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Abstract

In this paper we focus on the study of monic polynomials
whose coefficients are quaternions located on the left-
hand side of the powers, by addressing three fundamen-
tal polynomial problems: factor, evaluate and deflate.
An algorithm combining a deflaction procedure with a
Weierstrass-like quaternionic method is presented. Sev-
eral examples illustrate the proposed approach.

1 Introduction

In 1941, Niven [16] proved that any polynomial whose coefficients are quaternions located only on the left-hand
side of the powers (one-sided polynomials) must have at least one quaternionic root. Since then, there has
been a growing interest in studying the problem of characterizing and computing the zeros of these special
polynomials, from the theoretical as well as from the applications point of view [7, 17, 18]. In particular, in
the last decade several authors proposed algorithms for computing the zeros of one-sided polynomials. Most of
these root-finding methods rely on the connection between the zeros of a quaternionic polynomial and the zeros
of a certain real polynomial, usually with multiple zeros, and as such, they face the usual difficulties associated
with the computation of multiple zeros or clusters of zeros [2, 13, 20, 21]. One of the few exceptions is the
work [4], where a quaternionic version of the well-known Weierstrass iterative root-finding method [23], relying
on quaternionic arithmetic is proposed.

Real or complex polynomials have received a lot of attention over the years and classical problems such as
factor, evaluate and deflate are well studied. In this paper we consider quaternionic versions of these classical
problems. In particular, we revisit the factor problem by recalling a recently proposed quaternionic Weierstrass
method [4] and take a fresh look to the problem of evaluating quaternionic polynomials [3]. The main result of
the paper is a deflation algorithm to be used together with the Weierstrass method which allows to reestablished
its quadratic convergence without requiring higher precision.

2 Preliminary Results

We introduce the basic definitions and results needed in the sequel; we refer to [12, 15, 24] for recalling the
main aspects of the quaternion algebra.
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2 A Modified Quaternionic Weierstrass Method

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k.

This non-commutative product generates the algebra of real quaternions H. For a quaternion x = x0 + ix1 +
jx2 +kx3, xi ∈ R, we can define the real part of x, Re(x) := x0, the vector part of x, x := ix1 +jx2 +kx3 and
the conjugate of x, x̄ := x0 − ix1 − jx2 − kx3. The norm of x is given by |x| :=

√
xx̄ =

√
x̄x. It immediately

follows that each non-zero x ∈ H has an inverse given by x−1 = x̄
|x|2 and therefore H is a non-commutative

division ring or a skew field.
Two quaternions q and q′ are called similar, q ∼ q′, if Re q = Re q′ and |q| = |q′|. Similarity is an

equivalence relation in H, partitioning H in the so-called similarity class of q, which we denote by [q]. The
similarity class of a non-real quaternion q = q0 + iq1 + jq2 + kq3 can be identified with the three-dimensional
sphere in the hyperplane {(x0, x, y, z) ∈ R4 : x0 = q0}, with center (q0, 0, 0, 0) and radius

√
q2
1 + q2

2 + q2
3 .

We consider now polynomials P in one formal variable x of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0, (1)

i.e. polynomials whose coefficients ak ∈ H are located only on the left-hand side of the powers. The set of
polynomials of the form (1), with the addition and multiplication defined as in the commutative case, is a ring,
referred to as the ring of (left) one-sided polynomials and usually denoted by H[x].

The evaluation of P at q is defined as P (q) = anq
n + an−1q

n−1 + · · ·+ a1q+ a0. Moreover, a quaternion
q is a zero of P , if P (q) = 0. A zero q is called an isolated zero of P , if [q] contains no other zeros of P . A
zero q is called a spherical zero of P , if q is not an isolated zero; [q] is referred to as a sphere of zeros.

We define now two important polynomials: the conjugate of P , denoted by P̄ and defined by conjugating
the coefficients of P and the characteristic polynomial of a quaternion q, defined as

Ψq(x) := (x− q)(x− q) = x2 − 2 Re(q)x+ |q|2. (2)

Properties concerning these two polynomials, can be seen in e.g. [6].
We end this section by recalling some results concerning the zero-structure and the factorization of poly-

nomials in H[x]. For the proofs and other details we refer to [1, 9, 15, 16]. Besides Niven’s Fundamental
Theorem of Algebra, stating that any non-constant polynomial in H[x] always has a zero in H, the following
results are essential for the sequel.

Theorem 1. Consider a polynomial P ∈ H[x] of the form (1).

1. A quaternion q is a zero of P if and only if there exists Q ∈ H[x] such that

P (x) = Q(x)(x− q).

2. A non-real zero q is a spherical zero of P if and only if there exists a polynomial Q ∈ H[x] such that

P (x) = Q(x)Ψq(x),

where Ψq is the characteristic polynomial of q given by (2).

3 Polynomial Problems Over H

3.1 The Factor Problem

As an immediate consequence of the Fundamental Theorem of Algebra for quaternions and Theorem 1 we
conclude that it is always possible, as in the classical case, to write a quaternionic polynomial P as a product
of linear factors, i.e. there exist x1, . . . , xn ∈ H, such that

P (x) = (x− xn)(x− xn−1) · · · (x− x1). (3)

The quaternions x1,. . . , xn in the factorization (3) are called factor-terms of P and the n-uple (x1, . . . , xn) is
called a chain of P .
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The link between these factor-terms and the corresponding zeros is not straightforward. In fact if (x1, . . . , xn)
is a chain of a polynomial P then any zero of P is similar to some factor-term xk in the chain and reciprocally
every factor-term xk is similar to some zero of P [15, 21]. The next results clarify the link between zeros and
factor-terms (we mostly follow [5] and references therein).

Theorem 2 (Zeros from factors). Consider a chain (x1, . . . , xn) of a polynomial P . If the similarity classes
[xk] are distinct, then P has exactly n zeros ζk which are related to the factor-terms xk as follows:

ζk =Pk(xk)xk
(
Pk(xk)

)−1
; k = 1, . . . , n, (4)

where
P1(x) := 1 and Pk(x) := (x− xk−1) . . . (x− x1), k = 2, . . . , n (5)

Theorem 3 (Factors from zeros). If ζ1, . . . , ζn are quaternions such that the similarity classes [ζk] are distinct,
then there is a unique polynomial P of degree n with zeros ζ1, . . . , ζn, which can be constructed from the
chain (x1, . . . , xn), where

xk =Pk(ζk) ζk (Pk(ζk))
−1

; k = 1, . . . , n (6)

and Pk is the polynomial (5).

Following the idea of the Weierstrass method in its sequential version [23], a quaternion version was proposed
in [4] where it was also shown how to obtain sequences converging, at a quadratic rate, to the factor terms
x1, . . . , xn (cf. (3)) of a given polynomial P and with some additional little effort, how these sequences can
be used to estimate the zeros ζ1, . . . , ζn of P .

Theorem 4. Let P be a polynomial of degree n in H[x] with simple1 zeros and consider, for i = 1, . . . , n, the
iterative schemes

z
(k+1)
i = z

(k)
i −

(
L(k)
i PR(k)

i

)
(z

(k)
i )

(
Ψ

(k)
i (z

(k)
i )
)−1

, k = 0, 1, 2, . . . (7)

where

L(k)
i (x) :=

n∏
j=i+1

(
x− z(k)

j

)
, R(k)

i (x) :=

i−1∏
j=1

(
x− z(k+1)

j

)
(8)

and

Ψ
(k)
i (x) :=

i−1∏
j=1

Ψ
z
(k+1)
j

(x)

n∏
j=i+1

Ψ
z
(k)
j

(x), (9)

with Ψq denoting the characteristic polynomial of q. If the initial approximations z
(0)
i are sufficiently close to

the factor terms xi in a factorization of P in the form (3), then the sequences {z(k)
i } converge quadratically

to xi. Moreover, the sequences {ζ(k)
i } defined by

ζ
(k+1)
i := R(k)

i (z
(k+1)
i ) z

(k+1)
i

(
R(k)
i (z

(k+1)
i )

)−1

; k = 0, 1, 2, . . . , (10)

converge quadratically to the roots of P .

Remark 1. We recall that the evaluation map at a quaternion q is not an algebra homomorphism (see e.g.
[15]). This means that if P (x) = L(x)R(x) and R(q) 6= 0, then P (q) = (LR)(q) = L(q̃)R(q), where
q̃ = R(q) q (R(q))−1 ∈ [q].

Remark 2. The proof of Theorem 4 was obtained under the assumption that all the zeros of P are isolated.
Several numerical experiments show that the quaternionic Weierstrass method (7)-(9) also works for spherical
roots. However, this requires to higher the precision. For example, in [4] the numerical computations have been
carried out with the Mathematica system and with the precision increased to 512 significant digits. If this is
not performed, then the method produces approximations to the spherical roots with much less precision than
those approximating the isolated roots. As expected, for the case of the spherical root, we obtain convergence
to two distinct members of the sphere of zeros.

1A polynomial P of degree n has only simple roots if it has n distinct isolated roots.
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3.2 The Evaluating Problem

In [3] the problem of evaluating a polynomial, i.e., given a polynomial P , find its value at a given argument
α was addressed. Several polynomial evaluation schemes were considered, which depend on the particular
form of the polynomial. The paper mainly focus on two algorithms: the Horner’s rule for quaternions and a
generalization to H of the well-known algorithm of Goertzel [8]. The Goertzel’s algorithm to obtain P (α) is
based on the following result (see [15] for more general Euclidean division results).

Theorem 5. Consider a quaternionic one-sided polynomial P of degree n ≥ 2 and the characteristic polynomial
Ψα of a quaternion α. Then there exists a unique polynomial Q of degree n− 2 such that

P (x) = Q(x)Ψα(x) + c1x+ c0, (11)

with c1, c0 ∈ H.

Observe that the form (11) corresponds to the division of P by Ψα and can be presented in a compact
form by the use of an expanded synthetic division as follows.

Quaternionic Goertzel’s algorithm

Input: Coefficients ak of P and α
Output: Coefficients ck of Q and p = P (α)

- Obtain r = 2 Re(α); s = |α|2;

- Let cn+1 = 0; cn = an;

- for k = n− 1 : −1 : 1 do

ck = ak + r ck+1 − s ck+2;

- end for

- Compute c0 = a0 − s c2;

- Compute p = c1α+ c0;

The algorithm produces not only the value P (α), but also the coefficients of the quotient polynomial Q,
i.e.

pn(x) = (cnx
n−2 + cn−1x

n−3 + · · ·+ c3x+ c2)Ψα(x) + c1x+ c0. (12)

We point out that when P is a polynomial with real (or complex) coefficients, this quaternionic algorithm
coincides with the classical Goertzel’s algorithm for computing P (α), α ∈ C. This algorithm has advantages,
from the complexity of the algorithm point of view, over the well-known Horner’s method [5, 14]. The Goertzel?s
algorithm for computing P (α) is componentwise backward stable both in the complex case [22] and in the
quaternionic case [5].

3.3 The Deflate Problem

Given a real polynomial P and one of its roots α, deflating a polynomial means to find a polynomial Q such
that

P (x) = Q(x)(x− α);

being the additional roots of P exactly the roots of Q. In the case α ∈ C, one can deflate by a quadratic factor

P (x) = Q(x)(x− α)(x− ᾱ).

In both cases, the polynomial Q can be obtained by synthetic long division through Goertzel’s algorithm
(see Sect. 3.2).
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In this section we propose a method to deflate a given polynomial so that the deflating polynomial has no
spherical zeros.

The motivation for considering this problem comes from the fact that the proof of the quadratic convergence
to the factor-terms (or equivalently to the roots) of the Weierstrass method, relies on the assumption that all
the roots are simple (cf. Theorem 4). Several numerical experiments show that it is possible to reach quadratic
convergent to spherical roots at the expense of increasing the accuracy of calculations, something that is not
accessible to all numerical systems.

We are looking for a factorization of a quaternionic polynomial P of degree n, of the form

P (x) = Q(x)S(x) = S(x)Q(x) (13)

such that all the zeros of Q are isolated and all the zeros of S are spherical. Assuming that P has the spherical
roots ζ1, . . . , ζk, (2k ≤ n) and recalling Theorem 1, we can write S as

S(x) = Ψζ1(x) . . .Ψζk(x), (14)

where Ψζi(x) is the characteristic polynomial of ζi. Since P can be written as

P (x) = P1(x) + Pi(x)i + Pj(x)j + Pk(x)k, (15)

where P1, Pi, Pj, Pk are real polynomials, it is immediate to conclude that Ψζ is a divisor of P if and only if it
is a common divisor of P1, Pi, Pj, Pk.

The starting point to obtain the factorization (13) is to compute the set Z of all the 2k common complex
zeros of P1, Pi, Pj, Pk, i.e. to construct

Z = {ζ1, ζ̄1, . . . , ζk, ζ̄k}.

The polynomial Q in (13) is obtained by dividing the polynomial P successively by Ψζi , i = 1, . . . , k.

4 A Modified Weierstrass Method

In this section we combine the deflation technique described in Sect. 3.3 with the Weierstrass method of
Sect. 3.1.

Consider the representation (15) of the monic polynomial P . It is clear that the polynomial P1 has degree
n and the other polynomials Pi, Pj, Pk have lower degree.

Denoting by P4, P3, P2, P1 a non-descending sorting of the polynomials P1, Pi, Pj, Pk by their degree,
we start the process by constructing a list `C of the complex zeros with positive imaginary part of the real
polynomial P4 and selecting first the one that has the smallest module (see remark at the end of the section),
say ζ.

Using the Goertzel’s algorithm (in the complex case) to evaluate Pi(ζ), i = 1, 2, 3, we compute simultane-
ously the (real) coefficients of Qi such that

Pi(x) = Qi(x)Ψζ(x) + ci1x+ ci0 (16)

as in (11)-(12). If ζ is a common zero to all the four polynomials, then we replace the polynomials Pi by the
polynomials Qi (applying in that case the Goertzel’s algorithm also to polynomial P4) and we jump to the next
element of the list `C .

At the end of the procedure, the polynomial Q(x) in (13) is the polynomial

Q(x) = P1(x) + Pi(x)i + Pj(x)j + Pk(x)k, (17)

where P1, Pi, Pj, Pk are the updated polynomials P1, P2, P3, P4, after a convenient reordering, that comes out
of the process.

Once all the spherical roots of P are identified and the deflating polynomial Q is constructed, the isolated
zeros of P are computed by applying the Weierstrass method proposed in [4] to Q. The overall process can
be summarized as follows:
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Modified Weierstrass Algorithm

Input: Polynomial P and a tolerance tol.
Output: Lists `S and `I with the spherical and isolated roots of P

- Compute the polynomials Pi, i = 1, 2, 3, 4 resulting from sorting the real polynomials in (15) in decreas-
ing order of their degree

- Construct the list `C of the complex roots with positive imaginary part of P4 sorted in increasing order
of the absolute value of its elements

- for each ζl ∈ `C do

- for i=3:-1:1 do

Compute the coefficients cik of Pi as in (16) % Division of Pi by Ψζl

if |ci1ζl + ci0| >tol then

break % jump to the next ζl; ζl is not a root of Pi

end if

end for

- Add ζl to the list `S

- Compute the coefficients c4k of P4 as in (16)

- Update Pi % Pi(x) = Qi(x)

- end for

- Construct the polynomial Q from (17)

- Apply Weierstrass method to Q to obtain `I

Remark 3. In practice, deflation should be used with care, since the use of floating point arithmetic leads
to non-exact coefficients in Q. The modified Weierstrass method computes the coefficient of Q in the order
from highest power down to the constant term (forward deflation). This turns out to be stable if the roots of
smallest absolute value are computed first ([19]). Example 2 illustrates this situation.

5 Numerical Experiments

In this section we illustrate how the deflation technique introduced in the previous section can be combined
together with the Weierstrass method to produce accurate approximations to the zeros of a polynomial.

In all the computation, we have used the Matlab system with double floating point arithmetic. For details
on the Weierstrass method, in particular, the stopping criteria and the choice of the initial approximations we
refer the readers to [4].

Our first example was borrowed from the aforementioned paper, where the results were obtained by the use
of the Mathematica system with the precision extended to 512 significant digits. Without using this strategy,
it is clear that the approximations to the spherical roots cannot reach the same accuracy as the one exhibited
by isolated roots.

Example 1. The polynomial

P (x) = x4 + (−1 + i)x3 + (2− i + j + k)x2 + (−1 + i)x+ 1− i + j + k,

has, apart from the isolated zeros −i + k and 1− j, a whole sphere of zeros, [ i ].
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Table 1: Weierstrass Method for Example 1

Roots Type Error

1− j Isolated 3× 10−16

−i + k Isolated 2× 10−15

[ i ] Spherical 8× 10−9

Table 2: Modified Weierstrass Method for Example 1

Roots Method Type Error

1− j Weierstrass Isolated 7× 10−17

−i + k Weierstrass Isolated 2× 10−18

[ i ] Deflation Spherical 0

Starting with the initial guess z(0) = (1,−2, 0.5i, 1 + i), we obtained, after 14 iterations, the results
presented in Table 1.

Observe that P can be written in the form

P (x) = P1(x) + P2(x)i + P3(x)j + P4(x)k,

where
P1(x) = x4 − x3 + 2x2 − x+ 1, P2(x) = x3 − x2 + x− 1, P3(x) = P4(x) = x2 + 1.

In this case, Matlab finds exactly the roots ±i of P4 and the use of Goerstzel’s algorithm shows that these
roots are also roots of P2 and P1 and that the division of P by Ψi produces the polynomial

Q(x) = −x3 + 2x− 1 + (−x+ 1)i + j + k.

Applying now the Weierstrass algorithm to Q with the initial approximation z(0) = (1, 1 + i), we obtain, after
11 iterations, the results presented in Table 2.

Example 2. The polynomial

P (x) = x6 + (−1 + i)x5 + (6− i + j + k)x4 + (−5 + 5i)x3

+ (9− 5i + 5j + 5k)x2 + (−4 + 4i)x+ 4− 4i + 4j + 4k

has the same zeros as the polynomial P in Example 1 and the additional spherical zero [ 2i ].
The results of the Weierstrass and Modified Weierstrass methods are presented in Table 3 and 4, respectively,

where the advantage of the modified method is already evident.

Example 3. In the last example we apply both methods to the 8th degree polynomial

P (x) = x8 + (−7 + i)x7 + (37− 7i + j + k)x6

+ (−66 + 36i− 6j− 6k)x5 + (189− 60i + 30j + 30k)x4

+ (−183 + 159i− 30j− 30k)x3 + (253− 153i + 129j + 129k)x2

+ (−124 + 124i− 24j− 24k)x+ 100− 100i + 100j + 100k.

This polynomial shares all its roots with the polynomial P of Example 2 and has also the extra spherical root
[3 + 4i].
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Table 3: Weierstrass Method for Example 2

Roots Type Error

1− j Isolated 3× 10−12

−i + k Isolated 1× 10−14

[ i ] Spherical 5× 10−9

[ 2i ] Spherical 8× 10−10

Table 4: Modified Weierstrass Method for Example 2

Roots Method Type Error

1− j Weierstrass Isolated 7× 10−16

−i + k Weierstrass Isolated 8× 10−16

[ i ] Deflation Spherical 3× 10−16

[ 2i ] Deflation Spherical 5× 10−16

It is visible in Table 5 that the difficulties of the Weierstrass in dealing with spherical roots increases with
the number of spheres. Moreover these problems are also deteriorating the quality of the approximations for
the isolated roots. On the other hand, the Modified Weierstrass method produces very good approximations
for both isolated and spherical roots: see Table 6.

6 Conclusions

We have proposed an algorithm to compute simultaneously all the roots of an one-sided quaternionic polyno-
mial. This algorithm combines a deflation technique, based on the Goertzel’s method with the quaternionic
Weierstrass method. Several examples specially designed to include spherical roots show the substantial increase
of precision of the corresponding approximations.

Given a polynomial P of the form (1), the Goertzel’s method produces accurate approximations to the
value of P (α), as far as the condition number for the evaluation of the polynomial P at α, i.e.

cond (P, α) :=

∑n
k=0 |ak||α|k

|
∑n
k=0 akα

k|

Table 5: Weierstrass Method for Example 3

Roots Type Error

1− j Isolated 9× 10−6

−i + k Isolated 1× 10−5

[ i ] Spherical 1× 10−5

[ 2i ] Spherical 2× 10−6

[ 3 + 4i ] Spherical 9× 10−7
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Table 6: Modified Weierstrass Method for Example 3

Roots Method Type Error

1− j Weierstrass Isolated 1× 10−14

−i + k Weierstrass Isolated 9× 10−15

[ i ] Deflation Spherical 3× 10−16

[ 2i ] Deflation Spherical 3× 10−16

[ 3 + 4i ] Deflation Spherical 2× 10−15

is not large.
For large values of the condition number, the method (in the classical and quaternionic cases) suffers from

instability, producing a computed value with few exact digits, which in turn can lead the modified Weierstrass
method to failure in the identification of ζ as a spherical root of P . In the classical case, several techniques to
overcome such difficulties are known ([10, 11, 22]); we believe they are worth considering in our future work.
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