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Abstract—Wearable and IoT devices requiring positioning and
localisation services grow in number exponentially every year.
This rapid growth also produces millions of data entries that
need to be pre-processed prior to being used in any indoor
positioning system to ensure the data quality and provide a
high Quality of Service (QoS) to the end-user. In this paper,
we offer a novel and straightforward data cleansing algorithm
for WLAN fingerprinting radio maps. This algorithm is based
on the correlation among fingerprints using the Received Signal
Strength (RSS) values and the Access Points (APs)’s identifier.
We use those to compute the correlation among all samples in
the dataset and remove fingerprints with low level of correlation
from the dataset. We evaluated the proposed method on 14

independent publicly-available datasets. As a result, an average
of 14% of fingerprints were removed from the datasets. The 2D
positioning error was reduced by 2.7% and 3D positioning error
by 5.3% with a slight increase in the floor hit rate by 1.2% on
average. Consequently, the average speed of position prediction
was also increased by 14%.

Index Terms—Data cleansing, Data pre-processing, Indoor
positioning, Localisation, Wi-Fi Fingerprinting

I. INTRODUCTION

Indoor positioning and localization services are becom-

ing increasingly demanded in various applications, including

patient monitoring, ambient assisted living, smart parking

assistance and indoor navigation apps. Wi-Fi-based deploy-

ments are one of the most commonly used infrastructures for

Indoor Positioning System (IPS) [1], mainly due to the global

availability of Wi-Fi Access Point (AP)s and their standardized

characteristics compliant with IEEE 802.11, ensuring a good

generalization properties across deployments. The measure-

ments of Wi-Fi Received Signal Strength (RSS) are easily

obtainable by any User Equipment (UE), ranging from mobile

phones to battery-restricted Internet of Things (IoT) devices

such as wearables. The main advantages of utilizing RSS-

based fingerprinting include its capability to perform well in

environments with rich scattering characteristics and limited

Line-of-Sight (LoS) availability, in which the deterministic

path-loss models usually fail [2].

Corresponding Author: D. Quezada Gaibor (quezada@uji.com)
The authors gratefully acknowledge funding from European Union’s Hori-

zon 2020 Research and Innovation programme under the Marie Skłodowska
Curie grant agreements No. 813278 (A-WEAR: A network for dynamic
wearable applications with privacy constraints, http://www.a-wear.eu/) and
No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in
Smart Factories, http://orientate.dsi.uminho.pt).

Fingerprinting is a simple technique, the position of a

fingerprint (array of RSS measurements) can be estimated

using the positions of the closest matches from a dataset with

pre-recorded fingerprints (i.e., the radio map). The radio map

acquisition, pre-processing, training the matching algorithm

and its optimization are referred to as the offline phase

of fingerprinting. The online phase consists of finding the

coordinates of the newly measured fingerprint in a real time.

The achievable positioning performance of the fingerprint-

ing method depends on the scenario and strategy to collect the

radio map. The localization algorithm, whether the k-Nearest

Neighbors (k-NN), or any alternative, can only fine-tune the

positioning, which the training radio map allows it to.

In this work, we focus on improving the quality of the radio

map by proposing a data cleansing scheme that is designed to

remove the outlier samples from the radio map. The cleansing

method calculates the similarity of each sample to the rest

of the database based on the detected APs and their signal

strength levels and removes the samples dissimilar to the

rest. We then evaluate the proposed method on 14 publicly

available Wi-Fi fingerprinting datasets and show they remain

statistically unchanged. We also perform the fingerprinting-

based positioning and show the improved performance of the

cleansed databases when compared to the original ones.

The main contributions of this paper are as follows:

• We propose a novel and straightforward algorithm for

removing unnecessary samples from Wi-Fi fingerprinting

radio maps.

• We evaluate the proposed method and its capabilities on

14 independent open-access datasets.

• We show, that the proposed method not only reduces the

size of the datasets, but also improves the building hit,

floor hit and positioning accuracy, on average, across all

available datasets. Moreover, it reduces the time required

to perform the user positioning.

The rest of the paper is structured as follows. In Section II,

we discuss the related literature and works connected to our

research. Section III introduces the proposed data cleaning

approach, which is later evaluated in Section IV. Additional

impacting factors and things to consider are further elaborated

in Section V and the work is concluded in Section VI.



II. RELATED WORK

In this section, we discuss the related literature and outline

other data cleaning methods focused on Wi-Fi-based finger-

printing datasets. We also discuss the differences to our work

and introduce its main advantages over the current State-of-

the-Art.

Indoor positioning using Wi-Fi RSS fingerprinting was

broadly addressed across literature, most commonly consid-

ering k-NN [3], [4] or various kinds of neural networks [5],

[6] as the matching algorithm. Frequently, the individual works

consider data pre-processing techniques, such as augmenting

the radio map’s data representation [3], reducing the number

of APs by either removing the redundant ones [7], applying

radio map compression [8], [9], or reducing the number of

considered samples in the database by e.g., clustering [3], [10].

Nevertheless, improving the quality of the database itself by

performing data cleansing was hardly ever addressed. In this

work, we evaluate the relevance of each sample in the training

database (radio map) and remove the redundant ones.

An example of localization dataset cleaning was proposed

in [11]. There, the unlabelled fingerprint was first comple-

mented with additional measurements, in the second iteration

the coarse localization was realized, while in the last iteration

the probabilistic model predicted the fine location. The work

presented improved positioning results, but does not address

the question of outliers within the positioning dataset.

The authors of [12] studied the effect of coverage gaps

in the RSS positioning datasets by artificially decreasing the

database’s positioning capabilities. The work showed that re-

moving the samples from the dataset with uniform probability

does not have strong diminishing effect. Alternatively, creating

the measurement gaps in the training database strongly harmed

the overall positioning performance in the deployment. Com-

pared to this work, we eliminate the specific measurements

from the database to boost the performance.

Simultaneous localization, outlier detection, and radio map

interpolation was realized in [13], which organizes the APs

based on their similarity. The work supplements the missing

measurements in the fingerprint by interpolating the measured

RSS from the neighboring APs. The outlier detection algo-

rithm discards the irrelevant measurements caused by, e.g.,

adversary attacks. The proposed Group-Sparsity localization

system is able to perform even with the reduced database,

but the only benchmark utilized in the comparison was com-

pressive sensing, which is not commonly deployed in indoor

localization schemes.

The authors of [14] identified several ways to enhance the

radio map, including data cleansing and denoising. In [15], the

Received Signal Strength Indicator (RSSI) measurements were

extracted to overcome sparsity with a stacked Denoising Au-

toEncoder (DAE). In [16], denoising relied on another neural

network architecture which handled not only sparsity but also

RSSI fluctuations. In [17], denoising focused on learning the

noise characteristics rather than the original characteristics.

The challenge of missing and false values in crowdsensed

RSSI sequence data was addressed in [18]. The mapping

of RSSI sequences to the floor plan effectively boosts po-

sitioning capabilities, yet in many cases, as in this work,

the temporal dependencies between samples are not available.

Consequently, the conclusions from [18] cannot be applied

directly.

The authors of [19] empirically determined the relation

between the RSS data and its deviation. The study models

the uncertainties in both static and mobile UE situations, but

restricts itself to the unobstructed link between the transmitter

and the receiver. Nevertheless, uncertainty modelling and its

estimation within the fingerprints can enhance the positioning

model’s knowledge and thus positively impact the positioning

accuracy itself.

Compared to the works presented above, we restrict the

dataset cleansing approach to directly remove the redundant,

irrelevant and confusing samples from the training database,

rather than finding the missing values and complementing the

radio map, as is the case in many of the aforementioned refer-

ences. By doing so, this work does not add any synthetically

obtained information into the database, and therefore cannot

introduce additional bias.

III. DATA CLEANSING

In this section, we provide a general overview of Wi-Fi

fingerprinting using the proposed data cleansing algorithm.

A. Overview

WLAN fingerprinting technique has been extensively re-

searched during the last decade for both indoor and outdoor

positioning, and it is being used in many commercial and

open-source solutions. Generally, this technique consists of

two phases - the online and the offline phase. In the offline

phase RSS measurements are collected in known reference

points to build a radio map. During the online phase, the RSS

values collected in an unknown positions are matched with the

fingerprints in the radio map using a matching algorithm such

as k-NN in order to estimate the device’s position.
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Fig. 1. Wi-Fi Fingerprinting Technique.



Although this technique is considered one of the most

robust techniques for indoor positioning, it may be affected by

undesirable fluctuations in the signals, leading to an increase in

terms of the positioning error. In case these fluctuations are not

filtered out during the data collection in the offline phase, they

might affect the positioning estimation in the online phase.

Therefore, it is desirable to remove these noisy samples from

the dataset in order to avoid errors in the position estimation

and provide Quality of Experience (QoE) to the end-user.

In order to detect unnecessary fingerprints in the dataset,

we propose a new straightforward method to remove outliers

and/or unnecessary fingerprints in the radio map. This process

consists of five steps detailed in the following paragraphs.

B. Valid RSS values

The first step is to determine the number of valid RSS

values per fingerprint. In this case, the non-detected value (γ)

has to be set in order to exclude it from the RSS values.

Once the number of valid RSS values per fingerprint has

been determined, the average or the maximum number of

RSS values can be used to determine the correlation between

samples. Considering a radio map Ψ ∈ Rm×n, where m is the

number of samples (fingerprints), and n represents the number

of APs in the radio map, the average or the maximum number

of valid RSS values (℘) can be determined as follows:

νi = len(Ψi)|∀ψij ̸= γ

℘ = ⌊mean(ν)⌋ or max(ν)
(1)

where ν ∈ Rm is a vector that contains the number of valid

RSS values of the i-th sample, i = 1, 2, 3, ...,m and j =
1, 2, 3, ..., n. ψij is the RSS value in the i-th and j-th position.

C. Sort and Replace

In this step, the RSS values are sorted in descending order

and replaced for their corresponding AP identifier. Then, the

first ℘ columns are selected to compute the match percentage

between the fingerprints.

Xi = sort(Ψi, descending)

xij ← APj

(2)

where X ∈ Rm×℘ represents the radio map, using the AP

identifier instead of the RSS value and xij is the RSS value

in the i-th and j-th position. APj is the AP identifier in the

j-th position.

D. Compute the match percentage between samples

The next step is to compute the correlation between samples.

In this case, it is necessary to set a threshold (ρ) prior

to computing the match percentage (ℑ). This threshold (ρ)

represents the minimal match percentage between samples.

The match percentage therefore is computed among all sample

of the matrix X .

X =











x11, x12, . . . x1℘
x21, x22, . . . x2℘

...
. . .

...

xm1, xm2, . . . xm℘











Thus, the i-th sample is compared with the l-th sample (l =
1, 2, 3, ...,m) under the following conditions:

ℑi =



















ℑi old, if Xi = Xl,

ℑi old, if ℑi old > ℑi,

ℑi old, if ℑi < ρ,
len(Xi∩Xl)

℘
∗ 100, otherwise

(3)

where ℑi old is the previous match percentage computed

between the i-th and the l-th sample (ℑi).

E. Remove unnecessary fingerprints

In the last step of the proposed algorithm, all samples with

zero match percentage are removed from the original radio.

These samples are considered outliers or unnecessary samples,

given that they do not have high enough level of correlation

with the rest of the samples. i.e., they may correspond to noisy

samples poisoning the radio map.

Algorithm 1: CleanDB

Input : X train, non detected value, threshold

Output: Ψc

1 Ψ← X train

2 Ψc ← X train

/* Avg. or max. number of valid RSS

values */

3 νi = len(Ψi)|∀ψij ̸= γ

4 ℘ = ⌊mean(ν)⌋ or max(ν)
/* Sort and replace RSS values */

5 Xi = sort(Ψi, descending)
6 xij ← APj

/* Select the first ℘ columns of X */

7 X ∈ Rm×℘

/* Compute the match percentage */

8 for i=1 to m do

9 for l=1 to m do

10 ℑ′

i =
len(Xi∩Xl)

℘
∗ 100

11 if Xi ̸= Xl & ℑi old < ℑ
′

i & ℑ′

i > ρ then

12 ℑi = ℑ
′

i

13 ℑi old ← ℑi

/* Remove samples with zero match

percentage */

14 for i=1 to m do

15 if ℑi == 0 then

16 DEL (Ψci)

Algorithm 1 summarizes all the previously explained steps

to remove unnecessary fingerprints from the radio map. The

algorithm requires three parameters, the training dataset, the

non-detected value and the predefined match percentage (ρ).

The output is the cleaned training dataset (Ψc).



IV. EXPERIMENTS AND RESULTS

This section provides the experiment setup, a brief de-

scription of 14 datasets used in the experiment, and the

primary outputs of the proposed data cleansing algorithm for

indoor positioning radio maps. The source code used in this

experiment is available for public usage on Zenodo under the

CC BY license [20].

A. Experiment setup

The experiments were performed using a MacBook Pro with

an M1 Pro chip packing a 10-core CPU, a 16-core GPU,

and 16GB of RAM. The software used for implementation

was Python 3.9, and these experiments were carried out using

14 Wi-Fi fingerprinting datasets collected in differing and

heterogeneous scenarios. These datasets are: UJI 1–2, LIB 1–2

(collected at Universitat Jaume I, Spain), MAN 1–2 (collected

at University of Mannheim, Germany), TUT 1–7 (collected at

Tampere University, Finland) and UTSIndoorLoc (collected at

University of Technology Sydney, Australia) [3], [21]. These

datasets are representatives of multi-floor environments, all

apart from MAN 1–2, which consist of measurements from

one floor only. Additionally, UJI 1–2 datasets are apart from

multi-floor environments also multi-building environments, as

they consist of measurements obtained across several build-

ings.

The core algorithm to estimate the user or device position

as well as to classify the fingerprints into buildings and floors

was k-Nearest Neighbors (k-NN). It was selected for its

good positioning capabilities as previously demonstrated in

the literature [3], [22], [23]. The hyperparameters set in the

k-NN algorithm are k equal to 1 and Manhattan distance as the

distance metric to compute the similarity between the finger-

print vectors. The modules used are KNeighborsClassifier and

KNeighborsRegressor from the Scikit-learn (Sklearn) library.

Additionally, positive data representation [24] was used in all

datasets prior to applying the proposed algorithm.

In order to choose the optimal threshold of the match

percentage, the experiments were run using thresholds in

intervals of 5%. If the positioning error increases or the floor

hit rate decreases within the used interval, intermediate values

are selected to run the algorithm. For this reason, there are

thresholds of the match percentage equal to 1%, 2%, 20%,

21%, etc. (see Table I). The non-detected value used for all

original datasets is 100 dBm and the maximum number of

valid RSS samples (℘) is given by Eq. 1.

The results obtained with k-NN using the original dataset

and the cleansed dataset were compared in terms of mean

2D positioning error (ϵ2D), mean 3D positioning error (ϵ3D),

building hit rate (ζb), floor hit rate (ζf ), testing time (δ) and the

size of the training dataset (TTR). Given the heterogeneity of

the datasets, the results obtained with the original dataset and

the cleansed dataset were normalized in order to be compared,

e.g., normalized mean 3D positioning error (ϵ̃3D). The values

reported with the plain 1-NN for the above mentioned metrics

have been selected for the normalisation. i.e., normalised

values will be relative to that baseline.

B. Results

Table I shows the parameters of each dataset and the main

results after running the k-NN algorithm with the original

datasets and with the cleansed datasets. |TTR| represents the

number of training samples in the dataset, |TTE | is the number

of testing samples and |A| is the number of APs in the dataset.

For the baseline method, the 1-NN algorithm, the absolute

and normalised values are provided. After using the proposed

data cleansing algorithm, most of the training datasets reduced

their number of samples, with the exception of TUT 7 dataset

in which the cleansing algorithm was not able to detect

unnecessary samples. That is why the threshold was set to

0% for TUT 7 dataset. The minimal number of unnecessary

fingerprints removed from the datasets were 9 of 3117 in

TUT 6 dataset (≈ 0.29%), and the maximum number of

removed fingerprints was 237 from the LIB 2 dataset (≈ 41%
of the original dataset size). In any case, the positioning error,

floor and building hit rate were not negatively affected.
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Fig. 2. Dataset size before and after applying the data cleansing algorithm.

Fig. 2 shows the number of fingerprints after (blue) and

before the data cleansing (red). In all but one dataset the

algorithm achieved at least a small reduction of their original

size. Similarly, the prediction time was slightly reduced after

applying the data cleansing algorithm by ≈ 14% (see Table I).

Additionally, the use of the proposed data cleansing algo-

rithm reveals a slight increment in the average building hit

rate (ζ̃b) from 1 to 1.004 (0.4%) and the average floor hit

rate (ζ̃f ) from 1 to 1.012 (1.2%). Similarly, the proposed

algorithm allowed us to reduce the positioning error in most

of the datasets in both 2D (ϵ̃2D) and 3D (ϵ̃3D) positioning

error. For instance, the normalized mean 3D positioning error

in LIB 1 was reduced from 1 to 0.998 without affecting the

floor hit rate. In LIB 2, the error was reduced from 1 to 0.858
(≈ 58cm), increasing the floor hit rate from 1 to 1.020 (≈ 2%).

In general, the average normalized 2D positioning error

decreased from 1 to 0.973 (2.7%) and the average normalized

3D positioning error from 1 to 0.947 (5.3%). The accuracy

of the floor hit increased by 1.2%, and the building hit rate

remained almost unchanged.



TABLE I
COMPARISON 1NN ALL DATA VS. 1NN CLEANED DATA

Parameters Baseline 1-NN Cleaned DB + 1-NN

Database |TTR| |TTE | |A| |ρ|
ζb ζf ϵ2D ϵ3D δ T̃TR ζ̃b ζ̃f ϵ̃2D ϵ̃3D δ̃ T̃TR ζ̃b ζ̃f ϵ̃2D ϵ̃3D δ̃
[%] [%] [m] [m] [s] [−] [−] [−] [−] [−] [−] [−] [−] [−] [−] [−] [−]

LIB1 576 3120 174 33 - 99.84 3.035 3.043 0.531 1 1 1 1 1 1 0.844 - 1.000 0.998 0.998 0.843
LIB2 576 3120 197 40 - 97.724 4.031 4.197 0.608 1 1 1 1 1 1 0.589 - 1.020 0.888 0.858 0.589
MAN1 14300 460 28 34 - - 2.877 2.877 0.376 1 1 1 1 1 1 0.961 - - 0.981 0.981 0.914
MAN2 1300 460 28 45 - - 2.467 2.467 0.034 1 1 1 1 1 1 0.952 - - 0.989 0.989 0.927
TUT1 1476 490 309 35 - 90 8.623 9.601 0.401 1 1 1 1 1 1 0.674 - 1.014 0.903 0.873 0.769
TUT2 584 176 354 30 - 72.727 11.218 12.893 0.073 1 1 1 1 1 1 0.664 - 1.039 0.964 0.939 0.660
TUT3 697 3951 992 2 - 91.622 8.926 9.594 5.035 1 1 1 1 1 1 0.983 - 1.003 0.990 0.978 0.984
TUT4 3951 697 992 1 - 95.265 6.152 6.406 5.424 1 1 1 1 1 1 0.996 - 1.000 0.998 0.999 0.992
TUT5 446 982 489 21 - 88.391 6.387 6.924 0.393 1 1 1 1 1 1 0.798 - 1.001 0.969 0.956 0.809
TUT6 3116 7269 652 2 - 99.986 1.959 1.959 27.612 1 1 1 1 1 1 0.997 - 1.000 0.990 0.990 0.997
TUT7 2787 6504 801 0 - 99.185 2.110 2.351 27.429 1 1 1 1 1 1 ✗ - ✗ ✗ ✗ ✗

UJI1 19861 1111 520 20 99.190 87.759 7.718 10.829 21.674 1 1 1 1 1 1 0.877 1.008 1.030 1.000 0.828 0.877
UJI2 20972 5179 520 20 100.000 85.345 7.742 8.052 108.441 1 1 1 1 1 1 0.873 1.000 1.022 0.978 0.960 0.876
UTS1 9108 388 589 20 - 92.784 7.769 8.757 4.076 1 1 1 1 1 1 0.923 - 1.008 1.002 0.962 0.888

Avg. 1 1 1 1 1 1 0.856 1.004 1.012 0.973 0.947 0.856

“-” indicates single building and/or floor. “✗” represents the dataset where the cleansing algorithm was not able to find any unnecessary fingerprint.
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Fig. 3. LIB 2 (a, c) and UJI 1 (b, d). Top (a–b): RSS distribution after and
before the data cleansing. Bottom (c–d): CDF of the 3D positioning error.

Fig. 3a shows the distribution of the RSS values using

Kernel Density Estimation (KDE) in LIB 2 dataset. KDE is

used to visualize the data distribution and its density. The

red colour denotes the distribution of the original dataset,

whereas the blue colour represents the data distribution after

applying the data cleansing. In this case, the vast majority

of the values are non-detected values denoted by 100. When

the data cleansing algorithm is applied to the dataset, the data

distribution is almost the same, but the density in the region

of non-detected values was reduced, and the area of valid

RSS values slightly increased. As can be observed from the

Cumulative Distribution Function (CDF) plot (see Fig. 3c),

the proposed data cleansing reduced the positioning error. For

instance, the possibility of having a positioning error of less

than 4m is 54% before the data cleaning and 60% after it.

Similarly, Fig. 3b shows the distribution of the RSS values

in UJI 1 dataset and the CDF of the 3D positioning error in

the same dataset (see Fig. 3d). UJI 1–2 are the only datasets

with multiple buildings (3 buildings) and floors (4–5 floors). In

UJI 1 dataset, we can observe errors over 100m, whereas the

maximum positioning error obtained after the data cleansing is

around 88m. The same pattern can also be observed in Table I,

where the normalised mean 3D positioning error was reduced

by ≈ 17% (≈ 2m).

V. DISCUSSION

Ensuring the quality of the data has become an essential step

to provide better analysis and, therefore, better results. Indoor

positioning datasets are not an exception; data collected from

differing environments may contain irrelevant observations,

outliers, missing data or noisy sample that may poison the

radio map. Therefore, it is crucial to “cleanse” the datasets

to offer high-quality data to any model used to estimate the

device position.

The proposed data cleansing algorithm offers a straight-

forward way of removing irrelevant fingerprints from indoor

positioning radio maps without increasing the positioning

error. In some cases, the proposed method also helps to provide

a better position estimation, showing its potential for data

cleansing in Wi-Fi fingerprinting radio maps. However, the

complexity of radio maps makes it difficult to detect irrelevant

data or outliers in some datasets. For instance, in TUT 4 and

TUT 6, the number of unnecessary fingerprints detected was

insignificant compared to the size of the dataset.

In the particular case of TUT 7, the proposed algorithm

could not detect any unnecessary fingerprints. Even when the

threshold was set with a minimal match percentage (less than

5%) between fingerprints, the positioning error was negatively

affected.



Although the average or the maximum number of valid RSS

samples can be used in the proposed algorithm, the maximum

number of valid RSS samples provides better performance than

the average in some of the datasets. In some cases, both the

average and the maximum can offer the same results but using

different thresholds. For instance, in TUT 6 with ρ equal to

5% and average method can obtain the same positioning error

as the one reported in Table I.

It is important to highlight that the proposed cleansing

algorithm can be complemented with other tools or algorithms

to remove unnecessary fingerprints from the radio map.

VI. CONCLUSIONS

In this paper, we offer a novel and straightforward algorithm

to remove unnecessary samples from Wi-Fi fingerprinting

radio maps. This algorithm compares the APs in common

between fingerprints to compute the match percentage be-

tween each one under predefined conditions. The evaluation

comprises 14 multi-storey Wi-Fi datasets taken with different

strategies in different locations aiming at obtaining generaliz-

able results.

As a result, the proposed cleansing algorithm was able to

remove unnecessary samples, reducing the size of the datasets

by more than 14%, with an average improvement in the 2D

positioning error of 2.7% and 5.3% in the 3D positioning

error. Also, there was a slight improvement in the floor hit

rate (≈ 1.2% on average). Additionally, the time required for

position prediction was decreased by 14%. i.e., the proposed

method is able to improve all metrics.

Future work will analyze new techniques and algorithms to

improve the quality of WLAN radio maps, combined with the

proposed data cleansing algorithm.

REFERENCES

[1] A. Ometov, V. Shubina, L. Klus, et al., “A survey on wearable
technology: History, state-of-the-art and current challenges,” Computer

Networks, vol. 193, p. 108 074, 2021.
[2] S. Subedi and J.-Y. Pyun, “A survey of smartphone-based indoor

positioning system using rf-based wireless technologies,” Sensors,
vol. 20, no. 24, p. 7230, 2020.

[3] J. Torres-Sospedra, P. Richter, A. Moreira, et al., “A comprehensive
and reproducible comparison of clustering and optimization rules in
wi-fi fingerprinting,” IEEE Transactions on Mobile Computing, 2020.

[4] H.-A. Pham, T.-V. Le, et al., “An improved weighted k-nearest neigh-
bors algorithm for high accuracy in indoor localization,” in 2019 25th

Asia-Pacific Conference on Communications (APCC), IEEE, 2019,
pp. 24–27.

[5] R. Klus, L. Klus, J. Talvitie, et al., “Transfer learning for convolutional
indoor positioning systems,” in 2021 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2022, pp. 1–8.
[6] M. Abid, P. Compagnon, and G. Lefebvre, “Improved cnn-based

magnetic indoor positioning system using attention mechanism,” in
2021 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), IEEE, 2021, pp. 1–8.

[7] S. Eisa, J. Peixoto, F. Meneses, et al., “Removing useless aps and
fingerprints from wifi indoor positioning radio maps,” in International

Conference on Indoor Positioning and Indoor Navigation, IEEE, 2013,
pp. 1–7.

[8] L. Klus, D. Quezada-Gaibor, J. Torres-Sospedra, et al., “Rss finger-
printing dataset size reduction using feature-wise adaptive k-means
clustering,” in 2020 12th International Congress on Ultra Modern

Telecommunications and Control Systems and Workshops (ICUMT),
IEEE, 2020, pp. 195–200.

[9] J. Talvitie, M. Renfors, M. Valkama, et al., “Method and analysis
of spectrally compressed radio images for mobile-centric indoor lo-
calization,” IEEE Transactions on Mobile Computing, vol. 17, no. 4,
pp. 845–858, 2017.

[10] H. Zhou and N. N. Van, “Indoor fingerprint localization based on
fuzzy c-means clustering,” in 2014 Sixth International Conference on

Measuring Technology and Mechatronics Automation, IEEE, 2014,
pp. 337–340.

[11] Y. Lin, D. Jiang, R. Yus, et al., “Locater: Cleaning wifi connectivity
datasets for semantic localization,” Proc. VLDB Endow., vol. 14, no. 3,
pp. 329–341, Nov. 2020.

[12] J. Talvitie, E. S. Lohan, and M. Renfors, “The effect of coverage
gaps and measurement inaccuracies in fingerprinting based indoor
localization,” in International Conference on Localization and GNSS

2014 (ICL-GNSS 2014), 2014, pp. 1–6.
[13] A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Structured group

sparsity: A novel indoor wlan localization, outlier detection, and
radio map interpolation scheme,” IEEE Transactions on Vehicular

Technology, vol. PP, Oct. 2016.
[14] N. Singh, S. Choe, and R. Punmiya, “Machine learning based indoor

localization using wi-fi rssi fingerprints: An overview,” IEEE Access,
vol. 9, pp. 127 150–127 174, 2021.

[15] R. Wang, Z. Li, H. Luo, et al., “A robust wi-fi fingerprint positioning
algorithm using stacked denoising autoencoder and multi-layer percep-
tron,” Remote Sensing, vol. 11, no. 11, 2019.

[16] W. Njima, M. Chafii, A. Nimr, et al., “Deep learning based data
recovery for localization,” IEEE Access, vol. 8, pp. 175 741–175 752,
2020.

[17] W.-H. Lee, M. Ozger, U. Challita, et al., “Noise learning-based
denoising autoencoder,” IEEE Communications Letters, vol. 25, no. 9,
pp. 2983–2987, 2021.

[18] J. Sun, B. Wang, X. Song, et al., “Data cleaning for indoor crowd-
sourced rssi sequences,” in Aug. 2021, pp. 267–275.

[19] T. Stoyanova, F. Kerasiotis, K. Efstathiou, et al., “Modeling of the rss
uncertainty for rss-based outdoor localization and tracking applications
in wireless sensor networks,” in 2010 Fourth International Conference

on Sensor Technologies and Applications, IEEE, 2010, pp. 45–50.
[20] D. Quezada-Gaibor, L. Klus, J. Torres-Sospedra, et al., Supplementary

Materials for ”Data Cleansing for Indoor Positioning Wi-Fi Finger-

printing Datasets”, version 1.0, Mar. 2022.
[21] X. Song, X. Fan, X. He, et al., “Cnnloc: Deep-learning based

indoor localization with wifi fingerprinting,” in 2019 IEEE Smart-

World, Ubiquitous Intelligence Computing, Advanced Trusted Com-

puting, Scalable Computing Communications, Cloud Big Data Com-

puting, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 589–595.
[22] P. Bahl and V. Padmanabhan, “Radar: An in-building rf-based user

location and tracking system,” in Proceedings IEEE INFOCOM 2000.

Conference on Computer Communications. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies (Cat.

No.00CH37064), vol. 2, 2000, 775–784 vol.2.
[23] J. Ma, X. Li, X. Tao, et al., “Cluster filtered knn: A wlan-based indoor

positioning scheme,” in 2008 International Symposium on a World of

Wireless, Mobile and Multimedia Networks, IEEE, 2008, pp. 1–8.
[24] J. Torres-Sospedra, R. Montoliu, S. Trilles, et al., “Comprehensive

analysis of distance and similarity measures for wi-fi fingerprinting
indoor positioning systems,” Expert Systems with Applications, vol. 42,
no. 23, pp. 9263–9278, 2015.


