University of Minho
School of Engineering
Informatics Department

Armando João Isaías Ferreira dos Santos

Selective Applicative Functors \& Probabilistic Programming

University of Minho
School of Engineering
Informatics Department

Armando João Isaías Ferreira dos Santos

Selective Applicative Functors \& Probabilistic Programming

Master dissertation
Master Degree in Integrated Master's in Informatics Engineering

Dissertation supervised by
José Nuno Oliveira (INESCTEC \& University of Minho)
Andrey Mokhov (Newcastle University, UK)

COPYRIGHT AND TERMS OF USE FOR THIRD PARTY WORK

This dissertation reports on academic work that can be used by third parties as long as the internationally accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.
Readers needing authorisation conditions not provided for in the indicated licensing should contact the author through the RepositóriUM of the University of Minho.

LICENSE GRANTED TO USERS OF THIS WORK:

CC BY

https://creativecommons.org/licenses/by/4.0/

ACKNOWLEDGEMENTS

Throughout the writing of this dissertation I have received a great deal of support and assistance.

I would also like to express my sincere gratitude to my supervisor, Professor José N. Oliveira, first and foremost, for all his assistance and guidance. Without him, I wouldn't be able to tackle a lot of challenges that l've found along the way. I would like to thank him for his patient support and for all the opportunities I have been given to further my studies.

I would like to thank my co-supervisor, Andrey Mokhov, for welcoming me as his student and for proposing the subject of this master's thesis. Andrey's expertise was invaluable in the formulation of research questions and methodology. His insightful feedback pushed me to sharpen my thinking and brought my work to a higher level.

While doing this work I held a Research Grant of the DaVinci Project funded by FEDER and by National Funds, so I wish to thank FCT (Portuguese Foundation for Science and Technology, I.P.) and all people involved in the project for the opportunity.

A special, heartfelt thank you to Cláudia Correia, whose invaluable and unconditional support was what kept me moving. Thank you for always being there for me, in good and bad times, and for encouraging me to be professional and to do the right thing even when the road got rough. Without your support, this work would not have been possible.

Moreover, I would like to thank my family for standing by me, for investing on my education, and for always providing me everything I needed to strive.

Last but not least, for all the wonderful adventures, stories and shared moments over the past five years, I want to acknowledge and thank all of my friends. This master's thesis depicts five years of work, friendship, love, and without each one of you, I definitely wouldn't have made it this far.

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity.
I confirm that I have not used plagiarism or any form of undue use of information or falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Abstract

In functional programming, selective applicative functors (SAF) are an abstraction between applicative functors and monads. This abstraction requires all effects to be statically declared, but provides a way to select which effects to execute dynamically. SAF have been shown to be a useful abstraction in several examples, including two industrial case studies. Selective functors have been used for their static analysis capabilities. The collection of information about all possible effects in a computation and the fact that they enable speculative execution make it possible to take advantage to describe probabilistic computations instead of using monads. In particular, selective functors appear to provide a way to obtain a more efficient implementation of probability distributions than monads.

This dissertation addresses a probabilistic interpretation for the arrow and selective abstractions in the light of the linear algebra of programming discipline, as well as exploring ways of offering SAF capabilities to probabilistic programming, by exposing sampling as a concurrency problem. As a result, provides a Haskell type-safe matrix library capable of expressing probability distributions and probabilistic computations as typed matrices, and a probabilistic programming eDSL that explores various techniques in order to offer a novel, performant solution to probabilistic functional programming.

Keywords: master thesis, functional programming, probabilistic programming, monads, applicatives, selective applicative functor, Haskell, matrices

Abstract

RESUMO

Em programação funcional, os functores aplicativos seletivos (FAS) são uma abstração entre functores aplicativos e monades. Essa abstração requer que todos os efeitos sejam declarados estaticamente, mas fornece uma maneira de selecionar quais efeitos serão executados dinamicamente. FAS têm se mostrado uma abstração útil em vários exemplos, incluindo dois estudos de caso industriais. Functores seletivos têm sido usados pela suas capacidade de análise estática. O conjunto de informaçães sobre todos os efeitos possíveis numa computação e o facto de que eles permitem a execução especulativa tornam possível descrever computações probabilísticas. Em particular, functores seletivos parecem oferecer uma maneira de obter uma implementação mais eficiente de distribuições probabilisticas do que monades.

Esta dissertação aborda uma interpretação probabilística para as abstrações Arrow e Selective à luz da disciplina da álgebra linear da programação, bem como explora formas de oferecer as capacidades dos FAS para programação probabilística, expondo sampling como um problema de concorrência. Como resultado, fornece uma biblioteca de matrizes em Haskell, capaz de expressar distribuições de probabilidade e cálculos probabilísticos como matrizes tipadas e uma eDSL de programação probabilística que explora várias técnicas, com o obejtivo de oferecer uma solução inovadora e de alto desempenho para a programação funcional probabilística.

Palavras-chave: dissertação de mestrado, programação funcional, programação probabilística, monades, aplicativos, funtores aplicativos seletivos, haskell, matrizes

CONTENTS

1 INTRODUCTION 1
1.1 Motivation and Goals 2
1.2 State of the Art 2
1.2.1 Hierarchy of Abstractions 3
1.2.2 Functors 3
1.2.3 Applicative Functors 4
1.2.4 Monads 5
1.2.5 Arrows 7
1.2.6 Selective Applicative Functors 8
1.2.7 Summary 10
1.3 Related Work 11
1.3.1 Exhaustive Probability Distribution Encoding 11
1.3.2 Embedded Domain Specific Languages 11
1.4 Structure of the Dissertation 12
2 BACKGROUND 13
2.1 Set Theory 13
2.2 Basic Probabilities and Distributions 14
2.3 (Linear) Algebra of Programming 19
2.3.1 Category of Matrix Basic Structure 19
2.3.2 Biproducts 20
2.3.3 Biproduct Functors 21
2.4 Stochastic Matrices 22
2.5 Summary 23
3 CONTRIBUTION 24
3.1 The Problem and its Challenges 24
3.1.1 Probabilistic Interpretation of Selective Functors 24
3.1.2 Inefficient Probability Encodings 24
3.1.3 Proposed Approach 25
3.2 Probabilistic Interpretation of Arrows 25
3.3 Type Safe Linear Algebra of Programming Matrix Library 26
3.4 Probabilistic Interpretation of Selective Functors 28
3.5 Type safe inductive matrix definition 30
3.5.1 The Probability Distribution Matrix and the Selective Abstraction 33
3.5.2 Equational Reasoning 35
3.6 Probabilistic Programming eDSL \& Sampling 37
3.6.1 Examples of Probabilistic Programs 40
3.6.2 Sampling and Inference Algorithms 43
3.7 Sampling as a Concurrency Problem 45
3.7.1 The Concurrency Monad 45
3.7.2 Sampling 46
3.7.3 Implementation 46
3.8 Summary 49
4 APPLICATIONS 50
4.1 LAoP Sprinkler example 50
4.2 eDSL Sprinkler example 53
4.3 Benchmarks 55
4.3.1 LAoP Matrix composition 55
4.3.2 Distribution matrix versus distribution list monad 56
4.3.3 Sequential vs Concurrent Selective eDSL 57
4.4 Summary 60
5 CONCLUSIONS AND FUTURE WORK 61
5.1 Conclusions 61
5.2 Future work 62
A TYPE SAFE LAOP MATRIX WRAPPER LIBRARY 70
B TYPE SAFE LAOP INDUCTIVE MATRIX DEFINITION LIBRARY 83
C SELECTIVE PROBABILISTIC PROGRAMMING LIBRARY 105

LIST OF FIGURES

Figure 4.1 Testbed environment 55
Figure 4.2 Matrix composition benchmarks 56
Figure 4.3 Matrix vs List - select operator 57
Figure $4.4 \quad$ Benchmarks results 59

LIST OF TABLES

Table 1	Summary of abstractions and their probabilistic counterpart	10
Table 2	Number of possible arrangements of size r from n objects	18

LIST OF LISTINGS

1.1 Functor laws 3
1.2 Applicative laws 4
1.3 Monad laws and definition in terms of unit and join 5
1.4 Monad laws and definition in terms of unit and bind 5
1.5 Relation between join and bind 6
1.6 Arrow type-class 7
1.7 Arrow Kleisli type-class instance 7
1.8 Selective Applicative Functor laws 8
3.1 Inductive matrix definition 26
3.2 Type-safe wrapper around HMatrix 27
3.3 Interface equivalent function implementations 27
3.4 LAoP Monty Hall Problem 28
3.5 Selective ArrowMonad instance 28
3.6 LAoP Selective instance 29
3.7 Inductive Matrix definition 31
3.8 Matrix composition and abiding functions 32
3.9 Dimensions are type level naturals 33
3.10 Dimensions are arbitrary data types 33
3.11 Dist type alias 33
3.12 Dist - select and cond operators 34
3.13 Constrainted monad instance 34
3.14 select in terms of matrices 35
3.15 Fork x z pattern match case 36
3.16 Final result 36
3.17 eDSL primitive building-blocks 38
3.18 Conditioning function 38
3.19 Sampling function 39
3.20 Coin toss 40
3.21 Coin toss results 41
3.22 Throw coins indefinitely until Heads comes up 41
3.23 Throw game dice 42
3.24 Bad program 43
3.25 Partial monadic bind function 44
3.26 Partial monadic bind function 44
3.27 Fetch Data Type 47
3.28 Fetch Applicative instance 48
3.29 Fetch Selective instance 48
4.1 Example matrices 51
4.2 State matrix 52
4.3 State matrix composition function 52
4.4 Probability of grass being wet calculation 52
4.5 Example probabilistic functions 53
4.6 tag combinator 53
4.7 State distribution 54
4.8 Programs used in evaluation 58
A. 1 Type safe matrix wrapper library 70
B. 1 Type safe inductive matrix library 83
C. 1 Selective probabilistic programming library 105

ACRONYMS

A

AOP Algebra of Programming. 19, 21, 23, 25, 26, 30

C
cs Computer Science. 2, 3, 10
CT Category Theory. 1, 3, 5, 7, 10, 19, 25

E
EDSL Embedded domain specific language. 25, 37, 39, 43, 45, 46, 49, 50, 53, 54, 57, 58, 60-62

F

FP Functional Programming. 1, 10, 25, 45

G
GADT Generalised Algebraic Datatype. 26, 31
GHC Glasgow Haskell Compiler. 26, 30, 31, 58, 59

L
LAOP Linear Algebra of Programming. 8, 19, 21, 23, 25-27, 30, 31, 33, 37, 41, 49, 51, 53, 54, 57, 61

P
PFP Probabilistic Functional Programming. 1, 2
PPL Probabilistic Programming Language. 11

S
SAF Selective Applicative Functor. 1, 2, 8-10, 12, 24-30, 34, 35, 37, 42, 45, 49, 53-55, 60-62

INTRODUCTION

Functional Programming (FP) deals with the complexity of real life problems by handling so-called (side) effects in an algebraic manner. Monads are one such algebraic device, pioneered by Moggi (1991) in the field of computer science to verify effectful programs, i.e. programs that deal with side effects. Wadler (1989) was among the first to recommend monads in functional programming as a general and powerful approach for describing effectful (or impure) computations, while still using pure functions. The key ingredient of the monad abstraction is the bind operator, which applies functions to monadic objects carrying the effects through. This operator leads to an approach to composing effectful computations which is inherently sequential. This intrinsic nature of monads can be used for conditional effect execution. However, this abstraction is often too strong for particular programming situations, where abstractions with weaker laws are welcome.
Applicative functors (McBride and Paterson, 2008) can be used for composing statically known collections of effectful computations, as long as these computations are independent from each other. Therefore, this kind of functor can only take two effectful computations and, independently (i.e. in parallel), compute their values and return their composition.

There are situations in which just having a Monad or an Applicative is too limiting, calling for a programming abstraction sitting somewhere between Monad and Applicative. An abstraction that requires all effects to be statically declared but provides a way to select which of the effects to execute dynamically was introduced by Mokhov et al. (2019) to cope with such situations. It is called the Selective Applicative Functor (SAF) abstraction.
In the field of Probabilistic Functional Programming (PFP), monads are used to describe events (probabilistic computations in this case) that depend on others (Erwig and Kollmansberger, 2006). Better than monads, which are inherently sequential, selective functors provide a nicer abstraction for describing conditional probabilistic computations. According to Mokhov et al. (2019), this kind of functor has proved to be a helpful abstraction in the fields of static analysis (at Jane Street) and speculative execution (at Facebook), achieving good results without disturbing the adopted code style.

Arrows (Hughes, 2000) are more generic than monads and were designed to abstract the structure of more complex patterns than the monad interface could support. The most common example is the parsing library by Swierstra and Duponcheel (1996) that takes advantage of static analysis to improve its performance. This example could not be optimised using the Monad interface, given its sequential nature. Having Category Theory (CT) as a foundation, the Arrow abstraction has made its way to the FP ecosystem as a way to mitigate the somewhat heavy requirements of the powerful Monad.

There are reasons to believe that by adopting the selective abstraction one could shorten the gap that once was only filled by the Arrow abstraction (Hughes, 2000). On the one hand, the generality of the Arrow interface enables solving some of the structural constraints that refrain one from implementing a
stronger abstraction and compose various combinators in order to achieve greater expressiveness. On the other hand, languages such as Haskell, which implement many of these abstractions out of the box, render code written in the Arrow style not only convoluted, but also unnatural and difficult to refactor.

1.1 MOTIVATION AND GOALS

The rise of new topics such as e.g. machine learning, deep learning, quantum computing are stimulating major advances in the programming language domain (Selinger, 2004; Innes et al., 2018). To cope with the increased complexity, mathematics always had a principal role, either by formalising the underlying theory, or by providing robust and sound theories to deal with the new heavy machinery. But what do these topics have in common? They all deal, in some way, with probabilities.

Programming languages are a means of communicating (complex) concepts to computers. They provide a way to express, automate, abstract and reason about them. There are programming languages, specially functional programming languages, that work more closely to the mathematical level and are based in concepts like referential transparency and purity. However, not all of the abstractions useful in Computer Science (CS) have come directly from mathematics. There are several abstractions that were meant to factor out some kind of ubiquitous behaviour or to provide a sound and robust framework where one could reason about the code and provide a more efficient solution. The SAF is such an abstraction.

Probabilistic programming allows programmers to model probabilistic events and predict or calculate results with a certain degree of uncertainty. In particular PFP manipulates and manages probabilities in an abstract, high-level way, circumventing convoluted notation and complex mathematical formulas. Probabilistic programming research is primarily focused on developing optimisations to inference and sampling algorithms in order to make code run faster while preserving the posterior probabilities. There are many strategies and techniques for optimising probabilistic programs, namely using static analysis (Bernstein, 2019).

The main goal of this research is to study, evaluate and compare ways of describing and implementing probabilistic computations using the so-called selective abstraction. In particular, to evaluate the benefits of doing so in the PFP ecosystem. This will be accomplished by proposing an appropriate set of case studies and, ultimately, developing a couple of Haskell libraries that provides an efficient encoding of probabilities, taking advantage of the selective applicative abstraction. Focusing on how to overcome the intrinsic sequential nature of the monad abstraction (Scibior et al., 2015) in favour of the speculative execution of the selective functors, one of the aims of this work is to answer the following research question:
"Can the select operator be implemented more efficiently than the monadic bind operator?"

1.2 state of the art

In the context of this research, abstractions can be viewed from two perspectives:

- The programming language;
- The underlying mathematical theory.

As expected, the programming language prism makes one see things more concretely, i.e. brings one down the abstraction ladder. That is why normally many abstractions tend to be associated to quite frequent patterns and interfaces that programmers wish to generalise.

This said, a recurrent problem happens when authors try to explain their mathematical abstractions by going down to a comfortable, intuitive and easy to understand level (Petricek, 2018). However, in CS the level might be so low (one could even write: ad-hoc) that the need for such abstractions may be questionable. Mathematical abstractions are useful ways of generalising and organising patterns that abide by the same rules, i.e. are governed by the same set of laws. Thanks to much work on abstract algebra or CT, these abstractions automatically become powerful conceptual tools. In this regard, finding the right mathematical description of an abstraction is halfway for correctly using it.

The following section presents widely used mathematical abstractions that made their way into programming languages, in particular in the probabilistic programming environment. How recent work by Mokhov et al. (2019) relates to such abstractions will also be addressed. Given the scope of this research and aiming to explore interesting ways of thinking about probability distributions, every abstraction is introduced accompanied by a concrete instance in the probabilistic setting.

1.2.1 Hierarchy of Abstractions

The purpose of every abstraction is to generalise a certain pattern or behaviour. Abstract algebra is a field of mathematics devoted to studying mathematical abstractions. In particular, by studying ways of building more complex abstractions by composing simpler ones. Regarding abstractions as layers, one can pretty much think of the heritage mechanism that is so fond of object oriented programming (Liskov, 1987).

A hierarchy of abstractions aims to hide information and manage complexity. The highest level has the least information and lowest complexity. For the purposes of this research, it is interesting to see how the abstractions presented in the next sections map to the corresponding probability theory features and how the underlying levels translate to more complex ones.

1.2.2 Functors

WHAT FUNCTORS ARE Functors originate from CT as morphisms between categories (Awodey, 2010). Functors abstract a common pattern in programming and provide the ability to map a function inside some kind of structure. Since functors must preserve structure they are a powerful reasoning tool in programming.

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
    -- fmap id = id 3
    -- fmap f . fmap g = fmap (f . g)
4
```

Listing 1.1: Functor laws

PROBABILISTIC SPEAK There are many situations in which the type f a makes sense. The easiest way to understand it is to see f as a data container; then readers can instantiate f to a concrete type, for instance lists ([a]).

For the purpose of probabilistic thinking, f a instantiates to the "Distribution of a's" container and fmap (the factored out pattern) as the action of mapping a function through all the values of a distribution without changing their probabilities. (Probabilities will sum up automatically wherever function f is not injective.) As will be seen in chapter 2 there are multiple ways of combining probabilities. However, given the properties of a functor, it is only possible to map functions inside it while preserving its structure. This said, the probability functor can be casually seen as only being capable to express the probability $P(A)$ of an event A in probability theory (Tobin, 2018).

1.2.3 Applicative Functors

WHAT APPLICATIVE FUNCTORS ARE Most functional programming languages separate pure computations from effectful ones. An effectful computation performs side effects or runs in a given context while delivering its result. While working with the Haskell functional programming language, McBride and Paterson (2008) found that the pattern of applying pure functions to effectful computations popped out very often in a wide range of fields. The pattern consists mostly of 1 . embedding a pure computation in the current context while maintaining its semantics, i.e. lifting a value into an "effect free" context, and then 2. combining the results of the computations, i.e. applying a pure computation to effectful ones. All it takes to abstract this pattern is a way to factor out 1 and 2.

```
class Functor \(f=>\) Applicative \(f\) where
    pure :: a -> f a 2
    \((<*>):: f(a->b)->f a->f b\)
    - - pure id <*> u == u 4
    - = pure \(f<*>\) pure \(x==\) pure ( \(f\) ) 5
    -- u<*> (v<*> w) = pure (.) <*> \(u<*>v<*>W, 6\)
    - \(u<*>\) pure \(y=\) pure \((\$ y)<*>u \quad 7\)
```


Listing 1.2: Applicative laws

It is important to note that in order to be an applicative, f first needs to be a functor. So, every applicative is a functor. This can be seen as going down one layer of abstraction in the hierarchy, by empowering a functor f with more capabilities if it respects the applicative laws (given in the listing above).

Applicatives are interesting abstractions in the sense that they were not a transposition of a known mathematical concept. However, McBride and Paterson (2008) establish a correspondence with the standard categorical "zoo" by concluding that in categorical terms applicative functors are strong lax monoidal functors. This has opened ground for a stream of fascinating research, see e.g. (Paterson, 2012; Cooper et al., 2008; Capriotti and Kaposi, 2014).

PROBABILISTIC SPEAK Looking at the laws of applicative functors one sees that they pretty much define what the intended semantics regarding sequencing effects are. The last one, called the
interchange law (McBride and Paterson, 2008), clearly says that when evaluating the application of an effectful function to a pure argument, the order in which one evaluates the function and its argument does not matter. However, if both computations are effectful the order does matter, but a computation cannot depend on values returned by prior computations, i.e. the result of the applicative action can depend on earlier values but the effects cannot. In other words, computations can run independently from each other (Cooper et al., 2008; Marlow et al., 2014, 2016; Mokhov et al., 2019).

So, if f a represents a distribution then pure can be seen as the embedding of a given value a in the probabilistic context with 100% chance, and $(<*\rangle)$ as the action responsible of combining two independent distributions, calculating their joint probability. This said, the probability instance of applicative functors can be regarded as being able to express $P(A, B)=P(A) P(B)$, i.e. statistical independence (Tobin, 2018).

1.2.4 Monads

WHAT MONADS ARE Before being introduced in programming languages, monads had already been used in algebraic topology by Godement (1958) and CT by MacLane (1971). Monads were used in this areas because they were able to embed a given value into another structured object and because they were able to express a lot of different constructions in a single structure (Petricek, 2018). Evidence of the flexibility and usefulness of Monads can be found in programming: Moggi (1991) introduced monads in order to be capable of reasoning about effectful programs and Wadler (1995) used them to implement effectful programs in Haskell. Although they are not presented in the same way, the mathematical monad and the programming language monad are the same concept.

Definition 1.2.1. A monad in a category \mathscr{C} is defined as a triple (T, η, μ) where $T: \mathscr{C} \rightarrow \mathscr{C}$ is a functor; $\eta: I d_{\mathscr{C}} \rightarrow T$ and $\mu: T^{2} \rightarrow T$ are natural transformations, such that:

$$
\begin{aligned}
& \mu_{A} \cdot T \mu_{A}=\mu_{A} \cdot \mu_{T A} \\
& \mu_{A} \cdot \eta_{T A}=i d_{T A}=\mu_{A} \cdot T \eta_{A}
\end{aligned}
$$

In programming, two alternative but equivalent definitions for monads come up. A functor can be seen as a type constructor and natural transformations as functions:

```
class Applicative m => Monad m where1
    unit :: a -> m a 2
    join :: m (m a) -> m a 3
    -- join \cdot join = join · fmap joín 4
    -- join • unit = id = join · fmap unit 5
    =- fmap f · join = join · fmap (fmap f) 6
    -- fmap f • unit = unit • f 7
```

Listing 1.3: Monad laws and definition in terms of unit and join

```
unit :: a \(->\mathrm{m}\) a 2
( \(\gg=\) ) :: m a \(->(\mathrm{a}->\mathrm{m}\) b) \(->\mathrm{m}\) b 3
- - unit \(a \gg=f=\) unit (f a) 4
- - m >>= unit \(=m \quad 5\)
- \((m \gg=f) \gg=g=m \gg=(\mid x->f x \gg=g)\)
```

Listing 1.4: Monad laws and definition in terms of unit and bind
As can be seen, both definitions once again highlight the hierarchy of abstractions where every monad is an applicative, and consequently a functor. These two definitions are related by the following law:

$$
m \gg=f=\text { join (fmap f m) }
$$

Listing 1.5: Relation between join and bind

If monads are so versatile what type of pattern do they abstract? Intuitively, monads abstract the idea of "taking some uninteresting object and turning it into something with more structure" (Petricek, 2018). This idea can be explained by using some of several known metaphors:

- Monads as containers: Visualising it as a box to represent the type ma, the unit operation takes a value and wraps it in a box, and the join operation takes a box of boxes and unwraps it into a single box. This metaphor however, is not so good at giving intuition for bind (\gg) but, as the previous listing demonstrated, it can be seen as a combination of fmap and join.
- Monads as computations: Visualising m a as a computation, $a \rightarrow m b$ represents computations that depend on previous values; so, bind let us combine two computations emulating the sequential, imperative programming paradigm and unit represents a computation that does nothing.

Brought to programming languages, monads are used to encode different notions of computations and their structure allows us to separate pure from impure code, obtaining, in this way, nice and structured programs that are easier to reason about.

PROBABILISTIC SPEAK It is more rewarding to look at probability distributions as a probabilistic computation or event. Given this, by observing the type of bind one can infer that it let us combine an event m a with another that depends on the previous value $\mathrm{a} \rightarrow \mathrm{m}$ b (Erwig and Kollmansberger, 2006). In other words, bind in a sense encapsulates the notion of conditional probability. What happens in a conditional probability calculation $P(B \mid A)$ is that A becomes the sample space, and A \& B will only occur a fraction $P(A \cap B)$ of the time. Making the bridge with the type signature of ($\gg=$): m a represents the new sample space A and $\mathrm{a} \rightarrow \mathrm{m} \mathrm{b}$ the fraction where A and B occur. This being said, the probability monad can be seen as being able to express $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$.

The observation that probability distributions form a monad is not new. Thanks to the work of Giry (1982) and following the hierarchy of abstractions, it is easy to see that it is indeed possible to talk about probabilities with respect to the weaker structures mentioned in the other sections (Tobin, 2018; Ścibior*, 2019).

1.2.5 Arrows

WHAT ARROWS ARE Most abstractions described until now are based on CT. This is because CT can be seen as the "theory of everything", a framework where a lot of mathematical structures fit in. So, how can such an abstract theory be so useful in programming? Because computer scientists value abstraction. When designing an interface, it is meant to reveal as little as possible about the implementation details and it should be possible to switch the implementation with an alternative one, i.e. other instances of the same concept. It is the generality of a monad that is so valuable and it is thanks to the generality of CT that makes it so useful in programming.

This being said, Arrows, introduced by Hughes (2000) and inspired by the ubiquity of CT, aim to abstract how to build and structure more generic combinator libraries by suggesting the following type-class:

```
class Arrow a where 1
    arr :: (b -> c) -> a b c 2
    (>>>) :: a b c -> a c d -> a b d 3
    first :: a b c -> a (b, d) (c, d) 4
```

Listing 1.6: Arrow type-class
As one can note, Arrows make the dependence on an input explicit and abstract the structure of a given output type. This is why it is said that Arrows generalise monads.

Due to the fact that there are many more arrow combinators than monadic ones, a larger set of laws are required and the reader is referred to Hughes (2000) paper for more information about them. However, a brief explanation of the three combinators is given: arr can be seen as doing the same as return does for monads, it lifts pure functions to computations; (\gg) is analogous to ($\gg=$), it is the left-to-right composition of arrows; and first comes from the limitation that Arrows can not express binary arrow functions, so this operator converts an arrow from b to c into an arrow of pairs, that applies its argument to the first component and leaves the other unchanged.

The astute reader will see how Arrows try to encode the notion of a category and indeed the associativity law of (\gg) is one of the laws of this type-class. Moreover, if one thinks about how, for any monad a function of type $a \rightarrow m b$ is a Kleisli arrow (Awodey, 2010), one can define the arrow combinators as follows:

```
newtype Kleisli m a b = K (a -> m b) 1
2
instance Arrow (Kleisli m) where 3
    arr f = K (\b -> return (f b))}
    K f >>> K g = K (\b -> f b >>= g)
    first (K f) = K (\(b, d) -> f b >>= \c -> return (c, d))
```


Listing 1.7: Arrow Kleisli type-class instance

This shows that Arrows in fact generalise monads. Nevertheless there is still one question that goes unanswered - why generalise monads if they serve the same purpose of providing a common
structure to generic programming libraries? Hughes (2000) saw in the example of Swierstra and Duponcheel (1996) a limitation on the monadic interface and argues that the advantage of the Arrow interface is that it has a wider class of implementations. Thus, simpler libraries based on abstract data types that are not monads, can be given an arrow interface.

It seems that Arrows are more expressive than the abstractions seen in the previous sections, but what are their relation with them? Lindley et al. (2011) established the relative order of strength of Applicative \rightarrow Arrow \rightarrow Monad, in contrast to the putative order of Arrow \rightarrow Applicative \rightarrow Monad. Furthermore, given the right restrictions, Arrows are isomorphic to both Applicatives and Monads being able to "slide" between the layers of this hierarchy of abstractions.

PROBABILISTIC SPEAK As seen, Arrows allow us to categorically reason about a particular structure and benefit from all the combinators that its interface offers. However, Arrows find themselves between Applicatives and Monads with respect to their strength and therefore do not express any extra special capabilities (Lindley et al., 2011). Nevertheless, due to their generality, Arrows are able to offer either of the two abstraction (Applicative and Monad) capabilities, provided that their laws are verified.

In fact, Monads are able to express the minimum structure to represent arbitrary probability distributions (Tobin, 2018). However, there are cases where it becomes hard to reason about probability distributions using only the monadic interface (Oliveira and Miraldo, 2016). Arrows come into play regarding this problem, allowing the so called Linear Algebra of Programming (LAoP) (Macedo, 2012) as it will be seen in section 3.

1.2.6 Selective Applicative Functors

WHAT SELECTIVE APPLICATIVE FUNCTORS ARE Such as Applicatives, SAF did not originate from any existing mathematical construction, but rather from observing interface limitations in the hierarchy of abstractions established so far.

Allied to a specific research domain, like building systems and static analysis, Mokhov et al. (2019) saw the following limitations:

- Applicative functors allow effects to be statically declared, which makes it possible to perform static analysis. However, they only permit combining independent effects leaving static analysis of conditional effects aside;
- Monads allow for combining conditional effects but can only do this dynamically, which makes static analysis impossible.

This said, Mokhov et al. (2019) developed an interface (abstraction) aiming at getting the best of both worlds, the SAF:

```
class Applicative f => Selective f where
    -- also known as (<*?)
    select :: f (Either a b) -> f (a -> b) -> f b
```

```
    3
    -- x<*? pure id = either id id <$> x 4
    -- pure x<*? (y *> z) = (pure x<*? y) *> (pure x<*? z) 5
```

```
\(-=x<* ?(y<* ? z)=(f<\$>x)<* ?(g<\$>y)<* ?(h<\$>z) 6\)
-- where7
- \(\quad f x=\) Right \(<\$>x\)
-- \(\quad\) - \(y=1 a->\) bimap \((, a)(\$\) a) \(y \quad 9\)
-- \(\quad h z=u n c u r r y z\)9
-- \(\quad h z=u n c u r r y z\)

Listing 1.8: Selective Applicative Functor laws
By construction, SAFs find themselves between Applicatives and Monads and only provide one operator, select. By parametricity (Wadler, 1989), it is possible to understand that this operator runs an effect \(f\) (Either a b) which returns either an a or \(a b\). In the case of the return value being of type \(a\), the second effect must be run, in order to apply the function \(a \rightarrow b\) and obtain the \(f b\) value. In the case of the return value being of type b , then the second computation is skipped.

The laws presented in the listing above characterise SAFs. The first law indicates that the select operator should not duplicate any effect associated with \(x\), and the second indicates that select should not add any computation when the first one is pure, which allows it to be distributed.

It is worth noting that there is no law enabling SAFs to discard the second computation, in particular pure (Right \(x\) ) \(<*\) ? \(y=\) pure \(x\). And there is no law enabling the return value of \(f(a \rightarrow b)\) to be applied to the value obtained by the first computation, in particular pure (Left \(x\) ) <*? \(y=(\$\) \(x)<\$>y\). The explanation for this is simple: it allows instances of SAFs which are useful for static analysis to be performed and the select operator becomes more expressive, in the same way that Applicative Functors do not limit the execution order of two independent results.

With this in mind, it is possible to see how SAFs solve the limitation of Applicatives and Monads in the context of static analysis, allowing over-approximation and under-approximation of effects in a circuit with conditional branches. Moreover, SAFs are useful not only in static contexts but also in dynamic ones, benefiting from speculative execution (Mokhov et al., 2019).

From a theoretic point of view, SAFs can be seen as the composition of an Applicative functor \(f\) with the Either monad (Mokhov et al., 2019). Even though this formalisation is not studied by Mokhov et al. (2019), one should address the relation between SAFs and Arrows. As every SAF is an instance of Applicative, every Applicative functor is also an instance of Selective. Moreover, as pointed by Mokhov et al. (2019) it is possible to implement a specialised version of the bind ( \(\gg\) ) operator for any enumerable data type, i.e. the capacity of selecting an infinite number of cases makes SAFs equivalent to Monads (Pebles, 2019). It seems that, like Arrows, given the right conditions, SAFs are also able to "slide" between Applicatives and Monads. As a matter of fact, Hughes (2000) had already come up with an interface that extended Arrows with conditional capabilities, the ArrowChoice type-class.

Given that there was already an abstraction capable of expressing the same as SAFs, why did these arise? Arrows are more general and powerful than SAFs and could be used to solve the static analysis and speculative execution examples presented by Mokhov et al. (2019). In fact, the build system DUNE (Street, 2018) is an example of successful application of Arrows. However, adding the ability of performing static analysis or speculative execution in a code-base that is not written using the Arrow abstraction, becomes more complicated than only defining an instance for SAF in just a couple of lines. With this being said, SAFs are a "just good enough" solution for providing the ability of static analysis of conditional effects and speculative execution without relying in the more powerful and intrusive Arrow abstraction.
\begin{tabular}{|c|c|c|}
\hline Abstraction & Operators & Probabilistic Equivalent \\
\hline Functor & fmap f A & \(P(A)\) \\
\hline \multirow{2}{*}{ Applicative } & pure A & \(A\) \\
& A \(<*>\mathrm{B}\) & \(P(A) P(B)\) \\
\hline \multirow{2}{*}{ Monad } & return A & \(A\) \\
& \(\mathrm{~A} \gg=\mathrm{B}\) & \(P(B \mid A)=\frac{P(B \cap A)}{P(A)}\) \\
\hline \multirow{2}{*}{ Arrow } & arr f & Stochastic Matrix f \\
& A > B & Stochastic Matrix Composition \\
\hline Selective & select A B & - \\
\hline
\end{tabular}

Table 1: Summary of abstractions and their probabilistic counterpart

\subsection*{1.2.7 Summary}

The discrete probability distribution is a particular representation of probability distributions. A distribution is represented by a sampling space, i.e. an enumeration of both the support and associated probability mass at any point.
Discrete distributions are also instances of the Functor type-class, which means that one can take advantage of the fmap operator to map all values (the distribution domain) to others while keeping the distribution structure intact, i.e. maintaining the probabilities of each value.

The Applicative instance let us apply pure functions to distributions. By taking advantage of the Applicative laws, it is possible, for example, to combine two distributions and calculate their joint probability, if one knows that they are independent from each other.

The Monad instance let us chain distributions, giving the possibility of expressing the calculation of conditioned probability.

The most prevalent abstractions in FP were analysed in order to understand the motivation and theory behind these and in which way they relate to the probabilistic setting. Table 1 summarises the relation between each abstraction and its probabilistic counterpart. The conclusion is that mathstheoretic foundations traverse all the abstractions addressed and, in particular, CT is ubiquitous in programming and CS in general. There are cases in which the need for abstraction comes from more practical contexts, calling for a more systematic and disciplined study grounded on sound mathematical frameworks and leading to the design of correct and efficient solutions.

This said, this dissertation is chiefly concerned with identifying which probabilistic interpretations or benefits are achievable with SAFs. After a detailed analysis of the different abstractions found in the FP ecosystem, several starting points are outlined, in order to prove that the SAF abstraction is useful in providing a more efficient solution than Monads to encode probabilities. The ability of static analysis and speculative execution of SAFs has proved very useful in optimising certain libraries, as was the case of the Haxl library (Marlow et al., 2014; Mokhov et al., 2019). On the other hand, the adoption of an abstraction weaker than the monadic one, may prove to be of value in mitigating the performance constraints that the monadic interface imposes because of being inherently sequential.

\subsection*{1.3 RELATED WORK}

This thesis benefits from synergies among computing and mathematics fields such as probability theory, category theory and programming languages. This section reviews similar work in such fields of research.

\subsection*{1.3.1 Exhaustive Probability Distribution Encoding}

Over the past few years, the field of probabilistic programming has been primarily concerned with extending language capabilities in expressing probabilistic calculations and serving as practical tools for Bayesian modelling and inference (Erwig and Kollmansberger, 2006). As a result, several languages were created to respond to emerging limitations. Despite the observation that probability distributions form a monad is not new, it was not until later that its sequential and compositional nature was explored by Ramsey and Pfeffer (2002), Goodman (2013) and Gordon et al. (2013).

Erwig and Kollmansberger (2006) were among the first to encode distributions as monads by designing a probability and simulation library based on this concept. Kidd (2007), the following year, inspired by the work of Ramsey and Pfeffer (2002), introduced a modular way of probability monad construction and showed the power of using monads as an abstraction. Due to this, he was able to, through a set of different monads, offer ways to calculate probabilities and explore their compositionality, from discrete distributions to sampling algorithms.

Erwig and Kollmansberger (2006), in their library, used the non-deterministic monad to represent distributions, resulting in an exhaustive approach capable of calculating the exact probabilities of any event. However, common examples of probabilistic programming grow the sample space exponentially and make it impossible to calculate the entire distribution. Despite Larsen (2011)'s efforts to improve the performance of this library, his approach was still limited to exhaustively calculating all possible outcomes.

Apart from the asymptotic poor performance of the Erwig and Kollmansberger (2006) library, the use of the non-deterministic monad means that its sequential nature does not allow for further optimisations. It was with these two limitations in mind that many probabilistic programming systems were proposed.

\subsection*{1.3.2 Embedded Domain Specific Languages}

Probabilistic Programming Languages (PPLs) usually extend an existing programming language. The choice of the base language may depend on many factors such as paradigm, popularity and performance. There are many probabilistic programming languages with different trade-offs (Ścibior et al., 2015) and many of them are limited to ensure that the model has certain properties in order to make inference fast. The type of approach followed by these programming languages, such as BUGS (Gilks et al., 1994) and Infer.NET (Minka et al., 2009), simplify writing inference algorithms for the price of reduced expressiveness.

A more generic approach, known as universal probabilistic programming, allows the user to specify any type of model that has a computable prior. The pioneering language was Church (Goodman et al., 2012), a sub-dialect of Scheme. Other examples of probabilistic programming languages include Venture and Anglican (Mansinghka et al., 2014; Tolpin et al., 2015) both also Scheme sub-dialects.

Ścibior et al. (2015) show that the Haskell functional language is an excellent alternative to the above mentioned languages with regard to Bayesian modelling and development of inference algorithms. Just as Erwig and Kollmansberger (2006), Ścibior et al. (2015) use monads and develop a practical probabilistic programming library whose performance is competitive with that of the Anglican language. In order to achieve the desired performance, a less accurate than the exhaustive approach to calculating probabilities is used: sampling. This work by Ścibior et al. (2015), also elaborated in the first author's doctoral dissertation (Ścibior*, 2019), kept on giving rise to a more modular extension of the library presented in previous work, in order to separate modelling from inference (Ścibior et al., 2018). Despite the results obtained, both solutions suffer from the fact that they use monads only to construct probability distributions. Since monads are inherently sequential they are unable to exploit parallelism in the sampling of two independent variables.

Tobin (2018) contributes to the investigation of embedded probabilistic programming languages, which have the advantage of benefiting from various features for free such as parser, compiler and host language library ecosystem. More than that, Tobin (2018) studies the functorial and applicative nature of the Giry monad and highlights its various capabilities by mapping them to the probabilistic setting. He uses free monads, a novel technique for embedding a statically typed probabilistic programming language into a purely functional language, obtaining a syntax based on the Giry monad, and uses free applicative functors to be able to express statistical independence and explore its parallel nature. Notwithstanding the progress and studies shown, Tobin (2018) does not cope with the latest abstraction of SAF nor fills the gap on how they fit into a probabilistic context in order to benefit from their properties.

\subsection*{1.4 STRUCTURE OF THE DISSERTATION}

This text is structured in the following way: this chapter provides the context, motivation and overall goals of the dissertation. It also presents a review of the state of the art and related work. Chapter 2 introduces the most relevant background topics and chapter 3.1 explains in more detail the problem at target and its main challenges. Chapters 3 and 4 present all details of the implemented solution, as well as some application examples and evaluation results. Finally, chapter 5 presents conclusions and guidelines for future work.

\section*{BACKGROUND}

This chapter shines a light through the path of probabilities and their foundations. The aim is to provide readers with a good context refreshment and intuition, saving them from the need to resort to heavy books. While more reading is required for a full understanding of the whole background, this chapter can easily be skipped by readers familiar with these subjects.

\subsection*{2.1 SET THEORY}

The field of probability theory is the basis of statistics, giving means to model social and economic behaviour, infer from scientific experiments, or almost everything else. Through these models, statisticians are able to draw inferences from the examination of only a part of the whole.

Just as statistics was built upon the foundations of probability theory, probability theory was built upon set theory. Statisticians aim at drawing conclusions about populations of objects by making observations or conducting experiments, for which they need to identify all possible outcomes in the first place, the sample space.

Definition 2.1.1. The set \(S\) of all possible outcomes of an experience is called the sample space.
The next step, after the sample space is defined, is to consider the collection of possible outcomes of an experience.

Definition 2.1.2. An event \(E\) is any collection of possible results of an experience, i.e. any subset of \(S\) \((E \subseteq S)\).

As the reader surely knows, there are several elementary operations on sets (or events):
Union: The union of two events, \(A \cup B\), is the set of elements that belong to either \(A\) or \(B\), or both:
\[
\begin{equation*}
A \cup B=\{x: x \in A \text { or } x \in B\} \tag{1}
\end{equation*}
\]

Intersection: The intersection of two events, \(A \cap B\), is the set of elements that belong to both \(A\) and \(B\) :
\[
\begin{equation*}
A \cup B=\{x: x \in A \text { and } x \in B\} \tag{2}
\end{equation*}
\]

Complementation: The complement of an event \(A, A^{c}\), is the set of all elements that are not in \(A\) :
\[
\begin{equation*}
A^{c}=\{x: x \notin A\} \tag{3}
\end{equation*}
\]

These elementary operations can be combined and behave much like numbers:
Theorem 2.1.1.
\begin{tabular}{ll} 
1. Commutativity & \(A \cup B=B \cup A\) \\
& \(A \cap B=B \cap A\) \\
2. Associativity & \(A \cup(B \cup C)=(A \cup B) \cup C\) \\
& \(A \cap(B \cap C)=(A \cap B) \cap C\) \\
3. Distributive Laws & \(A \cap(B \cup C)=(A \cap B) \cup(A \cap C)\) \\
& \(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\) \\
3. DeMorgan's Laws & \((A \cup B)^{c}=A^{c} \cap B^{c}\) \\
& \((A \cap B)^{c}=A^{c} \cup B^{c}\)
\end{tabular}

The reader is referred to Casella and Berger (2001) for the proofs of these properties.

\subsection*{2.2 BASIC PROBABILITIES AND DISTRIBUTIONS}

Probabilities come up rather often in our daily lives. They are not only of use to statisticians. A good understanding of probability theory allows us to assess the likelihood of everyday tasks and to benefit from the wise choices learnt by experience. Probability theory is also useful in the fields of economics, medicine, science and engineering, and in risk analysis. For example, the design of a nuclear reactor must be such that the leak of radioactivity into the environment should be an extremely rare event. So, using probability theory as a tool to deal with uncertainty, the reactor can be designed to ensure that an unacceptable amount of radiation will escape once in a billion years.

WHAT PROBABILITIES ARE When an experiment is made, its realisation results in an outcome that is a subset of the sample space. If the experiment is repeated multiple times the result might vary in each repetition, or not. This "frequency of occurrence" can be seen as a probability. However, this "frequency of occurrence" is just one of the many interpretations of what a probability is, another one being more subjective: a probability is the belief of a chance of an event occurring.

For each event \(A\) in the sample space \(S\) a number in the interval \([0,1]\), said to be the probability of \(A\), is associated with \(A\) denoted \(P(A)\). The domain of \(P\), which intuitively is the set of all subsets of \(S\), is called a sigma algebra, denoted by \(\mathscr{B}\).

Definition 2.2.1. A collection of subsets of \(S\) is a sigma algebra, \(\mathscr{B}\) if it satisfies the following properties:
1. \(\varnothing \in \mathscr{B}\) (the empty set is an element of \(\mathscr{B}\) )
2. If \(A \in \mathscr{B}\), then \(A^{c} \in \mathscr{B}\) ( \(\mathscr{B}\) is closed under complementation)
3. If \(A_{1}, A_{2}, \ldots \in \mathscr{B}\), then \(\bigcup_{i=1}^{\infty} A_{i} \in \mathscr{B}\) ( \(\mathscr{B}\) is closed under countable unions)

Example 2.2.1.1. (Sigma algebras) If \(S\) has \(n\) elements, then \(\mathscr{B}\) has \(2^{n}\) elements. For example, if \(S=\{1,2,3\}\), then \(\mathscr{B}\) is the collection of \(2^{3}=8\) sets:
\begin{tabular}{lll}
\(\{1\}\) & \(\{1,2\}\) & \(\{1,2,3\}\) \\
\(\{2\}\) & \(\{1,3\}\) & \(\{\varnothing\}\) \\
\(\{3\}\) & \(\{2,3\}\) &
\end{tabular}

If \(S\) is uncountable (e.g. \(S=(-\infty,+\infty)\) ), then \(\mathscr{B}\) is the set that contains all sets of the form:
\[
[a, b] \quad[a, b) \quad(a, b] \quad(a, b)
\]

Given this, \(P(\cdot)\) can now be defined as a function from \(\mathscr{B} \rightarrow[0,1]\), this probability measure must assign to each event \(A\), a probability \(P(A)\) and abide the following properties:

Definition 2.2.2. Given a sample space \(S\) and an associated sigma algebra \(\mathscr{B}\), a probability function \(P\) satisfies:
1. \(P(A) \in[0,1]\), for all \(A \in \mathscr{B}\)
2. \(P(\varnothing)=0\) (i.e. if \(A\) is the empty set, then \(P(A)=0\) )
3. \(P(S)=1\) (i.e. if \(A\) is the entire sample space, then \(P(A)=1\) )
4. \(P\) is countably additive, meaning that if, \(A_{1}, A_{2}, \ldots\)
is a finite or countable sequence of disjoint events, then:
\[
P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots
\]

These properties satisfy the Axioms of Probability (or the Kolmogorov Axioms), and every function that satisfies them is called a probability function. The first three axioms are pretty intuitive and easy to understand. However, the fourth one is more subtle and is an implication of the third Kolmogorov Axiom, called the Axiom of Countable Additivity which says that one can calculate probabilities of complicated events by adding up the probabilities of smaller events, provided those smaller events are disjoint and together contain the entire complicated event.

\section*{Calculus of Probabilities}

Many properties of a probability function follow from the From the Axioms of Probabilities, which is useful for calculating more complex probabilities. The additivity property automatically implies certain basic properties that are true for any probability model.

Taking a look at \(A\) and \(A^{c}\) one can see that they are always disjoint, and their union is the entire sample space: \(A \cup A^{c}=S\). By the additivity property one has \(P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)=P(S)\), and since \(P(S)=1\) is known, then \(P\left(A \cup A^{c}\right)=1\) or:
\[
\begin{equation*}
P\left(A^{c}\right)=1-P(A) \tag{4}
\end{equation*}
\]

In words: the probability of an event not happening is equal to one minus the probability of an event happening.

Theorem 2.2.1. Let \(A_{1}, A_{2}, \ldots\) be events that form a partition of the sample space \(S\). Let \(B\) be any event, then:
\[
P(B)=P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\ldots
\]

Theorem 2.2.2. Let \(A\) and \(B\) be two events such that \(B \subseteq A\). Then:
\[
\begin{equation*}
P(A)=P(B)+P\left(A \cap B^{c}\right) \tag{5}
\end{equation*}
\]

From this one can draw, since \(P\left(A \cap B^{c}\right) \geq 0\) always holds:
Corollary 2.2.2.1. (Monotonicity) Let \(A\) and \(B\) be two events such that \(B \subseteq A\). Then:
\[
P(A) \geq P(B)
\]

Moreover, by rearranging (5) one obtains:
Corollary 2.2.2.2. Let \(A\) and \(B\) be two events such that \(B \subseteq A\). Then:
\[
P\left(A \cap B^{c}\right)=P(A)-P(B)
\]

Finally, by lifting constraint \(B \subseteq A\) one has the following, more general property:
Theorem 2.2.3. (Principle of inclusion-exclusion, two-event version) Let \(A\) and \(B\) be two events. Then:
\[
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{6}
\end{equation*}
\]

Since \(P(A \cup B) \leq 1\), property (6) leads to (after some rearranging):
\[
\begin{equation*}
P(A \cap B) \geq P(A)+P(B)-1 \tag{7}
\end{equation*}
\]

This inequality is a special case of what is known as the Bonferroni's Inequality. Altogether, one can say that the basic properties of total probability, subadditivity, and monotonicity hold. The interested reader is referred to (Casella and Berger, 2001) or (Annis, 2005) for proofs and more details concerning the theorems above.

\section*{Counting and Enumerating Outcomes}

Counting methods can be used to assess probabilities in finite sample spaces. In general, counting is non-trivial, often needing constraints to be taken into account. The approach is to break counting problems into easy-to-count sub-problems and use some combination rules.

Theorem 2.2.4. (Fundamental Theorem of Counting) If a job consists in \(k\) tasks, in which the \(i\)-th task can be done in \(n_{i}\) ways, \(i=1, \ldots, k\), then the whole job can be done in \(n_{1} \times n_{2} \times \ldots \times n_{k}\) ways.

Although theorem 2.2.4 is a good starting point, in some situations there are more aspects to consider. In a lottery, for instance, the first number can be chosen in 44 ways and the second in 43 ways, making a total of \(44 \times 43=1892\) ways. However, if the player could pick the same number twice then the first two numbers could be picked in \(44 \times 44=1936\) ways. This shows the distinction between counting with replacement and counting without replacement. There is a second important aspect in any counting problem: whether or not the order of the tasks matters. Taking these considerations into account, it is possible to construct a \(2 \times 2\) table of possibilities.

Back to the lottery example, one can express all the ways a player can pick 6 numbers out of 44 , under the four possible cases:
- ordered, without replacement - Following theorem 2.2.4 the first number can be picked in 44 ways, the second in 43 , etc. So, there are:
\[
44 \times 43 \times 42 \times 41 \times 40 \times 39=\frac{44!}{38!}=5082517440
\]
- ordered, with replacement - Each number can be picked in 44 ways, so:
\[
44 \times 44 \times 44 \times 44 \times 44 \times 44=44^{6}=7256313856
\]
- unordered, without replacement - Since how many ways we can pick the numbers if the order is taken into account is known, then one just needs to divide the redundant orderings. Following theorem 2.2.4, 6 numbers can be rearranged in 6!, so:
\[
\frac{44 \times 43 \times 42 \times 41 \times 40 \times 39}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=\frac{44!}{6!38!}=7059052
\]

This last form of counting is so frequent that there is a special notation for it:
Definition 2.2.3. For non-negative numbers, \(n\) and \(r\), where \(n \geq r\), the symbol \(\binom{n}{r}\), read \(n\) choose \(r\), as:
\[
\binom{n}{r}=\frac{n!}{r!(n-r)!}
\]
- unordered, with replacement - To count this more difficult case, it is easier to think of placing 6 markers into 44 boxes. Someone noticed (Feller, 1971) that all one needs to keep track of is the
arrangement of the markers and the walls of the boxes. Therefore, 43 (walls) +6 markers \(=49\) objects which can be combined in 49 ! ways. Redundant orderings still need to be divided, so:
\[
\frac{49!}{6!43!}=13983816
\]

The following table summarises these situations:
\begin{tabular}{lcc}
\hline & Without replacement & With replacement \\
\hline Ordered & \(\frac{n!}{(n-r!)}\) & \(n^{r}\) \\
Unordered & \(\binom{n}{r}\) & \(\binom{n+r-1}{r}\) \\
\hline
\end{tabular}

Table 2: Number of possible arrangements of size \(r\) from \(n\) objects

Counting techniques are useful when the sample space is finite and all outcomes in \(S\) are equally probable. So, the probability of an event can be calculated by counting the number of its possible outcomes. For \(S=\left\{S_{1}, \ldots, S_{n}\right\}\), saying that all the elements are equally probable means \(P\left(\left\{s_{i}\right\}=\frac{1}{N}\right.\). From the Axiom of Countable Additivity, for any event \(A\) :
\[
P(A)=\frac{\# \text { of elements in } A}{\# \text { of elements in } S}
\]

\section*{Conditional Probability and Independence}

All probabilities dealt with so far were unconditional. There are situations in which it is desirable to update the sample space based on new information, that is to calculate conditional probabilities.

Definition 2.2.4. If \(A\) and \(B\) are events in S , and \(P(B)>0\), then the conditional probability of \(A\) given \(B\), is:
\[
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{8}
\end{equation*}
\]

It is worth noting that what happens in a conditional probability calculation is that \(B\) becomes the sample space \((P(B \mid B)=1)\). The intuition is that the event \(B\) will occur a fraction \(P(B)\) of the time and, both \(A\) and \(B\) will occur a fraction \(P(A \cap B)\) of the time; so the ratio \(P(A \cap B) / P(B)\) gives the proportion of times when both \(B\) and \(A\) occur.

Rearranging (8) gives a useful way to calculate intersections:
\[
\begin{equation*}
P(A \cap B)=P(A \mid B) P(B) \tag{9}
\end{equation*}
\]

By symmetry with (9) and equating both right-hand sides of the symmetry equations:

Theorem 2.2.5. (Bayes' Theorem) Let \(A\) and \(B\) be two events with positive probabilities each:
\[
\begin{equation*}
P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)} \tag{10}
\end{equation*}
\]

There might be cases where an event \(B\) does not have any impact on the probability of another event \(A: P(A \mid B)=P(A)\). If this holds then by using Bayes' rule (10):
\[
P(B \mid A)=P(A \mid B) \frac{P(B)}{P(A)}=P(A) \frac{P(B)}{P(A)}=P(B)
\]

\section*{2.3 (LINEAR) ALGEBRA OF PROGRAMMING}

LAoP is a quantitative extension to the Algebra of Programming \((A o P)\) discipline that treats binary functions as relations. This extension generalises relations to matrices and sees them as arrows, i.e. morphisms typed by the dimensions of the matrix. This extension is important as it paves the way to a categorical approach which is the starting point for the development of an advanced type system for linear algebra and its operators.

Central to the approach is the notion of a biproduct, which merges categorical products and coproducts into a single construction. Careful analysis of the biproduct axioms as a system of equations provides a rich palette of constructs for building matrices from smaller ones, regarded as blocks.

By regarding a matrix as a morphism between two dimensions, matrix multiplication becomes simple matrix composition:


Since this discipline is based on \(C T\), some basic familiarity with categories \(\mathbb{C}, \mathbb{D}\), functors \(\mathbb{F}\), \(\mathbb{G}: \mathbb{C} \rightarrow \mathbb{D}\), natural transformations \(\alpha, \beta: \mathbb{F} \rightarrow \mathbb{G}\), products and coproducts, is assumed. The reader is referred to e.g. (Awodey, 2010), (Oliveira, 2008) and (Macedo, 2012) for more details.

\subsection*{2.3.1 Category of Matrix Basic Structure}

\section*{Vectors}

Wherever one of the dimensions of the matrix is 1 the matrix is referred as a vector. In more detail, a matrix of type \(m \leftarrow 1\) is a column vector, and of type \(1 \leftarrow m\) is a row vector.

\section*{Identity}

The identity matrix has type \(n \leftarrow n\). For every object \(n\) in the category there must be a morphism of this type, which will be denoted by \(n \stackrel{i d_{n}}{\longleftarrow} n\)

\section*{Transposed Matrix}

The transposition operator changes the matrix shape by swapping rows with columns. Type-wise, this means converting an arrow of type \(n \stackrel{A}{\leftarrow} m\) into an arrow of type \(m \stackrel{A}{ }_{\leftarrow}^{\leftarrow} n\).

\section*{Bilinearity}

Given two matrices it is possible to add them up entry-wise, leading to \(A+B\) with 0 as unit - the matrix wholly filled with 0 's. This unit matrix works as one would expect with respect to matrix composition:
\[
\begin{aligned}
& A+0=A=0+A \\
& A \cdot 0=A=0 \cdot A
\end{aligned}
\]

In fact, matrices form an Abelian category:
\[
\begin{aligned}
& A \cdot(B+C)=A \cdot B+A \cdot C \\
& (B+C) \cdot A=B \cdot A+C \cdot A
\end{aligned}
\]

\subsection*{2.3.2 Biproducts}

In an Abelian category, a biproduct diagram for the objects \(m, n\) is a diagram of the following shape

whose arrows \(\pi_{1}, \pi_{2}, i_{1}, i_{2}\), satisfy the following laws:
\[
\begin{aligned}
& \pi_{1} \cdot i_{1}=i d_{m} \\
& \pi_{2} \cdot i_{2}=i d_{n} \\
& i_{1} \cdot \pi_{1}+i_{2} \cdot \pi_{2}=i d_{r} \\
& i_{1} \cdot i_{2}=0 \\
& \pi_{2} \cdot i_{1}=0
\end{aligned}
\]

How do biproducts relate to products and coproducts in the category? The diagram and definitions below depict how products and coproducts arise from biproducts (the product diagram is in the lower half; the upper half is the coproduct one):


By analogy with the AoP, expressions \([A \mid B]\) and \(\left[\frac{A}{B}\right]\) will be read 'A junc \(B\) ' and ' \(C\) split D', respectively. These combinators purport the effect of putting matrices side by side or stacked on top of each other, respectively. Taken from the rich algebra of such combinators, the following laws are very useful, where capital letters \(M, N\), etc. denote suitably typed matrices (the types, i.e. dimensions, involved in each equality can be inferred by drawing the corresponding diagram):
- Fusion laws:
\[
\begin{align*}
P \cdot[A \mid B] & =[P \cdot A \mid P \cdot B]  \tag{11}\\
{\left[\frac{A}{B}\right] \cdot P } & =\left[\frac{A \cdot P}{B \cdot P}\right] \tag{12}
\end{align*}
\]
- Divide and conquer:
\[
\begin{equation*}
[A \mid B] \cdot\left[\frac{C}{D}\right]=A \cdot C+B \cdot D \tag{13}
\end{equation*}
\]
- Converse duality:
\[
\begin{equation*}
[A \mid B]^{\circ}=\left[\frac{A^{\circ}}{B^{\circ}}\right] \tag{14}
\end{equation*}
\]
- Exchange ("Abide") law:
\[
\begin{equation*}
\left[\left.\left[\frac{A}{C}\right] \right\rvert\,\left[\frac{B}{D}\right]\right]=\left[\frac{[A \mid B]}{[C \mid D]}\right] \tag{15}
\end{equation*}
\]

\subsection*{2.3.3 Biproduct Functors}

As in the relational setting of the standard AoP, the biproduct presented above gives rise to the coproduct bifunctor that joins two matrices (which is usually known as direct sum):
\[
A \oplus B=\left[i_{1} \cdot A \mid i_{2} \cdot B\right]
\]


The well-known Kronecker product is the tensor product in matrix categories. In the context of LAoP, this bifunctor may be expressed in terms of the Khatri Rao product which, in turn, can and be expressed in terms of the Hadamard and Schur matrix multiplication:
\begin{tabular}{ccc}
\(k\) & \(k \times j\) & \(j\) \\
\(\uparrow \uparrow\) & \(A \otimes\) & \(\uparrow B\) \\
\(n\) & \(n \times m\) & \(m\)
\end{tabular}

\subsection*{2.4 STOCHASTIC MATRICES}

Functions are special cases of relations - the deterministic, totally defined ones. Relations, however, can also be considered as special cases of functions - the set-valued ones, as captured by universal property:
\[
\begin{equation*}
f=\Lambda R \equiv\langle\forall b, a:: b R a \equiv b \in f a\rangle \tag{16}
\end{equation*}
\]

This implies that a binary relation \(R\) can be expressed uniquely by the \(\Lambda R\) function, which yields the (possibly empty) set of all \(b\) that \(R\) relates to \(a\) for a given input \(a\). Dually, any set-valued function \(f\) "is" a relation that relates every input to any of its possible outputs.
Note the word 'possible' in the previous paragraph: it means that any outcome may be output, but nothing is said about which outputs are more probable than others. Even if one were able to foresee such a probability or tendency, how would it be expressed?

Written in terms of types, (16) is the isomorphism:

\(A \rightarrow \mathscr{P} B\) is the functional type that can also be written \((\mathscr{P} B)^{A}\), where \(\mathscr{P} B\) denotes the power set of \(B\), and \(A \rightarrow B\) is the relational type of all relations \(R \subseteq B \times A\). Operator \(\Lambda\), termed the power transpose (Bird and de Moor, 1997; Oliveira, 2012; Freyd and Scedrov, 1990), defines the isomorphism, from right to left. Since \(\mathscr{P} B\) is isomorphic to \(2^{B}\), which is the set of all \(B\) predicates, one might write \(A \rightarrow 2^{B}\) for the type of \(f\) in (16), where \(2=\{0,1\}\) is the set of truth values ( 0 is false and 1 is true). So for each input \(a \in A, f a\) is a predicate that tells which outputs are likely to be \(b \in B\).
With \(2^{B}\) one is able to tell which outputs can be issued but not how likely they are. Ranking output probability can be achieved by extending from \(B\) predicates to \([0,1]^{B}\) distributions, where \([0,1]\) denotes the interval of real numbers between 0 and 1 . That is, on extends the discrete set \(\{0,1\}\) to the corresponding interval of real numbers. Not every function \(\mu \in[0,1]^{B}\) qualifies: only those such that \(\sum_{b \in B} \mu b=1\) holds. By defining
\[
\begin{equation*}
\mathscr{D} B=\left\{\mu \in[0,1]^{B} \mid \sum_{b \in B} \mu b=1\right\} \tag{18}
\end{equation*}
\]
\(A \rightarrow \mathscr{D} B\) will be regarded as the type of all probabilistic functions from \(A\) to \(B\). Probabilistic functions have been around in various guises. For \(B=A\) they can be regarded as Markov chains.

In what way does the AoP extends to probabilistic functions? In the same way one can look for an isomorphism close to (16), this time with \(\mathscr{D} B\) instead of \(\mathscr{P} B\). This is not difficult to accomplish: just write \((\mathscr{D} B)^{A}\) instead of \(A \rightarrow \mathscr{D} B\) and extend \(\mathscr{D} B\) to \([0,1]^{B}\), temporarily leaving aside the requirement captured by the summation in (18): by uncurrying, \(\left([0,1]^{B}\right)^{A}\) is isomorphic to \([0,1]^{B \times A}\), which can be considered as the mathematical space of all \([0,1]\)-valued matrices with as many columns as elements in \(A\) and rows as elements in \(B\). Thus, given the probabilistic function \(A \xrightarrow{f} \mathscr{D} B\), its matrix transform \(\llbracket f \rrbracket\) is an unique \(M\) matrix, such that:
\[
\begin{equation*}
M=\llbracket f \rrbracket \equiv\langle\forall b, a:: M(b, a)=(f a) b\rangle \tag{19}
\end{equation*}
\]

Recalling (18), each matrix of this kind will be such that all its columns will add up to 1 , i.e., leftstochastic. This gives rise to a typed linear algebra of programming in which matrices replace relations and which can be used to express and reason about (recursive) probabilistic functions (Oliveira, 2012).

\subsection*{2.5 SUMMARY}

Common knowledge indicates that probabilities concern numerical descriptions of how likely an event is to occur, or how likely it is to be true for a hypothesis. A number between 0 and 1 is the probability of an occurrence, where 0 indicates the impossibility of the event and 1 indicates certainty. It is easy to reason about the possibility of such outcomes for simple events, e.g. a flip of a coin or a game of cards, but most real life situations require carefulness and rigour. Set theory is the mathematical framework on which probability theory and its calculus are founded, by expressing it through a set of axioms in a rigorous mathematical manner. Without this basis, abstractions such as LAoP, which allow one to reason about probabilities in a more compositional, generic, higher-level manner, would not be possible. With regard to the computational aspect of probabilities and probabilistic programming, linear algebra is closer than what could be imagined and, that thanks to matrices and these mathematical foundations, correct, efficient and compositional solutions were made possible to build.
The main purpose of the current chapter is to provide a path to basic probability theory, its foundations and its common vocabulary, followed by a brief introduction to the linear algebra of programming and stochastic matrices.

\section*{CONTRIBUTION}

This chapter presents the main contributions of the work carried out in this master's project and discusses its major obstacles and difficulties. As will be seen later, the contributions range over theoretical and practical aspects of the problem being addressed. Concerning theoretical contributions, the probabilistic interpretations of Arrows and SAFs are discussed, while bridging between sampling problems and concurrency ones. With regard to practical contributions, two probabilistic programming libraries in Haskell are described and presented.

\subsection*{3.1 THE PROBLEM AND ITS CHALLENGES}

\subsection*{3.1.1 Probabilistic Interpretation of Selective Functors}

Section 1.2 presented some of the most well-known abstractions in functional programming, as well as their probabilistic interpretation. How these abstractions are translated into the context of probabilistic programming was also addressed. The fact that the Giry monad (Giry, 1982; Tobin, 2018) is an Applicative Functor takes us closer to a potential probabilistic interpretation of SAFs. In addition, the relationship between SAFs and Arrows (Mokhov et al., 2019) has also led to the challenge of figuring out how Arrows' fundamentals and generality can be useful in finding the probabilistic interpretation of SAFs and how it relates to any probabilistic programming construct.

\subsection*{3.1.2 Inefficient Probability Encodings}

There are two ways to model probabilistic distributions. In the light of the work outlined in section 1.3, it is possible to opt for an exhaustive representation of distributions, where all chance-value pairs are stored and any structural manipulation is done by changing all pairs, one by one. This method has the advantage of ensuring the calculation of the exact probability of any type of event. However, even a seemingly simple problem can lead to state explosions within distributions, which have major negative impacts on performance. With this in mind, another (less rigorous) method of calculating probabilities is to infer them using less reliable, yet faster and more efficient inference algorithms, instead of always measuring the exact probabilities across all values.

Modelling a simple program that calculates the likelihood that a particular event will occur in \(N\) throws of a die, using an exhaustive method, will easily become unfeasible even for a relatively small \(N\). However, modelling complex, safety-critical problems (such as e.g. calculating the probability of two aircrafts crashing) using a non-exhaustive approach may lead to hazardous situations, if the
accuracy of the results is not the desired one. This trade-off is a topic of much concern in probabilistic programming.

Therefore, finding a way capable of minimising the distance between the two most common probabilistic distribution encodings is challenging. Another challenge is to find one that takes advantage of the SAF abstraction and manages to make the most out of its static analysis or speculative execution properties.

\subsection*{3.1.3 Proposed Approach}

Regarding the problem of finding the probabilistic interpretation of SAFs, in order to encode the basic LAoP combinators in a cost-effective and compositional manner, a type safe matrix representation and manipulation library was developed in Haskell. From reading section 2.4, one can understand how, by using matrices and their probabilistic semantics, this library can be useful to help building intuition and exploring the functorial, applicative and monadic structure of probability distributions.

Regarding the problem of finding an efficient probability encoding that is capable of taking advantage of the SAF abstraction, an Embedded domain specific language (eDSL) suited for writing probabilistic programs was designed, recurring to the Free Selective Functor construction. This eDSL will be important to see how far the Selective abstraction is able to go in the probabilistic setting and what type of benefits one can extract from its conditional static analysis capabilities.

Of course, all this would not be possible without a deep understanding of the theoretical context in which SAFs are inserted, which leads to a probabilistic semantics for SAFs, where all the other contributions rest on top of.

After understanding the probabilistic capabilities of SAFs, an analysis is performed to decide which of the two alternative approaches could have more impact - either by reusing the former type safe LAoP library or by adopting the probabilistic eDSL library to express probabilistic programs. A set of case studies and examples shall be described to benchmark all contributions in the context of the related work.

\subsection*{3.2 PROBABILISTIC INTERPRETATION OF ARROWS}

AoP (Bird and de Moor, 1997) is a calculational and point-free programming discipline, making a case for the use of CT to achieve elegant correctness proofs. The book shows how the language of CT can be used to describe the basic building blocks of datatypes found in FP and the associated program derivation. The lesson from AoP, where functions are viewed as a special case of relations, is that by changing the category (from Fun to Rel) expressive power increases. Relations are inherently non-deterministic and are capable of specifying a wider range of problems by making rich operators, such as converse and division, universally available. Other reasons for this transition are that more structure is uncovered, opportunities for generalisation are unveiled and the arrangement of specific proofs becomes simpler. "Keep the definition, change category" is a slogan that neatly summarises the lesson that Bird and de Moor (1997) have passed on to the community and emphasises on gradual composition, as practised in relational algebra.

How can this lesson be used in a probabilistic context? Oliveira and Miraldo (2016) direct us towards LAoP, inspired by the work of Macedo (2012) and Oliveira (2012). LAoP generalises relations and
functions treating them as Boolean matrices and in turn consider these as arrows. Instead of staying with matrices of just \(0^{\prime} s\) and \(1^{\prime} s\), one shifts to the left-stochastic, where the values of each column amount to 1 . This makes it possible to express multiple probabilistic extensions to the regular AoP combinations and help keep the convoluted probability notation under control.

Probabilistically speaking, left-stochastic matrices are seen as Arrows and can be written as \(n \xrightarrow{M} m\) to denote that matrix \(M\) is of type \(n \longrightarrow m\) ( \(n\) columns, \(m\) rows). Using this notation matrix multiplication can be understood as arrow composition, therefore forming a category of matrices, where objects are numeric dimensions and morphisms are the matrices themselves. Since all arrows represent left-stochastic matrices, a simple distribution \(P(A)\) can be seen of a matrix of type \(1 \longrightarrow m\), which represents a left-stochastic column vector. Statistical independence \(P(B \mid A)=P(A) P(B)\) can be calculated by probabilistic pairing, also known as the Khatri-Rao matrix product (Macedo, 2012; Murta and Oliveira, 2013). Objects in the category of matrices may be generalised to arbitrary denumerable types \((A, B)\). By performing this generalisation, probabilistic functions \(A \xrightarrow{f} \mathscr{D} B\) are viewed as matrices of type \(A \longrightarrow B\), enabling us to express conditional probability calculation \(P(B \mid A)\) in the form of probabilistic function application. It is worth noting that by using just the monadic interface it would only be possible to reason about conditional probabilities by recurring to the bind ( \(\gg\) ) operator, which convolutes probabilistic reasoning. However, by adopting the LAoP transition, probabilistic function (Kleisli) composition becomes simply matrix composition (Oliveira, 2012).

This probabilistic Arrows interpretation takes the analysis one step closer to the probabilistic interpretation of SAF. It should be possible to encode matrices around sound mathematical abstractions and take advantage of the best they have to give, by using what has been learned so far. What SAF has to do with the linear approach to AoP, and how it fits into the probabilistic setting is the question that one wishes to answer.

\subsection*{3.3 TYPE SAFE LINEAR ALGEbRA OF PROGRAMMING MATRIX LIBRARY}

When finding a probabilistic interpretation for SAFs, an attempt was made to construct a matrixrepresenting data structure based on the LAoP. The LAoP discipline offers an inductive approach due to the various combinators that characterise it, since these are based on biproducts which enable block-oriented matrix manipulation. As an attempt to achieve a strongly typed data structure, a Generalised Algebraic Datatype (GADT) indexed by type level naturals is used:
```

data Matrix e (c :: Nat) (r :: Nat) where
One :: e -> Matrix e 1 1 2
Join :: Matrix e m p -> Matrix e n p -> Matrix e (m + n) p 3
Fork :: Matrix e p m -> Matrix e p n -> Matrix e p (m + n) 4

```

\section*{Listing 3.1: Inductive matrix definition}

This inductive data type will correctly represent any type of matrix and infer its dimensions. However, since Glasgow Haskell Compiler (GHC) is not able to properly infer the correct types while patternmatching, this data type poses some difficulties in implementing functions for construction and manipulation. It is easy to implement a simple example, such as matrix transposition, but others such as the entry-wise addition of two matrices, are impossible in practice, as two matrices of the same
dimensions can be internally represented by a different combination of Joins and Forks. One solution to this problem would be to find a way to ensure that all matrices were constructed according to a convention (either Join of Forks or Fork of Joins), but even so the type system would still be unable to know that the matrices actually followed the convention.

In order to solve this problem and to try and get a feel of the probabilistic interpretation/intuition of SAF, a library has been developed. This library just offers a type-safe newtype wrap around an existing library's matrix data structure. The chosen library was HMatrix (Ruiz, 2019) because it is one of the most common and widely used.
```

import qualified Numeric.LinearAlgebra.Data as HM
newtype Matrix e (c :: Nat) (r :: Nat) = M {unMatrix :: HM.Matrix e}
newtype Matrix e (c :: Nat) (r :: Nat) = M \{unMatrix : : HM.Matrix e\}

```

Listing 3.2: Type-safe wrapper around HMatrix
With this type-safe wrapper, it is possible to implement several LAoP combinators, but when using it one is at the mercy of the internal representation used by the host library, and the possibility of obtaining a structure that benefits from the properties of SAFs and LAoP is lost \({ }^{1}\). Nevertheless this technique makes a potential response closer.

As mentioned in the previous subsection, representing distributions as stochastic arrays, and these in turn as arrows, allows us to implement the Arrow instance in the data type shown in Listing 3.2. As described in section 1.2, probability distributions are capable of satisfying the Functor, Applicative, and Monad instances. However, due to the constraints required for all type-checking to be carried out, and the fact that the content type of the matrix is in a negative position, it is not possible to implement instances for spoken interfaces. However an equivalent version of the functions of each instance can be implemented as shown in the listing below:
```

-- | Monoidal/Applicative instance 1
khatri :: (...) => Matrix e m p -> Matrix e m q -> Matrix e m (p * q) 2
-- | Monad instance 4
comp :: (...) => Matrix e p m -> Matrix e n p -> Matrix e n m 5
fromF :: (...) => (a -> b) -> Matrix e c r 87

```

Listing 3.3: Interface equivalent function implementations
The Applicative instance is defined in terms of the Khatri Rao product, taking advantage of the monoidal nature that characterises this abstraction. With respect to Monads, the matrix composition, as seen in the previous subsection, is the equivalent of bind. Finally, with respect to the Arrow abstraction, the fundamental operation is to transform (lift) a function into its matrix representation. It should be noted that all of these operators have associated constraints, which are deferred to appendix A for space economy.

\footnotetext{
1 Note that HMatrix is quite efficient, but for the purposes of this thesis the benefits of using SAFs and LAoP need to be observed as clearly as possible
}

In this setting, simple probabilistic problems such as the Monty Hall puzzle (Rosenhouse et al., 2009) can be easily modelled. In this puzzle, a game show contestant is faced with three doors, one of which hides a prize. One of the doors is chosen by the player, and then the host opens another door that does not have the reward behind it. The player then has the option of staying with the chosen door or switching to the other closed door. The following listing presents the Haskell code that models such a puzzle:
```

-- Monty Hall Problem 1
data Outcome = Win | Lose 2
deriving (Bounded, Enum, Eq, Show) 3
switch :: Outcome -> Outcome 5
switch Win = Lose }
switch Lose = Win 7

```

```

firstChoice :: Dist Outcome 9
firstChoice = choose (1/3) 10
secondChoice :: Matrix Double 2 2 12
secondChoice = fromF switch 13
main :: IO () 15
main = do 16
print (p1 `comp` secondChoice `comp` firstChoice :: Matrix Double 1 1) 17
<<}1
{- 19
Output: 20
(1><1) 21
[0.66666666666666666] 22
-}
23

```

Listing 3.4: LAoP Monty Hall Problem

\subsection*{3.4 PROBABILISTIC INTERPRETATION OF SELECTIVE FUNCTORS}

SAFs are said to provide the missing counterpart for ArrowChoice in the functor hierarchy, as shown by the following example (Mokhov et al., 2019):
```

instance ArrowChoice a => Selective (ArrowMonad a) where1
select (ArrowMonad x) y = ArrowMonad \$ x >>> (toArrow y || returnA) 2
toArrow :: Arrow a => ArrowMonad a (i -> o) -> a i o 4

```
```

|toArrow (ArrowMonad f) = arr (\x -> ((), x)) >>> first f >>> arr (uncurry (\$))

Listing 3.5: Selective ArrowMonad instance
The relationship of Arrows with SAFs is highlighted in this case. Given the results seen in the previous section, an implementation similar to that shown in Listing 3.5 can be used, and a selective instance for the Matrix data type (3.2) can be obtained similarly. However it is not possible to implement an official instance. ${ }^{2}$ Nonetheless, it is possible to write the operator select at the cost of operators identical to the ones used above:

```
(|||) :: Matrix e m p -> Matrix e n p -> Matrix e (m + n) p 1
```



```
select : : ( ... ) => Matrix e n (m1 + m2) -> Matrix e m1 m2 -> Matrix e n m2 4
select \(m \mathrm{y}=\left(\mathrm{y}| | \mid\right.\) id) \({ }^{\text {© comp` } m}\)
select m y = (y ||| id) `comp` m

\section*{Listing 3.6: LAoP Selective instance}

Note that the function toArrow is needed so that Listing 3.5 type checks. In order to match the same signature, an equivalent toMatrix function would be necessary, but unfortunately an instance of Enum ( \(a \rightarrow b\) ) would be needed too, and this is currently not feasible in Haskell. For this reason, the type signature of select needed adjustments.

However interesting, the relationship between Arrows and SAFs does not tell much about its semantics. It is more or less clear that some kind of conditional is expressed, but it is hard to imagine how it would interact with the other combinators. The following diagram gives a more concrete description:


In more detail:


Generalising:

\footnotetext{
2 due to restrictions placed on the types of the matrix dimensions
}


This last diagram can be found in (Macedo, 2012) and defines exactly the biproducts Join and Fork. This diagram highlights several properties of this biproduct such as the well-known divide-and-conquer law \([A \mid B] \cdot\left[\frac{C}{D}\right]=A \cdot C+B \cdot D\).

Another important combinator of the AoP discipline is McCarthy's conditional (Bird and de Moor, 1997), whose probabilistic version was studied by Oliveira (2012) as described by following diagram:


This probabilistic version of if-then-else is denoted by \(p \rightarrow f, g\), where the guard \(p\) ? controls information flow by putting together the two coreflexive matrices \({ }^{3}\) induced by the predicate \(p\) and its negation:
\[
A+A \longleftarrow p ? \quad A=\left[\frac{\Phi_{p}}{\Phi_{-p}}\right]
\]

Looking closely at the diagram one can see some resemblance to what is found in Listing 3.6, meaning that McCarthy's conditionals and SAFs share the same selective, conditional behavioural semantics.

What can one learn from this heading towards a possible probabilistic interpretation of SAFs? Should f be regarded as a distribution in Listing 1.8, the select operator has the ability to condition a random variable in some probabilistic program and branch over it in two separate ways. This operator can also express the divide-and-conquer rule present in the block-matrix calculus, thus being capable of performing computations in parallel. As section 3.5.2 will show, it is possible to derive an optimised version of the select operator by using equational reasoning.

\subsection*{3.5 TYPE SAFE INDUCTIVE MATRIX DEFINITION}

Unfortunately, the type-safe matrix library described in section 3.3 only allows for a limited understanding of what a possible probabilistic interpretation of SAFs could be. As can be inferred from the provided library code in appendix A, one could only reason at the type level, given that the underlying representation is far from allowing calculational, algebraic reasoning. With this being said, only what advantages are theoretically feasible when dealing with SAFs came to light.

Several attempts were made in order to come up with an efficient and correct by construction LAoP-inspired matrix encoding. In the end, type-level naturals were abandoned, due to the GHC

\footnotetext{
3 A Boolean matrix is said to be coreflexive if it is smaller than the identity matrix.
}
limitations mentioned previously, and simple structured data-types were used to replace them. Given this, the following encoding was achieved:
```

data Matrix e cols rows where 1
One :: e -> Matrix e () () 2
Join :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows 3
Fork :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b) 4
-- | Type family that computes the cardinality of a given type dimension. 6
-- 7
-- It can also count the cardinality of custom types that implement the 8
-- 'Generic' instance. 9
type family Count (d :: Type) :: Nat where 10
Count (Either a b) = (+) (Count a) (Count b) 11
Count (a, b) = (*) (Count a) (Count b) 12
Count (a -> b) = (^) (Count b) (Count a) 13
-- Generics 14
Count (M1 _ _ f p) = Count (f p) 15
Count (K1 _ _ _) = 1 16
Count (V1 _) = 0 17
Count (U1 _) = 1 18
Count ((:*:) a b p) = Count (a p) * Count (b p) 19
Count ((:+:) a b p) = Count (a p) + Count (b p) 20
Count d = Count (Rep d R) 21
-- | Type family that computes of a given type dimension from a given natural 23
type family FromNat (n :: Nat) :: Type where 24
FromNat 0 = Void 25
FromNat 1 = ()}2
FromNat n = FromNat' (Mod n 2 == 0) (FromNat (Div n 2)))}2
type family FromNat' (b :: Bool) (m :: Type) :: Type where 29
FromNat' 'True m = Either m m 30
FromNat' 'False m = Either () (Either m m) 31

```

Listing 3.7: Inductive Matrix definition
This solution is based on the assumption that algebraic data types are isomorphic to their cardinalities, i.e. Void \(\cong 0,() \cong 1\), Either a \(\mathrm{b} \cong|a|+|b|\), etc. In addition, this GADT ensures that the matrix always has valid dimensions, i.e. it is correct by construction. This isomorphism is leveraged by the Count and FromNat type families to provide a conversion mechanism from and to data-types/type-level naturals. Using this strategy, GHC does not complain when pattern-matching with this definition, so more complex functions are possible to implement.

Here is an example of how LAoP makes it possible to write concise, correct and efficient code by exploring the divide-and-conquer, fusion and 'abide' laws of enabled by biproducts:
```

comp :: Num e => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows 1
comp (One a) (One b) = One (a * b) 2
comp (Join a b) (Fork c d) = comp a c + comp b d -- Divide-and-conquer law 3
comp (Fork a b) c = Fork (comp a c) (comp b c) = = Fork fusion law 4
comp c (Join a b) = Join (comp c a) (comp c b) - = Join fusion law 5
abideJS :: Matrix e cols rows -> Matrix e cols rows 7
abideJS (Join (Fork a c) (Fork b d)) = Fork (Join (abideJS a) (abideJS b)) (Join (}
abideJS c) (abideJS d)) -- Join-Fork abide law
abideJS (One e) = (One e) 9
abideJS (Join a b) = Join (abideJS a) (abideJS b) 10
abideJS (Fork a b) = Fork (abideJS a) (abideJS b) 11

```

\section*{Listing 3.8: Matrix composition and abiding functions}

It is very straightforward to see the advantages of using an inductive approach to encoding matrices. However, it still has its disadvantages. For example, more complex operators, such as the Khatri-Rao (also known as matrix pairing) product, are expected to return matrices of type \(m \times n \leftarrow c\), and their projections are limited to returning matrices constructed at the expense of Eithers \({ }^{4}\). In addition, since certain large matrices, such as the identity matrix, have constraints associated to the dimension types, instances of abstractions such as Arrow or Selective are not possible to implement.

Santos and Oliveira (2020) show how restricted versions of these classes can be written, while adopting the (.) composition operator, from the Category type class, in place of the more verbose comp function. In this setting, the new data-type makes the following contributions:
- It enables the transformation and manipulation of matrices in a constructive and flexible way.
- Compared to current libraries, this one is more compositional, polymorphic, and does not have partial matrix manipulation functions (hence less chances for run-time errors). This is because the type constructors ensure that malformed matrices (with incorrect dimensions of the kind), can not be constructed.
- Using the mathematical framework described by the linear algebra of programming (Oliveira, 2012), this implementation of matrices allows easy manipulation of submatrices, making it especially suitable for formal verification and equational reasoning.
- More concretely, compared to the current available data-types, this one has:
- Statically typed dimensions;
- Polymorphic data type dimensions;
- Polymorphic matrix content;
- Fast type natural conversion via FromNat type family;
- Better type inference;
- Matrix 'Join' and 'Fork'-ing in \(O(1)\);

\footnotetext{
4 Note that it is possible to overcome this limitation, as will be shown further ahead.
}
- Matrix composition takes advantage of divide-and-conquer and fusion laws.

Two different data types were built on top of the inductive definition presented in this section. These data types consist of wrappers around the Matrix type and, with the help of the type families presented in Listing 3.7, it is possible to providemore user friendly user interfaces:
```

import qualified LAoP.Matrix.Internal as I 1
newtype Matrix e (cols :: Nat) (rows :: Nat) = M (I Matrix e (I FromNat cols) (I) 3
FromNat rows))

```

Listing 3.9: Dimensions are type level naturals
```

newtype Matrix e (cols :: Type) (rows :: Type) = M (I.Matrix e (I.Normalize cols) (I 1
.Normalize rows))

```

\section*{Listing 3.10: Dimensions are arbitrary data types}

Listing 3.10 captures the type generalisation proposed by Oliveira (2012). In short, objects in categories of matrices can be generalised from numeric dimensions ( \(n, m \in \mathbb{N}_{0}\) ) to arbitrary denumerable types \((A, B)\), taking disjoint union \(A+B\) for \(m+n\), Cartesian product \(A \times B\) for \(m \times n\), unit type 1 for number 1 , the empty set \(\varnothing\) for 0 , etc.

\subsection*{3.5.1 The Probability Distribution Matrix and the Selective Abstraction}

As has already been pointed out, a matrix of positive reals is said to be stochastic wherever each column adds up to 1 . In case of one column only, it is called a distribution. An exhaustive approach is assumed when using matrices to represent distributions, and these are notorious for their related performance issues (Scibior et al., 2015; Kidd, 2007).

By taking advantage of the inductive matrix encoding and the LAoP discipline it is possible to implement a probabilistic programming library that performs better than other exhaustive approaches. So, in order to address the central topic of this thesis and explore how the Selective interface can be used more efficiently than Monads in handling probabilistic distributions, the Dist data type (below) was defined. This data type is just a newtype wrapper around the matrix type Matrix Prob () a.
```

-- | Type synonym for probability value1
type Prob = Double 2
|
-- | Newtype wrapper for column vector matrices. This represents a probability 4
-- distribution. 5
newtype Dist a = D (Matrix Prob () a)}

```

Listing 3.11: Dist type alias

Now, this type is matched against the SAF select operator function signature one can recover all the conditioning capabilities that are inherent to SAF and probabilistic choice:
```

-- Selective 'select' operator 1
select :: (...) => Dist (Either a b) -> Matrix Prob a b -> Dist b 2
selectD (D d) m = D (Join m identity `comp` d) 3
-- McCarthy's Conditional 5
cond :: (...) => (a -> Bool) -> Dist b -> Dist b -> Dist b 6
cond p (D f) (D g) = D (Join f g `comp` grd p) 7
|
-- == junc f g. split (corr p) (corr (not . p)) 9
-- == f . (corr p) + g . (corr (not Prelude.. p)) 10
-- (Paralellism via divide-and-conquer) 11
\ar: (...-) => (a -> Boal)
grd f = split (corr f) (corr (not Prelude.. f)) 14
corr :: forall e a . (...) => (a -> Bool) -> Matrix e a a 16
corr p = let f = fromF p :: Matrix e a ()}1
in khatri f (identity :: Matrix e a a)
18

```

Listing 3.12: Dist - select and cond operators
Revisiting the probabilistic interpretation of Arrows and the work by Lindley et al. (2011), it is clear that the isomorphism evidenced by them - that a Monad is isomorphic to Arrows of type a () o can be visualised when looking at the type of Dist. More clearly, Dist a is a column vector of type \(a \leftarrow 1\) and corresponds to the probability monad presented by Erwig and Kollmansberger (2006).

A SAF can be seen equivalent to a Monad, if the associated data type is (Enum a, Bounded a, Eq a) (Mokhov et al., 2019). See for instance:
```

class Applicative f => Selective f where 1
select :: f (Either a b) -> f (a -> b) -> f b 2
eliminate :: (Eq a, Selective f) => a -> f b -> f (Either a b) -> f (Either a b) 4
eliminate x fb fa = select (match x <$> fa) (const . Right <$> fb) 5
where 6
match _ (Right y) = Right (Right y)}
match x (Left y) = if x == y then Left () else Right (Left y) 8
class Selective m => Monad m where 10
return :: a -> m a 11
return = pure 12
1 3

```
```

(>>=) :: (Enum a, Bounded a, Eq a) => m a -> (a -> m b) -> m b 14
(>>=) ma famb = 15
let as = [minBound .. maxBound] 16
in fromRight <$> foldr (\c -> eliminate c (famb c)) (Left <$> ma) as 17
where
1 8
fromRight (Right x) = x 19

```

Listing 3.13: Constrainted monad instance
While in the case of functions this would give an inefficient bind ( \(>=\) ) implementation, in the case of matrices (distributions) it gives room for matrix composition that takes advantage of the divide-andconquer and fusion laws. In fact, in order to lift functions to matrices (distributions) the same type restrictions are needed. Thus one can say that, in practical terms, the Matrix/Dist type is a SAF and equivalently the distribution monad.

\subsection*{3.5.2 Equational Reasoning}

This section shows how to use equational reasoning and the laws of the linear algebra of programming to prove properties of functions on matrices and/or to obtain more efficient programs.


As seen already, from an abstract point of view, the diagram above corresponds to the ArrowChoice implementation of select where, in the case of stochastic matrices, m could be seen as instantiating to a probability distribution of either a's or b's (for \(c\) the singleton type), and \(y\) is only computed for values of type a, all others being just copied by the identity.

This leads to a straightforward implementation of select in terms of matrices:
```

select :: (...) => Matrix e c (Either a b)
-> Matrix e a b -> Matrix e c b2
select m y = join y id . m 3

```

Listing 3.14: select in terms of matrices

From the definition, is is known upfront that a (possibly) expensive computation is taking place while the matrix aside is the identity. But, from the type of \(m\) it is also know that it is bound to be \(m=\) Fork \(x\) \(z\), for some \(x\) and \(z\). Thus the implementation can take advantage of this:

Thus one gets
```

select (Fork x z) $y=y . x+z$

```

\section*{Listing 3.15: Fork x z pattern match case}
gaining in efficiency because \(x\) is necessarily smaller than the original \(m\). Note that \(x\) and z above can be, on their own, joins. In this case, by the abide law (15) one gets \(m=\) Join (Fork x c) (Fork z d) which let us pattern match one level deeper and, benefiting from the divide-and-conquer law, end up with:
```

 join y id . m
 = {m = Join (Fork x c) (Fork z d) }
join y id . Join (Fork x c) (Fork z d)
= { fusion (11) }
Join (join y id . Fork x c) (join y id . Fork z d)
= { divide-and-conquer (13) twice; identity twice }
Join (y . x + c) (y . z + d)

```

Altogether one gets the following more efficient implementation:
```

select :: (...) => Matrix e c (Either a b) 1
-> Matrix e a b -> Matrix e c b 2
select (Fork x z) y = y . x + z 3
select (Join (Fork x c) (Fork z d)) y = join (y . x + c) (y . z + d) 4
select m y = join y id . m 5

```

Listing 3.16: Final result
Moving from functions to matrices has allowed us to express probability distribution more elegantly and algebraically than other representations (Erwig and Kollmansberger, 2006;

Kidd, 2007). It turns out that the designed data-type takes advantage of the minimum amount of structure required for a SAF to be equivalent to a monad in the developed programming library, due to the necessary constraints. This, coupled with SAF's probabilistic interpretation, enables us to go one step further in finding out how SAFs offer a more efficient abstraction than monads by exploiting a parallel nature in computing discrete exhaustive probabilities. Although SAFs appear to lose the speculative execution capabilities in this probabilistic environment, due to the fact that any two computations will always be required and can not be skipped, by LAoP laws a more efficient select operator was calculated that mimics the speculative execution of SAFs.

The reader is referred to appendix B where the source code of the internal structure of the matrix definition can be inspected.

\subsection*{3.6 PROBABILISTIC PROGRAMMING EDSL \& SAMPLING}

Matrices implement an exhaustive approach to probabilistic computations that is unfeasible when dealing with very large data. Although they provide an elegant encoding and are amenable to algebraic calculation, using matrices for doing probabilistic programming can incur a cognitive overhead, since programs are not written in a very declarative, straightforward way (Poll and Thompson, 1999; Brusilovsky et al., 1994). Not to mention that they are not able to express probabilistic programs that operate with types that are arbitrarily infinite, like lists.

On the other hand, while the work so far paves the way to a probabilistic interpretation of SAFs in the light of the Arrow abstraction and the select operator, no particular benefit was taken from the properties of SAFs themselves. This has lead to exploring a practical way of benefiting from the speculative execution nature of SAFs and their static analysis capabilities, based on the Free Selective Functor construction mentioned by Mokhov et al. (2019). In particular, a simple eDSL for doing probabilistic programming was designed.

This eDSL has, according to Ścibior et al. (2015); Gordon et al. (2014); van de Meent et al. (2018), the minimum requirements to handle probabilistic distributions in a functional programming language, namely (a) a collection of standard distributions as building blocks; (b) a Monad instance; (c) a conditioning function; (d) and finally a way of sampling from a given (possibly very large) distribution. Because the aim here is to study SAFs, instead of Monads the second requirement to only having a Selective instance can be relax.

Free constructions allow one to focus on the internal aspects of the effect under consideration and receive the desired applicative or monadic (in this case: the selective) computation structure for free, i.e. without the need to define custom instances or prove laws (Swiestra, 2008). Due to this, one just needs to specify the set of effects (building-blocks) of the kind of
computation one wishes to represent. The listing below shows how to express the different building-blocks of our language in this way:
```

import Control.Selective.Free 1
import Control.Selective 2
data Primitives a where 4
Uniform :: [a] -> Primitives a 5
Categorical :: [(a, Double)] -> Primitives a 6
Normal :: Double -> Double -> (Double -> a) -> Primitives a 7
Beta :: Double -> Double -> (Double -> a) -> Primitives a 8
Gamma :: Double -> Double -> (Double -> a) -> Primitives a 9
deriving Functor 10
type Dist a = Select Primitives a

```

Listing 3.17: eDSL primitive building-blocks
Thus the first two of the above mentioned requirements are met. Next, one needs to offer a conditioning function and a way to sample from the given Dist type in order to have a minimal language suited for probabilistic programming. Such a function should be able to condition a distribution with respect to a predicate or condition that is defined over the variables in the program. In particular, every valid execution of the program must satisfy all conditions that occur along the execution. Knowing this, the following function was implemented:
```

-- | This function provides information about the outcome of testing @p@ on 1
some input @a@,
-- encoded in terms of the coproduct injections without losing the input 2
-- @a@ itself.
grdS :: Applicative f => f (a -> Bool) -> f a -> f (Either a a) 4
grdS f a = selector <$> applyF f (dup <$> a) 5
where 6
dup x = (x, x) 7
applyF fab faa = bimap <\$> fab <*> pure id <*> faa 8
selector (b, x) = bool (Left x) (Right x) b 9

- | McCarthy's conditional, denoted p -> f,g is a well-known functional 11
-= combinator, which suggests that, to reason about conditionals, one may 12
-- seek help in the algebra of coproducts.

```
-- 14
-- This combinator is very similar to the very nature of the 'select' 15
-- operator and benefits from a series of properties and laws. 16
condS :: Selective f => f (b -> Bool) -> f (b -> c) -> f (b -> c) -> f b -> f17
    C
condS p f g = (\r -> branch r f g) . grdS p 18
condition :: Dist (a -> Bool) -> Dist a -> Dist (Maybe a) 20
condition c = condS c (pure (const Nothing)) (pure Just) 21
```

Listing 3.18: Conditioning function
As one can see from the listing above, the implementation of the conditioning function uses the McCarthy's conditional combinator. Interestingly enough, this makes a connection with the previous results and, as will be seen later, will be a ubiquitous pattern when writing programs in our eDSL.

One of the benefits of using an eDSL is the capacity of providing any number of different interpretations to the same program. For instance, one could interpret the Dist data-type so as to return the probabilities of every possible output, i.e. an exhaustive interpretation, or interpret it by sampling from every primitive distribution until a concrete result is reached, i.e. a sampling interpretation. The later offers a way of sampling from a given distribution, to which any inference algorithm can then be applied to infer the probability of a given event. The listing below shows how the last requirement of our minimal probabilistic programming eDSL can be achieved:

```
import qualified System.Random.MWC.Probability as MWCP 1
-- forward sampling 3
runToIO :: Dist a -> IO a 4
runToIO = runSelect interpret 5
    where 6
        interpret (Uniform l) = do 7
        c <- MWCP.createSystemRandom 8
        i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) c 9
        return (l !! i) 10
        interpret (Categorical l) = do 11
            c <- MWCP.createSystemRandom 12
            i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c 13
            return (fst $ l !! i) 14
    interpret (Normal x y f) = do 15
```

```
        c <- MWCP.createSystemRandom16
```

f <\$> MWCP.sample (MWCP.normal x y) c 17
interpret (Beta x y f) = do 18
c <- MWCP.createSystemRandom 19
f <\$> MWCP.sample (MWCP.beta x y) c 20
interpret (Gamma x y f) = do 21
c <- MWCP.createSystemRandom 22
f <\$> MWCP.sample (MWCP.gamma x y) c 23
sample :: Dist a -> Int -> Dist [a] 25
sample $\mathrm{r} \mathrm{n}=$ sequenceA (replicate n r) 26

3.6.1 Examples of Probabilistic Programs

Now that a minimal language has been set up, let us see what sort of probabilistic programs can be written. Starting with a simple coin toss example and build up from it. In order to lift a primitive distribution into our Dist data-type, liftSelect offered by the Selective library is used

```
categorical :: [(a, Double)] -> Dist a 1
categorical = liftSelect . Categorical
bernoulli :: Double -> Dist Bool 4
bernoulli x = categorical [(True, x), (False, 1 - x)] 5
< 6
data Coin = Heads | Tails 7
    deriving (Show, Eq, Ord, Bounded, Enum) 8
9
-- Throw 2 coins 10
t2c :: Dist (Coin, Coin) 11
t2c = let c1 = bool Heads Tails <$> bernoulli 0.5 12
    c2 = bool Heads Tails <$> bernoulli 0.5 13
    in (,) <$> c1 <*> c2 14
- Throw 2 coins with condition16
```

17

```
t2c2 :: Dist (Maybe (Bool, Bool))
```

```
t2c2 = let c1 = bernoulli 0.5 18
    c2 = bernoulli 0.5 19
    in condition (pure (uncurry (||))) ((,) <$> c1 <*> c2)
20
```

Listing 3.20: Coin toss
When sampling 10 results out of the $t 2 c$ and $t 2 c 2$ example distributions one obtains the following outcomes:

```
> runToIO $ sample t2c 10
>
```

 1
    ```
    1
[(Tails,Heads),(Heads,Tails),(Heads,Heads),(Heads,Heads),(Heads,Heads), (Tails 2
[(Tails,Heads),(Heads,Tails),(Heads,Heads),(Heads,Heads),(Heads,Heads), (Tails 2
    ,Heads),(Heads,Tails),(Tails,Heads),(Heads,Heads),(Heads,Heads)]
    ,Heads),(Heads,Tails),(Tails,Heads),(Heads,Heads),(Heads,Heads)]
> runToIO $ sample t2c2 10 4
> runToIO $ sample t2c2 10 4
[Just (True,True),Just (False,True),Just (False,True),Just (True,False), 5
[Just (True,True),Just (False,True),Just (False,True),Just (True,False), 5
    Nothing,Just (True,False),Nothing,Nothing,Just (False,True),Just (True,
    Nothing,Just (True,False),Nothing,Nothing,Just (False,True),Just (True,
    True)]
```

 True)]
    ```
```

> runToIO \$ sample t2c2 10

```
```

> runToIO \$ sample t2c2 10

```
\(>\)

\section*{Listing 3.21: Coin toss results}

One can see that the conditioning function is limiting the results to only those that satisfy the condition.

Proceeding to an example that cannot be expressed by using our LAoP matrix library throwing coins indefinitely until Heads comes up, and collect the results in a list:
```

-- | Throw @n@ coins 1
throw :: Dist [Coin] 2
throw = 3
let toss = bernoulli 0.5 4
in condS (pure (== Heads)) 5
(flip (:) <$> throw) 6
 (pure (: [])) 7
 (bool Heads Tails <$> toss) 89

```
\{- ..... 10
Result: ..... 11
> runToIO \$ sample throw 10 ..... 12
[[Heads], [Tails, Tails, Tails,Heads], [Tails,Heads], [Tails, Tails,Heads], [Heads ..... 13
```],[Heads],[Tails,Heads],[Tails,Heads],[Heads],[Tails,Heads]]


Listing 3.22: Throw coins indefinitely until Heads comes up
This example shows that programs written using only the Selective abstraction are less idiomatic than those that take full advantage of Monads. For instance, one neither has access to do-notation nor is capable of sequencing computations, in which values depend from other computations. However, the Applicative nature of SAFs and the McCarthy conditional can be used to recover part of the desired expressiveness, as can be seen in the example below:
```

uniform :: [a] -> Dist a 1
uniform = liftSelect . Uniform 2
-3
die :: Dist Int 4
die = uniform [1..6] 5
-- | This models a simple board game rule in which, at each turn, 7
-- two dice are thrown and, if their outcomes are different, then 8
-- a third die is thrown and the player's piece moves 9
-- the number of squares equal to the sum of all dice. 10
-- Otherwise, the player's piece moves the number of squares equal to three 11
times the value of the two equally-faced dies.
diceThrow :: Dist Int 12
diceThrow = 13
condS (pure \$ uncurry (==)) 14
((\c (a, b) -> a + b + c) <$> die) - - Speculative dice throw 15
        (pure (\(a, _) -> a + a + a)) 16
        ((,) <$> die <*> die) - - Parallel dice throw 17
18
{- 19
Result: 20
> runToIO \$ sample diceThrow 20 21
[2,5,7,11,12,13,8,8,4,13,9,6,9,9,10,11,14,6,13,12] 22
>
List of die throws which have length 2 or 3: 24
[[1,1],[3,1,1],[3,1,3],[5,2,4],[6,2,4],[5,6,2],[4,4], 25
[3,4,1],[2,2],[6,5,2],[1,4,4],[3,1,2],[6,2,1],[1,3,5], 26
[5,4,1],[2,5,4],[4,5,5],[1,3,2],[2,5,6],[6,6]] 27
-}
28

This example clearly shows that, although code written in this fashion is not as expressive or idiomatic as one would wish, it benefits from Applicative and Selective capabilities.

The usefulness of the McCarthy conditional should be emphasised, without which one is prone to write programs that repeat unnecessary computations. ifs is a popular combinator present in the Selective library that lifts the if-then-else primitive to the Applicative level. One is therefore tempted to write probabilistic, recursive programs such as:

```
-- | Bad program 1
badThrow :: Int -> Dist [Coin] 2
badThrow 0 = pure [] 3
badThrow n = 4
 let toss = bernoulli 0.5 5
 in ifS toss 6
 ((:) <$> toss <*> badThrow (n - 1)) 7
 (pure []) 8
{- 9
Total number of effects: 10
> getEffects (throw 1) 11
[Categorical [((),0.5),((),0.5)],Categorical [((),0.5),((),0.5)]] 12
> 13
-} 14
```

Listing 3.24: Bad program
Nonetheless, since the code is lazily executed line 5 does not actually run the desired effect until needed. So, it is easy to see that the toss effect is being repeated, because we do not have a way to forward its conditional result to the next computation. This leads to the program not behaving as expected.

### 3.6.2 Sampling and Inference Algorithms

Probabilistic inference is the problem of computing the representation of the probability distribution implicitly defined in a probabilistic program. For example, to calculate the expected value of some complicated probabilistic function. Alternatively, simply drawing a set of samples to analyse some other system that expects its inputs to follow a certain distribution.

This subsection will present two sampling / inference algorithms implemented on top of the probabilistic programming eDSL and describe some of the limitations found.

The first one is Monte Carlo Sampling, a very simple method as can be seen below. It basically samples $n$ values from a given distribution and calculates the relative probability of each event:

```
-- monte carlo sampling/inference1
monteCarlo :: Ord a => Int -> Dist a -> Dist [(a, Double)] 2
monteCarlo n d = 3
 let r = sample d n 4
 in map (\l -> (head l, fromIntegral (length l) / fromIntegral n)) . group 5
 . sort <$> r
{- 7
Result: 8
> runToIO $ monteCarlo 2000 t2c 9
[((Heads,Heads),0.2435),((Heads,Tails),0.248),((Tails,Heads),0.249),((Tails, 10
 Tails),0.2595)]
-}

The other sampling method, called Rejection Sampling (Tobin, 2018), proceeds in a similar way:
```

rejection :: (Bounded c, Enum c, Eq c) => ([a] -> [b] -> Bool) -> [b] -> Dist1
c -> (c -> Dist a) -> Dist c
rejection predicate observed proposal model = loop where 2
len = length observed 3
loop = 4
let parameters = proposal 5
generated = sample (bindS parameters model) len 6
cond = predicate <\$> generated <*> pure observed 7
in ifS cond 8
parameters 9
loop
10

```

This method (and more complex others (Tobin, 2018)) requires monadic capabilities (i.e. selective bind), which make the solution quite inefficient. This seems to be a limitation of the selective abstraction. Although it is still possible to implement such algorithms via selective
bind (bindS), most often one finds oneself restricted to discrete, finite data types which limit the problem domain.

\subsection*{3.7 SAMPLING AS A CONCURRENCY PROBLEM}

The work described thus far has dealt only with the syntactic side of probabilistic programming. That is to say, only the basic operations that the Free Selective Construction is able to perform were exploited in order to write probabilistic programs.

As previously stated, the sampling approach is used to try to take advantage of the capabilities of SAFs. Programming in an eDSL that enforces selective combinators only allows the compiler to be sure to capitalise on all SAFs capabilities. However, because the IO monad is inherently sequential, any independent computation loses the chance of a parallel/speculative effect execution.

Section 1.3.2 addressed how FP languages are a great vessel for probabilistic programming. Nevertheless, the sole use of the I0 monad disables the ability to exploit parallelism when sampling two or more independent variables. As also stated in section 1.3.2, some authors suggest solutions to some of the drawbacks of using only the IO monad (Ścibior et al., 2015; Gordon et al., 2014; Tobin, 2018) but none of these seem to have been actually employed in concrete, real use cases.

Against this background, this section aims to explore how to look at the problem of sampling in a different way, showing promising results.

\subsection*{3.7.1 The Concurrency Monad}

There are several references to concurrency monads in literature. Claessen (1999) was among the first in this regard by describing a monad transformer in Haskell that introduces a groundbreaking way of modelling concurrency. In essence, a concurrency monad can be seen as a way to introduce concurrency to a (functional) programming language without adding specialised primitives to the compiler. Instead, the concept of concurrency construct is shifted towards the programmer.

Although working on somewhat different models, the approaches of Claessen (1999) and Scholz (1995) (among others) rely on the basic notion of interleaving processes via continuations. Continuations are capable of preserving the flowing essence of a process, allowing it to be stopped or resumed. Many concurrency monads are provided with a collection of primitive constructs, like fork, to make the concurrency explicit. Thus, a common trait of these programming models is that they are based on a concurrency-monad-like substratum.

Marlow et al. (2014) offer a different, alternative solution, where their approach is specially useful for programming over external data sources without explicitly using concurrency
constructs. It is called Haxl and it assumes that external access to data is read-only. So, the order of the requests does not matter and it can be done in parallel. They present an extension of the concept of concurrency monads in which concurrency is implied in the Applicative abstraction. Unlike previous formulations, this one takes advantage of the fact that the arguments to (\(\langle *\rangle\)) are independent and can therefore be inspected. This new feature can also be interpreted as some form of static analysis, and allows multiple requests to be batched together. Recently, this solution has also been given speculative execution capabilities (Mokhov et al., 2019), which makes it very interesting to the scope of this dissertation.

\subsection*{3.7.2 Sampling}

Sampling can be seen as a concurrency problem in order to extend the probabilistic programming eDSL with parallel and speculative execution capabilities without having to be explicit about it. Let us start by illustrating what "seeing sampling as a concurrency problem" means.

Effective access to multiple remote data sources requires concurrency, usually requiring the programmer to intervene and make the concurrency explicit. But wherever the business logic only needs reading data from external sources, the programmer does not need to worry about the order in which the data accesses occur. This is the scenario defined by Marlow et al. (2014). Sampling from a probability distribution is similar to collecting data from an external source, by seeing the distribution as the (random) data source, thus a similar approach can be used to effectively conduct sampling. The source of randomness is the external data source to be read and because it is random, the order by which simultaneous (independent) samples are performed does not matter.

One can already see how these two models are alike. However, there is a small difference in the case of sampling and this is that it is not possible to repeat a data access request, because one would get a different result every time the random source is accessed. This fact does not allow one to build a caching system like the one in Haxl, since it would have a negative impact on the sampling quality itself. In view of this, it is concluded that sampling can be seen as a more general concurrency issue than the one solved by Haxl.

\subsection*{3.7.3 Implementation}

An approach similar to the one presented by Marlow et al. (2014) is proposed below in order to implement the solution. As mentioned in the previous section, sampling should be seen as a concurrency problem in which the "external data access requests" are sampling requests. With this in mind, each request can be either Done or Blocked. So, in general, a computation
in our data type will be a sequence of Blocked requests ending in a Done carrying the return value:
```

data BlockedRequest = forall a. BlockedRequest (Request a) (IORef (Status a))1
da Status a = NotFetched | Fetched
data Status a = NotFetched | Fetched a 3
type Prob = Double }
6
data Request a where 7
Uniform :: [x] -> (x -> a) -> Request a 8
Categorical :: [(x, Prob)] -> (x -> a) -> Request a 9
Normal :: Double -> Double -> (Double -> a) -> Request a }1
Beta :: Double -> Double -> (Double -> a) -> Request a }1
Gamma :: Double -> Double -> (Double -> a) -> Request a }1
-- A computation is either completed (Done) or Blocked on pending sample 14
requests
data Result a = Done a | Blocked (Seq BlockedRequest) (Fetch a) deriving 15
Functor
newtype Fetch a = Fetch {unFetch :: IO (Result a)} deriving Functor 17
instance Monad Fetch where 19
return = Fetch . return . Done 20
Fetch iox >>= f = Fetch \$ do 22
rx <- iox 23
case rx of 24
Done x -> unFetch (f x) -- dynamic dependency on runtime value 'x' }2
Blocked bx x -> return (Blocked bx (x >>= f)) 26

```

Listing 3.27: Fetch Data Type
As can be seen, the Fetch data type is a monad (since it is wrapped around IO) and follows the continuation monad formulation. It is also worth noting that this idea is an instance of a free monad (Marlow et al., 2014).

There is something missing from the implementation, which is a way of introducing concurrency. As seen before, the probabilistic interpretation of the Applicative abstraction expresses statistical independence and thus it is suitable to add concurrency to our data structure. The
idea is that of performing Fetch computations using the (<*>) operator. All (<*>) arguments may be explored to look for Blocked computations, which allows a computation to be blocked on several items at the same time. This contrasts with the monadic bind operator, which only allows the first argument to be examined, since one cannot be evaluated without the other. Bearing this in mind, the following instance is shown:
```

instance Applicative Fetch where 1
pure $=$ return 2
3
Fetch iof $<*>$ Fetch iox $=$ Fetch \$ do 4
rf <- iof 5
$r x<-$ iox 6
return \$ case (rf, rx) of 7
(Done f, _) -> f <\$> rx 8
(_, Done x) -> (\$x) <\$> rf 9
(Blocked bf f, Blocked bx x) -> Blocked (bf <> bx) (f <*> x) - - 10
batching parallel requests

```

Listing 3.28: Fetch Applicative instance
Speculative execution of the Selective abstraction can also be achieved by employing this static analysis feature. This is a novel addition to the functional probabilistic programming domain that, in theory, improves performance in programs that can branch on a given sample result (Mokhov et al., 2019).
```

instance Selective Fetch where 1
select (Fetch iox) (Fetch iof) = Fetch \$ do 2
rx <- iox 3
rf <- iof 4
return \$ case (rx, rf) of 5
(Done (Right b), _) -> Done b -- abandon the second 6
computation
(Done (Left a), _) -> ($a) <$> rf 7
(_, Done f) -> either f id <\$> rx 8
(Blocked bx x, Blocked bf f) -> Blocked (bx <> bf) (select x f) -- 9
speculative execution

```

Listing 3.29: Fetch Selective instance

\subsection*{3.8 SUMMARY}

This chapter presented a probabilistic interpretation of SAFs by examining the probabilistic semantics of Arrows and their relationship with SAFs. This is intended as a first step in the study of the practical usefulness of the Selective abstraction in the probabilistic setting. LAoP aided the understanding of linear algebra and matrices through a typed theory that emphasises structure and compositionality.
Putting theory into practice, a strongly typed matrix programming library was build on top of an existing one. This programming library uncovered a relationship between the select operator and the well-known McCarthy's conditional, reinforcing the idea that this operator allows for branching over probabilistic programs. Notwithstanding, the promised static analysis and speculative execution capabilities were not exposed by only reasoning at the type level and a typed, inductive structure of matrices was designed. Inspired by the biproducts of categories of matrices, this data structure captures the divide-and-conquer nature of matrices and opened the way to the implementation of a correct-by-constructions matrix programming library that is amenable to equational reasoning and algebraic manipulation.

A probabilistic interpretation of SAFs could work over this matrix programming library that relies on LAoP and thus allows for formal reasoning and optimisations via algebraic manipulation. However, due to matrices implementing an exhaustive approach to describing probability distributions, the Selective abstraction can not capitalise on its capabilities. To overcome this, a shift to the sampling realm was made and an eDSL was designed to allow for the effective use of selective combinators. This change enables the benefits offered by the Selective abstraction but these are still hindered by the sequential nature of the IO Monad. To overcome this limitation a change of perspective is required, and by seeing sampling as a concurrency problem, a solution that is both practical and simple was achieved.

\section*{4}

\section*{APPLICATIONS}

This chapter presents some examples of application of the approaches and solutions developed in the previous chapters. In particular, an example is used to show the difference between using the matrix library that was developed and the eDSL of the previous chapter. Performance evaluations of such solutions will also be presented.

\subsection*{4.1 LAOP SPRINKLER EXAMPLE}

Probabilistic programming arises naturally from functional programming once "sharp" functions are replaced by probabilistic ones, which can be represented by stochastic matrices, also known as Markov chains (Oliveira, 2012). As an example, let us take a look at the following example taken from the Wikipedia (2020). This example builds on what has already been presented in article Santos (2020).

Let the following predicates model the behaviour of a sprinkler be defined, where S (sprinkler on/off), R (raining or not) and \(G\) (grass wet or not) are Booleans:
\[
\begin{array}{ll}
\text { sprinkler }:: R \rightarrow S & \text { grass }::(S, R) \rightarrow G \\
\text { sprinkler } r=\text { not } r & \text { grass }(s, r)=s \| r
\end{array}
\]

The second predicate tells that the grass will be wet if and only if either it is raining or the sprinkler is on. The first tells that the sprinkler is on iff it is not raining. Composing these two predicates it is possible to see that rain completely determines the state of the grass:
\[
\text { grass }(\text { sprinkler } r, r)=\operatorname{not} r \| r=\text { True }
\]

Looking at the diagram below, where (\({ }^{\triangleright}\)) denotes function pairing \({ }^{1}\), it is possible to observe that the system has two possible states in (\(G,(\mathrm{~S}, \mathrm{R})\)) - either (True, (True, False)) or (True, (False, True)) - the grass being wet in both. So it will melt because of being wet all the time.

\footnotetext{
1 This can be seen as equal to (\&\&\&) from Control . Arrow, specialised to \((\rightarrow)\).
}
\((G,(S, R))\)
\(\uparrow_{\text {grass }} \nabla\) id
\((S, R)\)
\(\uparrow_{\text {sprinkler }} \nabla\) id
\(R\)
\(\uparrow_{\text {rain }}\)
()

Clearly, this deterministic interpretation of the diagram does not correspond to reality, but its stochastic interpretation will do. For this, regarding the arrows as denoting stochastic matrices and not pure functions is needed, for instance \({ }^{2}\).
\[
\begin{aligned}
& R \xrightarrow{\text { sprinkler }} S=\left[\begin{array}{ll}
0.60 & 0.99 \\
0.40 & 0.01
\end{array}\right] \\
& (S, R) \xrightarrow{\text { grass }} G=\left[\begin{array}{cccc}
1.00 & 0.20 & 0.10 & 0.01 \\
0 & 0.80 & 0.90 & 0.99
\end{array}\right]
\end{aligned}
\]

This describes a probabilistic system reactive to the rain. Once the distribution of this becomes known, eg.
\[
1 \xrightarrow{\text { rain }} R=\left[\begin{array}{l}
0.80 \\
0.20
\end{array}\right]
\]
one immediately gets the distribution of the overall state, given by column vector
which is calculated following the diagram.
To see how to encode this diagram in the LAoP library, consider the following matrices
```

rain :: Matrix Prob () R
sprinkler :: Matrix Prob R S

```
1
```

|grass :: Matrix Prob (S, R) G

```

\section*{Listing 4.1: Example matrices}
where type Prob = Double and the types involved are freed from the strict Boolean model, already visible in (20). \({ }^{3}\) The distribution of the overall state displayed above is given by the expression
```

|state = compose grass sprinkler rain

```

Listing 4.2: State matrix
where
```

compose :: (...)
=> Matrix e (c, d) b
-> Matrix e d c
-> Matrix e a d
-> Matrix e a (b, (c, d)) 5
compose g s r = tag g . tag s . r 6
tag :: (...) => Matrix e a b -> Matrix e a (b, a) 8
tag f = kr f id 9

```

Listing 4.3: State matrix composition function
Note the role of the tag operation, which for functions amounts to tag \(\mathrm{f} x=(\mathrm{f} x, \mathrm{x})\), that is, the output of \(f\) is paired with its input. Combinator compose iterates this operation across compositions so as to get an account of all inputs and outputs, as is usual in Bayesian networks. \({ }^{4}\)

Let wet :: Matrix Prob () G, dry :: Matrix Prob () G, no :: Matrix Prob () R (and so on) be the points of the data types involved in the model. Let also projections fstM and sndM be used to obtain the first and second components of the paired matrices, respectively. Then evaluating the overall probability of the grass being wet is given by the scalar: \({ }^{5}\)
||grassWet \(=\) tr wet. fstM . state \(-=-44.84 \%\)
Listing 4.4: Probability of grass being wet calculation

\footnotetext{
3 That is to say, instead of \(G=\) Bool, \(G=\) Dry | Wet and so on.
4 This generic combinator is inspired in the left tagging relational operator of (Bussche, 2001).
5 Recall that scalars are matrices of type ()\(\rightarrow()\).
}

\subsection*{4.2 EDSL SPRINKLER EXAMPLE}

The last section showed how it is possible to do (typed) probabilistic programming by using matrices and the LAoP discipline. In the current section the same example will be shown, but this time rendered in the probabilistic programming eDSL designed in section 3.6. The main difference is that matrices give place to probabilistic functions of type a \(\rightarrow\) Dist \(b\). The functions equivalent to the sprinkler, grass and rain matrices are given below.
```

data R = No | Yes 1
deriving (Eq, Show, Enum, Bounded, Ord) 2
data S = Off | On 3
deriving (Eq, Show, Enum, Bounded, Ord) 4
data G = Dry | Wet 5
deriving (Eq, Show, Enum, Bounded, Ord) 6
sprinkler :: R -> Dist S 8
sprinkler No = categorical [(Off, 0.6), (On, 0.4)] 9
sprinkler Yes = categorical [(0ff, 0.99), (On, 0.01)] 10
11
grass :: (S, R) -> Dist G 12
grass (Off, No) = categorical [(Dry, 1), (Wet, 0)] 13
grass (Off, Yes) = categorical [(Dry, 0.2), (Wet, 0.8)] 14
grass (On, No) = categorical [(Dry, 0.1), (Wet, 0.9)] 15
grass (On, Yes) = categorical [(Dry, 0.01), (Wet, 0.99)] 16
1 7
rain :: Dist R 18
rain = categorical [(No, 0.8), (Yes, 0.2)] 19

```

Listing 4.5: Example probabilistic functions
The last section emphasised the importance of the tag and compose combinators, which allowed for composing distribution matrices and calculating their joint probability easily. By using our eDSL, only SAFs capabilities are allowed to be used, which means that the monadic capability to iterate the equivalent tag combinator is not available, across compositions, in order to compute the distribution of the whole state. As can be seen below, a nested Dist type is needed which makes it awkward to deal with.
```

class Functor f => Strong f where
rstr :: (f a, b) -> f (a, b)

```
```

    rstr (fa, b) = fmap (, b) fa 3
    4
    lstr :: (b, f a) -> f (b, a) 5
    lstr (b, fa) = fmap (b, ) fa
    *)
instance Strong (Select Primitives) 8
tag :: (a -> Dist b) -> (a -> Dist (b, a)) 10
tag f = fmap rstr \$ (,) <$> f <*> id 11
stateS :: Dist (Dist (Dist (G, (S, R)))) 13
stateS = fmap (tag grass) . tag sprinkler <$> rain 14

```

Listing 4.6: tag combinator
Alternatively, one can take advantage of the fact that the data types used in the model are Enum, Bounded, Eq, i.e. countable, giving room to use the bindS function in order to compose the probabilistic functions and obtain the desired state distribution.
```

state :: Dist (G, (S, R)) 1
state = bindS rain (\r -> bindS (sprinkler r) (\s -> bindS (grass (s,r)) (\g 2
-> pure (g, (s,r)))))
{- 4
Result: 5
> runToIO \$ monteCarlo 2000 state 6
[((Dry,(Off,No)),0.4835),((Dry,(Off,Yes)),4.45e-2),((Dry,(On,No)),3.9e-2),(( 7
Wet,(Off,Yes)),0.151),((Wet,(On,No)),0.28),((Wet,(On,Yes)),2.0e-3)]
>

```

Listing 4.7: State distribution

A comparison between the two probabilistic programming libraries designed so far was seen. Both advantages and disadvantages of each were made clear. Matrices implement and exhaustive approach to represent probabilistic functions and thus suffer from performance issues. However, they are able to model relatively complex problems and allow a guided, typed implementation, via LAoP. The SAF eDSL has limitations regarding expressibility when compared with a monadic interface. However, it allows to tradeoff expressibility with performance if necessary (via bindS), as well as permits the leveraging of all SAFs' capabilities.

Next section presents a more detailed comparison between these two approaches, with respect to performance.

\subsection*{4.3 BENCHMARKS}

This section proceeds to the performance evaluation of the solutions proposed so far. Matrix multiplication will be used for benchmarking them against other Haskell libraries. In particular, the performance of distributions as matrices versus distributions as lists (distribution monad) will be compared. Moreover, the applicative versus selective exhaustive approach are also compared to conclude that, even though matrices can not take full advantage of the speculative execution of SAFs, by understanding the fundamentals of the abstraction it is possible to achieve a faster select operator. Fig. 4.1 shows the key features of the testbed environment.
\begin{tabular}{|l|l|}
\hline Model & Intel(R) Core(TM)2 Duo CPU P8600 \\
\hline Base clock freq & 2.40 GHz \\
\hline L1 cache & 64 KiB \\
\hline L2 cache & 3 MiB \\
\hline RAM & \(2 \times 4096 \mathrm{MB}\) (DDR3) \\
\hline OS & Arch Linux \\
\hline
\end{tabular}

Figure 4.1: Testbed environment

\subsection*{4.3.1 LAoP Matrix composition}

By analysing the current ecosystem at the time of writing, namely by filtering data obtained from the Hackage repository, three libraries providing efficient matrix implementations stand out as the most embraced by the community: hmatrix, matrix and linear. The Criterion library was used to benchmark the different algorithms on randomly generated square matrices with dimensions ranging between 10 and 1600 .

Figure 4.2: Matrix composition benchmarks

As can be seen in the plot of Figure 4.2, the hmatrix and matrix libraries are those that perform better. By observing their internal structure, one realises that they are a suitable representation for BLAS/LAPACK computations (Anderson et al., 1999), that is, they have been designed to efficiently exploit caches on modern cache-based architectures. A matrix in the linear library is defined as Vector cols (Vector rows Double) and does not take into account cache lengths or sizes, so it behaves much worse than the previous ones. Our data structure does not take into account any low-level optimisations either, being unable to compete with those that do. Nevertheless, the implementation is performant for a cacheoblivious approach and behaves better (almost one order of magnitude better) than other data types with simpler definitions.

\subsection*{4.3.2 Distribution matrix versus distribution list monad}

The previous evaluation focused only on the performance of the proposed matrix multiplication algorithm compared with existing solutions to linear algebra. In this section the use of matrices versus the use of lists as representations of probability distributions will be evaluated, by comparing the performance of the different versions of the select operator. Since both are exhaustive approaches to probabilistic programming, the comparisons will feature the strict applicative version of the select operator (where no computations are skipped) and the more efficient version, which will be called the non-strict version of select, that skips unnecessary computations, to see which solution performs best.

The figure below show the results output by the Criterion framework. The benchmarks have been carried out in the same settings as the previous ones, that is, all matrices and lists were randomly generated.

Figure 4.3: Matrix vs List - select operator

The first entry, which corresponds to the distribution monad presented by Erwig and Kollmansberger (2006) can be seen to perform worse than the others. The strict version of the select operator, in the matrix version, performs better even though no computation is skipped. The last entry, which refers to the non-strict version of the select operator, is also clearly better than its strict version.

There are several attempts that build on the work of Erwig and Kollmansberger (2006), in order to improve the performance of the exhaustive probability monad (Larsen, 2011; Dylus et al., 2018). Allied with the LAoP discipline, the typed, inductive matrix data structure offers a more performant, correct alternative at the cost of a minimum cognitive overhead.

\subsection*{4.3.3 Sequential vs Concurrent Selective eDSL}

This section evaluates the performance of each eDSL solution provided in sections 3.6 and 3.7. In order to do so, three probabilistic programs were used: one that throws two hypothetical 50000 -faced dice, returning both results; one that throws the same two dice but conditioned
the result; and one similar to diceThrow in Listing 3.23 but using the same dice as in the previous programs.
```

bigDie :: Dist Int 1
bigDie = uniform [0 .. 50000] 2
-- Normal without conditioning 4
pg1 :: Dist (Int, Int) 5
pg1 = 6
let c1 = bigDie 7
c2 = bigDie 8
in (,) <$> c1 <*> c2 9
-= With conditioning 11
pg2 :: Dist (Maybe (Int, Int)) 12
pg2 = 13
    let c1 = bigDie 14
            c2 = bigDie 15
            result = (,) <$> c1 <*> c2 16
in condition (uncurry (>)) result 17

```

```

Takes advantage of speculative and parallel execution
pg3 :: Dist Int 20
pg3 = 21
condS 22
(pure \$ uncurry (==)) 23
((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw 24
            (pure (\(a, _) -> a + a + a)) 25
            ((,) <$> bigDie <*> bigDie) =- Parallel dice throw 26

```

Listing 4.8: Programs used in evaluation
Each benchmark consists of performing forward sampling 10000 times, leading to three sets of three benchmarks each. The first collection relates to pg1, the second to pg2 and the third to pg3. For each collection, the first benchmark interprets the eDSL to I0 and runs computations sequentially; the second first interprets to the concurrency monad and then IO, running sequentially as well; finally, the third is as the previous one but takes advantage of the concurrent runtime system of GHC.

Benchmark Results

Figure 4.4: Benchmarks results

By comparing the blue and red bars of the chart one sees a positive impact on performance, just by switching from pure IO to the concurrency monad. Although the speedup is not as much as doing the first switch, enabling GHC's concurrent runtime system also performs better. The normal variation shown seems to be the one that benefits the most from the optimisations. This fact might be due to the batching ability of independent sampling computations, allowed by the concurrency monad. Since pg1 only takes advantage of applicative capabilities, it makes sense that batching is the optimisation with higher influence on the results.

Both the conditioned and the speculative versions make use of selective combinators, such as condition and condS, and thus can take advantage of speculative execution as well. Although these last two benchmarks do not present speedups as significant as the normal version (hinting that batching does not have such an impact), changing to a concurrent runtime system seems to magnify the effect that both, batching and speculative execution, have in the overall performance of the probabilistic sampling.

Looking at the benchmark, sampling from a random distribution such as uniform 50000 can be seen as fast. Thus, even without a large sampling gap between the sequential and the concurrent versions, this solution would prove to be a scalable, easy approach to performing such computations in practice. For example, many big data and data mining applications depend on slow uniform data sampling from external sources that require heavy roundtrip times (Liu et al., 2017; Kim and Wang, 2019; Zhou et al., 2017; Bartolini et al., 2018).

\subsection*{4.4 SUMMARY}

This chapter described how probabilistic problems can be modelled in the various approaches proposed in the previous chapters. The sprinkler example illustrated the advantages and drawbacks of each of them, touching on the key points of view of the overall design.

The matrix library was benchmarked with respect to the matrix composition operation, chosen because it is one of the key operations in linear algebra. Given that matrices have an exhaustive approach to the representation of probability distributions, it made sense to compare the proposed solution with the probabilistic monad of Erwig and Kollmansberger (2006) and to quantify the impact that the previous study of the SAF abstraction had in the development of a more efficient implementation of the select operator. Last but not least, the probabilistic programming eDSL via selective combinators was evaluated. Various types of programs based on different features have been compared with different interpretations (I0 or concurrency monad).

The results achieved can be regarded as satisfactory. On the one hand, the exhaustive matrix approach provides a good trade-off between cognitive overhead and efficiency, rewarding the additional effort needed with guarantees of correctness and assisted reasoning; on the other hand, the use of an eDSL solves the limitations imposed by the exhaustive approach, and allows for a more idiomatic and richer programming style, from the point of view of the ecosystem of the host language.

\section*{CONCLUSIONS AND FUTURE WORK}

This last chapter summarises the main contributions of the dissertation. Directions for future work are also discussed.

\subsection*{5.1 CONCLUSIONS}

The work reported in this dissertation searched for ways to take advantages of SAFs in functional probabilistic programming. In particular, how this abstraction could be applied in a more efficient manner than the monadic bind was a central research question. First of all, it was important to understand the meaning of the probabilistic instances of such functors and what they could bring to the table, taking into account other existing solutions and methods. We centered on the general theory of LAoP when searching for answers to the probabilistic meaning, and studied the structure of stochastic matrices, finding out that SAFs are capable of conditioning random variables and branching a program in two different ways. Viewed through this prism, SAFs generalise the already known McCarthy conditional and, in theory, allow for parallel execution of conditional probability calculations, by means of the divide-and-conquer block-matrix algebra law. A programming library of typed inductive block-matrices has been implemented in Haskell to demonstrate how such research could be applied in practice, by giving a number of examples and benchmarks demonstrating that the theoretical gains are indeed valid.

Nevertheless, the use of matrices in probabilistic programming presents some drawbacks regarding programs whose sample space has an explosion of potential states. Sampling from the probability distributions is an alternative in such cases. It turns out that existing solutions rely heavily on the use of monads, which are inherently sequential and, as such, leave behind any possibility of parallel sampling wherever possible. In order to solve this problem, a small probabilistic programming eDSL was designed on top of the free SAF construction.

In the proposed approach, the end-user is pushed to use selective combinators wherever possible, so that the compiler can be sure to take advantage of the capabilities of this abstraction. The crucial insight in this respect is to realise that the problem of sampling can be reduced to a concurrent external data access problem. Knowing this, it was possible to
implement a solution close to that of the Haxl system and use it in the implemented eDSL. On performance grounds, the outcome was positive compared to the previous sequential version.

Altogether, the final conclusion is that, thanks to the nature of SAFs, one can indeed take advantage of static analysis and speculative execution to write the select operator more efficiently than using, the more traditional, monadic bind.

\subsection*{5.2 FUTURE WORK}

The work presented in this dissertation highlights the themes of composition, abstraction and structure, all relevant concepts in functional programming. The majority of features developed during this research are focused on core aspects of statically typed, purely functional languages. Monads, definitely a key driver of innovation, cannot be faithfully expressed without a strong type system and functional purity. As we have seen these features have enabled us to have a great deal of reasoning power and have helped us to study novel abstractions in a different (probabilistic) context.

All research projects typically have a proof-of-concept feel about them; they are meant to explore new fields, design spaces and opportunities. Specifically for this project, quadtrees (Samet, 1984) and their savings with respect to repetitive cells (pixels) were brought to mind by the block-oriented matrix type, from the typed matrix programming library. But this can be improved. For instance, a better matrix definition for sparsity could be more useful for sparse matrices with large zero blocks.

A strong suggestion for future work is to turn the various pieces of software that have been developed during this research into production-ready software artifacts.

The probabilistic programming eDSL can also be extended in order to support more distribution primitives and sampling algorithms. An interesting direction for the future is also to investigate how to improve the proposed solution in the light of the new found concurrency relationship, as well as studying parallelization strategies to improve performance.

The work regarding the matrix programming library led to a scientific paper published in the Haskell 2020 Symposium (Santos, 2020). This paper attracted the attention of two independent researchers, Conal Elliott and João Paixão, who approached the authors showing interest in potential collaboration. These collaborations point towards new future work directions.

In particular, Conal Elliott's work on applying semantic elegance and rigor to library design and optimized implementation led to his interest in investigating how, by applying the denotational design technique to the structure of inductive matrices, one can better understand the nature of linear algebra and find elegant, parallel, effective and correct algorithms. A concrete objective is to port something like the (inductive) matrix type to a purely functional programming language in a denotational design style. To this end, the Haskell programming
language is being used to implement all the vocabulary and infrastructure required to start thinking about the problem, but due to the current limitations of the type system, the project is slowly being rewritten in Agda \({ }^{1}\).

João Paixão is a professor of the Department of Computer Science at the Federal University of Rio de Janeiro and his work focuses on Linear Algebra and Numerical Methods Education, Graph Theory, String Diagrams and Graphic Linear Algebra. His work plan is to see if his Graphical Linear Algebra (GLA) language (Paixão and Sobociński, 2020) is capable of expressing inductive matrices taking advantage of its correct-by-construction properties, in order to obtain easy and elegant proof of complex, classical linear algebra algorithms and axioms.

\section*{BIBLIOGRAPHY}

Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny Sorensen. LAPACK Users' guide, volume 9. Siam, 1999.

Dave H. Annis. Probability and statistics: The science of uncertainty, michael j. evans and jeffrey s. rosenthal. The American Statistician, 59:276-276, 2005. URL https: //EconPapers.repec.org/RePEc:bes:amstat:v:59:y:2005:m:august:p:276-276.

Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd edition, 2010. ISBN 0199237182, 9780199237180.

Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi, Daniele Gregori, Simone Tinti, Cosimo Gianfreda, and Piero Altoè. The d.a.v.i.d.e. big-data-powered fine-grain power and performance monitoring support. In Proceedings of the 15th ACM International Conference on Computing Frontiers, CF '18, page 303-308, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357616. doi: 10.1145/3203217.3205863. URL https://doi.org/10.1145/3203217.3205863.

Ryan Bernstein. Static analysis for probabilistic programs. arXiv preprint arXiv:1909.05076, 2019.

Richard Bird and Oege de Moor. Algebra of Programming. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997. ISBN 0-13-507245-X.

P Brusilovsky et al. Teaching programming to novices: A review of approaches and tools. 1994.

Jan Van den Bussche. Applications of Alfred Tarski's ideas in database theory. In CSL'01, pages 20-37, London, UK, 2001. Springer-Verlag. ISBN 3-540-42554-3.

Paolo Capriotti and Ambrus Kaposi. Free applicative functors. In Proceedings 5th Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014., pages 2-30, 2014. doi: 10.4204/EPTCS.153.2. URL https: //doi.org/10.4204/EPTCS.153.2.

George Casella and Roger Berger. Statistical Inference. Duxbury Resource Center, June 2001. ISBN 0534243126.

Koen Claessen. A poor man's concurrency monad. Journal of Functional Programming, 9(3): 313-323, 1999.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence of form abstraction.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems, APLAS '08, pages 205-220, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-89329-5. doi: 10.1007/978-3-540-89330-1_15. URL http://dx.doi.org/10.1007/ 978-3-540-89330-1_15.

Sandra Dylus, Jan Christiansen, and Finn Teegen. Probabilistic functional logic programming. In International Symposium on Practical Aspects of Declarative Languages, pages 3-19. Springer, 2018.

Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional programming in haskell. Journal of Functional Programming, 16(1):21-34, 2006. doi: 10.1017/S0956796805005721.

William Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley \& Sons Inc., New York, 1971.

Peter J Freyd and Andre Scedrov. Categories, allegories. Elsevier, 1990.
Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program for complex bayesian modelling. Journal of the Royal Statistical Society: Series D (The Statistician), 43(1):169-177, 1994.

Michèle Giry. A categorical approach to probability theory. In Categorical aspects of topology and analysis (Ottawa, Ont., 1980), volume 915 of Lecture Notes in Mathematics, pages 68-85. Springer, Berlin, 1982.

Roger Godement. Topologie algébrique et théorie des faisceaux, volume 13. Hermann Paris, 1958.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. Church: a language for generative models. arXiv preprint arXiv:1206.3255, 2012.

Noah D. Goodman. The principles and practice of probabilistic programming. SIGPLAN Not., 48(1):399-402, January 2013. ISSN 0362-1340. doi: 10.1145/2480359.2429117. URL http://doi.acm.org/10.1145/2480359.2429117.

Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guillaume Claret, Thore Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A model-learner pattern for bayesian reasoning. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '13, pages 403-416, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429119. URL http: //doi.acm.org/10.1145/2429069. 2429119.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Probabilistic programming. In Future of Software Engineering Proceedings, FOSE 2014, page 167-181, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328654. doi: 10.1145/2593882.2593900. URL https://doi.org/10.1145/ 2593882.2593900.

John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67-111, May 2000. ISSN 0167-6423. doi: 10.1016/S0167-6423(99)00023-4. URL http://dx.doi.org/ 10.1016/S0167-6423(99) 00023-4.

Mike Innes, Stefan Karpinski, Viral Shah, David Barber, PLEPS Saito Stenetorp, Tim Besard, James Bradbury, Valentin Churavy, Simon Danisch, Alan Edelman, et al. On machine learning and programming languages. Association for Computing Machinery (ACM), 2018.

Eric Kidd. Build your own probability monads. Draft paper for Hac, 7, 2007.
Jae Kwang Kim and Zhonglei Wang. Sampling techniques for big data analysis. International Statistical Review, 87:S177-S191, 2019.

Ken Friis Larsen. Memory efficient implementation of probability monads. Unpublished manuscript (August 2011), 2011.

Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are meticulous, monads are promiscuous. Electron. Notes Theor. Comput. Sci., 229(5):97-117, March 2011. ISSN 1571-0661. doi: 10.1016/j.entcs.2011.02.018. URL http://dx.doi.org/10. 1016/j.entcs.2011.02.018.

Barbara Liskov. Keynote address - data abstraction and hierarchy. SIGPLAN Not., 23 (5):17-34, January 1987. ISSN 0362-1340. doi: 10.1145/62139.62141. URL http: //doi.acm.org/10.1145/62139.62141.
Q. Liu, S. J. Qin, and T. Chai. Unevenly sampled dynamic data modeling and monitoring with an industrial application. IEEE Transactions on Industrial Informatics, 13(5):2203-2213, 2017. doi: 10.1109/TII.2017.2700520.

Hugo Daniel Macedo. Matrices as arrows: why categories of matrices matter, 2012.
Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic programming platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. There is no fork: An abstraction for efficient, concurrent, and concise data access. SIGPLAN Not., 49(9):325-337, August 2014. ISSN 0362-1340. doi: 10.1145/2692915.2628144. URL http://doi.acm.org/10. 1145/2692915. 2628144.

Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. Desugaring haskell's do-notation into applicative operations. SIGPLAN Not., 51(12):92-104, September 2016. ISSN 0362-1340. doi: 10.1145/3241625.2976007. URL http://doi.acm.org/10. 1145/3241625.2976007.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Programming, 18(1):1-13, 2008.

T Minka, J Winn, J Guiver, and A Kannan. Infer .net 2.3, nov. 2009. Software available from http://research. microsoft. com/infernet, 2009.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92, July 1991. ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4. URL http://dx.doi.org/10. 1016/0890-5401(91)90052-4.

Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jeremie Dimino. Selective applicative functors. Proc. ACM Program. Lang., 3(ICFP):90:1-90:29, July 2019. ISSN 2475-1421. doi: 10.1145/3341694. URL http://doi.acm.org/10.1145/3341694.

Daniel Murta and Jose Nuno Oliveira. Calculating risk in functional programming. arXiv preprint arXiv:1311.3687, 2013.
J.N. Oliveira. Program design by calculation, 2008. Draft of textbook in preparation, current version: April 2018. Informatics Department, University of Minho.

José N Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing, 24 (4-6):433-458, 2012.

José Nuno Oliveira and Victor Cacciari Miraldo. "keep definition, change category" - a practical approach to state-based system calculi. J. Log. Algebr. Meth. Program., 85:449-474, 2016.

João Paixão and Paweł Sobociński. Calculational proofs in relational graphical linear algebra. In Brazilian Symposium on Formal Methods, pages 83-100. Springer, 2020.

Ross Paterson. Constructing applicative functors. In Proceedings of the 11th International Conference on Mathematics of Program Construction, MPC'12, pages 300-323, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-31112-3. doi: 10.1007/ 978-3-642-31113-0_15. URL http://dx.doi.org/10.1007/978-3-642-31113-0_15.

Daniel Pebles. Sigma selective, 2019. URL https://web. archive.org/web/20190625225137/https://gist.github.com/copumpkin/ d5bdbc7afda54ff04049b6bdbcffb67e.

Tomas Petricek. What we talk about when we talk about monads. CoRR, abs/1803.10195, 2018. URL http://arxiv.org/abs/1803.10195.

Erik Poll and Simon Thompson. Algebra of programming by richard bird and oege de moor, prentice hall, 1996 (dated 1997). J. Funct. Program., 9(3):347-354, May 1999. ISSN 0956-7968.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distributions. SIGPLAN Not., 37(1):154-165, January 2002. ISSN 0362-1340. doi: 10. 1145/565816.503288. URL http://doi.acm.org/10.1145/565816.503288.

Jason Rosenhouse et al. The Monty Hall problem: the remarkable story of Math's most contentious brain teaser. Oxford University Press, 2009.

Alberto Ruiz. Hmatrix: Numeric linear algebra, 2019. URL http://hackage. haskell. org/ package/hmatrix-0.20.0.0.

Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys (CSUR), 16(2):187-260, 1984.

Armando Santos. Selective functors \& probabilistic programming. https://github.com/ bolt12/master-thesis, 2020.

Armando Santos and José N. Oliveira. Type your matrices for great good: A haskell library of typed matrices and applications (functional pearl). In Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell, Haskell 2020, page 54-66, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380508. doi: 10.1145/ 3406088.3409019. URL https://doi.org/10.1145/3406088. 3409019.

Enno Scholz. A concurrency monad based on constructor primitives. http://dx.doi.org/10.17169/refubium-22616, 1995.
A. Ścibior*. Formally justified and modular Bayesian inference for probabilistic programs. PhD thesis, University of Cambridge, UK, 2019.

Adam Ścibior, Zoubin Ghahramani, and Andrew D. Gordon. Practical probabilistic programming with monads. SIGPLAN Not., 50(12):165-176, August 2015. ISSN 0362-1340. doi: 10.1145/2887747.2804317. URL http://doi.acm.org/10.1145/2887747.2804317.

Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. Functional programming for modular bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP):83, 2018.

Peter Selinger. A brief survey of quantum programming languages. In International Symposium on Functional and Logic Programming, pages 1-6. Springer, 2004.

Jane Street. A composable build system, 2018. URL https://dune.build/.
S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combinator parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced Functional Programming, pages 184-207, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70639-7.

Wouter Swiestra. Data types à la carte. Journal of Functional Programming, 18(4):423-436, 2008. doi: 10.1017/S0956796808006758.

Jared Tobin. Embedded Domain-Specific Languages for Bayesian Modelling and Inference. PhD thesis, The University of Auckland, 2018.

David Tolpin, Jan-Willem van de Meent, and Frank Wood. Probabilistic programming in anglican. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 308-311. Springer, 2015.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction to probabilistic programming, 2018.
P. Wadler. Monads for functional programming. In Int'I School on Advanced Functional Programming, pages 24-52. Springer, 1995.

Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on Functional Programming Languages and Computer Architecture, FPCA '89, pages 347359, New York, NY, USA, 1989. ACM. ISBN 0-89791-328-0. doi: 10.1145/99370.99404. URL http://doi.acm.org/10.1145/99370.99404.

Wikipedia. Bayesian network, 2020. URL https://en.wikipedia.org/wiki/Bayesian_ network. (Accessed: 2020-02-16).

Lina Zhou, Shimei Pan, Jianwu Wang, and Athanasios V. Vasilakos. Machine learning on big data: Opportunities and challenges. Neurocomputing, 237:350-361, 2017. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2017.01.026. URL http://www.sciencedirect.com/science/article/pii/S0925231217300577.

TYPE SAFE LAOP MATRIX WRAPPER LIBRARY
```

{-\# LANGUAGE AllowAmbiguousTypes \#-} 1
{-\# LANGUAGE ConstraintKinds \#-} 2
{-\# LANGUAGE DataKinds \#-} 3
{-\# LANGUAGE FlexibleContexts \#-} 4
{-\# LANGUAGE FlexibleInstances \#-} 5
{-\# LANGUAGE GADTs \#-} 6
{-\# LANGUAGE GeneralizedNewtypeDeriving \#-} 7
{-\# LANGUAGE InstanceSigs \#-} 8
{-\# LANGUAGE KindSignatures \#-} 9
{-\# LANGUAGE MultiParamTypeClasses \#-} 10
{-\# LANGUAGE NoStarIsType \#-} 11
{-\# LANGUAGE ScopedTypeVariables \#-} 12
{-\# LANGUAGE StandaloneDeriving \#-} 13
{-\# LANGUAGE TypeApplications \#-} 14
{-\# LANGUAGE TypeOperators \#-} 15
{-\# LANGUAGE UndecidableInstances \#-} 16
{-\# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver \#-}}1
module Matrix.Internal 19
( Matrix (..), 20
NonZero, 21
ValidDimensions, 22
KnownDimensions, 23
fromLists, 24
toLists, 25
toList, 26
columns, 27
rows, 28

```
matrix 29
tr, 30
row, 31
col, 32
fmapRows, 33
fmapColumns, 34
ident, 35
zeros, 36
ones, 37
bang, 38
diag, 39
(|||), 40
(===) 41
i1, 42
i2, 43
p1, 44
p2, 45
(-|-), 46
(><) , 47
kp1, 48
kp2, 49
khatri, 50
selectM, 51
comp, 52
fromF, 53
) 54
where 55
import Control.DeepSeq 57
import Data.Binary 58
import qualified Data.List as L 59
import Data.Proxy 60
import Foreign.Storable 61
import GHC.TypeLits 62
import qualified Numeric.LinearAlgebra as LA 63
import qualified Numeric.LinearAlgebra.Data as HM 6465
-- | The 'Matrix' type is a type safe wrapper around the 66
-- 'Numeric. LinearAlgebra.Data.Matrix' data type. 67
newtype Matrix e (c :: Nat) (r :: Nat) = M \{unMatrix :: HM.Matrix e\} 68
69
deriving instance (LA.Container HM.Matrix e) => Eq (Matrix e c r) 70
deriving instance (LA.Container HM.Vector e, Fractional e, Fractional (HM. 72
Vector e), Num (HM.Matrix e)) => Fractional (Matrix e c r)73
deriving instance (Floating e, LA.Container HM.Vector e, Floating (HM.Vector 74e), Fractional (HM.Matrix e)) => Floating (Matrix e cr)75
deriving instance (LA.Container HM.Matrix e, Num e, Num (HM.Vector e)) => Num 76(Matrix e c r)
deriving instance (Read e, LA.Element e) => Read (Matrix e c r) 78
deriving instance (Binary (HM.Vector e), LA.Element e) => Binary (Matrix e c 80r)81
deriving instance (Storable e, NFData e) => NFData (Matrix e c r) 82
instance (Show e, LA.Element e) => Show (Matrix e c r) where 84
show (M m) = show m 8586
type NonZero (\(\mathrm{n}::\) Nat) \(=(\) CmpNat \(\mathrm{n} 0 \sim \mathrm{GT}\)) 87
type ValidDimensions (n :: Nat) (m :: Nat) = (NonZero n, NonZero m) 8990
type KnownDimensions (n :: Nat) (m :: Nat) = (KnownNat n, KnownNat m) 9192
- - 93
- CONVERTER FUNCTIONS 94
-- 95
```

-- | Matrix converter function. It builds a matrix from 97
-- a list of lists @[[e]]@ (considered as rows). 98
fromLists :: forall e c r. (LA.Element e, KnownDimensions c r) => [[e]] -> 99
Matrix e c r
fromLists [] = error "Wrong list dimensions" 100
fromLists l@(h : _) = 101
let ccols = fromInteger \$ natVal (Proxy :: Proxy c) 102
rrows = fromInteger \$ natVal (Proxy :: Proxy r) 103
lrows = length l 104
lcols = length h 105
in if rrows /= lrows || ccols /= lcols 106
then error "Wrong list dimensions" 107
else M . HM.fromLists \$ l 108
109
-- | Matrix converter function. It builds a list of lists from 110
-- a 'Matrix'. }11

-     - 112
-- Inverse of 'fromLists'. 113
toLists :: (LA.Element e) => Matrix e c r -> [[e]] 114
toLists = HM.toLists . unMatrix 115
116
-- | Matrix converter function. It builds a list of elements from 117
-= a 'Matrix'. 118
toList :: (LA.Element e) => Matrix e c r -> [e] 119
toList = concat . toLists 120
1 2 1
-- | Matrix converter function. It builds a matrix from a function. }12
fromF :: forall c r a b e. (Enum a, Enum b, Eq b, Num e, Ord e, LA.Element e,123
KnownNat c, KnownNat r) => (a -> b) -> Matrix e c r
fromF f = 124
let ccols = fromInteger \$ natVal (Proxy :: Proxy c) 125
rrows = fromInteger \$ natVal (Proxy :: Proxy r) 126
elementsA = take ccols \$ map toEnum [0 ..] 127
elementsB = take rrows \$ map toEnum [0 ..] 128
combinations = (,) <\$> elementsA <*> elementsB 129
combAp = map snd . L.sort . map ($a, b) -> if f a == b then ((fromEnum 130
            a, fromEnum b), l) else ((fromEnum a, fromEnum b), 0)) $
            combinations
```
```
        mList = buildList combAp rrows 131
in tr $ fromLists mList
                                132
where 133
buildList [] _ = []134
```
buildList l r = take r l : buildList (drop r l) r 135
```136
```
- - 137
- DIMENSIONS FUNCTIONS 138
- - 139

```140
```
-- | Obtain the number of columns of a matrix 141
columns :: forall e c r. KnownNat c => Matrix e c r -> Integer 142
columns _ = natVal (Proxy :: Proxy c) 143
```144
```
-- | Obtain the number of rows of a matrix 145
rows :: forall e c r. KnownNat r => Matrix e c r -> Integer 146
rows _ = natVal (Proxy :: Proxy r) 147
```148
```
fmapColumns :: forall b e a r. (Storable e, LA.Element e, KnownNat b) => 149
Matrix e a r -> Matrix e b r
fmapColumns = 150
let cols = fromInteger \$ natVal (Proxy :: Proxy b) 151
in M . HM.reshape cols . HM.fromList . toList 152
```153
```
fmapRows :: forall b e a c. (Storable e, LA.Element e, KnownDimensions c b) 154
```
=> Matrix e c a -> Matrix e c b
fmapRows = 155
let rows = fromInteger $ natVal (Proxy :: Proxy b)156
```
in tr . M . HM.reshape rows . HM.fromList . toList 157
```158
```
-- 159
-- MISC FUNCTIONS
```160
```
```
- - 161
------------------------------------------------------------------------------162
```
-- | Create a matrix. 163
matrix :: forall e c r. (KnownDimensions c r, Storable e) => [e] -> Matrix 164
```
    c r
matrix l =165
```
 166
mcols = HM.cols (unMatrix m) 167
mrows = HM.rows (unMatrix m) 168
ccols = fromInteger \$ natVal (Proxy :: Proxy c) 169
rrows = fromInteger \$ natVal (Proxy :: Proxy r) 170
in if mcols /= ccols || mrows /= rrows 171
then error "Wrong list dimensions" 172
else m 173
```174
```
- | Matrix transpose 175
tr : forall e r.
tr : : forall e c r. (LA.Element e, KnownDimensions c r) => Matrix e c r -> 176
```Matrix e r ctr = fromLists . L.transpose . toLists177178
```
-- | Create a row vector matrix. 179
row :: (Storable e, LA.Element e, KnownNat c) => [e] -> Matrix e c 1 180
row \(=$ asRow . HM.fromList 181
```182 ```
-- | Create a column vector matrix, ..... 183
col :: (Storable e) => [e] -> Matrix e 1 r ..... 184
col = asColumn . HM.fromList ..... 185
```186 ```
-- | Creates the identity matrix of given dimension. 187
ident : : forall e c. (Num e, LA.Element e, KnownNat c) => Matrix e c c 188
ident = 189
let $\mathrm{c}=\mathrm{fromInteger} \mathrm{\$} \mathrm{natVal} \mathrm{(Proxy} \mathrm{::} \mathrm{Proxy} \mathrm{c)}$ 190
in M . HM.ident \$ c 191
```192 ```
-- | Zero Matrix polymorphic definition ..... 193
```zeros :: forall e c r. (KnownDimensions c r, Num e, LA.Container HM.Vector e) 194 => Matrix e c r zeros = 195 let ccols = fromInteger $ natVal (Proxy :: Proxy c) 196     rrows = fromInteger $ natVal (Proxy :: Proxy r) 197 in M $ HM.konst 0 (rrows, ccols) 198 <-2 -- | One Matrix polymorphic definition 200 ones :: forall e c r. (KnownDimensions c r, Num e, LA.Container HM.Vector e) 201 => Matrix e c r ones = 202 let ccols = fromInteger $ natVal (Proxy :: Proxy c) 203     rrows = fromInteger $ natVal (Proxy :: Proxy r) 204 in M $ HM.konst 1 (rrows, ccols) 205 <206 -- | Bang Matrix polymorphic Matrix 207 bang :: forall e c . (KnownNat c, Num e, LA.Container HM.Vector e) => Matrix 208 e c 1 bang = 209 let ccols = fromInteger $ natVal (Proxy :: Proxy c) 210 in M $ HM.konst 1 (1, ccols) 211                         212 -- | Creates a square matrix with a given diagonal. 213 diag :: forall e c. (Num e, LA.Element e, KnownNat c) => [e] -> Matrix e c c 214 diag l = 215 let c = fromInteger $ natVal (Proxy :: Proxy c) 216     dims = length l 217 in if c /= dims 218         then error "Wrong list dimensions" 219         else M . HM.diag . HM.fromList $ l 220                                 221                                 222 -- BLOCK MATRIX FUNCTIONS (BIPRODUCT) 223 - - 224```225
```-- | Matrix block algebra 'Junc' operator ..... 226 (|||) : : (LA.Element e, ValidDimensions n m, NonZero p) => Matrix e m p -> ..... 227 Matrix e n p -> Matrix e (m + n) p (|||) a b = M \$ HM.fromBlocks [[unMatrix a, unMatrix b]] ..... 228```229
```infixl 3 ||| ..... 230 -- | Matrix block algebra 'Split' operator ..... 232 (===) : : (LA.Element e, ValidDimensions n m, NonZero p) => Matrix e p m -> ..... 233 Matrix e p n -> Matrix e p (m + n) (===) a b = M \$ HM.fromBlocks [[unMatrix a], [unMatrix b]] ..... 234```235
```infixl 2 === ..... 236```237
```-- | Matrix 'Junc' left injection matrix definition ..... 238 i1 :: (Num e, ValidDimensions n m, KnownDimensions n m, LA.Element e, LA. ..... 239 Container HM.Vector e) => Matrix e m (m + n) i1 = ident === zeros ..... 240```241
```-- | Matrix 'Junc' right injection matrix definition ..... 242 i2 :: (Num e, ValidDimensions n m, KnownDimensions n m, LA.Element e, LA. ..... 243 Container HM.Vector e) => Matrix e n (m + n) i2 = zeros === ident ..... 244```245
```-- | Matrix 'Split' left projection matrix definition ..... 246 p1 :: (Num e, ValidDimensions n m, KnownDimensions n m, KnownNat (m + n), ..... LA. 247```Element e, LA.Container HM.Vector e) => Matrix e (m + n) mp1 = tr il248249
```-- | Matrix 'Split' right projection matrix definition ..... 250 p2 :: (Num e, ValidDimensions n m, KnownDimensions n m, KnownNat (m + n), LA. 251```Element e, LA.Container HM.Vector e) => Matrix e (m + n) np2 = tr i2252
- - MATRIX BIPRODUCT FUNCTORS ..... 255
-- ..... 256257
-- | Matrix coproduct bifunctor ..... 258
(-|-) : : ..... 259
forall e n m j k. ..... 260
( ValidDimensions n m, ..... 261
ValidDimensions k j, ..... 262
NonZero (k + j), ..... 263
LA.Element e, ..... 264
LA.Numeric e, ..... 265
KnownDimensions k j ..... 266
) => ..... 267
Matrix e n k -> ..... 268
Matrix e m j -> ..... 269
Matrix e ( $\mathrm{n}+\mathrm{m}$ ) (k+j) ..... 270
(-|-) a b = (i1 `comp` a) ||| (i2 `comp` b) ..... 271272
infixl 5 -| ..... 273274
-- | Kronecker product of two matrices ..... 275
(><) :: LA.Product e => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p *276q)
(><) (M a) (M b) = M. LA.kronecker a \$ b ..... 277278
infixl 4 >< ..... 279280
281
--
- MATRIX SELECTVIE EQUIVALENT FUNCTION ..... 282
-- ..... 283
selectM : ..... 285
( LA.Numeric e, ..... 286
Enum a, ..... 287
Enum b, ..... 288
Ord e, ..... 289
Eq b, ..... 290
KnownDimensions m1 m2, ..... 291
ValidDimensions m1 m2 ..... 292
) => ..... 293
Matrix e n (m1 + m2) -> (a -> b) -> Matrix e n m2 ..... 294
selectM m y = (fromF y ||| ident) `comp` m ..... 295296
297
--
-- MATRIX COMPOSITION, KHATRI RAO FUNCTIONS ..... 298
-- ..... 299300
-- | Matrix - Matrix multiplication aka Matrix composition ..... 301
comp :: LA.Numeric e => Matrix e p m -> Matrix e n p -> Matrix e n m ..... 302
comp (M a) (M b) = M . (LA.<>) a \$ b ..... 303304
-- | Khatri Rao product left projection (inductive definition) ..... 305
class KhatriP1 e (m :: Nat) (k :: Nat) where ..... 306
kp1 :: Matrix e (m * k) m ..... 307308
instance ..... 309
\{-\# OVERLAPPING \#-\} ..... 310
( KnownNat k, ..... 311
Num e, ..... 312
LA.Numeric e, ..... 313
LA.Container HM.Vector e ..... 314
) => ..... 315
KhatriP1 e 1 k ..... 316
where ..... 317
kp1 = ones @e @k @1 ..... 318
instance ..... 320
\{-\# OVERLAPPABLE \#-\} ..... 321
( ValidDimensions m k, ..... 322
KnownNat k, ..... 323
KnownNat ((m - 1) * k), ..... 324
KnownNat (m - 1), ..... 325
Num e, ..... 326
LA.Numeric e, ..... 327
LA.Container HM.Vector e, ..... 328
(1 + (m - 1) ) ~ m, ..... 329
$(k+((m-1) * k)) \sim(m * k)$, ..... 330
NonZero ((m - 1) * k), ..... 331
NonZero (m - 1), ..... 332
KhatriP1 e (m - 1) k ..... 333
) => ..... 334
KhatriP1 e m k ..... 335
where ..... 336
kp1 = ones @e @k @1 -|- kp1 @e @(m - 1) @k ..... 337338
-- | Khatri Rao product right projection (inductive definition) ..... 339
class KhatriP2 e (k :: Nat) (m :: Nat) where ..... 340
kp2 :: Matrix e (m * k) k ..... 341342
instance ..... 343
\{-\# OVERLAPPING \#-\} ..... 344
( Num e, ..... 345
LA.Element e, ..... 346
KnownNat k ..... 347
) => ..... 348
KhatriP2 e k 1 ..... 349
where ..... 350
kp2 = ident @e @k ..... 351352
instance ..... 353
\{-\# OVERLAPPABLE \#-\} ..... 354
$((k+((m-1) * k)) \sim(m * k)$, ..... 355
ValidDimensions m k, ..... 356
NonZero ((m - 1) * k), ..... 357
```LA.Element e,358```
Num e, 359
KnownNat k, 360
KhatriP2 e k (m - 1) 361
) => 362
KhatriP2 e k m 363
where 364
kp2 = ident @e @k ||| kp2 @e @k @(m - 1) 365
```366 ```
-- | Khatri Rao product of two matrices (Pairing) ..... 367
khatri : ..... 368
forall e m p q. ..... 369
( KnownDimensions p (p * q), ..... 370
KnownNat q, ..... 371
Num e, ..... 372
Num (HM.Vector e) ..... 373
LA.Numeric e, ..... 374
LA.Container HM.Vector e, ..... 375
KhatriP1 e p q, ..... 376
KhatriP2 e q p ..... 377
) => ..... 378
Matrix e m p -> ..... 379
Matrix e m q -> ..... 380
Matrix e m (p * q) ..... 381
khatri a b = (tr (kp1 @e @p @q) `comp` a) * (tr (kp2 @e @q @p) `comp` b) ..... 382
```383384 ```
- AUXILIARY FUNCTIONS 385
- - 386
```387 ```
-- | Creates a matrix from a vector by grouping the elements in rows ..... 388
-- with the desired number of columns. ..... 389
reshape :: forall e c r. (Storable e, KnownNat c) => HM.Vector e -> Matrix e ..... 390
```C r```
```
reshape v = 391391
let cols = fromInteger \$ natVal (Proxy :: Proxy c) 392
in M \$ HM.reshape cols v 393
394
-- | Creates a 1-column matrix from a vector. 395
asColumn :: forall e r. (Storable e) => HM.Vector e -> Matrix e 1 r 396
asColumn = reshape @e @1 397
3 398
-- | Creates a 1-vector matrix from a vector. }39
asRow :: (Storable e, LA.Element e, KnownNat c) => HM.Vector e -> Matrix e c 400
1
asRow = tr . asColumn

Listing A.1: Type safe matrix wrapper library

## B

TYPE SAFE LAOP INDUCTIVE MATRIX DEFINITION LIBRARY

```
{-# LANGUAGE AllowAmbiguousTypes #-}1
```

\{-\# LANGUAGE DataKinds \#-\} ..... 2
\{-\# LANGUAGE FlexibleContexts \#-\} ..... 3
\{-\# LANGUAGE FlexibleInstances \#-\} ..... 4
\{-\# LANGUAGE GADTs \#-\} ..... 5
\{-\# LANGUAGE InstanceSigs \#-\} ..... 6
\{-\# LANGUAGE MultiParamTypeClasses \#-\} ..... 7
\{-\# LANGUAGE NoStarIsType \#-\} ..... 8
\{-\# LANGUAGE ScopedTypeVariables \#-\} ..... 9
\{-\# LANGUAGE StandaloneDeriving \#-\} ..... 10
\{-\# LANGUAGE TypeApplications \#-\} ..... 11
\{-\# LANGUAGE TypeFamilies \#-\} ..... 12
\{-\# LANGUAGE TypeOperators \#-\} ..... 13
\{-\# LANGUAGE UndecidableInstances \#-\} ..... 14

```15
```

```-- |17
```

-- Module : Matrix.Internal ..... 18
-- Copyright : (c) Armando Santos 2019-2020 ..... 19
-- Maintainer : armandoifsantos@gmail.com ..... 20
-- Stability : experimental ..... 21
-- ..... 22
-- The LAoP discipline generalises relations and functions treating them as ..... 23
-- Boolean matrices and in turn consider these as arrows. ..... 24
--

```25
```

-- __LAoP__ is a library for algebraic (inductive) construction and ..... 26

```manipulation of matrices
```

-- in Haskell. See <https://github.com/bolt12/master-thesis my Msc Thesis> ..... 27 for the-- motivation behind the library, the underlying theory, and implementation28

    details.
    --29
-- This module offers many of the combinators mentioned in the work of ..... 30
-- Macedo (2012) and Oliveira (2012). ..... 31

-     - ..... 32
-- This is an Internal module and it is no supposed to be imported. ..... 33
-     - ..... 34
- ..... 3536
module Matrix.Internal ..... 37
( -- | This definition makes use of the fact that 'Void' is ..... 38
-- isomorphic to 0 and '()' to 1 and captures matrix ..... 39
-- dimensions as stacks of 'Either's. ..... 40
$=$ ..... 41
-- There exists two type families that make it easier to write ..... 42
-- matrix dimensions: 'FromNat' and 'Count'. This approach ..... 43
-- leads to a very straightforward implementation ..... 44
-- of LAoP combinators. ..... 45
-- * Type safe matrix representation ..... 47
Matrix (..), ..... 48-- * Primitives49
empty, ..... 51
one, ..... 52
junc, ..... 53
split, ..... 54
55
-- * Auxiliary type families ..... 56
FromNat, ..... 57
Count ..... 58
Normalize, ..... 59
-- * Matrix construction and conversion ..... 61
FromLists, ..... 62
fromLists, ..... 63
toLists, ..... 64
toList, ..... 65
matrixBuilder, ..... 66
row, ..... 67
col, ..... 68
zeros, ..... 69
ones, ..... 70
bang, ..... 71
constant, ..... 72
73
-     -         * Misc ..... 74
=- ** Get dimensions ..... 75
columns, ..... 76
rows, ..... 77
-- ** Matrix Transposition ..... 79
tr, ..... 80
81
-- ** Selective operator ..... 82
select, ..... 83
-- ** McCarthy's Conditional ..... 85
cond, ..... 86
87
-- ** Matrix "abiding"
** Matrix abiding ..... 88
abideJS, ..... 89
abideSJ, ..... 90
91
-- * Biproduct approach * Biproduct approach ..... 92
-- ** Split ..... 93
(===), ..... 94
-- *** Projections ..... 95
p1, ..... 96
p2, ..... 97
-- ** Junc ..... 98
(|||), ..... 99
-- *** Injections ..... 100
i1, ..... 101
i2, ..... 102
-- ** Bifunctors ..... 103
(-|-), ..... 104
(><) , ..... 105106
-- ** Applicative matrix combinators ..... 107108
-- | Note that given the restrictions imposed it is not possible to ..... 109
-- implement the standard type classes present in standard Haskell. ..... 110
-- *** Matrix pairing projections ..... 111
kp1, ..... 112
kp2, ..... 113114
-- *** Matrix pairing ..... 115
khatri, ..... 116
117
-- * Matrix composition and lifting ..... 118119
-- ** Arrow matrix combinators ..... 120121
-- | Note that given the restrictions imposed it is not possible to ..... 122
-- implement the standard type classes present in standard Haskell. ..... 123
identity, ..... 124
comp ..... 125
fromF, ..... 126
fromF' ..... 127
-- * Matrix printing ..... 129
pretty ..... 130
prettyPrint ..... 131
) ..... 132
where ..... 133134
import Utils ..... 135
import Data.Bool ..... 136
import Data.Kind ..... 137
import Data.List ..... 138

```
import Data.Proxy 139
import Data.Void 140
import GHC.TypeLits 141
import Data.Type.Equality 142
import GHC.Generics 143
import Control.DeepSeq 144
import Control.Category 145
import Prelude hiding ((.)) 146
\}14
-- | LAoP (Linear Algebra of Programming) Inductive Matrix definition. 148
data Matrix e cols rows where 149
 Empty :: Matrix e Void Void 150
 One :: e -> Matrix e () () 151
 Junc :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows 152
 Split :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b) 153
 154
deriving instance (Show e) => Show (Matrix e cols rows) 155
-- | Type family that computes the cardinality of a given type dimension. 157
- - 158
-- It can also count the cardinality of custom types that implement the 159
-- 'Generic' instance. 160
type family Count (d :: Type) :: Nat where 161
 Count (Natural n m) = (m - n) + 1 162
 Count (Either a b) = (+) (Count a) (Count b) 163
 Count (a, b) = (*) (Count a) (Count b) 164
 Count (a -> b) = (^) (Count b) (Count a) 165
 - - Generics 166
 Count (M1 _ _ f p) = Count (f p) 167
 Count (K1 _ _ _) = 1 168
 Count (V1 _) = 0 169
 Count (U1 _) = 1 170
 Count ((:*:) a b p) = Count (a p) * Count (b p) 171
 Count ((:+:) a b p) = Count (a p) + Count (b p) 172
 Count d = Count (Rep d R) 173
-- | Type family that computes of a given type dimension from a given natural 175
-- Thanks to Li-Yao Xia this type family is super fast. 177
type family FromNat (n :: Nat) :: Type where 178
FromNat 0 = Void 179
FromNat \(1=()\) 180
FromNat n = FromNat' (Mod n \(2==0)\) (FromNat (Div n 2)) 181182
type family FromNat' (b :: Bool) (m :: Type) :: Type where 183
FromNat' 'True m = Either m m 184
FromNat' 'False m = Either () (Either m m) 185186
-- | Type family that normalizes the representation of a given data 187
-- structure 188
type family Normalize (d :: Type) :: Type where 189
Normalize d = FromNat (Count d) 190191
-- | It is not possible to implement the 'id' function so it is 192
-- implementation is 'undefined'. However 'comp' can be and this partial 193
-- class implementation exists just to make the code more readable. 194
-- 195
-- Please use 'identity' instead. 196
instance (Num e) => Category (Matrix e) where 197
id = undefined 198
(.) = comp 199200
instance NFData e => NFData (Matrix e cols rows) where 201
rnf Empty = () 202
rnf (One e) = rnf e 203
rnf (Junc a b) = rnf a `seq` rnf b 204
rnf (Split a b) = rnf a `seq` rnf b 205206
instance Eq e => Eq (Matrix e cols rows) where 207
Empty == Empty = True 208
(One a) == (One b) = \(\mathrm{a}=\mathrm{b}\) 209
(Junc a b) == (Junc c d) \(=\mathrm{a}==\mathrm{c} \& \& \mathrm{~b}==\mathrm{d}\) 210
(Split a b) == (Split c d) = a == c \(\& \& b==d\) 211
\(x @(S p l i t ~ a ~ b) ~==~ y @(J u n c ~ c ~ d) ~=~ x ~==~ a b i d e J S ~ y ~\) 212
x@(Junc a b) == y@(Split c d) = abideJS x == y 213
instance Num e => Num (Matrix e cols rows) where 215216
Empty + Empty = Empty 217
(One a) + (One b) \(=\) One (\(\mathrm{a}+\mathrm{b}\)) 218
(Junc a b) + (Junc c d) = Junc (a + c) (b + d) 219
(Split a b) + (Split c d) = Split (a + c) (b + d) 220
\(x @(S p l i t \quad a b)+y @(J u n c ~ c ~ d)=x+a b i d e J S ~ y\) 221
x@(Junc a b) + y@(Split c d) = abideJS \(x+y\) 222223
Empty - Empty \(=\) Empty 224
(One a) - (One b) = One (a - b) 225
(Junc a b) - (Junc c d) = Junc (a-c) (b-d) 226
(Split a b) - (Split c d) = Split (a - c) (b - d) 227
x@(Split a b) - y@(Junc c d) = x - abideJS y 228
x@(Junc a b) - y@(Split c d) = abideJS x - y 229
230
Empty * Empty = Empty 231
(One a) * (One b) \(=\) One (a * b) 232
(Junc a b) * (Junc c d) = Junc (a * c) (b * d) 233
(Split a b) * (Split c d) = Split (a*c) (b*d) 234
x@(Split a b) * y@(Junc c d) = x * abideJS y 235
x@(Junc a b) * y@(Split c d) = abideJS \(x * y\) 236237
abs Empty = Empty 238
abs (One a) = One (abs a) 239
abs (Junc a b) = Junc (abs a) (abs b) 240
abs (Split a b) = Split (abs a) (abs b) 241242
signum Empty = Empty 243
signum (One a) = One (signum a) 244
signum (Junc a b) = Junc (signum a) (signum b) 245
signum (Split a b) = Split (signum a) (signum b) 246247
-- Primitives 248249
-- | Empty matrix constructor 250
empty :: Matrix e Void Void 251
empty = Empty 252
-- | Unit matrix constructor 254
one :: e -> Matrix e () () 255
256
one = One257
-- | Matrix 'Junc' constructor 258
junc :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows 259
junc = Junc 260261
infixl 3 ||| 262263
-- | Matrix 'Junc' constructor 264
(|||) :: Matrix e a rows -> Matrix e b rows -> Matrix e (Either a b) rows 265
(|||) = Junc 266267
-- | Matrix 'Split' constructor 268
split : : Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b) 269
split = Split 270271
infixl 2 === 272273
-- | Matrix 'Split' constructor 274
(===) :: Matrix e cols a -> Matrix e cols b -> Matrix e cols (Either a b) 275
(===) = Split 276277
- Construction 278279
- | Type class for defining the 'fromList' conversion function. 280
- - 281
-- Given that it is not possible to branch on types at the term level type 282
-- classes are needed bery much like an inductive definition but on types. 283
class FromLists e cols rows where 284
-- | Build a matrix out of a list of list of elements. Throws a runtime 285
-- error if the dimensions do not match. 286
fromLists :: [[e]] -> Matrix e cols rows 287
instance FromLists e Void Void where 289
fromLists [] = Empty 290
```

    fromLists _ = error "Wrong dimensions" 291
    fromLists [[e]] = One e 294
    fromLists _ = error "Wrong dimensions" 295
                                    296
    instance {-\# OVERLAPPING \#-} (FromLists e cols ()) => FromLists e (Either () 297
cols) () where
fromLists [h : t] = Junc (One h) (fromLists [t]) 298
fromLists _ = error "Wrong dimensions" 299
300
instance {-\# OVERLAPPABLE \#-} (FromLists e a (), FromLists e b (), KnownNat (301
Count a)) => FromLists e (Either a b) () where
fromLists [l] = 302
let rowsA = fromInteger (natVal (Proxy :: Proxy (Count a))) 303
in Junc (fromLists [take rowsA l]) (fromLists [drop rowsA l]) 304
fromLists _ = error "Wrong dimensions" 305
306
instance {-\# OVERLAPPING \#-} (FromLists e () rows) => FromLists e () (Either 307
() rows) where
fromLists ([h] : t) = Split (One h) (fromLists t) 308
fromLists _ = error "Wrong dimensions" 309
310
instance {-\# OVERLAPPABLE \#-} (FromLists e () a, FromLists e () b, KnownNat (311
Count a)) => FromLists e () (Either a b) where
fromLists l@([h] : t) = 312
let rowsA = fromInteger (natVal (Proxy :: Proxy (Count a)))}31
in Split (fromLists (take rowsA l)) (fromLists (drop rowsA l)) 314
fromLists _ = error "Wrong dimensions" 315
316
instance {-\# OVERLAPPABLE \#-} (FromLists e (Either a b) c, FromLists e ( 317
Either a b) d, KnownNat (Count c)) => FromLists e (Either a b) (Either c
d) where
fromLists l@(h : t) = 318
let lh = length h 319
rowsC = fromInteger (natVal (Proxy :: Proxy (Count c))) 320
condition = all (== lh) (map length t) 321
in if lh > 0 \&\& condition 322

```
```

    then Split (fromLists (take rowsC l)) (fromLists (drop rowsC l)) 323
    else error "Not all rows have the same length" 324
325
-- | Matrix builder function. Constructs a matrix provided with 326
-- a construction function. }32
matrixBuilder :: 328
forall e cols rows. 329
( FromLists e cols rows, 330
KnownNat (Count cols), 331
KnownNat (Count rows) 332
) => 333
((Int, Int) -> e) -> 334
Matrix e cols rows 335
matrixBuilder f = 336
let c = fromInteger \$ natVal (Proxy :: Proxy (Count cols)) 3
r = fromInteger \$ natVal (Proxy :: Proxy (Count rows)) 338
positions = [(a, b) | a <- [0 .. (r - 1)], b <- [0 .. (c - 1)]] 339
in fromLists . map (map f) . groupBy ($x, _) (w, _) -> x == w) $ 
        positions341
-- | Constructs a column vector matrix 342
col :: (FromLists e () rows) => [e] -> Matrix e () rows 343
col = fromLists . map (: []) 344
345
-- | Constructs a row vector matrix 346
row :: (FromLists e cols ()) => [e] -> Matrix e cols () 347
row = fromLists . (: []) 348
349
-- | Lifts functions to matrices with arbitrary dimensions. }35
-- 351
-- NOTE: Be careful to not ask for a matrix bigger than the cardinality of 352
-- types @a@ or @b@ allows. 353
fromF :: 354
    forall a b cols rows e. 355
    ( Bounded a, 356
    Bounded b, 357
    Enum a, 358
    Enum b, 359
```
Eq b, 360
Num e, 361
Ord e, 362
KnownNat (Count cols), 363
KnownNat (Count rows), 364
FromLists e rows cols 365
) => 366
(a -> b) -> 367
Matrix e cols rows 368
fromF f = 369
let minA = minBound @a 370
\(\max A \quad=$ maxBound @a 371
minB $\quad=$ minBound $@ b$ 372
$\operatorname{maxB} \quad=$ maxBound $@ b$ 373
ccols \quad fromInteger \$ natVal (Proxy :: Proxy (Count cols)) 374
rrows = fromInteger \$ natVal (Proxy :: Proxy (Count rows)) 375
elementsA = take ccols [minA .. maxA] 376
elementsB = take rrows [minB .. maxB] 377
combinations $=($,$) <\$> elementsA <*> elementsB$ 378
combAp $\quad=$ map snd . sort . map $(\backslash(a, b)$-> if $f a==b$ 379
then ((fromEnum a 380
fromEnum b), 1)
else ((fromEnum a, 381
fromEnum b), 0))
\$ combinations
mList = buildList combAp rrows 382
in tr \$ fromLists mList 383
where 384
buildList [] _ = [] 385
buildList l $r=$ take r l : buildList (drop r l) r 386
-- | Lifts functions to matrices with dimensions matching @a@ and @b@ 388
-- cardinality's. 389
fromF' : 390
forall a b e. 391
(Bounded a, 392
Bounded b, 393
Enum a, 394
Enum b, 395
Eq b, 396
Num e, 397
Ord e, 398
KnownNat (Count (Normalize a)), 399
KnownNat (Count (Normalize b)), 400
FromLists e (Normalize b) (Normalize a) 401
) => 402
(a -> b) -> 403
Matrix e (Normalize a) (Normalize b) 404
fromF' f = 405
let minA = minBound @a 406
$\operatorname{maxA} \quad=\operatorname{maxBound}$ @a 407
minB = minBound @b 408
$\operatorname{maxB} \quad=\operatorname{maxBound}$ @b 409
ccols = fromInteger \$ natVal (Proxy :: Proxy (Count (Normalize a 410))rrows $=$ fromInteger $\$$ natVal (Proxy : : Proxy (Count (Normalize b 411)))
elementsA = take ccols [minA .. maxA] 412
elementsB = take rrows [minB .. maxB] 413
combinations $=($,$) <\$> elementsA <*> elementsB$ 414
combAp $\quad=$ map snd . sort . map $(\backslash(a, b)$-> if $f a==b$ 415
then ((fromEnum a 416
fromEnum b), 1)
else ((fromEnum a 417
fromEnum b), 0))
\$ combinations
mList = buildList combAp rrows 418
in tr $\$$ fromLists mList 419
where 420
buildList [] _ = [] 421
buildList l r = take r l : buildList (drop r l) r 422
423
-- Conversion 424
-- | Converts a matrix to a list of lists of elements. 426
toLists :: Matrix e cols rows -> [[e]] 427
```toLists Empty = [] 428 toLists (One e) = [[e]] 429 toLists (Split l r) = toLists l ++ toLists r 430 toLists (Junc l r) = zipWith (++) (toLists l) (toLists r) 431 - - Converts a matrix to a list of elements. 433 toList :: Matrix e cols rows -> [e] 434 toList = concat . toLists 435 -436 -- Zeros Matrix 437 -- | The zero matrix. A matrix wholly filled with zeros. 439 zeros :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat ( }44     Count rows)) => Matrix e cols rows zeros = matrixBuilder (const 0) 441```

```-- Ones Matrix 443 -- | The ones matrix. A matrix wholly filled with ones. 445 - - 446 -- Also known as T (Top) matrix. 447 ones :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat (Count 448     rows)) => Matrix e cols rows ones = matrixBuilder (const 1) 449 -- Const Matrix 451 -- | The constant matrix constructor. A matrix wholly filled with a given 453 -- value. 4 5 4 constant :: (Num e, FromLists e cols rows, KnownNat (Count cols), KnownNat ( 455     Count rows)) => e -> Matrix e cols rows constant e = matrixBuilder (const e) 456 -- Bang Matrix 458 - | The T (Top) row vector matrix. 460 bang :: forall e cols. (Num e, Enum e, FromLists e cols (), KnownNat (Count 461     cols)) => Matrix e cols ()```
```bang = 462     let c = fromInteger $ natVal (Proxy :: Proxy (Count cols)) 4 6 3     in fromLists [take c [1, 1 ..]] 464 -- Identity Matrix 4 6 6 4 6 7 -- | Identity matrix. 468 identity :: (Num e, FromLists e cols cols, KnownNat (Count cols)) => Matrix e469     cols cols identity = matrixBuilder (bool 0 1 . uncurry (==)) 470 < 471 -- Matrix composition (MMM) 472 -- | Matrix composition. Equivalent to matrix-matrix multiplication. 474 - - 475 -- This definition takes advantage of divide-and-conquer and fusion laws 476 -- from LAoP. 477 comp :: (Num e) => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows 478 comp Empty Empty = Empty 479 comp (One a) (One b) = One (a * b) 480 comp (Junc a b) (Split c d) = comp a c + comp b d -- Divide-and- 481     conquer law comp (Split a b) c = Split (comp a c) (comp b c) -= Split fusion law482 comp c (Junc a b) = Junc (comp c a) (comp c b) -- Junc fusion law 483                                     4 8 4 -- Projections 485 4 8 6 -- | Biproduct first component projection 487 p1 :: forall e m n. (Num e, KnownNat (Count n), KnownNat (Count m), FromLists 488         e n m, FromLists e m m) => Matrix e (Either m n) m p1 =                                     4 8 9     let iden = identity :: Matrix e m m 490         zero = zeros :: Matrix e n m 491     in junc iden zero 492                                     4 9 3 -- | Biproduct second component projection 494 p2 :: forall e m n. (Num e, KnownNat (Count n), KnownNat (Count m), FromLists 495         e m n, FromLists e n n) => Matrix e (Either m n) n```
```p2 = 496     let iden = identity :: Matrix e n n 497         zero = zeros :: Matrix e m n 498     in junc zero iden 499     500 -- Injections 501 - Biproduct first component injection m -- | Biproduct first component injection 503 i1 :: (Num e, KnownNat (Count n), KnownNat (Count m), FromLists e n m, 504     FromLists e m m) => Matrix e m (Either m n) i1 = tr p1 505 O i2 :: (Num e, KnownNat (Count n), KnownNat (Count m), FromLists e m n, }50     FromLists e n n) => Matrix e n (Either m n) i2 = tr p2 509 -- Dimensions 511 - | Obtain the number of rows. }51 -- 514 -- NOTE: The 'KnownNat' constaint is needed in order to obtain the 515 -- dimensions in constant time. }51 - - 517 -- TODO: A 'rows' function that does not need the 'KnownNat' constraint in 518 -- exchange for performance. }51 rows :: forall e cols rows. (KnownNat (Count rows)) => Matrix e cols rows -> 520     Int rows _ = fromInteger $ natVal (Proxy :: Proxy (Count rows)) 521 52 -- | Obtain the number of columns. 523 - - 524 -- NOTE: The 'KnownNat' constaint is needed in order to obtain the 525 -- dimensions in constant time. }52 -- 527 -- TODO: A 'columns' function that does not need the 'KnownNat' constraint in 528 -- exchange for performance. 529```
```columns :: forall e cols rows. (KnownNat (Count cols)) => Matrix e cols rows 530     -> Int columns _ = fromInteger $ natVal (Proxy :: Proxy (Count cols)) 531 0}53 -- Coproduct Bifunctor 533 \-534 infixl 5 - - 535```

```-- | Matrix coproduct functor also known as matrix direct sum. }53 (-|-) :: }53     forall e n k m j. 539     ( Num e, 540     KnownNat (Count j), 541     KnownNat (Count k), 542     FromLists e k k, 543     FromLists e j k, 544     FromLists e k j, 545     FromLists e j j 546     ) => 547     Matrix e n k -> 548     Matrix e m j -> 549     Matrix e (Either n m) (Either k j) 550 (-|-) a b = Junc (i1 . a) (i2 . b) 551 - Khatri Rao Product and projections }55 - | Khatri Rao product first component projection matrix. }55 kp1 :: 556     forall e m k . 557     ( Num e, 558             KnownNat (Count k), 559             FromLists e (FromNat (Count m * Count k)) m, 560             KnownNat (Count m), 561             KnownNat (Count (Normalize (m, k))) 562     ) => Matrix e (Normalize (m, k)) m 563 kp1 = matrixBuilder f 564     where 565     offset = fromInteger (natVal (Proxy :: Proxy (Count k))))}56```
```    f (x, y) 567     | y >= (x * offset) && y <= (x * offset + offset - 1) = 1         568     | otherwise = 0 569                                 5 7 0 -- | Khatri Rao product second component projection matrix. 571 kp2 :: 572     forall e m k . 573     ( Num e, 574             KnownNat (Count k), 575             FromLists e (FromNat (Count m * Count k)) k, 576             KnownNat (Count m), 577             KnownNat (Count (Normalize (m, k))) 578     ) => Matrix e (Normalize (m, k)) k 579 kp2 = matrixBuilder f 580     where 581     offset = fromInteger (natVal (Proxy :: Proxy (Count k))))}58     f (x, y) 583             | x == y || mod ( y - x) offset == 0 = 1 584             | otherwise = 0 585                             586 -- | Khatri Rao Matrix product also known as matrix pairing. }58 - - 588 -- NOTE: That this is not a true categorical product, see for instance: 589 - - 590 -- @ 591 -- | kp1 . khatri a b == a 592 -- khatri a b ==> | 593 -- | kp2 . khatri a b == b 594 -- @ 595 - - 596 -- __Emphasis__ on the implication symbol. 597 khatri :: 598     forall e cols a b. }59     ( Num e, 600         KnownNat (Count a), 601         KnownNat (Count b), 602         KnownNat (Count (Normalize (a, b))), 603         FromLists e (Normalize (a, b)) a, 604```
```    FromLists e (Normalize (a, b)) b     6 0 5     ) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (Normalize (a606         b)) khatri a b = 607     let kp1' = kp1 @e @a @b 608             kp2' = kp2 @e @a @b 609     in (tr kp1') . a * (tr kp2') . b                                     610                                     6 1 1 -- Product Bifunctor (Kronecker) 612 infixl 4 >< 614 -- | Matrix product functor also known as kronecker product 616                                     6 1 5 (><) :: 617             forall e m p n q. 618             ( Num e, 619             KnownNat (Count m), 620             KnownNat (Count n), 621             KnownNat (Count p), 622             KnownNat (Count q), 623             KnownNat (Count (Normalize (m, n))), 624             FromLists e (Normalize (m, n)) m, 625             FromLists e (Normalize (m, n)) n, 626             KnownNat (Count (Normalize (p, q))), 627             FromLists e (Normalize (p, q)) p, 628             FromLists e (Normalize (p, q)) q 629             ) 630             => Matrix e m p -> Matrix e n q -> Matrix e (Normalize (m, n)) (                          Normalize (p, q)) (><) a b = 632     let kp1' = kpl @e @m @n 633             kp2' = kp2 @e @m @n 634     in khatri (a . kp1') (b . kp2') 635                             6 3 6 -- Matrix abide Junc Split 637 -- | Matrix "abiding" followin the 'Junc'-'Split' abide law. }63 640```
```-- Law: 641 - - 642 -- @ 643 -- 'Junc' ('Split' a c) ('Split' b d) == 'Split' ('Junc' a b) ('Junc' c d) 644 -- @ 645 abideJS :: Matrix e cols rows -> Matrix e cols rows 646 abideJS (Junc (Split a c) (Split b d)) = Split (Junc (abideJS a) (abideJS b))647     (Junc (abideJS c) (abideJS d)) =- Junc-Split abide law abideJS Empty = Empty 648 abideJS (One e) = One e 649 abideJS (Junc a b) = Junc (abideJS a) (abideJS b) 650 abideJS (Split a b) = Split (abideJS a) (abideJS b) 651 -- Matrix abide Split Junc 653 -- | Matrix "abiding" followin the 'Split'='Junc' abide law. }65 -- 656 -- @ -- 'Split' ('Junc' a b) ('Junc' c d) == 'Junc' ('Split' a c) ('Split' b d) }65 -- @ 6 5 9 abideSJ :: Matrix e cols rows -> Matrix e cols rows 660 abideSJ (Split (Junc a b) (Junc c d)) = Junc (Split (abideSJ a) (abideSJ c)) 661     (Split (abideSJ b) (abideSJ d)) -- Split-Junc abide law abideSJ Empty                     = Empty 6 6 2 abideSJ (One e) = One e 663 abideSJ (Junc a b) = Junc (abideSJ a) (abideSJ b) 664 abideSJ (Split a b) = Split (abideSJ a) (abideSJ b) 665 6 6 6 -- Matrix transposition 667 6 6 8 -- | Matrix transposition. 669 tr :: Matrix e cols rows -> Matrix e rows cols 670 tr Empty = Empty 671 tr (One e) = One e 6 %  tr (Junc a b) = Split (tr a) (tr b) 673 tr (Split a b) = Junc (tr a) (tr b) 674 6 7 5 - Selective 'select' operator 676```
|| ..... 677
-- | Selective functors 'select' operator equivalent inspired by the ..... 678
-- ArrowMonad solution presented in the paper. ..... 679
select : : ..... 680
( Bounded a, ..... 681
Bounded b, ..... 682
Enum a, ..... 683
Enum b, ..... 684
Num e, ..... 685
Ord e, ..... 686
Eq b, ..... 687
KnownNat (Count (Normalize a)), ..... 688
KnownNat (Count (Normalize b)), ..... 689
KnownNat (Count cols), ..... 690
FromLists e (Normalize b) (Normalize a), ..... 691
FromLists e (Normalize b) (Normalize b) ..... 692
) => Matrix e cols (Either (Normalize a) (Normalize b)) -> (a -> b) ->693 Matrix e cols (Normalize b)
select m y = ..... 694
let $f=$ fromF $y$ ..... 695
in junc f identity . m ..... 696697
-- McCarthy's Conditional ..... 698699
-- | McCarthy's Conditional expresses probabilistic choice. ..... 700
cond : : ..... 701
( cols ~ FromNat (Count cols), ..... 702
KnownNat (Count cols) ..... 703
FromLists e () cols, ..... 704
FromLists e cols (), ..... 705
FromLists e cols cols, ..... 706
Bounded a, ..... 707
Enum a, ..... 708
Num e, ..... 709
Ord e ..... 710
) ..... 711
=> ..... 712
(a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols 713 rows
cond $p \mathrm{f} g=\mathrm{junc} \mathrm{f} \mathrm{g} . \operatorname{grd} \mathrm{p}$ ..... 714grd : :716
( q ~ FromNat (Count q) , ..... 717
KnownNat (Count q), ..... 718
FromLists e () q, ..... 719
FromLists e q (), ..... 720
FromLists e q q, ..... 721
Bounded a, ..... 722
Enum a, ..... 723
Num e, ..... 724
Ord e ..... 725
) ..... 726
=> ..... 727
(a -> Bool) -> Matrix e q (Either q q) ..... 728
grd f = split (corr f) (corr (not . f)) ..... 729730
corr : : ..... 731
forall e a q. ..... 732
( q ~ FromNat (Count q), ..... 733
KnownNat (Count q), ..... 734
FromLists e () q, ..... 735
FromLists e q (), ..... 736
FromLists e q q, ..... 737
Bounded a, ..... 738
Enum a, ..... 739
Num e, ..... 740
Ord e ..... 741
) ..... 742
=> (a -> Bool) -> Matrix e q q ..... 743
corr $p=$ let $f=$ fromF $p$ : : Matrix e q () ..... 744
in khatri f (identity :: Matrix e q q) ..... 745746
-- Pretty print ..... 747748
prettyAux :: Show e => [[e]] -> [[e]] -> String ..... 749
```
prettyAux [] _ = "" }75
prettyAux [[e]] m = "| " ++ fill (show e) ++ " |\n" 751
where 752
v = fmap show m 753
widest = maximum \$ fmap length v 754
fill str = replicate (widest - length str - 2) ' ' ++ str 755
prettyAux [h] m = "| " ++ fill (unwords \$ map show h) ++ " |\n" }75
where 757
v = fmap show m 758
widest = maximum \$ fmap length v 759
fill str = replicate (widest - length str - 2) ' ' ++ str 760
prettyAux (h : t) l = "| " ++ fill (unwords \$ map show h) ++ " |\n" ++ 761
prettyAux t l 762
where 763
v = fmap show l 764
widest = maximum \$ fmap length v 765
fill str = replicate (widest - length str - 2) ' ' ++ str 766
- | Matrix pretty printer 768
pretty :: (KnownNat (Count cols), Show e) => Matrix e cols rows -> String 769
pretty m = "+ " ++ unwords (replicate (columns m) blank) ++ " +\n" ++ 770
prettyAux (toLists m) (toLists m) ++ 771
"+ " ++ unwords (replicate (columns m) blank) ++ " +" }77
where 773
v = fmap show (toList m) 774
widest = maximum \$ fmap length v 775
fill str = replicate (widest - length str) ' ' ++ str 776
blank = fill "" }77
778
-- | Matrix pretty printer 779
prettyPrint :: (KnownNat (Count cols), Show e) => Matrix e cols rows -> IO ()780
prettyPrint = putStrLn . pretty

Listing B.1: Type safe inductive matrix library

SELECTIVE PROBABILISTIC PROGRAMMING LIBRARY
\{- | 1
Copyright: (c) 2020 Armando Santos 2
SPDX-License-Identifier: MIT 3
Maintainer: Armando Santos armandoifsantos@gmail.com 45
See README for more info 6

- \} 7
\{-\# LANGUAGE DeriveFunctor \#-\} 9
\{-\# LANGUAGE DeriveAnyClass \#-\} 10
\{-\# LANGUAGE DeriveGeneric \#-\} 11
\{-\# LANGUAGE GADTs \#-\} 12
\{-\# LANGUAGE RankNTypes \#-\} 13
module SelectiveProb where 15
import Control.Concurrent 17
import Control.Concurrent.Async 18
import Control.DeepSeq 19
import Control.Selective 20
import Control.Selective.Free 21
import Data.Bifunctor 22
import Data.Bool 23
import Data.Foldable (toList) 24
import Data.Functor.Identity 25
import Data.IORef 26
import Data.List (group, maximumBy, sort) 27
import Data.Ord 28
import qualified Data. Vector as V 29
import Data.Sequence (Seq, singleton) 30
import GHC.Generics 31
import qualified System.Random.MWC.Probability as MWCP 3233
data BlockedRequest = forall a. BlockedRequest (Request a) (IORef (Status a)) 3435
data Status a = NotFetched | Fetched a 36
type Prob = Double 38
data Request a where 40
Uniform :: [x] -> (x -> a) -> Request a 41
Categorical :: [(x, Prob)] -> (x -> a) -> Request a 42
Normal :: Double -> Double -> (Double -> a) -> Request a 43
Beta :: Double -> Double -> (Double -> a) -> Request a 44
Gamma :: Double -> Double -> (Double -> a) -> Request a 45
instance Show a => Show (Request a) where 47
show (Uniform l f) = "Uniform " ++ show (map f l) 48
show (Categorical l f) = "Categorical " ++ show (map (first f) l) 49
show (Normal x y _) = "Normal " ++ show x ++ " " ++ show y 50
show (Beta x y _) = "Beta " ++ show x ++ " " ++ show y 51
show (Gamma x y _) = "Gamma " ++ show x ++ " " ++ show y 52
-- A Haxl computation is either completed (Done) or Blocked on pending data 54 requests
data Result a = Done a | Blocked (Seq BlockedRequest) (Fetch a) deriving 55Functor
newtype Fetch a = Fetch \{unFetch :: IO (Result a)\} deriving Functor 57
冨 58
instance Applicative Fetch where 59
pure = return 6061
Fetch iof <*> Fetch iox = Fetch \$ do 62
$r f<-i o f$ 63
rx <- iox 64

```
    return $ case (rf, rx) of 65
    (Done f, _) -> f <$> rx66
    (_, Done x) -> ($x) <$> rf 67
    (Blocked bf f, Blocked bx x) -> Blocked (bf <> bx) (f <*> x) --68
                parallelism
```

instance Selective Fetch where 70
select (Fetch iox) (Fetch iof) = Fetch \$ do 71
$r x<-i o x$ 72
$r f<-i o f$ 73
return \$ case (rx, rf) of 74
(Done (Right b), _) -> Done b -- abandon the second 75
computation
(Done (Left a), _) -> (\$a) <\$> rf 76
(_, Done f) -> either f id <\$> rx 77
(Blocked bx x, Blocked bf f) -> Blocked (bx <> bf) (select x f) -- 78
speculative execution

```79
```

instance Monad Fetch where 80
return = Fetch . return . Done 81
Fetch iox >>= f = Fetch \$ do 83
$r x<-i o x$ 84
case rx of 85
Done x-> unFetch (f x) =- dynamic dependency on runtime value 'x 86
87
Blocked bx x -> return (Blocked bx (x >>= f))

```88
```

requestSample :: Request a -> Fetch a 89
requestSample request $=$ Fetch $\$$ do 90
box <- newIORef NotFetched 91
let $\mathrm{br}=$ BlockedRequest request box 92
cont $=$ Fetch \$ do 93
Fetched a <- readIORef box 94
return (Done a) 95
return (Blocked (singleton br) cont) 96
fetch :: [BlockedRequest] -> IO () 98

```
fetch = mapConcurrently_ aux 99
    where
                                1 0 0
        aux (BlockedRequest r ref) = do 101
            threadDelay 100 102
            c <- MWCP.createSystemRandom 103
            case r of 104
                    Uniform l f -> do 105
                    i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) C 106
                    writeIORef ref (Fetched . f $ l !! i) 107
                    Categorical l f -> do 108
                    i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c 109
                    writeIORef ref (Fetched . f . fst $ l !! i) 110
                    Normal x y f -> do 111
                    a <- MWCP.sample (MWCP.normal x y) c 112
                    writeIORef ref (Fetched . f $ a) 113
                    Beta x y f -> do 114
                    a <- MWCP.sample (MWCP.beta x y) c 115
                    writeIORef ref (Fetched . f $ a) 116
                    Gamma x y f -> do 117
                    a <- MWCP.sample (MWCP.gamma x y) c 118
                    writeIORef ref (Fetched . f $ a) 119
                            1 2 0
runFetch :: Fetch a -> IO a 121
runFetch (Fetch h) = do 122
    r<- h 123
    case r of 124
    Done a -> return a 125
    Blocked br cont -> do 126
            fetch (toList br) 127
            runFetch cont 128129
```

-- Probabilistic eDSL 130

```131
```

type Dist $a=$ Select Request a 132

```133
```

uniform :: [a] -> Dist a 134
uniform = liftSelect . flip Uniform id 135

```136
```

```
categorical :: [(a, Double)] -> Dist a 137
categorical = liftSelect . flip Categorical id 138
139
normal :: Double -> Double -> Dist Double 140
normal x y = liftSelect (Normal x y id) 141
142
bernoulli :: Double -> Dist Bool 143
bernoulli x = categorical [(True, x), (False, 1 - x)] 144
145
binomial :: Int -> Double -> Dist Int 146
binomial n p = length . filter id <$> sequenceA (replicate n (bernoulli p)) 147
beta :: Double -> Double -> Dist Double 149
beta x y = liftSelect (Beta x y id) 150
151
gamma :: Double -> Double -> Dist Double 152
gamma x y = liftSelect (Gamma x y id) 153
condition :: (a -> Bool) -> Dist a -> Dist (Maybe a) 155
condition c = condS (pure c) (pure (const Nothing)) (pure Just) 156
157
-- Examples of Probabilistic Programs 158
159
exla :: Dist (Bool, Bool) 160
exla = 161
    let cl = bernoulli 0.5 162
        c2 = bernoulli 0.5 163
        in (,) <$> c1 <*> c2 164
        165
ex1b :: Dist (Maybe (Bool, Bool)) 166
ex1b = 167
    let c1 = bernoulli 0.5 168
            c2 = bernoulli 0.5 169
            result = (,) <$> c1 <*> c2 170
    in condition (uncurry (||)) result 171
ex2 :: Dist Int 173
ex2 =
174
```

```
    let count = pure 0 175
    cl = bernoulli 0.5
        176
    c2 = bernoulli 0.5 177
    cond = condition (uncurry (||)) ((,) <$> c1 <*> c2) 178
    count2 = ifS (maybe False fst <$> cond) count ((+ 1) <$> count) 179
    count3 = ifS (maybe False snd <$> cond) count2 ((+ 1) <$> count2) 180
    in count3
        181
        182
ex3 :: Dist Int 183
ex3 = 184
    let count = pure 0 185
        c1 = bernoulli 0.5 186
        c2 = bernoulli 0.5 187
        cond = not . uncurry (||) <$> ((,) <$> c1 <*> c2) 188
        count2 = ifS c1 count ((+ 1) <$> count) 189
        count3 = ifS c2 count2 ((+ 1) <$> count2) 190
    in ifS cond count3 ((+) <$> count3 <*> ex3) 191
ex4 :: Dist Bool 193
ex4 = 194
    let b = pure True 195
        c = bernoulli 0.5 196
    in ifS (not <$> c) b (not <$> ex4) 197
ex5a = 200
    let c1 = uniform [0 .. 50000] 201
        c2 = uniform [0 .. 50000] 202
    in (,) <$> c1 <*> c2 203
                            204
ex5b :: Dist (Maybe (Int, Int)) 205
ex5b = 206
    let c1 = uniform [0 .. 50000] 207
        c2 = uniform [0 .. 50000] 208
        result = (,) <$> c1 <*> c2 209
        in condition (uncurry (>)) result 210
        211
data Coin = Heads | Tails 212
```

deriving (Show, Eq, Ord, Bounded, Enum, NFData, Generic) 213214
-- Throw 2 coins 215
t2c : : Dist (Coin, Coin) 216
t2c = 217
let $\mathrm{cl}=$ bool Heads Tails <\$> bernoulli 0.5 218
c2 = bool Heads Tails <\$> bernoulli 0.5 219
in (,) <\$> c1 <*> c2 220221
-- Throw 2 coins with condition 222
t2c2 :: Dist (Maybe (Bool, Bool)) 223
t2c2 = 224
let c1 = bernoulli 0.5 225
c2 = bernoulli 0.5 226
in condition (uncurry (||)) ((,) <\$> c1 <*> c2) 227
228
-- | Throw coins until 'Heads' comes up 229
prog :: Dist [Coin] 230
prog = 231
let toss = bernoulli 0.5 232
in condS 233
(pure (== Heads)) 234
(flip (:) <\$> prog) 235
(pure (: [])) 236
(bool Heads Tails <\$> toss) 237238
-- | bad toss 239
throw :: Int -> Dist [Bool] 240
throw 0 = pure [] 241
throw $\mathrm{n}=$ 242
let toss = bernoulli 0.5 243
in ifS 244
toss 245
((:) <\$> toss <*> throw (n - 1)) 246
(pure []) 247248
-- | This models a simple board game where, at each turn, 249
-- two dice are thrown and, if the value of the two dice is equal, 250

```
|- the face of the third dice is equal to the other dice, 251
-- otherwise the third die is thrown and one piece moves
252
-- the number of squares equal to the sum of all the dice. 253
diceThrow :: Dist Int 254
diceThrow = 255
    condS 256
        (pure $ uncurry (==)) 257
    ((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw 258
    (pure (\(a, _) -> a + a + a)) 259
    ((,) <$> die <*> die) - - Parallel dice throw 260
    261
diceThrow2 :: Dist [Int] 262
diceThrow2 = 263
    condS 264
        (pure $ uncurry (==)) 265
        ((\c (a, b) -> [a, b, c]) <$> die) -- Speculative dice throw 266
        (pure (\(a, b) -> [a, b])) 267
        ((,) <$> die <*> die) - - Parallel dice throw 268
        269
diceThrow3 :: Dist Int 270
diceThrow3 = 271
    condS 272
        (pure $ uncurry (==)) 273
        ((\c (a, b) -> a + b + c) <$> die) -- Speculative dice throw 274
        (pure (\(a, _) -> a + a + a)) 275
        ((,) <$> bigDie <*> bigDie) - = Parallel dice throw 276
        277
die :: Dist Int 278
die = uniform [1 .. 6] 279
280
bigDie :: Dist Int 281
bigDie = uniform [0 . 50000] 282
283
-- | Infering the weight of a coin. 284
-- 285
-- The coin is fair with probability 0.8 and biased with probability 0.2. 286
weight :: Dist Prob 287
weight = 288
```

```
    ifS 289
    (bernoulli 0.8)290
```

(pure 0.5) 291
(beta 5 1) 292

```293
```

-- Sampling/Inference Algorithms 294

```295
```

sample :: Dist a -> Int -> Dist [a] 296
sample r n = sequenceA (replicate n r) 297
-- monte carlo sampling/inference 299
monteCarlo :: Ord a => Int -> Dist a -> Dist [(a, Double)] 300
monteCarlo n d = 301
let $r=s a m p l e d n$ 302
in map (\l -> (head l, fromIntegral (length l) / fromIntegral n)) . group 303
. sort <\$> r

```304
```

-- Inefficient rejection sampling 305
rejection :: (Bounded c, Enum c, Eq c) => ([a] -> [b] -> Bool) -> [b] -> Dist 306

```c -> (c -> Dist a) -> Dist c
```

rejection predicate observed proposal model = loop 307
where 308
len = length observed 309
loop = 310
let parameters = proposal 311
generated = sample (bindS parameters model) len 312
cond = predicate <\$> generated <*> pure observed 313
in ifS 314
cond 315
parameters 316
loop 317

```318
```

-- forward sampling 319
runToIO :: Dist a -> IO a 320
runToIO = runSelect interpret 321
where 322
interpret (Uniform l f) = do 323
threadDelay 100 324

```
    c <- MWCP.createSystemRandom 325
    i <- MWCP.sample (MWCP.uniformR (0, length l - 1)) c 326
    return (f $ l !! i) 327
    interpret (Categorical l f) = do 328
    threadDelay 100 329
    c <- MWCP.createSystemRandom 330
    i <- MWCP.sample (MWCP.categorical (V.fromList . map snd $ l)) c 331
    return (f . fst $ l !! i)}33
    interpret (Normal x y f) = do 333
    threadDelay 100 334
    c <- MWCP.createSystemRandom 335
    f <$> MWCP.sample (MWCP.normal x y) c 336
    interpret (Beta x y f) = do 337
    threadDelay 100 338
    c <- MWCP.createSystemRandom 339
    f <$> MWCP.sample (MWCP.beta x y) c 340
    interpret (Gamma x y f) = do 341
    threadDelay 100 342
    c <- MWCP.createSystemRandom 343
    f <$> MWCP.sample (MWCP.gamma x y) c 344
345
runToFetch :: Dist a -> Fetch a 346
runToFetch = runSelect requestSample 347
runToIO2 :: Dist a - IO a
runToIO2 = runFetch . runToFetch 350
351
distMean :: Dist a -> a 352
distMean = runIdentity . runSelect interpret 353
    where 354
    interpret (Uniform l f) = Identity . f . (!! meanIndex) $ l 355
        where 356
            meanIndex = (length l - 1) `div` 2 357
    -- There's no sensible mean, so the most probable value is returned 358
    interpret (Categorical l f) = Identity . f . fst . (!! maxi) $ l 359
            where 360
            maxi = snd $ maximumBy (comparing fst) (zip (map snd l) [0 ..]) 361
    interpret (Normal x _ f) = Identity $ f x 362
```

```
    interpret (Beta x _ f) = Identity $ f x363
```

interpret (Gamma x _ f) = Identity \$ f x 364

```365
```

distStandardDeviation :: Dist a -> a 366
distStandardDeviation = runIdentity . runSelect interpret 367
where 368
interpret (Uniform l f) = Identity . f . (!! stdIndex) \$ l 369
where 370
stdIndex = round . sqrt \$ ((fromIntegral (length l) ^ 2) - 1) / 12 371
interpret (Categorical _ _) = error "No sensible value" 372
interpret (Normal _ y f) = Identity \$ f y 373
interpret (Beta _ y f) = Identity \$ f y 374
interpret (Gamma _ y f) = Identity \$ f y 375

```376
```

-- Selective Applicative Functor utilities 377
-- Guard function used in McCarthy's conditional 379

```380
```

-- | It provides information about the outcome of testing @p@ on some input 381

```
    @a@,
```

-- encoded in terms of the coproduct injections without losing the input 382
-- @a@ itself. 383
grdS :: Applicative f => f (a -> Bool) -> f a -> f (Either a a) 384
grdS f a = selector <\$> applyF f (dup <\$> a) 385
where 386
dup $x=(x, x)$ 387
applyF fab faa = bimap <\$> fab <*> pure id <*> faa 388
selector (b, x) = bool (Left x) (Right x) b 389

```390
```

-- | McCarthy's conditional, denoted p -> f,g is a well-known functional 391
-- combinator, which suggests that, to reason about conditionals, one may 392
-- seek help in the algebra of coproducts. 393

- - 394
-- This combinator is very similar to the very nature of the 'select' 395
-- operator and benefits from a series of properties and laws. 396
condS : : Selective f => f (b -> Bool) -> f (b -> c) -> f (b -> c) -> f b -> f397

```C
```

```
\(\|\) condS \(\mathrm{p} \mathrm{f} \mathrm{g}=(\mathrm{r}\)-> branch r f g ) . grdS p
398
```

Listing C.1: Selective probabilistic programming library

While doing this work Armando Santos held a Research Grant of the DaVinci Project funded by FEDER (through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme) and by National Funds through the FCT (Portuguese Foundation for Science and Technology, I.P.) under Grant No. PTDC/CCI-COM/29946/2017.

