
University of Minho
School of Engineering
Informatics Department

Armando João Isaías Ferreira dos Santos

Selective Applicative Functors
& Probabilistic Programming

February 2021

University of Minho
School of Engineering
Informatics Department

Armando João Isaías Ferreira dos Santos

Selective Applicative Functors
& Probabilistic Programming

Master dissertation
Master Degree in Integrated Master’s in Informatics Engineering

Dissertation supervised by
José Nuno Oliveira (INESCTEC & University of Minho)
Andrey Mokhov (Newcastle University, UK)

February 2021

C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA R T Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorisation conditions not provided for in the indicated licensing should
contact the author through the RepositóriUM of the University of Minho.

L I C E N S E G R A N T E D TO U S E R S O F T H I S W O R K :

CC BY
https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

Throughout the writing of this dissertation I have received a great deal of support and
assistance.

I would also like to express my sincere gratitude to my supervisor, Professor José N.
Oliveira, first and foremost, for all his assistance and guidance. Without him, I wouldn’t be
able to tackle a lot of challenges that I’ve found along the way. I would like to thank him for his
patient support and for all the opportunities I have been given to further my studies.

I would like to thank my co-supervisor, Andrey Mokhov, for welcoming me as his student
and for proposing the subject of this master’s thesis. Andrey’s expertise was invaluable in the
formulation of research questions and methodology. His insightful feedback pushed me to
sharpen my thinking and brought my work to a higher level.

While doing this work I held a Research Grant of the DaVinci Project funded by FEDER
and by National Funds, so I wish to thank FCT (Portuguese Foundation for Science and
Technology, I.P.) and all people involved in the project for the opportunity.

A special, heartfelt thank you to Cláudia Correia, whose invaluable and unconditional
support was what kept me moving. Thank you for always being there for me, in good and
bad times, and for encouraging me to be professional and to do the right thing even when the
road got rough. Without your support, this work would not have been possible.

Moreover, I would like to thank my family for standing by me, for investing on my education,
and for always providing me everything I needed to strive.

Last but not least, for all the wonderful adventures, stories and shared moments over the
past five years, I want to acknowledge and thank all of my friends. This master’s thesis depicts
five years of work, friendship, love, and without each one of you, I definitely wouldn’t have
made it this far.

ii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification
of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University
of Minho.

iii

A B S T R A C T

In functional programming, selective applicative functors (SAF) are an abstraction between
applicative functors and monads. This abstraction requires all effects to be statically declared,
but provides a way to select which effects to execute dynamically. SAF have been shown to
be a useful abstraction in several examples, including two industrial case studies. Selective
functors have been used for their static analysis capabilities. The collection of information
about all possible effects in a computation and the fact that they enable speculative execution
make it possible to take advantage to describe probabilistic computations instead of using
monads. In particular, selective functors appear to provide a way to obtain a more efficient
implementation of probability distributions than monads.

This dissertation addresses a probabilistic interpretation for the arrow and selective ab-
stractions in the light of the linear algebra of programming discipline, as well as exploring
ways of offering SAF capabilities to probabilistic programming, by exposing sampling as a
concurrency problem. As a result, provides a Haskell type-safe matrix library capable of
expressing probability distributions and probabilistic computations as typed matrices, and a
probabilistic programming eDSL that explores various techniques in order to offer a novel,
performant solution to probabilistic functional programming.

Keywords: master thesis, functional programming, probabilistic programming, monads, applicatives,
selective applicative functor, Haskell, matrices

iv

R E S U M O

Em programação funcional, os functores aplicativos seletivos (FAS) são uma abstração entre functores
aplicativos e monades. Essa abstração requer que todos os efeitos sejam declarados estaticamente,
mas fornece uma maneira de selecionar quais efeitos serão executados dinamicamente. FAS têm se
mostrado uma abstração útil em vários exemplos, incluindo dois estudos de caso industriais. Functores
seletivos têm sido usados pela suas capacidade de análise estática. O conjunto de informações sobre
todos os efeitos possíveis numa computação e o facto de que eles permitem a execução especulativa
tornam possível descrever computações probabilísticas. Em particular, functores seletivos parecem
oferecer uma maneira de obter uma implementação mais eficiente de distribuições probabilisticas do
que monades.

Esta dissertação aborda uma interpretação probabilística para as abstrações Arrow e Selective
à luz da disciplina da álgebra linear da programação, bem como explora formas de oferecer as
capacidades dos FAS para programação probabilística, expondo sampling como um problema de
concorrência. Como resultado, fornece uma biblioteca de matrizes em Haskell, capaz de expressar
distribuições de probabilidade e cálculos probabilísticos como matrizes tipadas e uma eDSL de
programação probabilística que explora várias técnicas, com o obejtivo de oferecer uma solução
inovadora e de alto desempenho para a programação funcional probabilística.

Palavras-chave: dissertação de mestrado, programação funcional, programação probabilística,
monades, aplicativos, funtores aplicativos seletivos, haskell, matrizes

v

C O N T E N T S

1 I N T R O D U C T I O N 1
1.1 Motivation and Goals 2
1.2 State of the Art 2

1.2.1 Hierarchy of Abstractions 3
1.2.2 Functors 3
1.2.3 Applicative Functors 4
1.2.4 Monads 5
1.2.5 Arrows 7
1.2.6 Selective Applicative Functors 8
1.2.7 Summary 10

1.3 Related Work 11
1.3.1 Exhaustive Probability Distribution Encoding 11
1.3.2 Embedded Domain Specific Languages 11

1.4 Structure of the Dissertation 12

2 B AC K G R O U N D 13
2.1 Set Theory 13
2.2 Basic Probabilities and Distributions 14
2.3 (Linear) Algebra of Programming 19

2.3.1 Category of Matrix Basic Structure 19
2.3.2 Biproducts 20
2.3.3 Biproduct Functors 21

2.4 Stochastic Matrices 22
2.5 Summary 23

3 C O N T R I B U T I O N 24
3.1 The Problem and its Challenges 24

3.1.1 Probabilistic Interpretation of Selective Functors 24
3.1.2 Inefficient Probability Encodings 24
3.1.3 Proposed Approach 25

3.2 Probabilistic Interpretation of Arrows 25
3.3 Type Safe Linear Algebra of Programming Matrix Library 26
3.4 Probabilistic Interpretation of Selective Functors 28
3.5 Type safe inductive matrix definition 30

3.5.1 The Probability Distribution Matrix and the Selective Abstraction 33
3.5.2 Equational Reasoning 35

3.6 Probabilistic Programming eDSL & Sampling 37
3.6.1 Examples of Probabilistic Programs 40
3.6.2 Sampling and Inference Algorithms 43

3.7 Sampling as a Concurrency Problem 45

vi

C O N T E N T S vii

3.7.1 The Concurrency Monad 45
3.7.2 Sampling 46
3.7.3 Implementation 46

3.8 Summary 49

4 A P P L I C AT I O N S 50
4.1 LAoP Sprinkler example 50
4.2 eDSL Sprinkler example 53
4.3 Benchmarks 55

4.3.1 LAoP Matrix composition 55
4.3.2 Distribution matrix versus distribution list monad 56
4.3.3 Sequential vs Concurrent Selective eDSL 57

4.4 Summary 60

5 C O N C L U S I O N S A N D F U T U R E W O R K 61
5.1 Conclusions 61
5.2 Future work 62

A T Y P E S A F E L AO P M AT R I X W R A P P E R L I B R A RY 70

B T Y P E S A F E L AO P I N D U C T I V E M AT R I X D E F I N I T I O N L I B R A RY 83

C S E L E C T I V E P R O B A B I L I S T I C P R O G R A M M I N G L I B R A RY 105

L I S T O F F I G U R E S

Figure 4.1 Testbed environment 55
Figure 4.2 Matrix composition benchmarks 56
Figure 4.3 Matrix vs List - select operator 57
Figure 4.4 Benchmarks results 59

viii

L I S T O F TA B L E S

Table 1 Summary of abstractions and their probabilistic counterpart 10
Table 2 Number of possible arrangements of size r from n objects 18

ix

L I S T O F L I S T I N G S

1.1 Functor laws . 3
1.2 Applicative laws . 4
1.3 Monad laws and definition in terms of unit and join 5
1.4 Monad laws and definition in terms of unit and bind 5
1.5 Relation between join and bind . 6
1.6 Arrow type-class . 7
1.7 Arrow Kleisli type-class instance . 7
1.8 Selective Applicative Functor laws . 8
3.1 Inductive matrix definition . 26
3.2 Type-safe wrapper around HMatrix . 27
3.3 Interface equivalent function implementations . 27
3.4 LAoP Monty Hall Problem . 28
3.5 Selective ArrowMonad instance . 28
3.6 LAoP Selective instance . 29
3.7 Inductive Matrix definition . 31
3.8 Matrix composition and abiding functions . 32
3.9 Dimensions are type level naturals . 33
3.10 Dimensions are arbitrary data types . 33
3.11 Dist type alias . 33
3.12 Dist - select and cond operators . 34
3.13 Constrainted monad instance . 34
3.14 select in terms of matrices . 35
3.15 Fork x z pattern match case . 36
3.16 Final result . 36
3.17 eDSL primitive building-blocks . 38
3.18 Conditioning function . 38
3.19 Sampling function . 39
3.20 Coin toss . 40
3.21 Coin toss results . 41
3.22 Throw coins indefinitely until Heads comes up . 41
3.23 Throw game dice . 42
3.24 Bad program . 43
3.25 Partial monadic bind function . 44
3.26 Partial monadic bind function . 44
3.27 Fetch Data Type . 47
3.28 Fetch Applicative instance . 48
3.29 Fetch Selective instance . 48
4.1 Example matrices . 51

x

L I S T O F L I S T I N G S xi

4.2 State matrix . 52
4.3 State matrix composition function . 52
4.4 Probability of grass being wet calculation . 52
4.5 Example probabilistic functions . 53
4.6 tag combinator . 53
4.7 State distribution . 54
4.8 Programs used in evaluation . 58
A.1 Type safe matrix wrapper library . 70
B.1 Type safe inductive matrix library . 83
C.1 Selective probabilistic programming library . 105

A C R O N Y M S

A

AOP Algebra of Programming. 19, 21, 23, 25, 26, 30

C

CS Computer Science. 2, 3, 10

CT Category Theory. 1, 3, 5, 7, 10, 19, 25

E

EDSL Embedded domain specific language. 25, 37, 39, 43, 45, 46, 49, 50, 53, 54, 57, 58, 60–62

F

FP Functional Programming. 1, 10, 25, 45

G

GADT Generalised Algebraic Datatype. 26, 31

GHC Glasgow Haskell Compiler. 26, 30, 31, 58, 59

L

LAOP Linear Algebra of Programming. 8, 19, 21, 23, 25–27, 30, 31, 33, 37, 41, 49, 51, 53, 54, 57, 61

P

PFP Probabilistic Functional Programming. 1, 2

PPL Probabilistic Programming Language. 11

S

SAF Selective Applicative Functor. 1, 2, 8–10, 12, 24–30, 34, 35, 37, 42, 45, 49, 53–55, 60–62

xii

1
I N T R O D U C T I O N

Functional Programming (FP) deals with the complexity of real life problems by handling so-called
(side) effects in an algebraic manner. Monads are one such algebraic device, pioneered by Moggi
(1991) in the field of computer science to verify effectful programs, i.e. programs that deal with side
effects. Wadler (1989) was among the first to recommend monads in functional programming as a
general and powerful approach for describing effectful (or impure) computations, while still using pure
functions. The key ingredient of the monad abstraction is the bind operator, which applies functions
to monadic objects carrying the effects through. This operator leads to an approach to composing
effectful computations which is inherently sequential. This intrinsic nature of monads can be used for
conditional effect execution. However, this abstraction is often too strong for particular programming
situations, where abstractions with weaker laws are welcome.

Applicative functors (McBride and Paterson, 2008) can be used for composing statically known
collections of effectful computations, as long as these computations are independent from each other.
Therefore, this kind of functor can only take two effectful computations and, independently (i.e. in
parallel), compute their values and return their composition.

There are situations in which just having a Monad or an Applicative is too limiting, calling for a
programming abstraction sitting somewhere between Monad and Applicative. An abstraction that
requires all effects to be statically declared but provides a way to select which of the effects to execute
dynamically was introduced by Mokhov et al. (2019) to cope with such situations. It is called the
Selective Applicative Functor (SAF) abstraction.

In the field of Probabilistic Functional Programming (PFP), monads are used to describe events
(probabilistic computations in this case) that depend on others (Erwig and Kollmansberger, 2006).
Better than monads, which are inherently sequential, selective functors provide a nicer abstraction
for describing conditional probabilistic computations. According to Mokhov et al. (2019), this kind
of functor has proved to be a helpful abstraction in the fields of static analysis (at Jane Street) and
speculative execution (at Facebook), achieving good results without disturbing the adopted code style.

Arrows (Hughes, 2000) are more generic than monads and were designed to abstract the structure
of more complex patterns than the monad interface could support. The most common example is the
parsing library by Swierstra and Duponcheel (1996) that takes advantage of static analysis to improve
its performance. This example could not be optimised using the Monad interface, given its sequential
nature. Having Category Theory (CT) as a foundation, the Arrow abstraction has made its way to the
FP ecosystem as a way to mitigate the somewhat heavy requirements of the powerful Monad.

There are reasons to believe that by adopting the selective abstraction one could shorten the gap that
once was only filled by the Arrow abstraction (Hughes, 2000). On the one hand, the generality of the
Arrow interface enables solving some of the structural constraints that refrain one from implementing a

1

1.1. Motivation and Goals 2

stronger abstraction and compose various combinators in order to achieve greater expressiveness.
On the other hand, languages such as Haskell, which implement many of these abstractions out of
the box, render code written in the Arrow style not only convoluted, but also unnatural and difficult to
refactor.

1.1 M OT I VAT I O N A N D G O A L S

The rise of new topics such as e.g. machine learning, deep learning, quantum computing are stimulating
major advances in the programming language domain (Selinger, 2004; Innes et al., 2018). To cope
with the increased complexity, mathematics always had a principal role, either by formalising the
underlying theory, or by providing robust and sound theories to deal with the new heavy machinery.
But what do these topics have in common? They all deal, in some way, with probabilities.

Programming languages are a means of communicating (complex) concepts to computers. They
provide a way to express, automate, abstract and reason about them. There are programming
languages, specially functional programming languages, that work more closely to the mathematical
level and are based in concepts like referential transparency and purity. However, not all of the
abstractions useful in Computer Science (CS) have come directly from mathematics. There are several
abstractions that were meant to factor out some kind of ubiquitous behaviour or to provide a sound
and robust framework where one could reason about the code and provide a more efficient solution.
The SAF is such an abstraction.

Probabilistic programming allows programmers to model probabilistic events and predict or calculate
results with a certain degree of uncertainty. In particular PFP manipulates and manages probabilities
in an abstract, high-level way, circumventing convoluted notation and complex mathematical formulas.
Probabilistic programming research is primarily focused on developing optimisations to inference and
sampling algorithms in order to make code run faster while preserving the posterior probabilities. There
are many strategies and techniques for optimising probabilistic programs, namely using static analysis
(Bernstein, 2019).

The main goal of this research is to study, evaluate and compare ways of describing and implement-
ing probabilistic computations using the so-called selective abstraction. In particular, to evaluate the
benefits of doing so in the PFP ecosystem. This will be accomplished by proposing an appropriate
set of case studies and, ultimately, developing a couple of Haskell libraries that provides an efficient
encoding of probabilities, taking advantage of the selective applicative abstraction. Focusing on how to
overcome the intrinsic sequential nature of the monad abstraction (Ścibior et al., 2015) in favour of the
speculative execution of the selective functors, one of the aims of this work is to answer the following
research question:

"Can the select operator be implemented more efficiently than the monadic bind opera-
tor?"

1.2 S TAT E O F T H E A RT

In the context of this research, abstractions can be viewed from two perspectives:

• The programming language;

1.2. State of the Art 3

• The underlying mathematical theory.

As expected, the programming language prism makes one see things more concretely, i.e. brings
one down the abstraction ladder. That is why normally many abstractions tend to be associated to
quite frequent patterns and interfaces that programmers wish to generalise.

This said, a recurrent problem happens when authors try to explain their mathematical abstractions
by going down to a comfortable, intuitive and easy to understand level (Petricek, 2018). However, in
CS the level might be so low (one could even write: ad-hoc) that the need for such abstractions may
be questionable. Mathematical abstractions are useful ways of generalising and organising patterns
that abide by the same rules, i.e. are governed by the same set of laws. Thanks to much work on
abstract algebra or CT, these abstractions automatically become powerful conceptual tools. In this
regard, finding the right mathematical description of an abstraction is halfway for correctly using it.

The following section presents widely used mathematical abstractions that made their way into
programming languages, in particular in the probabilistic programming environment. How recent
work by Mokhov et al. (2019) relates to such abstractions will also be addressed. Given the scope of
this research and aiming to explore interesting ways of thinking about probability distributions, every
abstraction is introduced accompanied by a concrete instance in the probabilistic setting.

1.2.1 Hierarchy of Abstractions

The purpose of every abstraction is to generalise a certain pattern or behaviour. Abstract algebra is a
field of mathematics devoted to studying mathematical abstractions. In particular, by studying ways of
building more complex abstractions by composing simpler ones. Regarding abstractions as layers,
one can pretty much think of the heritage mechanism that is so fond of object oriented programming
(Liskov, 1987).

A hierarchy of abstractions aims to hide information and manage complexity. The highest level
has the least information and lowest complexity. For the purposes of this research, it is interesting to
see how the abstractions presented in the next sections map to the corresponding probability theory
features and how the underlying levels translate to more complex ones.

1.2.2 Functors

W H AT F U N C TO R S A R E Functors originate from CT as morphisms between categories (Awodey,
2010). Functors abstract a common pattern in programming and provide the ability to map a function
inside some kind of structure. Since functors must preserve structure they are a powerful reasoning
tool in programming.

1class Functor f where

2fmap :: (a -> b) -> f a -> f b

3-- fmap id = id

4-- fmap f . fmap g = fmap (f . g)

Listing 1.1: Functor laws

1.2. State of the Art 4

P R O B A B I L I S T I C S P E A K There are many situations in which the type f a makes sense. The
easiest way to understand it is to see f as a data container; then readers can instantiate f to a concrete
type, for instance lists ([a]).

For the purpose of probabilistic thinking, f a instantiates to the "Distribution of a’s" container and
fmap (the factored out pattern) as the action of mapping a function through all the values of a distribution
without changing their probabilities. (Probabilities will sum up automatically wherever function f is not
injective.) As will be seen in chapter 2 there are multiple ways of combining probabilities. However,
given the properties of a functor, it is only possible to map functions inside it while preserving its
structure. This said, the probability functor can be casually seen as only being capable to express the
probability P(A) of an event A in probability theory (Tobin, 2018).

1.2.3 Applicative Functors

W H AT A P P L I C AT I V E F U N C TO R S A R E Most functional programming languages separate pure
computations from effectful ones. An effectful computation performs side effects or runs in a given
context while delivering its result. While working with the Haskell functional programming language,
McBride and Paterson (2008) found that the pattern of applying pure functions to effectful computations
popped out very often in a wide range of fields. The pattern consists mostly of 1. embedding a pure
computation in the current context while maintaining its semantics, i.e. lifting a value into an "effect
free" context, and then 2. combining the results of the computations, i.e. applying a pure computation
to effectful ones. All it takes to abstract this pattern is a way to factor out 1 and 2.

1class Functor f => Applicative f where

2pure :: a -> f a

3(<*>) :: f (a -> b) -> f a -> f b

4-- pure id <*> u == u

5-- pure f <*> pure x == pure (f x)

6-- u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

7-- u <*> pure y = pure ($ y) <*> u

Listing 1.2: Applicative laws

It is important to note that in order to be an applicative, f first needs to be a functor. So, every
applicative is a functor. This can be seen as going down one layer of abstraction in the hierarchy, by
empowering a functor f with more capabilities if it respects the applicative laws (given in the listing
above).

Applicatives are interesting abstractions in the sense that they were not a transposition of a known
mathematical concept. However, McBride and Paterson (2008) establish a correspondence with the
standard categorical “zoo" by concluding that in categorical terms applicative functors are strong lax
monoidal functors. This has opened ground for a stream of fascinating research, see e.g. (Paterson,
2012; Cooper et al., 2008; Capriotti and Kaposi, 2014).

P R O B A B I L I S T I C S P E A K Looking at the laws of applicative functors one sees that they pretty
much define what the intended semantics regarding sequencing effects are. The last one, called the

1.2. State of the Art 5

interchange law (McBride and Paterson, 2008), clearly says that when evaluating the application of an
effectful function to a pure argument, the order in which one evaluates the function and its argument
does not matter. However, if both computations are effectful the order does matter, but a computation
cannot depend on values returned by prior computations, i.e. the result of the applicative action can
depend on earlier values but the effects cannot. In other words, computations can run independently
from each other (Cooper et al., 2008; Marlow et al., 2014, 2016; Mokhov et al., 2019).

So, if f a represents a distribution then pure can be seen as the embedding of a given value a

in the probabilistic context with 100% chance, and (<∗>) as the action responsible of combining
two independent distributions, calculating their joint probability. This said, the probability instance of
applicative functors can be regarded as being able to express P(A, B) = P(A)P(B), i.e. statistical
independence (Tobin, 2018).

1.2.4 Monads

W H AT M O N A D S A R E Before being introduced in programming languages, monads had already
been used in algebraic topology by Godement (1958) and CT by MacLane (1971). Monads were
used in this areas because they were able to embed a given value into another structured object and
because they were able to express a lot of different constructions in a single structure (Petricek, 2018).
Evidence of the flexibility and usefulness of Monads can be found in programming: Moggi (1991)
introduced monads in order to be capable of reasoning about effectful programs and Wadler (1995)
used them to implement effectful programs in Haskell. Although they are not presented in the same
way, the mathematical monad and the programming language monad are the same concept.

Definition 1.2.1. A monad in a category C is defined as a triple (T, η, µ) where T : C → C is a
functor; η : IdC → T and µ : T2 → T are natural transformations, such that:

µA · TµA = µA · µTA

µA · ηTA = idTA = µA · TηA

In programming, two alternative but equivalent definitions for monads come up. A functor can be
seen as a type constructor and natural transformations as functions:

1class Applicative m => Monad m where

2unit :: a -> m a

3join :: m (m a) -> m a

4-- join · join = join · fmap join

5-- join · unit = id = join · fmap unit

6-- fmap f · join = join · fmap (fmap f)

7-- fmap f · unit = unit · f

Listing 1.3: Monad laws and definition in terms of unit and join

1class Applicative m => Monad m where

1.2. State of the Art 6

2unit :: a -> m a

3(>>=) :: m a -> (a -> m b) -> m b

4-- unit a >>= f = unit (f a)

5-- m >>= unit = m

6-- (m >>= f) >>= g = m >>= (\x -> f x >>= g)

Listing 1.4: Monad laws and definition in terms of unit and bind

As can be seen, both definitions once again highlight the hierarchy of abstractions where every
monad is an applicative, and consequently a functor. These two definitions are related by the following
law:

1m >>= f = join (fmap f m)

Listing 1.5: Relation between join and bind

If monads are so versatile what type of pattern do they abstract? Intuitively, monads abstract the
idea of "taking some uninteresting object and turning it into something with more structure" (Petricek,
2018). This idea can be explained by using some of several known metaphors:

• Monads as containers: Visualising it as a box to represent the type m a, the unit operation
takes a value and wraps it in a box, and the join operation takes a box of boxes and unwraps it
into a single box. This metaphor however, is not so good at giving intuition for bind (>>=) but,
as the previous listing demonstrated, it can be seen as a combination of fmap and join.

• Monads as computations: Visualising m a as a computation, a → m b represents computations
that depend on previous values; so, bind let us combine two computations emulating the
sequential, imperative programming paradigm and unit represents a computation that does
nothing.

Brought to programming languages, monads are used to encode different notions of computations
and their structure allows us to separate pure from impure code, obtaining, in this way, nice and
structured programs that are easier to reason about.

P R O B A B I L I S T I C S P E A K It is more rewarding to look at probability distributions as a probabilistic
computation or event. Given this, by observing the type of bind one can infer that it let us combine
an event m a with another that depends on the previous value a → m b (Erwig and Kollmansberger,
2006). In other words, bind in a sense encapsulates the notion of conditional probability. What
happens in a conditional probability calculation P(B|A) is that A becomes the sample space, and A &
B will only occur a fraction P(A ∩ B) of the time. Making the bridge with the type signature of (>>=): m
a represents the new sample space A and a → m b the fraction where A and B occur. This being
said, the probability monad can be seen as being able to express P(B|A) = P(B∩A)

P(A)
.

The observation that probability distributions form a monad is not new. Thanks to the work of Giry
(1982) and following the hierarchy of abstractions, it is easy to see that it is indeed possible to talk
about probabilities with respect to the weaker structures mentioned in the other sections (Tobin, 2018;
Ścibior*, 2019).

1.2. State of the Art 7

1.2.5 Arrows

W H AT A R R OW S A R E Most abstractions described until now are based on CT. This is because
CT can be seen as the "theory of everything", a framework where a lot of mathematical structures fit
in. So, how can such an abstract theory be so useful in programming? Because computer scientists
value abstraction. When designing an interface, it is meant to reveal as little as possible about the
implementation details and it should be possible to switch the implementation with an alternative one,
i.e. other instances of the same concept. It is the generality of a monad that is so valuable and it is
thanks to the generality of CT that makes it so useful in programming.

This being said, Arrows, introduced by Hughes (2000) and inspired by the ubiquity of CT, aim to
abstract how to build and structure more generic combinator libraries by suggesting the following
type-class:

1class Arrow a where

2arr :: (b -> c) -> a b c

3(>>>) :: a b c -> a c d -> a b d

4first :: a b c -> a (b, d) (c, d)

Listing 1.6: Arrow type-class

As one can note, Arrows make the dependence on an input explicit and abstract the structure of a
given output type. This is why it is said that Arrows generalise monads.

Due to the fact that there are many more arrow combinators than monadic ones, a larger set of
laws are required and the reader is referred to Hughes (2000) paper for more information about them.
However, a brief explanation of the three combinators is given: arr can be seen as doing the same
as return does for monads, it lifts pure functions to computations; (>>>) is analogous to (>>=), it
is the left-to-right composition of arrows; and first comes from the limitation that Arrows can not
express binary arrow functions, so this operator converts an arrow from b to c into an arrow of pairs,
that applies its argument to the first component and leaves the other unchanged.

The astute reader will see how Arrows try to encode the notion of a category and indeed the
associativity law of (>>>) is one of the laws of this type-class. Moreover, if one thinks about how, for
any monad a function of type a → m b is a Kleisli arrow (Awodey, 2010), one can define the arrow
combinators as follows:

1newtype Kleisli m a b = K (a -> m b)

2

3instance Arrow (Kleisli m) where

4arr f = K (\b -> return (f b))

5K f >>> K g = K (\b -> f b >>= g)

6first (K f) = K (\(b, d) -> f b >>= \c -> return (c, d))

Listing 1.7: Arrow Kleisli type-class instance

This shows that Arrows in fact generalise monads. Nevertheless there is still one question that
goes unanswered — why generalise monads if they serve the same purpose of providing a common

1.2. State of the Art 8

structure to generic programming libraries? Hughes (2000) saw in the example of Swierstra and
Duponcheel (1996) a limitation on the monadic interface and argues that the advantage of the Arrow
interface is that it has a wider class of implementations. Thus, simpler libraries based on abstract data
types that are not monads, can be given an arrow interface.

It seems that Arrows are more expressive than the abstractions seen in the previous sections, but
what are their relation with them? Lindley et al. (2011) established the relative order of strength of
Applicative → Arrow → Monad, in contrast to the putative order of Arrow → Applicative → Monad.
Furthermore, given the right restrictions, Arrows are isomorphic to both Applicatives and Monads
being able to "slide" between the layers of this hierarchy of abstractions.

P R O B A B I L I S T I C S P E A K As seen, Arrows allow us to categorically reason about a particular
structure and benefit from all the combinators that its interface offers. However, Arrows find themselves
between Applicatives and Monads with respect to their strength and therefore do not express any extra
special capabilities (Lindley et al., 2011). Nevertheless, due to their generality, Arrows are able to offer
either of the two abstraction (Applicative and Monad) capabilities, provided that their laws are verified.

In fact, Monads are able to express the minimum structure to represent arbitrary probability distri-
butions (Tobin, 2018). However, there are cases where it becomes hard to reason about probability
distributions using only the monadic interface (Oliveira and Miraldo, 2016). Arrows come into play
regarding this problem, allowing the so called Linear Algebra of Programming (LAoP) (Macedo, 2012)
as it will be seen in section 3.

1.2.6 Selective Applicative Functors

W H AT S E L E C T I V E A P P L I C AT I V E F U N C TO R S A R E Such as Applicatives, SAF did not
originate from any existing mathematical construction, but rather from observing interface limitations in
the hierarchy of abstractions established so far.

Allied to a specific research domain, like building systems and static analysis, Mokhov et al. (2019)
saw the following limitations:

• Applicative functors allow effects to be statically declared, which makes it possible to perform
static analysis. However, they only permit combining independent effects leaving static analysis
of conditional effects aside;

• Monads allow for combining conditional effects but can only do this dynamically, which makes
static analysis impossible.

This said, Mokhov et al. (2019) developed an interface (abstraction) aiming at getting the best of
both worlds, the SAF:

1class Applicative f => Selective f where

2-- also known as (<*?)

3select :: f (Either a b) -> f (a -> b) -> f b

4-- x <*? pure id = either id id <$> x

5-- pure x <*? (y *> z) = (pure x <*? y) *> (pure x <*? z)

1.2. State of the Art 9

6-- x <*? (y <*? z) = (f <$> x) <*? (g <$> y) <*? (h <$> z)

7-- where

8-- f x = Right <$> x

9-- g y = \a -> bimap (,a) ($ a) y

10-- h z = uncurry z

Listing 1.8: Selective Applicative Functor laws

By construction, SAFs find themselves between Applicatives and Monads and only provide one
operator, select. By parametricity (Wadler, 1989), it is possible to understand that this operator runs
an effect f (Either a b) which returns either an a or a b. In the case of the return value being of type
a, the second effect must be run, in order to apply the function a → b and obtain the f b value. In the
case of the return value being of type b, then the second computation is skipped.

The laws presented in the listing above characterise SAFs. The first law indicates that the select

operator should not duplicate any effect associated with x, and the second indicates that select should
not add any computation when the first one is pure, which allows it to be distributed.

It is worth noting that there is no law enabling SAFs to discard the second computation, in particular
pure (Right x) <*? y = pure x. And there is no law enabling the return value of f (a → b) to
be applied to the value obtained by the first computation, in particular pure (Left x) <*? y = ($

x) <$> y. The explanation for this is simple: it allows instances of SAFs which are useful for static
analysis to be performed and the select operator becomes more expressive, in the same way that
Applicative Functors do not limit the execution order of two independent results.

With this in mind, it is possible to see how SAFs solve the limitation of Applicatives and Monads
in the context of static analysis, allowing over-approximation and under-approximation of effects in
a circuit with conditional branches. Moreover, SAFs are useful not only in static contexts but also in
dynamic ones, benefiting from speculative execution (Mokhov et al., 2019).

From a theoretic point of view, SAFs can be seen as the composition of an Applicative functor f
with the Either monad (Mokhov et al., 2019). Even though this formalisation is not studied by Mokhov
et al. (2019), one should address the relation between SAFs and Arrows. As every SAF is an instance
of Applicative, every Applicative functor is also an instance of Selective. Moreover, as pointed by
Mokhov et al. (2019) it is possible to implement a specialised version of the bind (>>=) operator
for any enumerable data type, i.e. the capacity of selecting an infinite number of cases makes SAFs
equivalent to Monads (Pebles, 2019). It seems that, like Arrows, given the right conditions, SAFs
are also able to "slide" between Applicatives and Monads. As a matter of fact, Hughes (2000) had
already come up with an interface that extended Arrows with conditional capabilities, the ArrowChoice

type-class.
Given that there was already an abstraction capable of expressing the same as SAFs, why did

these arise? Arrows are more general and powerful than SAFs and could be used to solve the static
analysis and speculative execution examples presented by Mokhov et al. (2019). In fact, the build
system DUNE (Street, 2018) is an example of successful application of Arrows. However, adding the
ability of performing static analysis or speculative execution in a code-base that is not written using
the Arrow abstraction, becomes more complicated than only defining an instance for SAF in just a
couple of lines. With this being said, SAFs are a "just good enough" solution for providing the ability of
static analysis of conditional effects and speculative execution without relying in the more powerful and
intrusive Arrow abstraction.

1.2. State of the Art 10

Abstraction Operators Probabilistic Equivalent
Functor fmap f A P(A)

Applicative
pure A

A <∗> B

A

P(A)P(B)

Monad
return A

A >>= B

A

P(B|A) = P(B∩A)
P(A)

Arrow
arr f

A >>> B

Stochastic Matrix f

Stochastic Matrix Composition
Selective select A B -

Table 1: Summary of abstractions and their probabilistic counterpart

1.2.7 Summary

The discrete probability distribution is a particular representation of probability distributions. A distri-
bution is represented by a sampling space, i.e. an enumeration of both the support and associated
probability mass at any point.

Discrete distributions are also instances of the Functor type-class, which means that one can take
advantage of the fmap operator to map all values (the distribution domain) to others while keeping the
distribution structure intact, i.e. maintaining the probabilities of each value.

The Applicative instance let us apply pure functions to distributions. By taking advantage of the
Applicative laws, it is possible, for example, to combine two distributions and calculate their joint
probability, if one knows that they are independent from each other.

The Monad instance let us chain distributions, giving the possibility of expressing the calculation of
conditioned probability.

The most prevalent abstractions in FP were analysed in order to understand the motivation and
theory behind these and in which way they relate to the probabilistic setting. Table 1 summarises
the relation between each abstraction and its probabilistic counterpart. The conclusion is that maths-
theoretic foundations traverse all the abstractions addressed and, in particular, CT is ubiquitous in
programming and CS in general. There are cases in which the need for abstraction comes from more
practical contexts, calling for a more systematic and disciplined study grounded on sound mathematical
frameworks and leading to the design of correct and efficient solutions.

This said, this dissertation is chiefly concerned with identifying which probabilistic interpretations or
benefits are achievable with SAFs. After a detailed analysis of the different abstractions found in the
FP ecosystem, several starting points are outlined, in order to prove that the SAF abstraction is useful
in providing a more efficient solution than Monads to encode probabilities. The ability of static analysis
and speculative execution of SAFs has proved very useful in optimising certain libraries, as was the
case of the Haxl library (Marlow et al., 2014; Mokhov et al., 2019). On the other hand, the adoption of
an abstraction weaker than the monadic one, may prove to be of value in mitigating the performance
constraints that the monadic interface imposes because of being inherently sequential.

1.3. Related Work 11

1.3 R E L AT E D W O R K

This thesis benefits from synergies among computing and mathematics fields such as probability
theory, category theory and programming languages. This section reviews similar work in such fields
of research.

1.3.1 Exhaustive Probability Distribution Encoding

Over the past few years, the field of probabilistic programming has been primarily concerned with
extending language capabilities in expressing probabilistic calculations and serving as practical tools
for Bayesian modelling and inference (Erwig and Kollmansberger, 2006). As a result, several languages
were created to respond to emerging limitations. Despite the observation that probability distributions
form a monad is not new, it was not until later that its sequential and compositional nature was explored
by Ramsey and Pfeffer (2002), Goodman (2013) and Gordon et al. (2013).

Erwig and Kollmansberger (2006) were among the first to encode distributions as monads by
designing a probability and simulation library based on this concept. Kidd (2007), the following year,
inspired by the work of Ramsey and Pfeffer (2002), introduced a modular way of probability monad
construction and showed the power of using monads as an abstraction. Due to this, he was able to,
through a set of different monads, offer ways to calculate probabilities and explore their compositionality,
from discrete distributions to sampling algorithms.

Erwig and Kollmansberger (2006), in their library, used the non-deterministic monad to represent
distributions, resulting in an exhaustive approach capable of calculating the exact probabilities of any
event. However, common examples of probabilistic programming grow the sample space exponentially
and make it impossible to calculate the entire distribution. Despite Larsen (2011)’s efforts to improve
the performance of this library, his approach was still limited to exhaustively calculating all possible
outcomes.

Apart from the asymptotic poor performance of the Erwig and Kollmansberger (2006) library, the use
of the non-deterministic monad means that its sequential nature does not allow for further optimisations.
It was with these two limitations in mind that many probabilistic programming systems were proposed.

1.3.2 Embedded Domain Specific Languages

Probabilistic Programming Languages (PPLs) usually extend an existing programming language.
The choice of the base language may depend on many factors such as paradigm, popularity and
performance. There are many probabilistic programming languages with different trade-offs (Ścibior
et al., 2015) and many of them are limited to ensure that the model has certain properties in order to
make inference fast. The type of approach followed by these programming languages, such as BUGS
(Gilks et al., 1994) and Infer.NET (Minka et al., 2009), simplify writing inference algorithms for the price
of reduced expressiveness.

A more generic approach, known as universal probabilistic programming, allows the user to specify
any type of model that has a computable prior. The pioneering language was Church (Goodman et al.,
2012), a sub-dialect of Scheme. Other examples of probabilistic programming languages include
Venture and Anglican (Mansinghka et al., 2014; Tolpin et al., 2015) both also Scheme sub-dialects.

1.4. Structure of the Dissertation 12

Ścibior et al. (2015) show that the Haskell functional language is an excellent alternative to the above
mentioned languages with regard to Bayesian modelling and development of inference algorithms.
Just as Erwig and Kollmansberger (2006), Ścibior et al. (2015) use monads and develop a practical
probabilistic programming library whose performance is competitive with that of the Anglican language.
In order to achieve the desired performance, a less accurate than the exhaustive approach to calculating
probabilities is used: sampling. This work by Ścibior et al. (2015), also elaborated in the first author’s
doctoral dissertation (Ścibior*, 2019), kept on giving rise to a more modular extension of the library
presented in previous work, in order to separate modelling from inference (Ścibior et al., 2018).
Despite the results obtained, both solutions suffer from the fact that they use monads only to construct
probability distributions. Since monads are inherently sequential they are unable to exploit parallelism
in the sampling of two independent variables.

Tobin (2018) contributes to the investigation of embedded probabilistic programming languages,
which have the advantage of benefiting from various features for free such as parser, compiler and host
language library ecosystem. More than that, Tobin (2018) studies the functorial and applicative nature
of the Giry monad and highlights its various capabilities by mapping them to the probabilistic setting.
He uses free monads, a novel technique for embedding a statically typed probabilistic programming
language into a purely functional language, obtaining a syntax based on the Giry monad, and uses
free applicative functors to be able to express statistical independence and explore its parallel nature.
Notwithstanding the progress and studies shown, Tobin (2018) does not cope with the latest abstraction
of SAF nor fills the gap on how they fit into a probabilistic context in order to benefit from their properties.

1.4 S T RU C T U R E O F T H E D I S S E RTAT I O N

This text is structured in the following way: this chapter provides the context, motivation and overall
goals of the dissertation. It also presents a review of the state of the art and related work. Chapter 2
introduces the most relevant background topics and chapter 3.1 explains in more detail the problem at
target and its main challenges. Chapters 3 and 4 present all details of the implemented solution, as
well as some application examples and evaluation results. Finally, chapter 5 presents conclusions and
guidelines for future work.

2
B A C K G R O U N D

This chapter shines a light through the path of probabilities and their foundations. The aim is to provide
readers with a good context refreshment and intuition, saving them from the need to resort to heavy
books. While more reading is required for a full understanding of the whole background, this chapter
can easily be skipped by readers familiar with these subjects.

2.1 S E T T H E O RY

The field of probability theory is the basis of statistics, giving means to model social and economic be-
haviour, infer from scientific experiments, or almost everything else. Through these models, statisticians
are able to draw inferences from the examination of only a part of the whole.

Just as statistics was built upon the foundations of probability theory, probability theory was built
upon set theory. Statisticians aim at drawing conclusions about populations of objects by making
observations or conducting experiments, for which they need to identify all possible outcomes in the
first place, the sample space.

Definition 2.1.1. The set S of all possible outcomes of an experience is called the sample space.

The next step, after the sample space is defined, is to consider the collection of possible outcomes
of an experience.

Definition 2.1.2. An event E is any collection of possible results of an experience, i.e. any subset of S
(E ⊆ S).

As the reader surely knows, there are several elementary operations on sets (or events):

Union: The union of two events, A ∪ B, is the set of elements that belong to either A or B, or both:

A ∪ B = {x : x ∈ A or x ∈ B} (1)

Intersection: The intersection of two events, A ∩ B, is the set of elements that belong to both A
and B:

A ∪ B = {x : x ∈ A and x ∈ B} (2)

13

2.2. Basic Probabilities and Distributions 14

Complementation: The complement of an event A, Ac, is the set of all elements that are not in A:

Ac = {x : x /∈ A} (3)

These elementary operations can be combined and behave much like numbers:

Theorem 2.1.1.

1. Commutativity A ∪ B = B ∪ A

A ∩ B = B ∩ A

2. Associativity A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

3. Distributive Laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

3. DeMorgan′s Laws (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

The reader is referred to Casella and Berger (2001) for the proofs of these properties.

2.2 B A S I C P R O B A B I L I T I E S A N D D I S T R I B U T I O N S

Probabilities come up rather often in our daily lives. They are not only of use to statisticians. A good
understanding of probability theory allows us to assess the likelihood of everyday tasks and to benefit
from the wise choices learnt by experience. Probability theory is also useful in the fields of economics,
medicine, science and engineering, and in risk analysis. For example, the design of a nuclear reactor
must be such that the leak of radioactivity into the environment should be an extremely rare event. So,
using probability theory as a tool to deal with uncertainty, the reactor can be designed to ensure that
an unacceptable amount of radiation will escape once in a billion years.

W H AT P R O B A B I L I T I E S A R E When an experiment is made, its realisation results in an outcome
that is a subset of the sample space. If the experiment is repeated multiple times the result might vary
in each repetition, or not. This "frequency of occurrence" can be seen as a probability. However, this
"frequency of occurrence" is just one of the many interpretations of what a probability is, another one
being more subjective: a probability is the belief of a chance of an event occurring.

For each event A in the sample space S a number in the interval [0, 1], said to be the probability of
A, is associated with A denoted P(A). The domain of P, which intuitively is the set of all subsets of S,
is called a sigma algebra, denoted by B.

2.2. Basic Probabilities and Distributions 15

Definition 2.2.1. A collection of subsets of S is a sigma algebra, B if it satisfies the following properties:

1. ∅ ∈ B (the empty set is an element of B)

2. If A ∈ B , then Ac ∈ B (B is closed under complementation)

3. If A1, A2, ... ∈ B , then
∞⋃

i=1

Ai ∈ B (B is closed under countable unions)

Example 2.2.1.1. (Sigma algebras) If S has n elements, then B has 2n elements. For example, if
S = {1, 2, 3}, then B is the collection of 23 = 8 sets:

{1} {1, 2} {1, 2, 3}
{2} {1, 3} {∅}
{3} {2, 3}

If S is uncountable (e.g. S = (−∞,+∞)), then B is the set that contains all sets of the form:

[a, b] [a, b) (a, b] (a, b)

Given this, P(·) can now be defined as a function from B → [0, 1], this probability measure must
assign to each event A, a probability P(A) and abide the following properties:

Definition 2.2.2. Given a sample space S and an associated sigma algebra B, a probability function
P satisfies:

1. P(A) ∈ [0, 1] , for all A ∈ B

2. P(∅) = 0 (i.e. if A is the empty set, then P(A) = 0)

3. P(S) = 1 (i.e. if A is the entire sample space, then P(A) = 1)

4. P is countably additive, meaning that if, A1, A2, ...

is a finite or countable sequence of disjoint events, then:

P(A1 ∪ A2 ∪) = P(A1) + P(A2) + ...

These properties satisfy the Axioms of Probability (or the Kolmogorov Axioms), and every function
that satisfies them is called a probability function. The first three axioms are pretty intuitive and easy
to understand. However, the fourth one is more subtle and is an implication of the third Kolmogorov
Axiom, called the Axiom of Countable Additivity which says that one can calculate probabilities of
complicated events by adding up the probabilities of smaller events, provided those smaller events are
disjoint and together contain the entire complicated event.

Calculus of Probabilities

Many properties of a probability function follow from the From the Axioms of Probabilities, which is
useful for calculating more complex probabilities. The additivity property automatically implies certain
basic properties that are true for any probability model.

2.2. Basic Probabilities and Distributions 16

Taking a look at A and Ac one can see that they are always disjoint, and their union is the entire
sample space: A ∪ Ac = S. By the additivity property one has P(A ∪ Ac) = P(A) + P(Ac) = P(S),
and since P(S) = 1 is known, then P(A ∪ Ac) = 1 or:

P(Ac) = 1− P(A) (4)

In words: the probability of an event not happening is equal to one minus the probability of an event
happening.

Theorem 2.2.1. Let A1, A2, ... be events that form a partition of the sample space S. Let B be any
event, then:

P(B) = P(A1 ∩ B) + P(A2 ∩ B) + ...

Theorem 2.2.2. Let A and B be two events such that B ⊆ A. Then:

P(A) = P(B) + P(A ∩ Bc) (5)

From this one can draw, since P(A ∩ Bc) ≥ 0 always holds:

Corollary 2.2.2.1. (Monotonicity) Let A and B be two events such that B ⊆ A. Then:

P(A) ≥ P(B)

Moreover, by rearranging (5) one obtains:

Corollary 2.2.2.2. Let A and B be two events such that B ⊆ A. Then:

P(A ∩ Bc) = P(A)− P(B)

Finally, by lifting constraint B ⊆ A one has the following, more general property:

Theorem 2.2.3. (Principle of inclusion–exclusion, two-event version) Let A and B be two events. Then:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) (6)

Since P(A ∪ B) ≤ 1, property (6) leads to (after some rearranging):

P(A ∩ B) ≥ P(A) + P(B)− 1 (7)

This inequality is a special case of what is known as the Bonferroni’s Inequality. Altogether, one can
say that the basic properties of total probability, subadditivity, and monotonicity hold. The interested
reader is referred to (Casella and Berger, 2001) or (Annis, 2005) for proofs and more details concerning
the theorems above.

2.2. Basic Probabilities and Distributions 17

Counting and Enumerating Outcomes

Counting methods can be used to assess probabilities in finite sample spaces. In general, counting
is non-trivial, often needing constraints to be taken into account. The approach is to break counting
problems into easy-to-count sub-problems and use some combination rules.

Theorem 2.2.4. (Fundamental Theorem of Counting) If a job consists in k tasks, in which the i-th task
can be done in ni ways, i = 1, ..., k, then the whole job can be done in n1 × n2 × ...× nk ways.

Although theorem 2.2.4 is a good starting point, in some situations there are more aspects to
consider. In a lottery, for instance, the first number can be chosen in 44 ways and the second in 43
ways, making a total of 44× 43 = 1892 ways. However, if the player could pick the same number twice
then the first two numbers could be picked in 44× 44 = 1936 ways. This shows the distinction between
counting with replacement and counting without replacement. There is a second important aspect in
any counting problem: whether or not the order of the tasks matters. Taking these considerations into
account, it is possible to construct a 2× 2 table of possibilities.

Back to the lottery example, one can express all the ways a player can pick 6 numbers out of 44,
under the four possible cases:

• ordered, without replacement - Following theorem 2.2.4 the first number can be picked in 44
ways, the second in 43, etc. So, there are:

44× 43× 42× 41× 40× 39 =
44!
38!

= 5082517440

• ordered, with replacement - Each number can be picked in 44 ways, so:

44× 44× 44× 44× 44× 44 = 446 = 7256313856

• unordered, without replacement - Since how many ways we can pick the numbers if the order is
taken into account is known, then one just needs to divide the redundant orderings. Following
theorem 2.2.4, 6 numbers can be rearranged in 6!, so:

44× 43× 42× 41× 40× 39
6× 5× 4× 3× 2× 1

=
44!

6!38!
= 7059052

This last form of counting is so frequent that there is a special notation for it:

Definition 2.2.3. For non-negative numbers, n and r, where n ≥ r, the symbol (n
r), read n choose r,

as: (
n
r

)
=

n!
r!(n− r)!

• unordered, with replacement - To count this more difficult case, it is easier to think of placing 6
markers into 44 boxes. Someone noticed (Feller, 1971) that all one needs to keep track of is the

2.2. Basic Probabilities and Distributions 18

arrangement of the markers and the walls of the boxes. Therefore, 43 (walls) + 6 markers = 49
objects which can be combined in 49! ways. Redundant orderings still need to be divided, so:

49!
6!43!

= 13983816

The following table summarises these situations:

Without replacement With replacement

Ordered n!
(n−r!) nr

Unordered (n
r) (n+r−1

r)

Table 2: Number of possible arrangements of size r from n objects

Counting techniques are useful when the sample space is finite and all outcomes in S are equally
probable. So, the probability of an event can be calculated by counting the number of its possible
outcomes. For S = {S1, ..., Sn}, saying that all the elements are equally probable means P({si} = 1

N .
From the Axiom of Countable Additivity, for any event A:

P(A) =
of elements in A
of elements in S

Conditional Probability and Independence

All probabilities dealt with so far were unconditional. There are situations in which it is desirable to
update the sample space based on new information, that is to calculate conditional probabilities.

Definition 2.2.4. If A and B are events in S, and P(B) > 0, then the conditional probability of A given
B, is:

P(A|B) = P(A ∩ B)
P(B)

(8)

It is worth noting that what happens in a conditional probability calculation is that B becomes the
sample space (P(B|B) = 1). The intuition is that the event B will occur a fraction P(B) of the time
and, both A and B will occur a fraction P(A ∩ B) of the time; so the ratio P(A ∩ B)/P(B) gives the
proportion of times when both B and A occur.

Rearranging (8) gives a useful way to calculate intersections:

P(A ∩ B) = P(A|B)P(B) (9)

By symmetry with (9) and equating both right-hand sides of the symmetry equations:

2.3. (Linear) Algebra of Programming 19

Theorem 2.2.5. (Bayes’ Theorem) Let A and B be two events with positive probabilities each:

P(A|B) = P(B|A)
P(A)

P(B)
(10)

There might be cases where an event B does not have any impact on the probability of another
event A: P(A|B) = P(A). If this holds then by using Bayes’ rule (10):

P(B|A) = P(A|B) P(B)
P(A)

= P(A)
P(B)
P(A)

= P(B)

2.3 (L I N E A R) A L G E B R A O F P R O G R A M M I N G

LAoP is a quantitative extension to the Algebra of Programming (AoP) discipline that treats binary
functions as relations. This extension generalises relations to matrices and sees them as arrows, i.e.
morphisms typed by the dimensions of the matrix. This extension is important as it paves the way to a
categorical approach which is the starting point for the development of an advanced type system for
linear algebra and its operators.

Central to the approach is the notion of a biproduct, which merges categorical products and
coproducts into a single construction. Careful analysis of the biproduct axioms as a system of
equations provides a rich palette of constructs for building matrices from smaller ones, regarded as
blocks.

By regarding a matrix as a morphism between two dimensions, matrix multiplication becomes simple
matrix composition:

m n qA B

C=A·B

Since this discipline is based on CT, some basic familiarity with categories C, D, functors F,
G : C→ D, natural transformations α , β : F→ G, products and coproducts, is assumed. The reader
is referred to e.g. (Awodey, 2010), (Oliveira, 2008) and (Macedo, 2012) for more details.

2.3.1 Category of Matrix Basic Structure

Vectors

Wherever one of the dimensions of the matrix is 1 the matrix is referred as a vector. In more detail, a
matrix of type m← 1 is a column vector, and of type 1← m is a row vector.

Identity

The identity matrix has type n← n. For every object n in the category there must be a morphism of

this type, which will be denoted by n idn←− n

2.3. (Linear) Algebra of Programming 20

Transposed Matrix

The transposition operator changes the matrix shape by swapping rows with columns. Type-wise, this

means converting an arrow of type n A←− m into an arrow of type m A◦←− n.

Bilinearity

Given two matrices it is possible to add them up entry-wise, leading to A + B with 0 as unit - the matrix
wholly filled with 0’s. This unit matrix works as one would expect with respect to matrix composition:

A + 0 = A = 0 + A

A · 0 = A = 0 · A

In fact, matrices form an Abelian category:

A · (B + C) = A · B + A · C
(B + C) · A = B · A + C · A

2.3.2 Biproducts

In an Abelian category, a biproduct diagram for the objects m, n is a diagram of the following shape

m r n
i1

π1 π2

i2

whose arrows π1, π2, i1, i2, satisfy the following laws:

π1 · i1 = idm

π2 · i2 = idn

i1 · π1 + i2 · π2 = idr

i1 · i2 = 0

π2 · i1 = 0

How do biproducts relate to products and coproducts in the category? The diagram and definitions
below depict how products and coproducts arise from biproducts (the product diagram is in the lower
half; the upper half is the coproduct one):

2.3. (Linear) Algebra of Programming 21

b

a a + b b

c

i1

A

[A|B]

π1 π2

i2

B

[C
D]

C D

By analogy with the AoP, expressions [A|B] and
[

A
B

]
will be read ’A junc B’ and ’C split D’,

respectively. These combinators purport the effect of putting matrices side by side or stacked on top
of each other, respectively. Taken from the rich algebra of such combinators, the following laws are
very useful, where capital letters M, N, etc. denote suitably typed matrices (the types, i.e. dimensions,
involved in each equality can be inferred by drawing the corresponding diagram):

• Fusion laws:

P · [A|B] = [P · A|P · B] (11)[
A
B

]
· P =

[
A · P
B · P

]
(12)

• Divide and conquer:

[A|B] ·
[

C
D

]
= A · C + B · D (13)

• Converse duality:

[A|B]◦ =
[

A◦

B◦

]
(14)

• Exchange ("Abide") law: [[
A
C

]
|
[

B
D

]]
=

[
[A|B]
[C|D]

]
(15)

2.3.3 Biproduct Functors

As in the relational setting of the standard AoP, the biproduct presented above gives rise to the
coproduct bifunctor that joins two matrices (which is usually known as direct sum):

A⊕ B = [i1 · A|i2 · B]

k k + j j

n n + m m

A A⊕B B

The well-known Kronecker product is the tensor product in matrix categories. In the context of
LAoP, this bifunctor may be expressed in terms of the Khatri Rao product which, in turn, can and be
expressed in terms of the Hadamard and Schur matrix multiplication:

2.4. Stochastic Matrices 22

k k× j j

n n×m m

A A⊗B B

2.4 S TO C H A S T I C M AT R I C E S

Functions are special cases of relations — the deterministic, totally defined ones. Relations, however,
can also be considered as special cases of functions — the set-valued ones, as captured by universal
property:

f = ΛR ≡ 〈∀ b, a :: bRa ≡ b ∈ f a〉 (16)

This implies that a binary relation R can be expressed uniquely by the ΛR function, which yields the
(possibly empty) set of all b that R relates to a for a given input a. Dually, any set-valued function f "is"
a relation that relates every input to any of its possible outputs.

Note the word ’possible’ in the previous paragraph: it means that any outcome may be output, but
nothing is said about which outputs are more probable than others. Even if one were able to foresee
such a probability or tendency, how would it be expressed?

Written in terms of types, (16) is the isomorphism:

A→PB ∼= A→ B

(∈·)

Λ

(17)

A→PB is the functional type that can also be written (PB)A, where PB denotes the power set of B,
and A→ B is the relational type of all relations R ⊆ B× A. Operator Λ, termed the power transpose
(Bird and de Moor, 1997; Oliveira, 2012; Freyd and Scedrov, 1990), defines the isomorphism, from
right to left. Since PB is isomorphic to 2B, which is the set of all B predicates, one might write A→ 2B

for the type of f in (16), where 2 = {0, 1} is the set of truth values (0 is false and 1 is true). So for each
input a ∈ A, f a is a predicate that tells which outputs are likely to be b ∈ B.

With 2B one is able to tell which outputs can be issued but not how likely they are. Ranking output
probability can be achieved by extending from B predicates to [0, 1]B distributions, where [0, 1] denotes
the interval of real numbers between 0 and 1. That is, on extends the discrete set {0, 1} to the
corresponding interval of real numbers. Not every function µ ∈ [0, 1]B qualifies: only those such that
∑

b∈B
µ b = 1 holds. By defining

DB = {µ ∈ [0, 1]B | ∑
b∈B

µ b = 1} (18)

A→ DB will be regarded as the type of all probabilistic functions from A to B. Probabilistic functions
have been around in various guises. For B = A they can be regarded as Markov chains.

2.5. Summary 23

In what way does the AoP extends to probabilistic functions? In the same way one can look for an
isomorphism close to (16), this time with DB instead of PB. This is not difficult to accomplish: just
write (DB)A instead of A→ DB and extend DB to [0, 1]B, temporarily leaving aside the requirement
captured by the summation in (18): by uncurrying, ([0, 1]B)A is isomorphic to [0, 1]B×A, which can be
considered as the mathematical space of all [0, 1]-valued matrices with as many columns as elements

in A and rows as elements in B. Thus, given the probabilistic function A
f−→ DB, its matrix transform

J f K is an unique M matrix, such that:

M = J f K ≡ 〈∀b, a :: M(b, a) = (f a) b〉 (19)

Recalling (18), each matrix of this kind will be such that all its columns will add up to 1, i.e., left-
stochastic. This gives rise to a typed linear algebra of programming in which matrices replace relations
and which can be used to express and reason about (recursive) probabilistic functions (Oliveira, 2012).

2.5 S U M M A RY

Common knowledge indicates that probabilities concern numerical descriptions of how likely an event
is to occur, or how likely it is to be true for a hypothesis. A number between 0 and 1 is the probability
of an occurrence, where 0 indicates the impossibility of the event and 1 indicates certainty. It is easy
to reason about the possibility of such outcomes for simple events, e.g. a flip of a coin or a game
of cards, but most real life situations require carefulness and rigour. Set theory is the mathematical
framework on which probability theory and its calculus are founded, by expressing it through a set of
axioms in a rigorous mathematical manner. Without this basis, abstractions such as LAoP, which allow
one to reason about probabilities in a more compositional, generic, higher-level manner, would not be
possible. With regard to the computational aspect of probabilities and probabilistic programming, linear
algebra is closer than what could be imagined and, that thanks to matrices and these mathematical
foundations, correct, efficient and compositional solutions were made possible to build.

The main purpose of the current chapter is to provide a path to basic probability theory, its founda-
tions and its common vocabulary, followed by a brief introduction to the linear algebra of programming
and stochastic matrices.

3

C O N T R I B U T I O N

This chapter presents the main contributions of the work carried out in this master’s project and
discusses its major obstacles and difficulties. As will be seen later, the contributions range over
theoretical and practical aspects of the problem being addressed. Concerning theoretical contributions,
the probabilistic interpretations of Arrows and SAFs are discussed, while bridging between sampling
problems and concurrency ones. With regard to practical contributions, two probabilistic programming
libraries in Haskell are described and presented.

3.1 T H E P R O B L E M A N D I T S C H A L L E N G E S

3.1.1 Probabilistic Interpretation of Selective Functors

Section 1.2 presented some of the most well-known abstractions in functional programming, as well as
their probabilistic interpretation. How these abstractions are translated into the context of probabilistic
programming was also addressed. The fact that the Giry monad (Giry, 1982; Tobin, 2018) is an
Applicative Functor takes us closer to a potential probabilistic interpretation of SAFs. In addition, the
relationship between SAFs and Arrows (Mokhov et al., 2019) has also led to the challenge of figuring
out how Arrows’ fundamentals and generality can be useful in finding the probabilistic interpretation of
SAFs and how it relates to any probabilistic programming construct.

3.1.2 Inefficient Probability Encodings

There are two ways to model probabilistic distributions. In the light of the work outlined in section 1.3,
it is possible to opt for an exhaustive representation of distributions, where all chance-value pairs are
stored and any structural manipulation is done by changing all pairs, one by one. This method has the
advantage of ensuring the calculation of the exact probability of any type of event. However, even a
seemingly simple problem can lead to state explosions within distributions, which have major negative
impacts on performance. With this in mind, another (less rigorous) method of calculating probabilities
is to infer them using less reliable, yet faster and more efficient inference algorithms, instead of always
measuring the exact probabilities across all values.

Modelling a simple program that calculates the likelihood that a particular event will occur in N
throws of a die, using an exhaustive method, will easily become unfeasible even for a relatively small
N. However, modelling complex, safety-critical problems (such as e.g. calculating the probability
of two aircrafts crashing) using a non-exhaustive approach may lead to hazardous situations, if the

24

3.2. Probabilistic Interpretation of Arrows 25

accuracy of the results is not the desired one. This trade-off is a topic of much concern in probabilistic
programming.

Therefore, finding a way capable of minimising the distance between the two most common
probabilistic distribution encodings is challenging. Another challenge is to find one that takes advantage
of the SAF abstraction and manages to make the most out of its static analysis or speculative execution
properties.

3.1.3 Proposed Approach

Regarding the problem of finding the probabilistic interpretation of SAFs, in order to encode the basic
LAoP combinators in a cost-effective and compositional manner, a type safe matrix representation and
manipulation library was developed in Haskell. From reading section 2.4, one can understand how, by
using matrices and their probabilistic semantics, this library can be useful to help building intuition and
exploring the functorial, applicative and monadic structure of probability distributions.

Regarding the problem of finding an efficient probability encoding that is capable of taking advantage
of the SAF abstraction, an Embedded domain specific language (eDSL) suited for writing probabilistic
programs was designed, recurring to the Free Selective Functor construction. This eDSL will be
important to see how far the Selective abstraction is able to go in the probabilistic setting and what
type of benefits one can extract from its conditional static analysis capabilities.

Of course, all this would not be possible without a deep understanding of the theoretical context
in which SAFs are inserted, which leads to a probabilistic semantics for SAFs, where all the other
contributions rest on top of.

After understanding the probabilistic capabilities of SAFs, an analysis is performed to decide which
of the two alternative approaches could have more impact — either by reusing the former type safe
LAoP library or by adopting the probabilistic eDSL library to express probabilistic programs. A set of
case studies and examples shall be described to benchmark all contributions in the context of the
related work.

3.2 P R O B A B I L I S T I C I N T E R P R E TAT I O N O F A R R OW S

AoP (Bird and de Moor, 1997) is a calculational and point-free programming discipline, making a case
for the use of CT to achieve elegant correctness proofs.The book shows how the language of CT can
be used to describe the basic building blocks of datatypes found in FP and the associated program
derivation. The lesson from AoP, where functions are viewed as a special case of relations, is that
by changing the category (from Fun to Rel) expressive power increases. Relations are inherently
non-deterministic and are capable of specifying a wider range of problems by making rich operators,
such as converse and division, universally available. Other reasons for this transition are that more
structure is uncovered, opportunities for generalisation are unveiled and the arrangement of specific
proofs becomes simpler. "Keep the definition, change category" is a slogan that neatly summarises
the lesson that Bird and de Moor (1997) have passed on to the community and emphasises on gradual
composition, as practised in relational algebra.

How can this lesson be used in a probabilistic context? Oliveira and Miraldo (2016) direct us towards
LAoP, inspired by the work of Macedo (2012) and Oliveira (2012). LAoP generalises relations and

3.3. Type Safe Linear Algebra of Programming Matrix Library 26

functions treating them as Boolean matrices and in turn consider these as arrows. Instead of staying
with matrices of just 0′s and 1′s, one shifts to the left-stochastic, where the values of each column
amount to 1. This makes it possible to express multiple probabilistic extensions to the regular AoP
combinations and help keep the convoluted probability notation under control.

Probabilistically speaking, left-stochastic matrices are seen as Arrows and can be written as n M−→ m
to denote that matrix M is of type n −→ m (n columns, m rows). Using this notation matrix multiplication
can be understood as arrow composition, therefore forming a category of matrices, where objects
are numeric dimensions and morphisms are the matrices themselves. Since all arrows represent
left-stochastic matrices, a simple distribution P(A) can be seen of a matrix of type 1 −→ m, which
represents a left-stochastic column vector. Statistical independence P(B|A) = P(A)P(B) can be
calculated by probabilistic pairing, also known as the Khatri-Rao matrix product (Macedo, 2012; Murta
and Oliveira, 2013). Objects in the category of matrices may be generalised to arbitrary denumerable

types (A, B). By performing this generalisation, probabilistic functions A
f−→ DB are viewed as

matrices of type A −→ B, enabling us to express conditional probability calculation P(B|A) in the form
of probabilistic function application. It is worth noting that by using just the monadic interface it would
only be possible to reason about conditional probabilities by recurring to the bind (>>=) operator,
which convolutes probabilistic reasoning. However, by adopting the LAoP transition, probabilistic
function (Kleisli) composition becomes simply matrix composition (Oliveira, 2012).

This probabilistic Arrows interpretation takes the analysis one step closer to the probabilistic
interpretation of SAF. It should be possible to encode matrices around sound mathematical abstractions
and take advantage of the best they have to give, by using what has been learned so far. What SAF
has to do with the linear approach to AoP, and how it fits into the probabilistic setting is the question
that one wishes to answer.

3.3 T Y P E S A F E L I N E A R A L G E B R A O F P R O G R A M M I N G M AT R I X L I B R A RY

When finding a probabilistic interpretation for SAFs, an attempt was made to construct a matrix-
representing data structure based on the LAoP. The LAoP discipline offers an inductive approach due
to the various combinators that characterise it, since these are based on biproducts which enable
block-oriented matrix manipulation. As an attempt to achieve a strongly typed data structure, a
Generalised Algebraic Datatype (GADT) indexed by type level naturals is used:

1data Matrix e (c :: Nat) (r :: Nat) where

2One :: e -> Matrix e 1 1

3Join :: Matrix e m p -> Matrix e n p -> Matrix e (m + n) p

4Fork :: Matrix e p m -> Matrix e p n -> Matrix e p (m + n)

Listing 3.1: Inductive matrix definition

This inductive data type will correctly represent any type of matrix and infer its dimensions. However,
since Glasgow Haskell Compiler (GHC) is not able to properly infer the correct types while pattern-
matching, this data type poses some difficulties in implementing functions for construction and
manipulation. It is easy to implement a simple example, such as matrix transposition, but others such
as the entry-wise addition of two matrices, are impossible in practice, as two matrices of the same

3.3. Type Safe Linear Algebra of Programming Matrix Library 27

dimensions can be internally represented by a different combination of Joins and Forks. One solution
to this problem would be to find a way to ensure that all matrices were constructed according to a
convention (either Join of Forks or Fork of Joins), but even so the type system would still be unable
to know that the matrices actually followed the convention.

In order to solve this problem and to try and get a feel of the probabilistic interpretation/intuition
of SAF, a library has been developed. This library just offers a type-safe newtype wrap around an
existing library’s matrix data structure. The chosen library was HMatrix (Ruiz, 2019) because it is one
of the most common and widely used.

1import qualified Numeric.LinearAlgebra.Data as HM

2newtype Matrix e (c :: Nat) (r :: Nat) = M {unMatrix :: HM.Matrix e}

Listing 3.2: Type-safe wrapper around HMatrix

With this type-safe wrapper, it is possible to implement several LAoP combinators, but when using
it one is at the mercy of the internal representation used by the host library, and the possibility of
obtaining a structure that benefits from the properties of SAFs and LAoP is lost1. Nevertheless this
technique makes a potential response closer.

As mentioned in the previous subsection, representing distributions as stochastic arrays, and these
in turn as arrows, allows us to implement the Arrow instance in the data type shown in Listing 3.2. As
described in section 1.2, probability distributions are capable of satisfying the Functor, Applicative,
and Monad instances. However, due to the constraints required for all type-checking to be carried out,
and the fact that the content type of the matrix is in a negative position, it is not possible to implement
instances for spoken interfaces. However an equivalent version of the functions of each instance can
be implemented as shown in the listing below:

1-- | Monoidal/Applicative instance

2khatri :: (...) => Matrix e m p -> Matrix e m q -> Matrix e m (p * q)

3

4-- | Monad instance

5comp :: (...) => Matrix e p m -> Matrix e n p -> Matrix e n m

6

7-- | Arrow instance

8fromF :: (...) => (a -> b) -> Matrix e c r

Listing 3.3: Interface equivalent function implementations

The Applicative instance is defined in terms of the Khatri Rao product, taking advantage of the
monoidal nature that characterises this abstraction. With respect to Monads, the matrix composition, as
seen in the previous subsection, is the equivalent of bind. Finally, with respect to the Arrow abstraction,
the fundamental operation is to transform (lift) a function into its matrix representation. It should be
noted that all of these operators have associated constraints, which are deferred to appendix A for
space economy.

1 Note that HMatrix is quite efficient, but for the purposes of this thesis the benefits of using SAFs and LAoP need
to be observed as clearly as possible

3.4. Probabilistic Interpretation of Selective Functors 28

In this setting, simple probabilistic problems such as the Monty Hall puzzle (Rosenhouse et al.,
2009) can be easily modelled. In this puzzle, a game show contestant is faced with three doors, one of
which hides a prize. One of the doors is chosen by the player, and then the host opens another door
that does not have the reward behind it. The player then has the option of staying with the chosen
door or switching to the other closed door. The following listing presents the Haskell code that models
such a puzzle:

1-- Monty Hall Problem

2data Outcome = Win | Lose

3deriving (Bounded, Enum, Eq, Show)

4

5switch :: Outcome -> Outcome

6switch Win = Lose

7switch Lose = Win

8

9firstChoice :: Dist Outcome

10firstChoice = choose (1/3)

11

12secondChoice :: Matrix Double 2 2

13secondChoice = fromF switch

14

15main :: IO ()

16main = do

17print (p1 `comp` secondChoice `comp` firstChoice :: Matrix Double 1 1)

18

19{-

20Output:

21(1><1)

22[0.6666666666666666]

23-}

Listing 3.4: LAoP Monty Hall Problem

3.4 P R O B A B I L I S T I C I N T E R P R E TAT I O N O F S E L E C T I V E F U N C TO R S

SAFs are said to provide the missing counterpart for ArrowChoice in the functor hierarchy, as shown
by the following example (Mokhov et al., 2019):

1instance ArrowChoice a => Selective (ArrowMonad a) where

2select (ArrowMonad x) y = ArrowMonad $ x >>> (toArrow y ||| returnA)

3

4toArrow :: Arrow a => ArrowMonad a (i -> o) -> a i o

3.4. Probabilistic Interpretation of Selective Functors 29

5toArrow (ArrowMonad f) = arr (\x -> ((), x)) >>> first f >>> arr (uncurry ($))

Listing 3.5: Selective ArrowMonad instance

The relationship of Arrows with SAFs is highlighted in this case. Given the results seen in the
previous section, an implementation similar to that shown in Listing 3.5 can be used, and a selective
instance for the Matrix data type (3.2) can be obtained similarly. However it is not possible to implement
an official instance.2 Nonetheless, it is possible to write the operator select at the cost of operators
identical to the ones used above:

1(|||) :: Matrix e m p -> Matrix e n p -> Matrix e (m + n) p

2(|||) = Join

3

4select :: (...) => Matrix e n (m1 + m2) -> Matrix e m1 m2 -> Matrix e n m2

5select m y = (y ||| id) `comp` m

Listing 3.6: LAoP Selective instance

Note that the function toArrow is needed so that Listing 3.5 type checks. In order to match the same
signature, an equivalent toMatrix function would be necessary, but unfortunately an instance of Enum
(a → b) would be needed too, and this is currently not feasible in Haskell. For this reason, the type
signature of select needed adjustments.

However interesting, the relationship between Arrows and SAFs does not tell much about its
semantics. It is more or less clear that some kind of conditional is expressed, but it is hard to imagine
how it would interact with the other combinators. The following diagram gives a more concrete
description:

b

a a + b b

c

i1

y

[y | id]

i2

id

m

In more detail:

b

a a + b b

c

i1

y

[y | id]

π1 π2

i2

id

m=[F
G]

F G

Generalising:

2 due to restrictions placed on the types of the matrix dimensions

3.5. Type safe inductive matrix definition 30

b

a a + b b

c

i1

A

[A|B]

π1 π2

i2

B

[C
D]

C D

This last diagram can be found in (Macedo, 2012) and defines exactly the biproducts Join and Fork.
This diagram highlights several properties of this biproduct such as the well-known divide-and-conquer
law [A|B] · [C

D] = A · C + B · D.
Another important combinator of the AoP discipline is McCarthy’s conditional (Bird and de Moor,

1997), whose probabilistic version was studied by Oliveira (2012) as described by following diagram:

A

B A + A A

A

i1
f

[f |g]
p?

i2g

This probabilistic version of if-then-else is denoted by p→ f , g, where the guard p? controls information
flow by putting together the two coreflexive matrices3 induced by the predicate p and its negation:

A + A A = [
Φp

Φ−p
]

p?

Looking closely at the diagram one can see some resemblance to what is found in Listing 3.6, meaning
that McCarthy’s conditionals and SAFs share the same selective, conditional behavioural semantics.

What can one learn from this heading towards a possible probabilistic interpretation of SAFs?
Should f be regarded as a distribution in Listing 1.8, the select operator has the ability to condition a
random variable in some probabilistic program and branch over it in two separate ways. This operator
can also express the divide-and-conquer rule present in the block-matrix calculus, thus being capable
of performing computations in parallel. As section 3.5.2 will show, it is possible to derive an optimised
version of the select operator by using equational reasoning.

3.5 T Y P E S A F E I N D U C T I V E M AT R I X D E F I N I T I O N

Unfortunately, the type-safe matrix library described in section 3.3 only allows for a limited under-
standing of what a possible probabilistic interpretation of SAFs could be. As can be inferred from the
provided library code in appendix A, one could only reason at the type level, given that the underlying
representation is far from allowing calculational, algebraic reasoning. With this being said, only what
advantages are theoretically feasible when dealing with SAFs came to light.

Several attempts were made in order to come up with an efficient and correct by construction
LAoP-inspired matrix encoding. In the end, type-level naturals were abandoned, due to the GHC

3 A Boolean matrix is said to be coreflexive if it is smaller than the identity matrix.

3.5. Type safe inductive matrix definition 31

limitations mentioned previously, and simple structured data-types were used to replace them. Given
this, the following encoding was achieved:

1data Matrix e cols rows where

2One :: e -> Matrix e () ()

3Join :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows

4Fork :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b)

5

6-- | Type family that computes the cardinality of a given type dimension.

7--

8-- It can also count the cardinality of custom types that implement the

9-- 'Generic' instance.

10type family Count (d :: Type) :: Nat where

11Count (Either a b) = (+) (Count a) (Count b)

12Count (a, b) = (*) (Count a) (Count b)

13Count (a -> b) = (^) (Count b) (Count a)

14-- Generics

15Count (M1 _ _ f p) = Count (f p)

16Count (K1 _ _ _) = 1

17Count (V1 _) = 0

18Count (U1 _) = 1

19Count ((:*:) a b p) = Count (a p) * Count (b p)

20Count ((:+:) a b p) = Count (a p) + Count (b p)

21Count d = Count (Rep d R)

22

23-- | Type family that computes of a given type dimension from a given natural

24type family FromNat (n :: Nat) :: Type where

25FromNat 0 = Void

26FromNat 1 = ()

27FromNat n = FromNat' (Mod n 2 == 0) (FromNat (Div n 2))

28

29type family FromNat' (b :: Bool) (m :: Type) :: Type where

30FromNat' 'True m = Either m m

31FromNat' 'False m = Either () (Either m m)

Listing 3.7: Inductive Matrix definition

This solution is based on the assumption that algebraic data types are isomorphic to their cardinali-
ties, i.e. Void ∼= 0, () ∼= 1, Either a b ∼= |a|+ |b|, etc. In addition, this GADT ensures that the matrix
always has valid dimensions, i.e. it is correct by construction. This isomorphism is leveraged by the
Count and FromNat type families to provide a conversion mechanism from and to data-types/type-level
naturals. Using this strategy, GHC does not complain when pattern-matching with this definition, so
more complex functions are possible to implement.

Here is an example of how LAoP makes it possible to write concise, correct and efficient code by
exploring the divide-and-conquer, fusion and ’abide’ laws of enabled by biproducts:

3.5. Type safe inductive matrix definition 32

1comp :: Num e => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows

2comp (One a) (One b) = One (a * b)

3comp (Join a b) (Fork c d) = comp a c + comp b d -- Divide-and-conquer law

4comp (Fork a b) c = Fork (comp a c) (comp b c) -- Fork fusion law

5comp c (Join a b) = Join (comp c a) (comp c b) -- Join fusion law

6

7abideJS :: Matrix e cols rows -> Matrix e cols rows

8abideJS (Join (Fork a c) (Fork b d)) = Fork (Join (abideJS a) (abideJS b)) (Join (

abideJS c) (abideJS d)) -- Join-Fork abide law

9abideJS (One e) = (One e)

10abideJS (Join a b) = Join (abideJS a) (abideJS b)

11abideJS (Fork a b) = Fork (abideJS a) (abideJS b)

Listing 3.8: Matrix composition and abiding functions

It is very straightforward to see the advantages of using an inductive approach to encoding matrices.
However, it still has its disadvantages. For example, more complex operators, such as the Khatri-Rao
(also known as matrix pairing) product, are expected to return matrices of type m× n← c, and their
projections are limited to returning matrices constructed at the expense of Eithers4. In addition, since
certain large matrices, such as the identity matrix, have constraints associated to the dimension
types, instances of abstractions such as Arrow or Selective are not possible to implement.

Santos and Oliveira (2020) show how restricted versions of these classes can be written, while
adopting the (.) composition operator, from the Category type class, in place of the more verbose
comp function. In this setting, the new data-type makes the following contributions:

• It enables the transformation and manipulation of matrices in a constructive and flexible way.

• Compared to current libraries, this one is more compositional, polymorphic, and does not have
partial matrix manipulation functions (hence less chances for run-time errors). This is because
the type constructors ensure that malformed matrices (with incorrect dimensions of the kind),
can not be constructed.

• Using the mathematical framework described by the linear algebra of programming (Oliveira,
2012), this implementation of matrices allows easy manipulation of submatrices, making it
especially suitable for formal verification and equational reasoning.

• More concretely, compared to the current available data-types, this one has:

– Statically typed dimensions;

– Polymorphic data type dimensions;

– Polymorphic matrix content;

– Fast type natural conversion via FromNat type family;

– Better type inference;

– Matrix ’Join’ and ’Fork’-ing in O(1);

4 Note that it is possible to overcome this limitation, as will be shown further ahead.

3.5. Type safe inductive matrix definition 33

– Matrix composition takes advantage of divide-and-conquer and fusion laws.

Two different data types were built on top of the inductive definition presented in this section. These
data types consist of wrappers around the Matrix type and, with the help of the type families presented
in Listing 3.7, it is possible to providemore user friendly user interfaces:

1import qualified LAoP.Matrix.Internal as I

2

3newtype Matrix e (cols :: Nat) (rows :: Nat) = M (I.Matrix e (I.FromNat cols) (I.

FromNat rows))

Listing 3.9: Dimensions are type level naturals

1newtype Matrix e (cols :: Type) (rows :: Type) = M (I.Matrix e (I.Normalize cols) (I

.Normalize rows))

Listing 3.10: Dimensions are arbitrary data types

Listing 3.10 captures the type generalisation proposed by Oliveira (2012). In short, objects in cate-
gories of matrices can be generalised from numeric dimensions (n, m ∈N0) to arbitrary denumerable
types (A, B), taking disjoint union A + B for m + n, Cartesian product A× B for m× n, unit type 1 for
number 1, the empty set ∅ for 0, etc.

3.5.1 The Probability Distribution Matrix and the Selective Abstraction

As has already been pointed out, a matrix of positive reals is said to be stochastic wherever each
column adds up to 1. In case of one column only, it is called a distribution. An exhaustive approach
is assumed when using matrices to represent distributions, and these are notorious for their related
performance issues (Ścibior et al., 2015; Kidd, 2007).

By taking advantage of the inductive matrix encoding and the LAoP discipline it is possible to
implement a probabilistic programming library that performs better than other exhaustive approaches.
So, in order to address the central topic of this thesis and explore how the Selective interface can be
used more efficiently than Monads in handling probabilistic distributions, the Dist data type (below)
was defined. This data type is just a newtype wrapper around the matrix type Matrix Prob () a.

1-- | Type synonym for probability value

2type Prob = Double

3

4-- | Newtype wrapper for column vector matrices. This represents a probability

5-- distribution.

6newtype Dist a = D (Matrix Prob () a)

Listing 3.11: Dist type alias

3.5. Type safe inductive matrix definition 34

Now, this type is matched against the SAF select operator function signature one can recover all
the conditioning capabilities that are inherent to SAF and probabilistic choice:

1-- Selective 'select' operator

2select :: (...) => Dist (Either a b) -> Matrix Prob a b -> Dist b

3selectD (D d) m = D (Join m identity `comp` d)

4

5-- McCarthy's Conditional

6cond :: (...) => (a -> Bool) -> Dist b -> Dist b -> Dist b

7cond p (D f) (D g) = D (Join f g `comp` grd p)

8

9-- == junc f g . split (corr p) (corr (not . p))

10-- == f . (corr p) + g . (corr (not Prelude.. p))

11-- (Paralellism via divide-and-conquer)

12

13grd :: (...) => (a -> Bool) -> Matrix e a (Either a a)

14grd f = split (corr f) (corr (not Prelude.. f))

15

16corr :: forall e a . (...) => (a -> Bool) -> Matrix e a a

17corr p = let f = fromF p :: Matrix e a ()

18in khatri f (identity :: Matrix e a a)

Listing 3.12: Dist - select and cond operators

Revisiting the probabilistic interpretation of Arrows and the work by Lindley et al. (2011), it is clear
that the isomorphism evidenced by them — that a Monad is isomorphic to Arrows of type a () o —
can be visualised when looking at the type of Dist. More clearly, Dist a is a column vector of type
a← 1 and corresponds to the probability monad presented by Erwig and Kollmansberger (2006).

A SAF can be seen equivalent to a Monad, if the associated data type is (Enum a, Bounded a, Eq

a) (Mokhov et al., 2019). See for instance:

1class Applicative f => Selective f where

2select :: f (Either a b) -> f (a -> b) -> f b

3

4eliminate :: (Eq a, Selective f) => a -> f b -> f (Either a b) -> f (Either a b)

5eliminate x fb fa = select (match x <$> fa) (const . Right <$> fb)

6where

7match _ (Right y) = Right (Right y)

8match x (Left y) = if x == y then Left () else Right (Left y)

9

10class Selective m => Monad m where

11return :: a -> m a

12return = pure

13

3.5. Type safe inductive matrix definition 35

14(>>=) :: (Enum a, Bounded a, Eq a) => m a -> (a -> m b) -> m b

15(>>=) ma famb =

16let as = [minBound .. maxBound]

17in fromRight <$> foldr (\c -> eliminate c (famb c)) (Left <$> ma) as

18where

19fromRight (Right x) = x

Listing 3.13: Constrainted monad instance

While in the case of functions this would give an inefficient bind (>>=) implementation, in the case
of matrices (distributions) it gives room for matrix composition that takes advantage of the divide-and-
conquer and fusion laws. In fact, in order to lift functions to matrices (distributions) the same type
restrictions are needed. Thus one can say that, in practical terms, the Matrix/Dist type is a SAF and
equivalently the distribution monad.

3.5.2 Equational Reasoning

This section shows how to use equational reasoning and the laws of the linear algebra of programming
to prove properties of functions on matrices and/or to obtain more efficient programs.

b

a a + b b

c

i1

y

[y | id]

i2

id

m

As seen already, from an abstract point of view, the diagram above corresponds to the ArrowChoice

implementation of select where, in the case of stochastic matrices, m could be seen as instantiating to
a probability distribution of either a’s or b’s (for c the singleton type), and y is only computed for values
of type a, all others being just copied by the identity.

This leads to a straightforward implementation of select in terms of matrices:

1select :: (...) => Matrix e c (Either a b)

2-> Matrix e a b -> Matrix e c b

3select m y = join y id . m

Listing 3.14: select in terms of matrices

3.5. Type safe inductive matrix definition 36

From the definition, is is known upfront that a (possibly) expensive computation is taking place while
the matrix aside is the identity. But, from the type of m it is also know that it is bound to be m = Fork x

z, for some x and z. Thus the implementation can take advantage of this:

join y id . m

= { m = Fork x z }
join y id . Fork x z

= { divide-and-conquer (13) }
y . x + id . z

= { identity law }
y . x + z

Thus one gets

1select (Fork x z) y = y . x + z

Listing 3.15: Fork x z pattern match case

gaining in efficiency because x is necessarily smaller than the original m. Note that x and
z above can be, on their own, joins. In this case, by the abide law (15) one gets m = Join

(Fork x c) (Fork z d) which let us pattern match one level deeper and, benefiting from the
divide-and-conquer law, end up with:

join y id . m

= { m = Join (Fork x c) (Fork z d) }
join y id . Join (Fork x c) (Fork z d)

= { fusion (11) }
Join (join y id . Fork x c) (join y id . Fork z d)

= { divide-and-conquer (13) twice; identity twice }
Join (y . x + c) (y . z + d)

Altogether one gets the following more efficient implementation:

1select :: (...) => Matrix e c (Either a b)

2-> Matrix e a b -> Matrix e c b

3select (Fork x z) y = y . x + z

4select (Join (Fork x c) (Fork z d)) y = join (y . x + c) (y . z + d)

5select m y = join y id . m

Listing 3.16: Final result

Moving from functions to matrices has allowed us to express probability distribution more
elegantly and algebraically than other representations (Erwig and Kollmansberger, 2006;

3.6. Probabilistic Programming eDSL & Sampling 37

Kidd, 2007). It turns out that the designed data-type takes advantage of the minimum amount
of structure required for a SAF to be equivalent to a monad in the developed programming
library, due to the necessary constraints. This, coupled with SAF’s probabilistic interpretation,
enables us to go one step further in finding out how SAFs offer a more efficient abstraction
than monads by exploiting a parallel nature in computing discrete exhaustive probabilities.
Although SAFs appear to lose the speculative execution capabilities in this probabilistic
environment, due to the fact that any two computations will always be required and can not
be skipped, by LAoP laws a more efficient select operator was calculated that mimics the
speculative execution of SAFs.

The reader is referred to appendix B where the source code of the internal structure of the
matrix definition can be inspected.

3.6 P R O B A B I L I S T I C P R O G R A M M I N G E D S L & S A M P L I N G

Matrices implement an exhaustive approach to probabilistic computations that is unfeasible
when dealing with very large data. Although they provide an elegant encoding and are
amenable to algebraic calculation, using matrices for doing probabilistic programming can
incur a cognitive overhead, since programs are not written in a very declarative, straightforward
way (Poll and Thompson, 1999; Brusilovsky et al., 1994). Not to mention that they are not
able to express probabilistic programs that operate with types that are arbitrarily infinite, like
lists.

On the other hand, while the work so far paves the way to a probabilistic interpretation of
SAFs in the light of the Arrow abstraction and the select operator, no particular benefit was
taken from the properties of SAFs themselves. This has lead to exploring a practical way of
benefiting from the speculative execution nature of SAFs and their static analysis capabilities,
based on the Free Selective Functor construction mentioned by Mokhov et al. (2019). In
particular, a simple eDSL for doing probabilistic programming was designed.

This eDSL has, according to Ścibior et al. (2015); Gordon et al. (2014); van de Meent
et al. (2018), the minimum requirements to handle probabilistic distributions in a functional
programming language, namely (a) a collection of standard distributions as building blocks;
(b) a Monad instance; (c) a conditioning function; (d) and finally a way of sampling from a
given (possibly very large) distribution. Because the aim here is to study SAFs, instead of
Monads the second requirement to only having a Selective instance can be relax.

Free constructions allow one to focus on the internal aspects of the effect under considera-
tion and receive the desired applicative or monadic (in this case: the selective) computation
structure for free, i.e. without the need to define custom instances or prove laws (Swiestra,
2008). Due to this, one just needs to specify the set of effects (building-blocks) of the kind of

3.6. Probabilistic Programming eDSL & Sampling 38

computation one wishes to represent. The listing below shows how to express the different
building-blocks of our language in this way:

1import Control.Selective.Free

2import Control.Selective

3

4data Primitives a where

5Uniform :: [a] -> Primitives a

6Categorical :: [(a, Double)] -> Primitives a

7Normal :: Double -> Double -> (Double -> a) -> Primitives a

8Beta :: Double -> Double -> (Double -> a) -> Primitives a

9Gamma :: Double -> Double -> (Double -> a) -> Primitives a

10deriving Functor

11

12type Dist a = Select Primitives a

Listing 3.17: eDSL primitive building-blocks

Thus the first two of the above mentioned requirements are met. Next, one needs to offer a
conditioning function and a way to sample from the given Dist type in order to have a minimal
language suited for probabilistic programming. Such a function should be able to condition a
distribution with respect to a predicate or condition that is defined over the variables in the
program. In particular, every valid execution of the program must satisfy all conditions that
occur along the execution. Knowing this, the following function was implemented:

1-- | This function provides information about the outcome of testing @p@ on

some input @a@,

2-- encoded in terms of the coproduct injections without losing the input

3-- @a@ itself.

4grdS :: Applicative f => f (a -> Bool) -> f a -> f (Either a a)

5grdS f a = selector <$> applyF f (dup <$> a)

6where

7dup x = (x, x)

8applyF fab faa = bimap <$> fab <*> pure id <*> faa

9selector (b, x) = bool (Left x) (Right x) b

10

11-- | McCarthy's conditional, denoted p -> f,g is a well-known functional

12-- combinator, which suggests that, to reason about conditionals, one may

13-- seek help in the algebra of coproducts.

3.6. Probabilistic Programming eDSL & Sampling 39

14--

15-- This combinator is very similar to the very nature of the 'select'

16-- operator and benefits from a series of properties and laws.

17condS :: Selective f => f (b -> Bool) -> f (b -> c) -> f (b -> c) -> f b -> f

c

18condS p f g = (\r -> branch r f g) . grdS p

19

20condition :: Dist (a -> Bool) -> Dist a -> Dist (Maybe a)

21condition c = condS c (pure (const Nothing)) (pure Just)

Listing 3.18: Conditioning function

As one can see from the listing above, the implementation of the conditioning function
uses the McCarthy’s conditional combinator. Interestingly enough, this makes a connection
with the previous results and, as will be seen later, will be a ubiquitous pattern when writing
programs in our eDSL.

One of the benefits of using an eDSL is the capacity of providing any number of different
interpretations to the same program. For instance, one could interpret the Dist data-type
so as to return the probabilities of every possible output, i.e. an exhaustive interpretation,
or interpret it by sampling from every primitive distribution until a concrete result is reached,
i.e. a sampling interpretation. The later offers a way of sampling from a given distribution, to
which any inference algorithm can then be applied to infer the probability of a given event.
The listing below shows how the last requirement of our minimal probabilistic programming
eDSL can be achieved:

1import qualified System.Random.MWC.Probability as MWCP

2

3-- forward sampling

4runToIO :: Dist a -> IO a

5runToIO = runSelect interpret

6where

7interpret (Uniform l) = do

8c <- MWCP.createSystemRandom

9i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) c

10return (l !! i)

11interpret (Categorical l) = do

12c <- MWCP.createSystemRandom

13i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c

14return (fst $ l !! i)

15interpret (Normal x y f) = do

3.6. Probabilistic Programming eDSL & Sampling 40

16c <- MWCP.createSystemRandom

17f <$> MWCP.sample (MWCP.normal x y) c

18interpret (Beta x y f) = do

19c <- MWCP.createSystemRandom

20f <$> MWCP.sample (MWCP.beta x y) c

21interpret (Gamma x y f) = do

22c <- MWCP.createSystemRandom

23f <$> MWCP.sample (MWCP.gamma x y) c

24

25sample :: Dist a -> Int -> Dist [a]

26sample r n = sequenceA (replicate n r)

Listing 3.19: Sampling function

3.6.1 Examples of Probabilistic Programs

Now that a minimal language has been set up, let us see what sort of probabilistic programs
can be written. Starting with a simple coin toss example and build up from it. In order to lift a
primitive distribution into our Dist data-type, liftSelect offered by the Selective library is
used.

1categorical :: [(a, Double)] -> Dist a

2categorical = liftSelect . Categorical

3

4bernoulli :: Double -> Dist Bool

5bernoulli x = categorical [(True, x), (False, 1 - x)]

6

7data Coin = Heads | Tails

8deriving (Show, Eq, Ord, Bounded, Enum)

9

10-- Throw 2 coins

11t2c :: Dist (Coin, Coin)

12t2c = let c1 = bool Heads Tails <$> bernoulli 0.5

13c2 = bool Heads Tails <$> bernoulli 0.5

14in (,) <$> c1 <*> c2

15

16-- Throw 2 coins with condition

17t2c2 :: Dist (Maybe (Bool, Bool))

3.6. Probabilistic Programming eDSL & Sampling 41

18t2c2 = let c1 = bernoulli 0.5

19c2 = bernoulli 0.5

20in condition (pure (uncurry (||))) ((,) <$> c1 <*> c2)

Listing 3.20: Coin toss

When sampling 10 results out of the t2c and t2c2 example distributions one obtains the
following outcomes:

1> runToIO $ sample t2c 10

2[(Tails,Heads),(Heads,Tails),(Heads,Heads),(Heads,Heads),(Heads,Heads),(Tails

,Heads),(Heads,Tails),(Tails,Heads),(Heads,Heads),(Heads,Heads)]

3>

4> runToIO $ sample t2c2 10

5[Just (True,True),Just (False,True),Just (False,True),Just (True,False),

Nothing,Just (True,False),Nothing,Nothing,Just (False,True),Just (True,

True)]

6>

Listing 3.21: Coin toss results

One can see that the conditioning function is limiting the results to only those that satisfy the
condition.

Proceeding to an example that cannot be expressed by using our LAoP matrix library —
throwing coins indefinitely until Heads comes up, and collect the results in a list:

1-- | Throw @n@ coins

2throw :: Dist [Coin]

3throw =

4let toss = bernoulli 0.5

5in condS (pure (== Heads))

6(flip (:) <$> throw)

7(pure (: []))

8(bool Heads Tails <$> toss)

9

10{-

11Result:

12> runToIO $ sample throw 10

13[[Heads],[Tails,Tails,Tails,Heads],[Tails,Heads],[Tails,Tails,Heads],[Heads

],[Heads],[Tails,Heads],[Tails,Heads],[Heads],[Tails,Heads]]

14>

3.6. Probabilistic Programming eDSL & Sampling 42

15-}

Listing 3.22: Throw coins indefinitely until Heads comes up

This example shows that programs written using only the Selective abstraction are less
idiomatic than those that take full advantage of Monads. For instance, one neither has access
to do-notation nor is capable of sequencing computations, in which values depend from other
computations. However, the Applicative nature of SAFs and the McCarthy conditional can
be used to recover part of the desired expressiveness, as can be seen in the example below:

1uniform :: [a] -> Dist a

2uniform = liftSelect . Uniform

3

4die :: Dist Int

5die = uniform [1..6]

6

7-- | This models a simple board game rule in which, at each turn,

8-- two dice are thrown and, if their outcomes are different, then

9-- a third die is thrown and the player's piece moves

10-- the number of squares equal to the sum of all dice.

11-- Otherwise, the player's piece moves the number of squares equal to three

times the value of the two equally-faced dies.

12diceThrow :: Dist Int

13diceThrow =

14condS (pure $ uncurry (==))

15((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw

16(pure (\(a, _) -> a + a + a))

17((,) <$> die <*> die) -- Parallel dice throw

18

19{-

20Result:

21> runToIO $ sample diceThrow 20

22[2,5,7,11,12,13,8,8,4,13,9,6,9,9,10,11,14,6,13,12]

23>

24List of die throws which have length 2 or 3:

25[[1,1],[3,1,1],[3,1,3],[5,2,4],[6,2,4],[5,6,2],[4,4],

26[3,4,1],[2,2],[6,5,2],[1,4,4],[3,1,2],[6,2,1],[1,3,5],

27[5,4,1],[2,5,4],[4,5,5],[1,3,2],[2,5,6],[6,6]]

28-}

Listing 3.23: Throw game dice

3.6. Probabilistic Programming eDSL & Sampling 43

This example clearly shows that, although code written in this fashion is not as expressive or
idiomatic as one would wish, it benefits from Applicative and Selective capabilities.

The usefulness of the McCarthy conditional should be emphasised, without which one is
prone to write programs that repeat unnecessary computations. ifS is a popular combinator
present in the Selective library that lifts the if-then-else primitive to the Applicative level. One
is therefore tempted to write probabilistic, recursive programs such as:

1-- | Bad program

2badThrow :: Int -> Dist [Coin]

3badThrow 0 = pure []

4badThrow n =

5let toss = bernoulli 0.5

6in ifS toss

7((:) <$> toss <*> badThrow (n - 1))

8(pure [])

9{-

10Total number of effects:

11> getEffects (throw 1)

12[Categorical [((),0.5),((),0.5)],Categorical [((),0.5),((),0.5)]]

13>

14-}

Listing 3.24: Bad program

Nonetheless, since the code is lazily executed line 5 does not actually run the desired effect
until needed. So, it is easy to see that the toss effect is being repeated, because we do not
have a way to forward its conditional result to the next computation. This leads to the program
not behaving as expected.

3.6.2 Sampling and Inference Algorithms

Probabilistic inference is the problem of computing the representation of the probability
distribution implicitly defined in a probabilistic program. For example, to calculate the expected
value of some complicated probabilistic function. Alternatively, simply drawing a set of samples
to analyse some other system that expects its inputs to follow a certain distribution.

This subsection will present two sampling / inference algorithms implemented on top of the
probabilistic programming eDSL and describe some of the limitations found.

3.6. Probabilistic Programming eDSL & Sampling 44

The first one is Monte Carlo Sampling, a very simple method as can be seen below. It
basically samples n values from a given distribution and calculates the relative probability of
each event:

1-- monte carlo sampling/inference

2monteCarlo :: Ord a => Int -> Dist a -> Dist [(a, Double)]

3monteCarlo n d =

4let r = sample d n

5in map (\l -> (head l, fromIntegral (length l) / fromIntegral n)) . group

. sort <$> r

6

7{-

8Result:

9> runToIO $ monteCarlo 2000 t2c

10[((Heads,Heads),0.2435),((Heads,Tails),0.248),((Tails,Heads),0.249),((Tails,

Tails),0.2595)]

11-}

Listing 3.25: Partial monadic bind function

The other sampling method, called Rejection Sampling (Tobin, 2018), proceeds in a similar
way:

1rejection :: (Bounded c, Enum c, Eq c) => ([a] -> [b] -> Bool) -> [b] -> Dist

c -> (c -> Dist a) -> Dist c

2rejection predicate observed proposal model = loop where

3len = length observed

4loop =

5let parameters = proposal

6generated = sample (bindS parameters model) len

7cond = predicate <$> generated <*> pure observed

8in ifS cond

9parameters

10loop

Listing 3.26: Partial monadic bind function

This method (and more complex others (Tobin, 2018)) requires monadic capabilities (i.e.
selective bind), which make the solution quite inefficient. This seems to be a limitation of the
selective abstraction. Although it is still possible to implement such algorithms via selective

3.7. Sampling as a Concurrency Problem 45

bind (bindS), most often one finds oneself restricted to discrete, finite data types which limit
the problem domain.

3.7 S A M P L I N G A S A C O N C U R R E N C Y P R O B L E M

The work described thus far has dealt only with the syntactic side of probabilistic programming.
That is to say, only the basic operations that the Free Selective Construction is able to perform
were exploited in order to write probabilistic programs.

As previously stated, the sampling approach is used to try to take advantage of the
capabilities of SAFs. Programming in an eDSL that enforces selective combinators only
allows the compiler to be sure to capitalise on all SAFs capabilities. However, because
the IO monad is inherently sequential, any independent computation loses the chance of a
parallel/speculative effect execution.

Section 1.3.2 addressed how FP languages are a great vessel for probabilistic programming.
Nevertheless, the sole use of the IO monad disables the ability to exploit parallelism when
sampling two or more independent variables. As also stated in section 1.3.2, some authors
suggest solutions to some of the drawbacks of using only the IO monad (Ścibior et al., 2015;
Gordon et al., 2014; Tobin, 2018) but none of these seem to have been actually employed in
concrete, real use cases.

Against this background, this section aims to explore how to look at the problem of sampling
in a different way, showing promising results.

3.7.1 The Concurrency Monad

There are several references to concurrency monads in literature. Claessen (1999) was
among the first in this regard by describing a monad transformer in Haskell that introduces
a groundbreaking way of modelling concurrency. In essence, a concurrency monad can be
seen as a way to introduce concurrency to a (functional) programming language without
adding specialised primitives to the compiler. Instead, the concept of concurrency construct
is shifted towards the programmer.

Although working on somewhat different models, the approaches of Claessen (1999)
and Scholz (1995) (among others) rely on the basic notion of interleaving processes via
continuations. Continuations are capable of preserving the flowing essence of a process,
allowing it to be stopped or resumed. Many concurrency monads are provided with a collection
of primitive constructs, like fork, to make the concurrency explicit. Thus, a common trait of
these programming models is that they are based on a concurrency-monad-like substratum.

Marlow et al. (2014) offer a different, alternative solution, where their approach is specially
useful for programming over external data sources without explicitly using concurrency

3.7. Sampling as a Concurrency Problem 46

constructs. It is called Haxl and it assumes that external access to data is read-only. So,
the order of the requests does not matter and it can be done in parallel. They present
an extension of the concept of concurrency monads in which concurrency is implied in
the Applicative abstraction. Unlike previous formulations, this one takes advantage of the
fact that the arguments to (<∗>) are independent and can therefore be inspected. This
new feature can also be interpreted as some form of static analysis, and allows multiple
requests to be batched together. Recently, this solution has also been given speculative
execution capabilities (Mokhov et al., 2019), which makes it very interesting to the scope of
this dissertation.

3.7.2 Sampling

Sampling can be seen as a concurrency problem in order to extend the probabilistic program-
ming eDSL with parallel and speculative execution capabilities without having to be explicit
about it. Let us start by illustrating what “seeing sampling as a concurrency problem” means.

Effective access to multiple remote data sources requires concurrency, usually requiring
the programmer to intervene and make the concurrency explicit. But wherever the business
logic only needs reading data from external sources, the programmer does not need to worry
about the order in which the data accesses occur. This is the scenario defined by Marlow et al.
(2014). Sampling from a probability distribution is similar to collecting data from an external
source, by seeing the distribution as the (random) data source, thus a similar approach can be
used to effectively conduct sampling. The source of randomness is the external data source
to be read and because it is random, the order by which simultaneous (independent) samples
are performed does not matter.

One can already see how these two models are alike. However, there is a small difference
in the case of sampling and this is that it is not possible to repeat a data access request,
because one would get a different result every time the random source is accessed. This
fact does not allow one to build a caching system like the one in Haxl, since it would have a
negative impact on the sampling quality itself. In view of this, it is concluded that sampling
can be seen as a more general concurrency issue than the one solved by Haxl.

3.7.3 Implementation

An approach similar to the one presented by Marlow et al. (2014) is proposed below in order
to implement the solution. As mentioned in the previous section, sampling should be seen as
a concurrency problem in which the “external data access requests" are sampling requests.
With this in mind, each request can be either Done or Blocked. So, in general, a computation

3.7. Sampling as a Concurrency Problem 47

in our data type will be a sequence of Blocked requests ending in a Done carrying the return
value:

1data BlockedRequest = forall a. BlockedRequest (Request a) (IORef (Status a))

2

3data Status a = NotFetched | Fetched a

4

5type Prob = Double

6

7data Request a where

8Uniform :: [x] -> (x -> a) -> Request a

9Categorical :: [(x, Prob)] -> (x -> a) -> Request a

10Normal :: Double -> Double -> (Double -> a) -> Request a

11Beta :: Double -> Double -> (Double -> a) -> Request a

12Gamma :: Double -> Double -> (Double -> a) -> Request a

13

14-- A computation is either completed (Done) or Blocked on pending sample

requests

15data Result a = Done a | Blocked (Seq BlockedRequest) (Fetch a) deriving

Functor

16

17newtype Fetch a = Fetch {unFetch :: IO (Result a)} deriving Functor

18

19instance Monad Fetch where

20return = Fetch . return . Done

21

22Fetch iox >>= f = Fetch $ do

23rx <- iox

24case rx of

25Done x -> unFetch (f x) -- dynamic dependency on runtime value 'x'

26Blocked bx x -> return (Blocked bx (x >>= f))

Listing 3.27: Fetch Data Type

As can be seen, the Fetch data type is a monad (since it is wrapped around IO) and follows
the continuation monad formulation. It is also worth noting that this idea is an instance of a
free monad (Marlow et al., 2014).

There is something missing from the implementation, which is a way of introducing concur-
rency. As seen before, the probabilistic interpretation of the Applicative abstraction expresses
statistical independence and thus it is suitable to add concurrency to our data structure. The

3.7. Sampling as a Concurrency Problem 48

idea is that of performing Fetch computations using the (<∗>) operator. All (<∗>) arguments
may be explored to look for Blocked computations, which allows a computation to be blocked
on several items at the same time. This contrasts with the monadic bind operator, which only
allows the first argument to be examined, since one cannot be evaluated without the other.
Bearing this in mind, the following instance is shown:

1instance Applicative Fetch where

2pure = return

3

4Fetch iof <*> Fetch iox = Fetch $ do

5rf <- iof

6rx <- iox

7return $ case (rf, rx) of

8(Done f, _) -> f <$> rx

9(_, Done x) -> ($x) <$> rf

10(Blocked bf f, Blocked bx x) -> Blocked (bf <> bx) (f <*> x) --

batching parallel requests

Listing 3.28: Fetch Applicative instance

Speculative execution of the Selective abstraction can also be achieved by employing this
static analysis feature. This is a novel addition to the functional probabilistic programming
domain that, in theory, improves performance in programs that can branch on a given sample
result (Mokhov et al., 2019).

1instance Selective Fetch where

2select (Fetch iox) (Fetch iof) = Fetch $ do

3rx <- iox

4rf <- iof

5return $ case (rx, rf) of

6(Done (Right b), _) -> Done b -- abandon the second

computation

7(Done (Left a), _) -> ($a) <$> rf

8(_, Done f) -> either f id <$> rx

9(Blocked bx x, Blocked bf f) -> Blocked (bx <> bf) (select x f) --

speculative execution

Listing 3.29: Fetch Selective instance

3.8. Summary 49

3.8 S U M M A RY

This chapter presented a probabilistic interpretation of SAFs by examining the probabilistic
semantics of Arrows and their relationship with SAFs. This is intended as a first step in
the study of the practical usefulness of the Selective abstraction in the probabilistic setting.
LAoP aided the understanding of linear algebra and matrices through a typed theory that
emphasises structure and compositionality.

Putting theory into practice, a strongly typed matrix programming library was build on top
of an existing one. This programming library uncovered a relationship between the select

operator and the well-known McCarthy’s conditional, reinforcing the idea that this operator
allows for branching over probabilistic programs. Notwithstanding, the promised static analysis
and speculative execution capabilities were not exposed by only reasoning at the type level
and a typed, inductive structure of matrices was designed. Inspired by the biproducts of
categories of matrices, this data structure captures the divide-and-conquer nature of matrices
and opened the way to the implementation of a correct-by-constructions matrix programming
library that is amenable to equational reasoning and algebraic manipulation.

A probabilistic interpretation of SAFs could work over this matrix programming library
that relies on LAoP and thus allows for formal reasoning and optimisations via algebraic
manipulation. However, due to matrices implementing an exhaustive approach to describing
probability distributions, the Selective abstraction can not capitalise on its capabilities. To
overcome this, a shift to the sampling realm was made and an eDSL was designed to allow
for the effective use of selective combinators. This change enables the benefits offered by the
Selective abstraction but these are still hindered by the sequential nature of the IO Monad. To
overcome this limitation a change of perspective is required, and by seeing sampling as a
concurrency problem, a solution that is both practical and simple was achieved.

4

A P P L I C AT I O N S

This chapter presents some examples of application of the approaches and solutions de-
veloped in the previous chapters. In particular, an example is used to show the difference
between using the matrix library that was developed and the eDSL of the previous chapter.
Performance evaluations of such solutions will also be presented.

4.1 L AO P S P R I N K L E R E X A M P L E

Probabilistic programming arises naturally from functional programming once “sharp" functions
are replaced by probabilistic ones, which can be represented by stochastic matrices, also
known as Markov chains (Oliveira, 2012). As an example, let us take a look at the following
example taken from the Wikipedia (2020). This example builds on what has already been
presented in article Santos (2020).

Let the following predicates model the behaviour of a sprinkler be defined, where S (sprinkler
on/off), R (raining or not) and G (grass wet or not) are Booleans:

sprinkler :: R→ S
sprinkler r = not r

grass :: (S, R)→ G
grass (s, r) = s || r

The second predicate tells that the grass will be wet if and only if either it is raining or the
sprinkler is on. The first tells that the sprinkler is on iff it is not raining. Composing these two
predicates it is possible to see that rain completely determines the state of the grass:

grass (sprinkler r, r) = not r || r = True

Looking at the diagram below, where (O) denotes function pairing 1, it is possible to observe
that the system has two possible states in (G, (S, R)) — either (True, (True, False)) or
(True, (False, True)) — the grass being wet in both. So it will melt because of being wet
all the time.

1 This can be seen as equal to (&&&) from Control.Arrow, specialised to (→).

50

4.1. LAoP Sprinkler example 51

(G, (S, R))

(S, R)
grass O id
OO

R
sprinkler O id
OO

()

rain
OO

Clearly, this deterministic interpretation of the diagram does not correspond to reality, but its
stochastic interpretation will do. For this, regarding the arrows as denoting stochastic matrices
and not pure functions is needed, for instance2.

R
sprinkler // S =

[
0.60 0.99
0.40 0.01

]

(S, R)
grass // G =

[
1.00 0.20 0.10 0.01

0 0.80 0.90 0.99

]

This describes a probabilistic system reactive to the rain. Once the distribution of this becomes
known, eg.

1 rain // R =

[
0.80
0.20

]

one immediately gets the distribution of the overall state, given by column vector

1 state // (G, (S, R)) =

G S R

dry
off

no 0.4800
yes 0.0396

on
no 0.0320

yes 0.0000

wet
off

no 0.0000
yes 0.1584

on
no 0.2880

yes 0.0020

(20)

which is calculated following the diagram.
To see how to encode this diagram in the LAoP library, consider the following matrices

1rain :: Matrix Prob () R

2sprinkler :: Matrix Prob R S

2 For easy reference, the Wikipedia example is followed closely.

4.1. LAoP Sprinkler example 52

3grass :: Matrix Prob (S, R) G

Listing 4.1: Example matrices

where type Prob = Double and the types involved are freed from the strict Boolean model,
already visible in (20).3 The distribution of the overall state displayed above is given by the
expression

1state = compose grass sprinkler rain

Listing 4.2: State matrix

where

1compose :: (...)

2=> Matrix e (c, d) b

3-> Matrix e d c

4-> Matrix e a d

5-> Matrix e a (b, (c, d))

6compose g s r = tag g . tag s . r

7

8tag :: (...) => Matrix e a b -> Matrix e a (b, a)

9tag f = kr f id

Listing 4.3: State matrix composition function

Note the role of the tag operation, which for functions amounts to tag f x = (f x, x),
that is, the output of f is paired with its input. Combinator compose iterates this operation
across compositions so as to get an account of all inputs and outputs, as is usual in Bayesian
networks.4

Let wet :: Matrix Prob () G, dry :: Matrix Prob () G, no :: Matrix Prob () R

(and so on) be the points of the data types involved in the model. Let also projections
fstM and sndM be used to obtain the first and second components of the paired matrices,
respectively. Then evaluating the overall probability of the grass being wet is given by the
scalar:5

1grassWet = tr wet . fstM . state -- = 44.84%

Listing 4.4: Probability of grass being wet calculation

3 That is to say, instead of G = Bool, G = Dry | Wet and so on.
4 This generic combinator is inspired in the left tagging relational operator of (Bussche, 2001).
5 Recall that scalars are matrices of type ()→ ().

4.2. eDSL Sprinkler example 53

4.2 E D S L S P R I N K L E R E X A M P L E

The last section showed how it is possible to do (typed) probabilistic programming by using
matrices and the LAoP discipline. In the current section the same example will be shown,
but this time rendered in the probabilistic programming eDSL designed in section 3.6. The
main difference is that matrices give place to probabilistic functions of type a → Dist b. The
functions equivalent to the sprinkler, grass and rain matrices are given below.

1data R = No | Yes

2deriving (Eq, Show, Enum, Bounded, Ord)

3data S = Off | On

4deriving (Eq, Show, Enum, Bounded, Ord)

5data G = Dry | Wet

6deriving (Eq, Show, Enum, Bounded, Ord)

7

8sprinkler :: R -> Dist S

9sprinkler No = categorical [(Off, 0.6), (On, 0.4)]

10sprinkler Yes = categorical [(Off, 0.99), (On, 0.01)]

11

12grass :: (S, R) -> Dist G

13grass (Off, No) = categorical [(Dry, 1), (Wet, 0)]

14grass (Off, Yes) = categorical [(Dry, 0.2), (Wet, 0.8)]

15grass (On, No) = categorical [(Dry, 0.1), (Wet, 0.9)]

16grass (On, Yes) = categorical [(Dry, 0.01), (Wet, 0.99)]

17

18rain :: Dist R

19rain = categorical [(No, 0.8), (Yes, 0.2)]

Listing 4.5: Example probabilistic functions

The last section emphasised the importance of the tag and compose combinators, which
allowed for composing distribution matrices and calculating their joint probability easily. By
using our eDSL, only SAFs capabilities are allowed to be used, which means that the monadic
capability to iterate the equivalent tag combinator is not available, across compositions, in
order to compute the distribution of the whole state. As can be seen below, a nested Dist

type is needed which makes it awkward to deal with.

1class Functor f => Strong f where

2rstr :: (f a, b) -> f (a, b)

4.2. eDSL Sprinkler example 54

3rstr (fa, b) = fmap (, b) fa

4

5lstr :: (b, f a) -> f (b, a)

6lstr (b, fa) = fmap (b,) fa

7

8instance Strong (Select Primitives)

9

10tag :: (a -> Dist b) -> (a -> Dist (b, a))

11tag f = fmap rstr $ (,) <$> f <*> id

12

13stateS :: Dist (Dist (Dist (G, (S, R))))

14stateS = fmap (tag grass) . tag sprinkler <$> rain

Listing 4.6: tag combinator

Alternatively, one can take advantage of the fact that the data types used in the model are
Enum, Bounded, Eq, i.e. countable, giving room to use the bindS function in order to compose
the probabilistic functions and obtain the desired state distribution.

1state :: Dist (G, (S, R))

2state = bindS rain (\r -> bindS (sprinkler r) (\s -> bindS (grass (s,r)) (\g

-> pure (g, (s,r)))))

3

4{-

5Result:

6> runToIO $ monteCarlo 2000 state

7[((Dry,(Off,No)),0.4835),((Dry,(Off,Yes)),4.45e-2),((Dry,(On,No)),3.9e-2),((

Wet,(Off,Yes)),0.151),((Wet,(On,No)),0.28),((Wet,(On,Yes)),2.0e-3)]

8>

9-}

Listing 4.7: State distribution

A comparison between the two probabilistic programming libraries designed so far was
seen. Both advantages and disadvantages of each were made clear. Matrices implement and
exhaustive approach to represent probabilistic functions and thus suffer from performance
issues. However, they are able to model relatively complex problems and allow a guided,
typed implementation, via LAoP. The SAF eDSL has limitations regarding expressibility
when compared with a monadic interface. However, it allows to tradeoff expressibility with
performance if necessary (via bindS), as well as permits the leveraging of all SAFs’ capabilities.

4.3. Benchmarks 55

Next section presents a more detailed comparison between these two approaches, with
respect to performance.

4.3 B E N C H M A R K S

This section proceeds to the performance evaluation of the solutions proposed so far. Matrix
multiplication will be used for benchmarking them against other Haskell libraries. In particular,
the performance of distributions as matrices versus distributions as lists (distribution monad)
will be compared. Moreover, the applicative versus selective exhaustive approach are also
compared to conclude that, even though matrices can not take full advantage of the speculative
execution of SAFs, by understanding the fundamentals of the abstraction it is possible to
achieve a faster select operator. Fig. 4.1 shows the key features of the testbed environment.

Model Intel(R) Core(TM)2 Duo CPU P8600
Base clock freq 2.40GHz
L1 cache 64 KiB
L2 cache 3 MiB
RAM 2 x 4096MB (DDR3)
OS Arch Linux

Figure 4.1: Testbed environment

4.3.1 LAoP Matrix composition

By analysing the current ecosystem at the time of writing, namely by filtering data obtained
from the Hackage repository, three libraries providing efficient matrix implementations stand
out as the most embraced by the community: hmatrix, matrix and linear. The Criterion library
was used to benchmark the different algorithms on randomly generated square matrices with
dimensions ranging between 10 and 1600.

4.3. Benchmarks 56

report10x10

Page 1

hmatrix matrix
10 2.50E-06 1.70E-05
25 2.28E-05 2.09E-04
50 1.71E-04 1.51E-03
75 5.96E-04 4.81E-03

100 1.36E-03 1.08E-02
200 1.10E-02 9.43E-02
400 0.242017304920015 1.11944668629169
800 2.78943718179166 8.70263921893748

1600 32.8934531634164 85.7578889051251

0 200 400 600 800 1000 1200 1400 1600 1800
1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

Matrix composition (multiplication) benchmarks

hmatrix

matrix

linear

laop

matrix dimensions

se
co

n
d

s

-

Figure 4.2: Matrix composition benchmarks

As can be seen in the plot of Figure 4.2, the hmatrix and matrix libraries are those that
perform better. By observing their internal structure, one realises that they are a suitable
representation for BLAS/LAPACK computations (Anderson et al., 1999), that is, they have
been designed to efficiently exploit caches on modern cache-based architectures. A matrix in
the linear library is defined as Vector cols (Vector rows Double) and does not take into
account cache lengths or sizes, so it behaves much worse than the previous ones. Our
data structure does not take into account any low-level optimisations either, being unable
to compete with those that do. Nevertheless, the implementation is performant for a cache-
oblivious approach and behaves better (almost one order of magnitude better) than other
data types with simpler definitions.

4.3.2 Distribution matrix versus distribution list monad

The previous evaluation focused only on the performance of the proposed matrix multiplication
algorithm compared with existing solutions to linear algebra. In this section the use of matrices
versus the use of lists as representations of probability distributions will be evaluated, by
comparing the performance of the different versions of the select operator. Since both are
exhaustive approaches to probabilistic programming, the comparisons will feature the strict
applicative version of the select operator (where no computations are skipped) and the more
efficient version, which will be called the non-strict version of select, that skips unnecessary
computations, to see which solution performs best.

4.3. Benchmarks 57

The figure below show the results output by the Criterion framework. The benchmarks have
been carried out in the same settings as the previous ones, that is, all matrices and lists were
randomly generated.

seconds

List - strict version

Matrix - strict version

Matrix - non-strict
version

0.0 0.5 1.0 1.5 2.0 2.5

Matrix vs List - select operator

Figure 4.3: Matrix vs List - select operator

The first entry, which corresponds to the distribution monad presented by Erwig and
Kollmansberger (2006) can be seen to perform worse than the others. The strict version of
the select operator, in the matrix version, performs better even though no computation is
skipped. The last entry, which refers to the non-strict version of the select operator, is also
clearly better than its strict version.

There are several attempts that build on the work of Erwig and Kollmansberger (2006), in
order to improve the performance of the exhaustive probability monad (Larsen, 2011; Dylus
et al., 2018). Allied with the LAoP discipline, the typed, inductive matrix data structure offers a
more performant, correct alternative at the cost of a minimum cognitive overhead.

4.3.3 Sequential vs Concurrent Selective eDSL

This section evaluates the performance of each eDSL solution provided in sections 3.6 and
3.7. In order to do so, three probabilistic programs were used: one that throws two hypothetical
50000-faced dice, returning both results; one that throws the same two dice but conditioned

4.3. Benchmarks 58

the result; and one similar to diceThrow in Listing 3.23 but using the same dice as in the
previous programs.

1bigDie :: Dist Int

2bigDie = uniform [0 .. 50000]

3

4-- Normal without conditioning

5pg1 :: Dist (Int, Int)

6pg1 =

7let c1 = bigDie

8c2 = bigDie

9in (,) <$> c1 <*> c2

10

11-- With conditioning

12pg2 :: Dist (Maybe (Int, Int))

13pg2 =

14let c1 = bigDie

15c2 = bigDie

16result = (,) <$> c1 <*> c2

17in condition (uncurry (>)) result

18

19-- Takes advantage of speculative and parallel execution

20pg3 :: Dist Int

21pg3 =

22condS

23(pure $ uncurry (==))

24((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw

25(pure (\(a, _) -> a + a + a))

26((,) <$> bigDie <*> bigDie) -- Parallel dice throw

Listing 4.8: Programs used in evaluation

Each benchmark consists of performing forward sampling 10000 times, leading to three
sets of three benchmarks each. The first collection relates to pg1, the second to pg2 and
the third to pg3. For each collection, the first benchmark interprets the eDSL to IO and runs
computations sequentially; the second first interprets to the concurrency monad and then IO,
running sequentially as well; finally, the third is as the previous one but takes advantage of
the concurrent runtime system of GHC.

4.3. Benchmarks 59

se
co

nd
s

0

5

10

15

20

Normal Conditioned Speculative

Sequential IO Sequential ConcMonad Concurrent ConcMonad

Benchmark Results

Figure 4.4: Benchmarks results

By comparing the blue and red bars of the chart one sees a positive impact on performance,
just by switching from pure IO to the concurrency monad. Although the speedup is not as
much as doing the first switch, enabling GHC’s concurrent runtime system also performs better.
The normal variation shown seems to be the one that benefits the most from the optimisations.
This fact might be due to the batching ability of independent sampling computations, allowed
by the concurrency monad. Since pg1 only takes advantage of applicative capabilities, it
makes sense that batching is the optimisation with higher influence on the results.

Both the conditioned and the speculative versions make use of selective combinators,
such as condition and condS, and thus can take advantage of speculative execution as
well. Although these last two benchmarks do not present speedups as significant as the
normal version (hinting that batching does not have such an impact), changing to a concurrent
runtime system seems to magnify the effect that both, batching and speculative execution,
have in the overall performance of the probabilistic sampling.

Looking at the benchmark, sampling from a random distribution such as uniform 50000

can be seen as fast. Thus, even without a large sampling gap between the sequential and the
concurrent versions, this solution would prove to be a scalable, easy approach to performing
such computations in practice. For example, many big data and data mining applications
depend on slow uniform data sampling from external sources that require heavy roundtrip
times (Liu et al., 2017; Kim and Wang, 2019; Zhou et al., 2017; Bartolini et al., 2018).

4.4. Summary 60

4.4 S U M M A RY

This chapter described how probabilistic problems can be modelled in the various approaches
proposed in the previous chapters. The sprinkler example illustrated the advantages and
drawbacks of each of them, touching on the key points of view of the overall design.

The matrix library was benchmarked with respect to the matrix composition operation,
chosen because it is one of the key operations in linear algebra. Given that matrices have
an exhaustive approach to the representation of probability distributions, it made sense to
compare the proposed solution with the probabilistic monad of Erwig and Kollmansberger
(2006) and to quantify the impact that the previous study of the SAF abstraction had in the
development of a more efficient implementation of the select operator. Last but not least, the
probabilistic programming eDSL via selective combinators was evaluated. Various types of
programs based on different features have been compared with different interpretations (IO or
concurrency monad).

The results achieved can be regarded as satisfactory. On the one hand, the exhaustive ma-
trix approach provides a good trade-off between cognitive overhead and efficiency, rewarding
the additional effort needed with guarantees of correctness and assisted reasoning; on the
other hand, the use of an eDSL solves the limitations imposed by the exhaustive approach,
and allows for a more idiomatic and richer programming style, from the point of view of the
ecosystem of the host language.

5

C O N C L U S I O N S A N D F U T U R E W O R K

This last chapter summarises the main contributions of the dissertation. Directions for future
work are also discussed.

5.1 C O N C L U S I O N S

The work reported in this dissertation searched for ways to take advantages of SAFs in
functional probabilistic programming. In particular, how this abstraction could be applied in a
more efficient manner than the monadic bind was a central research question. First of all, it
was important to understand the meaning of the probabilistic instances of such functors and
what they could bring to the table, taking into account other existing solutions and methods.
We centered on the general theory of LAoP when searching for answers to the probabilistic
meaning, and studied the structure of stochastic matrices, finding out that SAFs are capable of
conditioning random variables and branching a program in two different ways. Viewed through
this prism, SAFs generalise the already known McCarthy conditional and, in theory, allow for
parallel execution of conditional probability calculations, by means of the divide-and-conquer
block-matrix algebra law. A programming library of typed inductive block-matrices has been
implemented in Haskell to demonstrate how such research could be applied in practice, by
giving a number of examples and benchmarks demonstrating that the theoretical gains are
indeed valid.

Nevertheless, the use of matrices in probabilistic programming presents some drawbacks
regarding programs whose sample space has an explosion of potential states. Sampling from
the probability distributions is an alternative in such cases. It turns out that existing solutions
rely heavily on the use of monads, which are inherently sequential and, as such, leave behind
any possibility of parallel sampling wherever possible. In order to solve this problem, a small
probabilistic programming eDSL was designed on top of the free SAF construction.

In the proposed approach, the end-user is pushed to use selective combinators wherever
possible, so that the compiler can be sure to take advantage of the capabilities of this
abstraction. The crucial insight in this respect is to realise that the problem of sampling can
be reduced to a concurrent external data access problem. Knowing this, it was possible to

61

5.2. Future work 62

implement a solution close to that of the Haxl system and use it in the implemented eDSL. On
performance grounds, the outcome was positive compared to the previous sequential version.

Altogether, the final conclusion is that, thanks to the nature of SAFs, one can indeed take
advantage of static analysis and speculative execution to write the select operator more
efficiently than using, the more traditional, monadic bind.

5.2 F U T U R E W O R K

The work presented in this dissertation highlights the themes of composition, abstraction and
structure, all relevant concepts in functional programming. The majority of features developed
during this research are focused on core aspects of statically typed, purely functional lan-
guages. Monads, definitely a key driver of innovation, cannot be faithfully expressed without a
strong type system and functional purity. As we have seen these features have enabled us to
have a great deal of reasoning power and have helped us to study novel abstractions in a
different (probabilistic) context.

All research projects typically have a proof-of-concept feel about them; they are meant to
explore new fields, design spaces and opportunities. Specifically for this project, quadtrees
(Samet, 1984) and their savings with respect to repetitive cells (pixels) were brought to mind
by the block-oriented matrix type, from the typed matrix programming library. But this can be
improved. For instance, a better matrix definition for sparsity could be more useful for sparse
matrices with large zero blocks.

A strong suggestion for future work is to turn the various pieces of software that have been
developed during this research into production-ready software artifacts.

The probabilistic programming eDSL can also be extended in order to support more
distribution primitives and sampling algorithms. An interesting direction for the future is also
to investigate how to improve the proposed solution in the light of the new found concurrency
relationship, as well as studying parallelization strategies to improve performance.

The work regarding the matrix programming library led to a scientific paper published
in the Haskell 2020 Symposium (Santos, 2020). This paper attracted the attention of two
independent researchers, Conal Elliott and João Paixão, who approached the authors show-
ing interest in potential collaboration. These collaborations point towards new future work
directions.

In particular, Conal Elliott’s work on applying semantic elegance and rigor to library design
and optimized implementation led to his interest in investigating how, by applying the deno-
tational design technique to the structure of inductive matrices, one can better understand
the nature of linear algebra and find elegant, parallel, effective and correct algorithms. A
concrete objective is to port something like the (inductive) matrix type to a purely functional
programming language in a denotational design style. To this end, the Haskell programming

5.2. Future work 63

language is being used to implement all the vocabulary and infrastructure required to start
thinking about the problem, but due to the current limitations of the type system, the project is
slowly being rewritten in Agda1.

João Paixão is a professor of the Department of Computer Science at the Federal University
of Rio de Janeiro and his work focuses on Linear Algebra and Numerical Methods Education,
Graph Theory, String Diagrams and Graphic Linear Algebra. His work plan is to see if
his Graphical Linear Algebra (GLA) language (Paixão and Sobociński, 2020) is capable of
expressing inductive matrices taking advantage of its correct-by-construction properties, in
order to obtain easy and elegant proof of complex, classical linear algebra algorithms and
axioms.

1 The Haskell project: https://github.com/conal/linalg

https://github.com/conal/linalg

B I B L I O G R A P H Y

Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra, Jeremy
Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny Sorensen.
LAPACK Users’ guide, volume 9. Siam, 1999.

Dave H. Annis. Probability and statistics: The science of uncertainty, michael j. evans
and jeffrey s. rosenthal. The American Statistician, 59:276–276, 2005. URL https:

//EconPapers.repec.org/RePEc:bes:amstat:v:59:y:2005:m:august:p:276-276.

Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd
edition, 2010. ISBN 0199237182, 9780199237180.

Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi, Daniele Gregori, Si-
mone Tinti, Cosimo Gianfreda, and Piero Altoè. The d.a.v.i.d.e. big-data-powered fine-grain
power and performance monitoring support. In Proceedings of the 15th ACM International
Conference on Computing Frontiers, CF ’18, page 303–308, New York, NY, USA, 2018. As-
sociation for Computing Machinery. ISBN 9781450357616. doi: 10.1145/3203217.3205863.
URL https://doi.org/10.1145/3203217.3205863.

Ryan Bernstein. Static analysis for probabilistic programs. arXiv preprint arXiv:1909.05076,
2019.

Richard Bird and Oege de Moor. Algebra of Programming. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1997. ISBN 0-13-507245-X.

P Brusilovsky et al. Teaching programming to novices: A review of approaches and tools.
1994.

Jan Van den Bussche. Applications of Alfred Tarski’s ideas in database theory. In CSL’01,
pages 20–37, London, UK, 2001. Springer-Verlag. ISBN 3-540-42554-3.

Paolo Capriotti and Ambrus Kaposi. Free applicative functors. In Proceedings 5th Workshop
on Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble,
France, 12 April 2014., pages 2–30, 2014. doi: 10.4204/EPTCS.153.2. URL https:

//doi.org/10.4204/EPTCS.153.2.

George Casella and Roger Berger. Statistical Inference. Duxbury Resource Center, June
2001. ISBN 0534243126.

64

https://EconPapers.repec.org/RePEc:bes:amstat:v:59:y:2005:m:august:p:276-276
https://EconPapers.repec.org/RePEc:bes:amstat:v:59:y:2005:m:august:p:276-276
https://doi.org/10.1145/3203217.3205863
https://doi.org/10.4204/EPTCS.153.2
https://doi.org/10.4204/EPTCS.153.2

B I B L I O G R A P H Y 65

Koen Claessen. A poor man’s concurrency monad. Journal of Functional Programming, 9(3):
313–323, 1999.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence of form abstraction.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems,
APLAS ’08, pages 205–220, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-
540-89329-5. doi: 10.1007/978-3-540-89330-1_15. URL http://dx.doi.org/10.1007/

978-3-540-89330-1_15.

Sandra Dylus, Jan Christiansen, and Finn Teegen. Probabilistic functional logic programming.
In International Symposium on Practical Aspects of Declarative Languages, pages 3–19.
Springer, 2018.

Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional pro-
gramming in haskell. Journal of Functional Programming, 16(1):21–34, 2006. doi:
10.1017/S0956796805005721.

William Feller. An introduction to probability theory and its applications. Vol. II. Second edition.
John Wiley & Sons Inc., New York, 1971.

Peter J Freyd and Andre Scedrov. Categories, allegories. Elsevier, 1990.

Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program for
complex bayesian modelling. Journal of the Royal Statistical Society: Series D (The
Statistician), 43(1):169–177, 1994.

Michèle Giry. A categorical approach to probability theory. In Categorical aspects of topology
and analysis (Ottawa, Ont., 1980), volume 915 of Lecture Notes in Mathematics, pages
68–85. Springer, Berlin, 1982.

Roger Godement. Topologie algébrique et théorie des faisceaux, volume 13. Hermann Paris,
1958.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenen-
baum. Church: a language for generative models. arXiv preprint arXiv:1206.3255, 2012.

Noah D. Goodman. The principles and practice of probabilistic programming. SIGPLAN Not.,
48(1):399–402, January 2013. ISSN 0362-1340. doi: 10.1145/2480359.2429117. URL
http://doi.acm.org/10.1145/2480359.2429117.

Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guillaume Claret, Thore Graepel,
Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A model-learner pattern for bayesian
reasoning. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, pages 403–416, New York, NY, USA,

http://dx.doi.org/10.1007/978-3-540-89330-1_15
http://dx.doi.org/10.1007/978-3-540-89330-1_15
http://doi.acm.org/10.1145/2480359.2429117

B I B L I O G R A P H Y 66

2013. ACM. ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429119. URL http:

//doi.acm.org/10.1145/2429069.2429119.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Prob-
abilistic programming. In Future of Software Engineering Proceedings, FOSE 2014,
page 167–181, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450328654. doi: 10.1145/2593882.2593900. URL https://doi.org/10.1145/

2593882.2593900.

John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67–111, May
2000. ISSN 0167-6423. doi: 10.1016/S0167-6423(99)00023-4. URL http://dx.doi.org/

10.1016/S0167-6423(99)00023-4.

Mike Innes, Stefan Karpinski, Viral Shah, David Barber, PLEPS Saito Stenetorp, Tim Besard,
James Bradbury, Valentin Churavy, Simon Danisch, Alan Edelman, et al. On machine
learning and programming languages. Association for Computing Machinery (ACM), 2018.

Eric Kidd. Build your own probability monads. Draft paper for Hac, 7, 2007.

Jae Kwang Kim and Zhonglei Wang. Sampling techniques for big data analysis. International
Statistical Review, 87:S177–S191, 2019.

Ken Friis Larsen. Memory efficient implementation of probability monads. Unpublished
manuscript (August 2011), 2011.

Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electron. Notes Theor. Comput. Sci., 229(5):97–117, March
2011. ISSN 1571-0661. doi: 10.1016/j.entcs.2011.02.018. URL http://dx.doi.org/10.

1016/j.entcs.2011.02.018.

Barbara Liskov. Keynote address - data abstraction and hierarchy. SIGPLAN Not., 23
(5):17–34, January 1987. ISSN 0362-1340. doi: 10.1145/62139.62141. URL http:

//doi.acm.org/10.1145/62139.62141.

Q. Liu, S. J. Qin, and T. Chai. Unevenly sampled dynamic data modeling and monitoring with
an industrial application. IEEE Transactions on Industrial Informatics, 13(5):2203–2213,
2017. doi: 10.1109/TII.2017.2700520.

Hugo Daniel Macedo. Matrices as arrows: why categories of matrices matter, 2012.

Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York,
1971. Graduate Texts in Mathematics, Vol. 5.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic
programming platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

http://doi.acm.org/10.1145/2429069.2429119
http://doi.acm.org/10.1145/2429069.2429119
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/j.entcs.2011.02.018
http://dx.doi.org/10.1016/j.entcs.2011.02.018
http://doi.acm.org/10.1145/62139.62141
http://doi.acm.org/10.1145/62139.62141

B I B L I O G R A P H Y 67

Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. There is no fork: An abstraction
for efficient, concurrent, and concise data access. SIGPLAN Not., 49(9):325–337, August
2014. ISSN 0362-1340. doi: 10.1145/2692915.2628144. URL http://doi.acm.org/10.

1145/2692915.2628144.

Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. Desugaring
haskell’s do-notation into applicative operations. SIGPLAN Not., 51(12):92–104, September
2016. ISSN 0362-1340. doi: 10.1145/3241625.2976007. URL http://doi.acm.org/10.

1145/3241625.2976007.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Func-
tional Programming, 18(1):1–13, 2008.

T Minka, J Winn, J Guiver, and A Kannan. Infer .net 2.3, nov. 2009. Software available from
http://research. microsoft. com/infernet, 2009.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July 1991.
ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4. URL http://dx.doi.org/10.

1016/0890-5401(91)90052-4.

Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jeremie Dimino. Selective applicative
functors. Proc. ACM Program. Lang., 3(ICFP):90:1–90:29, July 2019. ISSN 2475-1421.
doi: 10.1145/3341694. URL http://doi.acm.org/10.1145/3341694.

Daniel Murta and Jose Nuno Oliveira. Calculating risk in functional programming. arXiv
preprint arXiv:1311.3687, 2013.

J.N. Oliveira. Program design by calculation, 2008. Draft of textbook in preparation, current
version: April 2018. Informatics Department, University of Minho.

José N Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing, 24
(4-6):433–458, 2012.

José Nuno Oliveira and Victor Cacciari Miraldo. "keep definition, change category" - a practical
approach to state-based system calculi. J. Log. Algebr. Meth. Program., 85:449–474, 2016.

João Paixão and Paweł Sobociński. Calculational proofs in relational graphical linear algebra.
In Brazilian Symposium on Formal Methods, pages 83–100. Springer, 2020.

Ross Paterson. Constructing applicative functors. In Proceedings of the 11th Interna-
tional Conference on Mathematics of Program Construction, MPC’12, pages 300–323,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-31112-3. doi: 10.1007/
978-3-642-31113-0_15. URL http://dx.doi.org/10.1007/978-3-642-31113-0_15.

http://doi.acm.org/10.1145/2692915.2628144
http://doi.acm.org/10.1145/2692915.2628144
http://doi.acm.org/10.1145/3241625.2976007
http://doi.acm.org/10.1145/3241625.2976007
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://doi.acm.org/10.1145/3341694
http://dx.doi.org/10.1007/978-3-642-31113-0_15

B I B L I O G R A P H Y 68

Daniel Pebles. Sigma selective, 2019. URL https://web.

archive.org/web/20190625225137/https://gist.github.com/copumpkin/

d5bdbc7afda54ff04049b6bdbcffb67e.

Tomas Petricek. What we talk about when we talk about monads. CoRR, abs/1803.10195,
2018. URL http://arxiv.org/abs/1803.10195.

Erik Poll and Simon Thompson. Algebra of programming by richard bird and oege de moor,
prentice hall, 1996 (dated 1997). J. Funct. Program., 9(3):347–354, May 1999. ISSN
0956-7968.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. SIGPLAN Not., 37(1):154–165, January 2002. ISSN 0362-1340. doi: 10.
1145/565816.503288. URL http://doi.acm.org/10.1145/565816.503288.

Jason Rosenhouse et al. The Monty Hall problem: the remarkable story of Math’s most
contentious brain teaser. Oxford University Press, 2009.

Alberto Ruiz. Hmatrix: Numeric linear algebra, 2019. URL http://hackage.haskell.org/

package/hmatrix-0.20.0.0.

Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys (CSUR), 16(2):187–260, 1984.

Armando Santos. Selective functors & probabilistic programming. https://github.com/

bolt12/master-thesis, 2020.

Armando Santos and José N. Oliveira. Type your matrices for great good: A haskell library
of typed matrices and applications (functional pearl). In Proceedings of the 13th ACM
SIGPLAN International Symposium on Haskell, Haskell 2020, page 54–66, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450380508. doi: 10.1145/
3406088.3409019. URL https://doi.org/10.1145/3406088.3409019.

Enno Scholz. A concurrency monad based on constructor primitives.
http://dx.doi.org/10.17169/refubium-22616, 1995.

A. Ścibior*. Formally justified and modular Bayesian inference for probabilistic programs. PhD
thesis, University of Cambridge, UK, 2019.

Adam Ścibior, Zoubin Ghahramani, and Andrew D. Gordon. Practical probabilistic program-
ming with monads. SIGPLAN Not., 50(12):165–176, August 2015. ISSN 0362-1340. doi:
10.1145/2887747.2804317. URL http://doi.acm.org/10.1145/2887747.2804317.

https://web.archive.org/web/20190625225137/https://gist.github.com/copumpkin/d5bdbc7afda54ff04049b6bdbcffb67e
https://web.archive.org/web/20190625225137/https://gist.github.com/copumpkin/d5bdbc7afda54ff04049b6bdbcffb67e
https://web.archive.org/web/20190625225137/https://gist.github.com/copumpkin/d5bdbc7afda54ff04049b6bdbcffb67e
http://arxiv.org/abs/1803.10195
http://doi.acm.org/10.1145/565816.503288
http://hackage.haskell.org/package/hmatrix-0.20.0.0
http://hackage.haskell.org/package/hmatrix-0.20.0.0
https://github.com/bolt12/master-thesis
https://github.com/bolt12/master-thesis
https://doi.org/10.1145/3406088.3409019
http://doi.acm.org/10.1145/2887747.2804317

B I B L I O G R A P H Y 69

Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. Functional programming for modular
bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP):83,
2018.

Peter Selinger. A brief survey of quantum programming languages. In International Sympo-
sium on Functional and Logic Programming, pages 1–6. Springer, 2004.

Jane Street. A composable build system, 2018. URL https://dune.build/.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combinator parsers.
In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced Functional Pro-
gramming, pages 184–207, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN
978-3-540-70639-7.

Wouter Swiestra. Data types à la carte. Journal of Functional Programming, 18(4):423–436,
2008. doi: 10.1017/S0956796808006758.

Jared Tobin. Embedded Domain-Specific Languages for Bayesian Modelling and Inference.
PhD thesis, The University of Auckland, 2018.

David Tolpin, Jan-Willem van de Meent, and Frank Wood. Probabilistic programming in
anglican. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 308–311. Springer, 2015.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction
to probabilistic programming, 2018.

P. Wadler. Monads for functional programming. In Int’l School on Advanced Functional
Programming, pages 24–52. Springer, 1995.

Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architecture, FPCA ’89, pages 347–
359, New York, NY, USA, 1989. ACM. ISBN 0-89791-328-0. doi: 10.1145/99370.99404.
URL http://doi.acm.org/10.1145/99370.99404.

Wikipedia. Bayesian network, 2020. URL https://en.wikipedia.org/wiki/Bayesian_

network. (Accessed: 2020-02-16).

Lina Zhou, Shimei Pan, Jianwu Wang, and Athanasios V. Vasilakos. Machine learn-
ing on big data: Opportunities and challenges. Neurocomputing, 237:350 – 361,
2017. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2017.01.026. URL
http://www.sciencedirect.com/science/article/pii/S0925231217300577.

https://dune.build/
http://doi.acm.org/10.1145/99370.99404
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network
http://www.sciencedirect.com/science/article/pii/S0925231217300577

A
T Y P E S A F E L A O P M AT R I X W R A P P E R L I B R A R Y

1{-# LANGUAGE AllowAmbiguousTypes #-}

2{-# LANGUAGE ConstraintKinds #-}

3{-# LANGUAGE DataKinds #-}

4{-# LANGUAGE FlexibleContexts #-}

5{-# LANGUAGE FlexibleInstances #-}

6{-# LANGUAGE GADTs #-}

7{-# LANGUAGE GeneralizedNewtypeDeriving #-}

8{-# LANGUAGE InstanceSigs #-}

9{-# LANGUAGE KindSignatures #-}

10{-# LANGUAGE MultiParamTypeClasses #-}

11{-# LANGUAGE NoStarIsType #-}

12{-# LANGUAGE ScopedTypeVariables #-}

13{-# LANGUAGE StandaloneDeriving #-}

14{-# LANGUAGE TypeApplications #-}

15{-# LANGUAGE TypeOperators #-}

16{-# LANGUAGE UndecidableInstances #-}

17{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}

18

19module Matrix.Internal

20(Matrix (..),

21NonZero,

22ValidDimensions,

23KnownDimensions,

24fromLists,

25toLists,

26toList,

27columns,

28rows,

70

71

29matrix,

30tr,

31row,

32col,

33fmapRows,

34fmapColumns,

35ident,

36zeros,

37ones,

38bang,

39diag,

40(|||),

41(===),

42i1,

43i2,

44p1,

45p2,

46(-|-),

47(><),

48kp1,

49kp2,

50khatri,

51selectM,

52comp,

53fromF,

54)

55where

56

57import Control.DeepSeq

58import Data.Binary

59import qualified Data.List as L

60import Data.Proxy

61import Foreign.Storable

62import GHC.TypeLits

63import qualified Numeric.LinearAlgebra as LA

64import qualified Numeric.LinearAlgebra.Data as HM

65

66-- | The 'Matrix' type is a type safe wrapper around the

72

67-- 'Numeric.LinearAlgebra.Data.Matrix' data type.

68newtype Matrix e (c :: Nat) (r :: Nat) = M {unMatrix :: HM.Matrix e}

69

70deriving instance (LA.Container HM.Matrix e) => Eq (Matrix e c r)

71

72deriving instance (LA.Container HM.Vector e, Fractional e, Fractional (HM.

Vector e), Num (HM.Matrix e)) => Fractional (Matrix e c r)

73

74deriving instance (Floating e, LA.Container HM.Vector e, Floating (HM.Vector

e), Fractional (HM.Matrix e)) => Floating (Matrix e c r)

75

76deriving instance (LA.Container HM.Matrix e, Num e, Num (HM.Vector e)) => Num

(Matrix e c r)

77

78deriving instance (Read e, LA.Element e) => Read (Matrix e c r)

79

80deriving instance (Binary (HM.Vector e), LA.Element e) => Binary (Matrix e c

r)

81

82deriving instance (Storable e, NFData e) => NFData (Matrix e c r)

83

84instance (Show e, LA.Element e) => Show (Matrix e c r) where

85show (M m) = show m

86

87type NonZero (n :: Nat) = (CmpNat n 0 ~ 'GT)

88

89type ValidDimensions (n :: Nat) (m :: Nat) = (NonZero n, NonZero m)

90

91type KnownDimensions (n :: Nat) (m :: Nat) = (KnownNat n, KnownNat m)

92

93--

94-- CONVERTER FUNCTIONS

95--

96

73

97-- | Matrix converter function. It builds a matrix from

98-- a list of lists @[[e]]@ (considered as rows).

99fromLists :: forall e c r. (LA.Element e, KnownDimensions c r) => [[e]] ->

Matrix e c r

100fromLists [] = error "Wrong list dimensions"

101fromLists l@(h : _) =

102let ccols = fromInteger $ natVal (Proxy :: Proxy c)

103rrows = fromInteger $ natVal (Proxy :: Proxy r)

104lrows = length l

105lcols = length h

106in if rrows /= lrows || ccols /= lcols

107then error "Wrong list dimensions"

108else M . HM.fromLists $ l

109

110-- | Matrix converter function. It builds a list of lists from

111-- a 'Matrix'.

112--

113-- Inverse of 'fromLists'.

114toLists :: (LA.Element e) => Matrix e c r -> [[e]]

115toLists = HM.toLists . unMatrix

116

117-- | Matrix converter function. It builds a list of elements from

118-- a 'Matrix'.

119toList :: (LA.Element e) => Matrix e c r -> [e]

120toList = concat . toLists

121

122-- | Matrix converter function. It builds a matrix from a function.

123fromF :: forall c r a b e. (Enum a, Enum b, Eq b, Num e, Ord e, LA.Element e,

KnownNat c, KnownNat r) => (a -> b) -> Matrix e c r

124fromF f =

125let ccols = fromInteger $ natVal (Proxy :: Proxy c)

126rrows = fromInteger $ natVal (Proxy :: Proxy r)

127elementsA = take ccols $ map toEnum [0 ..]

128elementsB = take rrows $ map toEnum [0 ..]

129combinations = (,) <$> elementsA <*> elementsB

130combAp = map snd . L.sort . map (\(a, b) -> if f a == b then ((fromEnum

a, fromEnum b), 1) else ((fromEnum a, fromEnum b), 0)) $

combinations

74

131mList = buildList combAp rrows

132in tr $ fromLists mList

133where

134buildList [] _ = []

135buildList l r = take r l : buildList (drop r l) r

136

137--

138-- DIMENSIONS FUNCTIONS

139--

140

141-- | Obtain the number of columns of a matrix

142columns :: forall e c r. KnownNat c => Matrix e c r -> Integer

143columns _ = natVal (Proxy :: Proxy c)

144

145-- | Obtain the number of rows of a matrix

146rows :: forall e c r. KnownNat r => Matrix e c r -> Integer

147rows _ = natVal (Proxy :: Proxy r)

148

149fmapColumns :: forall b e a r. (Storable e, LA.Element e, KnownNat b) =>

Matrix e a r -> Matrix e b r

150fmapColumns =

151let cols = fromInteger $ natVal (Proxy :: Proxy b)

152in M . HM.reshape cols . HM.fromList . toList

153

154fmapRows :: forall b e a c. (Storable e, LA.Element e, KnownDimensions c b)

=> Matrix e c a -> Matrix e c b

155fmapRows =

156let rows = fromInteger $ natVal (Proxy :: Proxy b)

157in tr . M . HM.reshape rows . HM.fromList . toList

158

159--

160-- MISC FUNCTIONS

75

161--

162

163-- | Create a matrix.

164matrix :: forall e c r. (KnownDimensions c r, Storable e) => [e] -> Matrix e

c r

165matrix l =

166let m = (reshape @e @c) . HM.fromList $ l

167mcols = HM.cols (unMatrix m)

168mrows = HM.rows (unMatrix m)

169ccols = fromInteger $ natVal (Proxy :: Proxy c)

170rrows = fromInteger $ natVal (Proxy :: Proxy r)

171in if mcols /= ccols || mrows /= rrows

172then error "Wrong list dimensions"

173else m

174

175-- | Matrix transpose

176tr :: forall e c r. (LA.Element e, KnownDimensions c r) => Matrix e c r ->

Matrix e r c

177tr = fromLists . L.transpose . toLists

178

179-- | Create a row vector matrix.

180row :: (Storable e, LA.Element e, KnownNat c) => [e] -> Matrix e c 1

181row = asRow . HM.fromList

182

183-- | Create a column vector matrix.

184col :: (Storable e) => [e] -> Matrix e 1 r

185col = asColumn . HM.fromList

186

187-- | Creates the identity matrix of given dimension.

188ident :: forall e c. (Num e, LA.Element e, KnownNat c) => Matrix e c c

189ident =

190let c = fromInteger $ natVal (Proxy :: Proxy c)

191in M . HM.ident $ c

192

193-- | Zero Matrix polymorphic definition

76

194zeros :: forall e c r. (KnownDimensions c r, Num e, LA.Container HM.Vector e)

=> Matrix e c r

195zeros =

196let ccols = fromInteger $ natVal (Proxy :: Proxy c)

197rrows = fromInteger $ natVal (Proxy :: Proxy r)

198in M $ HM.konst 0 (rrows, ccols)

199

200-- | One Matrix polymorphic definition

201ones :: forall e c r. (KnownDimensions c r, Num e, LA.Container HM.Vector e)

=> Matrix e c r

202ones =

203let ccols = fromInteger $ natVal (Proxy :: Proxy c)

204rrows = fromInteger $ natVal (Proxy :: Proxy r)

205in M $ HM.konst 1 (rrows, ccols)

206

207-- | Bang Matrix polymorphic Matrix

208bang :: forall e c . (KnownNat c, Num e, LA.Container HM.Vector e) => Matrix

e c 1

209bang =

210let ccols = fromInteger $ natVal (Proxy :: Proxy c)

211in M $ HM.konst 1 (1, ccols)

212

213-- | Creates a square matrix with a given diagonal.

214diag :: forall e c. (Num e, LA.Element e, KnownNat c) => [e] -> Matrix e c c

215diag l =

216let c = fromInteger $ natVal (Proxy :: Proxy c)

217dims = length l

218in if c /= dims

219then error "Wrong list dimensions"

220else M . HM.diag . HM.fromList $ l

221

222--

223-- BLOCK MATRIX FUNCTIONS (BIPRODUCT)

224--

77

225

226-- | Matrix block algebra 'Junc' operator

227(|||) :: (LA.Element e, ValidDimensions n m, NonZero p) => Matrix e m p ->

Matrix e n p -> Matrix e (m + n) p

228(|||) a b = M $ HM.fromBlocks [[unMatrix a, unMatrix b]]

229

230infixl 3 |||

231

232-- | Matrix block algebra 'Split' operator

233(===) :: (LA.Element e, ValidDimensions n m, NonZero p) => Matrix e p m ->

Matrix e p n -> Matrix e p (m + n)

234(===) a b = M $ HM.fromBlocks [[unMatrix a], [unMatrix b]]

235

236infixl 2 ===

237

238-- | Matrix 'Junc' left injection matrix definition

239i1 :: (Num e, ValidDimensions n m, KnownDimensions n m, LA.Element e, LA.

Container HM.Vector e) => Matrix e m (m + n)

240i1 = ident === zeros

241

242-- | Matrix 'Junc' right injection matrix definition

243i2 :: (Num e, ValidDimensions n m, KnownDimensions n m, LA.Element e, LA.

Container HM.Vector e) => Matrix e n (m + n)

244i2 = zeros === ident

245

246-- | Matrix 'Split' left projection matrix definition

247p1 :: (Num e, ValidDimensions n m, KnownDimensions n m, KnownNat (m + n), LA.

Element e, LA.Container HM.Vector e) => Matrix e (m + n) m

248p1 = tr i1

249

250-- | Matrix 'Split' right projection matrix definition

251p2 :: (Num e, ValidDimensions n m, KnownDimensions n m, KnownNat (m + n), LA.

Element e, LA.Container HM.Vector e) => Matrix e (m + n) n

252p2 = tr i2

253

254--

78

255-- MATRIX BIPRODUCT FUNCTORS

256--

257

258-- | Matrix coproduct bifunctor

259(-|-) ::

260forall e n m j k.

261(ValidDimensions n m,

262ValidDimensions k j,

263NonZero (k + j),

264LA.Element e,

265LA.Numeric e,

266KnownDimensions k j

267) =>

268Matrix e n k ->

269Matrix e m j ->

270Matrix e (n + m) (k + j)

271(-|-) a b = (i1 `comp` a) ||| (i2 `comp` b)

272

273infixl 5 -|-

274

275-- | Kronecker product of two matrices

276(><) :: LA.Product e => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p *

q)

277(><) (M a) (M b) = M . LA.kronecker a $ b

278

279infixl 4 ><

280

281--

282-- MATRIX SELECTVIE EQUIVALENT FUNCTION

283--

284

285selectM ::

79

286(LA.Numeric e,

287Enum a,

288Enum b,

289Ord e,

290Eq b,

291KnownDimensions m1 m2,

292ValidDimensions m1 m2

293) =>

294Matrix e n (m1 + m2) -> (a -> b) -> Matrix e n m2

295selectM m y = (fromF y ||| ident) `comp` m

296

297--

298-- MATRIX COMPOSITION, KHATRI RAO FUNCTIONS

299--

300

301-- | Matrix - Matrix multiplication aka Matrix composition

302comp :: LA.Numeric e => Matrix e p m -> Matrix e n p -> Matrix e n m

303comp (M a) (M b) = M . (LA.<>) a $ b

304

305-- | Khatri Rao product left projection (inductive definition)

306class KhatriP1 e (m :: Nat) (k :: Nat) where

307kp1 :: Matrix e (m * k) m

308

309instance

310{-# OVERLAPPING #-}

311(KnownNat k,

312Num e,

313LA.Numeric e,

314LA.Container HM.Vector e

315) =>

316KhatriP1 e 1 k

317where

318kp1 = ones @e @k @1

319

80

320instance

321{-# OVERLAPPABLE #-}

322(ValidDimensions m k,

323KnownNat k,

324KnownNat ((m - 1) * k),

325KnownNat (m - 1),

326Num e,

327LA.Numeric e,

328LA.Container HM.Vector e,

329(1 + (m - 1)) ~ m,

330(k + ((m - 1) * k)) ~ (m * k),

331NonZero ((m - 1) * k),

332NonZero (m - 1),

333KhatriP1 e (m - 1) k

334) =>

335KhatriP1 e m k

336where

337kp1 = ones @e @k @1 -|- kp1 @e @(m - 1) @k

338

339-- | Khatri Rao product right projection (inductive definition)

340class KhatriP2 e (k :: Nat) (m :: Nat) where

341kp2 :: Matrix e (m * k) k

342

343instance

344{-# OVERLAPPING #-}

345(Num e,

346LA.Element e,

347KnownNat k

348) =>

349KhatriP2 e k 1

350where

351kp2 = ident @e @k

352

353instance

354{-# OVERLAPPABLE #-}

355((k + ((m - 1) * k)) ~ (m * k),

356ValidDimensions m k,

357NonZero ((m - 1) * k),

81

358LA.Element e,

359Num e,

360KnownNat k,

361KhatriP2 e k (m - 1)

362) =>

363KhatriP2 e k m

364where

365kp2 = ident @e @k ||| kp2 @e @k @(m - 1)

366

367-- | Khatri Rao product of two matrices (Pairing)

368khatri ::

369forall e m p q.

370(KnownDimensions p (p * q),

371KnownNat q,

372Num e,

373Num (HM.Vector e),

374LA.Numeric e,

375LA.Container HM.Vector e,

376KhatriP1 e p q,

377KhatriP2 e q p

378) =>

379Matrix e m p ->

380Matrix e m q ->

381Matrix e m (p * q)

382khatri a b = (tr (kp1 @e @p @q) `comp` a) * (tr (kp2 @e @q @p) `comp` b)

383

384--

385-- AUXILIARY FUNCTIONS

386--

387

388-- | Creates a matrix from a vector by grouping the elements in rows

389-- with the desired number of columns.

390reshape :: forall e c r. (Storable e, KnownNat c) => HM.Vector e -> Matrix e

c r

82

391reshape v =

392let cols = fromInteger $ natVal (Proxy :: Proxy c)

393in M $ HM.reshape cols v

394

395-- | Creates a 1-column matrix from a vector.

396asColumn :: forall e r. (Storable e) => HM.Vector e -> Matrix e 1 r

397asColumn = reshape @e @1

398

399-- | Creates a 1-vector matrix from a vector.

400asRow :: (Storable e, LA.Element e, KnownNat c) => HM.Vector e -> Matrix e c

1

401asRow = tr . asColumn

Listing A.1: Type safe matrix wrapper library

B
T Y P E S A F E L A O P I N D U C T I V E M AT R I X D E F I N I T I O N L I B R A R Y

1{-# LANGUAGE AllowAmbiguousTypes #-}

2{-# LANGUAGE DataKinds #-}

3{-# LANGUAGE FlexibleContexts #-}

4{-# LANGUAGE FlexibleInstances #-}

5{-# LANGUAGE GADTs #-}

6{-# LANGUAGE InstanceSigs #-}

7{-# LANGUAGE MultiParamTypeClasses #-}

8{-# LANGUAGE NoStarIsType #-}

9{-# LANGUAGE ScopedTypeVariables #-}

10{-# LANGUAGE StandaloneDeriving #-}

11{-# LANGUAGE TypeApplications #-}

12{-# LANGUAGE TypeFamilies #-}

13{-# LANGUAGE TypeOperators #-}

14{-# LANGUAGE UndecidableInstances #-}

15

16---

17-- |

18-- Module : Matrix.Internal

19-- Copyright : (c) Armando Santos 2019-2020

20-- Maintainer : armandoifsantos@gmail.com

21-- Stability : experimental

22--

23-- The LAoP discipline generalises relations and functions treating them as

24-- Boolean matrices and in turn consider these as arrows.

25--

26-- __LAoP__ is a library for algebraic (inductive) construction and

manipulation of matrices

83

84

27-- in Haskell. See <https://github.com/bolt12/master-thesis my Msc Thesis>

for the

28-- motivation behind the library, the underlying theory, and implementation

details.

29--

30-- This module offers many of the combinators mentioned in the work of

31-- Macedo (2012) and Oliveira (2012).

32--

33-- This is an Internal module and it is no supposed to be imported.

34--

35---

36

37module Matrix.Internal

38(-- | This definition makes use of the fact that 'Void' is

39-- isomorphic to 0 and '()' to 1 and captures matrix

40-- dimensions as stacks of 'Either's.

41--

42-- There exists two type families that make it easier to write

43-- matrix dimensions: 'FromNat' and 'Count'. This approach

44-- leads to a very straightforward implementation

45-- of LAoP combinators.

46

47-- * Type safe matrix representation

48Matrix (..),

49

50-- * Primitives

51empty,

52one,

53junc,

54split,

55

56-- * Auxiliary type families

57FromNat,

58Count,

59Normalize,

60

61-- * Matrix construction and conversion

62FromLists,

85

63fromLists,

64toLists,

65toList,

66matrixBuilder,

67row,

68col,

69zeros,

70ones,

71bang,

72constant,

73

74-- * Misc

75-- ** Get dimensions

76columns,

77rows,

78

79-- ** Matrix Transposition

80tr,

81

82-- ** Selective operator

83select,

84

85-- ** McCarthy's Conditional

86cond,

87

88-- ** Matrix "abiding"

89abideJS,

90abideSJ,

91

92-- * Biproduct approach

93-- ** Split

94(===),

95-- *** Projections

96p1,

97p2,

98-- ** Junc

99(|||),

100-- *** Injections

86

101i1,

102i2,

103-- ** Bifunctors

104(-|-),

105(><),

106

107-- ** Applicative matrix combinators

108

109-- | Note that given the restrictions imposed it is not possible to

110-- implement the standard type classes present in standard Haskell.

111-- *** Matrix pairing projections

112kp1,

113kp2,

114

115-- *** Matrix pairing

116khatri,

117

118-- * Matrix composition and lifting

119

120-- ** Arrow matrix combinators

121

122-- | Note that given the restrictions imposed it is not possible to

123-- implement the standard type classes present in standard Haskell.

124identity,

125comp,

126fromF,

127fromF',

128

129-- * Matrix printing

130pretty,

131prettyPrint

132)

133where

134

135import Utils

136import Data.Bool

137import Data.Kind

138import Data.List

87

139import Data.Proxy

140import Data.Void

141import GHC.TypeLits

142import Data.Type.Equality

143import GHC.Generics

144import Control.DeepSeq

145import Control.Category

146import Prelude hiding ((.))

147

148-- | LAoP (Linear Algebra of Programming) Inductive Matrix definition.

149data Matrix e cols rows where

150Empty :: Matrix e Void Void

151One :: e -> Matrix e () ()

152Junc :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows

153Split :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b)

154

155deriving instance (Show e) => Show (Matrix e cols rows)

156

157-- | Type family that computes the cardinality of a given type dimension.

158--

159-- It can also count the cardinality of custom types that implement the

160-- 'Generic' instance.

161type family Count (d :: Type) :: Nat where

162Count (Natural n m) = (m - n) + 1

163Count (Either a b) = (+) (Count a) (Count b)

164Count (a, b) = (*) (Count a) (Count b)

165Count (a -> b) = (^) (Count b) (Count a)

166-- Generics

167Count (M1 _ _ f p) = Count (f p)

168Count (K1 _ _ _) = 1

169Count (V1 _) = 0

170Count (U1 _) = 1

171Count ((:*:) a b p) = Count (a p) * Count (b p)

172Count ((:+:) a b p) = Count (a p) + Count (b p)

173Count d = Count (Rep d R)

174

175-- | Type family that computes of a given type dimension from a given natural

176--

88

177-- Thanks to Li-Yao Xia this type family is super fast.

178type family FromNat (n :: Nat) :: Type where

179FromNat 0 = Void

180FromNat 1 = ()

181FromNat n = FromNat' (Mod n 2 == 0) (FromNat (Div n 2))

182

183type family FromNat' (b :: Bool) (m :: Type) :: Type where

184FromNat' 'True m = Either m m

185FromNat' 'False m = Either () (Either m m)

186

187-- | Type family that normalizes the representation of a given data

188-- structure

189type family Normalize (d :: Type) :: Type where

190Normalize d = FromNat (Count d)

191

192-- | It is not possible to implement the 'id' function so it is

193-- implementation is 'undefined'. However 'comp' can be and this partial

194-- class implementation exists just to make the code more readable.

195--

196-- Please use 'identity' instead.

197instance (Num e) => Category (Matrix e) where

198id = undefined

199(.) = comp

200

201instance NFData e => NFData (Matrix e cols rows) where

202rnf Empty = ()

203rnf (One e) = rnf e

204rnf (Junc a b) = rnf a `seq` rnf b

205rnf (Split a b) = rnf a `seq` rnf b

206

207instance Eq e => Eq (Matrix e cols rows) where

208Empty == Empty = True

209(One a) == (One b) = a == b

210(Junc a b) == (Junc c d) = a == c && b == d

211(Split a b) == (Split c d) = a == c && b == d

212x@(Split a b) == y@(Junc c d) = x == abideJS y

213x@(Junc a b) == y@(Split c d) = abideJS x == y

214

89

215instance Num e => Num (Matrix e cols rows) where

216

217Empty + Empty = Empty

218(One a) + (One b) = One (a + b)

219(Junc a b) + (Junc c d) = Junc (a + c) (b + d)

220(Split a b) + (Split c d) = Split (a + c) (b + d)

221x@(Split a b) + y@(Junc c d) = x + abideJS y

222x@(Junc a b) + y@(Split c d) = abideJS x + y

223

224Empty - Empty = Empty

225(One a) - (One b) = One (a - b)

226(Junc a b) - (Junc c d) = Junc (a - c) (b - d)

227(Split a b) - (Split c d) = Split (a - c) (b - d)

228x@(Split a b) - y@(Junc c d) = x - abideJS y

229x@(Junc a b) - y@(Split c d) = abideJS x - y

230

231Empty * Empty = Empty

232(One a) * (One b) = One (a * b)

233(Junc a b) * (Junc c d) = Junc (a * c) (b * d)

234(Split a b) * (Split c d) = Split (a * c) (b * d)

235x@(Split a b) * y@(Junc c d) = x * abideJS y

236x@(Junc a b) * y@(Split c d) = abideJS x * y

237

238abs Empty = Empty

239abs (One a) = One (abs a)

240abs (Junc a b) = Junc (abs a) (abs b)

241abs (Split a b) = Split (abs a) (abs b)

242

243signum Empty = Empty

244signum (One a) = One (signum a)

245signum (Junc a b) = Junc (signum a) (signum b)

246signum (Split a b) = Split (signum a) (signum b)

247

248-- Primitives

249

250-- | Empty matrix constructor

251empty :: Matrix e Void Void

252empty = Empty

90

253

254-- | Unit matrix constructor

255one :: e -> Matrix e () ()

256one = One

257

258-- | Matrix 'Junc' constructor

259junc :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows

260junc = Junc

261

262infixl 3 |||

263

264-- | Matrix 'Junc' constructor

265(|||) :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows

266(|||) = Junc

267

268-- | Matrix 'Split' constructor

269split :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b)

270split = Split

271

272infixl 2 ===

273

274-- | Matrix 'Split' constructor

275(===) :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b)

276(===) = Split

277

278-- Construction

279

280-- | Type class for defining the 'fromList' conversion function.

281--

282-- Given that it is not possible to branch on types at the term level type

283-- classes are needed bery much like an inductive definition but on types.

284class FromLists e cols rows where

285-- | Build a matrix out of a list of list of elements. Throws a runtime

286-- error if the dimensions do not match.

287fromLists :: [[e]] -> Matrix e cols rows

288

289instance FromLists e Void Void where

290fromLists [] = Empty

91

291fromLists _ = error "Wrong dimensions"

292

293instance {-# OVERLAPPING #-} FromLists e () () where

294fromLists [[e]] = One e

295fromLists _ = error "Wrong dimensions"

296

297instance {-# OVERLAPPING #-} (FromLists e cols ()) => FromLists e (Either ()

cols) () where

298fromLists [h : t] = Junc (One h) (fromLists [t])

299fromLists _ = error "Wrong dimensions"

300

301instance {-# OVERLAPPABLE #-} (FromLists e a (), FromLists e b (), KnownNat (

Count a)) => FromLists e (Either a b) () where

302fromLists [l] =

303let rowsA = fromInteger (natVal (Proxy :: Proxy (Count a)))

304in Junc (fromLists [take rowsA l]) (fromLists [drop rowsA l])

305fromLists _ = error "Wrong dimensions"

306

307instance {-# OVERLAPPING #-} (FromLists e () rows) => FromLists e () (Either

() rows) where

308fromLists ([h] : t) = Split (One h) (fromLists t)

309fromLists _ = error "Wrong dimensions"

310

311instance {-# OVERLAPPABLE #-} (FromLists e () a, FromLists e () b, KnownNat (

Count a)) => FromLists e () (Either a b) where

312fromLists l@([h] : t) =

313let rowsA = fromInteger (natVal (Proxy :: Proxy (Count a)))

314in Split (fromLists (take rowsA l)) (fromLists (drop rowsA l))

315fromLists _ = error "Wrong dimensions"

316

317instance {-# OVERLAPPABLE #-} (FromLists e (Either a b) c, FromLists e (

Either a b) d, KnownNat (Count c)) => FromLists e (Either a b) (Either c

d) where

318fromLists l@(h : t) =

319let lh = length h

320rowsC = fromInteger (natVal (Proxy :: Proxy (Count c)))

321condition = all (== lh) (map length t)

322in if lh > 0 && condition

92

323then Split (fromLists (take rowsC l)) (fromLists (drop rowsC l))

324else error "Not all rows have the same length"

325

326-- | Matrix builder function. Constructs a matrix provided with

327-- a construction function.

328matrixBuilder ::

329forall e cols rows.

330(FromLists e cols rows,

331KnownNat (Count cols),

332KnownNat (Count rows)

333) =>

334((Int, Int) -> e) ->

335Matrix e cols rows

336matrixBuilder f =

337let c = fromInteger $ natVal (Proxy :: Proxy (Count cols))

338r = fromInteger $ natVal (Proxy :: Proxy (Count rows))

339positions = [(a, b) | a <- [0 .. (r - 1)], b <- [0 .. (c - 1)]]

340in fromLists . map (map f) . groupBy (\(x, _) (w, _) -> x == w) $

positions

341

342-- | Constructs a column vector matrix

343col :: (FromLists e () rows) => [e] -> Matrix e () rows

344col = fromLists . map (: [])

345

346-- | Constructs a row vector matrix

347row :: (FromLists e cols ()) => [e] -> Matrix e cols ()

348row = fromLists . (: [])

349

350-- | Lifts functions to matrices with arbitrary dimensions.

351--

352-- NOTE: Be careful to not ask for a matrix bigger than the cardinality of

353-- types @a@ or @b@ allows.

354fromF ::

355forall a b cols rows e.

356(Bounded a,

357Bounded b,

358Enum a,

359Enum b,

93

360Eq b,

361Num e,

362Ord e,

363KnownNat (Count cols),

364KnownNat (Count rows),

365FromLists e rows cols

366) =>

367(a -> b) ->

368Matrix e cols rows

369fromF f =

370let minA = minBound @a

371maxA = maxBound @a

372minB = minBound @b

373maxB = maxBound @b

374ccols = fromInteger $ natVal (Proxy :: Proxy (Count cols))

375rrows = fromInteger $ natVal (Proxy :: Proxy (Count rows))

376elementsA = take ccols [minA .. maxA]

377elementsB = take rrows [minB .. maxB]

378combinations = (,) <$> elementsA <*> elementsB

379combAp = map snd . sort . map (\(a, b) -> if f a == b

380then ((fromEnum a,

fromEnum b), 1)

381else ((fromEnum a,

fromEnum b), 0))

$ combinations

382mList = buildList combAp rrows

383in tr $ fromLists mList

384where

385buildList [] _ = []

386buildList l r = take r l : buildList (drop r l) r

387

388-- | Lifts functions to matrices with dimensions matching @a@ and @b@

389-- cardinality's.

390fromF' ::

391forall a b e.

392(Bounded a,

393Bounded b,

394Enum a,

94

395Enum b,

396Eq b,

397Num e,

398Ord e,

399KnownNat (Count (Normalize a)),

400KnownNat (Count (Normalize b)),

401FromLists e (Normalize b) (Normalize a)

402) =>

403(a -> b) ->

404Matrix e (Normalize a) (Normalize b)

405fromF' f =

406let minA = minBound @a

407maxA = maxBound @a

408minB = minBound @b

409maxB = maxBound @b

410ccols = fromInteger $ natVal (Proxy :: Proxy (Count (Normalize a

)))

411rrows = fromInteger $ natVal (Proxy :: Proxy (Count (Normalize b

)))

412elementsA = take ccols [minA .. maxA]

413elementsB = take rrows [minB .. maxB]

414combinations = (,) <$> elementsA <*> elementsB

415combAp = map snd . sort . map (\(a, b) -> if f a == b

416then ((fromEnum a,

fromEnum b), 1)

417else ((fromEnum a,

fromEnum b), 0))

$ combinations

418mList = buildList combAp rrows

419in tr $ fromLists mList

420where

421buildList [] _ = []

422buildList l r = take r l : buildList (drop r l) r

423

424-- Conversion

425

426-- | Converts a matrix to a list of lists of elements.

427toLists :: Matrix e cols rows -> [[e]]

95

428toLists Empty = []

429toLists (One e) = [[e]]

430toLists (Split l r) = toLists l ++ toLists r

431toLists (Junc l r) = zipWith (++) (toLists l) (toLists r)

432

433-- | Converts a matrix to a list of elements.

434toList :: Matrix e cols rows -> [e]

435toList = concat . toLists

436

437-- Zeros Matrix

438

439-- | The zero matrix. A matrix wholly filled with zeros.

440zeros :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat (

Count rows)) => Matrix e cols rows

441zeros = matrixBuilder (const 0)

442

443-- Ones Matrix

444

445-- | The ones matrix. A matrix wholly filled with ones.

446--

447-- Also known as T (Top) matrix.

448ones :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat (Count

rows)) => Matrix e cols rows

449ones = matrixBuilder (const 1)

450

451-- Const Matrix

452

453-- | The constant matrix constructor. A matrix wholly filled with a given

454-- value.

455constant :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat (

Count rows)) => e -> Matrix e cols rows

456constant e = matrixBuilder (const e)

457

458-- Bang Matrix

459

460-- | The T (Top) row vector matrix.

461bang :: forall e cols. (Num e, Enum e, FromLists e cols (), KnownNat (Count

cols)) => Matrix e cols ()

96

462bang =

463let c = fromInteger $ natVal (Proxy :: Proxy (Count cols))

464in fromLists [take c [1, 1 ..]]

465

466-- Identity Matrix

467

468-- | Identity matrix.

469identity :: (Num e, FromLists e cols cols, KnownNat (Count cols)) => Matrix e

cols cols

470identity = matrixBuilder (bool 0 1 . uncurry (==))

471

472-- Matrix composition (MMM)

473

474-- | Matrix composition. Equivalent to matrix-matrix multiplication.

475--

476-- This definition takes advantage of divide-and-conquer and fusion laws

477-- from LAoP.

478comp :: (Num e) => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows

479comp Empty Empty = Empty

480comp (One a) (One b) = One (a * b)

481comp (Junc a b) (Split c d) = comp a c + comp b d -- Divide-and-

conquer law

482comp (Split a b) c = Split (comp a c) (comp b c) -- Split fusion law

483comp c (Junc a b) = Junc (comp c a) (comp c b) -- Junc fusion law

484

485-- Projections

486

487-- | Biproduct first component projection

488p1 :: forall e m n. (Num e, KnownNat (Count n), KnownNat (Count m), FromLists

e n m, FromLists e m m) => Matrix e (Either m n) m

489p1 =

490let iden = identity :: Matrix e m m

491zero = zeros :: Matrix e n m

492in junc iden zero

493

494-- | Biproduct second component projection

495p2 :: forall e m n. (Num e, KnownNat (Count n), KnownNat (Count m), FromLists

e m n, FromLists e n n) => Matrix e (Either m n) n

97

496p2 =

497let iden = identity :: Matrix e n n

498zero = zeros :: Matrix e m n

499in junc zero iden

500

501-- Injections

502

503-- | Biproduct first component injection

504i1 :: (Num e, KnownNat (Count n), KnownNat (Count m), FromLists e n m,

FromLists e m m) => Matrix e m (Either m n)

505i1 = tr p1

506

507-- | Biproduct second component injection

508i2 :: (Num e, KnownNat (Count n), KnownNat (Count m), FromLists e m n,

FromLists e n n) => Matrix e n (Either m n)

509i2 = tr p2

510

511-- Dimensions

512

513-- | Obtain the number of rows.

514--

515-- NOTE: The 'KnownNat' constaint is needed in order to obtain the

516-- dimensions in constant time.

517--

518-- TODO: A 'rows' function that does not need the 'KnownNat' constraint in

519-- exchange for performance.

520rows :: forall e cols rows. (KnownNat (Count rows)) => Matrix e cols rows ->

Int

521rows _ = fromInteger $ natVal (Proxy :: Proxy (Count rows))

522

523-- | Obtain the number of columns.

524--

525-- NOTE: The 'KnownNat' constaint is needed in order to obtain the

526-- dimensions in constant time.

527--

528-- TODO: A 'columns' function that does not need the 'KnownNat' constraint in

529-- exchange for performance.

98

530columns :: forall e cols rows. (KnownNat (Count cols)) => Matrix e cols rows

-> Int

531columns _ = fromInteger $ natVal (Proxy :: Proxy (Count cols))

532

533-- Coproduct Bifunctor

534

535infixl 5 -|-

536

537-- | Matrix coproduct functor also known as matrix direct sum.

538(-|-) ::

539forall e n k m j.

540(Num e,

541KnownNat (Count j),

542KnownNat (Count k),

543FromLists e k k,

544FromLists e j k,

545FromLists e k j,

546FromLists e j j

547) =>

548Matrix e n k ->

549Matrix e m j ->

550Matrix e (Either n m) (Either k j)

551(-|-) a b = Junc (i1 . a) (i2 . b)

552

553-- Khatri Rao Product and projections

554

555-- | Khatri Rao product first component projection matrix.

556kp1 ::

557forall e m k .

558(Num e,

559KnownNat (Count k),

560FromLists e (FromNat (Count m * Count k)) m,

561KnownNat (Count m),

562KnownNat (Count (Normalize (m, k)))

563) => Matrix e (Normalize (m, k)) m

564kp1 = matrixBuilder f

565where

566offset = fromInteger (natVal (Proxy :: Proxy (Count k)))

99

567f (x, y)

568| y >= (x * offset) && y <= (x * offset + offset - 1) = 1

569| otherwise = 0

570

571-- | Khatri Rao product second component projection matrix.

572kp2 ::

573forall e m k .

574(Num e,

575KnownNat (Count k),

576FromLists e (FromNat (Count m * Count k)) k,

577KnownNat (Count m),

578KnownNat (Count (Normalize (m, k)))

579) => Matrix e (Normalize (m, k)) k

580kp2 = matrixBuilder f

581where

582offset = fromInteger (natVal (Proxy :: Proxy (Count k)))

583f (x, y)

584| x == y || mod (y - x) offset == 0 = 1

585| otherwise = 0

586

587-- | Khatri Rao Matrix product also known as matrix pairing.

588--

589-- NOTE: That this is not a true categorical product, see for instance:

590--

591-- @

592-- | kp1 . khatri a b == a

593-- khatri a b ==> |

594-- | kp2 . khatri a b == b

595-- @

596--

597-- __Emphasis__ on the implication symbol.

598khatri ::

599forall e cols a b.

600(Num e,

601KnownNat (Count a),

602KnownNat (Count b),

603KnownNat (Count (Normalize (a, b))),

604FromLists e (Normalize (a, b)) a,

100

605FromLists e (Normalize (a, b)) b

606) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (Normalize (a

, b))

607khatri a b =

608let kp1' = kp1 @e @a @b

609kp2' = kp2 @e @a @b

610in (tr kp1') . a * (tr kp2') . b

611

612-- Product Bifunctor (Kronecker)

613

614infixl 4 ><

615

616-- | Matrix product functor also known as kronecker product

617(><) ::

618forall e m p n q.

619(Num e,

620KnownNat (Count m),

621KnownNat (Count n),

622KnownNat (Count p),

623KnownNat (Count q),

624KnownNat (Count (Normalize (m, n))),

625FromLists e (Normalize (m, n)) m,

626FromLists e (Normalize (m, n)) n,

627KnownNat (Count (Normalize (p, q))),

628FromLists e (Normalize (p, q)) p,

629FromLists e (Normalize (p, q)) q

630)

631=> Matrix e m p -> Matrix e n q -> Matrix e (Normalize (m, n)) (

Normalize (p, q))

632(><) a b =

633let kp1' = kp1 @e @m @n

634kp2' = kp2 @e @m @n

635in khatri (a . kp1') (b . kp2')

636

637-- Matrix abide Junc Split

638

639-- | Matrix "abiding" followin the 'Junc'-'Split' abide law.

640--

101

641-- Law:

642--

643-- @

644-- 'Junc' ('Split' a c) ('Split' b d) == 'Split' ('Junc' a b) ('Junc' c d)

645-- @

646abideJS :: Matrix e cols rows -> Matrix e cols rows

647abideJS (Junc (Split a c) (Split b d)) = Split (Junc (abideJS a) (abideJS b))

(Junc (abideJS c) (abideJS d)) -- Junc-Split abide law

648abideJS Empty = Empty

649abideJS (One e) = One e

650abideJS (Junc a b) = Junc (abideJS a) (abideJS b)

651abideJS (Split a b) = Split (abideJS a) (abideJS b)

652

653-- Matrix abide Split Junc

654

655-- | Matrix "abiding" followin the 'Split'-'Junc' abide law.

656--

657-- @

658-- 'Split' ('Junc' a b) ('Junc' c d) == 'Junc' ('Split' a c) ('Split' b d)

659-- @

660abideSJ :: Matrix e cols rows -> Matrix e cols rows

661abideSJ (Split (Junc a b) (Junc c d)) = Junc (Split (abideSJ a) (abideSJ c))

(Split (abideSJ b) (abideSJ d)) -- Split-Junc abide law

662abideSJ Empty = Empty

663abideSJ (One e) = One e

664abideSJ (Junc a b) = Junc (abideSJ a) (abideSJ b)

665abideSJ (Split a b) = Split (abideSJ a) (abideSJ b)

666

667-- Matrix transposition

668

669-- | Matrix transposition.

670tr :: Matrix e cols rows -> Matrix e rows cols

671tr Empty = Empty

672tr (One e) = One e

673tr (Junc a b) = Split (tr a) (tr b)

674tr (Split a b) = Junc (tr a) (tr b)

675

676-- Selective 'select' operator

102

677

678-- | Selective functors 'select' operator equivalent inspired by the

679-- ArrowMonad solution presented in the paper.

680select ::

681(Bounded a,

682Bounded b,

683Enum a,

684Enum b,

685Num e,

686Ord e,

687Eq b,

688KnownNat (Count (Normalize a)),

689KnownNat (Count (Normalize b)),

690KnownNat (Count cols),

691FromLists e (Normalize b) (Normalize a),

692FromLists e (Normalize b) (Normalize b)

693) => Matrix e cols (Either (Normalize a) (Normalize b)) -> (a -> b) ->

Matrix e cols (Normalize b)

694select m y =

695let f = fromF y

696in junc f identity . m

697

698-- McCarthy's Conditional

699

700-- | McCarthy's Conditional expresses probabilistic choice.

701cond ::

702(cols ~ FromNat (Count cols),

703KnownNat (Count cols),

704FromLists e () cols,

705FromLists e cols (),

706FromLists e cols cols,

707Bounded a,

708Enum a,

709Num e,

710Ord e

711)

712=>

103

713(a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols

rows

714cond p f g = junc f g . grd p

715

716grd ::

717(q ~ FromNat (Count q),

718KnownNat (Count q),

719FromLists e () q,

720FromLists e q (),

721FromLists e q q,

722Bounded a,

723Enum a,

724Num e,

725Ord e

726)

727=>

728(a -> Bool) -> Matrix e q (Either q q)

729grd f = split (corr f) (corr (not . f))

730

731corr ::

732forall e a q .

733(q ~ FromNat (Count q),

734KnownNat (Count q),

735FromLists e () q,

736FromLists e q (),

737FromLists e q q,

738Bounded a,

739Enum a,

740Num e,

741Ord e

742)

743=> (a -> Bool) -> Matrix e q q

744corr p = let f = fromF p :: Matrix e q ()

745in khatri f (identity :: Matrix e q q)

746

747-- Pretty print

748

749prettyAux :: Show e => [[e]] -> [[e]] -> String

104

750prettyAux [] _ = ""

751prettyAux [[e]] m = "| " ++ fill (show e) ++ " |\n"

752where

753v = fmap show m

754widest = maximum $ fmap length v

755fill str = replicate (widest - length str - 2) ' ' ++ str

756prettyAux [h] m = "| " ++ fill (unwords $ map show h) ++ " |\n"

757where

758v = fmap show m

759widest = maximum $ fmap length v

760fill str = replicate (widest - length str - 2) ' ' ++ str

761prettyAux (h : t) l = "| " ++ fill (unwords $ map show h) ++ " |\n" ++

762prettyAux t l

763where

764v = fmap show l

765widest = maximum $ fmap length v

766fill str = replicate (widest - length str - 2) ' ' ++ str

767

768-- | Matrix pretty printer

769pretty :: (KnownNat (Count cols), Show e) => Matrix e cols rows -> String

770pretty m = "+ " ++ unwords (replicate (columns m) blank) ++ " +\n" ++

771prettyAux (toLists m) (toLists m) ++

772"+ " ++ unwords (replicate (columns m) blank) ++ " +"

773where

774v = fmap show (toList m)

775widest = maximum $ fmap length v

776fill str = replicate (widest - length str) ' ' ++ str

777blank = fill ""

778

779-- | Matrix pretty printer

780prettyPrint :: (KnownNat (Count cols), Show e) => Matrix e cols rows -> IO ()

781prettyPrint = putStrLn . pretty

Listing B.1: Type safe inductive matrix library

C
S E L E C T I V E P R O B A B I L I S T I C P R O G R A M M I N G L I B R A R Y

1{- |

2Copyright: (c) 2020 Armando Santos

3SPDX-License-Identifier: MIT

4Maintainer: Armando Santos <armandoifsantos@gmail.com>

5

6See README for more info

7-}

8

9{-# LANGUAGE DeriveFunctor #-}

10{-# LANGUAGE DeriveAnyClass #-}

11{-# LANGUAGE DeriveGeneric #-}

12{-# LANGUAGE GADTs #-}

13{-# LANGUAGE RankNTypes #-}

14

15module SelectiveProb where

16

17import Control.Concurrent

18import Control.Concurrent.Async

19import Control.DeepSeq

20import Control.Selective

21import Control.Selective.Free

22import Data.Bifunctor

23import Data.Bool

24import Data.Foldable (toList)

25import Data.Functor.Identity

26import Data.IORef

27import Data.List (group, maximumBy, sort)

28import Data.Ord

105

106

29import qualified Data.Vector as V

30import Data.Sequence (Seq, singleton)

31import GHC.Generics

32import qualified System.Random.MWC.Probability as MWCP

33

34data BlockedRequest = forall a. BlockedRequest (Request a) (IORef (Status a))

35

36data Status a = NotFetched | Fetched a

37

38type Prob = Double

39

40data Request a where

41Uniform :: [x] -> (x -> a) -> Request a

42Categorical :: [(x, Prob)] -> (x -> a) -> Request a

43Normal :: Double -> Double -> (Double -> a) -> Request a

44Beta :: Double -> Double -> (Double -> a) -> Request a

45Gamma :: Double -> Double -> (Double -> a) -> Request a

46

47instance Show a => Show (Request a) where

48show (Uniform l f) = "Uniform " ++ show (map f l)

49show (Categorical l f) = "Categorical " ++ show (map (first f) l)

50show (Normal x y _) = "Normal " ++ show x ++ " " ++ show y

51show (Beta x y _) = "Beta " ++ show x ++ " " ++ show y

52show (Gamma x y _) = "Gamma " ++ show x ++ " " ++ show y

53

54-- A Haxl computation is either completed (Done) or Blocked on pending data

requests

55data Result a = Done a | Blocked (Seq BlockedRequest) (Fetch a) deriving

Functor

56

57newtype Fetch a = Fetch {unFetch :: IO (Result a)} deriving Functor

58

59instance Applicative Fetch where

60pure = return

61

62Fetch iof <*> Fetch iox = Fetch $ do

63rf <- iof

64rx <- iox

107

65return $ case (rf, rx) of

66(Done f, _) -> f <$> rx

67(_, Done x) -> ($x) <$> rf

68(Blocked bf f, Blocked bx x) -> Blocked (bf <> bx) (f <*> x) --

parallelism

69

70instance Selective Fetch where

71select (Fetch iox) (Fetch iof) = Fetch $ do

72rx <- iox

73rf <- iof

74return $ case (rx, rf) of

75(Done (Right b), _) -> Done b -- abandon the second

computation

76(Done (Left a), _) -> ($a) <$> rf

77(_, Done f) -> either f id <$> rx

78(Blocked bx x, Blocked bf f) -> Blocked (bx <> bf) (select x f) --

speculative execution

79

80instance Monad Fetch where

81return = Fetch . return . Done

82

83Fetch iox >>= f = Fetch $ do

84rx <- iox

85case rx of

86Done x -> unFetch (f x) -- dynamic dependency on runtime value 'x

'

87Blocked bx x -> return (Blocked bx (x >>= f))

88

89requestSample :: Request a -> Fetch a

90requestSample request = Fetch $ do

91box <- newIORef NotFetched

92let br = BlockedRequest request box

93cont = Fetch $ do

94Fetched a <- readIORef box

95return (Done a)

96return (Blocked (singleton br) cont)

97

98fetch :: [BlockedRequest] -> IO ()

108

99fetch = mapConcurrently_ aux

100where

101aux (BlockedRequest r ref) = do

102threadDelay 100

103c <- MWCP.createSystemRandom

104case r of

105Uniform l f -> do

106i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) c

107writeIORef ref (Fetched . f $ l !! i)

108Categorical l f -> do

109i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c

110writeIORef ref (Fetched . f . fst $ l !! i)

111Normal x y f -> do

112a <- MWCP.sample (MWCP.normal x y) c

113writeIORef ref (Fetched . f $ a)

114Beta x y f -> do

115a <- MWCP.sample (MWCP.beta x y) c

116writeIORef ref (Fetched . f $ a)

117Gamma x y f -> do

118a <- MWCP.sample (MWCP.gamma x y) c

119writeIORef ref (Fetched . f $ a)

120

121runFetch :: Fetch a -> IO a

122runFetch (Fetch h) = do

123r <- h

124case r of

125Done a -> return a

126Blocked br cont -> do

127fetch (toList br)

128runFetch cont

129

130-- Probabilistic eDSL

131

132type Dist a = Select Request a

133

134uniform :: [a] -> Dist a

135uniform = liftSelect . flip Uniform id

136

109

137categorical :: [(a, Double)] -> Dist a

138categorical = liftSelect . flip Categorical id

139

140normal :: Double -> Double -> Dist Double

141normal x y = liftSelect (Normal x y id)

142

143bernoulli :: Double -> Dist Bool

144bernoulli x = categorical [(True, x), (False, 1 - x)]

145

146binomial :: Int -> Double -> Dist Int

147binomial n p = length . filter id <$> sequenceA (replicate n (bernoulli p))

148

149beta :: Double -> Double -> Dist Double

150beta x y = liftSelect (Beta x y id)

151

152gamma :: Double -> Double -> Dist Double

153gamma x y = liftSelect (Gamma x y id)

154

155condition :: (a -> Bool) -> Dist a -> Dist (Maybe a)

156condition c = condS (pure c) (pure (const Nothing)) (pure Just)

157

158-- Examples of Probabilistic Programs

159

160ex1a :: Dist (Bool, Bool)

161ex1a =

162let c1 = bernoulli 0.5

163c2 = bernoulli 0.5

164in (,) <$> c1 <*> c2

165

166ex1b :: Dist (Maybe (Bool, Bool))

167ex1b =

168let c1 = bernoulli 0.5

169c2 = bernoulli 0.5

170result = (,) <$> c1 <*> c2

171in condition (uncurry (||)) result

172

173ex2 :: Dist Int

174ex2 =

110

175let count = pure 0

176c1 = bernoulli 0.5

177c2 = bernoulli 0.5

178cond = condition (uncurry (||)) ((,) <$> c1 <*> c2)

179count2 = ifS (maybe False fst <$> cond) count ((+ 1) <$> count)

180count3 = ifS (maybe False snd <$> cond) count2 ((+ 1) <$> count2)

181in count3

182

183ex3 :: Dist Int

184ex3 =

185let count = pure 0

186c1 = bernoulli 0.5

187c2 = bernoulli 0.5

188cond = not . uncurry (||) <$> ((,) <$> c1 <*> c2)

189count2 = ifS c1 count ((+ 1) <$> count)

190count3 = ifS c2 count2 ((+ 1) <$> count2)

191in ifS cond count3 ((+) <$> count3 <*> ex3)

192

193ex4 :: Dist Bool

194ex4 =

195let b = pure True

196c = bernoulli 0.5

197in ifS (not <$> c) b (not <$> ex4)

198

199ex5a :: Dist (Int, Int)

200ex5a =

201let c1 = uniform [0 .. 50000]

202c2 = uniform [0 .. 50000]

203in (,) <$> c1 <*> c2

204

205ex5b :: Dist (Maybe (Int, Int))

206ex5b =

207let c1 = uniform [0 .. 50000]

208c2 = uniform [0 .. 50000]

209result = (,) <$> c1 <*> c2

210in condition (uncurry (>)) result

211

212data Coin = Heads | Tails

111

213deriving (Show, Eq, Ord, Bounded, Enum, NFData, Generic)

214

215-- Throw 2 coins

216t2c :: Dist (Coin, Coin)

217t2c =

218let c1 = bool Heads Tails <$> bernoulli 0.5

219c2 = bool Heads Tails <$> bernoulli 0.5

220in (,) <$> c1 <*> c2

221

222-- Throw 2 coins with condition

223t2c2 :: Dist (Maybe (Bool, Bool))

224t2c2 =

225let c1 = bernoulli 0.5

226c2 = bernoulli 0.5

227in condition (uncurry (||)) ((,) <$> c1 <*> c2)

228

229-- | Throw coins until 'Heads' comes up

230prog :: Dist [Coin]

231prog =

232let toss = bernoulli 0.5

233in condS

234(pure (== Heads))

235(flip (:) <$> prog)

236(pure (: []))

237(bool Heads Tails <$> toss)

238

239-- | bad toss

240throw :: Int -> Dist [Bool]

241throw 0 = pure []

242throw n =

243let toss = bernoulli 0.5

244in ifS

245toss

246((:) <$> toss <*> throw (n - 1))

247(pure [])

248

249-- | This models a simple board game where, at each turn,

250-- two dice are thrown and, if the value of the two dice is equal,

112

251-- the face of the third dice is equal to the other dice,

252-- otherwise the third die is thrown and one piece moves

253-- the number of squares equal to the sum of all the dice.

254diceThrow :: Dist Int

255diceThrow =

256condS

257(pure $ uncurry (==))

258((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw

259(pure (\(a, _) -> a + a + a))

260((,) <$> die <*> die) -- Parallel dice throw

261

262diceThrow2 :: Dist [Int]

263diceThrow2 =

264condS

265(pure $ uncurry (==))

266((\c (a, b) -> [a, b, c]) <$> die) -- Speculative dice throw

267(pure (\(a, b) -> [a, b]))

268((,) <$> die <*> die) -- Parallel dice throw

269

270diceThrow3 :: Dist Int

271diceThrow3 =

272condS

273(pure $ uncurry (==))

274((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw

275(pure (\(a, _) -> a + a + a))

276((,) <$> bigDie <*> bigDie) -- Parallel dice throw

277

278die :: Dist Int

279die = uniform [1 .. 6]

280

281bigDie :: Dist Int

282bigDie = uniform [0 .. 50000]

283

284-- | Infering the weight of a coin.

285--

286-- The coin is fair with probability 0.8 and biased with probability 0.2.

287weight :: Dist Prob

288weight =

113

289ifS

290(bernoulli 0.8)

291(pure 0.5)

292(beta 5 1)

293

294-- Sampling/Inference Algorithms

295

296sample :: Dist a -> Int -> Dist [a]

297sample r n = sequenceA (replicate n r)

298

299-- monte carlo sampling/inference

300monteCarlo :: Ord a => Int -> Dist a -> Dist [(a, Double)]

301monteCarlo n d =

302let r = sample d n

303in map (\l -> (head l, fromIntegral (length l) / fromIntegral n)) . group

. sort <$> r

304

305-- Inefficient rejection sampling

306rejection :: (Bounded c, Enum c, Eq c) => ([a] -> [b] -> Bool) -> [b] -> Dist

c -> (c -> Dist a) -> Dist c

307rejection predicate observed proposal model = loop

308where

309len = length observed

310loop =

311let parameters = proposal

312generated = sample (bindS parameters model) len

313cond = predicate <$> generated <*> pure observed

314in ifS

315cond

316parameters

317loop

318

319-- forward sampling

320runToIO :: Dist a -> IO a

321runToIO = runSelect interpret

322where

323interpret (Uniform l f) = do

324threadDelay 100

114

325c <- MWCP.createSystemRandom

326i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) c

327return (f $ l !! i)

328interpret (Categorical l f) = do

329threadDelay 100

330c <- MWCP.createSystemRandom

331i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c

332return (f . fst $ l !! i)

333interpret (Normal x y f) = do

334threadDelay 100

335c <- MWCP.createSystemRandom

336f <$> MWCP.sample (MWCP.normal x y) c

337interpret (Beta x y f) = do

338threadDelay 100

339c <- MWCP.createSystemRandom

340f <$> MWCP.sample (MWCP.beta x y) c

341interpret (Gamma x y f) = do

342threadDelay 100

343c <- MWCP.createSystemRandom

344f <$> MWCP.sample (MWCP.gamma x y) c

345

346runToFetch :: Dist a -> Fetch a

347runToFetch = runSelect requestSample

348

349runToIO2 :: Dist a -> IO a

350runToIO2 = runFetch . runToFetch

351

352distMean :: Dist a -> a

353distMean = runIdentity . runSelect interpret

354where

355interpret (Uniform l f) = Identity . f . (!! meanIndex) $ l

356where

357meanIndex = (length l - 1) `div` 2

358-- There's no sensible mean, so the most probable value is returned

359interpret (Categorical l f) = Identity . f . fst . (!! maxi) $ l

360where

361maxi = snd $ maximumBy (comparing fst) (zip (map snd l) [0 ..])

362interpret (Normal x _ f) = Identity $ f x

115

363interpret (Beta x _ f) = Identity $ f x

364interpret (Gamma x _ f) = Identity $ f x

365

366distStandardDeviation :: Dist a -> a

367distStandardDeviation = runIdentity . runSelect interpret

368where

369interpret (Uniform l f) = Identity . f . (!! stdIndex) $ l

370where

371stdIndex = round . sqrt $ ((fromIntegral (length l) ^ 2) - 1) / 12

372interpret (Categorical _ _) = error "No sensible value"

373interpret (Normal _ y f) = Identity $ f y

374interpret (Beta _ y f) = Identity $ f y

375interpret (Gamma _ y f) = Identity $ f y

376

377-- Selective Applicative Functor utilities

378

379-- Guard function used in McCarthy's conditional

380

381-- | It provides information about the outcome of testing @p@ on some input

@a@,

382-- encoded in terms of the coproduct injections without losing the input

383-- @a@ itself.

384grdS :: Applicative f => f (a -> Bool) -> f a -> f (Either a a)

385grdS f a = selector <$> applyF f (dup <$> a)

386where

387dup x = (x, x)

388applyF fab faa = bimap <$> fab <*> pure id <*> faa

389selector (b, x) = bool (Left x) (Right x) b

390

391-- | McCarthy's conditional, denoted p -> f,g is a well-known functional

392-- combinator, which suggests that, to reason about conditionals, one may

393-- seek help in the algebra of coproducts.

394--

395-- This combinator is very similar to the very nature of the 'select'

396-- operator and benefits from a series of properties and laws.

397condS :: Selective f => f (b -> Bool) -> f (b -> c) -> f (b -> c) -> f b -> f

c

116

398condS p f g = (\r -> branch r f g) . grdS p

Listing C.1: Selective probabilistic programming library

While doing this work Armando Santos held a Research Grant of the DaVinci Project funded by FEDER (through
the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme) and
by National Funds through the FCT (Portuguese Foundation for Science and Technology, I.P.) under Grant
No. PTDC/CCI-COM/29946/2017.

	1 Introduction
	1.1 Motivation and Goals
	1.2 State of the Art
	1.2.1 Hierarchy of Abstractions
	1.2.2 Functors
	1.2.3 Applicative Functors
	1.2.4 Monads
	1.2.5 Arrows
	1.2.6 Selective Applicative Functors
	1.2.7 Summary

	1.3 Related Work
	1.3.1 Exhaustive Probability Distribution Encoding
	1.3.2 Embedded Domain Specific Languages

	1.4 Structure of the Dissertation

	2 Background
	2.1 Set Theory
	2.2 Basic Probabilities and Distributions
	2.3 (Linear) Algebra of Programming
	2.3.1 Category of Matrix Basic Structure
	2.3.2 Biproducts
	2.3.3 Biproduct Functors

	2.4 Stochastic Matrices
	2.5 Summary

	3 Contribution
	3.1 The Problem and its Challenges
	3.1.1 Probabilistic Interpretation of Selective Functors
	3.1.2 Inefficient Probability Encodings
	3.1.3 Proposed Approach

	3.2 Probabilistic Interpretation of Arrows
	3.3 Type Safe Linear Algebra of Programming Matrix Library
	3.4 Probabilistic Interpretation of Selective Functors
	3.5 Type safe inductive matrix definition
	3.5.1 The Probability Distribution Matrix and the Selective Abstraction
	3.5.2 Equational Reasoning

	3.6 Probabilistic Programming eDSL & Sampling
	3.6.1 Examples of Probabilistic Programs
	3.6.2 Sampling and Inference Algorithms

	3.7 Sampling as a Concurrency Problem
	3.7.1 The Concurrency Monad
	3.7.2 Sampling
	3.7.3 Implementation

	3.8 Summary

	4 Applications
	4.1 LAoP Sprinkler example
	4.2 eDSL Sprinkler example
	4.3 Benchmarks
	4.3.1 LAoP Matrix composition
	4.3.2 Distribution matrix versus distribution list monad
	4.3.3 Sequential vs Concurrent Selective eDSL

	4.4 Summary

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future work

	A Type safe LAoP matrix wrapper library
	B Type safe LAoP inductive matrix definition library
	C Selective probabilistic programming library

