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a b s t r a c t

This paper introduces a multiobjective optimization (MOP) method for nonlinear regression analysis
which is capable of simultaneously minimizing the model order and estimating parameter values
without the need of exogenous regularization constraints. The method is introduced through a case
study in polymer rheology modeling. Prevailing approaches in this field tackle conflicting optimization
goals as a monobjective problem by aggregating individual regression errors on each dependent
variable into a single weighted scalarization function. In addition, their supporting deterministic nu-
merical methods often rely on assumptions which are extrinsic to the problem, such as regularization
constants and restrictions on parameter distribution, thereby introducing methodology inherent biases
into the model. Our proposed non-deterministic MOP strategy, on the other hand, aims at finding
the Pareto-front of all optimal solutions with respect not only to individual regression errors, but
also to the number of parameters needed to fit the data, automatically reducing the model order.
The evolutionary computation approach does not require arbitrary constraints on objective weights,
regularization parameters or other exogenous assumptions to handle the ill-posed inverse problem.
The article discusses the method rationales, implementation, simulation experiments, and comparison
with other methods, with experimental evidences that it can outperform state-of-art techniques. While
the discussion focuses on the study case, the introduced method is general and immediately applicable
to other problem domains.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In physical sciences and engineering, an inverse problem de-
ote the goal of formulating a causal description of a given
henomenon from a set of observational experimental output
ata—what, mathematically, corresponds to formulating a model
apable of prediction the value of one or more dependent vari-
bles based on the values of one or more independent variables.
nverse problems lay in heart of system identification field and
lay a role in uncountable application domains such as physics,
hemistry, signal processing, machine learning, to name a few.
ne recognized challenging aspects of the inverse problem is that
ts real-world instances are often ill-posed, that is, they belong to
the class of problems which does not satisfy Hadamard’s well-
posedness properties that (a) a solution exists, (b) is unique, and
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568-4946/© 2022 Elsevier B.V. All rights reserved.
(c) its behavior changes continuously with the initial conditions.
An ill-posed problem may therefore have either none or many
solutions; and its solutions, if any, are very sensitive to the choice
of initial conditions. As consequence, stable algorithms are less
likely to be applicable to solve it, and exogenous assumptions
may be required such as by means of regularization or constraints
in parameter value distribution. For instance, a priori premises
on the order of the model, requirement of preset evenly spaced
parameters, and objective space smoothening are widely used to
tackle ill problems. Adding information which are extrinsic to
the data, however, are prone to yield biased models, which are
not necessarily optimal with respect to other potential solutions
residing in the entire feasible solution-space.

Regression analysis is an important framework for solving
inverse problems and a good deal of methods have been pro-
posed for various specific problem domains. Particularly, nonlin-
ear regression analysis accounts for an extensive research field
in natural sciences and industrial branches, whose phenomena of

interest are often described by more than one dependent variable.
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ne main issue is that minimizing regression errors of each of
hese variables often turn out as conflicting objectives. When
his is the case, one practical way to address the challenge is
y approaching it as a monobjective problem, by aggregating
ll regression errors into a single scalarization function, e.g. a
inear combination. Assigning weights to this objective function,
owever, introduces more bias into the model, and implies in an
priori decision on which individual objectives are prioritized.
This paper introduces a multiobjective optimization (MOP)

ethod for nonlinear regression analysis aimed at simultaneously
inimizing the model order and estimating parameter values
ithout the need of exogenous assumptions. Our proposed non-
eterministic MOP strategy aims at finding the Pareto-front of
ll optimal solutions with respect not only to individual regres-
ion errors, but also to the number of parameters needed to
it the data, allowing for an adaptive reduction of the model
rder. The approach does not require arbitrary constraints on
bjective weights, regularization parameters or other exogenous
ssumptions to handle the ill-posed inverse problem. The key
ethod’s rationales are introduced in the context of an industrial
ase study, which illustrate the problem and the strategy toward
ts solution. The sections which follow discuss the method’s ratio-
ales, implementation, simulation experiments, and comparison
ith other methods, with experimental evidences that it can
utperform state-of-art techniques. While focused on the study
ase, the method is general and immediately applicable to other
roblem domains.

.1. Polymer rheology modeling

With major importance in industry, the viscoelastic proper-
ies of polymers have been extensively studied over the last
ecades, and a great deal of scientific research work has been de-
oted to the development of analytical models capable of describ-
ng such phenomenon. The time-dependent relation between
tresses and strains in the material is usually modeled using
oltzmann superposition principle by a constitutive equation as

(t) =
∫ t

−∞

G(t − t ′)γ (t ′)dt ′ (1)

which correlates the stress tensor τ with the linear relaxation
modulus G(t) and the rate of deformation tensor γ [1,2]. The
relaxation modulus, in turn, is often analytically represented by
the Maxwell generalized model, as a sum of exponential terms

G(t − t ′) =
n∑

i=1

Gie(t−t
′)/λi (2)

in which λi and Gi comprise the model parameters correspond-
ing, respectively, to the relaxation times and their corresponding
weights. The whole set of n pairs (Gi, λi) is known as the dis-
crete relaxation spectrum of the material. In a common scenario,
those model parameters are to be empirically determined from
experimental data. Small-amplitude oscillatory shear [3] (SAOS),
which lays among the prevailing methods aimed at this purpose,
consists in applying a sinusoidal shear strain to a sample of the in-
vestigated material and measuring the phase difference between
this excitation and the strain caused in the material at a partic-
ular frequency ωj. This frequency-domain experimental method
produces as outcome the material’s linear viscoelastic properties
measured as the storage modulus G′(ωj) and loss modulus G′′(ωj),
which maps into the time domain as

τ (t) = γ
[
G′(ω) sin(ωt)+ G′′(ω) cos(ωt)

]
(3)

One may then express both the storage and the loss moduli as

G′(ω) =
n∑

Gi
(ωiλi)2

1+ (ω λ )2
(4)
i=1 i i t

2

G′′(ω) =
n∑

i=1

Gi
(ωiλi)

1+ (ωiλi)2
(5)

In practice, the experimental procedure consists in varying the
frequency ωj along a discrete set of n values, and measuring the
corresponding values of G̃′(ωj) and G̃′′(ωj). The modeling chal-
lenge may then be addressed as a nonlinear regression problem
in which a set of n pairs (Gi, λi) is sought such that the theoretical
′(ωj) and G′′(ωj) of Eqs. (4) and (5) best fit the empirically
easured1 G̃′(ωj) and G̃′′(ωj). The so-determined solution offers

hus an estimated set of parameters for Eq. (2). The meaning of
‘best fit’’, in the former sentence may be quantified by any metric
or the regression residuals such the customary mean square
rror, or other convenient choice.

.2. State-of-art review

Mathematically, the determination of the parameters which
it Eqs. (4) and (5) is an instance of the aforementioned inverse
roblem. Not only a notably nontrivial theoretical challenge in
tself, the special case of Eq. (2) has long been recognized as ill-
onditioned [4,5], meaning that the model is very sensitive to
ither any method’s bias or noise in experimental instrumen-
ation. Even minor variations in each of those may yield major
ffects on regression parameters estimation, potentially reflecting
igh regression errors and spectra with unrealistic features [3,5].
To handle ill-posedness, auxiliary strategies may be evoked.

uilding upon Laun [6] formulations, Orbey and Dealy [3] dis-
uss a linear-regression method which requires the number of
arameters n to be preset with relaxation times λi, i = 1, 2, . . . , n
venly spaced along a logarithmic scale. The authors compare the
pproach with a variant by Honerkamp and Weese [5], which in-
roduces the Tikhonov regularization as an additional constraint.
lso discussed is a third alternative based on non-linear regres-
ion by Baumgaertel and Winter [7], who comment on the benefit
f Tikhonov method to improve the solution convergence. Regu-
arization is also used by Ramkumar et al. [8] in their approach
ased on a quadratic programming method capable of reducing
egression error and increasing curve smoothness.

A novel technique referred to as edge-preserving regulariza-
ion was proposed by Roths et al. [9] in order to overcome the
imitations of common regularization methods in coping with
pectra edges and large curvatures. Gerlach and Matzenmiller
10] compare two different numerical methods for determination
f relaxation spectra, one built on gradient-based optimization
lgorithm and another combining Tschebyscheff approximation
nd Wolfe quadratic optimization. Both approaches require ap-
ropriate starting values for the parameters in order to converge
o stable minima. Alternatively, the windowing method by Emri
nd Tschoegl [11] is a computational approach also built on
he assumption of preset evenly distributed spectrum lines on a
ogarithmic scale.

More recent works have investigated different approaches for
he determination of polymer relaxation spectra. Arguing about
he practicality and availability of experimental equipment and
rocedures, Zatloukal et al. [12] proposed using capillary steady
hear data in place of SOAS. As some aforementioned works,
heir analytical framework relies on non-linear regression and
onstraints on parameter distribution. Guzmán et al. [13] intro-
uced an approach which does not uses regularization and is
ased on double-reptation model as an alternative to the con-
entional inversion of the integral equations, relying only on an
priori knowledge of an α parameter and dynamic moduli data.

1 The symbol ũ is used to denote empirically measured values of variable u
hroughout this text.
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onetheless, and in spite of some reported interest in the use of
ontinuous relaxation spectrum to describe polymer viscoelastic
roperties [14–16], the discrete formulation stands as the prevail-
ng approach in the rheology framework, with small-amplitude
scillatory shear remaining an important experimental method
oth in scientific research and industry shop floor.

.3. Evolutionary computation approach

To handle the nonlinearity and ill-posedness of the regression
roblem, the aforementioned and other analytical and computa-
ional deterministic methods described in the literature are, to
broad extent, reliant on some type of assumptions that are

xtrinsic to the experimental data, such as heuristically tuned
egularization parameters, constraints on the number of param-
ters and their distribution. Meanwhile, in a distinctively dif-
erent vein, a non-deterministic optimization method has been
roposed [17] which does not rely either on arbitrary or ex-
genous regularizing parameters nor technique-biased parameter
istribution hypotheses. The introduced method, grounded on
volutionary computation theory, was successfully applied to the
etermination of the discrete linear viscoelastic relaxation spec-
rum from SOAS data, and experimental evidences indicate that
t was able to fit the storage modulus G′ and the loss modulus
′′ of Eqs. (4) and (5) with significantly low regression error and
equiring a low number of parameters (Gi, λi) relatively to other
reported methods.

Essentially, an evolutionary algorithm (EA) works not too dif-
ferently from other iterative optimization methods in which a
solution is successively improved at each step. Unlike conven-
tional deterministic techniques, nevertheless, the EA approach
evolves not a single solution, but a collection of many prospec-
tive solutions simultaneously. At each step, the algorithm selects
a few from among the best solutions found so far, and, from
these, it derives some other new solutions. Both these procedures,
selection and derivation, embody a degree of randomness. The
best solutions have a high probability, rather than certainty, of
being picked up—such a nongreed strategy is key to avoiding
an otherwise inevitable premature convergence to local optima.
The procedure to derive new solutions from the selected ones
is performed by combining the latter, such that offspring solu-
tions are close in the solution space to their parent solutions,
lready a product of best-fit selection, and hopefully may thus
urther approach an optimum in the objective space. Often, after
ecombination, mutations – minor random changes with low
robability – are applied in order to generate new solutions
hich would not be produced solely by recombination—and thus,
llowing for further exploration of the search space. Summa-
izing, and resorting to the metaphor of the natural evolution
pon which the computational strategy is built, the successive
hoice of the ‘‘best fit’’ – evaluated by the objective function –
nd their recombination into similar solutions yield a selective
ressure driving the convergence to optima in the solution space;
robabilistic selection and random variations impose a contrary
ressure which tends to avoid premature convergence and better
xploration of the solution search space.
In their paper Monaco et al. [17], authors describe the real-

zation of this approach in the form of a conventional genetic
lgorithm [18] (GA) modified to work with real-valued genes, each
2-tuple (Gi, λi). The method was implemented as a computer
rogram which takes experimentally measured G′ and G′′ data
nd produces as output a set of n parameter (Gi, λi) along with
he computed regression errors, as in Eqs. (7) and (8). Using
ata sets from the literature, the evolutionary algorithm was
apable of reproducing Laun [6] results for LDPE material with
= 8 when abiding by the constraint of preset logarithmically
3

istributed λ. Under the same restriction, an equivalent result
n the curve smoothness obtained by Ramkumar et al. [8] with
= 41 parameter was achieved with a regression residuals

s low as two orders of magnitude bellow that reported by the
atter work. When the constrain on λ spacing was removed,
he genetic algorithm reproduced Laun [6] result with a 20%
ower regression residue, and that of Ramkumar et al. [8] with
esiduals bellow the mensurable precision limit and equivalent
moothness. Moreover, the authors replicated this computational
xperiment with different choices of n and could achieve both
egression residuals and curve smoothness equivalent to that of
= 41 evenly log-scale distributed λ found by said work [8],

ut with as few as n = 8 free-λ (unconstrainedly distributed
elaxation times). Results for other materials including HDPE, PB
nd Honerkamp and Weese [5] synthetic data were produced—
n those cases, the genetic algorithm needed, respectively n =
, 6 and 7 parameter paris to outperform the reported results
nd, respectively, n = 8, 10 and 10 to reach the minimum
egression residual, beyond which no improvement was seen by
ncreasing n.

It is fair to remark, at this point, that whereas such a positive
utcome might not be assured beforehand – bearing in mind
he approach’s inherent non-determinism – it is nevertheless
ot absolutely surprising, once taken into account that the less
onstraints are imposed, the broader the range or possible so-
utions. In this case, the problem admits superior (best fitted)
hoices of regression parameters out of the evenly log-distributed
restriction. Indeed, the self-sufficiency to explore the solution

earch space without the need of arbitrary, extrinsic constraints is
noteworthy inherent virtue of the evolutionary computational
pproach. Evolutionary algorithms (of which genetic algorithms
re an example) are known as a metaheuristic, meaning that it
s not a specific-purpose prescription for a particular problem,
ut rather a generic problem-solving mechanism which can be
ailored to different domains. Given a codification scheme to rep-
esent prospective solutions (chromosome), a procedure to derive
ew solutions from existing ones (recombination and mutation),
nd an algorithm to compare the quality of two solutions (fit-
ess function), a GA is essentially a well-reasoned trial-and-error
trategy, grounded on natural evolution theory and backed by
mpirical positive evidences of both biological and artificial sys-
ems, implemented as a non-deterministic iterative optimization
lgorithm.

.4. The multiobjective problem

The issue motivating the present research work concerns the
act that the goal of determining the parameters that minimize
he regression residues of both G′ and G′′ theoretical curves trans-
ates into a multiobjective optimization problem (MOP). That is
ecause the same set of parameters which minimizes the residue
f Eq. (4) may not be the best choice to minimize the residue
f Eq. (5). If we associate each individual regression a metric of
uality which quantifies the resulting residues, we may define
wo objective functions f1 and f2. As is usual in real multiobjective
ptimization problems, in the problem under investigation both
bjectives are conflicting.
One straightforward strategy to tackle the goal of minimiz-

ng m objective functions at the same time is to address it
s a monobjective problem by means of scalarization. Under
his approach, if a solution x is sought which minimizes f =
f (x), f (x) . . . f (x)}, then a scalar function g(x,w) is chosen as
1 2 m
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Fig. 1. Pareto set as the solution of a multiobjective optmization problem.
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he new monobjective function to be optimized. For instance, the
eighted sum method corresponds to a linear combination of the

ndividual objective functions fi, such as

g(x,w) = w1f1(x)+ w2f2(x)+ · · · + wkfm(x)
k∑

i=1

wi = 1, wi ≥ 0

is one very simple, yet meaningful scalarization function. The
set of weights w = {w1, w2, . . . wm} may be tuned to reflect
the relative importance of each objective. The exploration of
the solutions’ search space is narrowed and driven around the
possibilities which conform to the chosen weights. This is an
example of an a priori multiobjective problem solving technique
in which the decision maker assigns optimization priorities be-
forehand, accounting for the strategy exploited in aforementioned
work [17]. In this present paper we extend those results by tack-
ling the same challenge as a strictly multiobjective optimization
problem. That is, we aim at finding not one single best solution,
but a set of solutions which are the optimal ones with respect
to all possible weight assignments, allowing thus for a posteriori
decision making on the particular solution to be chosen. This
collection of optimal solutions is commonly referred to as the
Pareto set. The concept may be intuitively depicted as in Fig. 1,
addressing a generic bi-objective problem. In the plot, the two
objective functions f1 and f2, indicated by orthogonal axes, define
the objective space. In this bidimensional example, each dot on
the solution’s plane corresponds to a particular set of parame-
ters in the feasible solution space—which may have a different
dimension.

Like in the running case study, where the objective func-
tions are regression residuals, let us suppose that the goal is
to minimize both f1 and f2. In Fig. 1(a), solution S1 is clearly
better than solution S2, seeing that the former minimizes both
objectives respectively to the latter. In the optimization field’s
terminology, S1 is said to dominate S2. A like conclusion is not
however so immediate when comparing S1 to S3, as either one
is better respectively to each of the objectives—bringing up the
fundamental challenge of defining ‘‘optmum’’ in a multiobjective
problem. The formal approach for this dilemma is to define that
a given solution is dominated if there is another solution which
is better than it with respect to at least one of the objectives.
Therefore, both solutions S1 and S3 are dominated. On the other
hand, solution S4 is nondominated, inasmuch as there is no other
solution which is better than it regarding any objective. In the
plot of Fig. 1(a), white dots are dominated solutions, whereas
black dots are nondominated ones. If over all the solution search
space there are no feasible solutions that dominate the ones
4

shown in the plot, the nondominated solutions are considered
optimal solutions, meaning that any attempt to improve them
with respect to one objective would degrade another objective.
The frontier on which lay the optimal solutions, depicted in
Fig. 1(b), is known as the Pareto front.

In possession of the Pareto front, the problem analyst may
choose among all optimal solutions, selecting which is more
appropriate based on a particular objective priority assignment.
For instance, they can prefer a solution which equalizes all objec-
tives, or else a solution which relatively prioritizes more critical
objectives to the detriment of less important ones. In the focused
problem, the domain analyst may make decisions on the basis of
accuracy or precision associated with either G′ or G′′ data sets, or
any other sensible criteria.

2. Problem formulation

To comply with an usual preference in the literature, we
herein quantify the regression quality as the mean absolute per-
centage error2 ϵ, as hereafter denoted. Formally, for a set of d data
values xi, this metric is defined as

ϵ =
1
d

d∑
j=1

⏐⏐⏐⏐ x̃− x
x̃

⏐⏐⏐⏐ (6)

with x̃ indicating the experimental data and x, the value fore-
cast by the model.3 Formally, thus, the addressed multiobjec-
tive problem may thus be stated as the goal of minimizing the
objective-functions ϵ1 and ϵ2 given by the expressions (7) and (8)
s

1(P) =
1
d′

d′∑
j=1

⏐⏐⏐⏐⏐ G̃′(ωj)− G′(ωj)

G̃′(ωj)

⏐⏐⏐⏐⏐ (7)

ϵ2(P) =
1
d′′

d′′∑
j=1

⏐⏐⏐⏐⏐ G̃′′(ωj)− G′′(ωj)

G̃′′(ωj)

⏐⏐⏐⏐⏐ (8)

2 In evaluating a prediction model, the mean absolute percentage error ϵ
between a series of forecast values fi and their corresponding actual values ai ,
s a measure of the absolute relative deviation between the actual and forecast
alues. i.e. the average of |fi − ai| over the n data records.
3 Some authors, e.g. [3,8] use to refer to this metric as the average ab-

solute deviation (AAD). This however conflicts with the conventional statistics
terminology, which defines AAD as the average deviation of each individual
variable with respect to the sample’s mean—therefore, as a dispersion rather a
regression quality measurement. In this paper we abide with the more precise
denomination of mean absolute percentage error, as commonly used in statistics
field.
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Fig. 2. Outline of a monobjective GA.
P = {p1, p2, . . . , pn}, pi = (Gi, λi)

Gi ∈ [Gmin,Gmax], λi ∈ [λmin, λmax] (9)

with P being the set of n determined parameter pi = (Gi, λi),
i = 1, 2, . . . , n. In the equation, G′ and G′′ stand for the storage
and loss moduli; d′ and d′′ account for the number of available
experimental data, respectively. The tilde symbol indicates the
experimental values and the corresponding tilde-less variables
hold the values forecast by the model. Condition (9) delimits the
feasible solution space which the algorithm is allowed to explore.

In this paper, we exploit a multiobjective evolutionary algo-
rithm to generate a Pareto set containing optimal solutions for
the determination of the linear viscoelastic relaxation spectrum
from experimental data. Each solution is a set of parameters
(Gi, λi) which fits the theoretical curve of the storage and loss
module given by Eqs. (4) and (5), and is optimal in the sense
that it yields the best possible ϵ1 for an admitted ϵ2 and vice
verse. Moreover, the method allows for including the number of
parameters n as one of the multiple objectives to be optimized,
thereby offering the decision maker to appreciate the trade-offs
between regression quality and model order. Low-order mod-
els are advantageous for reducing cost and processing time of
computational-intensive simulations.

3. The algorithm MOEA/D

When tackling the running case study by means of an evolu-
tionary strategy, Monaco et al. [17] outlined the working principle
of a monobjective GA in the form of a simple algorithm, adapted
in Fig. 2.

Under the metaphor of genetic algorithms, the initial popu-
lation of step (a) is a randomly generated set of ρ prospective
solutions encoded in an appropriate form. In the running study
case, an individual is a candidate solution of the regression prob-
lem encoded as an ordered sequence of n pairs (Gi, λi), which
plays the role of a chromosome. In step (b), the fitness function is
the regression quality, which the authors assumed as the simple
average between ϵ1 and ϵ2, given by Eqs. (7) and (8). In step (c), a
‘‘mating pool’’ is formed by the probabilistic selection of β ‘‘best
fitted’’ individuals, that is, those chromosomes (parameter sets)
yielding lower average regressing residuals. In step (d), each of
the β new individuals is formed such that some have their genes
– (Giλi) pairs – closer to a ‘‘father’’ solution, whereas others have
their gene closer to a ‘‘mother’’ solution among the ones in the
mating pool, in a vague analogy to a biological offspring. Finally,
in step (e) the new individuals are compared with all individuals
of the original population regarding fitness; the highly scored
ones survive to the detriment of the worst fitted, again proba-
bilistically. The process repeats until a stop criterion is reached,
which, in the present example, is when the average regression
error eventually ceases to show significant improvement at each
new iteration. The GA output is a sequence of n pairs (Gi, λi)
which best fit Eqs. (4) and (5). It is worthy to remark that,
as a non-deterministic numerical method, the solution is not
guaranteedly the absolute optimal, but a best-effort estimation.

Successive runs of the algorithm with varying initial conditions

5

and random selection may yield numerically distinct results. The
reported computational method was however evaluated as robust
in the sense that the generated solutions, yet different, result in
equivalent regression quality.

Contrasting to this algorithm, a multiobjective evolutionary
algorithm (MOEA) builds upon a different paradigm as explained
in Section 1.4. Even so, some general principles of evolution-
ary computational methods are shared among the mono and
multiobjective algorithms. Both start with an initial population
and iteratively evolve it through successive steps of random se-
lection of the best fitted, random recombination and variation,
with parameters set to boost selective pressure (convergence
toward the optimum) and diversity preservation (solution space
exploration). The main difference between a monobjective GA
and a MOEA is that, while the former (GA) aims at driving a
unique individual towards a single optimum – possibly a scalar
combination of several objectives – the latter (MOEA) aims at
driving the whole population to settle along the Pareto front,
considering all objectives independently.

Perhaps the most straightforward strategy to achieve this is to
start from the very concept of dominance, and design a selection
policy which probabilistically preserves the nondominated solu-
tions to the detriment of the dominated ones. Its not difficult to
see that this will tend to cause the surviving solutions to approach
the Pareto front. One problem with this approach, which has been
long noticed [19], is that this sole criterion does not prevent the
tendency of all found Pareto-optimal solutions to cluster together
in one region of the theoretical Pareto front, due to the inherent
convergence pressure of the evolutionary process. Aiming at a
more even distribution of solutions along the Pareto front, several
techniques have been proposed [20], many of which embedding
into the selection mechanism some rule to prefer scattered over
crowded solutions. A particularly ingenious one, suggested by Zit-
zler and Thiele [21], is using to use a metric called hypervolume,
graphically explained in Fig. 3. The hypervolume is the union of
the areas of all rectangles with one vertex at a reference point Z
and the opposite vertex at a candidate optimal solution. It is easy
to see that the more evenly spread the set of Pareto solutions, the
larger the resulting area. In the image, Z is arbitrary point that is
at least slightly worse than the nadir point of the Pareto front
approximation obtained.

While effective, all the proposed techniques, including the
hypervolume, are computationally costly, especially in higher
dimension problems, and with many objectives. Because of this,
a different approach suggested by Zhang and Li [22] proposes to
tackle the problem by means of a decomposition strategy.

Decomposition is well-known in multiobjective optimization.
Essentially, it consists in converting the MOP into a set of monob-
jective problems through some scalarization function. For in-
stance, using the weighted sum method, a two-dimensional MOP
with objectives f1(x) and f2(x) may be converted into a scalar
optimization problem whose goal is to optimize (either maxi-
mize or minimize) a function g(x,w) = w1f1(x) + w2f2(x), with

wi + w2 = 1 and wi ∈ [0, 1]. The vector w = (w1, w2) is
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Fig. 3. Hypervolume index.

eferred to as the weight vector, while f = (f1, f2) is the objective-
unction vector.4 The optimal solution of the scalar function g ,
ith a particular weight vector w is a point in the Pareto front
f the MOP problem. Therefore, by taking k weight vectors wj

∈

w1, w2, . . . , wk and optimizing each g(f ,wj) individually, one can
obtain k Pareto-optimal solutions of the MOP. Generalizing the
preceding reasoning in a concise formulation, the decomposed
MOP problem may therefore be stated as follows.

f (x) = {fi(x)} i = 1, 2, . . . ,m, x ∈ Ω (10)

W = {wj
} j = 1, 2 . . . k (11)

wj
= {w

j
i} i = 1, 2, . . . ,m,

m∑
i=1

w
j
i = 1, wj

i ≥ 0 (12)

S(f j(x),wj, . . .) = g(x,wj, . . .) (13)

In Eq. (10), let f (x) be a set of m objective-functions whose
domain Ω is the feasible solution space, i.e. where lay the solu-
tions of practical interest. The objective-functions’ argument x
may be multidimensional and comprise the set of decision vari-
ables concerning the problem. The MOP decomposition implies
addressing the aggregation of objectives according to relative
weights, and searching for the Pareto-optimal set requires several
weight vectors. Let W , in Eq. (11), be this set of k weight vectors
wj, each of these a vector itself with m non-negative coordinates
w

j
i which sum up 1, as in Eq. (12). As for the scalarization method,

we may define a generic operator S , as in Eq. (13) which as-
sociates both the objective and a particular weight vectors to
a scalar function g(x,wj, . . .)—the ellipsis is left as a provision
for scalarization functions depending on other parameters. For
instance, the weighted sum is an example of a scalar operator
Sws(f (x),wj) = gws(x,wj) = w

j
1f1(x) + w

j
2f2(x) + · · · + w

j
mfm(x).

Solving the MOP/D (multiobjective problem with decomposition)
system involves optimizing g for all wj, j = 1, 2 . . . k so as to
btain a well-distributed set of solutions as close as possible to
he theoretical Pareto front.

While determining the k optimal solution in this way, one each
time, may be a simple and effective approach, this is however
ot necessarily a very efficient one. Other methods have been
roposed [20] to optimize all scalar functions simultaneously
t each iteration. One such method, which we address in the
resent paper, is a rather clever mechanism proposed by Zhang

4 We herein use boldface to denote vector variables and functions in order
o differentiate from scalar counterparts.
6

and Li [22], named multiobjective evolutionary algorithm based on
decomposition, MOEA/D. In general terms, the key idea of MOEA/D
is to choose evenly distributed weight vectors and exploit the
observation that, for two close weight vectors, the optimal so-
lutions of their corresponding scalar functions tend to be close
together along the Pareto front —seeing that g j is linear to wj.
OEAD/D takes advantage of this property by allowing recombi-
ation between evolving solutions of neighbor scalar functions,
s measured by the Euclidean distance between weight vectors.
hat is, at each iteration of the algorithm, the evolution of each
onobjective problem benefits from the progress of the neighbor
roblems, and as result, the whole set of solutions converge to
he Pareto front faster and in a well-distributed manner. The
echnical details and in-depth analysis of the MOEA/D algorithm
re offered in the proponents’ article [22].

. MOEA/D implementation

In the present research work, we have designed the Algo-
ithm 1 for the MOEA/D method.

The algorithm declares (line 2) W an ordered set of k weight
ectors wj. Then, for each wj, it defines a neighborhood with
≤ k other vectors which, further on, will be optimized in

ombination as outlined in Section 3. In the algorithm, (line 3) Bj

s the set of indexes corresponding to the wj’s neighbor vectors.
inally, P is the population (line 4) of sought after solutions xj.
he procedure starts by initializing W (line 6) with k evenly

distributed weight vectors5 satisfying the conditions of Eq. (12).
he neighborhood of each wj is initialized (line 7) with the s near-
st weight vectors, as given by their Euclidean distances, while
he population P is initialized (line 8) with randomly generated
olutions (solution vectors) xi within the allowable bounds of the
easible solution space Ω . The population is evolved across tmax
enerations (iterations), as controlled by the main program loop
line 9). Within it, each solution xj is visited and improved as
ollows. First, its neighbor solutions (corresponding to each scalar
roblem, and each weight vector) are combined (lined 12)—the
xact variation operator V(Bj,W ) by which this combination is
erformed is left open for flexibility. Then, the newly generated
olution y produced at this step is compared to its neighbors (line
5) by means of their corresponding scalar functions g—again,
he scalar operator S(f j(x),wj, . . .) to derive g(x,wj) is left open.
his comparison is the basis to decide on which solutions are
eplaced and which are retained (line 16). Parameter τmax controls
ow many current solutions may be so replaced. Algorithm 1 was
mplemented using matlab6 framework.

.1. Choices and parameters controlling the algorithm

As mentioned, the choices of both the scalar and variation
perators allow for flexibility and exploration through empirical
nvestigation, as addressed in the following sections.

Another central aspect of an evolutionary algorithm imple-
entation is the solution encoding scheme. This choice not only

mpacts the performance but also guides the design of the vari-
tion operators. In our implementation, we have opted for a
uite simple scheme in which each prospective solution (a chro-
osome in GA jargon) of n parameters is represented by an
rray of 2 × n real values, with even positions corresponding
o values of log(Gi) and odd positions to values of log(λi). This
llows for variation operators for continuous real-valued search
paces already existing for monobjective EAs to be used out of the

5 Programmatically, wj
= (j/k, (k−j)/k); refer to the source code for further

implementation details.
6 https://www.mathworks.com/products/matlab.html.

https://www.mathworks.com/products/matlab.html
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Algorithm 1 Our MOEA/D design.
1: //Declarations
2: W = {w1,w2 . . .wk

} wj
= (wj

1, w
j
2 . . . w

j
m), w

j
i ∈ R

3: B = {B1,B2 . . .Bk
} Bj

= {1, 2 . . . s}, s ≤ k
4: P = {x1, . . . , xk} xj ∈ Ω
5: // Initialization
6: W ← init_W () w

j
i ∈ [0, 1],

∑m
i=1 w

j
i = 1, ∥wa

− wb
∥2 = ∥w

c
− wd
∥2

7: B← init_B() ∀a ∈ Bj,∀b ̸∈ Bj
: ∥wj

− wa
∥2 ≤ ∥w

j
− wb
∥2

8: P ← init_P() xi : random(Ω)
9: for t = 1, . . . , tmax do
10: for j = 1, . . . , k do
11: // Variation
12: y ← V(Bj,W )
13: // Replacement
14: for τ = 1, 2 . . . s and τ ≤ τmax do
15: if g(y,wτ . . .) > g(xτ ,wτ , . . .) then
16: xτ ← y
17: end if
18: end for
19: end for
20: end for
p

5

s
i

y

shelf, what comes in handy when comparing results with other
research works.

The algorithm reads as input two text files containing the
xperimental data in CSV format,7 one for the storage modules
′ and another for the loss module G′′. The procedure is also
ontrolled by the choices of k, the number of desired solutions
n the Pareto front; tmax, the number of generations (iterations)
cross which the solution population is to be evolved (optimized);
nd s, the size of each solution’s neighborhood considered in
he offspring (derived solution) generation. All these parameters
ay be empirically tailored for the particular problem and data
ets—they will mostly affect converge speed.

. Implementation specifics

Aiming at verifying the susceptibility of the result quality with
espect to the choice of the scalarization and variation operators,
e have implemented a few already existing alternatives.

.1. Variation operators

As for the variation operators V(Bj,W ), three well-known
ecombination methods were implemented.

.1.1. Simulated binary crossover
A Simulated Binary Crossover (SBX) [23] attempts to simu-

ate the working principle of a single-point crossover for binary
trings. Although a crossover is typically performed between a
air of parent solutions to obtain a pair of offspring, a single
ffspring is produced in MOEA/D during recombination. Thus, the
BX operator can be expressed as:

j =

⎧⎨⎩0.5
(
(1+ βj)x

(1)
j + (1− βj)x

(2)
j

)
if rj ≤ 0.5

0.5
(
(1− βj)x

(1)
j + (1+ βj)x

(2)
i

)
otherwise

(14)

with the values of βi being obtained from the following distribu-
tion:

βj =

⎧⎪⎨⎪⎩
(2uj)

1
ηc+1 if uj ≤ 0.5(

1
2(1−uj)

) 1
ηc+1 otherwise

(15)

7 Comma-separated value. In our implementation each row is a data mea-
urement where the first column represents the frequency ω, and the second
olumn is the associated measurement.
7

for j = 1, . . . , n, where rj, ui ∼ U(0, 1) and ηc > 0 is an external
arameter of the distribution.

.1.2. Differential evolution
A differential evolution (DE) [24] operator generates a new

olution y by exploiting the differences between solution vectors
n the population and can be described by:

j =

{
x(1)j + F (x(2)j − x(3)j ) if rj ≤ CR

x(1)j otherwise
(16)

for j = 1, . . . , n, F is the scale factor, CR is the crossover
probability and ri ∼ U(0, 1).

5.1.3. Gaussian model
A multivariate Gaussian model (GM) [25] operator samples

solutions from:

x ∼ N (µ,Σ ) (17)

where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is the covariance
matrix of the probability distribution. The mean of the Gaussian
model is assumed to be the solution associated with the ith
subproblem:

µ = x(i). (18)

The elements ofΣ are computed using neighboring solutions and
an unbiased estimate of the covariance:

Σi,j =
1

K − 1

K∑
k=1

(x(k)i − µi)(x
(k)
j − µj) (19)

for i, j = 1, . . . , n, where K is the size of the considered neigh-
borhood.

5.1.4. Polynomial mutation
In addition to the aforementioned recombination operators, a

mutation operator was used in association with all three of those,
as a subsequent step in the variation procedure. A Polynomial
Mutation (PM) [26] is typically applied to introduce additional
variations to newly generated solutions so as to ensure the ex-
ploration of new regions of the search space. This operator gives
a higher probability that a new solution y is closer to rather than
far away from the previous solution x. It can be expressed by:

yi =
{
xi + (ui − li)δi if rj ≤ pm (20)
xi otherwise
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ith the values of δi being given by:

j =

{
(2uj)

1
ηm+1 − 1 if uj ≤ 0.5

1−
(
2− 2uj

) 1
ηm+1 otherwise

(21)

or j = 1, . . . , n, where rj, ui ∼ U(0, 1), whereas pm ∈ [0, 1] and
m > 0 are control parameters.

.2. Scalarization operators

Respecting scalarization operators S(f j(x),wj, . . .), again three
ell-known techniques were implemented.

.2.1. Chebyshev method
Chebyshev (CHB) method belongs to the group of weighted

etric methods [27] that aims at minimizing the distance be-
ween a reference point z = (z1, . . . , zm) and the feasible objec-
ive region [27]. The CHB scalarization is given by:

inimize F (f ,w) = max
1≤i≤m

wi|fi − zi|. (22)

his method can find solutions in convex and nonconvex regions
f the Pareto front. The drawbacks are that it cannot distinguish
eakly Pareto optimal solutions and does not provide a uniform
istribution of solutions along the Pareto front.

.2.2. Penalty boundary intersection method
The penalty boundary intersection (PBI) [28] is developed in

n attempt to generate a more uniform set of Pareto optimal
olutions and is given by:

inimize F (f ,w) = d1 + θd2 (23)

here

1 =
∥(f−z)Tw∥
∥w∥

d2 = ∥f − (z + d1 w
∥w∥

)∥.
(24)

he major advantage of this method is that it can provide a
easonably uniform distribution of solutions along the Pareto
ront. Though it comes at the cost of specifying the value of θ .

5.2.3. Weighted stress function method
The weighted stress function method (WSFM) [29] draws in-

spiration form the stress–strain behavior of thermoplastic vul-
canizates. Using the weight wi, the WSFM transforms the ith
objective fi into a stress σi. This requires fi ∈ [0, 1] and wi ∈ (0, 1),
which is achieved by:

fi =
fi − f min

i

f max
i − f min

i
(25)

and

wi = min{max{wi, ϵ}, 1− ϵ} (26)

or i = 1, . . . ,m, where f min
i and f max

i are the minimum and
aximum values of the ith objective in the current population,
hereas ϵ is a small positive value.
The WSFM scalarization aims at minimizing the largest stress

ssociated with the given solution:

inimize F (f ,w) = max
1≤i≤m

σi(fi, wi). (27)

with being calculated as:

σ (f , w ) = (1+ ω (f , w )) ξ (w ) (28)
i i i i i i i i a

8

where

ωi(fi, wi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tan
(

π
ψi(wi)

(fi−wi)
)

tan
(

π
φi(wi)

wi−δ1

) ψi(wi)
φi(wi)

, fi ≥ wi

tan
(

π
φi(wi)

(fi−wi)
)

tan
(

π
φi(wi)

wi

) , fi < wi

(29)

i(wi) =
3
4
w2

i + 2(1− wi)+ δ1 (30)

i(wi) =
3
4
w2

i + 2wi + δ1 (31)

ξi(wi) = 1−
tan

(
π

2(1+δ2)
(2wi − 1)

)
tan

(
π

2(1+δ2)

) . (32)

The particular feature of this method is that it results in
nonlinear lines along which the search is performed.

6. Experimental setup

This section details a set of simulations aimed at exploring the
computational method and summarizes their results. Relevant
findings and pertinent discussions are contextually highlighted
along the text. All experimental framework, including algorithm
implementation, experimental data, and simulation results are
available from the project repository.8

6.1. Experimental data

The study considers two types of polymer materials: Low
Density Polyethylene (LDPE) and Polystyrene (PS). LDPE is a
lightweight plastic material that has excellent resistance to water,
moisture, and most organic solvents and chemicals. It is widely
used for packaging and as a protective coating. PS is a poly-
mer that is produced through the polymerization of styrene in
monomer status. It possess good flow properties at temperatures
safely below degradation ranges, and can easily be extruded, in-
jection molded, or compression molded. Considerable quantities
of polystyrene are produced in the form of heat-expandable beads
containing a suitable blowing agent which ultimately results in
familiar foamed polystyrene articles. The number of experimental
data available for LDPE and PS are 57 and 109 measurements,
respectively.9 For the available data, Fig. 4 displays the plots of
the storage modulus G′(ω) and the loss modulus G′′(ω) against
the frequency ω.

6.2. Parameters and procedures

MOEA/D is a stochastic search algorithm. Due to this fact, the
computational experiment involves multiple executions of the
algorithm with different random number sequences,10 and the
obtained results are to be analyzed with respect to a statistical
framework.

For each experiment instance, 25 independent runs were per-
formed with different random sequences, and individual results

8 Project repository: https://gitlab.uspdigital.usp.br/research/moeadpolymer.
9 The experimental data was obtained . . . .

10 To produce random sequences out of deterministic computational pro-
edures, programs usually rely on pseudo-random functions which compute
ifferent results upon successive calls, depending on the current value held
n an internal state-variable that is automatically updated at every invocation.
he so generated sequences shall fulfill general mathematical proprieties of
andomness. Distinct random sequences can be produced by initializing the
lgorithm internal state with an initial value often refereed to as random seed.

https://gitlab.uspdigital.usp.br/research/moeadpolymer
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Fig. 4. Experimental data.
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ere averaged, when applicable. Concerning the parameters con-
rolling MOEAD/D algorithm, population size was set to k = 100
ndividuals (solutions) and the maximum number of generations
iterations) to tmax = 5000, as it was empirically verified that
ignificant improvement is not observed beyond this point. The
eighborhood size was set to s = 10 and the maximum number
f individuals replaced by offspring to τmax = 1. As for the
easible solution space Ω , values of Gi and λi were bounded
uch that log10(Gi) ∈ [−4, 10] and log10(λi) ∈ [−6, 6] for i =
, . . . , n, respectively. A minor customization of Algorithm 1 was
mplemented which, with probability 1 − δ, the offspring of xj
s generated out from the entire population P instead of from is
eighbor solutions (Bj is substituted with 1, 2 . . . k in line 12, and
with k in line 14) — in the reported experiment, δ was set to
.9. All these values were empirically tuned so as to speed up
onvergence, and should not interfere with the overall numerical
esult.

In some experiments, we analyzed the results through the
ypervolume indicator [30]. As outlined in Section 3, this metric
easures the volume of the objective space that is dominated
y an approximation set and is bounded by a reference point.
t can be defined as the Lebesgue measure Λ of the union of
ypercuboids in the objective space as

H = Λ

(⋃
a∈A

{f1(a′), . . . , fm(a′) : a ≺ a′ ≺ r}

)
(33)

here A = {a1, . . . , a|A|} is an approximation set and r is an
ppropriately chosen reference point. The hypervolume indicator
an measure both the convergence and diversity of A. Higher
alues of IH are preferable. For the sake of clarity, the normalized
alues of IH will be presented.
With the algorithm configured, MOEA/D implementation was

ed with LDPE and PS experimental data and a set of computa-
ional experiments were carried out as detailed in the sections
hat follow.

. Scalarization and variation operators

When applying evolutionary algorithms to solve real-world
roblems, a few algorithm design decisions must be addressed.
hose include the choice of appropriate operators and parameter
ettings. It is known that there is no general optimization strategy
hat works the best for all the problems and, therefore, the issue is
ypically approached through experimentation. In this study, we
nvestigated the impacts of variation and scalarization schemes
hen applying MOEA/D to the running problem of determination
9

he relaxation spectrum. We considered three different variants
or both schemes introduced in Section 5. The values of the
arameters were based on those frequently used in the literature
nd set as follows.
With respect to variation operators, SBX was used with the

rossover probability of pc = 1.0 and the distribution index of
c = 20; DE was used with the crossover probability of CR = 1.0
nd the scaling parameter of F = 0.5; GM depends only on the
ize of neighborhood defined in MOEA/D. All these operators are
sed in conjunction with the PM, with mutation probability of
m = 1/n and the distribution index of ηm = 20.
Testing the several combinations of variation and scalarization

perators, we have empirically observed that the choice does not
rastically impact the result, with an apparent slight superior
erformance of the combination of SBX and WSFM. For the sake
f illustration, Fig. 5 depicts the evolution of the normalized
ypervolume11 during the course of optimization when using
ifferent variation schemes.
One possible hypothesis to explain the advantage of SBX vari-

nt over the other operators is that the method treats each
ene in the chromosome separately, what may be useful for the
xploration of multimodal functions with weak or no interactions
etween the variables. This somewhat corresponds to the charac-
eristics of the problem at hand, as the pairs in Eqs. (4) and (5)
an be viewed separable and independent from each other. On
he other hand, DE generates an offspring by using the difference
etween the parent chromosomes. Such a mechanism can exhibit
nvariant properties with respect to the linear transformation of
he search space as the interactions between the variables are
aken into account. However, this can come with the cost of
lowing the convergence. Lastly, GM builds a probability model
sing a set of population members and uses a random realization
f that model to generate the offspring. It can exhibit similar
roperties to DE. Nevertheless, the convergence can be further
lowed down by randomly sampling from the probability density
uilt.
Regarding scalarization operators, although the choice does

ot explicitly define the way in which new solutions are pro-
uced, it does determine the direction of the search by specifying
hich solutions are more fit to the given problem. The distinct

eature of WSFM, which arguably explains its performance, is
hat the contour lines which defines the directions of search in

11 The normalization was obtained by dividing the absolute value of the
hypervolume, which depends on the arbitrary choice of the reference point,
by the largest value.
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Table 1
Parameter values used in the experiments.
Parameter Value

Number of trials per experiment 25
Population size k 100
Number of generations tmax 5000
Neighborhood size s 10
Maximum replacements τmax 1
Variation operator SBX
Scalarization operator WSFM
Number of LDPE data samples 57
Number of PS data samples 109
log10(Gi) [−4, 10]
log10(λ) [−6, 6]

MOEA/D are nonlinear [29]. This can be useful not only for appro-
priately distributing the solutions along the complex geometry
of the Pareto front in the final step but also during the whole
optimization run. Table 1 lists the parameter values used in the
experiments.

For a statistical analysis, we used a nonparametric Wilcoxon
ank-sum test at a significance level of α = 0.05. The results of
he test confirmed a statistical difference of the performance of
he considered variants of MOEA/D. Similar trends observed for
oth LDPE and PS can provide support for generalization. Thus,
ased on the obtained results, we selected the configuration of
OEA/D with SBX and WSFM for the remainder of this paper.
 a

10
7.1. On the number of model parameters

One parameter which does not belong to the method, but to
the problem itself, is the number of pairs (Gi, λi) chosen to model
the physical system under investigation. This accounts for the
parameter n in the solution codification described in Section 1.3.
Our first approach to this issue was to empirically evaluate this
choice by performing successive runs of the algorithm, starting
with n = 1 and incrementing this value at each execution.

For each experiment run (each run consisting in 25 replica-
tions with varying random sequences), we computed the average
hypervolume of the resulting Pareto set. Fig. 6 shows a graph in
which the hypervolume is plotted against n. As can be noted,
the quality of the solution set increases rapidly up to around
n = 8 to n = 10. After this point, no significant improvement is
bserved by adding more parameters to the relaxation spectrum
odel. This result is accordant with those reported in the afore-
entioned paper [17] on the monobjective version of the herein

ntroduced MOEA approach. In the referred article, researchers
ave similarly found that the regression quality of G′ and G′′
urves (using an equally balanced weighted sum scalarization)
eached the best quality with no more than 8 to 10 pairs for LDPE,
DPE and polybutadiene experimental data.
The corresponding Pareto sets may be graphically visualized

n Fig. 7. The plots show the optimal solutions with reference to
egression residuals ϵ1 and ϵ2 — Eq. (7) and (8) — for the storage
nd loss moduli, respectively.
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Fig. 6. Normalized hypervolume for varying number of regression parameters.
Fig. 7. Pareto fronts for different number of regression parameters.
Corresponding numerical values for the regression residuals
ay be read in Tables 2 (LDPE) and 3 (PS). The tables list three

epresentative points of the Paretor front, namely, the extremes
nd the central one: S1 has the lowest ϵ1, S1 has the lowest ϵ2
nd Sm has evenly balanced ϵ1 and ϵ2.
The Sm point, referring to the solution in the Pareto front

aving the smallest distance to (0,0) with respect to L1 norm, is
f particularly interested as it represents intermediate trade-offs
etween the regression errors. The estimated parameters pi =
Gi, λi) for Sm are shown on Tables 4 and 5. The list tabulates the
values found for n = 4, 8, 10 and 20 parameters. The same values
ay be graphically visualized on the plots of Fig. 8.

.2. Optimal solution length

Up to this point, we have provided evidences that, for the
tudied materials, no significant gain in regression quality is
bservable by using more than n = 10 pairs (Gi, λi). This was
bserved by manually varying the model parameter n across
uccessive experiment runs. Again, while effective, this expedient
oes not take full advantage of a multiobjective optimization
ethod such as the one exploited in this study. Indeed, it makes
ense to approach the number of parameters as another optimiza-
ion objective by transforming the problem into a 3-dimensional
OP. In this case, we may have ϵ1, ϵ2 and n as our objective
unctions. I

11
Table 2
Regression residuals for LDPE with varying number of parameters.
#pairs S1 Sm S2

ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2

1 0.5802 0.6227 0.5909 0.5866 0.5957 0.5842
2 0.5446 0.6231 0.5561 0.5837 0.5711 0.5818
3 0.2656 0.4098 0.2956 0.3313 0.3799 0.2991
4 0.1582 0.2174 0.1596 0.1849 0.1991 0.1752
5 0.1491 0.1825 0.1503 0.1804 0.1729 0.1735
6 0.0819 0.1613 0.0931 0.1131 0.1022 0.1097
7 0.0550 0.1148 0.0601 0.0934 0.0697 0.0887
8 0.0725 0.1340 0.0787 0.1068 0.1029 0.1029
9 0.0595 0.1178 0.0669 0.0878 0.0838 0.0833
10 0.0427 0.0828 0.0477 0.0508 0.0603 0.0467
11 0.0414 0.0903 0.0472 0.0564 0.0586 0.0508
12 0.0504 0.0681 0.0573 0.0495 0.0754 0.0448
13 0.0409 0.0726 0.0445 0.0470 0.0549 0.0409
14 0.0446 0.0633 0.0497 0.0457 0.0593 0.0419
15 0.0452 0.0948 0.0505 0.0623 0.0675 0.0577
16 0.0385 0.0684 0.0467 0.0429 0.0525 0.0409
17 0.0444 0.0607 0.0482 0.0459 0.0572 0.0410
18 0.0442 0.0909 0.0491 0.0420 0.0623 0.0382
19 0.0392 0.0541 0.0440 0.0424 0.0526 0.0390
20 0.0436 0.0519 0.0481 0.0420 0.0550 0.0398

To that end, we modified the solution codification described in
Section 4 by converting the 2n-length array into a 3n-length one.
n this scheme, positions whose indexes are multiples of 3 play
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Fig. 8. Regression residuals for vary fixed-length solutions.
Table 3
Regression residuals for PS with varying number of parameters.
#pairs S1 Sm S2n

ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2

1 0.5417 0.5386 0.5602 0.4687 0.5923 0.4576
2 0.2987 0.3285 0.3107 0.3054 0.3573 0.2759
3 0.1953 0.2176 0.2079 0.2012 0.2268 0.1927
4 0.1426 0.1514 0.1470 0.1376 0.1667 0.1322
5 0.0873 0.1338 0.0923 0.1186 0.1591 0.0851
6 0.0705 0.1264 0.0772 0.1056 0.1218 0.0892
7 0.0586 0.1207 0.0723 0.0889 0.1207 0.0717
8 0.0534 0.1077 0.0572 0.0621 0.0779 0.0571
9 0.0927 0.0569 0.0951 0.0495 0.1027 0.0457
10 0.0486 0.0663 0.0531 0.0477 0.0710 0.0433
11 0.0488 0.0865 0.0507 0.0520 0.0630 0.0442
12 0.0467 0.0665 0.0510 0.0488 0.0729 0.0439
13 0.0464 0.0677 0.0505 0.0479 0.0702 0.0436
14 0.0444 0.0614 0.0466 0.0515 0.0642 0.0432
15 0.0469 0.0651 0.0510 0.0461 0.0757 0.0429
16 0.0500 0.0547 0.0543 0.0463 0.0732 0.0438
17 0.0497 0.0819 0.0560 0.0492 0.0802 0.0451
18 0.0516 0.0724 0.0586 0.0471 0.0741 0.0448
19 0.0478 0.0692 0.0507 0.0496 0.0636 0.0437
20 0.0505 0.0671 0.0549 0.0475 0.0686 0.0436

the role of an indicator function 1R+ (xi) to determine12 whether
the corresponding pair (Gi, λi) preceding it should be used or not
n the fitness evaluation—i.e. to fit Eqs. (4) and (5). This is a simple
et effective encoding that allows for the application of the same
ariation operators we had already been using. No modification
n MOEA/D implementation was required.

.3. Loose-n variable-length simulations

As a preliminary exploration of this modified solution encod-
ng, we first rerun the same simulation protocol as before, with
nly two optimizations of objectives, ϵ1 and ϵ2. We left n a free
arameter and did not consider it as an objective in the scalar-
zation function to be minimized. Again, we run the experiment
ith chromosome lengths varying in the range from 1 to 20. Since
ome parameters might be disabled, this length is actually an
pper bound nmax on the effective number of parameters utilized
y the solution.

12 In mathematics, an indicator function is a function 1A : x→ {0, 1}|f (x) = 1
if x ∈ A, f (x) = 0 otherwise. In this implementation, since encoded values are in
log10 scale, this is equivalent to using the parameter if the respective indicator
is positive; and discarding otherwise.
12
Fig. 9 shows the result, comparing the evolution of the hy-
pervolume along the simulation, between both the fixed-length
(preset-n) and the variable-length (free-n) solution versions.

In the plot, the abscissa axis indicates the maximum n allowed
in the experiment with the variable-length version, and the exact
n value with the fixed-length version. While the curve for PS
material does not add much with respect to the expected results,
the plot for the LDPE material may came up somewhat surprising
at a first glance. As it can be noticed, up to n = 8, the Pareto-
optimal solutions of the free-n experiment turned out superior
than those found by the preset-n variant, for the same allowed
number of parameters, consistently across the 25 replications.

Albeit not an immediately intuitive outcome, one conjecture
which might be evoked to possibly explain it is that, while the
fixed-length simulation was forced to optimize exactly n model
parameters – pairs (Gi, λi) – the variable-length variant was al-
lowed to get rid of excess parameters (by disabling them through
the indicator gene) if those did not effectively contributed to
the regression quality. A similar hypothesis had been already
brought about in the paper on the monobjective EA [17], when
authors noticed their genetic algorithm implementation’s striving
to reduce the numeric contribution of excess terms of Eq. (2)
when the program was constrained to deal with an unnecessarily
large n.

In order to investigate this finding further, we counted the
effective number of model parameters n in the solution sets
found. What we observed (Table 6) is that when the solution was
bounded by a length of up to nmax = 8, all parameters were
used. On the other hand, when we set nmax to larger values, the
obtained Pareto fronts, in different executions, were composed by
solutions with varying lengths, ranging from n = 10 to n = 14.

The interpretation of this result evokes the observation that if
a gene does not effectively adds to the individual’s competitive-
ness within the population, there is no bias acting to preserve it
along generations. The indicator gene provides a quicker mecha-
nism to ‘‘turn off’’ useless genes, whereas the fixed-length version
requires the algorithm to gradually diminish its numerical sig-
nificance across a longer succession of iterations. Nevertheless,
since there is no active selective pressure to shorten the solution
length, this effect is resulting solely from random chances and
there is a non-negligible possibility that the population con-
verges to some stable configuration, and remains drifting around
it indefinitely.

This phenomenon may be illustrated by Fig. 10. The plot shows
the (Gi, λi) resulting from one of the simulation experiments in
this series. For the LDPE material, all Pareto-optimal solutions
ended up by having n = 12 parameters, while for PS this
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Table 4
Model parameters obtained for LDPE (log10) scale.
pi n = 4 n = 8 n = 10 n = 20

Gi λi Gi λi Gi λi Gi λi

1 1.0000 3.5027 0.9604 1.7604 0.8821 0.5925 −5.5821 0.9153
2 3.4609 1.0000 0.9999 2.3108 0.9992 0.6121 −0.9407 2.2185
3 4.3533 −0.4030 1.0000 1.7972 1.0000 2.3973 0.6668 1.9350
4 4.9083 −1.9238 2.3007 1.9356 2.0982 2.0332 0.7597 0.5326
5 – – 3.5052 0.8408 2.9220 1.2129 0.8954 1.9620
6 – – 4.2288 −0.3131 3.4530 0.6338 0.9945 1.9425
7 – – 4.7190 −1.6083 4.0476 −0.2074 0.9954 −1.3085
8 – – 5.1976 −2.9576 4.2465 −0.9987 0.9959 2.0002
9 – – – – 4.7048 −1.8323 1.9193 2.1605
10 – – – – 5.1750 −3.0187 2.8544 0.4624
11 – – – – – – 3.0138 1.2050
12 – – – – – – 3.1261 0.4908
13 – – – – – – 3.2761 0.4748
14 – – – – – – 3.5745 −0.8621
15 – – – – – – 3.6571 −0.9397
16 – – – – – – 4.0707 −0.3342
17 – – – – – – 4.4849 −1.5109
18 – – – – – – 4.5995 −2.1680
19 – – – – – – 4.9211 −2.8951
20 – – – – – – 7.2341 −5.9490
Table 5
Model parameters obtained for PS (log10) scale.
pi n = 4 n = 8 n = 10 n = 20

Gi λi Gi λi Gi λi Gi λi

1 3.2705 0.5701 0.9733 3.2983 1.1559 2.2270 −3.9444 −2.3928
2 4.3099 −0.4668 1.7121 1.3521 2.4308 0.9672 −3.3438 −5.7345
3 4.8249 −1.5486 3.2197 0.4859 3.5956 −0.2687 −0.6443 −2.3102
4 5.2668 −3.1727 4.0032 −0.2402 3.6534 0.1424 0.6861 4.7101
5 – – 4.6213 −1.0809 3.9563 −2.6649 0.9157 2.4839
6 – – 4.8890 −2.2724 4.5326 −0.9294 2.0903 1.0194
7 – – 5.2745 −3.6566 4.7608 −1.9399 2.0907 0.8583
8 – – 6.5001 −5.4284 4.8948 −3.0658 2.1622 0.8049
9 – – – – 5.3968 −4.1633 3.3664 −0.5471
10 – – – – 6.7980 −5.7959 3.5641 −0.5705
11 – – – – – – 3.6659 −0.5189
12 – – – – – – 3.6998 −1.7882
13 – – – – – – 3.7480 −4.3482
14 – – – – – – 3.7625 0.0597
15 – – – – – – 4.5835 −1.1875
16 – – – – – – 4.7864 −2.2198
17 – – – – – – 5.0387 −3.3672
18 – – – – – – 5.1223 −5.5186
19 – – – – – – 5.3655 −4.3210
20 – – – – – – 6.9716 −6.0000
Fig. 9. Hypervolume evolution for bounded free-n and preset-n.
13
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Table 6
Effective n for loose-n variable-length simulations.
Allowed n Effective n

4 4
6 6
8 8
10 9
20 14

Fig. 10. Model parameters for a loose-n variable-length simulation.

umber was n = 15 (regression residuals were minimally higher
ut compatible to the ones listed in Tables 2 and 3). With a
ery small mutation probability, this result has little chance of
hanging solely by random fluctuations. Are these the shorter
olutions with the given regression quality? Based on the plot,
hances are that the answer can be negative. Indeed, bearing in
ind that each parameter (dot on the plot) corresponds to a
ummand in Eq. (2) it is easy to recognize that the two outliers
t the extremes of the scales (bottom-left and top-right corners)
ave little numerical impact, since either a small Gi or a large
i minimizes the term. Furthermore, if λi ≈ λj, then the two
orresponding addends may be approximated by (Gi+Gj)e(t−t

′)/λi .
pon this reasoning, it is suggestive that there may be room
or improvement regarding the optimization of the number of
arameters. Adding a selective pressure to minimize n is the goal
f the experiment which follows.

.4. Three-objective formulation

Having tested the modified solution encoding with the indi-
ator gene, we then designed a three-dimensional MOP, with the
bjectives of minimizing ϵ1, ϵ2 and n simultaneously. With the
ame algorithm setup and input data we rerun the experiment
or LDPE, obtaining the result depicted in Fig. 11.

At the top (Fig. 11(a)), the plot shows the tridimensional
areto surface with the distribution of the optimum solutions in
he objective-function space; for the sake of clarity, only a single
eplication of the experiment was plotted. In this simulation, the
est solutions regarding regression quality (lower ϵ1 and ϵ2) use
= 6 parameters; they appear closely agglomerated at the

op and are difficult to discern. Figs. 11(b) and 11(c) show the
rojection of the Pareto surface on the ϵ1 × n and ϵ2 × n planes,
espectively.

What this result is showing is that lower values of n produce
engthier Pareto fronts, i.e. a wider range of choices of regression
arameters with varying relative combinations of ϵ and ϵ , either
i 2

14
Table 7
Comparison with other methods.
Method # pairs ϵ1 ϵ2

Laun [6] 8 0.0556 0.0591
GenFit [17] 8 0.0431 0.0410
GenFit [17] 10 0.0431 0.0410
Our method 10 0.0429 0.441

larger than what is possible with larger solution lengths (large
n). Pareto fronts with lower regression errors, on the other hand,
are shorter and better balanced with respect to regression errors
in both storage and loss moduli. The resulting Pareto sets on the
regression residuals plane may be better visually appreciated in
Fig. 12.

In this experiment, we maintained the same algorithm setup
than before, with a population of size k = 100 to be evolved along
τmax = 5000 generations. It should be noted, therefore, that now,
with three objectives, Pareto-optimal solutions which remain in
the final set due to a dominance on parameter length (lower
n) compete with the other solutions which would be preserved
based on superior regression error (lower ϵ1 or ϵ2). Therefore,
the ‘‘chance of survival’’ of some good solutions with respect
to regression quality is ‘‘stolen’’ from the finite population by
those with shorter lengths. Likewise, the survival of solutions
with larger n may be compromised by dominance on ϵ1 or ϵ2. The
consequence is that, the same population size and number of gen-
erations have their potential to explore the solution search-space
diminished.

A straightforward counter measure for this scenario is to in-
crease those values. We than rerun the experiment to allow k =
300 solutions in the population and optimize them along τmax =

15 000 generations. With more freedom to explore the solution
space, we obtained the best solutions with balanced regression
quality with n = 10 parameters, and regression residuals of
ϵ1 = 0.480 and ϵ2 = 0.492, very close to what was obtained with
the fixed-length experiment with n = 10 parameters—shown in
Table 4.

8. Assessment of the regression quality

Founded on the rationales and empirical evidences discussed
in previous sections, a reasonably adequate configuration to as-
sess the quality of the Pareto-optimal solutions obtained by our
implemented method is one which minimizes ϵ1 and ϵ2, with
a parsimonious fixed-length solution encoding. This not only
speeds up the convergence but reduces the burden of optimizing
excess parameters, requiring thus both a smaller size population
and smaller number iterations.

Figs. 13(a) and 13(b) depict the result obtained for the LDPE
material. The model was fit with n = 10 (empirical lower bound
of ϵ suggested by Fig. 8) parameters from Table 4. Plots compare
the experimental data and the corresponding values forecast by
the fitted model.

The regression residuals for LDPE material are, respectively
ϵ1 = 0.477 and ϵ2 = 0.0508, comparable to the best results
reported in the literature so far. In a subsequent run of the
same experiment, for a much larger number of iterations (tmax =

50,000), we could obtain even lower regression residuals for n =
10, reaching ϵ1 = 0.0429 and ϵ2 = 0.0441—practically equivalent
to those reported by authors [17] of the monobjective version of
the EA method. This result is summarized in Table 7.

As mentioned, the said monobjective version by the author
already outperformed several analytical techniques to which it
was compared in the cited work [17], what indicates that our
multiobjective evolutionary approach is deserving the appreci-

ation as a promising tool in the modeling of polymer viscosity
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Fig. 11. Solutions of a free-n simulation in the objective space.

Fig. 12. Regression residuals of varying bounded free-n simulations.
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Fig. 13. Fitting curves for a bounded free-n simulation with n = 8.
odels. It is also relevant to bear in mind that, while the herein
ntroduced multiobjective method achieves similar superiority,
ts key proposed contribution is not necessarily to reduce the re-
ression residuals even further, but rather to extend the solution
rom a mono to a multiobjective perspective. In the monobjective
pproach, the relative weights of either residuals (η1, η1) are set
priori and one single solution which minimizes their linear

combination is found. If, later on, another set of weights is to be
considered, another full execution of the optimization algorithm
is needed. In the multiobjective version, on the other hand, a
whole set of solutions with varying tuples (w1, w2) is evolved at
nce, each corresponding to a different set of weights. The choice
f which solution is more interesting is an a posteriori decision,
o be addressed by the decision maker based on what is more
mportant to prioritize in each case.

One noteworthy remark about this result is that, in any re-
ression problem, unrealistic oscillatory characteristic of forecast
odel due to overfitting is inherently associated to excess pa-

ameters. While some deterministic methods aim at improve
moothness using arbitrary assumptions such as regularization
r constraints on parameters, our evolutionary adaptive method
rovides the basis for automatically reducing excesses param-
ters to an adequate bound, relaying only on data’s intrinsic
nformation, thereby naturally optimizing curve smoothness.

. Conclusions

The process of deriving a causal model to describe a phe-
omenon of interest mathematically translates into an inverse
roblem. In both scientific and industrial research, the associated
egression analysis frequently involves conflicting goals of mini-
izing the residuals on each individual dependent variable, what

s often approached as a monobjective optimization problem in
hich one wishes to minimize an aggregate of those errors as
uantified by a scalarization function, and where the weights are
hosen by a priori importance assignment. More often than not,
he order of the model, given by the number of regression param-
ters, is not well known in advance from the theory and must be
et empirically. In addition, deterministic numerical methods un-
erlying those techniques often rely on assumptions extrinsic to
he problem such as regularization constants and restrictions on
arameter distribution. All those non-inherent factors represent
ources of model biases. This paper introduces a multiobjective
ptimization (MOP) method for nonlinear regression analysis,
hich is capable of simultaneously minimizing the model order
nd estimating parameter values without need of exogenous reg-
larization constraints. The proposed non-deterministic strategy,
16
based on evolutionary computational methods, aims at finding
the Pareto-front of all optimal solutions with respect not only to
individual regression errors, but also to the number of parameters
needed to fit the data, automatically reducing the model order.
The approach does not require arbitrary constraints on objective
weights, regularization parameters, or other exogenous assump-
tions to handle the ill-posed inverse problem. Whilst the main
ideas are introduced through a case study, the method is general
and applicable to other problem domains, as it is discussed in the
sections explaining the rationales, implementation, simulation
experiments, and comparison with other methods, with experi-
mental evidences that it can outperform state-of-art techniques.
For the interest of a multidisciplinary audience, the article lays a
detailed introduction of essential concepts and techniques.

The determination of the discrete linear relaxation spectrum
of polymers is a relevant subject both in scientific and industrial
extents, where small-amplitude oscillatory shear is one important
experimental method for this purpose. The experiment produces
a series of measurements quantifying the material’s storage and
relaxation moduli at varying frequencies. Those experimental
data then are used to determine a set of regression parame-
ters that should simultaneously fit the two equations describing
the material properties. What makes this problem particularly
challenging is that it brings about an ill-posed, nonlinear prob-
lem, with two conflicting objectives. Most state-of-art research
results and also state-of-practice methods suffer from several
limitations resulting from the constraints imposed by analytical
methods. Some require the artificial addition of excess degrees of
freedom, others include arbitrary parameters, others still impose
constraints that rule out viable solutions. In many cases, the
solution is overly complex or approximated by heuristics, and
results exhibit unrealistic features not consistent with the real
material.

As an alternative, [17] proposed a non-deterministic optimiza-
tion method based on evolutionary algorithms (EA) which does
not rely on extrinsic knowledge or arbitrary constraints. EAs can
handle ill-posed problems naturally, as they do not build up
neither on linearity, nor on continuity hypotheses concerning
the solution or objective spaces. EAs are based on an educated
trial-and-error iterative strategy, through which a collection of
prospective solutions are optimized in parallel by means of re-
combination and probabilistic best-fit selection. This characteris-
tic also allows EAs to overcome premature convergence to local
optima and to speed up the search of the global optimum. In their
experimental study Monaco et al. [17], the authors successfully
applied a genetic algorithm to determine the relaxation spectrum
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f a few polymers. The EA implementation was capable of outper-
orming the regression quality obtained by other methods, and
ith a lower number of model parameters. The goal of minimiz-

ng the regression residuals of both the storage and loss moduli
re nevertheless conflicting objectives and, not unlike most of the
elated works described in the literature, the referred EA imple-
entation approached the issue as a monobjective problem—by

ackling it as the minimization of an aggregate function of the
esiduals, pondered by an arbitrary set of weights.

In this paper, we go a step further, exploiting the generaliz-
ble EA metaheuristics to face the same challenge as a strictly
ultiobjective problem. In other words, we introduce a method

o obtain several Pareto-optimal solutions, leaving the choice of
bjective weights for the decision making analyst. We designed
ur method as a multiobjective evolutionary algorithm based on
ecomposition, due its convenient capabilities of generating a
air distribution of representative Pareto-optimal solutions and
he possibility of using existing, well-known monobjective vari-
tion operators. The rationales and implementation aspects are
xplained in detail and a set of experiments are reported, witch
emonstrates the capabilities and limitations of the proposed
ethod.
The comparison of the results of the proposed method with

hose of related works is not straightforward, seeing that our
ethod produces a set of (rather than a single) solutions of
arying qualities regarding the two analyzed objectives—it is not
mmediate which solution of the set should be taken as a basis
or comparison. For the sake of practical illustration, though, the
olutions with nearly equal regression residuals for both storage
nd loss moduli we obtained are numerically close to that re-
orted in the referenced literature. In particular, we were able to
pproximately reproduce the results obtained by the mentioned
onobjective EA [17] for the LDPE material with respect to both

egression errors and number of model parameters (indeed, the
iterature [31] suggests that multiobjective optimization methods
an outperform monobjective analogs in virtue of the lower scale
ensitivity and susceptibility to local-optima traps—although sub-
ect to the limitations of the intrinsic experimental errors in the
ata sample). Like in the said experiment, the solutions pro-
uced by MOAD/D have similar or lower regression residuals than
hose yielded by deterministic methods reported in the literature
Section 1.2), and with a lower number of parameters.

The exact sets of (Gi, λi) to fit the materials used as case
studies are not the central contribution aimed by this paper but,
rather, the introduction of a method to generate the Pareto-
optimal solutions. As far as our knowledge goes, there is no
other proposed method in the literature which approaches the
determination of the linear discrete relaxation spectrum of poly-
mers as a multiobjective problem, and allows for addressing the
compromise between the regression qualities of both storage and
loss moduli as a posteriori decision making, up to the special-
ist’s discretion and relevant criteria for the specific application.
Nonetheless, for the purpose of comparison with other works,
we base our experiments on data sets referred in the litera-
ture [17]. Should more accurate data sets produced by more
modern equipment be analyzed, this can be easily achieved by
applying the outlined algorithm implementation to produce ref-
erence parameter tables for practical use. Moreover, it is worth to
note that unlike deterministic methods, which produce a unique
result for a given data set, evolutionary algorithms are inher-
ently non-deterministic and, therefore, shall produce different
results at each run, even for the same data set—as a result of
exploring the solution search space through different paths. The
convergence property, however, implies that solutions tend to
result equivalent in terms of the optimization objectives. Actually,

while we have limited our experiments by a maximum number

17
of iterations, a bound on the maximum regression error or else
on the incremental optimization gain at each iteration may be
alternatively used as stop criteria, instead.

One noteworthy outcome of our experiment is that under
less constrained conditions, and when the algorithm is left free
to choose the solution’s length, it naturally tends to reduce ex-
cess parameters, contributing to reduce regression residuals and
improve curve smoothness simultaneously, based solely on the
data’s intrinsic information and without the need to a priori as-
sumption. As already pointed out, it is thus suggestive to ponder
on whether the number of parameter models needed to repre-
sent the material’s behavior may have some inherent physical
meaning. In our experiments the solutions’s length converged to
around 8 to 10 parameters, what is consistent to previous findings
by [17]. In our study we considered the regression residuals as the
primary quality metric to assess the results. Yet, we opportune
remarked that this is not the only parameter to evaluate a so-
lution for this problem, as overfitting may produce low-residual
solutions with quite unrealistic relaxation spectra such as with
pathological oscillatory characteristics. One important feature of
the proposed method to be highlighted is that the solution quality
measure is not intrinsic to it as it is the case of several analytical
techniques. In the EA approach, differently, the role of evalu-
ating solutions’ quality is played by the fitness function, which
is a generic black-box for implementing any quality criteria—
wherefrom EA being considered a metaheuristic. Put shortly, this
comes from the algorithm core being the repeated iteration of a
sequence of steps: (a) evaluate all the solutions found so far in
terms of how they fit the given criteria; (b) select (proabililisti-
cally) some best solutions; (c) produce some new solutions by
performing (small) random changes on the selected best-fitted;
(d) if some of newly created solutions are better than those in the
original pool, replace the latter with the former. The procedure
starts with a randomly generated solution pool and ends upon
reaching some stop criteria. In step (a), the criterion to evaluate
a solution is any function. The method implementation may leave
it as a placeholder which the user may later fill in with any
function they desires. This does not modify neither the algorithm
nor the rest of the implementation. We have used Eq. (6) for
fitness assignment; the domain analyst is free to choose other,
possibly more sophisticated, criteria. The set of objectives of this
MOP method are therefore user-defined, rather than inherent to
the method, what yields great flexibility.

We believe both the discussed rationales and provided ex-
perimental evidences demonstrate the proposal of evolutionary
multiobjective optimization as a powerful resource for nonlinear
regression analysis applied to the modeling of causal phenomena,
which is useful not only to technique-unbiased estimation of
model parameters, but also to optimize the model order and
investigate its structure, what may bring about implications for
the theoretical understanding of its nature.
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