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RESUMO 

 A escassez de água é atualmente uma grande preocupação. A reutilização de águas 

residuais tratadas, seja por descarga em ambientes hídricos (por exemplo, rios) ou pela 

utilização em irrigação, é apontada como umas das principais soluções. No entanto, é 

importante monitorizar o possível impacto desta reutilização, sobretudo ao nível da 

disseminação de contaminantes emergentes como as bactérias resistentes a antibióticos 

(ARB) e os seus genes de resistência a antibióticos (ARGs). Este estudo teve como objetivo 

determinar e comparar os resistomas de diferentes amostras de água (afluente, lamas 

ativadas, efluente e água doce), com base em metagenomas de diferentes geografias, de 

bases de dados públicas. O objetivo final foi identificar padrões e caraterísticas distintas entre 

amostras. Estes permitirão identificar ARGs como possíveis biomarcadores para monitorizar a 

contaminação de ambientes aquáticos com agentes biológicos de origem antropogénica. 

 No total, 139 metagenomas (30 afluente, 30 lamas ativadas, 21 efluente, 58 de água 

doce) de 24 países foram analisados, usando métodos baseados em assembly e em reads. Os 

resultados mostraram que diferentes tipos de água partilham um grande número de ARGs. 

Uma nova abordagem foi usada para combinar a anotação de duas das bases de dados de 

ARGs mais abrangentes (CARD e ResFinder), superando a dificuldade que é lidar com 

anotações distintas provenientes de bases de dados diferentes. Esta abordagem permitiu 

determinar o resistoma core dos diferentes tipos de água, com o objetivo de obter genes 

biomarcadores para rastrear a contaminação em termos de resistência a antibióticos 

provocado pela descarga de águas residuais em ambientes recetores, como água doce. No 

final foram obtidos 60 possíveis biomarcadores, para os quais foram desenhadas sequências 

consenso que poderão ser usadas, por exemplo, para o desenho de primers. 

 Além disso, 7 modelos de deep learning foram desenvolvidos para classificar a 

transferibilidade de ARGs (genes adquiridos versus intrínsecos), dada a falta de informação 

sobre transferibilidade. Esta distinção é muito importante quer na monitorização quer na 

predição do risco, visto que os ARGs adquiridos são mais propensos à disseminação entre 

bactérias. O modelo de Redes Neurais Convolucionais superou os restantes com destaque 

(MCC de 0.881 e ROC-AUC de 0.906), o que é considerado um desempenho consistente. 

Palavras-chave: biomarcador; deep learning; resistência a antibióticos; resistoma. 
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ABSTRACT 

 Water scarcity is a major concern nowadays. The reuse of treated wastewater, by 

discharging in surface water bodies (e.g. rivers) or by utilization for irrigation, is pointed as one 

of the main solutions. However, it is important to monitor the possible impact this reuse, 

namely in terms of dissemination of contaminants of emerging concern such as antibiotic 

resistant bacteria (ARB) and their antibiotic resistance genes (ARGs). This study aimed to 

determine and compare the resistomes (set of genes associated with antibiotic resistance) of 

different water samples (urban wastewater influent, sewage sludge, final effluent and 

freshwater), based on metagenomes collected worldwide and available in public databases. 

The final goal was to identify overlaps and distinctive features among those compartments. 

This approach will permit the identification of ARGs to be used as possible biomarkers  to 

monitor the contamination of aquatic environments with these biological contaminants of 

anthropogenic origin.  

 A total of 139 metagenomes (30 influent, 30 sludge, 21 effluent, 58 freshwater) from 

24 countries were analysed, using assembled-based and reads-based methods. The results 

shown that different water types share a large number of ARGs. A new approach was used to 

combine the annotation of two of the most comprehensive ARGs databases (CARD and 

ResFinder), surpassing the difficulty that is to deal with different annotations coming from 

different databases. This approach allowed to determine the core resistomes, aiming to obtain 

biomarker genes to trace antibiotic resistance contamination from wastewater in receiving 

environments, such as freshwater. At the end 60 putative biomarkers were obtained, for 

which were designed consensus sequences that can be used, for example, to design primers 

for the genes monitoring. 

 Additionally, 7 deep learning models were developed and compared for classifying 

ARGs transferability (acquired versus intrinsic genes), motivated by the lack of information 

regarding transferability. This distinction may be very important in the monitoring and 

prediction of risk, since  acquired ARGs are more prone to spread among bacteria. After 

validation, a Convolutional Neural Networks model outperformed the remaining with a 0.881 

MCC and a 0.906 ROC-AUC, which is considered very consistent performance. 

Keywords: antibiotic resistance;  biomarker; deep learning; resistome. 
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1. Introduction 

 

1.1. Context/Motivation 

 

 Antibiotic resistance (AR) showcases threatening follow-ups to human and wildlife 

health, resulting in an urge to minimize and control the risks of exposure to antibiotic resistant 

bacteria and genes (ARB & ARGs) [1]. Upon the introduction of antibiotics intake, their abusive 

consumption for human, veterinary, and agricultural purposes over the past years led to its 

ongoing release into the surrounding ecosystems, facilitating the appearance of antibiotic 

resistance. The increasing load and diversity of ARB & ARGs in aquatic environments, with an 

emphasis on wastewater [2], points to wastewater treatment plants (WWTP) as focal hotspots 

for their dissemination [3].  

 Over the past years, clinical settings have been prioritized over environmental 

resistance dissemination [4]. Due to the lack of information on resistance spread in the 

environment, transmission patterns need to be determined, resorting to a statistical 

characterization of the core resistome (here defined as a set of ARGs that are characteristic of 

a particular type of environment). The metagenomics of the urban wastewater and 

freshwater, as well as the human gut microbiota, need to be characterized and analyzed 

following detailed methods [5] while emphasizing the One-Health approach.  

 Although water treatment processes are thought to remove ARGs effectively, WWTPs 

are also considered major reservoirs of antibiotic resistance [6]. In this work, the resistomes 

of the wastewater influent, sewage sludge, and final effluent will be determined and 

compared with the freshwater resistome. This comparison will show if WWTPs act as crucial 

firewalls for the One-Health compartments or as focal points of resistance dissemination to 

the environment. 

  Furthermore, a dataset consisting of multiple sources of metagenomic AR 

environments was constructed where deep learning algorithms was applied to classify ARGs 

transferability. 
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1.2. Objectives 

 

 This project aimed to develop an efficient framework to evaluate the presence of ARGs 

in wastewater and freshwater through core resistome analysis from metagenomic datasets, 

and further comparison with the human gut microbiota resistome. More precisely, the specific 

objectives of this work were the following: 

• Identification of the freshwater background resistome; 

• Identification of the wastewater core resistome, aiming to identify possible signatures of 

wastewater contamination; 

• Obtain biomarker genes for tracking and monitoring AR contamination; 

• Use Deep learning methods to classify the potential for transferability of ARGs – intrinsic or 

acquired.  

 To reach those objectives the following tasks were developed: 

• Construction of a metagenomic wastewater and freshwater dataset with an extensive 

geographic reach, including influent, sludge, and effluent samples; 

• Identification of the ARGs present in the metagenomes, through the search in ARGs 

databases, namely, ResFinder and CARD; 

• Identification of the core resistomes (for wastewater influent, sludge, effluent, and 

freshwater) through statistical differential analysis and network evaluation; 

• Construction of an ARG annotation database and a querying system for core resistome 

characterization; 

• Obtain an ARGs nucleotide dataset to build a deep learning-based model and validate the 

classification model. 
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1.3. Thesis Structure 

 

 This thesis is grounded on a summary introduction to the topic and the definition of 

the objectives that motivated the development of this work, with the respective list of tasks 

developed. Chapter 2 presents an analysis of the state-of-the-art with particular attention to 

antibiotic resistance, wastewater treatment plants as important antibiotic resistance 

hotspots, bioinformatic tools available for resistome analysis and a brief description of 

machine learning and deep learning algorithms aiming towards the development of a deep 

learning model for classification of ARGs transferability. The same chapter further spans to 

identify the main persisting questions, current solutions, and critical problems. The remaining 

chapters target the development of the followed methodology, the obtained results and 

discussion, closing with the final remarks and future works. 
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2. State of the art 

 

2.1. Antibiotic Resistance 

 

 Antibiotics are chemicals that affect metabolic pathways, inhibiting growth or 

eliminating microorganisms [7]. Considering the chemical structure of antibiotics, these can 

be divided into seven major groups, namely: macrolides, β-lactams, tetracyclines, quinolones 

and fluoroquinolones, sulfonamides, phenicols, and aminoglycosides [8]. With the discovery 

of penicillin in 1928 and until the 1950s, antibiotic discovery thrived. However, the recent 

gradual decline in antibiotic discovery and the evolution of antibiotic resistance as led to the 

present antimicrobial resistance crisis [9]. A resistance event happens when a bacterial strain 

shows tolerance to a higher minimal inhibitory concentration than the subsequent parental 

wild-type strain [10]. Therefore, when a resistance gene or resistance factor is present, it 

allows bacteria to tolerate higher antibiotic concentrations or, under the same ground, its 

absence increases susceptibility to an antibiotic [11]. There are four main mechanisms of 

microbial resistance (Figure 1): 1) antibiotic removal from the bacteria through an efflux 

pump; 2) creation of an alternative metabolic pathway acting similarly to the suppressed path 

or restraining the need for the metabolites produced in the inhibited pathway; 3) modification 

of the antibiotic target, and 4) enzymatic inactivation of the antibiotic [12]. AR is presented as 

one of the most significant hazards for human health, challenging health care treatment of 

threatening infections [14]. Recent impact assessments (2017) indicate that ARB are 

accountable for at least 23 000 deaths per year in the U.S. and nearly 25 000 deaths per year 

in Europe. The position of underdeveloped regions is pointed to be even worse [15]. It is 

expected that antimicrobial-resistant infections will kill globally as nearly as 700 000 people 

per year within 30 years and that the number of resistant infections will reach an estimate of 

10 000 000  deaths each year, surpassing cancer death tolls [16]. Past studies, considering 71 

countries, also report that there has been an increase in the usage of antibiotic drugs, from 

54.1 billion standard units in 2000 to 73.6 billion standard units in 2010, translating into a total 

of 35% global increase [17]. Although antibiotics provide effective therapies against several 

types of infections, their abusive usage results in the spread of antibiotics and AR in the 
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environment [18]. There is still a significant lack of knowledge about the circumstances that 

motivate resistance development in the environment, which challenges control efforts to 

mitigate mobile resistance [19]. In response to emerging ARB, which could mean a step back 

into a pre-antibiotic era [20], surveillance programs have been developed for mitigating the 

spread of ARGs [21]. Consequently, based on the aforementioned and other reasons, the 

World Health Organization has considered AR a global public health crisis in the 21st century, 

among the biggest threats to human health [22]. 

 

Figure 1. Antibiotic targets and examples of resistance mechanisms for selected antibiotics (adapted from [13]). 

 One-Health is defined as a concept that motivates worldwide collaboration, gathering 

efforts to achieve sustainable well-being between human, environment, and animal health 

[23]. To face AR, and according to the One-Health concept, surveillance and control measures 

need to be implemented in human, natural, and animal environments, based on the 

assumption that AR is spreading throughout these main compartments [24]. This underlines 

the need to prioritize research efforts to cope with AR, as many human lives, general well-

being, and economic breakdown prevention depend on this matter of concern [25]. 
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2.2. Dissemination of Antibiotic Resistance 

 

 A bacterial host can acquire AR via three distinct routes: vertical gene transfer (VGT), 

de novo mutation, and horizontal gene transfer (HGT) [26]. Acquired AR translates into the 

ability of a bacteria to inhibit antibiotic activity, whilst similar or phylogenetically related 

bacteria are usually susceptible [27]. On the other hand, intrinsic AR is observed in mostly all 

bacteria of the same genera, being disseminated via VGT. It can be due to morphological traits 

or the presence of a distinct set of genes in a particular taxon [28]. ARGs usually have minimal 

effect on the bacteria overall fitness, as the presence of an antibiotic commonly induces their 

expression and therefore lowers the fitness cost of keeping the ARG [29].  

 Resistance attributes are extensively distributed throughout the microbiota 

community and can be disseminated by more than one well-known gene transfer mechanism 

in a wide range of pathogens and commensals [30]. New AR factors could potentially appear 

anywhere, on any occasion, due to an immense phylogenetic variability, which prompts 

opportunities for novel mutations, rearrangements, and HGT [31]. HGT is one of the most 

common mechanisms for novel and known ARGs spread, with the ability to promote the 

dissemination of AR between different bacterial communities [32], frequently beyond their 

boundaries [33]; additionally, this process is usually stimulated by stressors, often antibiotics 

[34]. Although HGT is more prone to occur among phylogenetically related bacteria [35], HGT 

from different environmental bacteria to pathogenic bacteria can occur if these share the 

same habitat [36]. There are four main identified pathways through which bacteria transfer 

ARGs horizontally, including conjugation, transformation, transduction, and vesiduction [37] 

[38]. Conjugation is pointed to as the most common pathway considering the remaining ones 

for HGT [39]. The ARGs are transferred through cell-to-cell contact via mobile genetic 

elements from a donor bacterium to a recipient bacterium. This process is also reported to 

happen between phylogenetically distant bacteria [40]. Differently from other pathways of 

HGT, transformation does not require viable donor cells [41], as it occurs through the uptake 

and integration of extracellular plasmid or chromosomal DNA by a recipient cell [42]. Thus, 

transformation enables ARG dissemination between different genera of bacteria [43]. 

Transduction is related to ARGs loaded bacteriophages, resulting in the spread of AR to an 

infected receiving bacterium [44]. Vesiduction occurs from membrane vesicles secreted from 
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a donor cell that carry ARG-containing DNA and fuse with the membrane of a receiver cell 

[45].  

 ARGs can be exchanged from environmental reservoirs to human pathogens in a 

complex process. The initial mobilisation is usually followed by more than one dissemination 

and adaptation stage, ARGs neighbouring sequences have been found to encode mobilisation 

elements (transposases and integrases), which are involved in the gene transfer process 

between bacterial genomes [46]. The initial mobilisation is often facilitated by mobile genetic 

elements (MGEs) [47], these can capture ARGs from chromosomes and horizontally transfer 

them through a plasmid or bacteriophage to another bacteria [48]. The ongoing acquisition of 

ARGs by human pathogens urges the development of new methodologies to predict the 

dissemination of ARGs, and such attempts have struggled to succeed due to the great number 

of ARGs held in environmental and artificial reservoirs [49].  

 

2.3. Antibiotic resistance in the environment 

 

 As described in the previous section, ARB can occur by mutations in the pre-existing 

bacterial genome or by the uptake of environmental DNA [50]. Although external 

environments are less contributive to mutation-based AR, the uptake of novel resistance is 

supported by precursor environments which provide an unmatched ecological niche with a 

substantial gene pool [51]. Along with antibiotic release facilitating HGT of ARGs, the presence 

of contaminants, such as heavy metals, plays a crucial role as it also induces selective pressure, 

affecting microbial communities promoting HGT [52]. Abiotic factors (e.g. pH, temperature, 

and nutrient abundance) also condition the spread of ARGs in the environment as they cause 

selective pressure and variability in bacterial communities [53]. Concerns over human health 

motivated by contaminated antibiotic environments are driven by antibiotic residues in the 

environment, which could result in its ingestion, altering the human microbiome, endorsing 

human gut resistant bacteria [54], and the occurrence of naturally developed resistance 

hotspots as a result of induced selective pressure [55]. The impact assessment of residual 

antibiotics in the environment shows its influence on reproduction, metabolism, changes in 
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the population structure, and ecological function of the ecosystem, including biomass and 

biodiversity [56]. 

 The most significant proportion of released antibiotics is addressed to intake of 

antibiotics. Therefore, its excretion and release levels into the environment are limited by the 

seasonality of antibiotic usage, the doses used, and the processing metabolism (human or 

animal) [50]. Resistance dissemination between different environments has been stimulated 

by abusive antibiotic usage and its consequent release into the environment through 

anthropogenic activities [57]. A large number of intake antibiotics are excreted in their 

biologically active form [58], these are found in urine and faeces from both humans and 

animals, being released into complex environments such as soil and water [59] – hospital 

wastewater, wastewater treatment plants, sediments, animal manure, and agricultural soils 

are considered main precursors in AR spread as they act as natural containers for antibiotics, 

microbial communities, ARGs, and MGEs (Figure 2) [60].  

 

Figure 2. Potential routes of creation of antibiotic residues in the environment and transmission to and from the 
environment of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes (adapted from [61]). 

 As described, ARB and their ARGs are being found in multiple and new contaminated 

environments [62]. There is a significant predominance of ARGs in soil. The primary sources 

are agricultural antibiotics found in manure from livestock and general wastewater (urban, 

hospital, aquaculture, and agricultural) [63]. Soil ARGs motivate the transmission of ARGs 

across the food chain, as microbial activities in soil, rhizosphere, and phyllosphere link the soil, 

microorganism, and plant to form an adjacent ecosystem crucial to the human food chain [64]- 

The accumulation of ARGs in plants is often associated with the application of manure as 
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fertilizer and irrigation with water containing antibiotics [65], the ecological and 

environmental effects of antibiotics show that some may affect plant growth and 

development [66]. At the same time, it has been recognized that livestock and its derivatives 

promote ARGs spread to humans, as most antibiotic applications are for agricultural use, 

encouraging ARGs appearance in the animal gut and faeces [63].  AR contaminants in soil can 

be transferred to water receiving environments and vice versa [67]. ARGs in water bodies are 

found in urban water systems as they hold human-associated ARGs, animal sources point 

mainly to livestock storage ponds and swine treatment lagoons [63]. Nowadays, besides 

freshwater and wastewater, contamination through AR factors also reaches main saltwater 

environments [68].  

 The routes and patterns for the transmission of AR to humans are still very unclear. 

The current state of the art indicates that a complex combination of variables is responsible 

for the transmission risks associated with humans. These include environmental 

compartments, ubiquitous bacteria, and human bacteria interaction [69]. Furthermore, few 

data is available regarding sources and mechanisms of ARGs transfer in clinical settings, 

although numerous cases of ARG detection on hospital surfaces and in patients were 

described [16]. The transmission of environmental ARGs to humans is believed to be carried 

through by pathogenic ARB or human commensal ARB, which can colonize and proliferate in 

the human gut. Additionally, pathogenic ARB can cause infectious disease, and commensal 

ARB are thought to be capable of transferring ARGs to other commensals in human microbiota 

[70]. Antibiotic residues pose a real potential threat to human health, and, in addition to 

promoting bacterial resistance, these include direct side effects causing distress in the human 

microbiome and triggering health problems, such as psoriasis, colitis, cardiovascular 

problems, asthma, diabetes, obesity, and colorectal carcinoma [54]. 

 

2.4. Wastewater Treatment Plants 

 

 Antibiotic residues have been detected in various environments, such as wastewater 

treatment plants (WWTP), livestock farms, rivers, wastewater irrigated soils, groundwater, 

surface water, seawater, drinking water, water purification plants, landfills, and sediments [8], 
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[71]. Water, accordingly to the One-Health context, is an environmental compartment that is 

pointed to as the main link between human, animal, and natural environments, as it is an 

unrestrained route that conditions the transport and flux of abiotic factors offering bacteria a 

core habitat with high AR propagation potential [25]. The water environment represents a 

major microbial niche and is associated with the origin of resistance genes. It is also mentioned 

as an amplifier and reservoir of AR factors, acting as a container and enhancing the interaction 

of ARGs between different bacteria [72].  

 In the urban water cycle, wastewater is described as liquid discharge from human 

households. WWTPs are considered terminals of complex sewer systems where sewage is 

treated and the main pollutants are removed before returning to the environment. The result 

is an effective firewall for the One-Health compartments [73]. 

 WWTPs are the main focal points for disseminating AR since most antibiotics used by 

human and veterinary medicine are excreted in partially metabolized forms, entering sewer 

networks, and reaching into WWTPs [74]. Antibiotics from pharmaceutical industries could 

also be conveyed in sewage systems to WWTPs. They tend to resist biodegradation and the 

wastewater treatment processes are not optimized for their removal. The presence of 

antibiotics in the sludge and final effluent of WWTPs causes their release to the surrounding 

recipient environments, namely, surface water, soil, and groundwater [8]. 

 Diverse bacteria enter WWTPs systems, along with a high content of resistance factors, 

facilitating gene transfer within present bacteria. In addition, the existence of subclinical levels 

of antibiotics and heavy metals present in low concentrations in wastewater further increases 

the selective pressure of resistant strains in the urban water cycle [75]. Resistant bacteria in 

WWTPs have been recognized for several years, and techniques to mitigate their presence in 

effluent water have been highlighted as the main priority. Such techniques include water 

filtration that removes a high portion of bacteria, benefiting from recent membranes that 

further decreased their concentration [76]. Chlorination and UV treatment are also indicated 

as beneficial disinfection treatments regarding water quality and security [77]. Although 

numerous water treatment processes are thought to effectively inactivate ARB and remove 

ARGs, WWTPs are starting to be considered important reservoirs of resistance due to their 

functionality and specificity. Available studies underline the increasing abundance of AR 
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factors at WWTPs [6]. Even though the deletion of influent resistant bacteria is substantial, a 

high dose of resistant bacteria is still detected in the sludge and treated effluent [78]. 

  The monitorization of AR in WWTPs is commonly associated with the populations of E. 

coli and Enterococcus spp. These bacteria are often used as faecal indicators given that they 

exhibit high resistance to conventional antibiotics such as aminopenicillins, sulphonamides, 

tetracyclines or tetracycline, and erythromycin respectively [79]. Regardless of the 

significance of E. coli and Enterococcus spp. as indicators of human faecal contamination, 

these bacteria are not considered the most common bacterial groups in wastewater. 

Curiously, E. coli and enterococci are indicated as minor representatives. The most abundant 

community members may also perform crucial roles regarding resistance dissemination [72]. 

Studies on monitorization of WWTPs and urban wastewaters are also reporting changes in the 

urban sewage resistance dissemination, usually related to seasonal variations, as most 

commonly winter surpasses the summer resistance loads [20] and the geographical 

distribution of WWTPs, being highlighted as an important factor in the variation of WWTPs 

bacterial communities, as network analysis indicate that bacteria from high-capacity WWTPs 

are further correlated than those from low-capacity WWTPs  [80].  

 Recent studies show that WWTPs significantly reduce the abundance of ARGs and ARB 

in the treated effluent [81]. However, the treatment may also be responsible for an 

enrichment of  ARGs and ARB in the final effluent, since it may promote a higher removal of 

susceptible bacteria. A recent study measured the impact of the discharges of 4 urban WWTPs 

in the receptor rivers [82]. A major conclusion was that the impact of the urban WWTPs on 

the river was not only determined by treatment efficiency and final effluent quality, but also 

by the background contamination of the river and/or dilution rate. This and other studies 

usually involve the quantification of ARB and ARGs through qPCR, emphasizing the need for 

representative biomarker sequences that allow good monitoring [83]. 

 

2.5. Metagenomic Surveillance of Antibiotic Resistance Genes 

 

 The lack of supervision regarding AR is increasing the rate of AR dissemination at a 

regional and global scale [84]. Insufficient research funding and lack of surveillance programs 
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contribute to the dissemination of resistance, mainly in developing countries [85]. The 

solution may be the incorporation of metagenomics into frameworks for ARGs monitorization 

in the One-Health environments, which provides a novel approach for early assessment [86]. 

Through an epidemiological insight, the surveillance and analysis of AR in WWTPs has been 

recurring due to its significant advantages by delivering a broader perspective on the 

dissemination of ARGs, overcoming conventional surveillance restrictions due to the sampling 

size or the scarcity of data only provided by clinical environments [4].  

 Advances in culture-independent molecular biology techniques have facilitated the 

study of ARGs both qualitatively and quantitatively, such as correlation analysis, 

metagenomics, fluorescence-activated cell sorting (FACS), single-cell fusion PCR, genomic 

crosslinking, quantitative PCR (qPCR), high-throughput qPCR (HT-qPCR), and digital PCR (dPCR) 

[87], [88]. Currently, there are three main molecular methods to quantify ARGs in the 

environment, their distribution and propagation, namely, polymerase chain reaction (PCR) 

based amplification of ARGs, hybridization of DNA to ARG fragments, and metagenomic data 

analysis for ARGs [65]. Several tools based on PCR have been upgraded to be incorporated in 

microbial genetics in response to recent problems. ARG quantification amplification 

dependent methods, namely, qPCR, HT-qPCR, and dPCR, are extremely important due to their 

simple execution, robustness, specificity, and sensitivity [89]. On the other hand, 

metagenomics sequencing is a culture-independent method for characterizing microbial 

communities through shotgun or whole-genome sequencing [90]. This method is based on the 

assembly of contigs from initial raw reads or by the reconstruction of metagenomes from 

sequencing reads linking ARGs to a given taxonomy. ARG-hosts can be identified with host 

phylogenetic biomarkers or by annotating genes clustering with the target ARGs [87]. 

Metagenomics relies on next-generation sequencing (NGS) platforms, namely, second-

generation sequencing (SGS) platforms such as Illumina, offering high throughput and 

accuracy. Although Illumina has the downside of generating short DNA segments, this problem 

has been overcome in third-generation sequencing (TGS) platforms (PacBio and Oxford 

Nanopore Technologies) which can sequence ultralong reads [91]. On the downside, TGS 

shows significantly higher sequencing errors compared to SGS. However, recent upgrades in 

errors and data processing indicate that TGS accuracy will improve with technological 

development [91]. Comprehensive resistome analyses are now using whole metagenome 
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shotgun sequencing (WMS) to obtain broader information concerning a high number of 

bacterial species and resistance genes [92]. Metagenomics is a powerful next-generation tool 

that is the main framework for compiling the resistome of several environments. Different 

metagenomic approaches can be used for the mining of ARGs and AR factors present in 

metagenomic samples [93]. Metagenomic mining revealed that bacteria have acquired 

resistance genes before the antibiotic era, providing valuable insight into the evolution of 

resistance mechanisms [94]. It is now established that ARGs are an ancient and natural part 

of many bacterial genomes [19]. 

 Results obtained from short sequence reads assemblies must be carefully interpreted 

as they are prone to assembly errors [95]. Assemblies driven from long DNA reads can uncover 

further information about the genetic context of ARGs, such as the potential for mobility, 

evaluate if it is plasmid or chromosomal related and if it is clustered with MGEs [89]. 

Metagenomic methods have several advantages over conventional approaches for 

determining ARG-host relations, mainly because they are nontargeted and not restricted by 

selecting preset ARGs and MGEs. Additionally, metagenomics can yield multiple details 

regarding the variety of ARGs and MGEs in distinct environments [87]. However, any ARG-host 

relation produced from metagenomic data sets should be carefully interpreted, as 

metagenomic assemblies do not portray strain variation. Moreover, multiple host plasmids 

that have developed in several hosts may not be assigned with taxonomic marker genes, and 

therefore can't be attributed to a given host. This is a major downside, as plasmid carrying 

ARGs display a greater risk to human health than chromosome associated ARGs, as these can 

be transferred across different species reaching pathogenic bacteria [87]. 

 Thanks to the evolution of genomics and metagenomics, the fight against pathogenic 

bacteria has considerably changed. With access to the complete genome of different bacteria 

populations, the more precise selection rather than an experiential selection of DNA 

fragments enabled the creation of a wide range of detection methods and dedicated 

bioinformatics tools to identify AR [96]. 

 

2.6. Core Resistome Analysis 
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 Both benign and pathogenic bacteria were explored at a community level, and 

metagenomics was integrated to discover resistance factors from several environments. 

Research efforts contributing to the discovery of new antibiotic therapies and surveillance 

programs of rising resistance hazards must be prioritized, focusing on ARGs that are the most 

probable contenders for HGT to pathogens [97].  

 The focal picture of ARGs sources for tracing environmental pollution in the past few 

years has been based on a few specific ARGs, in most cases, these studies resulted in a poor 

vision of AR spread. A comprehensive insight of AR in a certain environment is reflected in the 

overall repertoire of resistance genes, the so-called resistome, gathering both intrinsic and 

acquired ARGs, encoding proteins with distinctive resistance and acquired resistance through 

mutation or HGT, as well as precursor ARGs, encoding proteins with putative antibiotic 

resistance activity and proteins of under-expressed AR [98]. Along with phenotypic resistance 

genes, phenotypic sensitive genes (silent and proto genes) can evolve to intrinsic and acquired 

ARGs integrating into the resistome: although silent genes are functional these are not 

expressed, these can become clinically significant by mutation or mobilization if their 

expression occurs; proto-resistance genes have little or no activity against antibiotics, but can 

gain activity via mutations, though these are part of the environmental pool, they have little 

clinical importance due to the need for activation and mobilization [99]. The resistome 

translates into the total amount of the previous resistance genes associated with an 

ecosystem. Both soil and water environments hold complex resistomes, which act as a 

reservoir of resistance genes for many human pathogens [97]. Continuous exposure of these 

microbial communities to antibiotics residues, and other contaminants, induces a selective 

pressure on the core resistome [100]. 

 The bacteria ARGs associated phenotype frequently acts as a defence mechanism 

against antibiotics or toxins produced by participants in the same environmental population 

[101]. The continuous increase in the prevalence of ARB has uncovered knowledge limitations 

regarding the undergoing evolutionary and environmental processes in different microbial 

ecosystems [102]. Thus, constant updating of ARG databases is necessary, facilitating 

comprehensive profiling of the antibiotic resistome but also contributing to primers design for 

clearer ARGs detection [103]. 
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 Regarding the resistome analysis, it is clear that when analysing samples of 

environmental and clinical origins, less comprehensive databases are less effective in finding 

complete ARGs profiles from the complex understudied environmental samples in comparison 

to the well documented clinical samples. Finding an adequate database and algorithm with 

the required retrieval capability is essential for analysing environmental AR. Choosing a 

suitable database based on sample type and study objective is necessary. Comprehensive 

databases containing most ARG variants are keen for recognising ARGs from complex 

environmental communities, while specialized databases better characterize specific and 

novel ARGs [98].  

 Metagenomics enables resistome analysis between multiple environments, reflecting 

that several ARGs are ubiquitous in host-associated and natural environments. Gut microbiota 

can exchange ARGs and interact with bacteria transiting through the colon, triggering these 

bacteria to acquire and transfer ARGs [104]. There is a massive reservoir of ARGs in human 

gut and their correlated environments, which can be mobilized from these compartments to 

human pathogens [105]. Thus, following the growing alarms on ARG surveillance, the 

assessment of WWTPs performance in eliminating ARGs underpins the need for easy access 

repositories of resistome data for both government stewardship and academic reference as a 

response to the progressively increasing volume of metagenomic datasets [106]. 

 

2.7. Bioinformatic methods for the analysis of antibiotic resistome 

 

 In surveillance studies and following sample collection, metagenomic sequencing and 

processing occur, involving the extraction of DNA, metagenome sequencing, and analysis 

[107]. The steps highlighted in Figure 3 are carried through with bioinformatic tools, from 

trimming to statistical analysis. 
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Figure 3. Bioinformatic workflow to conduct ARG metagenomic surveillance: after accessing the reads quality the assembly 
step is optional as the alignment tool can be chosen considering if reads or assembled reads are being aligned. 

 After sequencing, it is important to guarantee that just the high quality reads will be 

processed. For that, bioinformatic processing should do the trimming, removal of sequencing 

adaptors and low quality sequences, reducing bias information [108]. Although NGS 

technologies allow to sequence a metagenome with a high coverage, these technologies still 

have some limitations regarding the sequence length, rate of sequencing errors, and data with 

adapter sequences. Besides reducing the amount of usable data, these problems also impact 

the accuracy of further bioinformatics analysis [109]. So, it is really important the correct 

quality control of the raw reads. Many available tools can help to curate the raw reads, such 

as QcReads [109], AdapterRemoval [110], Cutadapt [111], Btrim [112] and Trimmomatic [113]. 

From the armour of NGS read preprocessing tools, when leveraging flexibility, paired-end data 

handling accuracy, and high performance, Trimmomatic is indicated as the more flexible and 

efficient preprocessing tool, especially when handling paired-end data [113]. FASTQC tool 

helps to evaluate the quality of the reads before and after processing, by assessing several 

parameters related to the reads quality [114]. 

 The reads assembly usually follows the preprocessing. While shotgun metagenomic 

sequencing delivers inclusive access to microbial communities genomes, many of the encoded 

functional genes are considerably longer than the length of reads obtained via NGS [115]. 

Unassembled metagenomic data are more fragmented and prone to error with varying 

sequencing depths [116], although read-based methods can be used to detect ARGs without 

metagenomic assembly by applying pairwise alignment tools or splitting the reads into k-mers, 

it can prevent information loss but no positional information is retrieved, which is necessary 
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to analyse upstream and downstream factors of ARGs [117]. To achieve an accurate and 

comprehensive analysis, preprocessed reads are recommended to be assembled into larger 

DNA segments named contigs [118]. Several metagenome assembly tools (assemblers) were 

developed to handle this problem. Many assemble sequences via de novo, where 

metagenomic sequences are split into k-mers, overlapped into a network, and paths are 

crossed iteratively to obtain extended contigs [119]. Such a procedure allows for more 

confident gene predictions than those obtained from unassembled data [120]. 

 Assembly quality has greatly extended the range of questions answered using NGS. 

These can be genome-centric questions (extraction of full genomes from metagenomes and 

genomics-informed microorganism isolation), requiring long contigs, or gene-centric 

questions (determination of microbial community composition as well as functional capacity 

and comparisons of microbial communities from various environments), requiring high-

quality contigs and an assembly with extensive coverage of the metagenomic dataset [115]. It 

is important to understand the assembler performance considering the range of available 

assemblers. An assembler needs to produce long contigs to allow an accurate analysis of full 

genes within a genomic perspective and to enable the reconstruction of single genomes. 

Likewise, a good assembler should resort to the least computational resources possible along 

with an intuitive interface to allow minimal effort and rapid processing during the assembly 

process [115]. Currently, there are several open-source metagenome assemblers, such as: 

Velvet [121]; MetaVelvet [122]; SPAdes [123]; metaSPAdes [124]; Ray Meta [125]; IDBA-UD 

[126]; MEGAHIT [127]; and Omega [128]. Besides the differences between these assemblers, 

none proved to provide consistently superior assemblies. Therefore, it is proposed to select 

an appropriate assembler to consider the available computational resources, scientific 

research question, and bioinformatics expertise of the user (Figure 4) [115]. 
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Figure 4. Proposed workflow to select a metagenome assembler based on the research question, the computational 
resources available, and the bioinformatics expertise of the researcher (adapted from [115]). 

 After assembling, the obtained contigs must be mapped against a resistance reference 

database. Besides assemblies, aligning reads directly to the reference databases can also be 

applied to detect ARGs from low-abundance bacteria in complex communities [129]. 

Additionally, there are bioinformatics tools for metagenomic data analysis that can be used 

for analyzing gene content and gene expression. There is, nevertheless, no unified standard 

analysis method, highlighting the importance of choosing an adequate approach to identify 

ARGs [130].  

Table 1. Summary of antimicrobial resistance reference databases (adapted from [131]). 

Database Description 

CARD [132] Ontology-based database that provides comprehensive information 

on ARGs and their resistance mechanisms 

Currently contains >2,200 protein homologs and includes a curated 

set of resistance-conferring chromosomal mutations. 

ResFinder [133] Collection of acquired ARGs, frequently involved in HGT events 

Resfams [134] A profile HMM-based curated database confirmed for AR function 

ARDB [135] First centralized resource of ARGs information 

Manually curated; contains >4,500 ARGs sequences 
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MEGARes [136] Collation of multiple databases (CARD, ARG-ANNOT, and ResFinder) 

to avoid redundancy between entries 

For high-throughput screening and statistical analysis 

ARG-ANNOT [137] Repository of >1,800 AR sequences collated from scientific literature 

and online resources 

It also includes point mutation data for select AR-associated 

chromosomal genes. 

Mustard [138] Resource containing 6,095 ARGs determinants from 20 families, 

including curated sets of AR genes, identified 

in functional metagenomics studies 

FARME database 

[139] 

A curated set of microbial sequences functionally screened to confer 

resistance in various functional metagenomics studies of different 

habitats. 

SARG [140] Hierarchically structured database derived from ARDB, 

CARD and NCBI-NR database 

It contains>12,000 AR genes; also includes profile HMMs for 189 

ARGs subtypes. 

Lahey list of β-

lactamases [141] 

The first initiative to compile known β-lactamases and assign 

nomenclature to novel ones 

BLDB [142] Manually curated database for AR enzymes classified by class, 

family, and subfamily 

LacED [143] A curated database of TEM and SHV β-lactamases, including a 

curated set of known TEM and SHV variants 

CBMAR [144] Database that identifies and characterizes novel β-lactamases based 

on Ambler classification 

 

 Numerous databases have been established to detect ARGs from metagenomic data 

(Table 1). As previously pointed out, selecting an adequate database is of great importance. 

Once chosen considering the research purpose, the core resistome design takes place. Very 

few bioinformatics tools are available for resistome determination. Nevertheless, some 

bioinformatics tools for statistical and exploratory analysis of resistome data have been 
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recently developed. For example, ResistoXplorer conjugates the current developments in 

statistics and visualization along with general functional annotations and phenotype library, 

allowing high-throughput analysis of joint outputs generated from metagenomic resistome 

data [145]. Similarly, sraX is a complete computerized analytical pipeline for precise resistome 

analysis, capable of inspecting numerous bacterial genomes to detect putative resistance 

factors [146]. Additionally, MetaCompare is a tool for ranking ARG risk through metagenomic 

data, estimating ARG applicants and retrieving a risk score to the respective resistome [147]. 

Moreover, further statistical analysis enables the possibility to study significant seasonal 

variation and the geographical impact of multiple bacterial communities and antibiotic 

resistomes [148]. Based on the previous tools for the resistome analysis, it is noticeable the 

lack of pipelines that are user-friendly and flexible when it comes to the resistome design and 

characteristics, such as ARGs annotation based on multiple databases, similarity, coverage and 

abundance, highlighting the need to develop new methods allowing to adjust and combine 

different parameters of the resistome. 

 

 

2.8. Machine Learning  

 

 Machine learning (ML) is a branch of the broader field of artificial intelligence that 

makes use of statistical models to develop predictions, using computational algorithms to 

shape empirical data into functional models [149]. Artificial Intelligence (AI) research, and 

breakthroughs in ML and deep learning (DL), have led to innovative advances in many research 

fields, such as radiology, pathology, genomics, etc. [150]. Based on the research purpose, the 

tradeoff between bias, variance and model complexity, the following types of ML models are 

debated as the central guide ideas of learning: neural network (feed-forward and recurrent), 

support vector machine, random forest, self-organizing map, and Bayesian network [151]. For 

example, ML/DL algorithms may be used to detect and quantify ARGs [152], and even track 

ARGs pollution from diverse sources [153]. 

 The field of ML can be divided into supervised and unsupervised learning (Figure 5). 

Supervised algorithms refer to methods of implying a function from labelled training data; 
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unsupervised algorithms include methods that return a new set of features or patterns, 

strictly, from unlabelled data [154]. ML also includes a set of reinforcement learning 

algorithms and models where intelligent agents ought to take actions in an environment in 

order to maximize a cumulative reward. 

 The next sections present an overview of the most relevant ML concepts and 

nomenclature. It is not intended to be thorough (there are extensive resources available on 

the subject) but to provide the required basic notations to understand the work. 

 

Figure 5. Examples of Supervised Learning (Linear Regression) and Unsupervised Learning (Clustering) [155]. 

 

2.8.1. Unsupervised Machine Learning 

Unsupervised Learning algorithms were initially aimed to discover hidden patterns in 

unlabeled/unclassified sets of data. Since, and with more recent advances in DL, unsupervised 

methods have been employed to obtain compact data representations that capture 

underlaying probabilistic distributions, these representations can then be used to distinguish 

patterns. Contrarily to supervised learning, unsupervised methods cannot be directly assigned 

to a regression or a classification problem [156]. The most commonly used unsupervised 

machine learning methods mainly include dimensionality reduction and clustering.  

More recently, and with the advances of neural networks and deep learning, new 

unsupervised learning methods have been proposed such as autoencoders. Autoencoders 

compress data into a lower dimensional space, a latent space, and then recreate a new 

representation of the original data’s input. They involve training two interlinked components, 

an encoder that compresses data, and a decoder that decompresses data (Figure 9). 



 

 
22 

 

Principal Component Analysis 

Dimensionality reduction of data can be achieved using Principal Component Analysis 

(PCA). PCA is a method that distinguishes data patterns while emphasizing similarities and 

differences. More precisely, PCA reduces the number of variables to the most significant 

factors providing an accurate summary of the original data through multivariate statistical 

data mining, while as many of the changes in the dataset are preserved for more efficient 

processing. With PCA, the sum of the squares of correlations is maximized, meaning that the 

first principal component vector has the highest sum of squares correlated with the variables, 

which is linearly related to the main variables [157].  

 

Clustering 

Clustering is the most used unsupervised method and is applied to group objects by 

similarity-forming clusters. Clustering methods allow for finding hidden categories or patterns 

in the selected data. Some of the main algorithms for clustering include K-means, 

agglomerative clustering or hierarchical clustering [156]. 

 

2.8.2. Supervised Machine Learning 

Supervised Learning deals with labelled data, that is, data where each sample has a 

corresponding signal or label. It aims to map, or model, the structure of an observation, or 

independent variable, into a label, a dependent variable. Once a model is learned, it can be 

used to predict the label of unseen observations. The nature of the label further defines the 

predictive task. Quantitative labels are more prone to regression tasks while qualitative labels 

are to classification. Examples of supervised learning methods include linear and logistic 

regressions, random forests, neural networks and support vector machines [158]. Some of the 

most frequently used supervised ML methods will be briefly described below.  

 

Decision Trees (DT) 

 DT consist of discrete classifiers, which can be used for both classification and 

regression tasks, these enable decision-making and risk analysis, and are usually represented 
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in the form of a graph, where the nodes represent de input variables and the branches the 

respective possible values, or even in the form of a list of rules. The DT architecture is simple 

to interpret and fast to learn through top-down algorithms [159]. 

 

Hidden Markov models (HMMs) 

 HMMs are sequence models, where, given a succession of inputs an HMM will process 

a sequence of outputs with the same length. Visually, an HMM model is a graph: nodes are 

probability distributions over labels and edges return the probability of transitioning from the 

nodes [160]. 

 

Naïve Bayes (NB) 

 Naïve Bayes classifier is a ML model that applies the Bayes theorem (Eq. 1), for 

probabilistic classification. By studying the input data of a given set of parameters (B), the NB 

classifier can calculate the likelihood of the input data belonging to a given class (A). 

𝑃(𝐴|𝐵) =
𝑃(𝐴|𝐵)𝑃(𝐴)

𝑃(𝐵)
 (𝐸𝑞. 1) 

 The classification of the input takes place when the probabilities of it belonging to each 

of the existing classes are determined and the highest probability will be the class to which 

the input data will fit. Thus, the class 𝑎 with the highest probability must be found as expressed 

in Eq. 2 (𝑏𝑖 is one of the 𝑛 features observed). 

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑃(𝑎|𝑏1, … , 𝑏𝑛) (𝐸𝑞. 2) 

A NB classifier assumes that all variables are independent, requiring only a small set of 

training to estimate parameters necessary for classification [161]. 

 

Support Vector Machines (SVM) 

 SVM is one of the most recent ML methods, with a major impact on neuroimaging 

analysis. In SVM, the input vector is mapped into a feature of higher dimensionality and the 

hyperplane that divides the data points into two classes is determined. The minimal distance 

between the decision hyperplane and the occurrences that are closest to the boundary is 
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maximized. The obtained classifier gains generalization capabilities and can be applied for 

consistent classification of other samples [162]. 

 

Bayesian Networks (BN) 

 BN classifiers can produce probability estimations instead of predictions. BN is applied 

to represent knowledge paired with probabilistic dependencies including the variables of 

interest through a directed acyclic graph. These classifiers are being widely applied to several 

classification tasks and for knowledge representation as well as reasoning determinations 

[163]. 

 

2.8.3. Feature Selection 

 In ML algorithms, feature selection and feature extraction put together the so 

described dimensionality reduction. Feature selection is the term that describes the selection 

of a subset of features from a given set which enables the model construction. The three main 

methods to pick features consist of wrapper methods, filter methods and embedded methods. 

The wrapper methods optimize the classifier performance, although these are pointed as 

computationally more expensive due to repeated learning steps. Filter methods select 

properties of the features by statistically measuring or raking these, independently of the 

specific classifiers. Embedded methods are comparable to wrapper methods with the 

difference of making use of intrinsic model building metrics during the learning process [164]. 

 

2.8.4. Error Estimation 

 The generalized method to measure the performance of a learning algorithm 

correlates to its prediction ability on unbiased test data. Thus, meaning that the evaluation of 

the model performance is very important as it assists the choice of the learning method or 

model while providing a measure of the model quality [165].  

 

2.9. Deep Learning (DL) 
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 Contrasting with shallow methods, DL methods have several layers of nonlinear 

segments of representation. These segments, individually, transform the representation at a 

given level into a further theoretical higher level. High-dimensional data with several degrees 

of freedom are a common outcome of these transformations, that allow to discover these 

sophisticated structures. Thus, it is quite promising that deep learning is outperforming the 

ML “shallow methods” in some areas. Though, DL only has significant advantages given the 

correct research purpose, as it is susceptible to overfitting [166]. In DL there are several 

architectures for a research purpose, the most common architectures used in DL will be briefly 

described below. 

 

2.9.1. Artificial Neural Networks (ANN) 

ANN is a piece of AI that is dedicated to imitating the learning approach that humans 

use to achieve specific types of understanding. Looking through a biological perspective, 

neurons, which are present in the brain, are used as artificial neurons in ANN, which are used 

to classify and hold data. ANN is made of input and output levels, as well as one or more 

hidden layers that transform the input into something that can be used in the output layer 

(Figure 6) [167]. 

 

Figure 6. A typical ANN and a typical artificial neuron (from [167]). 

In ANN the multiple artificial neuron nodes only have one type of link that connects 

the neurons. The input is kept by the neurons and simple operations are performed on the 

data, the information can be passed to other neurons, and this decision is determined by the 

activation function. Modulating feature extraction and classification. The dendrites/links vary 

in agreement with the significance of the inputs. ANN can be of many types, such as deep 
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neural networks, convolutional neural networks, stacked neural networks and recurrent 

neural networks [167]. 

 

Deep Neural Networks (DNN) 

DNN reached unmatched success in computer vision, their higher performance comes 

with the substantial cost of computational complexity and the possibility of overfitting caused 

by the usage of additional hidden layers to an ANN shallow approach. Consequently, methods 

that can boost the efficiency blockage while maintaining the high accuracy of DNN are in great 

need to enable several AI applications [168].  

 

Convolutional Neural Networks (CNN) 

In CNN, a neuron is the consequence of multiple convolution tasks before getting 

triggered for feature extraction. A CNN has several steps of operation, which can be iterated 

numerous times resulting in a deep CNN. In the first stage, the convolution operation is 

completed, performing element-wise multiplication between the input (represented in a two-

dimensional matrix) and the filter components (the filter is a two-dimensional matrix with a 

smaller size), where there may be a bias or weight filter. The sections of the weight filter are 

multiplied with the input and the portions of the bias filter are combined. In order to lower 

the dimension of the output, a pooling procedure is performed, generally max-pooling. Then 

a nonlinearity procedure is applied as an activation function. In the end, a fully connected 

layer can be applied for classification (Figure 7) [167]. 

 

Figure 7. Convolutional neural network (from [167]). 
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Recurrent Neural Networks (RNN) 

RNN make advantage of sequential information, theoretically, RNN can take advantage 

of data in randomly prolonged sequences, but in fact, they are limited to tracking back only a 

small number of moves (Figure 8) [167]. 

 

Figure 8. Recurrent neural network (from [167]). 

 

Stacked Autoencoders (SA) 

An autoencoder (AE) is a type of ANN used to learn useful information encrypting in 

an unsupervised conduct. An AE consists of two distinct parts: the encoder and the decoder 

(Figure 9). While the encoder is utilized to produce a reduced feature description from a 

starting input by a hidden layer, the decoder is applied to rebuild the original input from the 

encoder's output through the reduction of the loss function. Thus, as the AE transforms high-

dimensional information to lower dimension, the AE is notably effective in noise removal, 

feature extraction and compression [169]. 

 

Figure 9. Example of an autoencoder (from  [169]). 
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2.10. Machine Learning Applied to Metagenomic Surveillance 

 

 In the previous sections, the main ML and DL algorithms were introduced with the aim 

of choosing the most suited algorithms for building a multi label deep learning model, as it 

follows in the next chapters.  

 With the growing amount of ARGs being deposited in public databases, it is now 

possible to construct ML and DL models. Concerning metagenomic surveillance, particularly 

antibiotic resistance, ML/DL algorithms are commonly used to track ARGs pollution from 

different sources through classification tasks as well as predicting ARGs abundance [170]. On 

the other hand, DL algorithms can be also implemented as hierarchical multi-task for 

annotating antibiotic resistance genes in aminoacid format[171]. The combination between 

the lack of classification for gene potential for transferability, the absence of an intrinsic ARGs 

database and the ResFinder database being the only acquired ARGs database, makes room for 

a DL model for the classification of genes transferability. 

 

 

 

 

3. Materials and Methods 

 

 This chapter firstly introduces the workflow from dataset construction to the definition 

of the core resistome and its statistical analysis using python. The endeavour comprised the 

exploration of different approaches to specific tasks.  

 Second, and related to DL, the chapter describes the actions taken from the dataset 

construction, model construction, training and validation for core resistome analysis. This task 

employed ProPythia, a platform for the classification of DNA using machine and deep learning 

(https://github.com/BioSystemsUM/propythia). 
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 In order to run the following tools and command lines a complete Ubuntu terminal 

environment with Windows Subsystem for Linux (WSL) was used, Ubuntu 22.04 LTS from 

Canonical Group Limited, in a 16GB RAM computer with 8 logical processors and NVIDIA RTX 

3050 GPU. 

 

3.1. Metagenomic Dataset 

 

 A dataset was constructed from the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) (accessed on 25/07/2021), a public database for 

sequence data acquired from NGS platforms. Using the search terms “freshwater” and 

“wastewater”, 67391 samples were displayed. Regarding the research purpose, shotgun 

Illumina paired-end sequencing data with informative metadata that allowed us to classify the 

samples as raw wastewater (influent), treated wastewater (effluent), sludge and freshwater, 

from known geography were pre-selected (Table 2). After filtering, based on the previous 

criteria, if the resulting samples were from the same Bioproject, water type and location, only 

the sample with the highest number of reads were selected. Using those criteria, a dataset of 

139 samples, 58 from freshwater and 81 from wastewater samples, ranging 24 different 

countries was obtained (Table S 1). 

 

Table 2. Filter set up for the construction of a freshwater and wastewater metagenomic dataset. 

Label Filter 

Assay_Type WGS or OTHER 

LibraryLayout PAIRED 

LibrarySelection RANDOM, Other or unspecified 

LibrarySource Genomic, Metagenomic; Other 

Organism 
metagenome or wastewater metagenome; 
activated sludge metagenome 

Platform ILLUMINA 
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geo_loc_name Non-empty 

 

3.2. Reads Processing and Assembly 

 

 Two case studies were developed: in the first (described below), the raw reads were 

processed and assembled with KBase apps and further aligned with the proper tools; in the 

second, the raw reads were processed under the selected k-mers aligner. This approach 

enables comparison between two distinct methods for conducting metagenomic surveillance.  

 The raw metagenomic reads were imported to a KBase narrative [172], with the 

“Import SRA File as Reads From Web” (v1.0.7) app, using the direct download link and Illumina 

parameters. The resulting merged reads were trimmed using the “Trim Reads with 

Trimmomatic” (v0.36) app [113], with sliding window size 4 and sliding window minimum 

quality 15. The processed reads were assembled into contigs with the “Assemble Reads with 

metaSPAdes” (v3.15.3) app [124], the contig length was set to 300bp ≤ 2000bp. Due to 

processing problems, one of the freshwater samples (SRR14120374) was not assembled. The 

raw merged reads were exported in FASTQ format and the assemblies in FASTA format.  

 

 

3.3. Taxonomic Annotation 

 

 For the taxonomic annotation of the samples, three different approaches were used 

and compared: annotation of the raw reads and annotation of the assembled reads (contigs) 

against the SILVA database, and a final method which enabled taxonomic classification 

throughout all taxa levels using the raw reads with the Kaiju app [173] at KBase. 

 To determine the taxa abundance within the metagenomic samples, the SILVA rRNA 

database [174] was used, after processing it with the SortMeRNA tool [175] (Figure 10). As a 

result, the obtained representative 16S rRNA database was used as the template database. 
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Figure 10. SILVA database processing for accurately quantifying 16s rRNA in metagenomic samples (from the SortMeRNA 
set construction [175]). 

 For the raw reads a k-mers aligner was used, namely, KMA [176], allowing to trim the 

reads, and match the k-mers between the query and the database, while simultaneously 

identifying regions with mismatches through the Needleman-Wunsch algorithm and using a 

scoring algorithm system named ConClave, to choose the best aligning template per query. 

The database was indexed through the following command line: “kma index -i set5-

database.fasta -o silva_db”, to align the reads against the database: “kma -i *.fastq -o gs/silva/ 

-t_db silva_db -t 8 -1t1 -mem_mode -ef”, the flags: “-1t1” forces each query sequence to 

match to only one template; “-mem_mode” KMA uses less memory as the ConClave algorithm 

is based on the mapping scores rather than alignment score; “-ef” stands for extended 

features, which creates an additional output file (*.mapstat), enabling further analysis, such 

as the relative abundance of read hits with the database.  

 Similarly, for the contigs, the BLASTn [177] aligner was used as there was no need for 

mapping against the database, the representative 16S rRNA database was created using the 

command: “makeblastdb -in set5-database.fasta -dbtype nucl”, as for the alignment: “blastn 

-query *.fa -db set5-database.fasta -outfmt 6 -out out/”, the flag “-outfmt 6” allows choosing 

the output format in this case the output 6 allows to create a tabular file, for a user-friendly 

approach when analysing the data, a threshold of 75%, 50% and 10% coverage was used, to 

verify the assembling process of the reads. 



 

 
32 

 

 The metagenomic samples were also annotated in KBase with the “Classify Taxonomy 

of Metagenomic Reads with Kaiju” (v1.7.3), the classification was set to all taxonomic levels 

with the NCBI BLAST nr (no Euks) database the low abundance filter was set to 0.5 and 

subsample percent to 10. 

 While the two first approaches allow to quantify the bacterial load with the same 

database, the third approach allows to categorize the reads, accordingly, for the different 

taxonomic levels.   

 

3.4. ARG Database Alignment 

 

 The samples were aligned against two main ARG databases, the Comprehensive 

Antibiotic Resistance Database (CARD [133]) and the ResFinder database. Besides containing 

acquired genes like the ResFinder database, the CARD data gathers comprehensive 

information on ARGs and their resistance mechanisms consisting of protein homologs, 

including a curated set of resistance-conferring chromosomal mutations in protein-coding 

genes. 

 Two different approaches were explored, in “Case Study 1” the assembled reads were 

aligned with the embedded aligners in the ResFinder tool [133] and the Resistance Gene 

Identifier (RGI) from CARD [132], as for “Case Study 2” the raw reads were aligned with a k-

mers aligner, KMA [176] and databases were indexed to the aligner.  

3.4.1. Case Study 1 (assembled reads) 

 The assembled reads were firstly aligned with the ResFinder tool [133], from the 

Genomicepidemiology Bitbucket repository 

(https://bitbucket.org/genomicepidemiology/resfinder/src/master/), using the ResFinder 

database 7562716 version, under the following command line: “python3 run_resfinder.py -o 

gs_rf/ -s "Other" -l 0.6 -t 0.8 --acquired -ifa *.fasta”, the default aligner for assemblies was 

used, namely, BLASTn [177]. The flags “-s” stand for the species, in this case, “Other” was used 

as it represents metagenomic samples or samples with unknown species, “-l” represents the 

desired minimum coverage and “-t” is the threshold for identity.  
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 For the assembled reads, CARD Resistance Gene Identifier (RGI) tool was also used 

(https://github.com/arpcard/rgi). The command line used was: “rgi main -i *.metaSPAdes.fa -

o gs_card/ -t contig -a DIAMOND --clean -d wgs --low_quality --local”, the “--clean” tag 

removes temporary files, “-d” allows the user to choose the data type (wgs, plasmid, 

chromosome or NA), “--low_quality” is used for short contigs to predict partial genes and the 

“--local” uses the local database in the executable directory. The input assemblies were in 

nucleotides and the template database of CARD is in aminoacids, for this case the DIAMOND 

[178] aligner was used (flag “-a”), as it is a sequence aligner for protein and translated DNA, 

allowing pairwise alignment of proteins and translated DNA at a much higher speed than 

BLAST and frameshift alignments for long read analysis. All the above features were built into 

the CARD RGI tool. 

 

3.4.2. Case Study 2 (raw reads) 

 For comparison purposes, the CARD database, namely the file 

“nucleotide_fasta_protein_homolog_model.fasta”, and the compiled ResFinder database 

(https://git@bitbucket.org/genomicepidemiology/resfinder_db.git db_resfinder) obtained 

with the cat command: “cat *.fasta > rf_db.fasta”, were individually indexed to KMA, using 

the following command line: “kma index -i *.fasta -o database”. 

 The raw reads were then aligned to the reference databases using the following 

command line: “kma -i *.fastq -o *_kma -t_db  -t 8 -1t1 -mem_mode -ef”, the “-t_db” allows 

the user to choose the template database, “-t” sets the number of threads, “-1t1” force each 

query sequence to match to only one template, “-mem_mode” KMA uses less memory as the 

ConClave algorithm is carried out based on the mapping scores instead of the alignment 

scores, “-ef”  creates an additional file (*.mapstat) with extended features, holding additional 

information (KMA version, used database, number of fragments in the input, the date of the 

analysis and the command line), this file also allows to determine the relative abundance of 

reads that match the database. 

 

3.5. Common Database: CARD & ResFinder 
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 As different databases may hold the same ARG sequence under distinct annotations 

(identification labels) it was necessary to uniformize the databases information in a common 

language. For this task, two approaches were developed, in the first case study, the 

concatenated ResFinder database was inputted into the CARD/RGI tool to annotate one 

database against the other, in the second case study both databases were concatenated into 

a single file and inputted to CD-HIT-est to create clusters of sequences based on similarity.  

 

3.5.1. Case Study 1  

 The concatenated ResFinder database was inputted to the CARD/RGI tool through the 

command line used before: “rgi main -i rf_db.fa -o common_db -t contig -a DIAMOND --clean 

-d wgs --low_quality --local”. The resulting file was filtered by a threshold of 90% minimum 

coverage and sequence identity. The file was then converted into a hashmap, where the key 

(CARD nomenclature) only matches a single and unique value (ResFinder nomenclature). A 

great number of genes between both databases did not match using this method. 

 

3.5.2. Case Study 2 

 The CARD database and the ResFinder database were concatenated using the “cat 

*.fasta > rf_db.fasta” command. The resulting database was inputted into the CD-HIT tool 

[179] available at https://github.com/weizhongli/cdhit. The program mode was set to CD-HIT-

est, with a sequence identity threshold of 90%, and the following parameters: “-r No -G Yes -

g Yes -b 20 -l 10 -s 0.0 -aL 0.0 -aS 0.0”, (-r: comparing both strands; -G: use global sequence 

identity; -g: sequence is clustered to the best cluster that meets the threshold; -b: bandwidth 

of alignment; -l: length of the sequence to skip; -s: minimal length similarity (fraction); -aL: 

minimal alignment coverage (fraction) for the longer sequence; -aS: minimal alignment 

coverage (fraction) for the shorter sequence).  

 The output returned 1278 clusters of sequences, with >90% similarity, in the combined 

database. Similarly, to the previous case study, the data was formatted into a hashmap, a 

dictionary containing a key with the cluster name and reference sequence, where the 

corresponding value is a list of genes belonging to the cluster key. This approach allowed to 
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uniform ARGs labels between different databases and further determination of consensus 

sequences, while also combining multiple ARGs variants in a common nomenclature. 

 

3.6. Core Resistome Pipeline 

 

 A Python pipeline was developed for the analysis of raw reads and contigs, focusing on 

the core resistome characterization and statistical analysis, with the aim of obtaining 

biomarker sequences for monitoring ARGs prevalence in the environment, the scripts can be 

consulted at https://github.com/pg42866/Metagenomic-Analysis. 

 The util.py file contains helper functions to assist in the taxonomic analysis, the 

construction of the merged database, to build and analyse the core resistomes, processing the 

biomarker sequences alignment and some other functions. 

 

3.6.1. Core Resistome 

 The core_resistome.py file allows to read the KMA output files from the ResFinder, 

CARD and SILVA alignments. The “make_core” function allows to create core resistomes with 

adjustable prevalence percentage, in this case 90% of the samples. There is also a function 

(“soft_full”) to analyze the differences between a full core (90% prevalence) and a soft core 

(75% prevalence). It also allows to create the Reunion and the Intersection annotations based 

on the CD-HIT-est database. If a given annotation was found in just one database (CARD or 

ResFinder) it was classified as Reunion annotation, if instead it was classified by both 

databases it was classified as Intersection annotation. The core resistomes can also be 

retrieved from these annotations.  

 Using the described methodology, were determined the core resistomes of the 

influent, sludge, effluent and freshwater samples, using the ResFinder annotation, the CARD 

annotation and as mentioned the Reunion annotation, for a 90% prevalence. 

 

https://github.com/pg42866/Metagenomic-Analysis
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3.6.2. Statistical Analysis 

 The statistical.py and taxon.py files allow to conduct statistical analysis of the 

resistomes and taxonomic annotations. It is based on python libraries such as seaborn, 

sklearn, matplotlib and numpy. For the ARGs profiling using the KMA “-ef” tag, the function 

“get_amr_class” allows to create a dataframe of the most abundant AMR classes using the 

ResFinder annotation, from the ARGs to the phenotype nomenclature. The outputs are 

processed dataframes, PCA, k-means clustering, heatmaps, boxplots and charts for Elbow 

Method to find ideal k-means clusters. 

 

3.6.3. Identification of possible biomarkers and Consensus Sequences 

 The concatenated CARD+ResFinder database resulted in 1278 sequences clusters with 

a similarity of >90%. Of these 1278 clusters, 579 were clusters of a single sequence and 699 of 

2 - 509 sequences. 

 Considering the core resistomes determined for wastewater (influent, sludge and 

effluent samples) and freshwater, were determined which genes are characteristic of 

wastewater. Those genes were classified as possible biomarkers to monitor freshwater 

contamination with wastewater. Due to the annotation being made with clusters, the cluster 

sequences of the core resistome were combined into consensus sequences. 

 For the ARGs observed to be part of the wastewater core resistome and 

simultaneously not part of the freshwater core resistome, and for which were observed 

clusters of more than one sequence (n=40) were determined the consensus sequences. 

 The sequences of each cluster were aligned with the EMBL-EBI Clustal Omega tool 

(v.1.2.4) [180], using the following parameters (Figure 11): 

 

Figure 11. EMBL-EBI Custal Omega parameters. 
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 The resulting multiple alignment files were inputted to EMBL-EBI Emboss Cons [180] 

using the parameters bellow (Figure 12), to design the consensus sequence. To determine 

potential WWTP contamination in receiving environments, a set of 65 potential biomarker 

sequences, 25 single sequences and 40 consensus sequences, was obtained, and additionally 

3 non-biomarker freshwater single sequences. 

 

Figure 12. EMBL-EBI Emboss Cons parameters. 

 

3.6.4. Biomarkers validation 

 In order to validate the biomarkers sequences, the 65 potential biomarkers were 

inputted as a reference database in KMA and aligned against the metagenomic samples for 

validation purposes. Similarly to the previously described methods using KMA. This approach 

allows to verify if there were variations in the detection sensitivity due to some of the 

biomarkers being representative consensus sequences of each core resistome cluster. 

 

 

 

3.7. Classifying ARGs transferability through Deep Learning 

 

 A dataset of 2654 ARGs was constructed with two types of ARGs according to their 

transferability: 215 intrinsic genes (0) and 2439 acquired genes (1). The intrinsic genes were 

obtained from the HMD-ARG database [171], which is an aminoacid database with 

transferability classification, the aminoacid id from the intrinsic CARD ARGs was converted 

into the nucleotide version id returning 203 samples, 5 ARGs were obtained by using the 

search term “intrinsic” in the CARD database, the remaining 7 ARGs were obtained from the 

NCBI Genes database with the help of European Society of Clinical Microbiology and Infectious 
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Diseases (EUCAST) Expected Resistance Phenotypes (Version 1.1 March 2022). The 2439 

acquired genes were obtained from the ResFinder database, as it is the only ARGs database 

fully made by acquired ARGs in DNA. 

 Before running ProPythia the following steps were made, the imbalanced dataset was 

submitted to a Synthetic Minority Oversampling Technique (SMOTE) [181] The resulting 

dataset was then used for the model training (60%), while maintaining the imbalanced dataset 

for validation (20%) and testing (20%).  

 The ProPythia pipeline allows to obtain models using descriptors or encoders. There 

are three types of encoders: One-hot encoding, single encoding for conversion of DNA 

alphabet into a binary vector; Chemical encoding, based on the chemical properties of the 

DNA combinations (ring structure, hydrogen bond and functional group); K-mer One-hot 

encoding, retrieving positional information of DNA sets, suited for larger sequences. Due to 

the length differences between the ARGs, a max length of 2000 bp was defined to prevent the 

encoders malfunction. Finally, to run ProPythia, the following config file was used (Figure 13). 

In the end, four models were obtained in combination with three modes: multilayer 

perceptron (MLP) with descriptors; CNN with one-hot encoders and chemical encoders; long 

short-term memory (LSTM) with one-hot encoders and chemical encoders; gated recurrent 

unit (GRU) with one-hot encoders and chemical encoders. 
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Figure 13. ProPythia config.json file setup. 

 To deal with imbalanced data classes, special attention is given to the receiver 

operating characteristic curve (ROC). This analysis is particularly helpful due to its applicability 

when dealing with imbalanced class distributions as well as disproportionate classification 

error costs. The resulting metric from this analysis is obtained through the estimation of the 

area under the ROC curve (AUC), the AUC represents the probability of a randomly chosen 

positive occurrence will be rated higher than a negative occurrence [182]. To evaluate the DL 

models some other metrics were analyzed, namely, the classification accuracy, Matthews 

Correlation Coefficient (MCC), F1 score, precision and recall as well as the confusion matrix. 

The metrics were obtained from the sklearn Python library. 
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4. Results and Discussion 

 

 The following chapter describes and analyses the obtained results, since the dataset 

construction to the ARGs biomarkers validation and additionally the metrics of the DL 

algorithms used for the classification of ARGs transferability.  

 

4.1. Samples Selection 

 

 As stated in the previous chapter, Table S 1 represents the selected samples based on 

the Table 2 filters. The geographic location of the samples encompasses 24 countries from 

distinct continents, socio-economic conditions and different sample types, with the purpose 

of reaching a global-scale metagenomic surveillance study. 

Table S 1. NCBI SRA sample selection for the construction of a metagenomic paired-end Illumina wastewater and freshwater 
dataset. 

Accession n. Sample type Geographic Location Reads n. 

SRR7614694 Influent Antarctica 47870654 
SRR10868593 Influent Canada 13628676 
SRR10868563 Influent Canada 14669938 
SRR10868583 Influent Canada 16109110 
SRR10868569 Influent Canada 24671540 

SRR14769839 Influent China 55614748 
SRR10688478 Influent Czech Republic 2558208 
SRR10688476 Influent Czech Republic 2905240 
SRR1616982 Influent Germany 28295346 
SRR8648012 Influent Germany 28956220 
SRR8648017 Influent Germany 27404044 
SRR11088457 Influent Germany 44320206 

SRR11088400 Influent Germany 57139054 
SRR11088463 Influent Germany 58676406 
SRR11088390 Influent Germany 76746744 
SRR8749025 Influent Hong Kong 32907056 
SRR8583493 Influent Hong Kong 82968824 
SRR14455375 Influent Hong Kong 75416542 
SRR8208344 Influent Hong Kong 111696122 
SRR8208343 Influent Hong Kong 119850802 
SRR10059215 Influent India 29401180 
SRR8749020 Influent Philippines 29839314 
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SRR8944125 Influent Portugal 8172260 

SRR11567527 Influent Puerto Rico 92853576 
SRR10059214 Influent Sweden 29569994 
SRR8749021 Influent Switzerland 31155086 
SRR8573804 Influent Uruguay 34630474 
SRR8749023 Influent USA 27889454 
SRR13208900 Influent USA 93321484 
SRR13208907 Influent USA 108997142 
SRR15972293 Sludge China 62539492 
SRR11593520 Sludge China 741557880 
SRR8648015 Sludge Germany 22764738 
SRR8648014 Sludge Germany 27371736 

SRR8648013 Sludge Germany 36551844 
SRR11088394 Sludge Germany 48022550 
SRR11088425 Sludge Germany 55797692 
SRR11088423 Sludge Germany 63918988 
SRR11235434 Sludge Germany 76346464 
SRR11088424 Sludge Germany 122539802 
SRR11088415 Sludge Germany 206564650 
SRR8223441 Sludge Hong Kong 82669882 
SRR8205411 Sludge Hong Kong 106889030 
SRR8208348 Sludge Hong Kong 101675980 
SRR1544596 Sludge Luxembourg 56920250 
SRR9006530 Sludge Luxembourg 59705684 

SRR14610242 Sludge Singapore 101381416 
SRR9637883 Sludge South Korea 39396822 
SRR9637882 Sludge South Korea 48162578 
SRR9637884 Sludge South Korea 93692160 
SRR9827771 Sludge USA 7064390 

SRR16002673 Sludge USA 49117576 
SRR9827769 Sludge USA 1467906 
SRR13208905 Sludge USA 91405164 
SRR9827768 Sludge USA 79498494 
SRR9827758 Sludge USA 96491226 
SRR9827762 Sludge USA 100101370 
SRR9827761 Sludge USA 106525534 

SRR9827759 Sludge USA 110151404 
SRR8239393 Sludge USA 538624998 
SRR7638776 Effluent China 11918058 
SRR13287460 Effluent China 86494806 
SRR10688477 Effluent Czech Republic 2854656 
SRR10346178 Effluent Germany 17726998 
SRR1237782 Effluent Germany 31723714 
SRR8648016 Effluent Germany 26212190 
SRR8648011 Effluent Germany 24443552 
SRR11088403 Effluent Germany 49003252 
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SRR11088420 Effluent Germany 45787540 

SRR11088367 Effluent Germany 52685176 
SRR11088386 Effluent Germany 60064978 
SRR8208349 Effluent Hong Kong 91172100 
SRR8584358 Effluent India 31505234 
SRR6158302 Effluent Italy 20110778 
SRR6158309 Effluent Italy 19825978 
SRR6158313 Effluent Italy 23467288 
DRR198516 Effluent Japan 24927576 
SRR11567528 Effluent Puerto Rico 69412182 
SRR8204324 Effluent Spain 12766324 
SRR13208893 Effluent USA 88501942 

SRR13208889 Effluent USA 89023800 
SRR10131203 Freshwater Brazil 27024752 
SRR12874346 Freshwater Canada 40863560 
SRR10868588 Freshwater Canada 27593920 
SRR8517159 Freshwater Canada 62005698 
SRR8517161 Freshwater Canada 78978478 
SRR12676972 Freshwater Canada 128198488 
SRR14576912 Freshwater China 80424692 
SRR10492803 Freshwater China 69277724 
SRR14368440 Freshwater China 69789782 
SRR14307622 Freshwater China 94189640 
SRR14576923 Freshwater China 94668294 

SRR14307628 Freshwater China 97058800 
SRR14307624 Freshwater China 96303928 
SRR10599111 Freshwater China 101659050 
SRR9924797 Freshwater China 129695962 
SRR9302965 Freshwater China 392760680 

SRR9302958 Freshwater China 345656552 
SRR9302961 Freshwater China 426528358 
SRR9302963 Freshwater China 427445344 
SRR9302960 Freshwater China 403286044 
SRR8894379 Freshwater China 556564756 
SRR14307626 Freshwater China 95570234 
SRR10688474 Freshwater Czech Republic 2394602 

SRR12274745 Freshwater India 35988250 
SRR12274752 Freshwater India 35973620 
SRR12274748 Freshwater India 36807528 
SRR12274739 Freshwater India 37640628 
SRR11700415 Freshwater Nepal 90459524 
SRR11567533 Freshwater Puerto Rico 89732688 
SRR12053438 Freshwater Russia 195746714 
SRR8561391 Freshwater Russia 568594310 
SRR13013687 Freshwater Tanzania 98735066 
SRR8436560 Freshwater USA 11364226 
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SRR9289418 Freshwater USA 18543892 

SRR12197278 Freshwater USA 18567990 
SRR12197256 Freshwater USA 20315966 
SRR12197248 Freshwater USA 22662822 
SRR12197222 Freshwater USA 23479332 
SRR8075987 Freshwater USA 37008680 
SRR12197250 Freshwater USA 30828778 
SRR14371733 Freshwater USA 76097452 
SRR13490378 Freshwater USA 62328892 
SRR8075952 Freshwater USA 46742322 
SRR8075963 Freshwater USA 52218732 
SRR8075993 Freshwater USA 39903310 

SRR14240539 Freshwater USA 40454146 
SRR8075945 Freshwater USA 83790046 
SRR14240540 Freshwater USA 51348758 
SRR14240538 Freshwater USA 51359896 
SRR14240541 Freshwater USA 51830844 
SRR14240542 Freshwater USA 57324576 
SRR13434397 Freshwater USA 213846214 
SRR12261223 Freshwater USA 189183200 
SRR11472087 Freshwater USA 188886590 
SRR11555629 Freshwater USA 201081816 
SRR10520228 Freshwater USA 195110656 
SRR11557471 Freshwater USA 298875516 

SRR14120374 Freshwater USA 76898234 

 

4.2. Taxonomic Annotation 

 

 For the analysis of the raw reads, these were aligned using the KMA aligner against the 

SILVA database obtained from SortMeRNA. The matching 16S rRNA reads ratio with the total 

reads was displayed in the below sns.boxplot (Figure 14 a). It is noticeable that there is a lower 

bacterial diversity in the freshwater samples when comparing with the wastewater samples, 

which also have an increasing bacterial ratio from the WWTP start (influent) until the treated 

effluent.   

 To evaluate the assembly processing, the samples contigs were aligned using the 

previously 16S rRNA database and the BLASTn aligner with 80% similarity and 75%, 50% and 

10% coverage, matching any database sequence with higher coverage than the selected 

threshold (Figure 14 b, c, d). By using 10% coverage threshold (corresponding to 
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approximately 150bp of the 1500bp of the 16S rRNA gene) some of the non-matching samples 

with the template database when using 75% or 50% coverage threshold have shown hits, as 

expected.  This, may also be an indicator of data loss, meaning that some of the reads are not 

being properly assembled. In fact, that is a problem already described in the literature [183]. 

Being the 16S rRNA gene a gene with several repetitive regions the assembly may be 

challenging and result in several errors.  

 Comparing both alignments, the unassembled freshwater samples (Figure 4 a) that had 

the lower ratio average went to the second highest average in the assembled analysis (Figure 

4 d). This result can be explained due to the lower complexity of the freshwater biome in 

comparison with the wastewater biome, indicating that with the higher environmental 

complexity the more prone the samples are to information loss in the assembly process. 

 

Figure 14. a) SILVA reads per total reads ratio; SILVA reads per total contigs ratio: b) with a 75% coverage threshold; c) with 
a 50% coverage threshold; d) with a 10% coverage threshold.  

 The PCA of taxonomic analysis with the relative abundance of Kaiju raw reads was 

conducted using the sklearn decomposition PCA library for Python. The PCA charts (Figure 15), 

of the previous dataset (Table S 1), do not show any evident clusters based on the water type 

across all taxonomic levels. As expected, with higher taxonomic specificity the more 

differentiated the samples get. However, also less reads will be classified, resulting for 
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example in what was observed for the order and family levels, where the taxonomy is more 

shared between the samples than in the higher taxonomic levels (phylum and class). These 

results show that there is no particular bacterial homology that can distinguish the samples 

by water type. It is noticeable that there is a wide variety of both unique combinations of 

bacteria and in some cases close similarity across all samples. 

 Given the outline of the taxonomic analysis, it is not expected to encounter a 

biomarker 16S rRNA gene. In fact, this result was more or less expected considering the close 

ecological proximity among the environments. For that reason, we tried to find other 

biomarkers, that will be explored  in the next subchapter, with the characterization of the 

samples ARGs profile. 

 

Figure 15. PCA of taxonomic analysis with the relative abundance of Kaiju reads: a) phylum; b) class; c) order; d) family; e) 
genus and f) species. 
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4.3. ARGs Profiling and core resistome definition 

 

 The ResFinder database was inputted to the CARD/RGI tool with a threshold of 90% 

identity and 90% coverage. From the 3153 ARGs in ResFinder, 2917 were matched with ARGs 

from the CARD database, meaning that 236 ResFinder ARGs were unmatched along with 1717 

CARD ARGs. In this first approach, the merged database resulted in a loss of 1953 ARGs. The 

second approach was based on creating ARGs clusters by similarity with a threshold of 90% 

through CD-HIT-est, guaranteeing that all the ARGs would be present in the merged database, 

individually or represented by a reference sequence. The result was a set of 1278 clusters, 

from which 579 were single sequence clusters. 

 The raw reads were inputted to the ResFinder tool, as it uses embedded KMA with the 

ResFinder default settings. This task was not performed in the CARD/RGI tool as it does not 

allow raw reads as inputs. The “Rf_to_CARD” column uses the first approach used for the 

merged databases and the Reunion column merges the annotations from the CARD and 

Rf_to_CARD columns. From the annotation using the CARD/RGI and ResFinder tool, from the 

original dataset, only 92 assembled samples had non-empty annotations from both tools, 

remaining: 28 influent, 28 sludge, 17 effluent and 18 freshwater. The highest number of ARGs 

for a given sample in the Reunion column was 329 AGRs and the lowest 5 ARGs. With an 

average of 63 ARGs per sample. The first annotations using the ResFinder and CARD/RGI tools, 

together with variant removal, resulted in the definition of the core resistome described in 

Table 3, considering a prevalence of 90% of the samples. The annotation was performed for 

the assembled contigs and for the raw reads (“ResFinder_NP” (non-processed).  

 At this stage, it was evident that information loss due to assembling was a problem not 

only during the taxonomic analysis but also showed major gaps in the ARGs annotation. As 

found elsewhere, the data loss in some cases mean that only 24.2-36.4% of reads are 

assembled in several metagenomic analyses [184]. 
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Table 3. Core resistome (ARGs identified in >90% of the samples), using the ResFinder and CARD/RGI tools, using the 
assembled contigs and the raw reads, “Rf_to_CARD” uses the merged database annotation applied to the “Reunion” 

column. 

Type of sample ResFinder CARD Rf_to_CARD Reunion ResFinder_NP 

Assembled contigs Raw reads 

Influent none adeF none adeF 

msr(E), sul2, sul1, qacE, 

aph(6)-Id, erm(B), 

mph(E) 

Sludge none adeF none adeF sul2, sul1, qacE 

Effluent none adeF none adeF 
msr(E), sul2, sul1, qacE, 

mph(E), aph(6)-Id 

Freshwater none adeF none adeF none 

 

 The raw reads were then aligned with KMA against the ResFinder Database using the 

extended features tag, to obtain the read hits relative abundance, allowing to profile the 

samples for acquired ARGs. From the raw reads annotation none of the samples had zero 

ARGs annotation, in contrast with the previous method where 44% of the assembled samples 

had no ARGs annotations. 

  The top 10 most abundant resistance phenotypes, according to ResFinder annotation 

are represented in Figure 16. 

  There was no considerable diferences using the relative abundance of the 10 

predominant AMR classes. Thus, the following ARGs analysis focused only on ARGs, using the 

KMA tool and raw reads (which are processed during the KMA run time) and the CD-HIT-est 

merged database. No variants were removed after the annotation process. 
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Figure 16. Relative abundance of the 10 most abundant AMR classes, using KMA “-ef” tag with the ResFinder database. 
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 The boxplots bellow (Figure 17 and Figure 18), show that the ResFinder database 

detects fewer ARGs in comparison with the CARD database. The ARGs relative abundance 

decreases with the WWTP treatment along with the ARGs ratio per bacteria. The freshwater 

biome, which has the lowest 16S rRNA gene relative abundance (Figure 14 a), also has the 

lowest ARGs relative abundances considering the total number of reads of the sample or the 

bacteria abundance. 

 

Figure 17. ARG reads relative abundance: on the left side using ResFinder database and on the right side using the CARD 
database. 

 

Figure 18. ARG reads per 16S rRNA reads: on the left side using ResFinder database and on the right side using the CARD 
database. 

 22 ARGs were identified in the resulting 90% prevalence core resistomes for each type 

of sample with the ResFinder database (Figure 19), from these: 14 in influent, 10 in sludge, 10 

in effluent and 0 in freshwater. From these,  7 influent, 4 sludge and 3 effluent unshared ARGs.  

 In the 90% prevalence core resistome with the CARD database (Figure 20), 53 ARGs 

were found: 44 in influent, 29 in sludge, 31 in effluent and 3 in freshwater. As expected the 

untreated wastewater has the biggest core in comparison with the other water types. Only 
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the wastewater samples presented unshared ARGs, influent (17), sludge (3) and effluent (1), 

while all of the freshwater core ARGs were shared with all wastewater types.  

 Not surprisingly, the core resistome obtained with CARD or ResFinder annotations are 

proportional to the size of the respective databases. In both core resistomes, were identified 

shared ARGs across the wastewater samples (influent, sludge, effluent), 4 in the ResFinder 

core resistome and 20 in the CARD core resistome (Figure 19 and Figure 20).  

 Both annotations were converted using the CD-HIT-est database: the ResFinder 

resistome went from 22 core ARGs to 36 core ARGs; the CARD resistome went from 53 ARGs 

to 63 core ARGs. These results are due to the ARGs annotation conversion into the clusters 

reference ARGs.  

 Figure 21 shows the combined core resistome for both databases after annotation 

conversion accordingly to the CD-HIT-est database, the “Cluster Reunion Core” for 90% 

prevalence was constituted by 68 ARGs. A noticeable increase was observed in the core ARGs 

while preserving the unshared ARGs and the 3 shared ARGs across all water types (Cluster 

701|-|ARO:3004480|Bado_rpoB_RIF, Cluster 702|+|ARO:3000501|rpoB2 and Cluster 718|-

|ARO:3004074|MuxB).  

 The ARGs that are part of the core resistomes of wastewater samples (influent, sludge 

and/or effluent) but not of freshwater samples were considered as the main candidates for 

retrieving biomarker genes, as presented in the next subchapter. 
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Figure 19. ResFinder core Resistome for 90% prevalence using KMA and raw reads. 

 

Figure 20. CARD core Resistome for 90% prevalence using KMA and raw reads. 



 

 
52 

 

 

Figure 21. Cluster Reunion core Resistome for 90% prevalence using KMA and raw reads. 
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4.4. Biomarker ARGs and Consensus Sequences 

 

 As described in the previous section 65 ARGs were identified as putative biomarkers, 

due to their presence in the core resistome of wastewater samples but not in freshwater 

samples. To increase the accuracy of this definition, a soft core (ARGs present in >75% of the 

samples) was also determined using the soft_full function. The 4 ARGs initially classified as 

putative biomarkers but not present in the soft-core of the freshwater samples (Cluster 

706|+|2810008-2813197|ARO:3000804|MexF, Cluster 715|-|23986-

27124|ARO:3004144|AxyY, Cluster 725|-|2847775-2850886|ARO:3004075|MuxC, Cluster 

731|-|4116187-4119265|ARO:3003693|MexK) were excluded from the list of possible 

biomarkers. Curiously, the excluded clusters were present in the core of all wastewater types. 

 From the 61 Cluster Reunion Core for 90% prevalence (Figure 21), 40 clusters were 

inputted to EMBL-EBI Emboss Cons obtaining cluster sequences, in combination with the 

remaining 21 single sequences, and a database with representative biomarker sequences was 

constructed.  

 As a validation, the biomarker database was used as a template database using KMA 

and the wastewater and freshwater samples were aligned against the biomarker database. 

Following the rationale that the genes should flow in the same direction of the water (influent 

> sludge > effluent > freshwater) the putative biomarkers for one type of water were searched 

in the other samples, expecting that for example a gene characteristic of freshwater should 

be also present in the upstream samples (influent, sludge and effluent). That analysis is 

represented in Figure 22 which shows the biomarkers found in wastewater aligned against all 

the water types in a heatmap.  After this validation, the putative biomarker cluster12 is not 

indicated as a biomarker due to the loss of sensitivity as a result of the transition of the cluster 

to a consensus sequence. The remaining 60 potential biomarkers can be used to monitor ARGs 

contamination from WWTP to other receiving environments. 
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Figure 22. Heatmaps of the Water Types Biomarkers presence in the freshwater and wastewater dataset. 

 

4.5. ARGs Transferability (Deep Learning) 

 

 To develop a classifier able to distinguish ARGs transferability, between acquired and 

intrinsic, we trained and evaluated distinct DL models considering different encodings and 

descriptors. The intrinsic ARGs, as stated by EUCAST “Expected Resistant Phenotypes”, are the 

expected ARGs for a given species with an occurrence superior to 90%, which means that 

these ARGs, being expected, occur naturally. On the other hand, acquired ARGs must be 

closely monitored as new bacteria can develop AR by either genetic mutations or acquired 

ARGs. Thus, the correct distinction between the two ARG types is critical to monitorization 

and surveillance efforts. 

 As mentioned in chapter 3.7 the constructed dataset was inputted to Propythia. The 

configuration settings were set as in Figure 13 The dataset consists of 2654 ARGs, according 

to their transferability the data divides in two labels: 215 intrinsic genes (0) and 2439 acquired 

genes (1). Given that the dataset is extremely unbalanced, we resorted to SMOTE to generate 

new synthetic samples based on the original samples (Figure 23). 
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 Seven DL models were obtained through different conjugations of model type and 

descriptor or encoding type (Table 4). The training was composed by 60% of original dataset 

and the remaining with SMOTE synthetic samples. The test and validation datasets only used 

original ARGs samples, each was composed by 20% of the original dataset.  

 

Figure 23. On the left is represented the scatter plot for the original dataset distribution using descriptors, on the right side is 
represented the dataset with the oversampling using SMOTE. 

 All the DL models tested shown promising results concerning ARGs transferability 

classification. The descriptor mode in combination with the multilayer perceptron (MLP) 

model, according to the confusion matrix, appears to have better results while using the 

synthetic samples for classifying the minority labels in the test dataset, although it is 

outperformed by the other models and modes combination when classifying the negative 

labels. 

 ProPythia, also had the option of k-mer one-hot encoding, due to the ARGs length it 

was considered that the one-hot enconding would be enough as it is the same as a k-mer one-

hot encoder where k=1. The remaining models, CNN-LSTM and CNN-GRU, were not used as 

these result from combinations of the used models, and similar results would be expected to 

be obtained. No hyperparameter tunning was performed due to malfunction problems when 

using ProPythia, the default hyperparameters were used as shown in Figure 13. 



 

 
56 

 

Table 4. Reports of Deep learning models obtained through ProPythia: multilayer perceptron (MLP); convolutional neural 
networks (CNN); Long short-term memory (LSTM); gated recurrent unit (GRU). 

 

 To validate the models, stratified k-fold cross-validation was conducted (k=5), similarly 

to k-fold cross-validation, although it performs stratified sampling instead of random 

sampling. In Table 5 the mean values of the used metrics are displayed of the 5 folds per DL 

model. The same approach was used for the model construction as before, the training data 

was obtained through a conjugation of synthetic (SMOTE) and original data while the 

validation data and test data were exclusively generated with original data. As it is still 

considered an imbalanced dataset, the ROC-AUC metric is the most appropriate metric to 

evaluate the obtained models, in contrast with the conventional accuracy metric, which can 

lead to poor generalization results because the classifiers tend to predict the largest size class. 

Table 5.Reports of the previously obtained models using Stratified kfold validation (k=5). 

 

 After assessing the Table 4 and Table 5 results, there are no significant differences 

between the usage of descriptors or encoders, though, in some cases the chemical encoding 

seems to be slightly outperformed by one-hot enconding, the small variation of results seems 

Acc. MCC ROC-AUC F1 Precision Recall Conf. Matrix

MLP Descriptors 0.981 0.887 0.979 0.990 0.998 0.982 [42  1] [  9 479]

One-hot encoding 0.983 0.881 0.906 0.991 0.984 0.998 [35  8] [  1 487]

Chemical encoding 0.987 0.909 0.929 0.993 0.988 0.998 [37  6] [  1 487]

One-hot encoding 0.976 0.837 0.923 0.987 0.988 0.986 [37  6] [  7 481]

Chemical encoding 0.987 0.909 0.929 0.993 0.988 0.998 [37  6] [  1 487]

One-hot encoding 0.983 0.883 0.927 0.991 0.988 0.994 [37  6] [  3 485]

Chemical encoding 0.985 0.897 0.939 0.992 0.990 0.994 [38  5] [  3 485]

CNN

LSTM

GRU

DL Model

Acc. MCC ROC-AUC F1 Precision Recall

MLP Descriptors 0.858 0.526 0.810 0.913 0.975 0.867

One-hot encoding 0.892 0.606 0.811 0.934 0.974 0.907

Chemical encoding 0.888 0.586 0.796 0.933 0.970 0.906

One-hot encoding 0.884 0.525 0.768 0.931 0.966 0.906

Chemical encoding 0.885 0.514 0.755 0.932 0.964 0.910

One-hot encoding 0.886 0.544 0.778 0.933 0.968 0.907

Chemical encoding 0.887 0.548 0.778 0.933 0.968 0.908

DL Model

CNN

LSTM

GRU
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to be related with the model type choice. Although, when looking at the stratified kfold 

validation table, the MLP and CNN (one-hot encoding) show the highest ROC-AUC, indicating 

that the classification consistency obtained in Table 4 is maintained when using smaller 

amounts of data and different data.  
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5. Conclusion and Future Work 

 

 As a consequence of the amount of data being deposited in public databases, 

metagenomic surveillance studies have thrived, as the need for a wet laboratory or culture 

dependent methods has been suppressed by the currently available tools, in combination with 

a wide range of bioinformatics tools also available. It is now possible to conduct metagenomic 

surveillance at a global scale with a suited dataset for a research purpose as well as an 

appropriate pipeline. Precisely, in this work,  a metagenomic dataset was manually 

constructed, including wastewater and freshwater samples, from the NCBI SRA database and 

its analysis was conducted using available bioinformatics tools and a newly constructed 

Python pipeline. 

 On the other hand, there are still many challenges and efforts that must be surpassed, 

as shown in this study. First, to find good quality metagenomic samples requires a lot of 

manual curation and metadata validation. Second, the poor quality of the metadata available, 

impairs a good characterization of the samples. Third, the processing/assembly tools available 

do not seem to keep up with the complexity of some metagenomic environments leading to 

loss of information (although there are some tools that can handle raw data and deliver the 

expected results, such as KMA). Fourth, the growing amount of data deposited in public 

databases requires a major responsibility in the curation and organization of the data; 

different ARGs databases use different nomenclatures for the same ARGs under different 

accession numbers, which can differ if the sequence is in aminoacids and/or nucleotides. 

 In this work, some of the mentioned concerns were taken into consideration and the 

main focus was to solve and overcome them. The loss of ARGs information was prevented 

using raw reads and the KMA aligner, and, for the first time, it was possible to obtain a flexible 

and versatile core resistome, in a way that enabled multiple database analysis as well as their 

conjugation with adjustable ARGs prevalence in the core resistome, using the developed 

Python pipeline. The strategy of combining the CARD and ResFinder databases through ARGs 

similarity has led to major improvements regarding ARGs detection, the core resistomes of 

both annotations were extended with the clusters nomenclature and even combined resulting 

in a multidatabase core resistome. As far as we know, this approach was not yet described in 
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the literature and may bring an important contribution to the analysis of the resistome, not 

only from metagenomic samples but also for example for the characterization of the 

resistome of single strains. 

 As a result, a set of 60 biomarkers were obtained that, in the future, can be used in 

culture independent or in silico analysis for monitoring the presence and spread of ARGs from 

wastewater origin in multiple receiving environments. From the 68 core resistome sequences, 

special attention is given to the excluded freshwater and wastewater ARGs that are part of 

both core resistomes, these ARGs have shown to be present in the vast majority of samples 

throughout the complete urban water cycle and the in freshwater environments, therefore 

these are considered to be expected in both environments and thus not interpreted as 

biomarkers for AR in the receiving environments of WWTP. In the end, a set of 60 biomarkers 

was obtained that, in the future, can be used in culture independent or in silico analysis for 

monitoring the presence and spread of ARGs from wastewater origin in multiple receiving 

environments. This is particularly important nowadays, since treated wastewater is being 

pointed as one of the first solutions to overdue the water scarcity, being recommended their 

use for irrigation, namely of agricultural fields for the countries in a higher water stress. Figure 

22 

 From the 7 DL models, the CNN (one-hot encoding) stands out as the most consistent 

model, after stratified kfold validation. Although, no hyperparameter tunnning was performed 

the models showed promising results regarding ARGs transferability, even with an 

umbalanced dataset, it as been proven that with some other tools (SMOTE) it is possible to 

generate high quality models through their evaluation with the proper metrics, such as the 

ROC-AUC. Even though the metrics have considerably decreased, as a result of stratifying the 

data 5 times, the models still show robust results towards the classification of ARGs 

tranferability. 

 For the future, there are some improvements and further steps that can be done, 

namely: i) the construction of an ARGs intrinsic database; ii) upgrades to the Python pipeline 

making it more user friendly and fully automated; iii) inclusion of samples from other origins 

to validate the biomarkers and try to reach a smaller number and more specific ARGs that 

improve the monitoring efficiency; iv) DL models optimization through hyperparameter 

tunning. 
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