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Abstract 
The use of optimization computational tools is of primordial importance for the polymer 
processing industry, as they provide the means for improving the efficiency of the process 
without requiring time-consuming and expensive procedures. This review aims to evaluate the 
application of optimization methodologies to the most important polymer processing technics, 
including, single and twin-screw extrusion, dies and calibrators, blow-moulding, injection 
moulding and thermoforming. The most important features of an optimization system will be 
identified to identify the best practices for each particular situation. These features include the 
nature of the objective function (single or multi-objective), the type of optimization algorithm, 
the modelling routine used to evaluate the solutions and the parameters to be optimized. First, 
the state-of-the-art optimization methodologies generally employed is presented. This will be 
followed by a detailed review of the literature dealing with this subject. This will be completed 
by a discussion taking into account the features referred to above. Therefore, it was possible to 
show that different optimization techniques can be applied to polymer processing with great 
success. 

Introduction 
The processing of thermoplastics encompasses usually three functional steps: melting of a solid 
polymer, flow and shaping of the melt, and cooling of the final part produced. Thus, to model 
computationally these processes it is necessary an understanding of heat transfer, melt rheology, 
fluid mechanics, and morphology development. For that, the modelling routines available are 
able from input data, such as material properties, system geometry and operating conditions, to 
calculate performance measures that can help the engineer to select the best solution to use in 
industrial practice. This can be done using optimization methodologies in such a way that the 
modelling routine can be run interactively until satisfactory solutions can be found. 

Given the importance of understanding optimizing polymer processing techniques a review of 
literature, applied to single and twin-screw extrusion, dies and calibrators, blow-moulding, 
injection moulding and thermoforming, is presented. Different alternatives are available in the 
literature: simulation tools based on a trial-and-error; specific design approaches, i.e., using the 
modelling equations in a pre-arranged sequence; optimization procedures, in which the process 
modelling package is used thoughtfully by an optimization algorithm; and perform data-driven 
optimization, which consists in the use of Artificial Intelligence (AI) techniques to explore the 
search space based on experimental or computational data.  
Given the lack of space, only the analysis concerning the optimization of thermoforming will 
be presented here. 
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Application to Polymer Processing 
Figure 1 illustrates the different processing techniques studied in detail by the present review. 
The methodology used considers the use of the following type of data for thermoforming: i) 
objective function, that be Single Objective (SO) or Multi-Objective (MO); ii) optimization 
algorithm, e.g., Empirical, Regression, Direct, Gradient, Simulated Annealing (SA), 
Evolutionary Algorithm (EA), Inverse Artificial Neural Network (IANN); modelling approach: 
unidimensional (1D), two-dimensional (2D) and three-dimensional (3D), using Analytical (A), 
Finite Differences (FD), Finite Volumes (FV) or Finite Elements (FE) approaches; decision 
variables, i.e., parameters to optimize.  

 
Figure 1. Polymer processing sequences are targeted by the review. (A) Single-screw extrusion 
of profiles (A1), flat film/sheet for thermoforming; (A2), extrusion blow moulding (A3); (B) 
co-rotating twin-screw compounding and pelletizing (B1); (C) injection moulding: (C1) mould 
(C2); injection blow moulding. Left: plasticating units; Right: shaping and cooling (with 
permission from [2] under an open access Creative Common CC BY license). 
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For each one of the processing techniques identified in Figure 1, a table similar to Table 1 was 
prepared to compare the methodologies available in the literature using the above type of data 
[2, 3]. In the present text, only the previous works on optimization for the thermoforming 
process is presented, as shown in Table 1. 

Table 1. Previous publications on the optimization of thermoforming (decision variables: 
OC- operating conditions; TempD- temperature distribution; SThD- sheet thickness 
distribution) (adapted with permission from [3] under an open access Creative Common 
CC BY license). 

Objective  
function 

Optimization 
Algorithm 

Modelling 
Approach 

Decision 
variables 

Reference 

SO Empirical 1D-N TempD Duarte and Covas (1997, 2002) [4,5] 
SO Gradient 3D-N TempD Wang and Nied (1998) [6] 
SO Gradient 1D-A TempD Bordival et al. (2005) [7] 
SO Gradient 3D-N TempD Chy and Boulet (2010) [8] 
SO Gradient 3D-N TempD Chy et al. (2011) [9] 
SO Regression 3D-N TempD Li et al. (2008) [10] 
SO Regression 3D-N TempD Li et al. (2010) [11] 
SO SA+EA 3D-N TempD Erchiqui et al. (2011 [12]) 
SO SA+EA 3D-N TempD Bachir-Cherif et al. (2015) [13] 
SO SA+EA 3D-N TempD Erchiqui (2018) [14] 
SO Gradient 3D-N TempD Bachir-Cherif et al. (2018) [15] 
SO SA+EA 3D-N TempD Bachir-Cherif (2019) [16] 
SO IANN Experimental OC Yang and Hung (2004) [17] 
SO IANN Experimental OC Chang et al. (2005) [18] 
SO Regression Experimental OC Leite et al. (2018, 2018) [19,20] 
SO Regression Experimental OC Sasimowski (2018) [21] 

MO(2) EA 3D-N SThD Gaspar-Cunha et al. (2021) [22] 

Conclusions 
A discussion of the application of optimization methods to solve real problems in single and 
twin-screw extrusion, dies and calibrators, blow-moulding, injection moulding and 
thermoforming are presented. Solving these processing challenges as optimization problems is 
much more efficient than relying on empirical knowledge, or in the use of simulation tools on 
a trial-and-error basis. Also, can be shown that there is a strong interdependence between the 
objective function (i.e., the system performance), the optimization algorithm, and data 
collecting (i.e., experimental or computational data).  
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