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Abstract—The evaluation of Indoor Positioning Systems (IPSs)
mostly relies on local deployments in the researchers’ or partners’
facilities. The complexity of preparing comprehensive experi-
ments, collecting data, and considering multiple scenarios usually
limits the evaluation area and, therefore, the assessment of the
proposed systems. The requirements and features of controlled
experiments cannot be generalized since the use of the same
sensors or anchors density cannot be guaranteed. The dawn of
datasets is pushing IPS evaluation to a similar level as machine-
learning models, where new proposals are evaluated over many
heterogeneous datasets. This paper proposes a way to evaluate
IPSs in multiple scenarios, that is validated with three use cases.
The results prove that the proposed aggregation of the evaluation
metric values is a useful tool for high-level comparison of IPSs.

Index Terms—Evaluation; Indoor Positioning Benchmarking

I. INTRODUCTION

In the last decade, IPSs have attracted interest from re-
searchers and industries showing, nowadays, good perfor-
mance and accuracy in different scenarios and test cases. In
literature, especially reading papers from specific conferences
and scientific journals, the evolution of these systems is quite
clear. Starting from the first works in this field, researchers
have shown several techniques and technologies able to ac-
curately estimate a target position, e.g., people or end-users
devices. For example, by examining the proceedings of the
Indoor Positioning and Indoor Navigation (IPIN) conference,
a reader can clearly observe that, up to now, several efforts
have been made to create common evaluation frameworks and
to set common scenarios to increase the chance of generalizing
the results obtained by researchers. With these considerations
in mind, it is worth noting the valuable results of the IPIN
Competitions [1, 2] in which organizers set several tracks in
the same scenarios, offering a common testbed to competitors
in order to evaluate their own systems.
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Organizers of the IPIN Competitions have also proposed an
evaluation framework [3], nowadays widely adopted by the
research community for evaluating online and offline systems.
With the same goal of offering common data and scenarios
for evaluation purposes, several researchers have proposed in
the last years free and accessible datasets collected in different
environments (e.g. hospitals [4], universities [5], malls [6], or
factories [7]) and exploiting different positioning technologies.

All those efforts have led to systems and technologies quite
stable to hit the market. Nevertheless, the main challenge
in this field is to be able to generalize the results and the
methods of the systems in heterogeneous environments. In
other words, systems are starting to show robust performances
when deployed in a specific scenario, but their performances
may drop significantly if deployed in a different scenario. In
literature, IPSs are shown and tested in real-world scenarios
but they are generally developed and tuned to obtain the best
performance (e.g., the positioning accuracy) in the considered
testing environments. This customization reduces the general-
ization ability of an IPS to work in any scenario.

The huge availability of public datasets could help re-
searchers to find the best system settings, but typically the
IPSs are still only evaluated in one or two scenarios (see
Fig. 1). Furthermore, we remark that a shared framework for
evaluating over multiple datasets could improve the evaluation
process. For example, such a framework can increase the
trustiness in sharing scientific results and can enable research
reproducibility. We also remark that, a consensus on which
features are important during the evaluation process is still
missing. In fact, if the overall accuracy is an important
metric, the execution time and the computational cost are also
fundamental variables for IPSs which have the ambition to
overcome the research grade. The main contributions of this
paper can be summarized as follows:

« We introduce a novel way to aggregate the evaluation
metrics, considering different, heterogeneous, scenarios;

« We propose guidelines and recommendations for guiding
researchers in evaluating their positioning systems;

o Through use cases we validate our proposal showing how
multiple datasets can improve the IPSs evaluation.



II. RELATED WORK

Traditionally, the evaluation of novel Machine Learning
(ML) models has included a large setup with multiple diverse
datasets, i.e., the evaluation is not limited to just one problem,
and it incorporates several datasets covering a heterogeneous
set of problems including, for instance, the identification of iris
plants, prediction of whether an income exceeds an amount
based on census data, the origin of wines, or detection of
the presence of a heart disease in a patient, among many
others. The traditional datasets can be found in the University
of California, Irvine (UCI) machine-learning repository [8].

Bradley investigated the use of the area under the receiver
operating characteristic (ROC) curve (AUC) as a performance
measure for ML algorithms in [9]. The metric evaluation
included a comparison with six ML models and six datasets
from UCI. Datasets were diverse and covered issues on post-
operative bleeding, breast cancer, diabetes and heart disease.

Yang et al. [10] introduced a survey of face-recognition
models where they identified nine datasets valid for training
purposes (where each photo contained just one individual)
and four datasets for testing purposes (presenting several
challenges for face recognition). The datasets were indepen-
dently collected by Kodak, Harvard University, Yale Uni-
versity, AT&T, and MIT among others. The authors of the
survey identified several weaknesses, namely, evaluation using
a modest-sized standard test set, “tweaking” the models to
get better performance on the test set or even testing on the
training set, which is an unacceptable practice in ML. Some
of these weaknesses have been often detected in the evaluation
of IPSs. For instance, collecting consecutive Received Signal
Strength (RSS) fingerprints and directly splitting the collected
dataset into training and testing with cross-validation might be
considered data leaking. The resulting test set would not be
fully independent, driving to over-optimistic accuracy. If the
operating system buffering is not taken into account, the same
fingerprint vector may end up in the training and test sets.
Yang et al. concluded that the fair and effective performance
evaluation requires careful design of protocols, scope, and,
above all, datasets.

Despite the fact that ML models are usually evaluated with
a “moderate” number of datasets as in [11], it is not unusual
to find works where the evaluation considers a very large set
of diverse datasets. Ferndndez-Delgado et al. [12] proposed an
evaluation with 121 datasets which was later adopted by Zhang
et al. [13]. Hynes et al. [14] provided an evaluation over 600
databases hosted on Kaggle. However, a review on ML [15]
has shown that most of recent works are evaluated with one or
two datasets, and that an evaluation with three or more datasets
is less frequently encountered in the current literature. The
new trends on deep learning applied to particular problems
and the existence of extremely large datasets (with millions of
samples) have driven the ML algorithms to computationally
demanding evaluation procedures. However, in localization do-
main, an evaluation considering many “traditional” moderate-
sized datasets is still possible [16].

Olson et al. [17] provided a comparison of a few ML models
using 165 real-world curated datasets from the Penn Machine
Learning Benchmark (PMLB) suite, which currently has has
299 datasets (April 2021). Several useful ways to summarize
the full results as images were also provided. Other ML tools —
such as WEKA, scikit-learn , TensorFlow or Keras— are easing
the integration of ML models in real-world implementations.

However, the level of evaluation carried out in the ML
domain is often not reached in the indoor-positioning area,
which usually relies on the evaluation of a single setup with
very controlled conditions. Collecting data for wireless indoor
positioning is a time-consuming and demanding procedure.
However, there are many attempts to provide public datasets
in this domain. Fruit of those datasets, Saccomanno et al. [16]
provided a comprehensive study where the relation between
Wi-Fi fingerprints and the spatial knowledge was explored for
indoor positioning using multiple datasets, which extended the
setup previously provided by Torres-Sospedra et al. in [18, 19].

Although there are several datasets and database reposito-
ries [20, 21] available for IPS evaluation, most research papers
still use their own closed setups or datasets. The 79 accepted
papers of the IPIN 2019 conference were analysed to have
a better picture of the current trends in evaluating IPS. The
results of the review are shown in Fig. 1, where it can be
seen that most of the works with empirical evaluation only
included 1 or 2 scenarios, and only two papers included 3 [22]
and 4 [23] scenarios respectively. These data lead to remark
the importance of finding a common benchmark for evaluation
purpose. The efforts in terms of standardization are increasing
and, in this context, guidelines and strategies for comparing
IPS in several and heterogeneous scenarios represent a step
forward in this research field. In fact, in order to understand
which technologies and techniques are more able to fit in
different environments, we should promote the adoption of
common datasets, and as future works we should probably try
to standardizing them, to promote reliable and robust systems.

Evaluation Scenariosin IPIN 2019 Papers
%of papers with 1, 2, 3, 4 and none evaluation scenarios

25.32%
m 1 Eval Scenario
= 2 Eval Scenarios
1.27% 3 Eval Scenarios
1.27%

59.49%
4 Eval Scenarios

m Without evaluation
12.66%

Fig. 1. Analysis of the evaluation of the regular papers presented in the IPIN
2019 Conference

In this paper, we would like to mimic the evaluation
procedures in ML, this time applied to IPSs, and show the
importance of evaluating IPSs with multiple diverse datasets
with the proposed aggregated metrics and visualization tools.



III. MATERIALS AND METHODS

This section focuses on the proposed methodology to ag-
gregate metrics and to how perform visual comparisons.

A. Aggregating evaluation metrics

Let’s suppose that we follow the Black-box testing approach
suggested in the ISO18305 [24] and discussed in [25]. Given
an IPS, its evaluation metric can be represented by:

scenario,trial
Mmethod (1)

where M represents the evaluation metric (e.g., mean posi-
tioning error, third quartile error, root mean squared error,
floor hit rate, execution time, among many others), method
identifies the evaluated method, scenario corresponds to the
evaluation scenario and trial corresponds to the trial number
(or execution run) for that scenario. The best value for a metric
depends on its nature. For instance, developers want to provide
IPS with low positioning error and high floor detection rate.

It is worth noting that in a dataset-based evaluation, the
scenario corresponds to the dataset itself, whereas the trial
corresponds to the execution run. In an on-line evaluation,
without datasets, the scenario can be considered the combina-
tion of the evaluation area and the positioning infrastructure.

In the simplest evaluation, with a single metric, scenario
and trial, several methods can be directly compared, i.e. the
method reporting the best metric value can be considered
the best solution. However, real-world evaluation may include
multiple runs or trials under the same scenario as the IPS
might be affected by environmental conditions or a random
initialization. For instance, in the IPIN annual competition,
the participants are able to provide multiple runs being the
trial with providing the best accuracy the used for ranking. In
other domains, such as machine learning where some models
depend on random initialization, the average over the multiple
runs is applied to obtain the final value for the metric. In
this paper, we aggregate the results for multiple trials as the
average among all the Ny,.;,;s number of trials.

Nirials scenario,t
t=1 Mmethod (2)

N, trials

As the metric values usually depend on the scenario, we
propose to normalize the metric to a base line becoming
the unitless metric. That normalization should be done with
respect to a simple method or configuration. In RSS-based fin-
gerprinting models, the baseline could be the 1-NN algorithm.

“(scenario __
method

. ) 1 scenario

scenario __ method (3)
method {scenario
baseline

In addition, a comprehensive evaluation should include differ-
ent scenarios covering multiple cases, since an indoor position-
ing solution may behave differently in two different scenarios.
To integrate different scenarios, we propose to report the
aggregated-values average and the standard deviation of the
baseline-normalized values for all scenarios as follows:

scenario

method (4)

N ZNscenarios
M _ scenario=1
method —

Nscenarios

The average of the baseline-normalized values is providing the
general behaviour of the method considering multiple scenar-
ios, whereas the standard deviation reflects the variability of
the metric along all the scenarios considered. When evaluating
an IPS, we target those methods providing the best averaged
value with the lowest possible deviation. It is worth noting that
here we use the term “best” on purpose as there are metrics,
such as the ones based on the positioning error, where the
averaged values should be as lowest as possible. On the other
hand in metrics such as the floor identification rate (percentage
of correctly identified floor number), the averaged values must
be as high as possible.

As the on-line evaluation of IPSs is very demanding, we
will integrate the proposed approach to aggregate the results
off-line. Thus, the IPSs will be evaluated with pre-recorded
datasets with independent dedicated training and evaluation
sets. Using the same dataset over the different trials should
not affect the evaluation metrics based on the positioning error,
as the data used is the same in the multiple runs. However, if
the method employed relied on a kind of random initialization
(such as a Neural Network), then the positioning error should
vary from run to run.

B. Comparing two different metrics over multiple datasets

Evaluation becomes more complex when several targets
must be accomplished. For instance, one could aim simultane-
ously at providing the lowest possible 3D positioning error and
the lowest execution time. With the proposed way to aggregate
a metric over different scenarios and trials, the simplest option
is to provide the information as a table with as many columns
as metrics considered. If the number of metrics is two, it can
be complemented with a scatter plot showing the average of
the baseline-normalized values for the two metrics.

If one would like to go a step further and show the results for
each dataset with the two metrics, we propose a novel graph-
ical representation (we call it a GMMS plot), which provides
four dimensions in a single plot. The x-axis corresponds to the
scenario (or dataset), the y-axis to the method and each plotted
element is a colored ellipse whose color (green range, white
and red range) indicates one evaluation metric and the shape
(horizontal, circled, vertical) stands for the other metric. Fig. 2
shows an example on how elements are displayed in a GMMS
plot according to the aggregated mean values of positioning
error e€3p and dataset execution time, pg. With respect to the
baseline, the more red the element is the worse (higher value)
7pB 18, in the same way the more vertical the element is the
higher €3p is. On the contrary, the greener the element is, the
lower 7pp is and, in the same way, the more horizontal the
element is, the lower e3p is. For the baseline values, we use a

white circle.

&p = 0.99 &p = 7.18
TB/B = 0.09 TB/B =0.16

€p = 0.88
B = 1.45

Er;]) = 1.00
78 = 1.00

Fig. 2. Example of elements in the GMMS plot



IV. USE CASES
A. Analysis on the parameters of the k-NN algorithm

As the first use case, we provide a general analysis of the
distance metrics for the k-Nearest Neighbour (NN) algorithm
used in fingerprinting. The intention is not to analyse the
algorithm, but to show the potential of the proposed aggrega-
tion metrics to perform a more general comparison. We have
considered 16 public as in [16, 18, 19] and the experiments
were run in a computer with Intel Core i7-8700 CPU and
Octave 4.0.3. Moreover, we consider two evaluation metrics
the mean positioning error, €3p, and the dataset execution time,
7pg- Due to the lack of space, we only show the aggregated
metrics and comment on particular results.

First, the analysis was run using the k-NN algorithm with
the following configuration: k¥ = 1, positive data represen-
tation [26] and the city block distance as distance/similarity
metric. This plain version of the k-NN can be considered
our baseline for further comparisons, whose full results are
reported in Table I. Please note that the metrics e3p and 7pg
provides the averaged values over 10 runs, whereas the metrics
e3p and 7pp are normalized to the baseline. The aggregated
metrics e3p and 7pg provides the average and standard dev. of
the normalized values across the 16 datasets.

TABLE I
FULL RESULTS OF 1-NN, CITY BLOCK DISTANCE AND POSITIVE DATA REP.

Absolute values Norm. values

Dataset  €3p (m) DB (8) €3D TDB
DSI 1 4.95 12.21 1 1
DSI 2 4.95 5.15 1 1
LIB 1 3.02 46.19 1 1
LIB 2 4.18 46.39 1 1
MAN 1 2.82 155.46 1 1
MAN 2 2.47 14.26 1 1
SIM 3.24 252.00 1 1
TUT 1 9.59 18.93 1 1
TUT 2 14.37 2.73 1 1
TUT 3 9.59 79.73 1 1
TUT 4 6.36 79.88 1 1
TUT 5 6.92 11.88 1 1
TUT 6 1.94 620.72 1 1
TUT 7 2.69 511.70 1 1
UJI 1 10.81 599.04 1 1
ulI2 8.05 2924.69 1 1

pp mean(std)
1.00 (0.00)

€3p mean(std)

1.00 (0.00)

Plain k-NN (baseline)

On the one hand, it can be clearly observed that the
execution time of the entire evaluation dataset (7pg) highly
depends on the dataset, as k-NN computational cost depends
on the number of training and evaluation samples. On the other
hand, the mean positioning error varies, ranging from almost
2m (TUT 6), to more than 14 m (TUT 2). This variability on
the timing and accuracy measurements might make a direct
comparison difficult. For example, a reduction of 50 cm in the
positioning error is more significant in dataset TUT 6 than in
TUT 2. Similarly, a reduction of 2s in the execution time is
more significant in dataset TUT 2 than in TUT 6.

Second, the analysis on the distance function used to
compare two fingerprints is shown in Table II. We provide the
aggregated positioning error esp and the execution time 7pp
of all the alternatives. For both metrics, we provide the average
and the standard deviation of the baseline-normalized values
over the 16 datasets. The distance metrics were evaluated
keeping the other two parameters of the baseline configuration
unaltered (positive data representation and k£ = 1).

TABLE I
COMPARISON OF THE AGGREGATED VALUES FOR THE POSITIONING
ERROR AND EXECUTION TIME FOR 1-NN WITH 14 DISTANCE METRICS.

Distance €D DB Distance €D DB

Kulezynskig 0.90(0.12) 1.84(0.02) City Block 1.00(0.00) 1.00(0.00)
Kulczynskis 0.90(0.12) 1.86(0.01) LGD 1.00(0.22) 2.09(0.25)
Motyka 0.90(0.12) 1.18(0.01) PLGD10 0.91(0.15) 3.15(0.32)
Ruzicka 0.90(0.12) 1.30(0.01) PLGD40 0.95(0.19) 3.15(0.32)
Soergel  0.90(0.12) 1.29(0.01) Euclidean 0.99(0.05) 1.02(0.01)
Sgrensen 0.90(0.12) 1.16(0.01) Neyman 1.28(0.36) 1.59(0.04)
Tanimoto 0.90(0.12) 1.48(0.01) Euclidean? 0.99(0.05) 0.92(0.01)

The left side of Table II shows the results on some dis-
tances that are equivalent between them in terms of sorting
the reference samples by distance to the operational sample,
and therefore they provide the same positioning errors (10 %
lower than in the baseline for all of them). However, they
differ in terms of computational costs, with an increase in
costs ranging from 16 % to 86 % on average. Among these
equivalent metrics, the Sgrensen distance is the one reporting
the best computational costs (only 16 % higher with respect
to the baseline). In general, the Sgrensen distance is reporting
lower positioning errors than the Euclidean distance (baseline
distance metrics) in most of the datasets, providing a mean
positioning error 25 % lower than the baseline for TUT 1.

The right side of Table II shows the results on the re-
maining metrics. Although the Euclidean distance and city
block are not equivalent, they are providing similar general
results in terms of averaged normalized positioning error when
considering all the datasets (0.99 and 1.0 respectively) and
computational costs (1.02 and 1.0 respectively). Despite the
former is performing one square per Access Point (AP) and
one square root operations and the later computes one absolute
value per AP, their computational times are almost the same
in all datasets (Tpg = 1 % 0.05). Despite these similarities in
the averaged case, their performance clearly depends on the
dataset (for UJI 1 the Euclidean distance is providing an error
12 % lower than the city block distance, but it is 7 % higher
for TUT 6). The Squared Euclidean (Euclidean? in Table II)
is equivalent to the Euclidean distance in terms of ranking
samples by distance but it has a lower computational cost
(1.02 vs 0.92), since the square root operation is not needed to
obtain an equivalent samples ranking. The three Log Gaussian-
based distances (LGD, PLGD10 and PLGD40) have attached
a significant increase of the computation time, but in some
cases they provide a great improvement on the positioning
error (e.g., TUT 1 and PLGD40, where the error has been
reduced a 45 % with respect to the baseline).



In the election of the best distance metric, some con-
cerns about the computational costs might raise. For instance,
PLDGA40 is better than Sgrensen for dataset SIM, their differ-
ence in the normalized positioning error is just 2 % (around
7cm if we consider the absolute positioning errors) but the
normalized computational costs are very different, 3.15 and
1.16 respectively. This means that to reach similar averaged
accuracy, the process to estimate the position takes more than
two times with PLGDA40 than with Sgrensen distance and the
gain in accuracy might be considered marginal. In our opinion,
the election of the best alternative should balance both metrics.
In case of similar positioning error, we should select the one
that is computationally efficient (green computing).

Finally, this analysis has shown that the distance/similarity
function does not only impact the positioning accuracy but
also the computational burden. The average of the baseline-
normalized values for all datasets provides the general behav-
ior. The standard deviation identifies where there exists a huge
dependency on the dataset and dataset-based analysis is needed
to select the optimal value for the parameter.

B. Comparison on clustering models for Wi-Fi fingerprinting

The second use case corresponds to the comparison of
clustering models to make faster the estimation of the indoor
position using k-NN algorithm. It is well known that k-
NN does not require a training phase but, in contrast, it is
inefficient as it needs to compute the distance/similarity func-
tion between the operational fingerprint and all the reference
fingerprints in the radio map.

One alternative to alleviate the computational burden is
to apply clustering models to the radio map, by generating
clusters that group fingerprints with similar features. Then,
in the operational phase one has to first search for the most
similar group (cluster) and then compute the distance function
to all the reference fingerprints falling into that cluster.

For the experiments, we have used the 16 datasets from the
first use case and the experiments were carried out on the same
desktop computer. The configuration of the k-NN estimator
for all the methods corresponds to the baseline previously
used with k£ equal to 1, the positive data representation and
the city block distance as similarity measure for fingerprint
comparison. We consider two evaluation metrics: the mean
positioning error, e¢3p and the dataset execution time, 7pp to
assess the performance of the clustering models.

Table III and Fig. 3 show the results of some well-
known clustering models (k-Means, k-Medoids, Fuzzy c-
Means, Affinity Propagation, DBSCAN, HDBSCAN and
Model-based) in the literature. k-Means, k-Medoids and Fuzzy
c-Means require the number of clusters as an input parameter.
For them, we have tested three values: 25; the square root of
the number of reference fingerprints in the radio map (r fpl);
and the number of reference fingerprints in the radio map
divided by 25 (r fp2). For DBSCAN-based methods, we used
the optimal values for the minimum number of points and the
distance used to locate the points in the neighbourhood.

TABLE III
RESULTS REPORTED BY THE SELECTED CLUSTERING METHODS

method params e3p mean(std)  7pp mean(std)
plain 1-NN - 1.00 (0.00) 1.00 (0.00)
k-means k = 0025 1.03 (0.03) 0.10 (0.03)
k-means k=rfpl 1.05 (0.05) 0.07 (0.04)
k-means k=rfp2 1.06 (0.06) 0.08 (0.04)
k-medoids k = 0025 1.06 (0.05) 0.11 (0.04)
k-medoids k=rfpl 1.08 (0.07) 0.08 (0.05)
k-medoids k=rfp2 1.09 (0.07) 0.08 (0.04)
c-means c = 0025 4.92 (8.92) 0.20 (0.17)
c-means c=rfpl 4.16 (5.19) 0.19 (0.13)
c-means c=rfp2 1.60 (0.84) 0.16 (0.15)
Affinity Propagation - 1.10 (0.08) 0.09 (0.04)
DBSCAN best params 2.01 (1.35) 0.12 (0.11)
HDBSCAN best params 2.18 (3.37) 0.31 (0.31)
Model Based - 3.92 (4.70) 0.22 (0.30)

Comparison of Clustering models

02}
@k-means k=0025  dc-means c=0025
k-means k=rfpl c-means c=rfpl
aQ k-means k=rfp2 c-means c:r%z
= 0.15 Ok-medoids k=0025  DBSCAN
- 0. k-medoids k=rfpl  BHDBSCAN
Q k-medoids k=rfp2 % Model-based
N : V APC
g O
5 017 @y [ *
< ;
0.05 | | ‘ ‘ ‘ ‘ ‘ ‘
1 1.5 2 2.5 3 3.5 4
normalized €3p
0.12
@)
:D“ 0.1 [
s v
N
= 0.08
£
2 0.06
0.04 i . .
0.95 1 1.05 1.1 1.

normalized €3p

Fig. 3. Visualization of the aggregated results reported by the clustering
methods (top figure) and zoom to the best results (bottom figure)

The results reported in the table and figure show that
all the clustering models reduce the computational time of
fingerprinting. However, the aggregated computational time is
high for HDBSCAN and Model Based as, in a few datasets,
they failed at creating the clusters. Regarding the aggregated
accuracy, we should discard DBSCAN, HDBSCAN, Model-
based and c-Means as the aggregated positioning error is
so high. The large variability might also indicate that those
models do not work well in certain circumstances. In fact,
according to the GMMS plot in Fig. 4, they do not work for
UJI 1 and some TUT datasets (vertical ellipsoids).

In the bottom part of Fig. 3, we can see that k-Means, k-
Medoids and Affinity Propagation Clustering are very similar,
being the k-means with k£ = r fpl presenting the best trade-off
between positioning error and execution time. The aggregated
metrics have proven to be useful to compare method as a full
analysis would be not possible. As an example, we provide
the full results for k-means with k = r fpl in Table IV.



TABLE IV
FULL RESULTS FOR k-MEANS WITH k£ = r fpl

Mean Positioning Error — e%D (m), e3p (m) and €3p (unitless)

Execution Time — TSB (s), 7B (s) and 7pp (unitless)

1 2 3 4 5 6 7 s 9 0 -
Dataset €3, €3  €p  €p  €p  €p  €p  €p  €p  €p €D

1 2 3 4 5 6 7 8 9 10

€3D o 7pB TDB DB DB DB DB TDB  7DB 7DB 7DB  TDB

DSI1 493 497 522 521 499 540 530 529 508 485 513 1.04 0.79 0.86 097 086 0.79 0.81 0.81 1.01 090 091 0.87 0.07
DSI2 494 513 501 525 472 488 510 575 492 478 505 1.02 0.59 0.52 053 054 053 053 0.60 052 062 058 0.56 0.11
LIB1 3.10 3.16 3.14 3.10 3.13 3.11 3.11 3.12 3.12 3.19 3.13 1.04 432 477 421 417 442 417 440 450 455 433 438 0.09
LIB2 429 4.18 426 454 4.07 427 422 419 416 442 426 1.02 479 5.64 454 447 545 462 498 492 567 481 499 0.11
MANI 285 289 282 288 295 284 297 284 294 282 288 1.02 296 3.08 292 292 282 289 295 3.02 298 292 295 0.02
MAN2 2.62 246 248 256 245 243 240 260 235 245 248 1.01 096 093 092 1.04 098 094 0.88 092 098 1.02 096 0.07
SIM 3.27 328 336 333 328 335 331 327 337 335 332 1.03 5.00 495 493 502 488 488 498 494 489 485 493 0.02
TUT1 10.06 943 9.76 10.03 8.99 10.12 10.77 9.79 9.37 10.36 9.87 1.03 125 115 111 111 106 115 139 1.17 112 1.19 1.17 0.06
TUT2 13.84 13.39 16.02 12.42 13.98 14.19 13.33 14.35 13.91 16.83 14.22 0.99 0.29 033 029 029 031 030 0.28 035 030 030 030 0.11
TUT3 9.96 10.02 10.02 10.10 9.92 9.86 10.14 9.88 10.05 994 999 1.04 1699 11.62 13.30 10.79 13.69 13.29 12.20 13.28 11.52 13.25 12.99 0.16
TUT4 6.62 6.74 6.64 6.67 674 648 6.54 660 659 6.69 6.63 1.04 5.12 531 5.12 484 8.17 482 550 488 6.08 494 548 0.07
TUTS 774 729 7.14 713 7.2 750 7.51 740 737 7.10 7.33 1.06 136 130 149 153 139 137 146 163 135 1.62 145 0.12
TUT6 225 214 220 211 217 219 221 227 220 213 219 1.13 3747 31.15 35.34 45.38 40.16 33.18 40.99 39.89 33.41 41.70 37.87 0.06
TUT7 291 284 292 287 292 290 288 287 284 293 289 1.07 3048 42.74 29.63 27.72 33.01 31.98 31.57 34.87 29.53 35.86 32.74 0.06
Ul 12.76 12.49 13.01 13.10 12.28 12.78 12.72 12.85 13.06 13.23 12.83 1.19 11.75 1542 1234 12.76 12.40 11.61 13.61 13.38 10.52 11.95 12.57 0.02
U2 872 836 889 854 843 840 851 836 853 8.61 854 1.06 43.39 50.69 48.61 44.23 4427 49.47 44.85 44.20 49.26 47.02 46.60 0.02
mean 1.05 ~ mean 0.07
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Fig. 4. GMMS representation for the results provided by the clustering
methods for the 16 datasets. The baseline is the plain 1-NN method.

Despite the fact that a better analysis can be performed
with the full results (see Table IV), one can focus on them
after filtering out those methods that do not provide good
general results. After selecting k-means with £ = rfpl as
best choice, we can see that the model provides relative good
results except for dataset UJI 1. In general, the computational
time reduction is significant in all datasets, especially in those
that have large radio maps (UJI 1, UJI 2, SIM, and MAN 1).
The weakest point of k-Means, even providing the best general
results, is that its accuracy and execution time depend on the
partition done over the radio map. The variability in the error
between runs is evident in Table IV, where the superscript in
the evaluation metrics stand for the trial/run. k-means with
k = rfpl has similar general accuracy that the baseline in the
best run, whereas it is similar to affinity propagation (which
provides deterministic clustering) in the worst.

C. Data Compression

The third use case, in which we show the benefits of
the aggregated metrics, is based on studying the impact of
the database compression using Adaptive k-Means (AkM)
algorithm [27] on its positioning capabilities. In this use
case, we would like to apply the aggregated metrics to first
determine the optimal parametrisation of AkM and then to
compare to the plain 1-NN.

For the first part, to determine the optimal parameters, we
cannot use the same baseline method for results normalization,
as some metrics are dependent on the clustering approach se-
lected. In particular, the studied metrics are Mean Square Error
(MSE) after Stage 1 and Stage 2 of the AkM compression
(MSEg, and MSEg5) , Normalized Mean Positioning Error
(e63p), and achieved Compression Ratio (CR).

The metrics M SFEg; and M.SFEgs correspond to the mean
squared difference between the original RSSI values and the
RSSI values after compression using clustering. We analyze
the AkM algorithm by modifying the number of clusters
K. The algorithm is initiated by clustering all train dataset
samples’ RSS values separately, thus first creating a one-
dimensional array of all entries of the train RSS samples.
The algorithm further clusters the array into K clusters, each
of them defined by its centroid coordinate (a single number).
The M SFEg; is then calculated as MSE between the original
test RSS data and its reconstruction after clustering using the
previously obtained centroids. The algorithm then adapts the
centroid coordinates by including the test RSS data, which
results in shifting the centroid coordinates as described in [27].
MSEgs is then calculated as MSE between the original test
RSS data and its reconstruction using the adapted centroid
coordinates. The algorithm then applies the k-NN regression
with & = 1 on the clustered train and test datasets (where
the original RSS values were replaced by the corresponding
centroid coordinates) and obtains the positioning predictions
for the test samples.



The CR is then calculated as number of bits of the original
data divided by the number of bits of the compressed data. We
assume that the uncompressed integer-valued RSS measure-
ments are saved in 7-bit format (allowing 128 unique RSS
values) and that ceil(logs(K)) unique values can be saved
with K bits, where ceil() rounds up to the next higher integer.

Therefore, for comparing the different setups of AkM, we
have chosen the simplest version with K = 2 (for k from k-
Means) as baseline and, then, we normalize the four metrics
to it. The aggregated results on all 16 considered datasets are
shown in Table V and are achieved by averaging over 10
repetitions of the algorithm for each dataset per each K setting.
The considered K values for AkM clustering are 2, 4, 7, 15, 25
and 35. As the number of clusters increases, the aggregated CR
decreases accordingly, depending on the number of required
bits to compress each value. The aggregated M SFEg; and
M S FEgy parameters also decrease with increasing K param-
eter. This is a natural result of decreasing rounding error
during clustering (larger number of clusters leads to smaller
distance each sample is shifted during clustering). Finally, the
aggregated positioning error e3p also decreases.

TABLE V
RESULTS FOR SETTING THE BEST OVERALL PARAMETERS FOR AKM

K  MSEg MSEg, &b CR F
2 1.000 (0.00) 1.000 (0.00) 1.00 (0.00) 1.00 (0.00) 1.0
4 0.163(0.04) 0.164 (0.04) 0.84 (0.10) 0.50 (0.00) 0.76
7 0.050 (0.02) 0.051 (0.02) 081 (0.11) 033 (0.00) 0.73
15 0.010 (0.00) 0.010 (0.00) 0.79 (0.12)  0.25 (0.00)  0.72
25 0.003 (0.00) 0.003 (0.00) 0.79 (0.12)  0.20 (0.00)  0.72
35 0.001 (0.00) 0.001 (0.00) 0.79 (0.12)  0.17 (0.00)  0.73

However, given the results reported in the table, it is not
that easy to retrieve a winning setup, as larger K values (for
k-Means) lead to better results but lower compression. After
some discussion, we decided for that particular problem an
additional aggregation in the way:

F = 0.05-MSEg1+0.05-MSEgs+ 0.9-(5p)?+0.2:(1—CR)

where the aggregated positioning error has more weight than
the Compression Ratio (CR) and the two metrics based on the
MSE, becoming K = 15 the best configuration for AkM.
Table VI compares the plain 1-NN with Adaptive k-Means
(AkM) and k£ = 15, using 1-NN as baseline. The results show
that the selection of parameters led AkM to provide similar
accuracy as 1-NN with a more efficient RSSI representation.

TABLE VI
COMPARISON OF PLAIN 1-NN WITH AKM

method €3p mean(std) CNR mean(std)
Plain 1-NN. 1.00 (0.00) 1.00 (0.00)
AKM (k = 15) 1.00 (0.03) 1.75 (0.00)

TABLE VII
FULL RESULTS OF AKM.

Absolute values Norm. values

Dataset e3p (m) CR (s) €3D CR
DSI 1 4.88 1.75 0.99 1.75
DSI 2 5.21 1.75 1.02 1.75
LIB 1 3.04 1.75 1.01 1.75
LIB 2 4.22 1.75 1.01 1.75
MAN 1 2.88 1.75 1.02 1.75
MAN 2 2.39 1.75 0.97 1.75
SIM 3.60 1.75 1.10 1.75
TUT 1 9.75 1.75 1.02 1.75
TUT 2 14.25 1.75 0.99 1.75
TUT 3 9.55 1.75 1.00 1.75
TUT 4 6.35 1.75 1.00 1.75
TUT 5 6.98 1.75 1.01 1.75
TUT 6 1.98 1.75 1.02 1.75
TUT 7 2.71 1.75 1.01 1.75
Ul 1 10.21 1.75 0.94 1.75
ulJ12 7.92 1.75 0.98 1.75

V. DISCUSSION & CONCLUSIONS

In this paper, the importance of evaluating IPSs in multiple
scenarios was discussed. This is an essential step for the
characterization of the true performance of an IPS, and by con-
sequence, the fair comparison with other solutions. However,
due to the complexity involved in preparing experiments in
multiple scenarios, dataset publishing by the research commu-
nity is of utmost importance. Moreover, considering different
performance metrics over multiple scenarios, an aggregation
of the evaluation metrics is proposed to enable high-level
comparison of IPSs.

When dealing with an evaluation that involves multiple
metrics, an interesting approach to explore is their combination
into a single metric. In such a case, we suggest to apply the
following weighted combination of the aggregated metrics:

]:-method = WM Mmethod +...+ woQ - Qmethod (5)

where the weight values (w) can be user-defined. A weighted
combination allows taking into consideration the requirements
of a particular use case or IPS deployment, being possible to
define how important each of the performance metrics is for
the overall evaluation. An IPS may be the best for one use
case but not for another with different requirements.

The proposed aggregation of evaluation metrics simplifies
complex comparisons between IPSs when considering many
parameters. In addition, it also simplifies the process of
selecting the best IPS for a specific scenario or deployment.

The use cases we described in this work give us the
possibility of validating our proposal to show how multiple
datasets can improve the IPSs evaluation. This work highlights
also the need of a common and shared graphical representation
able to give immediately the impression of what kind of
methods are better in all the considered datasets. In addition,
we were able to provide results on three different independent
experiments in an 8-page paper, demonstrating also the power
of the aggregated metrics to summarize general results in a
compact table or figure.



However, the evaluation of an IPS is not easy when multiple
metrics need to be considered. The combination of several
metrics such as accuracy, installation complexity, user accep-
tance, availability and integrability as done in [28] would need
further discussion. Nevertheless, we suggest a new level of
aggregation based on a user-defined weighted combination.

Finally, we have found two major issues in the literature.
The first one is the lack of guidelines to prepare, collect and
publish datasets for indoor positioning. That could be a reason
why the community is not adopting datasets in their evaluation
as they may not be interoperable with their research. The sec-
ond one is that most datasets are RSSI-based, the community
needs datasets covering other positioning technologies. As the
proposed aggregation is agnostic to the positioning technology.
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