sarangi. Internet of things: Architectures, protocols, and applications. Journal of Electrical

and Computer Engineering, 2017:1–25, 01 2017. doi: 10.1155/2017/9324035.

V. Solovei, O. Olshevska, and Y. Bortsova. The difference between developing single page application and

traditional web application based on mechatronics robot laboratory onaft application. 03 2018. doi:

10.15673/atbp.v10i1.874.

D. Soni and A. Makwana. A survey on mqtt: A protocol of internet of things(iot). 04 2017.

A. Sunyaev. Middleware, pages 125–154. Springer International Publishing, Cham, 2020. ISBN

978-3-030-34957-8. doi: 10.1007/978-3-030-34957-8_5. URL https://doi.org/10.1007/
978-3-030-34957-8_5.

D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan. Performance evaluation of mqtt and coap via a com-

mon middleware. In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP), pages 1–6, 2014. doi: 10.1109/ISSNIP.2014.6827678.

Vijayalakshmi. Analysis on software development approaches. 2(12), Dec 2011.

J. Weppner and P. Lukowicz. Bluetooth based collaborative crowd density estimation with mobile phones.

In 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), pages

193–200, 2013. doi: 10.1109/PerCom.2013.6526732.

Y. Yuan, C. Qiu, W. Xi, and J. Zhao. Crowd density estimation using wireless sensor networks. pages

138–145, 12 2011. doi: 10.1109/MSN.2011.31.

65

BIBLIOGRAPHY

X. Zhou. Research on wi-fi probe technology based on esp8266. In Proceedings of the 2017 5th In-

ternational Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE

2017), pages 163–167. Atlantis Press, 2017. ISBN 978-94-6252-381-4. doi: https://doi.org/10.2991/

icmmcce-17.2017.34. URL https://doi.org/10.2991/icmmcce-17.2017.34.

66

