The Attitude of Visual Impaired Students towards STEM: A Pilot Study

A Baptista¹, A Chrysargyri², R Costa³, P Serra⁴, S Franco¹, MFM Costa¹ ¹Centro de Física das Universidades do Minho e do Porto, Portugal ²Protoporia in Athens, Greece ³Agrupamento de Escolas Henriques Nogueira in Torres Vedras, Portugal ⁴Instituto Superior de Educação e Ciências in Lisboa, Portugal abaptista@fisica.uminho.pt

Abstract. Understanding and gathering information about the attitudes of visual impaired students concerning sciences, technology, engineering and mathematics (S-STEM) is an important issue for the school and for the teachers when planning inclusive classrooms in STEM context.

With the purpose of accessing the way visual impaired students relate to S-STEM, a questionnaire was applied in two samples of students from Portugal and Greece. The influence of sex, academic level, country and type of vision impairment was evaluated as main factors using a factorial ANOVA.

The analysis of the questionnaires showed that the academic level was the single factor with statistically significant effect on S-STEM. This drives to the conclusion that visual impaired students generally have a similar attitude towards S-STEM when comparing with other students.

Keywords. Blind, Inclusive Classrooms, Low Vision, STEM, Visual Impairment.

1. Introduction

The current labour market demands workers with good background in sciences, technology, engineering and mathematics (STEM) [1]. Responding to these demands raises two main challenges to the education systems related to STEM: attracting students and promoting efficient teaching methodologies.

In the case of inclusive classrooms with visual impaired students (VI), i.e., low vision and blind, extra efforts are necessary to adapt

these methodologies to the students' visual condition. Thus, understanding the students' attitude toward STEM is a starting point to construct these inclusive processes. Therefore, this pilot study aims to assess the attitude of visual impaired students from lower and upper secondary education towards STEM in two European Countries.

Table 1.	Information	on	students	from	different
vision conditions					

	Normal sight	Low vision	Blind
Country	n;	n;	n;
Country	mean age	mean age	mean age
	(years);	(years);	(years);
	SD	SD	SD
	25;	7;	4;
Portugal	16.2;	17.4;	18.3;
_	1.2	2.2	1.5
	26;	13;	8;
Greece	15.8;	15.7;	16.1;
	1.5	2.8	2.4

2. Methods

Thirty-six students, including normal sight, low vision and blind (8 males, 24 females; and 4 that preferred not to answer about their sex) from Portugal and forty-seven (24 males, 21 females and 2 that preferred not to answer about their sex) from Greece were enrolled in this study (Table 1). The Portuguese students' group, with an age (mean ± standard deviation) of 16.7±1.6 years old ranging from 14 to 19 years old and the Greek students' group, with an age of 15.8±2.1 years old ranging from 11 to 19 years old, answered a questionnaire about Student Attitudes toward STEM (S-STEM) [2] from November 2021 to March 2022. The questionnaire, as shown in Table 2, intended to assess five types of attitudes: Science, Technology & Engineering, Mathematics and 21st Century Skills. The response used a Likert scale: 'Strongly disagree', 'Disagree', 'Neither agree or disagree', 'Agree', and 'Strongly agree'. To these claims were attributed scores from 5 ('Strongly agree') to 1 ('Strongly disagree').

A mean score resulting from all four attitudes assessed was obtained for each subject and considered to represent the subject's S-STEM score, where higher numbers represent better attitude.

Table 2. Questionnaire to measure Student Attitudes toward STEM (S-STEM) [2]

SKIII	Item
Math	 Math has been my worst subject.
	2. I would consider choosing a career that
	uses math.
	3. Math is hard for me.
	4. I am the type of student to do well in
	math.
	5 I can handle most subjects well but I
	cannot do a good job with math
	6 Lam sure I could do advanced work in
	math
	7 Lean got good grades in math
	8 Lom good at math
Calanaa	
Science	9. Faill sule of mysell when the science.
	10. I would consider a career in science.
	11. I expect to use science when I get out of
	12. Knowing science will help me earn a
	living.
	13. I will need science for my future work.
	14. I know I can do well in science.
	15. Science will be important to me in my
	life's work.
	16. I can handle most subjects well, but I
	cannot do a good job with science.
	17. I am sure I could do advanced work in
	science.
Engineering	18. I like to imagine creating new products.
and	19. If I learn engineering, then I can improve
Technology	things that people use every day.
	20. I am good at building and fixing things.
	21. I am interested in what makes machines
	work.
	22. Designing products or structures will be
	important for my future work.
	23. I am curious about how electronics
	work.
	24. I would like to use creativity and
	innovation in my future work.
	25. Knowing how to use math and science
	together will allow me to invent useful
	things.
	26. I believe I can be successful in a career
	in engineering.
21st Century	27 Lam confident I can lead others to
Skills	accomplish a goal
e i i i i i	28 Lam confident I can encourage others to
	do their best
	29 Lam confident I can produce high
	guality work
	30 Lam confident I can respect the
	differences of my peers
	31 Lam confident I can help my peers
	32 Lam confident L can include others'
	perspectives when making decisions
	33 Lam confident L can make changes
	when things do not go as planned
	34 am confident can set my own learning
	noals
	35 Lam confident I can manage my time
	wisely when working on my own
	36 When I have many assignments I can
	choose which ones need to be done first
	37 Lam confident L cap work woll with
	students from different backgrounds
	siduents nom unerent backgrounds.

To study whether vision affected S-STEM we applied the factorial ANOVA, where in addition to vision, sex, school level (lower

secondary or upper secondary) and country were also used as main factors.

3. Results

The results presented in Table 3, Table 4 and Figure 1 show that vision does not affect S-STEM-score.

Of the other main factors, only the school level had a statistically significant effect, with lower secondary students having a better S-STEM.

Also, none of the interactions between main factors were statistically significant (Table 4). However, the interaction School-level*Vision was on the borderline of statistically significance (p=0.051). Therefore, School-level*Vision was reorganized into six groups, as depicted in Table 3 and Figure 1.

Table 5. Descriptive statistics per group	Table 3.	Descriptive	statistics	per	group
---	----------	-------------	------------	-----	-------

Group of students	Number of subjects	Mean (SD)
Lower secondary AND Normal sight	8	3.95 (0.44)
Lower secondary AND Low vision	9	3.52 (0.57)
Lower secondary AND Blind	4	2.84 (0.59)
Upper secondary AND Normal sight	43	2.96 (0.74)
Upper secondary AND Low vision	11	3.48 (0.54)
Upper secondary AND Blind	8	3.19 (0.43)

Figure 1. STEM Scores for students with normal vision, low vision and blind; considering two school levels: a) lower secondary and b) upper secondary. The box is determined by the 25th and 75th percentiles. The whiskers are determined by the 5th and 95th percentiles. The horizontal line represents the mean values A one-way ANOVA followed by a post-hoc tests (Tukey) was used to explore differences between these six groups related to S-STEM.

Table 4. Parameters (main factor and
interactions) of factorial ANOVA

Factors	F	p-value
Country	1.7	0.19
School-level	7.5	<0.01
Sex	0.7	0.50
Vision	1.6	0.21
Country * School-level	0.7	0.40
Country * Sex	1.8	0.18
Country * Vision	0.5	0.64
School-level * Sex	0.5	0.58
School-level * Vision	3.2	0.05
Sex * Vision	0.6	0.64
Country * School-level *	1.7	0.19
Sex		
Country * School-level *	1.3	0.28
Vision		
Country * Sex * Vision	0.2	0.82
School-level * Sex * Vision	0.7	0.51
Country * School-level *	-	
Sex * Vision		

The results showed statistically significant difference only between the lower-secondary-education-AND-normal-sight and upper-secondary-education-AND-normal-sight (one-way ANOVA: F=4.36, p<0.01; Tukey: p<0.01), which confirms that school level has a relevant effect on STEM score.

4. Discussion/Conclusion

In conclusion, VI students generally have a similar S-STEM to their counterparts with normal vision, indicating that the educational system/society does not demotivate these students for STEM. This can be a facilitator when planning inclusive STEM classes.

5. Acknowledgements

This work was partially funded and supported by ERASMUS+ Programme; School Education Strategic Partnership – KA201 Agreement Number: 2020-1-PT01-KA201-078451.

This work was partially funded and supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020. The assistance of the INSIDE team, namely Teresa Neto, Athanasios Mitzifiris, George Antonakos, Giorgos Giorgakis, Marianna Araouzou and Klaire Leigri is gratefully acknowledged.

6. References

- [1] Rocard M. Science Education NOW: A renewed Pedagogy for the Future of Europe, Brussels: European Commission, 2007. http://ec.europa.eu/research/sciencesociety/ document_library/pdf_06/reportrocard-onscience- education_en.pdf
- [2] Unfried A, Faber M, Stanhope DS, Wiebe E. The Development and Validation of a Measure of Student Attitudes Toward Science, Technology, Engineering, and Math (S-STEM), Journal of Psychoeducational Assessment, 33, 622-639, 2015.