
Universidade do Minho

Mathematica Tools for Coquaternions

M. Irene Falcãoa,c Fernando Mirandaa,c Ricardo Severinoc M. Joana Soaresb,c

a CMAT - Centre of Mathematics, University of Minho, Portugal
b NIPE - Economic Policies Research Unit, University of Minho, Portugal
c Department of Mathematics, University of Minho, Portugal

Information

Keywords:
Coquaternions, coquaternionic poly-
nomials, admissible classes, nth

roots of a coquaternion, symbolic
computation.

Original publication:
Lecture Notes in Computer Science,
vol. 12952, pp. 449-464, 2021
DOI:
10.1007/978-3-030-86973-1_32

https://link.springer.com

Abstract

Coquaternions form a four dimensional real algebra generalizing com-
plex numbers and were introduced by James Cockle at about the
same time that Hamilton discovered the famous algebra of quater-
nions. Although not as popular as quaternions, in recent years one
can observe an emerging interest among mathematicians and physi-
cists on the study of these numbers. In this work we revisit a Math-
ematica package for implementing the algebra of coquaternions –
Coquaternions – and discuss a set of Mathematica functions –
CoqPolynomial – to deal with coquaternionic polynomials. These
two sets of functions provide the basic tools necessary for manipu-
lating coquaternions and unilateral coquaternionic polynomials, re-
flecting, in its present form, the recent interests of the authors in the
area.

1 Introduction

Quaternions, introduced in 1843 by the Irish mathematician William Rowan Hamilton (1805-1865) as a gen-
eralization of complex numbers [15], have become a powerful tool for solving problems in almost all applied
sciences [17], unlocking also new approaches in many branches of applied mathematics. This increasing inter-
est in using quaternions has motivated the emergence of several software packages to perform computations
in the algebra of the real quaternions (see, for example, [5, 9, 10, 21]), or more generally, in Clifford Algebras
(see [1, 2] and the references therein for details).

In 1849, the English mathematician James Cockle, introduced another system of quadruple algebra [4]
whose elements he designated by the name coquaternions. Although coquaternions, also known in the literature
as split quaternions, are not as popular as the Hamilton’s quaternions, one can say that recently they have
also become an active research area [3, 6, 7, 14, 16, 18, 19].

Recently [12], we have introduced a Mathematica add-on application – Coquaternions – whose main pur-
pose is to define arithmetic rules for coquaternions and have described a collection of functions – CoqPolynomial

– for dealing with some polynomial problems over the algebra of coquaternions. As far as we know, these are
the only computational tools specially designed to work with coquaternions.

mailto:mif@math.uminho.pt
mailto:fmiranda@math.uminho.pt
mailto:ricardo@math.uminho.pt
mailto:jsoares@math.uminho.pt
https://doi.org/10.1007/978-3-030-86973-1_32
https://doi.org/10.1007/978-3-030-86973-1_32
https://link.springer.com

2 Mathematica Tools for Quaternionic Polynomials

Table 1: Basic operations on coquaternions
Function Description
Abs[q] extends the Abs function to coquaternion objects
ComplexMatrixToCoquaternion[m] gives the coquaternion corresponding to m ∈M2(C)
ComplexToCoquaternion[{a,b}] gives the coquaternion a + bj , with a, b ∈ C
Conjugate[q] extends the Conjugate function to coquaternion objects
Coquaternion[q0,q1,q2,q3] represents the coquaternion q0 + q1i + q2j + q3k
CoquaternionQ[q] gives True if q is a coquaternion and False otherwise
CoquaternionToComplex[q] gives a list {q0 + iq1, q2 + iq3} for the complex form of q
CoquaternionToComplexMatrix[q] gives the complex 2× 2 representation matrix of q
CoquaternionToMatrix[q] gives the real 2× 2 representation matrix of q
CoquaternionTo4DMatrixL[q] gives the real 4× 4 left representation matrix of q
CoquaternionTo4DMatrixR[q] gives the real 4× 4 right representation matrix of q
Det[q] extends the Det function to coquaternion objects
MatrixToCoquaternion[m] gives the coquaternion corresponding to m ∈M2(R)
Norm[q] extends the Norm function to coquaternion objects
Power[q,n] extends the Power function to coquaternion objects for

integer exponents
Re[q] extends the Re function to coquaternion objects
ToCoquaternion[a] gives de coquaternion form of a when a is a real or complex

number
Tr[q] extends the Tr function to coquaternion objects
Vec[q] gives the vector part of q

In this paper we discuss a new set of functions for dealing with unilateral coquaternionic polynomials,
which, in particular, contains a function implementing a recently proposed algorithm to determine and classify
the zeros of such polynomials [13]. A function for computing the nth roots of a coquaternion, accordingly
to [11], is also added to CoqPolynomial. Several examples have been designed to show clearly the use and
performance of the computational tools presented in this work.

2 The Package Coquaternions revisited

In this section we recall some basic definitions and results on coquaternions and we revisit the Mathematica
package Coquaternions. We mainly follow the presentation of [12], where more details can be found.

Let {1, i, j, k} be an orthonormal basis of the Euclidean vector space R4. The algebra of real coquaternions,
which we denote by Hcoq, is generated by the product given according to the following rules

i2 = −1, j2 = k2 = 1, ij = −ji = k.

Given q = q0+q1i+q2j+q3k ∈ Hcoq, its conjugate q is defined as q = q0−q1i−q2j−q3k; the number q0 is
called the real part of q, denoted by Re q, and the vector part of q, denoted by q, is given by q = q1i+q2j+q3k.
We call trace of q, denoted by tr q, the quantity given by tr q = q + q = 2 Re q and call determinant of q,
denoted by det q, the quantity given by det q = q q = q20 + q21 − q22 − q23 .

Unlike C and H, Hcoq is not a division algebra. In fact, a coquaternion q is invertible if and only if

det q 6= 0. In that case, we have q−1 = q
det q . Finally, we endow Hcoq with the semi-norm ‖q‖ =

√
|det q|

and call q a unit coquaternion if ‖q‖ = 1.
In the Coquaternions package, a coquaternion q = q0 + q1i + q2j + q3k is an object of the form

Coquaternion[q0,q1,q2,q3], whose entries are numeric quantities or symbols (in such case the package
assumes that all symbols represent real numbers).

The package adds rules to the functions Plus, Minus, Times, Power and NonCommutativeMultiply to
make it easy to perform basic arithmetic operations and also extends some standard functions to coquaternion
objects. A summary of the functions included in the package is given in Table 1.

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 3

3 Coquaternionic Polynomials

In this section we describe a new collection of functions added to the Mathematica tool CoqPolynomial for
dealing with some polynomial problems in Hcoq. The first part of the section follows mainly [12].

Let Hcoq[x] denote the set of polynomials of the form

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0, ci ∈ Hcoq, (1)

i.e., the set of polynomials whose coefficients are only located on the left of the variable, with the addition
and multiplication of such polynomials defined as in the commutative case, where the variable is assumed to
commute with the coefficients. This is a ring, referred to as the ring of (left) one-sided or unilateral polynomials
in Hcoq, or simply the ring of coquaternionic polynomials. We usually omit the reference to the variable and
write simply P when referring to an element P (x) ∈ Hcoq[x], since all the polynomials considered in this work
are in the indeterminate x.

As usual, if cn 6= 0, we say that the degree of the polynomial P is n and refer to cn as the leading
coefficient of the polynomial. When cn = 1, we say that P is monic. If the coefficients ci in (1) are real, then
we say that P is a real polynomial. Given a polynomial P of the form (1), its conjugate polynomial is the
polynomial defined by

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0.

For a coquaternionic polynomial P , the evaluation map at a given element q ∈ Hcoq is defined by

P (q) = cnqn + cn−1qn−1 + · · ·+ c1q + c0.

If P (q) = 0, then we say that q is a zero (or a root) of P .
The evaluation map is not a homomorphism from the ring Hcoq[x] into Hcoq; given two polynomials

L,R ∈ Hcoq[x], in general, we do not have (LR)(q) = L(q)R(q).

Before we present some results on the structure of the sets of zeros of a coquaternionic polynomial, we
first recall the concept of quasi-similarity for coquaternions; see e.g. [8, 13] and references therein.

We say that two elements p, q ∈ Hcoq are quasi-similar if and only if Re p = Re q and det p = det q. This
is an equivalence relation in Hcoq;1 the class of an element q ∈ Hcoq with respect to this relation will be
denoted by JqK and referred to as the quasi-similarity class of q. Observe that

JqK = {x0 + x1i + x2j + x3k : x0 = q0 and x21 − x22 − x23 = det q}

can be identified with a hyperboloid in the hyperplane {(x0, x1, x2, x3) ∈ R4 : x0 = q0}: a hyperboloid of
two sheets if det q > 0, a hyperboloid of one sheet if det q < 0 and a degenerate hyperboloid, i.e. a cone, if
det q = 0.

Given a quasi-similarity class JqK = Jq0 + qK, we call characteristic polynomial of this class and denote by
ΨJqK, the second degree monic polynomial with real coefficients given by

ΨJqK(x) = x2 − 2q0 x+ det q.

It is important to observe that any second degree monic polynomial S with real coefficients is the characteristic
polynomial of a (uniquely defined) quasi-similarity class: if S has two roots α, α ∈ C \R, then S = ΨJqK, with
q = α, and if S has real roots r1 and r2 (with, eventually, r1 = r2), then S = ΨJqK, with q = r1+r2

2 + r1−r2
2 j.

We recall that in the Mathematica tool CoqPolynomial, introduced in [12], a coquaternionic polynomial
is an object of the form Polynomial[cn,cn−1,. . . ,c1,c0] accordingly to (1). For such objects, several rules and
functions are defined.

A function CharacteristicPolynomial for computing the characteristic polynomial of a (representative
of a given) class was recently added to CoqPolynomial. We illustrate its use with three simple examples.

In[1]:= <<CoqPolynomial̀

In[2]:= q1 = ToCoquaternion[1+2I]; ChP1 = CharacteristicPolynomial[q1]

1For a discussion on how this concept relates to another well-known equivalence in Hcoq, the similarity relation, see e.g. [8].

4 Mathematica Tools for Quaternionic Polynomials

Out[2]= Polynomial[1,−2, 5]

In[3]:= Solve[PolyForm[ChP1,x] == 0, x]

Out[3]= {{x→ 1− 2 i}, {x→ 1 + 2 i}}

In[4]:= q2 = ToCoquaternion[2]; ChP2 = CharacteristicPolynomial[q2]

Out[4]= Polynomial[1,−4, 4]

In[5]:= Solve[PolyForm[ChP2,x] == 0, x]

Out[5]= {{x→ 2}, {x→ 2}}

In[6]:= q3 = Coquaternion[2,0,-2,0]; ChP3 = CharacteristicPolynomial[q3]

Out[6]= Polynomial[1,−4, 0]

In[7]:= Solve[PolyForm[ChP3,x] == 0, x]

Out[7]= {{x→ 0}, {x→ 4}}

We now present very briefly some results on the zeros of coquaternionic polynomials; more details can be
seen in e.g. [13]. In what follows we restrict our attention to monic polynomials, i.e. to polynomials of the
form (1) with cn = 1.2

Given a polynomial P , we denote by Z(P) the zero-set of P , i.e. the set of all the zeros of P ; we also
define the companion polynomial of P , CP , as the polynomial given by

CP (x) = P (x)P (x).

As was shown in [13], if z ∈ Hcoq is a zero of P , then the characteristic polynomial of JzK is a divisor of
CP . When P is monic (or with a non-singular leading term), it can be shown easily that CP is a polynomial
of degree 2n with real coefficients and, as such, considered as a polynomial in C, has 2n roots. If these
roots are α1, α1, . . . , αm, αm ∈ C \ R and r1, r2, . . . , r` ∈ R, where ` = 2(n −m), (0 ≤ m ≤ n), then it
is easy to conclude that the second-degree monic polynomials with real coefficients which divide CP are the
characteristic polynomials of the following quasi-similarity classes:

JαkK; k = 1, . . . ,m, (2a)

JrijK; i = 1, . . . , `− 1, j = i+ 1, . . . , `, (2b)

with

rij =
ri + rj

2
+
ri − rj

2
j. (2c)

We thus have the following result concerning the zero-set of P :

Z(P) ⊆
⋃
k

JαkK
⋃
i,j

JrijK,

where JαkK and JrijK are the quasi-similarity classes defined by (2). We call the classes given by (2) the
admissible classes (with respect to the zeros) of the polynomial P .

Two new functions to determine, respectively, the companion polynomial and the admissible classes of a co-
quaternionic polynomial – CompanionPolynomial and AdmissibleClasses – are now part of CoqPolynomial.

In[8]:= P = Polynomial[1,Coquaternion[2,-1,2,-1],Coquaternion[1,1,4,1]]; CPP = CompanionPolynomial[P]

Out[8]= Polynomial[1, 4, 2,−12,−15]

In[9]:= Solve[PolyForm[CPP,x] == 0, x]

Out[9]=
{
{x→ −2− i}, {x→ −2 + i},

{
x→ −

√
3
}
,
{
x→

√
3
}}

2As far as the computation of zeros is concerned, considering this type of polynomials is equivalent to considering polynomials
whose leading term is invertible.

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 5

In[10]:= AdmissibleClasses[P]//TraditionalForm

Out[10]=
{
−2− i,

√
3 j
}

The results given in the following theorem show how to find the zeros of a polynomial P belonging to one
of its admissible classes.

Theorem 1 ([13, Theorem 3.14]). Let P (x) be a monic polynomial of the form (1) and let JqK = Jq0 + qK
be an admissible class of P (x). Also, let a + bx, with b = b0 + b1i + b2j + b3k, be the remainder of the right
division of P (x) by the characteristic polynomial of JqK.

1. If det b 6= 0, then JqK contains only one zero of P , given by

z = −b−1a.

2. If a = b = 0, then JqK ⊆ Z(P).

3. If b 6= 0,det b = 0 and the equation a + bx = 0 has a real solution γ0 satisfying

(q0 − γ0)2 = −det(q),

then the zeros of P in JqK form the following line in the hyperplane x0 = q0,

L =
{
q0 + αi + (k2α+ k1(q0 − γ0)) j + (−k1α+ k2(q0 − γ0)) k : α ∈ R

}
,

with k1 and k2 given by

k1 = −b0b2 + b1b3
b20 + b21

and k2 =
b1b2 − b0b3
b20 + b21

. (3)

4. If b 6= 0,det b = 0 and the equation a + bx = 0 has a non-real solution γ = γ0 + γ1i, then the class JqK
contains only one zero of P , given by

z =q0 + (β + γ1)i + (k2β + k1(q0 − γ0)) j + (−k1β + k2(q0 − γ0)) k,

where

β =
det(q) + (q0 − γ0)2 − γ21

2γ1

and k1 and k2 are given by (3).

5. If none of the above conditions holds, then there are no zeros of P in JqK.

In cases 1. and 4., we say that the zero z is an isolated zero of P ; in case 2., we say that the class JqK (or
any of its elements) is a hyperboloidal zero of P and in case 3. we call the line L (or any of its elements) a
linear zero of P .

With the understanding that all the zeros belonging to the same quasi-similarity class are counted as one
zero, we have the following result.

Theorem 2 ([13, Theorem 3.10]). A polynomial of degree n in Hcoq[x], has at most, n(2n− 1) zeros.

A function NumZeros indicating the number of zeros of each type that a given polynomial possesses is
now available in CoqPolynomial.

Example 1. The polynomials P and Q given by

P (x) = x4 − (j + k)x3 + (−8 + 4i− 2j− 5k)x2 + (9 + 4i + 7j + 10k)x

− (5 + 5i + 7j + k),

Q(x) = x5 + (2i− j− 4k)x4 + (2i− j− 4k)x3 + (−21 + 35i− 10j + 37k)x2

+ (−63 + 7i + 16j + 46k)x+ 6− 88i + 74j− 48k

6 Mathematica Tools for Quaternionic Polynomials

are examples of polynomials achieving the maximum number of zeros allowed by the respective degrees (28
for a polynomial of degree 4, and 45 for a polynomial of degree 5).

In[11]:= P=Polynomial[1,- Coquaternion[0,0,1,1],Coquaternion[-8,4,-2,-5]],Coquaternion[9,4,7,10],

- Coquaternion[5,5,7,1]];

NumZeros[P]

Out[11]= {28, 0, 0}

The output indicates that P has 28 isolated zeros, no linear zeros and no hyperboloidal zeros.

In[12]:= Q=Polynomial[1,Coquaternion[0,2,-1,-4],Coquaternion[-7,-8,13,5],Coquaternion[-21,35,-10,37],

Coquaternion[-63,7,16,46],Coquaternion[6,-88,74,-48]];

NumZeros[Q]

Out[12]= {45, 0, 0}

Example 2. The polynomial R(x) = x2 − (1 + j + k) illustrates an important difference between coquater-
nionic polynomials and complex (or quaternionic) polynomials: there exist polynomials with no zeros, i.e., the
Fundamental Theorem of Algebra is not valid in Hcoq[x].

In[13]:= R = Polynomial[1,0,-Coquaternion[1,0,1,1]];NumZeros[R]

Out[13]= {0, 0, 0}

A function to compute and classify the zeros of a coquaternion polynomial – Zeros – was recently added
to CoqPolynomial. This function implements an algorithm, proposed in [13], which makes use of formulas
(2) for the identification of the admissible classes, followed by the application of the results of Theorem 1 to
determine and classify the zeros in each class (if existing). We now present several examples of application
of this function. Note that the output of the function Zeros is a list composed of three lists, containing,
respectively, the isolated zeros, the linear zeros and (representatives of) the hyperboloidal zeros of the input
polynomial.

Example 3. We consider again the polynomials given in Example 1 and present some of their zeros.

In[14]:= {zIP, zLP, zHP} = Zeros[P];

(first4zP = Take[zIP,4])//TraditionalForm

Out[14]= {−2− 7i
8
− 15j

8
− k

2
,−1 + 6i

7
− 2j

7
+ 9k

7
,− 1

2
+ 5i

2
− 3j

2
+ 5k

2
,

− 1
2

+ 1
46

(163− 72
√

3)i− 3
46

(−13 + 8
√

3)j + 1
46

(−137 + 102
√

3)k}

In[15]:= Eval[P,first4zP]

Out[15]= {0, 0, 0, 0}

In[16]:= {zIQ, zLQ, zHQ} = Zeros[Q];

(first4zQ = Take[zIQ,4])//TraditionalForm

Out[16]=
{
− 5

2
− 157i

114
+ 113j

114
+ 41k

38
,− 3

2
+ 31i

13
− 73j

26
+ 3k

13
,−1 + 7i

9
− 11j

9
− k

3
,−1− 650i

159
+ 430j

159
+ 194k

53

}
In[17]:= Eval[Q,first4zQ]

Out[17]= {0, 0, 0, 0}

Example 4. The three quadratic polynomials

S(x) = x2 − (2 + 6i + 3j + 5k)x+ 9i + 4j + 8k,

T (x) = x2 − (2 + 2i + 2k)x+ 1 + 2i + 2k

and

U(x) = x2 − 2x+ 1

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 7

have the same companion polynomial, (x − 1)4, hence the same unique admissible class, J1K, but different
types of zeros: S has an isolated zero, T a linear zero and U a hyperboloidal zero.

In[18]:= S=Polynomial[1,-Coquaternion[2,6,3,5],Coquaternion[0,9,4,8]];

T=Polynomial[1,-Coquaternion[2,2,0,2],Coquaternion[1,2,0,2]];

U=Polynomial[1,-2,1];

In[19]:= Simplify[PolyForm[CompanionPolynomial[S],x]]

Out[19]= (−1 + x)4

In[20]:= AdmissibleClasses[S]//QSimplify

Out[20]= {1}

In[21]:= QSimplify[AdmissibleClasses[T]]=={1} && QSimplify[AdmissibleClasses[U]]=={1}

Out[21]= True

In[22]:= {zIS, zLS, zHS} = Zeros[S]

Out[22]= {{Coquaternion[1, 5, 3, 4]}, {}, {}}

In[23]:= {zIT, zLT, zHT} = Zeros[T]

Out[23]= {{}, {Coquaternion[1, c1, 0, c1]}, {}}

In[24]:= {zIU, zLU, zHU} = Zeros[U]

Out[24]= {{}, {}, {1}}

In[25]:= PolynomialZeroQ[S,zIS[[1]]]

Out[25]= True

In[26]:= PolynomialZeroQ[T,zLT[[1]]]

Out[26]= True

One can easily check that any element in the class J1K is, in fact, a zero of the polynomial U .

In[27]:= Assuming[Det[Coquaternion[1,C[1],C[2],C[3]]] == Det[ToCoquaternion[1],

PolynomialZeroQ[U,Coquaternion[1,C[1],C[2],C[3]]]]

Out[27]= True

Example 5. The five polynomials considered in this example are all polynomials of second degree and illustrate
the very different behaviors that (even simple) polynomials may have, in what concerns their zero-sets.

1. One linear zero

In[28]:= Zeros[Polynomial[1,Coquaternion[0,1,1,0],0]]//TraditionalForm

Out[28]= {{}, {ic1 + jc1} , {}}

2. Two isolated zeros and one linear zero

In[29]:= Zeros[Polynomial[1,Coquaternion[-2,1,1,0],Coquaternion[0,-2,-2,0]]]//TraditionalForm

Out[29]= {{−i− j, 2}, {1 + ic1 + jc1 − k} , {}}

3. Two linear zeros

In[30]:= Zeros[Polynomial[1,Coquaternion[0,0,2,0],Coquaternion[-1,0,-2,0]]]

Out[30]= {{}, {1 + ic1 − 2j− kc1, 1 + ic1 + kc1} , {}}

8 Mathematica Tools for Quaternionic Polynomials

4. Two isolated zeros and two linear zeros

In[31]:= Zeros[Polynomial[1, Coquaternion[-2,-1,1,1],Coquaternion[1,1,-1,-1]]]//TraditionalForm

Out[31]=
{
{1, 1 + i− j− k},

{
1
2

+ ic1 − j
2
− kc1,

3
2

+ ic1 − jc1 − k
2

}
, {}
}

5. Two isolated zeros and one hyperboloidal zero

In[32]:= Zeros[Polynomial[1,-3,2]]//TraditionalForm

Out[32]=
{
{1, 2}, {},

{
3
2

+ j
2

}}

The following theorem states a sufficient condition for the existence of linear zeros of a polynomial.

Theorem 3 ([13, Theorem 3.16]). Let P (x) be a polynomial of degree n whose companion polynomial has
m real simple zeros r1, r2, . . . , rm, m ≤ 2n, and let Pr(x) = P (x)(x− r) with r ∈ R, r 6= ri; i = 1, . . . ,m.
Then, Pr(x) has (at least) m linear zeros.

Example 6. We illustrate the result of the previous theorem with a simple example. Consider the polynomial
P (x) = x2 + (−1 + 3i− 2j + k)x− 2i− 2k. The companion polynomial of P has two simple real roots r1 = 0
and r2 = 2 (and two complex conjugate roots ±

√
2i). This polynomial has two isolated zeros:

In[33]:= Clear[P]; P=Polynomial[1,Coquaternion[-1,3,-2,2],Coquaternion[0,-2,0,-2]];

In[34]:= Solve[PolyForm[CompanionPolynomial[P],x] == 0]

Out[34]=
{
{x→ 0}, {x→ 2},

{
x→ −i

√
2
}
,
{
x→ i

√
2
}}

In[35]:= NumZeros[P]

Out[35]= {2, 0, 0}

Multiplying P by the factor (x − 1), we obtain a polynomial with two linear zeros (and three isolated
zeros):

In[36]:= Clear[P1]; P1=P**Polynomial[1,-1];

In[37]:= NumZeros[P1]

Out[37]= {3, 2, 0}

In[38]:= Zeros[P]//TraditionalForm

Out[38]= {−6i + 3j− 5k, 1− i + j− k}, {}, {}}

In[39]:= Zeros[P1]//TraditionalForm

Out[39]=
{
{−6i + 3j− 5k, 1, 1− i + j− k},

{
1
2

+ ic1 + j
2

+ kc1,
3
2

+ ic1 − jc1 − k
2

}
, {}
}

A list of functions related to CoqPolynomial is presented in Table 2.

Observation: For all the polynomials considered in the previous examples, it was possible to compute the
roots of the corresponding companion polynomial exactly, and hence, to obtain the zeros with infinite precision.
In general, however, even for a polynomial P of moderate degree n, the zeros of CP (which is a polynomial
of degree 2n), may only be obtained by using a numerical method. Since the classification and determination
of the zeros of the polynomial depend critically on knowing of whether or not certain quantities are zero and
also on the existence or not of a real or complex solution of a linear system, having approximate values for the
representatives for the admissible classes may lead, in some cases, to a miss-classification and inappropriate
determination of zeros and some care has to be taken. Ways to circumvent these problems require further
investigation.

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 9

Table 2: Some functions of CoqPolynomial
Function Description
AdmissibleClasses[P] gives the admissible classes of the polynomial P
CharacteristicPolynomial[q] gives the characteristic polynomial of (the class) of the

coquaternion q

CompanionPolynomial[P] gives the companion polynomial of the polynomial P
Conjugate[P] gives the conjugate of the polynomial P
Eval[P,q] computes P(q)

NumZeros[P] gives the number of each type of zeros of the polynomial P
PolyForm[P,x] gives the standard representation of the real polynomial P in

the variable x

Polynomial[cn,cn−1,...,c1,c0] represents the polynomial cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0
PolynomialZeroQ[P,q] gives True if q is a zero of P and False otherwise
PSimplify[P] gives the polynomial P with simplified coefficients
Zeros[P] gives the zeros of the polynomial P

4 The nth roots of a coquaternion

The nth roots of a coquaternion q can be obtained by solving the equation xn − q = 0, through the use of
the algorithm described in the previous section. However, as already pointed out, this may involve a numerical
method for finding the zeros of a 2nth degree real polynomial. In order to avoid this issue and have explicit
exact solutions to the problem, one can use the polar form of a non-real coquaternion q together with a De
Moivre’s formula. When q ∈ R the technique described in Section 3 allows to obtain exact solutions.

This approach was used in [11], where the authors gave a complete characterization of the nth roots
(n ≥ 2) of a coquaternion, extending the results of [20].

We recall that a coquaternion q is called space-like, light-like or time-like if det q < 0, det q = 0 or
det q > 0, respectively; the sets of such coquaternions is denoted by S, L and T, respectively. When two
coquaternions belong to the same set S, L or T, we say that they have the same nature. We also adopt the
notations

TS = {q ∈ T : q ∈ S}, TL = {q ∈ T : q ∈ L}, TT = {q ∈ T : q ∈ T},

LS = {q ∈ L : q ∈ S}, LL = {q ∈ L : q ∈ L}.

We observe that since det q ≥ det q, if q is space-like, q is of the same nature and a light-like coquater-
nion can not have a time-like vector part. The function Nature to classify coquaternions is included in
Coquaternions (see [12] for more details).

Any coquaternion q = q0 + q1i + q2j + q3k ∈ S ∪ T, such that q /∈ L, has a polar representation in one of
the forms

q =


‖q‖
(

sinhφq + ωq coshφq
)
, if q ∈ S,

‖q‖
(

sgn q0 coshψq + ωq sinhψq

)
, if q ∈ TS,

‖q‖
(

cos θq + ωq sin θq
)
, if q ∈ TT,

(4a)

where sgn is the usual sign function,

sinhφq =
q0
‖q‖

, sinhψq =
‖q‖
‖q‖

, cos θq =
q0
‖q‖

, sin θq =
‖q‖
‖q‖

, θq ∈ (0, π) (4b)

and

ωq =
q

‖q‖
(4c)

is a unit coquaternion satisfying ω2
q = 1, if q ∈ S and ω2

q = −1, if q ∈ T.

10 Mathematica Tools for Quaternionic Polynomials

We recall that the polar form (4) is implemented in Coquaternions through the use of the function
PolarForm[q] which gives a list of one of the forms

{nat→ Spacelike, r → ‖q‖, ϕ→ φq, ω → ωq},
{nat→ TimeSpacelike, r → ‖q‖, ϕ→ ψq, ω → ωq, sgn→ sgn q0},
{nat→ TimeTimelike, r → ‖q‖, ϕ→ θq, ω → ωq},

according to (4a)-(4c). The function FromPolarForm reads a list of one of the above forms and gives the
corresponding coquaternion. For more details on the use of these functions we refer to the work [12].

In what follows, we use ζk and ηk to denote the complex nth (n ≥ 2) roots of 1 and −1, respectively, i.e.,

ζk = cos 2kπ
n + i sin 2kπ

n ; k = 0, 1, 2 . . . , n− 1

and
ηk = cos (2k+1)π

n + i sin (2k+1)π
n ; k = 0, 1, 2 . . . , n− 1.

The nth roots of a coquaternion q depend on the nature of q, on the parity of n and (eventually) on the
sign of the real part of q. Since these roots are the zeros of the equation xn = q and linear zeros never occur
in the case of polynomials of this form, the roots of a coquaternion q are either isolated or hyperboloidal.

The new function RootsN[q] implements the algorithm described in [11, Theorems 3.1, 3.2, 4.3] for
obtaining the nth roots of the coquaternion q. The output is a list with two lists: the first one contains the
isolated roots, while the second one contains representatives of the hyperboloidal roots (compare with the
function Zeros described in Section 3). To offer a glimpse of the diversity of roots that a coquaternion may
have, we now present several examples.

Example 7. The coquaternion q = 1 + i + j + k has a positive real part and is in LS. Therefore its nth roots
are in LS and the number of roots depends on the parity of n.

In[40]:= Nature2[q Coquaternion]:=Nature/@{q,Vec[q]};
SetAttributes[Nature2,Listable];

In[41]:= q=Coquaternion[1,1,1,1];Nature2[q]

Out[41]= {Lightlike, Spacelike}

In[42]:= ({iroots,hroots}=RootsN[q,2])//TraditionalForm

Out[42]=
{{
− 1√

2
− i√

2
− j√

2
− k√

2
, 1√

2
+ i√

2
+ j√

2
+ k√

2

}
, {}
}

In[43]:= Union[iroots∧2]=={q}

Out[43]= True

In[44]:= Nature2[iroots]

Out[44]= {{Lightlike, Spacelike} , {Lightlike, Spacelike}}

In[45]:= ({iroots,hroots}=RootsN[q,3])//TraditionalForm

Out[45]=
{{

1
22/3

+ i

22/3
+ j

22/3
+ k

22/3

}
, {}
}

In[46]:= Nature2[iroots]

Out[46]= {{Lightlike, Spacelike}}

Example 8. The coquaternion q = 3 + 2j has a positive real part and is in TS. The number and nature of
the nth roots of q depend on the parity of n.

In[47]:= q=Coquaternion[3,0,2,0];PolarForm[q]

Out[47]=
{
nat→ Timelike-Spacelike, r →

√
5, ψ → ArcSinh

[
2√
5

]
, ω → Coquaternion[0, 0, 1, 0], sgn→ 1

}
In[48]:= ({iroots,hroots}=RootsN[q,2])//TraditionalForm

Out[48]=
{{

1
2

(1 +
√

5) + 1
2

(−1 +
√

5)j, 1
2

(−1−
√

5) + 1
2

(1−
√

5)j,

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 11

1
2

(−1 +
√

5) + 1
2

(1 +
√

5)j, 1
2

(1−
√

5) + 1
2

(−1−
√

5)j
}
, {}
}

In[49]:= Tally[Nature2[iroots]

Out[49]= {{{Timelike, Spacelike}, 2} , {{Spacelike, Spacelike}, 2}}

In[50]:= Select[iroots,Nature2[#]=={Timelike,Spacelike}&]

Out[50]=
{

1
2

(1 +
√

5) + 1
2

(−1 +
√

5)j, 1
2

(−1−
√

5) + 1
2

(1−
√

5)j
}

Example 9. The nth roots of a non-real coquaternion q are all isolated. When q ∈ R the situation is quite
different. Here one can also find hyperboloidal roots. We compute now some of the roots of 1 and −1.

In[51]:= roots=Table[RootsN[ToCoquaternion[1],k],{k,2,10}];

In[52]:= Map[Length,roots,{2}]

Out[52]= {{2, 1}, {1, 1}, {2, 2}, {1, 2}, {2, 3}, {1, 3}, {2, 4}, {1, 4}, {2, 5}}

In[53]:= TableForm[

Transpose@Prepend[Transpose@Take[roots,5],Range[2,6]]//

TraditionalForm,TableDepth→2, TableHeadings→

{None,{"n","Isolated roots","Hyperboloidal roots"}}]

Out[53]/TableForm=

n Isolated roots Hyperboloidal roots

2 {−1, 1} {j}
3 {1}

{
− 1

2
+

√
3i
2

}
4 {−1, 1} {j, i}

5 {1}
{
− 1

4
+

√
5

4
+

√
5
8

+
√

5
8
i,− 1

4
−

√
5

4
+

√
5
8
−

√
5

8
i

}
6 {−1, 1}

{
− 1

2
+

√
3i
2
, j, 1

2
+

√
3i
2

}
In[54]:= roots=Table[RootsN[ToCoquaternion[-1],k],{k,2,10}];

In[55]:= Map[Length,roots,{2}]

Out[55]= {{0, 1}, {1, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {0, 4}, {1, 4}, {0, 5}}

In[56]:= TableForm[

Transpose@Prepend[Transpose@Take[roots,5],Range[2,6]]//

TraditionalForm,TableDepth→2,TableHeadings→

{None,{"n","Isolated roots","Hyperboloidal roots"}}]

Out[56]/TableForm=

n Isolated roots Hyperboloidal roots

2 {} {i}
3 {−1}

{
1
2

+
√
3i
2

}
4 {}

{
1√
2

+ i√
2
,− 1√

2
+ i√

2

}
5 {−1}

{
1
4

+
√
5

4
+

√
5
8
−

√
5
8
i, 1

4
−

√
5

4
+

√
5
8

+
√

5
8
i

}
6 {}

{√
3
2

+ i
2
, i,−

√
3

2
+ i

2

}
Table 3 contains a description of the functions related to the computation of the roots of a coquaternion.

5 Conclusions

This work presents a collection of Mathematica tools – CoqPolynomial – complementing the package –
Coquaternions – introduced in [12]. CoqPolynomial contains several functions to manipulate coquaternionic
polynomials, including the function Zeros for polynomial rootfinding. These packages are fundamental tools
supporting the recent interests of the authors in the area and should be considered as work in progress; their
current versions are available at the web-page http://w3.math.uminho.pt/Coquaternions.

http://w3.math.uminho.pt/Coquaternions

12 Mathematica Tools for Quaternionic Polynomials

Table 3: Functions associated with roots of a coquaternion

Function Description
FromPolarForm[l] gives the coquaternion whose “polar coordinates” are l

LightlikeQ[q] gives True if q is light-like and False otherwise
Nature[q] classifies q as space-like, light-like or time-like
PolarForm[q] gives the polar form of q (in case of existence)
RootsN[q,n] gives the nth roots of q
SpacelikeQ[q] gives True if q is space-like and False otherwise
TimelikeQ[q] gives True if q is time-like and False otherwise

References

[1] Ab lamowicz, R., “Computations with Clifford and Graßmann algebras”, Adv. Appl. Clifford Algebr., Vol.
19(3-4), pp. 499–545, 2009

[2] Ab lamowicz, R., Fauser, B., “Mathematics of Clifford – a Maple package for Clifford and Graßmann
algebras”, Adv. Appl. Clifford Algebr., Vol. 15(2), pp. 157–181, 2005

[3] Brody, D.C., E.M. Graefe, “On complexified mechanics and coquaternions”, J. Phys. A: Math. Theory,
Vol. 44, pp. 1–9, 2011

[4] Cockle, J. “On systems of algebra involving more than one imaginary; and on equations of the fifth
degree”, Philos. Mag., Vol. 35(3), pp. 434–437, 1849

[5] Falcão, M.I., Miranda, F., “Quaternions: A Mathematica Package for Quaternionic Analysis,” Lecture
Notes in Comput. Sci., Vol. 6784, pp. 200–214, 2011

[6] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Basins of attraction for a quadratic coquaternionic
map”, Chaos, Solitons & Fractals, Vol. 104, pp. 716–724, 2017

[7] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Iteration of quadratic maps on coquaternions”,
Int. J. Bifurcation and Chaos, Vol. 27(12):1730039, 2017

[8] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Polynomials over quaternions and coquaternions:
a unified approach”, Lecture Notes in Comput. Sci., Vol. 10405, pp. 379–393, 2017

[9] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Computational aspects of quaternionic polyno-
mials - Part I :: Manipulating, evaluating and factoring”, The Mathematica Journal, Vol. 20(4), 2018.
https://doi.org/10.3888/tmj.20-4

[10] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Computational aspects of quaternionic
polynomials - Part II :: Root-finding methods”, The Mathematica Journal, Vol. 20(5), 2018.
https://doi.org/10.3888/tmj.20-5

[11] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “On the roots of coquaternions”, Adv. Appl.
Clifford Algebr., Vol. 28:97, 2018

[12] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “Symbolic Computations Over the Algebra of
Coquaternions”, 4th International Conference on Numerical and Symbolic Computation: Developments
and Applications – SYMCOMP 2019 Proceedings, pp. 141–155, 2019

[13] Falcão, M.I., Miranda, F., Severino, R., Soares, M.J., “The number of zeros of unilateral polynomials
over coquaternions revisited”, Linear & Multilinear Algebra, Vol. 67(6), pp. 1231–1249, 2019

[14] Gao, C., Chen, X., Shen, Y.-G., “Quintessence and phantom emerging from the split-complex field and
the split-quaternion field”, Gen. Relativ. Gravit., Vol. 48:11, 2016

https://doi.org/10.3888/tmj.20-4
https://doi.org/10.3888/tmj.20-5

M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 13

[15] Hamilton, W.R. “On a new species of imaginary quantities connected with a theory of quaternions”,
Proc. R. Ir. Acad, Vol. 2, pp. 424–434, Nov. 13, 1843

[16] Kula, L., Yayli, Y., “Split quaternions and rotations in semi Euclidean space E4
2”, J. Korean Math. Soc.,

Vol. 44, pp. 1313–1327, 2007

[17] Malonek, H.R., “Quaternions in applied sciences. A historical perspective of a mathematical concept”,
17th Inter. Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engi-
neering, Weimar, 2003

[18] Özdemir, M., Ergin, A., “Some geometric applications of timelike quaternions”, Proc. 16th Int. Conf.
Jangjeon Math. Soc., Vol. 16, pp. 108–115, 2005

[19] Özdemir, M., Ergin, A., “Rotations with unit timelike quaternions in Minkowski 3-space”, J. Geometry
Phys., Vol. 56(2), pp. 322–336, 2006

[20] Özdemir, M., “The roots of a split quaternion”, Appl. Math. Letters, Vol. 22, pp. 258–263, 2009

[21] Sangwine, J., Le Bihan, N., “Quaternion Toolbox for Matlab”, 2005. http://qtfm.sourceforge.net

http://qtfm.sourceforge.net

	Introduction
	The Package Coquaternions revisited
	Coquaternionic Polynomials
	The nth roots of a coquaternion
	Conclusions

