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RESUMO

Devido a atual instabilidade climatica, é esperado que a frequéncia e intensidade de situacoes de
stresse abiotico, como a salinidade do solo e as temperaturas elevadas, sejam agravadas, colocando em
risco a producao agricola e a seguranca alimentar. Apesar dos impactos causados pela exposicado
individual ao sal e ao calor ja terem sido extensivamente estudados, os efeitos da sua potencial interacédo
ainda nado sao claros. De forma a colmatar esta lacuna de conhecimento, plantas de tomateiro (So/anum
lycopersicum var. cerasiforme) foram expostas a uma situacdo de salinidade [100 mM cloreto de sodio
(NaCl)] e/ou temperatura elevada (42 °C; 4 h d?) durante 21 dias para a avaliacdo das respostas
fisiolégicas e bioquimicas, bem como do desempenho fotossintético. O crescimento das plantas foi
negativamente afetado por todos os tratamentos, porém a combinacdo impds um efeito mais severo no
tamanho e na producdo de biomassa de ambos os 6rgaos, bem como no conteudo de pigmentos
fotossintéticos. Além disso, a co-exposicao levou a uma maior desregulacao do equilibrio idnico: o sodio
(Na) foi muito mais acumulado e o oposto se verificou para o potassio (K), magnésio (Mg>) e calcio
(Ca>). Apesar disso, nao foi observada a sobreacumulacdo de espécies reativas de oxigénio nem se
detetaram sinais de dano oxidativo, devido a potenciacdo de metabolitos e enzimas antioxidantes.
Paralelamente, e no que diz respeito a eficiéncia fotossintética, o tratamento combinado levou ao
aumento do rendimento quantico do fotossistema Il (PSll), o que resultou, provavelmente, da diminuicao
da area foliar especifica e de uma convergéncia ou fortalecimento das vias de defesa. No entanto, a
inibicdo da expressao de genes relacionados com o PSIl (D1 e CP47) e o0 aumento de processos nao-
fotoquimicos em todas as condicdes de stresse, levam a crer que o tratamento combinado tenha causado
danos no aparelho fotossintético. Por ultimo, um padrao distinto pdde ser observado nos parametros
relacionados com trocas gasosas, onde apenas a salinidade (individualmente ou em combinacao) afetou
negativamente a condutancia estomatica, a taxa de transpiracdo, e a assimilacdo de carbono.
Relativamente ao perfil de expressao das subunidades da ribulose-1,5-bifosfato carboxilase-oxigenase,
todos os tratamentos inibiram os niveis de AbcS. Contudo, enquanto o calor diminuiu a expressao de
Rbcel, o sal induziu o efeito contrario, sendo que a sua combinacdo nao afetou a expressao deste gene.

Em suma, a reducao drastica no crescimento nao parece advir de danos oxidativos nem apenas de
danos na maquinaria fotossintética, ja que os efeitos negativos observados nas plantas sob stresse
combinado n&o foram mais pronunciados do que nos individuais. Portanto, é plausivel que o efeito mais
severo no crescimento possa resultar de uma maior realocacdo de recursos para as vias de defesa ou
da interrupcao dos mecanismos de crescimento, como a expansao e divisao celular, devido ao aumento
da toxicidade de Na* e a um desequilibrio nutricional.
Palavras-chave: fotossintese; sistema antioxidante; stresse combinado; stresse oxidativo; tomate

cherry.
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ABSTRACT

In the face of climate change, the frequency and intensity of abiotic stresses, such as salinity and high
temperatures, are expected to be highly intensified, thus threatening crop production worldwide and
putting food security at risk. Even though the impacts of the salt or heat stresses have been widely studied
in the past, there is still much to unravel regarding the potential interaction of these stressors, as they
are likely to occur simultaneously in natural conditions. Therefore, to address this gap, tomato plants
(Solanum lycopersicum var. cerasiforme) were exposed to salt [100 mM sodium chloride (NaCl)] and/or
heat (42 °C; 4 h d?) for 21 days for the evaluation of physiological and biochemical responses, as well
as the photosynthetic performance. Growth was negatively affected by all treatments, but the combination
imposed a significant harsher effect on organ elongation and biomass production, as well as in the content
of photosynthetic pigments. Furthermore, the combined treatment led to a clear pattern regarding ion
balance: sodium (Na:) was much more accumulated and potassium (K+), magnesium (Mg#) and calcium
(Caz) were more depleted than in any other growth condition. Despite that, no overaccumulation of
reactive oxygen species nor signs of oxidative damage were observed, due to an accumulation of
antioxidant (AOX) metabolites and the induction of the AOX enzymes. However, this overall maintenance
of the redox status was not accompanied by an efficient photosynthetic flow. The chlorophyll fluorescence
analysis showed that, while the combined treatment actually led to an increased maximum quantum
yield, probably related to the decreased specific leaf area and to a convergence or higher enhancement
of defence and physiological pathways, impairments in the photosynthetic apparatus should not be ruled
out, as an inhibition of transcript accumulation of two photosystem ll-related genes (07 and CP4/) and
an increment of non-photochemical quenching in all stress conditions was observed. Lastly, a distinct
pattern could be observed in gas-exchange endpoints, where only salinity (single or combined) negatively
affected stomatal conductance, transpiration rate and carbon assimilation. Regarding the expression
profile of ribulose-1,5-bisphosphate carboxylase-oxygenase subunits, all treatments inhibited AbcS
accumulation, but only heat stress decreased Fbcl, with salt-treated plants actually overexpressing this
gene only under single expression and the combined treatment remaining unaffected.

In summary, the severe reduction in plant growth does not appear to be the consequence of oxidative
damage or be solely explained by photosynthetic disruptions, as the negative effects were not more
pronounced than in the individual stressors. Therefore, it is plausible that the harsher effect on growth
may result from a higher reallocation of resources to defence pathways or from the disruption of growth
mechanisms, like cell expansion and division, due to an increased Na+ toxicity and nutrient deficiency.

Keywords: antioxidant system; cherry tomato; combined stress; oxidative stress; photosynthesis.
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CHAPTERI

General Introduction

1.1. The 21+ century issues: climate change and food insecurity

Since the beginning of Humanity, when our ancestors lived as hunter-gatherers, humans have been
strongly dependent on climate changes, that went from warm periods to ice ages, to survive. However, a
life-changing event occurred with the unique climatic stability and warmth of the Holocene: humans
became farmers and the development of agriculture allowed civilizations to thrive (Gowdy, 2020; Smith
and Archer, 2020). Indeed, for thousands of years, population grew steadily. Nonetheless, over the last
century, anthropogenic activity has impacted Earth in an unprecedented way. In the 40 years following
the industrial revolution, growth rate tripled, and world population is now expected to reach the 9.8 billion
mark until 2050 (Raza et al., 2019; United Nations, Department of Economic and Social Affairs, 2019).
Moreover, with the Green Revolution, characterized by the intensification of agriculture through the use
of fertilizers and pesticides, high-yield varieties, and the development of mechanized agricultural
practices, human population grew exponentially (Smith and Archer, 2020). However, with great
development comes a great cost — industrialization led to a severe increase of greenhouse gas emissions,
being land clearing, crop production, and fertilization responsible for almost a quarter of it, consequently
contributing to global warming and climate change (IPCC, 2021; Tubiello et al., 2021). Increased
greenhouse gas emissions, soil depletion, polluted water and loss of biodiversity are just a few of the
consequences of a careless industrialization that ultimately drastically influenced and continues to
influence climate change at a pace never seen before. In the last years, extreme climatic events such as
droughts, floods, cold and heat waves, and storms have been more frequent, thus imposing serious
losses in crop yield (up to 70% since 1982) (IPCC, 2021; Raza et al., 2019). Moreover, the overall climatic
instability and water use restrictions negatively influence soil systems, leading to salinization, changes in
moisture and increased erosion that negatively impact agriculture, either due to nutrient loss, reduced
carbon storage or soil degradation (Borrelli et al., 2020; Khan et al., 2021; Kopittke et al., 2019; Lal,
2021). Therefore, abrupt environmental changes, along with an increasing food demand, are already

imposing serious challenges to crop production and food security worldwide (Raza et al., 2019).
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1.2. Salinity

Soil salinization results from both natural and anthropogenic causes. In fact, the extent and distribution
of salt-affected soils has been addressed recently at a universal scale, pointing that more than 424 million
Mha of topsoil (0-30 cm) and 833 Mha of subsoil (30-100 cm) are impacted by salinity (FAO, 2021).
Moreover, according to Shahid et al. (2018), it is estimated that 76 Mha of the saline soils are affected
by secondary salinization — a result of human activities, such as the replacement of perennial vegetation
with annual crops, as well as irrigation practices that use saltrich water. Worryingly, this problem has not
only been increasing at a fast pace, but it is also forecasted to be intensified by the present climatic
instability (Mukhopadhyay et al., 2021). The consequences are alarming: every year 1.5 Mha of land are
becoming unsuitable for crop production due to salinization and half of cultivable lands worldwide are
expected to be lost by 2050 (Hossain, 2019; Mukhopadhyay et al., 2021). Indeed, as soil characteristics
are strongly dependent on climate — either on wind, precipitation, or temperature — changes in the latter
will lead to salt build-up (Mukhopadhyay et al., 2021; Shahid et al., 2018). Additionally, in arid and semi-
arid regions, where persistent irrigation with poor-quality groundwater has taken place, the total salinity-
affected area grows day by day and, as climate change will impose serious limitations regarding the use
of proper water around the globe, this practice is expected to widespread, hence impairing even more
soil quality and, consequently, agriculture (Daliakopoulos et al., 2016; FAO and ITPS, 2015; Haddeland
et al., 2014; Koutroulis et al., 2013; Lal, 2021). Altogether, the aggravated effects of climate change on
soil salinization will affect agroecosystems to an extent where they can no longer fulfill the increased

demand for food from the ever-growing world population.

1.3. High temperatures

Since 1970, global surface temperature has been increasing at an unprecedented rate - faster than in
any other 50-year period over the last 2,000 years - as a result of the emissions from human activities
(IPCC, 2021). The last four decades have been successively warmer than any preceded decade after
1850. In fact, since pre-industrial levels, world temperature rose 1.1 °C, but alarmingly most of it
occurred in the last 40 years (Gowdy, 2020; IPCC, 2021). Additionally, global average surface air
temperature is expected to rise 0.4 °C until the early 2030 decade and it will continue to increase until
at least mid-century, even under the most positive scenario (IPCC, 2021). Indeed, with continued

greenhouse gas emissions, projections estimate that atmospheric temperature will rise, at least, 3.3 °C
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by the end of the century [Figure 1.1; IPCC (2021)], which, in some regions, may surpass most crop
plants’ heat tolerance threshold - that rounds 35 °C (Wahid et al., 2007).

Besides, the forecasted global warming will impose more frequent and severe heat waves that will not
only directly impact plant productivity, but also provide even more favorable conditions for pests and
diseases, while also affecting water availability (Khan et al., 2021; Lal, 2021). As alarming as the increase
of Earth’'s temperature, is the way it affects several aspects of climate. Global warming is already
accountable for 50% of sea level rise during 1971-2018 and is expected to contribute to the current
climatic instability by reducing snow cover and permafrost, as well as increasing the frequency and
intensity of marine heatwaves, heavy precipitation, agricultural and ecological droughts, tropical cyclones,
and hot extremes (IPCC, 2021). Such climate-related disasters have already been responsible for a
quarter of agricultural losses in developing countries (Lesk et al., 2016), which are especially susceptible
to greater losses due to their close location to the equator (Anderson et al., 2020; Cline, 2008), leading
to a severe reduction of crop production that will, ultimately, put food security at risk (Raza et al., 2019).
Altogether, global warming and its impact on agriculture is a very serious problem that needs to be

addressed so that the food supply is assured.
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Figure 1.1. The long-term projections for mean surface temperature globally. Retrieved from IPCC (2021).
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1.4. Salinity and heat stresses: an overview on physiological disorders

As has been established, the previous environmental conditions represent major threats to crop yield.
Both heat and salinity induce changes in several metabolic and physiological routes — such as growth,
water relations, nutrient homeostasis, photosynthesis, and oxidative metabolism - which portray the
harmful effects of these stressors at the whole-plant level (Hassan et al., 2021; Parihar et al., 2015) , as

will be addressed in the sections below.

1.4.1. Growth, water relations and ion imbalance

The devastating implications of heat and salinity exposure limit plant growth and productivity by interfering
from an early stage of development. For instance, both stressors negatively affect seed germination,
reduce biomass, root elongation, and plant height, which ultimately results in poor yield rates (Fahad et
al., 2017; Hassan et al., 2021; Isayenkov, 2012; Parihar et al., 2015; Wahid et al., 2007). Even though
similar macroscopic implications on growth may arise from the exposure to salt and high temperatures,
the causes underlying such impacts can be quite different. Curiously, salinity stress — defined as the
detrimental effects caused by the exposure of plants to excess ions, such as sodium (Na‘) and chlorine
(CH - influences plant growth and development even prior to salt uptake by roots (Parihar et al., 2015).
In this way, plant growth is impaired in two distinct phases: firstly, as a consequence of the water deficit
effect (osmotic phase), and later due to the salt-specific effects (ionic phase) (Figure 1.2.). Salt build-up
in soil decreases plants’ water uptake by decreasing soil water potential with increasing salt
concentrations (Parihar et al., 2015). Despite this, at low or moderate saline conditions, plants can adjust
osmotically and allow the influx of water. However, in soil, salt competes with other essential nutrients,
resulting in disrupted ion ratios that may escalate to nutrient disorders [calcium (Caz), magnesium (Mg*),
nitrogen (N), phosphate (PO.>) and potassium (K-)] and ion toxicity [Na+, Cl and sulphate (SO.2)] (Gupta
and Huang, 2014). Even though several studies in the past decades addressed the mechanisms by which
Na- and CI are uptaken, these processes remain unclear (Isayenkov and Maathuis, 2019). Still, it is
believed that Na- takes advantage of K+ transporters, for example, the ones from the AKT family, as well
as the HAK/KUP/KT transporters, even with low affinity to Na+ (Isayenkov, 2012). Additionally, in order
to maintain the K-/Na- ratio inside the cells, it was thought that plants increased the expression of high
affinity K- transporters, such as the HKT family carriers, however these transporters have also been
reported to uptake Na- (Isayenkov, 2012). Besides, it may also be possible that LCT family transporters

are involved, as they have been shown to be non-selective cation carriers and that the salt sensitivity of
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yeast mutants increased when LC71 was overexpressed (Amtmann et al., 2001). Moreover, the NSCC
family of non-selective cation channels seem to play a role in Na+ uptake. Furthermore, both the symplast
and the apoplast pathways have been documented to be involved in ion uptake (Isayenkov and Maathuis,
2019). Despite, under physiological conditions, the symplastic pathway being predominant, the apoplastic
route gains relevance when transpiration is increased, and could account for 50% of total Na* uptake, as
it has been reported for rice (Kronzucker and Britto, 2011; Malagoli et al., 2008). Once inside the cells,
and due to Na* and K' similarity in terms of ionic radius and ionic hydration energy, these ions compete
for binding sites. As several enzymes are activated by K-, this competition often results in the disruption
of protein synthesis and enzymatic reactions, which are key metabolic processes for plant growth and

development (Shabala and Munns, 2017).
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Figure 1.2. The distinct behavior of sensitive and tolerant plants to salinity stress and the impact of the osmotic and ionic phases on growth
rate in saline conditions. The full green line represents sensitive species, while the dotted green line indicates the response of osmotic
tolerant plants. The red dotted line represents plants with increased ionic tolerance. Retrieved from Munns (2005).

On the other hand, at high temperatures, evapotranspiration rate increases, which, along with the
reduction of water uptake, disturbs water balance and, consequently, impacts plant and cell metabolism
- photosynthesis, respiration, senescence — resulting in diminished growth (Hassan et al., 2021; Wahid
et al., 2007). Despite the knowledge gap regarding the effects of heat stress on roots, it is known that it
reduces the activity of nutrient uptake proteins, most likely as a result of the poor translocation of
carbohydrates from shoots to roots, as well as impaired root conductance, which not only hampers
nutrient uptake itself, but also their ratios (Hasanuzzaman et al., 2013; Hassan et al., 2021). Indeed, a
few authors addressing this process reported decreased total nutrient concentrations and attributed such
effect to root biomass reduction, as well as diminished root hair surface (Bassirirad, 2000; Klimenko et

al., 2011; Rennenberg et al., 2006). Nonetheless, these effects are dependent on nutrient and plant
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species and should not be generalized as this topic is still unclear and requires further investigation

(Fahad et al., 2017; Hassan et al., 2021).
1.4.2. Oxidative stress and the antioxidant (AOX) system

Among the main plant responses to abiotic stress is the induction of oxidative stress, which gave a bad
reputation to reactive oxygen species (ROS), as they are responsible for serious damage to a variety of
biomolecules and portray one of the major causes for the impairment of plant growth and development
(Hasanuzzaman et al., 2013; Hassan et al., 2021; Parihar et al., 2015). However, even under
physiological conditions, these compounds are naturally and continuously produced by the activation or
reduction of molecular oxygen (O,) due to the aerobic and photosynthetic metabolism. Therefore, it is no
surprise that the main sources of generation of ROS in plants are the ones where aerobic reactions occurs,
namely the chloroplasts, mitochondria, and peroxisomes (Medina et al., 2021; Soares et al., 2019; Xie
et al., 2019). In this case, these chemical species, at low concentrations, act as signaling agents;
however, under stressful conditions, the disruption of the equilibrium between their production and
detoxification leads to an overaccumulation of ROS that culminates in oxidative bursts and triggers
damage, such as protein oxidation, peroxidation of membrane lipids and enzyme deactivation, leading,
ultimately, to cell unviability (Hasanuzzaman et al., 2013; Medina et al., 2021; Parihar et al., 2015;
Soares et al., 2019). Salinity and heat stresses are no exception. Indeed, most studies where the stressors
were applied in different plant models (e.g. rice, tomato, citrus, pea, and mustard) at distinct intensities
and periods of exposure portray an enhancement of ROS production, mostly as a consequence of the
disruption of metabolic pathways like photosynthesis and respiration — either due to salt- or heat-induced
osmotic stress, Na- toxicity or direct high temperature-induced damage (Fahad et al.,, 2017;
Hasanuzzaman et al., 2013; Hassan et al., 2021; Isayenkov, 2012; Medina et al., 2021; Parihar et al.,
2015; Shabala and Munns, 2017). Even though there are many processes and sites of production, two
chemical phenomena that result in the generation of the singlet oxygen ('O,) and of the superoxide anion
radical (O,""), hydrogen peroxide (H.0.,) and hydroxyl radical (*OH) stand out: the transference of excessive
excitation energy and/or electrons to O,, respectively (Soares et al., 2019). Among the main ROS, O,*"
and H,0, are considered the first to be generated and, even though their production is associated with
electron transport chains (ETC), these ROS are distinct. While O,*~ is moderately reactive due to its low
mobility and short half-life, H,0, stability confers a longer half-life and its neutral charge makes it able to
cross membranes and, therefore, capable of damaging other molecules far away from its production sites

(Soares et al., 2019; Xie et al., 2019). Nonetheless, and more dangerous than O,”” and H,0,, is their
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interaction in the presence of redox-active metals, namely copper (Cu) and iron (Fe), which leads to the
Haber-Weiss reaction and the consequent production of the most hazardous ROS, the *OH, that cannot
be scavenged by enzymatic processes. Indeed, along with O,”, that highly reactive radical triggers a
cascade of biochemical events, known as lipid peroxidation (LP), that affect polyunsaturated fatty acids,
and not only produce other reactive compounds [e.g malondialdehyde (MDA)], but also compromise
membrane integrity, fluidity and selectivity (Soares et al., 2019). In fact, direct damages on membrane
structure have been documented under heat stress, but also as a result of Na* toxicity, thus leading to
the disruption of several metabolic pathways essential for proper growth and development (Ahanger et
al., 2019, 2020; Ahmad et al., 2012, 2010; Jin et al., 2016; Liu and Huang, 2000; Raja et al., 2020).
Even though LP is mainly caused by "OH and 0O." -, 0, can also be involved. Additionally, :0, damages
the photosystems | (PSI) and Il (PSIl), which are considered the preferential sites of its production. The
production of :0,is due to the transition of chlorophyll singlet to chlorophyll triplet state (Chl — =Chl*),
and the subsequent transference of excitation energy from :Chl* to 0, (:*Chl* + 0, — Chl + *0,) during
photosynthesis as a result of high light or limitation in carbon dioxide (CO,) assimilation (Soares et al.,
2019).

In order to maintain adequate ROS levels and redox homeostasis, plants possess powerful scavenging
systems that involve AOX metabolites and enzymes that are often promptly activated under abiotic stress,
such as salinity and heat (Fahad et al., 2017; Gupta and Huang, 2014; Hasanuzzaman et al., 2013;
Hassan et al., 2021, Isayenkov, 2012; Parihar et al., 2015; Soares et al., 2019; Wahid et al., 2007). The
first enzymatic line of defence from ROS is brought up by superoxide dismutase (SOD; EC 1.15.1.1) which
catalyses the dismutation of O,"" into H.O, (Figure 1.3), thus preventing the production of *OH through
the Haber-Weiss reaction. The previous reaction, however, may increase the levels of H,0,, which are
then scavenged enzymatically, for instance, by catalase (CAT; EC 1.11.1.6) and/or ascorbate peroxidase
(APX; EC 1.1.11.1) (Figure 1.3). Despite their similar function, these enzymes are quite different. While
CAT does not require reducing power, APX uses reduced ascorbate (AsA) to detoxify H.O,. Moreover, due
to its high catalytic activity when H,0,is severely overproduced, CAT is often correlated with damage
prevention, whereas APX activity, as a result of its elevated affinity to H.O,, is more related to signaling
events (Soares et al., 2019). In order to keep APX activity, AsA must be regenerated enzymatically. When
it is being used as substrate for APX, AsA is oxidized into monodehydroascorbate (MDHA), which is either
converted back into AsA by monodehydroascorbate reductase (MDHAR; EC 1.6.5.6) or spontaneously
forms dehydroascorbate (DHA), that is then reduced to AsA by dehydroascorbate reductase (DHAR; EC
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1.8.5.1), using glutathione (GSH) as substrate (Figure 1.3). This thiol is then regenerated by glutathione
reductase (GR; EC 1.6.4.2), thus allowing the continuous supply of AsA. This pathway that regenerates
two major AOXs is known as the AsA-GSH cycle and often plays a crucial role in ensuring redox
homeostasis (Soares et al., 2019). Indeed, the activation of the overall enzymatic component of the AOX
system has been reported under different concentrations of sodium chloride (NaCl) (50, 100, 120, 150
and 200 mM) in tomato (Sofanum lycopersicum L. cvs. Huange 108 and Chibli F1) (Ahanger et al., 2019,
2020; Manai et al., 2014; Mittova et al., 2004), mulberry (Morus alba L. cvs. Local and Sujanpuri) (Ahmad
et al., 2010), mustard (Brassica juncea L. cvs. Varuna, RH-30 and Rohini) (Ahmad et al., 2012), wheat
(7riticum aestivum L. cvs. KRL-19 and WH-542) (Mandhania et al., 2006), corn (Zea mays L.) (Azooz et
al., 2009), adzuki bean (Vigna angularis Willd.) (Ahanger et al., 2020) and citrus [Citrus sinensis (L.)
Osbeck] (Gueta-Dahan et al., 1997); and in tomato (Raja et al., 2020; Rivero et al., 2004), moth bean
(Vigna aconitifolia Jacq.) (Harsh et al., 2016) and mustard (Hayat et al., 2009) exposed to heat stress.
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Figure 1.3. Overview of the enzymatic mechanisms for the detoxification of O,- and H,0, and the regeneration pathways of the compounds
involved. Superoxide anion (O,*), hydrogen peroxide (H,0,), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),
monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidases

(GPX), ascorbate (AsA), monodehydroascorbate (MDHA), dehydroascorbate (DHA), reduced glutathione (GSH), oxidized glutathione (GSSG).
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In conjunction, the non-enzymatic components, which comprise low molecular weight cellular
compounds, directly detoxify the plant from ROS and/or act indirectly as substrates for the enzymatic
system (Soares et al., 2019). Among the many compounds with AOX functions is the powerful osmolyte,
proline. This secondary amino acid acts as a ROS scavenger, namely of *OH and 'O,, as well as a
membrane stabilizer (Soares et al., 2019). Besides, it is believed to stabilize the structure of proteins by
acting as a molecular chaperone and it allows the uptake of water by maintaining the hypertonic status
of cells (Singh et al., 2015). Due to its properties, and considering the water deficit effect of salinity stress,
it is no surprise that this metabolite plays a crucial role in protecting plants against saltinduced damages.
Indeed, when different species are exposed to different concentrations of NaCl, there is a high
accumulation of this osmoprotectant (Ahmad et al., 2012, 2010; Babu and Devaraj, 2008; Fidalgo et al.,
2004). Proline has also proved its importance in plants under heat stress, as moth bean (Harsh et al.,
2016), french bean (Phaseolus vulgaris L. cv. S9) (Babu and Devaraj, 2008), mustard (Hayat et al.,
2009), wheat cv. WH 711 (Khan et al., 2013) and tomato (Raja et al., 2020) under heat stress, have
significantly increased its levels. Another very commonly accumulated AOX metabolite is the above
mentioned AsA, better known as vitamin C, which not only serves as substrate for APX, allowing the
detoxification of H,0,, but also directly interacts with different ROS (:0,, *OH and 0O,) (Soares et al.,
2019). Indeed, the exogenous application of AsA mitigates or alleviates the negative effects of both salt
and high temperature exposures (Alayafi, 2020; Dolatabadian and Jouneghani, 2009). As forenamed,
important for the regeneration of the previous metabolite is GSH. Nonetheless, this non-protein thiol plays
other valuable roles. GSH not only directly scavenges H,0O,, *OH and O,*, but also, due to its -SH group,
maintains the reduced state of numerous compounds by acting as cellular buffer, thus ensuring redox
homeostasis (Soares et al., 2019). In fact, crop species, such as adzuki bean (Ahanger et al., 2020),
tomato cv. Huange 108 and Tmknvf2 (Ahanger et al., 2019; Ahanger et al., 2020; Rivero et al., 2004)
and french bean cv. S-9 (Babu and Devaraj, 2008) under salinity or heat stresses often present elevated
levels of this thiol, demonstrating the pivotal role this AOX plays. Besides, specialized compounds, such
as phenols, play a variety of roles in plants: from being signaling molecules to protecting against oxidative
damage as a consequence of abiotic stress (Soares et al., 2019). Indeed, there is a class of phenols
exclusively produced by plants, flavonoids, that apart from interacting with ROS - directly or indirectly -
also boost the AOX properties of other metabolites, limit oxidative damage and contribute to membrane

lipid homeostasis (Soares et al., 2019).
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Although this collection of metabolites represents the major players of the non-enzymatic component
of the AOX system, many more compounds are also valuable in response to oxidative stress — among
them are sugars, carotenoids (addressed in the next section) and polyamines. These compounds, along
with the efficient enzymatic mechanisms, may allow the maintenance of redox homeostasis and the
proper functioning of cell metabolism (Medina et al., 2021; Soares et al., 2019). Nonetheless, under
severe stressful conditions, it may not be sufficient to fully detoxify ROS, which results in an impairment
of physiological, biochemical and molecular networks that reduce productivity and yield (Fahad et al.,
2017; Gupta and Huang, 2014; Hasanuzzaman et al., 2013; Hassan et al., 2021; Isayenkov, 2012;
Parihar et al., 2015).

1.4.3. Photosynthesis

As photoautotrophic organisms, plants convert solar radiation into chemical energy to produce
carbohydrates from carbon dioxide (CO,) in a process denominated photosynthesis, which occurs in the
chloroplast, and comprises two different phases. The light-dependent reactions, or the photochemical
phase, that occur in the thylakoid membranes, are involved in the production of reducing power (NADPH)
and energy (ATP), while the carbon reduction reactions, or Calvin-Benson cycle, that occur in the stroma,
use the products of the former to fix CO, into organic molecules (Ashraf and Harris, 2013; Taiz et al.,
2015). For this biochemical pathway to start, photosynthetically active radiation must be absorbed by
photosynthetic pigments, chlorophylls and carotenoids, which are associated with the two photosystems
(PS) located in the thylakoid membranes (Taiz et al., 2015). After photons are absorbed, these
photoreceptors change from the ground state to an excited state and then lose their energy by transferring
it to other photoreceptors, as heat, or as radiation (fluorescence) (Taiz et al., 2015). The photosynthetic
pigments of the antenna transfer the excitation energy to the reaction centers of the PS (Taiz et al., 2015).
With this, the obtention of reducing power, through an electron transport chain (ETC) embedded in the
thylakoid membrane, begins (Singh and Thakur, 2018). In this chain, two components - the photosystem
| (PSI) and photosystem Il (PSIl) - are responsible for the electron flow. Yet, contrarily to PSI, PSII, which
is the first component of the ETC, is able to photooxidize water to receive an electron that will be
transported along the ETC to reduce NADP- to NADPH and produce ATP. In order to do so, this protein
complex contains: i) the core complex — where the reaction center P680 is located; ii) the oxygen-evolving
complex (OEC) - involved in the water splitting reaction — and iii) the light-harvesting complex (LHCII) -
where pigments absorb photons (Derks et al., 2015; Singh and Thakur, 2018; Taiz et al., 2015). Once
the ETC fulfills the supply of NADPH and ATP, the carbon reduction reactions begin. The Calvin-Benson
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cycle is divided in 3 consecutive steps: carboxylation, reduction and regeneration (Taiz et al., 2015). For
carbon (C) fixation to occur, CO, must diffuse from the atmosphere to the stroma, entering the leaves by
the stomata. Then, ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO; EC 4.1.1.39), the most
abundant enzyme in plant leaves, is responsible for its fixation (Erb and Zarzycki, 2018; Spreitzer and
Salvucci, 2002; Taiz et al., 2015). RuBisCO activity is vital for crop productivity as it catalyses the first
step of two competing biochemical pathways: photosynthesis and photorespiration (Erb and Zarzycki,
2018).

Being a crucial biochemical pathway for plants, photosynthesis is greatly affected by salinity - either
as a result of the induction of osmotic stress or as a consequence of Na* toxicity (Ashraf and Harris, 2013;
Parihar et al., 2015; Singh and Thakur, 2018) - but is also highly sensitive to high temperatures (Fahad
et al., 2017; Hasanuzzaman et al., 2013; Hassan et al., 2021; Mathur et al., 2014).

In the case of photosynthetic pigments, the impacts of the exposure to salinity and heat are similar,
even though the reasons behind it are not. Both stressors are frequently accountable for diminished
chlorophyll content by interfering mostly in their biosynthesis, but also in their breakdown (Ashraf and
Harris, 2013; Santos, 2004). However, while high temperatures lead to the deactivation of several
enzymes involved in both pathways [e.g. 5-aminolevulinic dehydratase (EC 4.2.1.24), porphobilinogen
deaminase (EC 2.5.1.61)], Na- toxicity reduces the levels of chlorophyll precursors (e.g 5-aminolevulinic
acid and glutamate) (Ashraf and Harris, 2013; Santos, 2004). Moreover, salinity may increase chlorophyll
degradation by causing nutrient imbalances. Mgz, whose uptake is often disrupted under salt exposure,
is a key component of chlorophylls that is frequently remobilized to young tissues to ensure growth and
development in such adverse conditions (Peng et al., 2019).

Given their functions, it is no surprise that both PSI and PSII are essential for the good functioning of
the ETC, however the latter is highly sensitive to several environmental conditions, including salinity and,
especially, high temperatures (Hasanuzzaman et al., 2013; Parihar et al., 2015). In fact, this component
of the ETC is often damaged and/or its repair is inhibited due to the overproduction of the singlet oxygen
(*0,), that occurs as a consequence of low intercellular CO, concentration — commonly reported under
saline conditions — or due to the formation of chlorophyll triplet state as a result of insufficient energy
dissipation in cases of high light intensity (Nishiyama and Murata, 2014; Parihar et al., 2015).
Contrastingly, under heat stress, the chloroplast structure suffers major alterations, namely in the
organization of thylakoids, grana stacking and swelling, dislodging of LHCII due to changes in the fluidity
of the thylakoid membranes (Fahad et al., 2017; Hassan et al., 2021; Mathur et al., 2014), which
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consequently affects photosynthesis. In both cases, a general decline in photochemical quenching
parameters (maximum quantum yield and effective quantum efficiency of PSll), as well as in the electron
transport rate (ETR) takes place, while an increase in non-photochemical quenching (NPQ) parameters is
commonly reported (Ashraf and Harris, 2013; Fahad et al., 2017; Hasanuzzaman et al., 2013; Hassan
et al., 2021; Parihar et al., 2015; Singh and Thakur, 2018). Such increase can be defined as a tolerance
trait as it dissipates excessive light energy in the form of heat so that the overproduction of ROS is avoided.
Indeed, besides being important pigments for numerous physiological processes, carotenoids, and
especially xantophylls, play a role in the response to abiotic stress. Some xantophylls, namely zeaxanthin,
are involved in this process as they are able to quench the excited status of singlet chlorophyll when
exposed to excessive radiation (Bassi, 2021; Liu et al., 2015), thus protecting PSIl from damage.
Additionally, under stress conditions, zeaxanthin is capable of alleviating saltinduced photoinhibition by
scavenging ‘0,and/or free radicals in the thylakoid membranes (Liu et al., 2015; Soares et al., 2019).
However, carotenoids are frequently reduced upon salt exposure due to the repressed expression of the
genes that encode essential enzymes involved in their biosynthetic pathway [e.g phytoene synthase (EC
2.5.1.32), zeta carotene desaturase (EC 1.3.5.6) and lycopene B-cyclase (EC 5.5.1.19)], not being
capable of protecting the PSIl, and, consequently resulting in limitations to the photosynthetic
performance (Ann et al., 2011; Maurya et al., 2015).

Numerous environmental stimuli, namely salt and heat exposure, influence stomatal resistance mostly
as a consequence of their interference with water relations (Singh and Thakur, 2018). This triggers
stomatal closure, thus preventing excessive water losses through transpiration (Hassan et al., 2021;
Mathur et al., 2014; Parihar et al., 2015; Singh and Thakur, 2018). However, a contrasting response has
also been documented for heat-stressed plants. When water scarcity is not imposed, higher temperatures
may lead to an increase in stomatal conductance and, therefore, in the transpiration rate, allowing cooling
down and the alleviation of the stress (Hasanuzzaman et al., 2013). Nonetheless, it is common that heat
stressed plants also portray signs of water shortage. In this case, their response is similar to the one
perceived upon salinity stress. Under these circumstances, a decrease in stomatal aperture has been
frequently reported alongside the impairment of photosynthesis, as this coping mechanism not only limits
CO, assimilation, thus reducing the synthesis of photoassimilates, but also results in overproducing 'O,
which hampers growth (Hassan et al., 2021; Singh and Thakur, 2018). Besides, both stressors also
negatively impact RuBisCO. However, despite the carboxylase activity of this enzyme increasing under

heat stress, the relative specificity of this enzyme to CO, and solubility of this molecule decrease, when
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compared to O,, favouring the oxygenase activity and, therefore, the photorespiratory pathway (Hassan
etal., 2021; Mathur et al., 2014). Although this process is able to drain the products of the photochemical
phase, the photosynthetic efficiency is highly diminished and, in severe cases, its machinery may still be
saturated by photons, making the reaction centres