
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Luzia Cruz

Exploring Paraconsistent Logics
for Quantum Programs

Paraconsistent transition systems
Modal paraconsistent logic

December 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Luzia Cruz

Exploring Paraconsistent Logics
for Quantum Programs

Paraconsistent transition systems
Modal paraconsistent logic

Master dissertation
Integrated Master’s in Physics Engineering

Dissertation supervised by
Luı́s Soares Barbosa
Alexandre Madeira

December 2021

i

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR
TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um uso
do trabalho em condições não previstas no licenciamento indicado, deverá contactar o au-
tor, através do RepositóriUM da Universidade do Minho.

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration. I further declare that I have fully acknowledged
the Code of Ethical Conduct of the University of Minho.

A C K N O W L E D G E M E N T S

I once read that we have no friends, only teachers. I am lucky to have found great teachers
who are great friends. I would like to thank professor Alda Pregueiro, professor Rosa Sousa,
professor José Lopes and all the teachers I had the opportunity to learn with in the last 18

years. Mostly, I would like to thank professor Luı́s Soares Barbosa and professor Alexandre
Madeira for leading me through the quest of developing the work here presented, for
their suggestions and insights and for their brightness. Knowledge is either a useless or a
dangerous thing in the hands of those who don’t know how to share it. Thank you all for
sharing your beautiful minds.

I would like to thank all my family members and all my friends for always supporting
me and heartening me to succeed. No step is the last step. Thank you for witnessing and
greeting all my steps, even those which lead me nowhere.

A B S T R A C T

Superconducting quantum circuits are a promising model for quantum computation, al-
though their physical implementation faces some adversities due to the hardly unavoidable
decoherence of superconducting quantum bits. This problem may be approached from a
formal perspective, using logical reasoning to perform software correctness of programs
executed in the non-ideal available hardware. This is the motivation for the work devel-
oped in this dissertation, which is ultimately an attempt to use the formalism of transition
systems to design logical tools for the engineering of quantum software.

A transition system to capture the possibly unexpected behaviors of quantum circuits
needs to consider the phenomena of decoherence as a possible error factor. In this way, we
propose a new family of transition systems, the Paraconsistent Labelled Transition Systems
(PLTS), to describe processes that may behave differently from what is expected when facing
specific contexts. System states are connected through transitions which simultaneously
characterize the possibility and impossibility of that being the system’s evolution. This
kind of formalism may be used to represent processes whose evolution is impossible to
be sharply described and, thus, should be able to cope with inconsistencies, as well as
with vagueness or missing information. Besides giving the formal definition of PLTS, we
establish how they are related under the notions of morphism, simulation, bisimulation
and trace equivalence.

It is a common practice to combine transition systems through universal constructions,
in a suitable category, which forms a basis for a process description language. In this dis-
sertation, we define a category of PLTS and propose a number of constructions to combine
them, providing a basis for such a language.

Transition systems are usually associated with modal logics which provide a formal set-
ting to express and prove their properties. We also propose a modal logic, more specifically,
a modal intuitionistic paraconsistent logic (MIPL), to talk about PLTS and express their
properties, studying how the equivalence relations defined for PLTS extend to relations on
MIPL models and how the satisfaction of formulas is preserved along related models.

Finally, we illustrate how superconducting quantum circuits may be represented by a
PLTS and propose the use of PLTS equivalence relations, namely that of trace equivalence,
to compare circuit effectiveness.

Keywords: Paraconsistency, Transition systems, Modal logic, Quantum computation.

R E S U M O

Os circuitos quânticos que operam qubits supercondutores são um modelo promissor para
a arquitetura de computadores quânticos. No entanto, a sua implementação fı́sica pode
tornar-se ineficaz, devido a fenómenos de decoerência a que os qubits em questão estão
altamente sujeitos. Uma possı́vel abordagem a este problema consiste em empregar a lógica
e as suas ferramentas para a correção de programas a executar nestes dispositivos.

A proposta desta dissertação é que se utilize o formalismo dos sistemas de transição
para modelar e descrever o comportamento dos circuitos quânticos, que, por vezes, pode
ser imprevisı́vel. Para tal, considera-se a decoerência de qubits como um possı́vel fator
de erro nas computações. Assim surge uma nova famı́lia de sistemas de transição, os
Paraconsistent Labelled Transition systems (PLTS), como um modelo para descrever processos
que, em determinados contextos, se comportam de forma diferente do que é esperado. Os
estados de um PLTS estão conectados por transições que caracterizam, simultaneamente,
a possibilidade e a impossibilidade de o sistema evoluir transitando de um estado para o
outro. Este é um modelo em que a informação acerca das transições pode ser incompleta
ou mesmo contraditória. Além da definição formal dos PLTS, são também sugeridas, como
relações entre PLTS, as noções de morfismo, simulação, bissimulação e equivalência por
traços.

Muitas vezes, os sistemas de transição são combinados através de construções universais
numa categoria adequada, de forma a definir uma álgebra de processos. Também neste
trabalho é definida uma categoria de PLTS e são propostas algumas construções, tı́picas
nas álgebras de processos, para os combinar.

O sistemas de transição são geralmente associados a lógicas modais, que permitem ex-
pressar e provar as suas propriedades. A definição dos PLTS conduziu à definição de uma
lógica modal, MIPL, que permitiu determinar de que forma as relações de equivalência
definidas para PLTS, e estendidas para modelos da lógica MIPL, se refletem na preservação
da satisfação de fórmulas sobre os modelos relacionados.

Por fim, propõe-se utilizar PLTS para a representação de circuitos quânticos e comparar
a eficácia dos circuitos através da relação de equivalência por traços.

Palavras-chave: Paraconsistência, Sistemas de transição, Lógica modal, Computação
quântica.

C O N T E N T S

1 introduction 1

2 paraconsistent labelled transition systems plts 15

2.1 Truth space 15

2.2 Model definition 20

2.3 Morphism, Simulation and Bisimulation 21

2.4 Traces and Trace equivalence 24

3 constructions over plts 29

3.1 Restriction 31

3.2 Relabelling 33

3.3 Parallel composition 33

3.4 Sum 37

3.5 Prefixing 39

3.6 Other operations 40

4 mipl - a modal intuitionistic paraconsistent logic 43

4.1 Syntax - Signatures and Formulas 43

4.2 Semantics and Satisfaction 44

4.3 Modal preservations 56

5 conclusion 71

5.1 Summary of contributions 71

5.2 Modeling Quantum Circuits - an application of PLTS 71

5.2.1 From quantum circuits to PLTS 72

5.3 Prospect for future work 79

a support material 85

L I S T O F F I G U R E S

Figure 1 Intuitionistic (pink), paraconsistent (grey) and classic (red) domains
characterizing truth degrees for ”Transition is present” and ”Transi-
tion is absent”. 19

Figure 2 Satisfaction of the formula ∼ϕ according to the satisfaction of ϕ 46

Figure 3 Circuit 1 (designed with IMB Quantum Composer online software) 73

Figure 4 Circuit 2 (designed with IMB Quantum Composer online software) 73

Figure 5 Circuit 3 (designed with IMB Quantum Composer online software) 76

list of figures xiii

1

I N T R O D U C T I O N

Logic for what?

Logics are used to study the validity of arguments, or in other words, to verify if a
particular statement, the conclusion, may be fairly inferred from a set of other statements,
the premises. To do so, it is necessary to define a collection of rules that determines what
conclusions follow from the assertion of a number of statements, called a theory. That is,
if the information contained in a theory is assumed or known to be true, the logic rules
of inference establish what other statements are provable, allowing to derive further truths.
The concept of provability needs to be complemented with the notion of truth so that it is
possible to make distinction between arguments that are valid, or, in other words, logically
provable, and arguments that in addition to being valid also lead to a true conclusion, called
plausible arguments. The difference between a conclusion being provable and a conclusion
being true is illustrated by the argument below.

All computer scientists are logicians.
All logicians are mathematicians.

Thus, all computer scientists are mathematicians.

This argument has the form of a syllogism, a particular kind of argument defined by Aris-
totle. The last statement, the conclusion, is provable from the previous ones, the premises.
Indeed, if the premises are assumed to be true, then the conclusion is necessarily true. How-
ever, it is reasonable to question the veracity of the information expressed by the premises,
and if at least one of the premises is false then it is no longer possible to ensure the verac-
ity of the conclusion. To distinguish true and false statements, logics are complemented
with semantics, whose role is to interpret statements according to their truth value. When
logics are enriched with a semantical layer, the veracity of premises, or their truth value, is
accounted for in establishing if a conclusion is true or false.

Classical logics: when contradiction and triviality are inseparable

2 Chapter 1. Introduction

Classical logics are a family of logics whose semantics is usually bivalent, meaning that
each statement has one of two possible truth values: true or false. Bivalent classical logics
obey the Principle of Non-Contradiction. Formulated by Aristotles, and later by Łukasiewicz
[Jaś69a], the Principle of Non-Contradiction states that two contradictory propositions can-
not be simultaneously true. Aristotle considers two kinds of simple propositions, affirma-
tions and denials, which he defines as statements affirming the presence and the absence
of a characteristic in a subject, respectively. To Aristotle, the affirmation and denial of a
given characteristic in the same subject form a pair of contradictory statements, since from
the fact that one is true, it must follow that the other is false, and vice-versa. Then, a logic
to reason over Aristotle’s simple propositions must entail a set of rules that ensures it is
never possible to derive both an affirmation and its denial as valid conclusions of a given
theory, as long as the theory is itself free from contradictions.

In bivalent classical logics, the Principle of Non-Contradiction may be formulated in
terms of one of the two following rules. Considering a negation connective ¬, which reads
as “not”, conjunction ∧, which reads as “and”, and disjunction ∨, which reads as “or”,
the first rule, usually referred to as the law of non-contradiction, asserts that a logical con-
tradiction, i.e. a sentence of the form (p ∧ ¬p), is false under all circumstances: that is, a
sentence of the form ¬(p ∧ ¬p) is always true, regardless of the meaning of p. This has a
direct logical interpretation, it simply says that p and ¬p should never be simultaneously
provable. The other rule, known as the law of the excluded middle, asserts that either p
is true or ¬p is true, for any proposition p, implying that a sentence of the form p ∨ ¬p is
always provable. It expresses the semantical consideration pointed by Aristotle: if p is true,
then ¬p is necessarily false, and vice-versa. Actually, in bivalent classical logic these two
rules are derivable from each other, that is, each of them may be defined in terms of the
other, and therefore the conclusions one reaches by considering them separately or both
together are exactly the same.

Nonetheless, it is possible to design other logical systems where these rules are not dual.
It is even possible to design logics whose set of rules does not include them, and further-
more it is possible to design logics where some of the connectives we used to state these
rules are not even available. . . Aristotle knew, although being convinced that the Principle
of Non-contradiction was a fundamental and ultimate truth, that classical logics would not
be a universal reasoning tool. For instance, he noticed that modal propositions, i.e. those sen-
tences asserting or denying “possibility or contingency, impossibility or necessity”, would
represent an exception to his principle: a sentence like “it may be that. . . ” and its negation
are not contradictory statements, but in fact they imply each other. From the fact that “it
may be” it follows straightforwardly that “it may not be” as well. He concludes that this
kind of propositions have a different behavior with respect to negation than that of simple
propositions, but considers that an alternative definition of their contradictory is needed to

3

solve the issue and ensure that the Principle of Non-Contradiction is met. Such sentences
are the object of analysis of Modal Logics. Aristotle introduced modal propositions in his
Term Logic for syllogisms but “modern” modal logic was founded by C. Lewis, with his
famous S-systems [LL34]. A possibility connective 3 is used to express the modal status of
a proposition p: 3p reads as “it is possible that p” and ¬3¬p (“it is not possible that not
p”) is interpreted as “it is necessary that p”. Because of the duality between possibility and
necessity, these are considered ”classical” modal logics. A necessity connective may be
introduced in the logic but is redundant, as it can be expressed in terms of 3 and ¬. Latter,
Kripke developed the possible world semantics for modal logics, based on Leibniz’s concep-
tion of possible worlds. The “possible worlds” are understood as points of evaluation, each
having its own assignment of truth values for non-modal propositions. A semantic model
includes a set of possible worlds and a binary relation, the accessibility relation, establish-
ing “connections” between the worlds, needed for the evaluation of modal propositions. A
modal formula 3p is “true” in a world w if p is “true” in at least one world accessible from
w; p is “true” if p is “true” in all worlds accessible from w.

Łukasiewicz objects that the Principle of Non-Contradiction applies solely to objects from
which one obtains a sensible perception and should not be taken as a basic logical principle,
“since it is valid only as an assumption”. In fact, a resembling consideration was already
pointed out, in different terms, by Aristotle, when explaining why the principle would not
apply to modal formulas or sentences of a future tense. That propositions of a future tense
represent an objection to the Principle of Non-Contradiction is well illustrated in Aristotle’s
famous argument of the sea-fight: in short, there is no way of knowing today which of the
sentences “A sea-fight will take place tomorrow” or “A sea-fight will not take place tomorrow” is
true, but clearly, either a sea-fight will take place tomorrow or not. Although our intuition
that only one of these sentences is true (and the other false) seems correct, which is which
is impossible to determine unequivocally. Moreover, this applies to any sentence about
a subject whose existence is somehow limited in time, “that which is not always existent
or not always nonexistent” - in the Sagirite’s words. Then, the logic that rules what exists
actually - at all instants of time - should not be the same as that which rules what exists
potentially, also called the undeterminate, since the Principle of Non-Contradiction fails to
describe the latter. If, like Aristotle, we accept the undeterminate as an existing object, or
moreover, if we acknowledge that existing objects, as in Łukasiewicz formulation, might not
be perceptible, then the Principle of Non-Contradiction is no longer a basic logical principle
that applies to all existing things. In fairness, even before the Aristotelian principle was
formulated, Heraclitus (535 - 475 BC) was already convinced that such a principle would
fail to describe reality. Instead, based on the assumption that existing objects continuously
change throughout time, Heraclitus believed that all things an object can possibly become,
including something that is not at a present time, must potentially exist within it at its present

4 Chapter 1. Introduction

form. An object may have one characteristic today and the opposite characteristic tomorrow
and these two contradictory characteristics must potentially exist within it simultaneously.
The principle of Non-Contradiction applies to the non-contradictory, but these arguments
suggest that some existing things do not conform to the principle because they live in a
contradictory state (or do they live in a contradictory state because they do not conform
to the principle?). Łukasiewicz also points out the fact that many logical principles hold
independently of whether the Principle of Non-Contradiction holds or not and, as mentioned
above, there is no reason to believe that a logic allowing contradiction cannot be constructed
in the first place.

More recently, with the development of quantum theory [BvN37], the mysterious indeter-
minate object found a concrete physical realization in quantum systems. Indeed, a quantum
system may be described by a collection of characteristics, possibly opposite, representing
the potential states the system may evolve towards. A paradigmatic example of how a
quantum system behaves is that two copies of the same system, meaning that they have
exactly the same potentialities, may, upon the same interaction, evolve to different states.
Thus, before such interaction, it is not possible to determine, but only to predict, what char-
acteristic will accurately describe the system and, just as the Principle of Non-Contradiction
does not apply to the indeterminate object, it does not apply to quantum systems.

The notion of consistency is used to characterize logics where no contradictory statements
are simultaneously provable, i.e. classical logics. On the other hand, if for a certain logic
statements p and ¬p are simultaneously provable, giving rise to what we intuitively call a
contradiction, then the logic under consideration is said to be inconsistent. [CCM07]

Classical logics become trivial in the presence of contradictions. For example, consider
the Propositional Calculus:

The statement (p ∨ ¬p) is taken as a rule and thus it is always provable, for any proposi-
tion p. Starting with this generic statement and simply applying other rules of the Propo-
sitional Calculus, it is possible to derive the rule: (p ∧ ¬p) → q [Com98]. This means
that a sentence of the form (p ∧ ¬p) → q is always provable, for any statements p and
q in the Calculus. Given a contradictory theory, i.e. a theory which contains at least one
contradiction, Propositional Calculus rules of inference set each and every statement in the
Calculus as a valid consequence of that theory. In particular, any other contradiction is
itself a consequence following from that theory.

Ideally, what is fairly inferred from a theory is true: a deductive system which verifies
this property is said to be sound. The fact that any statement within the Propositional Calcu-
lus, or any other classical logic, is a consequence of a contradictory theory Γ is suspicious.
Indeed, if a contradiction, which is supposed to be a false statement, is derived from Γ,
then classical logics fail to distinguish truth from falsity when reasoning over contradictory
theories. That is why under such circumstances, classical logics become trivial: among the

5

conclusions of a contradictory theory are truths and falsities, but the logic fails to make
distinction between them. In a sense, truth and falsity collapse into same thing when rea-
soning over contradictory information.

Why reasoning in the presence of contradiction?

Logics that become trivial in the presence of a contradiction are said to satisfy the Principle
of Explosion or to be explosive. Whenever the Principle of Explosion holds in a logic, a
theory where a contradiction occurs entails all possible consequences. In fact, it is the
Principle of Explosion that condemns contradictory theories to dud. The sense of studying
contradictory theories is recovered as long as they are not trivial. In particular, for an
explosive logic, all theories where at least one contradiction occurs are equivalent, since
they entail exactly the same set of consequences. It may be difficult to internalize that
truth or falsehood may be properly derived from a non-consistent body of knowledge,
but it is probably easier to convince ourselves that not all contradictory theories within a
logic are equivalent. In order to make distinction between them the Principle of Explosion
must be given up. Furthermore, it is quite lazy and unambitious to say that studying non-
consistent bodies of knowledge is worthless, especially with so many real examples where
the information at our disposal is even expected to be contradictory. For instance, when we
try to track down some event to which there are multiple witnesses it is not surprising that
these heterogenous sources may provide conflicting information.

The fact that classical logics have their scope of application limited to what is consistent
does not challenge their effectiveness in this domain, nor their practical importance. It
should be enough evidence to say that classical logic is used to describe the behavior of
Boolean circuits which serve as a basis for numerous digital components used nowadays as
building blocks of classical computers. That being said, to question the universality of the
Principle of Non-contradiction serves the purpose of trying to understand if other domains,
besides the consistent one, may be subject to logical reasoning, without detracting from the
merits of classical logics.

Although Aristotle’s main concern was (probably) to find fundamental truths about the
world that surrounds us, logics has throughout the years evolved to a mathematical tool
and found lots of practical applications in more specific domains. As said before, there
are useful logical systems where the Principle of Non-Contradiction fails and even useful
logical systems designed without a negation connective. For instance, the bridge estab-
lished between logic and computation by the Curry-Howard correspondence equates the
natural deduction system (for the positive fragment of the Propositional Calculus) with the
λ-calculus and its typing rules. Thus, λ-calculus programs may be reduced to proofs in
a deduction system where negation is not available, which is an evidence that the nega-

6 Chapter 1. Introduction

tion connective is not required for a logic to provide useful reasoning. This may suffice
to discard the classical intuition that the Principle of Non-Contradiction should be taken as
an axiom of any logic. In removing the connective ¬ from Propositional Calculus the the-
orem (p ∨ ¬p) is also removed, giving a non-explosive version of the Calculus where the
statement (p ∧ ¬p)→ q is no longer provable.

Before we proceed, let us formally define the Principles being evoked. Let L be a logic
with a set of formulas Fm and a consequence relation
, which is monotonic, reflexive and
transitive. Let Γ ⊆ Fm be a theory of L, i.e. a set of formulas closed under the consequence
relation. In addition we assume the connective negation ¬ is available in L.

Principle of Non-Contradiction: L is non-contradictory if
(∃Γ)(∀α ∈ Fm) : Γ 1 α or Γ 1 ¬α.

Principle of Non-Triviality: L is non-trivial if (∃Γ)(∃α ∈ Fm) : Γ 1 α.

Principle of Explosion: L is explosive if (∀Γ)(∀α)(∀β)Γ, α,¬α
 β.

These principles are stated as in [CCM07]. The following assertions are easily seen to be
true: a trivial logic is both contradictory and explosive; a contradictory logic is trivial if and
only if it is explosive.

Contradiction and paraconsistency

Reasoning in the presence of contradiction has proved to be particularly useful and im-
portant in the discipline of dialectics, where it is accepted that fair conclusions may follow
from asserting contradictory propositions. Such a discipline applies, for instance, in resem-
bling debate and trying to establish the truth from conflicting points of view. The Socratic
dialogues are a well known form of the dialectic method. Nonetheless, the first system of
dialectical logic, where the co-existence of contradictory propositions appears as a funda-
mental necessity of the reasoning process, is attributed to Hegel [Jaś69b], in spite of the
large debate on whether Hegel’s dialectical contradictions constitute logical contradictions in
the above sense. Assuming this is so, there are still two alternative points of view about
Hegel’s dialectics: the first is to consider, like Popper, that (it conforms to classical logic
and thus) is trivial; the second is to consider that it does not conform to classical logic, as
argued by Priest [PBW18]. Priest is convinced that the central notion of contradiction in
Hegel is indeed the logical one and that Hegel’s dialectics is explained by dialetheism, i.e.
the view that true logical contradictions, or dialethias, exist, which opposes to the hypothesis
sustained by the Principle of Non-Contradiction that all contradictions are necessarily false. In
classical logics, the behavior of negation and conjunction (for instance, given in the form
of truth tables) is such that a logical contradiction is always a “false” statement. While

7

classical logics have a semantic valuation for propositions which makes them either “true”
or “false”, dialetheic logics have a more expressive semantics admitting a third possible
truth value that could be read as “true and false”. The introduction of this truth value is
justified by the consideration that some propositions are indeed “two-way” truths, where
truth and falsity coexist and overlap. In dialetheic logic, the negation of a “true and false”
proposition is itself “true and false” and so is the conjunction of two “true and false” propo-
sitions. With this artifact it is possible for some contradictions, not all, to be “true and false”
which to a dialetheist implies they don’t meet the Aristotelian principle. A logic where the
law of non-contradiction does not hold, like dialetheic logic, is said to be paraconsistent. In
short, paraconsistent logics exclude the Principle of Explosion, allowing some theories to
be contradictory yet non-trivial. Priest suggests that classical logics applies to “the static
and changeless”, which are consistent, and that dialetheic logic has a much more general
domain, giving a description to what is dynamic as well. The dynamic is by nature con-
tradictory or inconsistent. Indeed, in classical logics, consistency is equated with freedom
from contradiction, meaning that once a contradiction occurs, consistency may no longer be
recovered. But this notion acquires a more expressive meaning in dialetheic (or more gener-
ically, paraconsistent) logics, where it is a characteristic attributable to any proposition. In
dialetheic logics, consistent propositions are interpreted as either “true” or “false”, and in-
consistent propositions are interpreted as “true and false”. Paraconsistent logics deal with
inconsistencies in a more expressive way since contradictions are not necessarily equivalent
to one another and not all contradictory theories necessarily entail the same set of conse-
quences. Indirectly, inconsistency has been defined as a glut in a propositions truth value.
Paraconsistent logics are then extensions of classical logic, preserving its behavior for what
is consistent, represented by truth values “true” and “false”, but endowed with a notion of
inconsistency at a propositional level. They are considered weaker forms of classical logics
since they extract less consequences from a theory, or at most the same set of consequences.

The definition of a Paraconsistent logic as above coincides with Stanislaw Jaskowski for-
mulation [Jaś69b]. A logic is paraconsistent if it does not fulfill the Principle of Explosion.
This is, for a theory Γ of a logic L in which negation ¬ is available

(∃Γ)(∃α)(∃β) : Γ, α,¬α 1 β.

Another possible definition was pointed out by Newton da Costa who argued that a logic
is paraconsistent wrt to negation ¬ if it serves as a basis for ¬-contradictory yet non-trivial
theories [CCM07] . That is

(∃Γ)(∃α)(∃β) : (Γ
 α and Γ
 ¬α and Γ 1 β).

Paraconsistent logics are inconsistent, just like trivial logics. But whereas trivial logics
allow any inference, the same does not apply to paraconsistent logics. From this fact follows
a third definition of a paraconsistent logic:

8 Chapter 1. Introduction

a logic is paraconsistent if it is inconsistent yet non-trivial.

There may be special formulas within a logic, called bottom particles and oftenly denoted
by ⊥, which are sufficient to trivialize any theory of a given logic. Formally, a bottom particle
ξ is such that

(∀Γ)(∀β)Γ, ξ
 β.

The symbol ⊥ is commonly called absurd or, sometimes, contradiction. In the scope of
classical logics, a formula that consists of a contradiction is a bottom particle. In order to
dissociate contradiction from triviality it is necessary to establish that a contradiction may
or may not be a bottom particle. Paraconsistent logics allow (some) contradictions to be dif-
ferent from the absurd ⊥ and that is how contradiction and triviality are turned apart. This
could be done, for instance, by defining consistency at a propositional level: then, a consis-
tent proposition is associated with a contradiction which is a bottom particle, whereas an
inconsistent proposition is associated with anon-trivial contradiction.

Incompleteness and Intuitionism

From the definition given above, it is straightforward that the law of non-contradiction
fails in a paraconsistent logic but this has no direct implications on its dual, the law of the
excluded middle. It is possible to have a paraconsistent logic where the law of the excluded
middle holds and, on the other hand, there are logics, termed intuitionistic, where the law
of the excluded middle fails but the law of non-contradiction holds. The first system of
intuitionistic logic is attributed to Kolmogorov [Usp92], in 1925, but the basic observations
leading to the development of this logic are due to Brouwer [vAS15]. Bouwer argues that
the law of the excluded middle is abstracted from finite situations and he gives convincing
mathematical evidence that it does not extend properly to statements about infinite collec-
tions. In classical logics, the law of the excluded middle is sustained by the semantical
consideration that truth and falsity are mutually exclusive (they are dual wrt negation and
the only available options for assigning a truth value to a proposition). Intuitionistic logic is
different because in a sense it allows the truth value of propositions to be left undetermined,
thus challenging the law of the excluded middle. As in dialetheic logics, this is achieved
by extending semantics to encompass a third truth value, that could read as “neither true
nor false”. Classical logic requires knowledge about whether the propositions in a theory
are false or true, but in intuitionistic logic the weaker hypothesis that some propositions
are not known to be true and not known to be false allows reasoning in a broader domain,
starting from much less specific assumptions. These propositions may be defined as vague
or as having a gap in their truth value, opposing to those which are distinctly “true” or
“false”. While the existence of truth value gluts challenges the law of non-contradiction, the

9

existence of truth value gaps challenges the law of the excluded middle and leaves room
for vagueness, or the lack of information.

Infinitely many truth values

Intuitionistic and Paraconsistent logic are logics with more than two semantical truth val-
ues. Motivated by Aristotles’ discussion on the principle of Non-Contradiction, Łukasiewicz
also developed a three-valued logic where the semantic value “possible”, besides the typ-
ical “true” and “false”, is introduced to handle modal propositions. It can be argued that
the third truth value represents the lack of information and as such Łukasiewicz logic is
within the intuitionistic domain. He also proposed a logic where the truth space is the
interval [0, 1], replacing the notion of “truth value” for a “truth degree”, and completely re-
jecting the principle of bivalence, which states that every proposition is either true or false.
Once again, the standard interpretations stress that the truth space [0, 1] may represent the
lack of information, but not its excess. This form of many-valued logic, with infinitely many
truth degrees, was afterwords termed fuzzy logic. The first attempt to glue intuitionistic
and paraconsistent logics together is Belnap’s Four-Valued logic [Bel77], where a semantics
is given by the four-element lattice FOUR. The possible truth values in FOUR are the
classical “true” and “false”, together with “both true and false”, to represent the excess of
information, and “neither true nor false”, to represent the lack of information. The elements
of FOUR may be represented as subsets of {T, F} where T and F stand for the classical
truth values “true” and ‘false”. Moreover, it is possible to define two orderings in FOUR:
a truth ordering, ≤t and an information ordering, ≤i, presented below.

{T}

{T, F} {}

{F}≤t

{T}

{T, F}

{}

{F}

≤i

With this kind of semantics, the veracity of sentences is complemented with considera-
tions about their informative character.

The discussion above proves that in some situations classical logic is not expressive
enough to be a good reasoning tool. Classically, truth and falsity are opposite character-
istics attributable to any proposition, but experience seems to suggest that some proposi-
tions are characterized by being simultaneously true and false. A logic splitting reality into
what is true and what is false obviously excludes from its description what is in essence

10 Chapter 1. Introduction

contradictory. On the other hand, classical “true” and “false” are also insufficient to cor-
rectly assign a truth value to propositions about the future, since one cannot predict it, or
any other proposition characterized by incomplete information. This is well illustrated by
the argument of the sea-fight. Paraconsistent and Intuitionistic logic, respectively, seem to
handle these two situations.

Logics for computation

To add to the picture, logic is no more an abstract domain of mathematics, but also a
key ingredient for the development of computational systems. All operations a computer
performs are the result of some Boolean circuit execution at the machine level and these are
designed following the rules of the two-element Boolean algebra, which is a specific math-
ematical structure that captures the properties of the classical propositional calculus. On
the other hand, functions defined in a recursive programming language may be encoded
in λ-calculus expressions and this correspondence extends to an association between pro-
grams consisting in the execution of functions for specific input arguments and proofs in
the intuitionistic variant of bivalent logics.

The use of computers and the nature of programs has developed far beyond the execu-
tion of input-output functions and the possibilities of recursive programming languages.
Indeed, input-output functions are only suited for programs which are supposed to termi-
nate and are not adequate for dealing with programs representing dynamic systems as, for
instance, operating systems. This class of programs requires more expressive logics to cap-
ture such properties, allowing to talk and reason about their states, changes or evolutions
and results. This leads to the development of different variants of Dynamic logics [HTK00].

Correctness of classic imperative programs was first addressed by the Floyd-Hoare logic
[Flo67, Hoa69] manipulating Hoare triples, usually written as {ϕ}π{ψ}, where π repre-
sents a program. The validity of a Hoare triple proves partial correctness of a program
and it means that starting from a state where ϕ is satisfied, the execution of π results in
state where ψ is satisfied, or π does not terminate. Moreover, for total correctness, it is also
necessary to prove that π terminates.

More complex computational processes are generally described as a set of configurations
and the available transitions from one configuration to another, which gives rise to a tran-
sition system [Kel76, Plo04, MN04]. Many families of transition systems have been defined,
according to the nature of the transitions between process configurations, also called worlds
or states. In their simplest version, transitions are given by a binary accessibility relation
that expresses whether a transition between two configurations s1 and s2 exists or not. Since
there are only two possibilities, either a transition exists or it doesn’t, this is considered the
classical framework. It is also possible to consider a non-classical binary relation, for in-
stance taking values in [0, 1]. Such is the case of probabilistic transition systems [LS91] and

11

fuzzy transition systems [KS14] where the [0, 1]-interval values are interpreted respectively as
a probability or as a certainty degree of a transition being present. Often transition systems
allow transitions to have a specific label encoding some action the system needs to perform
for the transition to occur. They are then qualified as labelled transition systems.

From a mathematical point of view, transition systems are a kind of relational structure,
just as Kripke models or graphs are, and thus modal languages provide a precise way to
describe and prove some of their properties. Dynamic logics are extensions of modal logics
complemented with an algebra of regular events, where programs are described as syntac-
tic constructions. This is essentially the result of using modal logic to perform Floyd-Hoare
reasoning. Whereas modal logics are simply concerned with proving propositions, incorpo-
rating the alethic modalities of possibility and necessity related to the notion of reachability
in a relational frame, dynamic logics take programs as a built in syntactic category express-
ing properties of transitions. Loosely speaking, modal logics allow to argue whether a a
particular result may be attained from some configuration, while dynamic logics include a
modal core to express properties of computational states and also a programming language
to express the properties of transitions between states.

As computational systems grow in complexity to capture a great variety of systems, from
the standard imperative systems to interactive systems, probabilistic systems [Koz85], hy-
brid systems [Pla10] or, more recently, quantum systems [BS11], many dynamic logics
emerged, defined over suitable transition models, in order to reason and verify their be-
havior.

Quantum computation comes in

Quantum computers challenge the fundamental basis of classical computation. Indeed,
classical and quantum computers correspond to very distinct physical machines. As clas-
sical computers use bits for information storage, which means information storage units
may be assigned with one out of two possible values, 0 and 1, quantum computers units
of information are quantum bits, which besides the classical states 0 or 1, could be in a
superposition of these definite states. Considering a unit of information as state vectors,
with vectors |0〉 and |1〉 the representing states 0 and 1, respectively, a superposition state is
given by a linear combination of |0〉 and |1〉, that is α |0〉+ β |1〉, where α and β are complex
numbers subject to a normalization condition |α|2 + |β|2 = 1. Superposition states represent
a computational advantage since they could be thought as encoding a much vast scope of
information [NC11].

Quantum circuits are an under-development model for quantum computation. Based on
the classical formalism of Boolean circuits, they use quantum gates to encode operations
to be performed over qubits, wich are then fed to these gates. To make use of these de-
vices, algorithms should be convertible in sequential gate executions over a collection of

12 Chapter 1. Introduction

qubits. A problem in quantum computation is the decay of quantum superposition states
to their ground state |0〉, a phenomenon known as decoherence. It occurs due to unwanted
interactions with the system which cause interference. Since state of the art qubits are still
very fragile and susceptible to interferences, quantum circuits are still very prone to error
especially in the context of NISQ (Noisy Intermediate-Scale Quantum) technology [Pre18]
in which levels of decoherence of quantum memory need to be articulated with the length
of the circuits to assess program quality.

While the demand to construct effective quantum machines continues, either by incorpo-
rating more robust hardware or by conceiving alternative architectures, the use of logical
tools for verifying quantum programs executing in the currently available hardware is a
must for the development of a mature quantum software engineering discipline. With this
motivation, in this dissertation we propose a model for quantum circuit computations in
the form of a transition system. For this model to be robust it should describe the desired
circuit execution as well as the realistic results of that execution when facing decoherence.
Since decoherence is not an exact measure, but usually given in terms of a time interval, the
states of the transition systems we propose are “connected” by two accessibility relations,
one describing how coherent a transition could be and other describing how decoherent
a transition might be. The information regarding the presence of a transition is used to
model opposite scenarios simultaneously. The affirmative and negative perspectives ap-
proached simultaneously provide a basis to analyse the impact of qubit decoherence in
quantum circuits and guidance in circuit optimization. As usual, a modal logic is required
to express and verify properties of these transition systems. Such was the motivation for
this dissertation. Along its development a new sort of transition systems was proposed, the
corresponding algebra defined and a suitable logic built.

This work

In this work we define a new family of transition systems, called Paraconsistent Labelled
Transition Systems (PLTS), as a modeling formalism where transitions are weighted in two
opposite ways: one represents the evidence of the transition being present and other rep-
resents the evidence of it being absent. These two weights come from a residuated lattice
and jointly express scenarios of consistency, inconsistency and vagueness. Furthermore, we
develop a modal logic for reasoning about these systems and also define a category of such
transition systems and propose a number of constructions to combine them, providing a
possible framework for parallel (superconducting based) quantum computations. We finish
with the proposal of a method to convert quantum circuits in PLTS and illustrate how the
logic may be used to express program properties and compare their effectiveness.

Dissertation structure

13

Chapter 2: Paraconsistent Labelled Transition Systems

In this chapter we give the formal definition of a Paraconsistent Labelled Transition Sys-
tem, where each transition is characterised by three components, two of which, as men-
tioned above, quantifying the evidence for its existence and non-existence. To better under-
stand the nature of these latter components and how they relate to each other, the chapter
includes the definition of a residuated lattice, along with some examples, as well as the
definition of a twist-structure. The introduction of the truth space that underlies our model
is followed by the model definition, the definition of a morphism between PLTS, a state
preserving relation, and the definitions of simulation, bisimulation and trace equivalence
between PLTS, which allow us to inspect behavioral equality.

Chapter 3: Constructions over PLTS

Here we define a category of PLTS and propose a number of categorical constructions
to operate over pre-existing PLTS and obtain a new ones, either through modifications in
one PLTS, as in the operations of restriction, relabelling, prefixing and other less common
constructions, or through the combination of two (or more) PLTS, with the operations of
parallel composition and sum. The work developed in this chapter serves as a basis for the
definition of a process algebra to study concurrent processes modeled by PLTS, since (some
of) the universal constructions we have defined correspond to the operations of process
calculi.

Chapter 4: MIPL - A modal intuitionistic paraconsistent logic

In this chapter, PLTS are regarded as semantic models for the definition of a modal logic
called MIPL. MIPL models consist of a relational frame given by a PLTS and a valuation
of atomic propositions in each world of the PLTS. The valuation of propositions consists of
pairs which are elements of a twist-structure over a residuated lattice.

Our grammar includes a familiar non-modal core but differently from classical modal
logics we consider four modal operators: and 3, giving formulas whose satisfaction is
witnessed by the evidence for the existence of PLTS transitions; and / and /3, giving formu-
las whose satisfaction is witnessed by the evidence against the existence of PLTS transitions.
We give a recursive definition for the satisfaction of formulas in a MIPL model and prove
some tautologies and semantical equivalences in any MIPL model. We define relations of
simulation as bisimulation between MIPL models and inspect what preservations regard-
ing the satisfaction of formulas one might expect to find for PLTS associated with either of

14 Chapter 1. Introduction

these relations.

Chapter 5: Conclusion

This chapter begins with a brief summary of the contributions presented in Chapter 2,
Chapter 3 and Chapter 4.

Following our baseline motivation, we included the proposal of a method to convert
quantum circuits into PLTS, giving a transition system like formalism for the description
of superconducting quantum computations. Transitions’ evidence of existence and non-
existence are determined by best and worst case scenarios values of qubit coherence, allow-
ing to model both scenarios simultaneously.

Finally, we give a glimpse of the future developments and improvements to the work
presented in this thesis.

2

PA R A C O N S I S T E N T L A B E L L E D T R A N S I T I O N S Y S T E M S P LT S

In a generic Labelled Transition System, connections between states are tagged by some
action or program and transitions are regarded as the result of performing such action. In
Weighted Transition Systems (WTS) each transition is associated with a numerical value.
For example, a particular family of WTS, the Fuzzy Transition Systems, where the weights
of transitions belong to the interval [0, 1], is used to capture a notion of uncertainty with
respect to the existence of transitions, so that models incorporate transitions for which there
is no absolute conviction on whether they are possible or not. Usually in this framework,
the weights are not merely numerical values, but elements of a fuzzy truth space, i.e. an
algebraic structure over that interval. In this dissertation, we propose a family of transi-
tion systems as models to simultaneously characterize information, possibly incomplete or
contradictory, regarding the existence and non-existence of a transition between states, in
terms of a positive and a negative relation. The first requirement is to define the algebraic
structure where the positive and negative relations will take their values and afterwords it
is possible to define the model in a generic way.

2.1 truth space

Graded transitions considered in the model proposed in this dissertation take values in a
truth space whose definition is based on the notion of a residuated lattice [WD38]. Resid-
uated lattices (over a set A) are algebraic structures with signature Σ = 〈u,t,�, ↪→, e〉 of
arity (2, 2, 2, 2, 0) where:

– 〈A,u,t〉 is a lattice
– 〈A,�, e〉 is a monoid and
– the operation � is residuated, with ↪→ being its right residuum, that is, for all a, b, c ∈

A

a� b ≤ c⇔ b ≤ a ↪→ c

As a direct consequence of this adjunction, we have

16 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

if a ≤ b then (c ↪→ a) ≤ (c ↪→ b) (1)

if a ≤ b then (b ↪→ c) ≤ (a ↪→ c) (2)

We will only consider complete residuated lattices, i.e. lattices where any arbitrary sub-
set of A has an infimum and a supremum. Any complete lattice is bounded by a maximal
element and a minimal element, which we denote by 1 and 0, respectively. Another require-
ment is that the residuated lattice is integral, that is, with 1 = e.

In an integral residuated lattice the following property, which plays an essential role in
the associated logic, holds (see [MNM16] for a proof).

a ↪→ (b ↪→ c) = (b u a) ↪→ c (3)

Two other conditions need to be considered. First, a prelinearity condition

(a ↪→ b) t (b ↪→ a) = 1 (4)

is enforced; the resulting structure is known as a MTL-algebra in the literature [EG01]. The
other condition is that ↪→ is the residuum of u, which leads operations u and � to coincide.

In this thesis, the term MTL-algebra will be used to refer to a residuated lattice satisfying
all the conditions mentioned above. Since the identity of the monoid coincides with the
top lattice element and the operations u and � coincide, these will be omitted and we will
write the tuple A = 〈A,u,t, 1, 0, ↪→〉 to designate an MTL-algebra.

Example 1.

1.1 A first example of this structure is a Boolean algebra over {0, 1},

2 = 〈{0, 1},∧,∨, 1, 0,→〉

with the standard interpretation of the Boolean connectives.

1.2 Another example, well-known from the fuzzy logic literature, is the Gödel algebra

G = 〈[0, 1], min, max, 0, 1,→〉

where max, min,→ : [0, 1]2 −→ [0, 1] are defined for any a, b ∈ [0, 1] as follows.

max(a, b) =

a if a ≥ b

b otherwise
; min(a, b) =

a if a ≤ b

b otherwise
; a→ b =

1, if a ≤ b

b, otherwise
.

2.1. Truth space 17

The following properties will be needed in the sequel.

Lemma 1. Let A = 〈A,u,t, 1, 0, ↪→〉 be a complete MTL-algebra. Then, for any a1, . . . , an, b ∈ A

b ↪→
(l

i

ai
)
=

l

i

(b ↪→ ai) (5)

(⊔
i

ai
)
↪→ b =

l

i

(ai ↪→ b) (6)

b ↪→
(⊔

i

ai
)
=
⊔

i

(
b ↪→ ai

)
(7)

(l

i

ai
)
↪→ b =

⊔
i

(
ai ↪→ b

)
(8)

where
d

and
⊔

are the distributed versions of u and t, respectively.

The proof of properties Eq. (5) - Eq. (8) can be found in [BEGR09]. Actually, Eq. (5) and
Eq. (6) are true for any residuated lattice.

One novel aspect of the transition systems we define is that transitions between states
are characterized by three distinct components, one being an element of a designated set
of atomic actions {p, q, r, s, ...}, interpreted as an action label in Labelled Transition systems,
and the other two being elements of an MTL-algebra, which characterize each transition
in opposite ways: one represents the evidence of its presence and other the evidence of its
absence. We refer to these as the positive accessibility relation and the negative accessibility
relation, respectively. Our main concern is to study the case where the positive and negative
accessibility relations are elements of an MTL-algebra over [0, 1]. In this fuzzy setting, 0 and
1 are maximal pieces of information; all other values are considered to carry some degree
of uncertainty.

For each transition, the values of the positive and negative accessibility relations form a
pair which may be considered as an element of a bilattice [Gin86], since it is possible to
define a truth ordering 4t and an information ordering 4i on such pairs. For a complete
lattice 〈A,≤〉, Fitting [Fit89] defines these two orderings as follows: for any (a, b), (c, d)
∈ A× A

– (a, b) 4t (c, d) if and only if a ≤ c and b ≥ d
– (a, b) 4i (c, d) if and only if a ≤ c and b ≤ d.

As one easily checks, this construction over 2 gives Belnap’s bilattice FOUR. Here, the
points (a, b),(c, d) such that (a, b) /4i(c, d) and (c, d) /4i(a, b) are simply (1, 0) and (0, 1), and
the points (a′, b′),(c′, d′) such that (a′, b′) /4t(c′, d′) and (c′, d′) /4t(a′, b′) are simply (1, 1) and
(0, 0). Indeed, the definitions given above for the truth and information orderings correctly
apply and are in accordance with the interpretation given to the elements in FOUR.

However, this construction over a fuzzy lattice has a less convincing interpretation. Con-
sider, as an example, that the pairs (0.1, 0.9) and (0.2, 0.2) are elements of a bilattice 〈[0, 1]×

18 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

[0, 1],4t,4i〉. According to the definition, (0.1, 0.9) /4i(0.2, 0.2) and (0.2, 0.2) /4i(0.1, 0.9). In
the present context, the pairs give the evidence of a transition existing and not existing,
respectively, so the fact that (0.2, 0.2) /4i(0.1, 0.9) misses our intuition that a transition with
a positive accessibility relation of 0.1 and a negative accessibility relation of 0.9 is fully char-
acterized, while a transition with positive and negative accessibility relations of 0.2 seem
to represent the case where the information about that transition is incomplete. Moreover,
one could also ask if there is a more expressive way of ordering the pairs (a, b) and (c, d)
such that (a, b) /4t(c, d) and (c, d) /4t(a, b).

Whether it is possible to define a bilattice over truth and information orderings in a more
expressive way leaves the scope of this work. Actually, we will consider the pairs defined
by the positive and negative accessibility relations as elements of a bilattice A = 〈A× A,4t

,4i〉 where A = 〈A,u,t, 1, 0, ↪→〉 is an MTL-algebra and 4t, 4i are defined as above.
Thus, the information ordering won’t suffice to establish if a particular pair represents a
scenario of inconsistency, arising when the values for presence and absence of a transition
are contradictory; vagueness, when the values for presence and absence of a transition are
neither complementary nor contradictory; or consistency, when the values for presence and
absence of a transition are complementary.

When A is a fuzzy lattice, i.e. a lattice over [0, 1], elements of A may be characterized in
terms of their consistency with the help of the conflation operation a, defined for (a, b) ∈ A
as a (a, b) = (1− b, 1− a) [Fit89], in the following way:

– the pair (a, b) represents inconsistent information, that is, the positive and negative
accessibility relations sum to a value greater than or equal to 1, if and only if a
(a, b) 4i (a, b)

– the pair (a, b) represents vague information, or the positive and negative accessibility
relations sum to a value less than or equal to 1, if and only if (a, b) 4ia (a, b)

– the pair (a, b) represents consistent information, or the positive and negative accessi-
bility relations sum to exactly 1, if and only if (a, b) 4ia (a, b) and a (a, b) 4i (a, b)

Pairs containing contradictory information are represented within the upper triangle in
Fig. 1, filled in grey. Those for which the information provided is vague lie in the bottom
triangle in Fig. 1, filled in pink. And finally consistent pairs are represented by the red line
in Fig. 1. The method above applies to bilattices over [0, 1]. However, in Chapter 5 we show
how to characterize the consistency of elements in a generic bilattice.

2.1. Truth space 19

Tr
an

si
ti

on
is

pr
es

en
t

Transition is absent

0 1
0

1

Figure 1: Intuitionistic (pink), paraconsistent (grey) and classic (red) domains characterizing truth
degrees for ”Transition is present” and ”Transition is absent”.

Besides conflation, other useful operations may be defined over the bilattice elements
characterizing transitions in our model. In particular, some will be important for the defi-
nition of the logic in Chapter 4.

Definition 1. Given an MTL-algebra A = 〈A,u,t, 1, 0, ↪→〉, the algebra A./ = 〈A, ∨∨, ∧∧,=⇒
,¬〉 is an A-twist-structure where the twist-operations are defined for (a, b), (a′, b′) ∈ A×A
as follows:

– (a, b) ∨∨ (a′, b′) = (a t a′, b u b′)
– (a, b) ∧∧ (a′, b′) = (a u a′, b t b′)
– (a, b) =⇒ (a′, b′) = (a ↪→ a′, a u b′)
– ¬(a, b) = (b, a)

Originally a ”twist-structure” [Kra98] was defined as a construction over an Heyting
algebra, but a construction of this kind had already been proposed under the name of
”special N -lattice” [Vak77] and also over a generic bilattice [Gin88]. In [OW10], for instance,
the term twist-structure is used to refer to Ginsberg’s construction over the bilattice FOUR.

Although the operation → is the residuum of u in a MTL-algebra, the operation =⇒,
which corresponds to the weak implication used in [RJJ15], is not residuated in A./, neither
wrt the truth ordering nor wrt the information ordering. If it was, the following conditions
would hold:

– (a, b) ∧∧ (c, d) 4t (e, f) if and only if (c, d) 4t (a, b) =⇒ (e, f) and
– (a, b) ∧∧ (c, d) 4i (e, f) if and only if (c, d) 4i (a, b) =⇒ (e, f).

A counter-example using the Gödel algebra shows this is not the case. Let (a, b) = (0.8, 0.4),
(c, d) = (0.5, 0.2) and (e, f) = (0.6, 0.3). Then (a, b) ∧∧ (c, d) = (min{0.8, 0.5}, max{0.4, 0.2}) =
(0.5, 0.4) and (a, b) =⇒ (e, f) = (0.8 → 0.6, min{0.8, 0.3}) = (0.6, 0.3). Indeed, (0.5, 0.4) 4t

(0.6, 0.3) but (0.5, 0.2) /4t(0.6, 0.3). On the other hand, (0.5, 0.2) 4i (0.6, 0.3) but (0.5, 0.4) /4i(0.6, 0.3).

20 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

This result may seem odd, since implication is usually defined as a residuum of conjunc-
tion but the idea behind the definition of twist-operations, explained by Vakarelov, is the
following. The elements of a twist-structure should be treated as sentences: in this case,
each transition is associated with an element (a1, a2) ∈ A./ where the first component is
interpreted as the truth degree of ”transition is present” and the second as the truth degree
of ”transition is absent”. Thus a2 should be interpreted as a counterexample to a1. For
(a1, a2), (b1, b2) ∈ A./, the twist-operations ∨∨, ∧∧, =⇒ and ¬ say how to construct classical
counterexamples to a1 t b1, a1 u b1, a1 → b1 and a2, respectively. The counterexample to
a2 follows straightforward: it is a1. The counterexamples to a1 u b1, a1 t b1 and ¬a1 u b
are given by ¬(a1 u a2), ¬(a1 t a2) and ¬(¬a1 u b1), which reduce to the expressions in
Definition 1 with the application of De Morgan’s law.

In [Vak77] it is required that the elements (a, b) of a special N -lattice are such that au b =

0 wrt to the operation u of the underlying Boolean algebra, which implies that consistency
holds for the pairs in a special N -lattice and that there is only one element, i.e. (0, 0), such
that (a, b) = ¬(a, b). Although we also interpreter the second element of our twist-structure
as a counter-example to the first, we do not impose any consistency requirement, since both
values freely take values in the carrier of a residuated lattice, and moreover any element of
the form (a, a) satisfies the mentioned property.

2.2 model definition

Definition 2. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra. An A-paraconsistent labelled
transition system (A-PLTS) defined over a set of atomic actions Π is a structure 〈W, R〉 where:

- W is a finite non-empty set whose elements are called worlds or states;
- R ⊆ W ×Π ×W × A × A is the (paraconsistent) accessibility relation such that, for any

two states w1, w2 ∈W and any π ∈ Π, there is at most one transition (w1, π, w2, α, β) ∈ R.

The relation R characterizes the transitions between states. Each tuple (w1, a, w2, α, β) ∈ R
represents a transition from w1 to w2 labelled by (a, α, β), where α is the degree to which
the action a causes a transition between w1 and w2, and β the degree to which the action a
prevents (the occurence of) a transition between w1 and w2.

Elements in the accessibility relation R of an A-PLTS are given by tuples, as above, but
may be represented in the following manner:

w1
(a,α,β)−−−−→ w2 ≡ (w1, a, w2, α, β) ∈ R

.

Example 2. Consider the G-PLTS, where G stands for the Gödel algebra, 〈W, R〉 over Π =

{a, b, c, d} where

2.3. Morphism, Simulation and Bisimulation 21

– W = {w1, w2, w3, w4} and
– R = {(w1, a, w2, 0.7, 0.2), (w2, b, w3, 0.3, 0.5), (w3, c, wc, 0.2, 0.3), (w3, d, w4, 0.5, 0.8)}

〈W, R〉 is depicted below.

w1

w2 w3

w4

(a, 0.7, 0.2)
(b, 0.3, 0.5)

(c, 0.2, 0.3)
(d, 0.5, 0.8)

Since the labels in a PLTS quantify the degree to which a transition is present, as well as
the degree to which it is absent, it is useful to realize a simple way to access either of these
values. We do so by splitting the accessibility relation into a positive accessibility relation
and a negative accessibility relation.

Thus, for an A-PLTS 〈W, R〉 over Π its positive accessibility relation is a function r+ :
Π −→ AWW such that for π ∈ Π and w, w ∈W,

r+(π, w, w′) =

α if (w, π, w′, α, β) ∈ R

0 otherwise

Similarly, its negative accessibility relation is a function r− : Π −→ AWW such that for
π ∈ Π and w, w ∈W,

r−(π, w, w′) =

β if (w, π, w′, α, β) ∈ R

1 otherwise

We also use the terms ”positive accessibility relation” and ”negative accessibility relation”
to refer to the values yield by the functions r+ and r− for each particular transition of a PLTS.
In general, these values will be elements of an MTL-algebra and form a pair which is an
element of a bilattice and also of a twist-structure over that bilattice.

2.3 morphism , simulation and bisimulation

Definition 3. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra and let T1 = 〈W1, R1〉, T2 =

〈W2, R2〉 be two A-PLTS defined over the same set of actions Π. Denote the positive and
negative accessibility relations for T1 and T2 by r+1 ,r−1 and r+2 ,r−2 , respectively. A morphism

22 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

relating these two PLTS is a function h : W1 → W2 such that ∀π ∈ Π, r+1 (π, w1, w2) ≤
r+2 (π, h(w1), h(w2)) and r−1 (π, w1, w2) ≥ r−2 (π, h(w1), h(w2)).

Example 3. For Π = {a, b, c, d} consider two G-PLTS M1 and M2 given by the following
diagrams.

w1

w2 w3

w4

(a, 0.7, 0.2)
(b, 0.3, 0.5)

(c, 0.2, 0.3)
(d, 0.5, 0.8)

v1

v2 v3

v4

v5

(a, 0.9, 0.1)
(b, 0.5, 0.2)

(c, 0.6, 0.1)
(c, 0.8, 0.4)

(a, 0.4, 0.7)

The mapping h = {w1 7→ v1, w2 7→ v2, w3 7→ v3} is a morphism. It is easy to check that h
satisfies the conditions of Definition 3.

Definition 4. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra and let T1 = 〈W1, R1〉, T2 =

〈W2, R2〉 be two A-PLTS defined over the same set of actions Π. Denote the positive and
negative accessibility relation functions for T1 and T2 by r+1 ,r−1 and r+2 ,r−2 , respectively. A re-
lation S ⊆W1×W2 is a simulation provided that, for all 〈p, q〉 ∈ S, the following condition
holds:

- if there is a transition in T1 from p to p′ caused by a ∈ Π, then there is a transition in
T2 from q to q′ caused by a such that r+2 (a, q, q′) ≥ r+1 (a, p, p′), r−2 (a, q, q′) ≤ r−1 (a, p, p′) and
〈p′, q′〉 ∈ S.

In short, S ⊆W1 ×W2 is a simulation if, for all 〈p, q〉 ∈ S and a ∈ Π,

p
(a,α,β)−−−−→T1 p′ ⇒ 〈∃q′ ∈W2, ∃γ, δ ∈ [0, 1] : q

(a, γ, δ)−−−−→T2 q′ ∧ 〈p′, q′〉 ∈ S ∧ γ ≥ α ∧ δ ≤ β〉.

From here on, the following abbreviation is used to represent the above condition:

p
(a,α,β)−−−−→T1 p′ ⇒ 〈∃q′ ∈W2 : q

(a, γ: γ≥α , δ: δ≤β)−−−−−−−−−−−→T2 q′ ∧ 〈p′, q′〉 ∈ S〉.

Two states p and q are similar, written p . q, if there is a simulation S such that 〈p, q〉 ∈ S.

Example 4. In the G-PLTS given by the diagrams below, w1 . v1, because there is a simula-
tion, S = {〈w1, v1〉, 〈w2, v2〉, 〈w3, v2〉, 〈w4, v3〉, 〈w5, v4〉}, that contains 〈w1, v1〉.

2.3. Morphism, Simulation and Bisimulation 23

w1 w2

w3

w4

w5

(a, 0.4, 0.7)

(a, 0.3, 0.6)

(b, 0.2, 0.8)

(c, 0.2, 0.9)

v1 v2 v3

v4

(a, 0.5, 0.5) (b, 0.3, 0.5)

(c, 0.5, 0.5)

Lemma 2. The similarity relation is a preorder, i.e. a reflexive and transitive relation.

Proof.

(i) Reflexivity: p . p

This follows from the fact that the identity relation is a simulation. Indeed, for a PLTS
〈W, R〉, the relation S ⊆ W ×W such that 〈w, w〉 ∈ S for all w ∈ W satisfies the
conditions of Definition 4.

(ii) Transitivity: if p .S1 q and q .S2 t then p .S3 t

p .S1 q⇒ ∃ a simulation S1 : 〈p, q〉 ∈ S1

q .S2 t⇒ ∃ a simulation S2 : 〈q, t〉 ∈ S2

To prove that p . t we must find a simulation S3 such that 〈p, t〉 ∈ S3. Let S3 = S2 · S1.
Indeed, 〈p, t〉 ∈ S3 since 〈p, q〉 ∈ S1 and 〈q, t〉 ∈ S2. Now we must prove S3 satisfies
the conditions in Definition 4.

〈p, q〉 ∈ S1 ⇒ if p
(a,α,β)−−−−→T1 p′ then 〈∃q′ : q

(a, γ: γ≥α , δ: δ≤β)−−−−−−−−−−−→T2 q′ ∧ 〈p′, q′〉 ∈ S1〉

But since 〈q, t〉 ∈ S2 then ∃t′ : t
(a, µ: µ≥γ , ν: ν≤δ)−−−−−−−−−−−→T3 t′ ∧ 〈q′, t′〉 ∈ S2〉

It is straightforward that µ ≥ γ ⇒ µ ≥ α and ν ≤ δ ⇒ ν ≤ β. Thus, for 〈p, t〉 ∈ S3,

p
(a,α,β)−−−−→T1 p′ ⇒ 〈∃t′ : t

(a, µ: µ≥α , ν: ν≤β)−−−−−−−−−−−→T3 t′〉. To check that 〈p′, t′〉 ∈ S3 just notice
that 〈p′, q′〉 ∈ S1 and 〈q′, t′〉 ∈ S2.

Definition 5. Two states p and q are equisimilar if q .S1 q and q .S2 p.

Example 5. Consider the two G-PLTS depicted below and a relation S = {〈w1, v1〉 〈w2, v2〉, 〈w3, v2〉}.
We have w1 .S v1 and v1 .S w1, so w1 and v1 are equisimilar.

24 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

w1

w2 w3

(a, 0.5, 0.3)

(a, 0.7, 0.2)

(c, 0.2, 0.3)

(c, 0.4, 0.5)(c, 0.4, 0.5)

v1

v2

(a, 0.7, 0.2)

(c, 0.4, 0.5)

Definition 6. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra and let T1 = 〈W1, R1〉 and T2 =

〈W2, R2〉 be two A-PLTS defined over the same set of actions Π. A relation B ⊆ W1 ×W2 is
a bisimulation if for 〈p, q〉 ∈ B and a ∈ Π

p
(a,α,β)−−−−→T1 p′ ⇒ 〈∃q′ ∈W2 : q

(a,α,β)−−−−→T2 q′ ∧ 〈p′, q′〉 ∈ B〉 and

q
(a,α,β)−−−−→T2 q′ ⇒ 〈∃p′ ∈W1 : p

(a,α,β)−−−−→T1 p′ ∧ 〈p′, q′〉 ∈ B〉.

It follows straightforward that any transition in the first PLTS is mapped to an exactly
equal transition in the second PLTS, and vice-versa. Thus, the bisimulation is an equiva-
lence relation, i.e. a reflexive, transitive and symmetric relation.

Two states p and q are bisimilar, written p ∼ q, if there is a bisimulation B such that
〈p, q〉 ∈ B.

2.4 traces and trace equivalence

Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra and 〈W, R〉 be an A-PLTS defined over a set
of actions Π. Furthermore let r+,r− denote its positive and negative accessibility relations,
respectively.

Definition 7. A path from w ∈W in a PLTS 〈W, R〉 is a sequence [(w1, a1, w2), (w2, a2, w3), ...]
such that wi ∈ W, ai ∈ Π of worlds connected by transitions available in 〈W, R〉, with
w1 = w. The set of all paths from w is denoted by Paths(w).

Example 6. Consider the PLTS given in Example 2. The following are some paths from w1:
[(w1, a, w2)], [(w1, a, w2), (w2, b, w3)], [(w1, a, w2), (w2, b, w3), (w3, c, w2)].

Note that a path, as defined above, only specifies the action causing each transition, and
leaves out the values for the accessibility relations. These values are easily obtained using r+
and r−: for each tuple (w, a, w′) in a path, r+(a, w, w′) and r−(a, w, w′) are the values for the
accessibility relation characterizing the transition to which the tuple refers. We define the
function t : W ×Π×W → Π× A× A such that t(w, a, w′) = (a, r+(a, w, w′), r−(a, w, w′)).

Thus, from a path ρ = [(w1, a1, w2), (w2, a2, w3), ...] one obtains a sequence of transition
labels in a PLTS by mapping each (wi, aj, wk) in ρ to t(wi, aj, wk). The list trait(ρ) = t∗(ρ) is
the list derived by successively applying t to the tuples in ρ and we call it trait of ρ.

2.4. Traces and Trace equivalence 25

Example 7. We now give the trait of each path pointed out in Example 6.
trait[(w1, a, w2)] = [(a, 0.7, 0.2)]
trait[(w1, a, w2), (w2, b, w3)] = [(a, 0.7, 0.2), (b, 0.3, 0.5)]
trait[(w1, a, w2), (w2, b, w3), (w3, c, w2)] = [(a, 0.7, 0.2), (b, 0.3, 0.5), (c, 0.2, 0.3)]

Definition 8. Given a path ρ = [(w1, a1, w2), (w2, a2, w3), ...] from w1 ∈W,

(i) An unweighted trace is the sequence of actions [a1, a2, ...] in such path, given by
tunweighted(ρ) = P∗2 ρ, where P∗2 is the sequence extension of P2, and

(ii) A weighted trace is the sequence of actions in such path, together with the maximum
value for the positive accessibility relation and the minimum value for the negative
accessibility relation occurring in trait(ρ). Formally, a weighted trace is defined by:
tweighted(ρ) = 〈P∗2 p,

⊔
(P∗2 trait(ρ)),

d
(P∗3 trait(ρ))〉, where

⊔
and

d
are the distributed

versions of t and u in the underlying MTL-algebra, respectively.

Where P2 and P3 are the second and third projections of the tuples to which they are
applied.

Example 8. For the path [(w1, a, w2), (w2, b, w3), (w3, c, w2)] given in Example 6, with corre-
sponding trait [(a, 0.7, 0.2), (b, 0.3, 0.5), (c, 0.2, 0.3)], its unweighted trace is tunweighted : t =

[a, b, c]; and its weighted trace is tweighted = 〈[a, b, c], 0.7, 0.2〉.

Definition 9. Let t = 〈[a1, a2, ..., an], α, β〉, t′ = 〈[b1, b2, ..., bm], γ, δ〉 be two weighted traces of
some given PLTS(s). We say t is a subtrace of t′ if the three following conditions hold: (i) the
list [a1, a2, ..., an] is a prefix of [b1, b2, ..., bm], that is, n ≤ m and ai = bi for i = 1, 2, ..., n;
(ii) γ ≥ α and (iii) δ ≤ β.

Example 9. Let t, t′, t′′ be the weighted traces correspondent to the first, second and third
paths given in Example 6, respectively. Both t and t′ are subtraces of t′′. For a more
complex example, consider the PLTS given in Example 4. The weighted traces from w1 are
{t0 = 〈[a], 0.4, 0.7〉, t1 = 〈[a], 0.3, 0.6〉, t2 = 〈[a, b], 0.4, 0.7〉, t3 = 〈[a, c], 0.3, 0.6〉} and the traces
from v1 are := {t′1 = 〈[a], 0.5, 0.5〉, t′2 = 〈[a, b], 0.5, 0.5〉, t′3 = 〈[a, c], 0.5, 0.5〉}. Thus, t0 and t1

are both subtraces of t′1, t2 is a subtrace of t′2 and t3 is a subtrace of t′3.

Definition 10. Let P be the set of all paths from w ∈W.

(i) The set of unweighted traces from w, Trunweighted(w), is the set that contains the
unweighted traces associated to each element in Paths(w), that is Trunweighted(w) =

{tunweighted(ρ)|ρ ∈ Paths(w)}, and

(ii) the set of weighted traces from w, Trweighted(w), is the set that contains the weighted
traces associated to each element in Paths(w), that is Trweighted(w) = {tweighted(ρ)|ρ ∈
Paths(w)}.

26 Chapter 2. Paraconsistent Labelled Transition Systems PLTS

For two sets X and Y of unweighted traces, we say X ⊆u Y if ∀t∈X∃t′∈Y : t = t′.
For two sets X and Y of weighted traces, we say X ⊆w Y if ∀t∈X∃t′∈Y : t is a subtrace of t′.
Two states p and q are trace equivalent, written Trweighted(p) =w Trweighted(q), if Trweighted(p) ⊆w

Trweighted(q) and Trweighted(q) ⊆w Trweighted(p).

Lemma 3. Consider two PLTS T1 = 〈W1, R1〉 and T2 = 〈W2, R2〉. If two states p ∈ W1 and
q ∈ W2 are similar, i.e., p . q, then the set of weighted traces from p, call it X, and the set of
weighted traces from q, call it Y, are such that X ⊆w Y.

Proof.

(p, q) ∈ S. Therefore, if p
(a,α,β)−−−−→ p′ then ∃ q′ : q

(a, γ: γ≥α , δ: δ≤β)−−−−−−−−−−−→ q′ ∧ 〈p′, q′〉 ∈ S〉
Since 〈p, q〉 ∈ S, we can perform the same collection of actions in p and in q. Moreover, if

we perform the same action in p, causing a transition to p′, and in q, causing a transition to
q′, the pair 〈p′, q′〉 is also in S and again the same collection of actions is available in p′ and
q′. From this follows that any sequence of actions available in T1, starting from p, is also
available in T2, starting from q. Or, in other words, the set of unweighted traces from p is
contained in the set of unweighted traces from q: Trunweighted(p) ⊆u Trunweighted(q).

Now, for t ∈ Trunweighted(p), let {α1, α2, ..., αi} and {β1, β2, ..., βi} be the values of the
positive and negative accessibility relation, respectively, characterizing each transition in t,
so that T = 〈t, A =

⊔
({α1, α2, ..., αi}), B =

d
({β1, β2, ..., βi})〉, call it T is the weighted trace

corresponding to t.
Furthermore, each element t ∈ Trunweighted(p) is also an element of Trunweighted(q). So for

t′ ∈ Trunweighted(q) : t′ = t, let {α′1, α′2, ..., α′i} and {β′1, β′2, ..., β′i} be the values of the positive
and negative accessibility relation, respectively, characterizing each transition in t′, and
similarly T′〈t′, A′ =

⊔
({α′1, α′2, ..., α′i}), B′ =

d
({β′1, β′2, ..., β′i})〉, call it T′, is the weighted

trace corresponding to t′. Since p . q, we know that {α1 ≤ α′1, α2 ≤ α′2, ..., αi ≤ α′i} and
{β1 ≥ β′1, β2 ≥ β′2, ..., βi ≥ β′i}. From this it follows that A′ ≥ A and B′ ≤ B. Thus, T
is a subtrace of T′, according to Definition 9. Moreover, this will be true for any trace in
Trunweighted(p), so the set of weighted traces from p, denoted by X, and the set of weighted
traces from q, denoted by Y, verify X ⊆w Y.

Lemma 4. Consider two PLTS T1 = 〈W1, R1〉 and T2 = 〈W2, R2〉. If two states p ∈ W1 and
q ∈W2 are bisimilar, i.e., p ∼ q, then they are trace equivalent.

Proof.
p ∼ q⇒ ∃ a bisimulation B : 〈p, q〉 ∈ B

For p and q to be trace equivalent, we require that set of weighted traces from p, X, and
the set of weighted traces from q, Y, are such that X = Y.

2.4. Traces and Trace equivalence 27

Recall that a bisimulation is a simulation whose converse is also a simulation. So we may
write p . q and conclude, from Lemma 3, that X ⊆w Y. Since the bisimilarity relation is
symetric, we have p ∼ q ⇒ q ∼ p, and, again, we may write q . p and conclude that
Y ⊆w X.

Remark 1. Notice that the converse of Lemma 4 is not true: two states may be trace equivalent and
not bisimilar.

Example 10. Consider the PLTS depicted below.

w1 w2 w3

(a, 0.5, 0.1) (b, 0.7, 0.2)

v1 v2 v3

(a, 0.5, 0.1) (b, 0.4, 0.2)

Indeed, Trweighted(w1) = Trweighted(v1) = {〈[a], 0.5, 0.1〉, 〈[a, b], 0.7, 0.1〉}. Nonetheless it is
clear that w1 � v1.

3

C O N S T R U C T I O N S O V E R P LT S

For the next chapter, we follow the formalism in [WN95] to propose some useful con-
structions over PLTS. Winskel and Nielsen show that a category of Transitions Systems,
where the objects are generic Labelled Transition Systems and the arrows correspond to
morphisms between them, provides a mathematical formalism for modelling distributed
computations, since it is possible to describe the operations of process calculi as univer-
sal constructions in this category. Moreover, the same applies to other categories of more
generic transition systems with an appropriate definition of morphism. Our goal is to
define such a category where the objects are PLTS.

However, we need a definition of morphism different from Definition 3. A morphism
was defined as a relation between two PLTS over the same set of actions but this definition
will be extended so that a morphism relates PLTS over (possibly) distinct sets of actions
to grant a useful model for parallel computation, capable of combining processes over
different atomic actions into a valid model. Definition 3 forms a category where PLTS over
different sets of actions can not be combined through universal constructions. We adjust
the definition of morphism to define category where it is possible to do so.

Now a morphism between two PLTS T and T′ will be a pair of functions: a total function
from the worlds of T onto the worlds of T′ and a partial function from the set of actions of
T onto the set of actions of T′. We avoid giving the (new) formal definition of morphism
in terms of a partial function by considering any partial function λ : Π → Π′ as a total
function λ′ : Π→ Π′ ∪ {⊥}, also written λ′ : Π→⊥ Π′, where ⊥ is a distinguished element
standing for undefined: whenever λ(a) is undefined, λ′(a) = ⊥. We consider an extension
of the accessibility relation R of any PLTS, given by R⊥ = R ∪ {(w,⊥, w, 1, 0)|w ∈ W}.
Any t ∈ R⊥ \ R is called an idle transition. We also extend the definition of a PLTS to
incorporate a distinguished initial state, which will be useful for the definition of some
particular constructions. We write T = 〈W, i, R, Π〉 for the PLTS 〈W, R〉 over Π with initial
state i ∈W.

Definition 11. Let T1 = 〈W1, i1, R1, Π1〉 and T2 = 〈W2, i2, R2, Π2〉 be two PLTS. An extended
morphism relating T1 and T2 is a pair of functions (σ : W1 →W2 , λ : Π1 →⊥ Π2) such that

30 Chapter 3. Constructions over PLTS

– σ(i1) = i2,
– if (w, a, w′, α, β) ∈ R1 then (σ(w), λ(a), σ(w′), α′, β′) ∈ R⊥2 , with α ≤ α′ and β′ ≤ β.

If two PLTS have the same underlying set of actions then λ is just the identity function
and it is easy to check that this definition becomes equivalent to Definition 3.

We define the category TPL whose objects and arrows are PLTS and extended morphisms
between PLTS, respectively. The composition of two morphisms f = (σ, λ) : T0 → T1 and
f ′ = (σ′, λ′) : T1 → T2 in TPL is f ′ ◦ f = (σ′ ◦ σ, λ′ ◦ λ) : T0 → T2 and the identity morphism
of a PLTS T is (1W , 1Π) where 1W identity function on the worlds of T and 1Π the identity
function on the set of actions of T. It is easy to prove that the composition of two extended
morphisms is associative and TPL is indeed a category.

Lemma 5. Consider four PLTS: T0 = 〈W0, i0, R0, Π0〉, ..., T3 = 〈W3, i3, R3, Π3〉 and extended
morphisms f = (σ, λ) : T0 → T1, g = (σ′, λ′) : T1 → T2 and h = (σ′′, λ′′) : T2 → T3. Then
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof.

h ◦ (g ◦ f)

= { definition of h, g, f }

(σ′′, λ′′) ◦ ((σ′, λ′) ◦ (σ, λ))

= { functuriality }

(σ′′, λ′′) ◦ (σ′ ◦ σ, λ′ ◦ λ)

= { definition of ◦ }

(σ′′ ◦ (σ′ ◦ σ), λ′′ ◦ (λ′ ◦ λ))

= { ◦ is associative }

((σ′′ ◦ σ′) ◦ σ, (λ′′ ◦ λ′) ◦ λ)

= { functuriality }

((σ′′, λ′′) ◦ (σ′, λ′)) ◦ (σ, λ)

= { definition of h, g, f }

(h ◦ g) ◦ f

The PLTS which consists of a single initial state is Tnil = 〈{∗}, ∗, ø, ø〉.

Lemma 6. Tnil is the initial and terminal object of the category TPL.

Proof.
For any other PLTS T = 〈W, i, R, Π〉 in TPL

3.1. Restriction 31

1. there is a unique morphism ! : T → Tnil, given by ((!W , ()), where !W(i) = ∗ and
(w, a, w′, α, β) ∈ R⇒ (∗,⊥, ∗, 1, 0) ∈ RTnil

⊥.

2. Similarly, there is a unique morphism ? : Tnil → T, given by (i, ()). Clearly, i(∗) = i
and the other condition is necessarily true.

Given a PLTS T = 〈W, i, R, Π〉, a world w ∈ W is reachable if there is a path in T from
i to w. We follow the terminology in [WN95] and say T is reachable if it is possible to
reach every world of T starting from the initial state. Furthermore, T is acyclic if there is
only one path from each world to itself and it is an idle transition. Morphisms preserve the
initial state and also reachable states: that is, if w is reachable in T and there is a morphism
(σ, λ) : T → T′, then σ(w) is reachable in T′.

3.1 restriction

In a generic labelled transition system, the operation of restriction takes a subset of the
system’s set of labels and removes all transitions whose labels are not in that set. Since the
labels represent actions causing transitions, the operation of restriction narrows the actions
that the system is able to perform. PLTS have labels with three distinct components but
only one refers to the actions causing transitions, thus the operation of restriction has its
version on the PLTS setting.

Definition 12. Let T = 〈W, i, R, Π〉 be a PLTS. For Π′ ⊂ Π let λ : Π′ → Π be a mapping
taking a ∈ Π′ to a ∈ Π. The restriction T � λ is a PLTS 〈W, i, R′, Π′〉 over Π′ where

R′ = {(w, π, w′, α, β) ∈ R|π ∈ Π′}.

There is an extended morphism from the restricted PLTS T � λ to the original one, given
by f = (1W , λ) and a functor p : TPL → Set∗ between the category TPL and the cate-
gory of sets with partial functions, which sends a morphism (σ, λ) : T1 → T2 of PLTS
T1 = 〈W1, i1, R1, Π1〉 and T2 = 〈W2, i2, R2, Π2〉, to the partial function λ : Π1 → Π2. The
morphism f associated with the restriction is a cartesian morphism in TPL, since it satisfies
the following universal property:

For any morphism g : T′ → T in TPL such that p(g) = λ there is a unique morphism
h : T′ → T � L such that p(h) = 1Π′ and f ◦ h = g. In a diagram:

32 Chapter 3. Constructions over PLTS

T′

T � λ T

h
g

f

Π′ Π
λ

A cartesian morphism f = (σ, λ) in TPL is a cartesian lifting of the morphism p(f) = λ

in Set∗.
In general, the operation of restriction does not preserve the reachable states.

Example 11. Consider the PLTS T depicted below, with initial state i.

i w2 w3 w4

(a, 1, 0) (b, 1, 0) (c, 1, 0)

The restriction T � {a, c} is the PLTS:

i w2 w3 w4

(a, 1, 0) (c, 1, 0)

Which clearly has a distinct set of reachable states from i.

Now consider the following PLTS T′.

i′ w′2

(a, 1, 0)

The state i of T � {a, c} from Example 11 is bisimilar to the state i′ of T′. In terms of
reachable states, T′ and T � {a, c} have the same behaviors. Thus it could be useful to have
an additional construction giving the reachable component of a (restricted) PLTS.

Definition 13. Let T = 〈W, i, R, Π〉 be a PLTS. The reachable component of T is the PLTS
Treach = 〈W ′, i, R′, Π′〉 where

R′ = {(w, a, w′, α, β) ∈ R|w = i} ∪ {(w, a, w′, α, β) ∈ R| there is a path in T from i to w}.

W ′ is the set of reachable worlds in T and Π′ is the set of actions labelling the transitions in
Treach. Clearly, W ′ ⊆W and Π′ ⊆ Π.

3.2. Relabelling 33

3.2 relabelling

Given a labelled transition system T whose labelling set is Π and a total function λ : Π →
Π′, the relabelling construction preserves the underlying structure of T but consistently
changes its labels according to λ. In essence, this construction renames the actions in T. It
is also possible to define a construction which renames the actions in a PLTS.

Definition 14. Let T = 〈W, i, R, Π〉 be a PLTS. Let λ : Π → Π′ be a total function. The
relabelling T{λ} is the PLTS 〈W, i, R′, Π′〉 where

R′ = {(w, λ(a), w′, α, β)|(w, a, w′, α, β) ∈ R}

There is a morphism from a PLTS T to the relabeled PLTS T{λ}, given by f = (1W , λ)

and it is a cocarteasian morphism, since it satisfies the following universal property:

For any morphism g : T → T′ in TPL such that p(g) = λ, there is a unique morphism
h : T{λ} → T′ such that p(h) = 1Π′ and h ◦ f = g. In a diagram:

T′

T{λ}T
f

g
h

Π Π′
λ

A cocartesian morphism in TPL is associated with a construction dual to the cartesian
lifting, which is the cocartesian lifting. Then, a cocartesian morphism f = (σ, λ) in TPL is a
cocartesian lifting of the morphism p(f) = λ in Set∗.

3.3 parallel composition

The product of two transition systems is an operation for producing a parallel composition
of the two systems. The parallel composition of two systems models a process combining
the execution of all processes inherent to each component system. Essentially, states of
the product system are obtained through the combination of a state from each component
system, and, similarly, transitions are obtained through the combinations of a transition
from each component system (idle transitions included). In [WN95] parallelism is modeled
through the construction of a product, which combines the two systems allowing all con-
ceivable synchronizations. That is, any combination of states of the component systems is

34 Chapter 3. Constructions over PLTS

a valid state in the product system and any transition in the first component system may
be performed synchronously with any other transition from the second component system.
For this reason, the product operation is combined with the operations of restriction and re-
labelling in order to remove unwanted synchronizations and produce more specific parallel
compositions. The product of two generic LTS is a LTS where transitions are either caused
by performing one action in each component system at the same time, or by performing an
action at a time in one of the component systems.

Definition 15. Let T1 = 〈W1, i1, R1, Π1〉 and T2 = 〈W2, i2, R2, Π2〉 be two PLTS. Their product
T1 × T2 is the PLTS 〈W1 ×W2, (i1, i2), R, Π〉, such that

– Π = Π1 ×⊥ Π2 = {(a,⊥)|a ∈ Π1} ∪ {(⊥, b)|b ∈ Π2} ∪ {(a, b)|a ∈ Π1, b ∈ Π2}, and
– (w, a, w′, α, β) ∈ R if and only if (P1(w), P1(a), P1(w′), α1, β1) ∈ R⊥1 and
(P2(w), P2(a), P2(w′), α2, β2) ∈ R2∗ and α = α1 u α2 and β = β1 t β2.

The set of actions of a product has elements of the form (a, b), which represent synchro-
nizations between the component processes, that is, the execution of an action by each
component simultaneously; and elements of the form (a,⊥) or (⊥, b), which represent the
execution of an action by one of the component systems and inaction in the other.

The product T1× T2 = 〈W, i, R, Π〉 of two PLTS has projection morphisms P : T1× T2 →⊥
T1 and P′ : T1 × T2 →⊥ T2 given by P = (P1, P1) and P′ = (P2, P2). For a synchronous
transition (w, e, w′, α, β) it follows straightforward from Definition 15 that there is a tran-
sition (P1(w), P1(e), P1(w′), α1, β1) ∈ R1 such that α ≤ α1 and β ≥ β1; and a transition
(P2(w), P2(e), P2(w′), α2, β2) ∈ R2 such that α ≤ α2 and β ≥ β2. For asynchronous transi-
tions (w, (⊥, b), w′, α, β) or (v, (a,⊥), v′, α′, β′), note that P1(w) = P1(w′) and P2(v) = P2(v′)
and indeed (P1(w),⊥, P1(w′), 1, 0) ∈ R⊥1 and (P2(v),⊥, P2(v′), 1, 0) ∈ R⊥2 . For any values of
α, α′, β, β′ it is true that α ≤ 1, α′ ≤ 1, β ≥ 0 and β′ ≥ 0.

These two morphisms form a product in TPL since they satisfy the following universal
property:

For any morphism g1 : T → T1 and g2 : T → T2, there is a unique morphism h : T → T1 × T2,
given by 〈g1, g2〉, such that P ◦ h = g1 and P′ ◦ h = g2. In a diagram:

T1 T1 × T2 T2

T

P P′

hg1 g2

Proof.
To check that the diagram commutes just note that:

3.3. Parallel composition 35

– (P ◦ h)(x) = P(〈g1(x), g2(x)〉) = g1(x) and
– (P′ ◦ h)(x) = P′(〈g1(x), g2(x)〉) = g2(x).

We must also prove that h is a morphism and that it is unique. Let T = 〈W, i, R, Π〉, T1 =

〈W1, i1, R1, Π1〉, T2 = 〈W2, i2, R2, Π2〉, T1 × T2 = 〈W1 ×W2, (i1, i2), R′, Π′〉, g1 = (σ1, λ1) and
g2 = (σ2, λ2). If (w, a, w′, α, β) ∈ R then there is a transition (σ1(w), λ1(a), σ1(w′), α1, β1) ∈
R⊥1 such that α ≤ α1 and β ≥ β1; and also a transition (σ2(w), λ2(a), σ2(w′), α2, β2) ∈ R⊥2
such that α ≤ α2 and β ≥ β2. Moreover, according to 15 there is a transition

(〈σ1, σ2〉(w), 〈λ1, λ2〉(a), 〈σ1, σ2〉(w′), α1 u α2, β1 t β2) ∈ R′

. Thus for any (w, a, w′, α, β) ∈ R there is a transition

(〈σ1, σ2〉(w), 〈λ1, λ2〉(a), 〈σ1, σ2〉(w′), α′, β′)) ∈ R′

such that α ≤ α′ and β ≥ β′. Furthermore, initial states are preserved since 〈σ1, σ2〉(i) =

(σ1(i), σ2(i)) = (i1, i2) so h = 〈g1, g2〉 is a morphism.

Let f : T → T1 × T2 be some other morphism such that P ◦ f = g1 and P′ ◦ f = g2. For
some x let f (x) = 〈a, b〉. Then we have g1(x) = (P ◦ f)(x) = P(f (x)) = P〈a, b〉 = a and
g2(x) = (P′ ◦ f)(x) = P′(f (x)) = P′〈a, b〉 = b. Therefore f (x) = 〈g1(x), g2(x)〉 = h(x),
which proves f = h and thus there is a unique morphism satisfying the universal property.

A state s is reachable in T1× T2 if and only if P1(s) is reachable in T1 and P2(s) is reachable
in T2. We have only considered binary products but all products exist in TPL, in particular
the empty product which is Tnil .

Example 12. Consider the PLTS T1 and T2 depicted below.

i1 w

(a, 0.7, 0.2)

i2 v

(b, 0.4, 0.6)

Their product T is the PLTS

36 Chapter 3. Constructions over PLTS

(i1, i2) (w, i2)

(w, v)(i1, v)

((a,⊥), 0.7, 0.2)

((⊥, b), 0.4, 0.6)

((a, b), 0.4, 0.6)
((⊥, b), 0.4, 0.6)

((a,⊥), 0.7, 0.2)

As mentioned above, it is possible to remove unwanted transitions in a PLTS that consists
in the product of two transition systems by simply applying operation(s) of restriction. For
instance, the parallel composition of two systems where no transitions may be performed
simultaneously could be obtained through the construction of the product and then restric-
tion to all possible synchronizations.

Definition 16. Let T1 = 〈W1, i1, R1, Π1〉, T2 = 〈W2, i2, R2, Π2〉 be two PLTS and T1 × T2 =

〈W ′, i′, R′, Π1×⊥Π2〉 be their product. Also let Π = {(a,⊥)|a ∈ Π1} ∪ {(⊥, b)|b ∈ Π2} and
λ : Π → Π1 ×⊥ Π2 be the mapping taking x ∈ Π to x ∈ Π1 ×⊥ Π2. The interleaving or
asynchronous product T1|||T2 ≡ (T1× T2) � λ is the PLTS 〈W1×W2, (i1, i2), R, Π〉 such that

R = {(w, a, w′, α, β) ∈ R′|a ∈ Π}.

Example 13. For the PLTS in Example 12 this gives the PLTS depicted below.

(i1, i2) (w, i2)

(w, v)(i1, v)

((a,⊥), 0.7, 0.2)

((⊥, b), 0.4, 0.6)((⊥, b), 0.4, 0.6)

((a,⊥), 0.7, 0.2)

On the other hand, the parallel composition of two systems where only synchronous
transitions are allowed could be obtained through the construction of the product and then
restriction to all asynchronous transitions.

Definition 17. Let T1 = 〈W1, i1, R1, Π1〉, T2 = 〈W2, i2, R2, Π2〉 be two PLTS and T1 × T2 =

〈W ′, i′, R′, Π1 ×⊥ Π2〉 be their product. Also let Π = {(a, b)|a ∈ Π1 and b ∈ Π2} and

3.4. Sum 37

λ : Π → Π1 ×⊥ Π2 be the mapping taking x ∈ Π to x ∈ Π1 ×⊥ Π2. The synchronous
product T1 ⊗ T2 ≡ (T1 × T2) � λ is the PLTS 〈W1 ×W2, (i1, i2), R, Π〉 such that

R = {(w, a, w′, α, β) ∈ R′|a ∈ Π}.

Example 14. For the PLTS in Example 12 this gives the PLTS depicted below.

(i1, i2) (w, i2)

(w, v)(i1, v)

((a, b), 0.4, 0.6)

3.4 sum

In process calculi the (nondeterministic) sum of two or more processes defines a process
that can behave as each of its component processes. The sum of transition systems must
be a construction capturing this property so it is capable of simulating the behavior of the
alternative processes modeled by its constituent systems.

Definition 18. Let T1 = 〈W1, i1, R1, Π1〉 and T2 = 〈W2, i2, R2, Π2〉 be two PLTS. Their sum
T1 + T2 is the PLTS 〈W, (i1, i2), R, Π1 ∪Π2〉, where

– W = (W1 × {i2}) ∪ ({i1} ×W2) ,
– t ∈ R if and only if ∃(w, a, w′, α, β) ∈ R1 such that t = (In1(w), a, In1(w′), α, β) or
∃(w, a, w′, α, β) ∈ R2 such that t = (In2(w), a, In2(w′), α, β)

where In1 and In2 are the left and right injections, respectively.

Associated with the sum T1 + T2 there are injection morphisms I1 : T1 → T1 + T2 and
I2 : T2 → T1 + T2 given by I1 = (In1, 1Π) and I2 = (In2, 1Π). These two morphisms form a
coproduct in TPL, since they satisfy the following universal property:

For any morphisms g1 : T1 → T and g2 : T2 → T, there is a unique morphism h : T1 + T2 → T,
given by [g1, g2], such that h ◦ I1 = g1 and h ◦ I2 = g2. In a diagram:

T1 T1 + T2 T2

T

I1 I2

h
g1 g2

38 Chapter 3. Constructions over PLTS

Proof.

To check that the diagram commutes just note that:

– (h ◦ I1)(x) = [g1, g2](I1(x)) = g1(x)
– (h ◦ I2)(x) = [g1, g2](I2(x)) = g2(x)

We must also prove that h is a morphism and that it is unique. Let T = 〈W, i, R, Π〉,
T1 = 〈W1, i1, R1, Π1〉, T2 = 〈W2, i2, R2, Π2〉, T1 + T2 = 〈W ′, (i1, i2), R′, Π′〉, g1 = (σ1, λ1) and
g2 = (σ2, λ2). If (w, a, w′, α, β) ∈ R1 then there is a transition (σ1(w), λ1(a), σ1(w′), α1, β1) ∈
R such that α ≤ α1 and β ≥ β1; and also a transition (In1(w), a, In1(w′), α, β) ∈ R′.
If (w, a, w′, α, β) ∈ R2 then there is a transition (σ2(w), a, σ2(w′), α2, β2) ∈ R such that
α ≤ α2 and β ≥ β2; and also a transition (In2(w), a, In2(w′), α, β) ∈ R′. Thus for any
(w, a, w′, α, β) ∈ R′ there is a transition ([σ1, σ2](w), [λ1, λ2](a), [σ1, σ2](w′), α′, β′) ∈ R such
that α ≤ α′ and β ≥ β′. Furthermore, initial states are preserved since σ1(i1) = σ2(i2) = i,
so h = [g1, g2] is a morphism.

Now let f : T1 + T2 → T be some other morphism such that f ◦ I1 = g1 and f ◦ I2 = g2.
Then g1(x) = (f ◦ I1)(x) = f (I1(x)) and g2(x) = (f ◦ I2)(x) = f (I2(x)). On the one hand we
have [g1, g2](x) = [f (I2(x)), f (I2(x))], and on the other hand [g1, g2](x) = [g1(x), g2(x)] =
[h(I1(x)), h(I2(x))]. Thus f = h and there is a unique morphism satisfying the universal
property.

A state s is reachable in T1 + T2 if there is s1 reachable in T1 such that s = In1(s1) or there
is s2 reachable in T2 such that s = In2(s2). We have only considered the coproduct of two
PLTS, but all coproducts exist in TPL.

Example 15. Consider the PLTS T1 and T2 depicted below.

i1 w

(a, 0.7, 0.2)

i2 v

(b, 0.4, 0.6)

Their sum T is the PLTS

(i1, i2) (w, i2)

(i1, v)

(a, 0.7, 0.2)

(b, 0.4, 0.6)

3.5. Prefixing 39

3.5 prefixing

The operation of prefixing in a generic LTS adds a new initial state and introduces a tran-
sition connecting it to the former initial state. The process resulting from this operations
behaves as the original process after the new initial action has taken place. Then, from a
given LTS one constructs a prefix of it by specifying the label for the new transition. We add
a new transition to construct the prefix of a PLTS by specifying not only the action causing
the transition but also the values for the positive and negative accessible relation.

Definition 19. Let T = 〈W, i, R, Π〉 be a PLTS over an MTL-algebra A = 〈A,u,t, 1, 0, ↪→〉 .
Given an action {a}, eventually not in Π, and α, β ∈ A the prefix (a, α, β)T is a construction
that gives the PLTS T′ = 〈W ′, i′, R′, Π ∪ {a}〉 where

– W ′ = {w|w ∈W} ∪ {∅},
– i′ = ∅
– R′ = {(w, π, w′, α′, β′)|(w, π, w′, α′, β′) ∈ R} ∪ {(∅, a, i, α, β)}

Since it is not required that the prefixing action is distinct from the former actions, the
operation of prefixing does not extend to a functor in TPL. This is illustrated in the example
below.

Example 16. Consider two PLTS T1 = 〈W1, i1, R1, Π1〉 and T2 = 〈W2, i2, R2, Π2〉 depicted
below.

i1 w

(a, 0.7, 0.2)

i2 v

(b, 0.8, 0.1)

There is an extended morphism (σ, λ) : T1 → T2 given by σ(i1) = i2, σ(w) = v and
λ(a) = b.

16.1 Now consider the prefixes (a, 1, 0)T1 and (a, 1, 0)T2 depicted below.

i i1 w

(a, 1, 0) (a, 0.7, 0.2)

i′ i2 v

(a, 1, 0) (b, 0.8, 0.1)

Clearly, a mapping from the actions in (a, 1, 0)T1 to the actions in (a, 1, 0)T1 does not
exist so neither exists a morphism between the two prefixes.

16.2 If we consider prefixes where the transition from the initial state is caused from a
fresh action, i.e. some action c such that c /∈ Π1 tΠ2, such as the prefixes (c, 1, 0)T1

and (c, 1, 0)T2, depicted below, there is an extended morphism (σ′, λ′) : (c, 1, 0)T1 →
(c, 1, 0)T2 given by

40 Chapter 3. Constructions over PLTS

– σ′(x) =

σ(x) if x ∈W1 tW2

i′ if x = i

– λ′(x) =

λ(x) if x ∈ Π1 tΠ2

x′ otherwise

i i1 w

(c, 1, 0) (a, 0.7, 0.2)

i′ i2 v

(c, 1, 0) (b, 0.8, 0.1)

However, the operation of prefixing extends to a functor on the subcategory of action-
preserving morphisms, i.e. the subcategory where morphisms (σ, λ) between PLTS are such
that λ is an inclusion function. Given two PLTS T1 = 〈W1, i1, R1, Π1〉, T2 = 〈W2, i2, R2, Π2

and an action-preserving morphism (σ, λ) : T1 → T2 there is a functor which sends (σ, λ)

to a morphism (σ′, λ′) : (a, α, β)T1 → (a, α, β)T2, for some action a and some α, β ∈ A, given
by:

– σ′(x) =

ø if x = ø

σ(x) otherwise
– λ′(x) = x

3.6 other operations

There are of course several constructions one may perform to obtain a modified transition
system from a given one (or more). Those constructions are defined depending on what
is useful for different kinds of transition systems and their applications. One particularity
of PLTS is that of having transitions with two accessibility relations, besides the typical
labelling action, and for that reason we propose some operations which have no analogous
in [WN95], but are designed specifically for PLTS over the Gödel algebra G.

First we define an operation which takes a PLTS and uniformly increases or decreases the
value of the positive accessibility relation in all transitions and another one which uniformly
increases or decreases the value of the negative accessibility relation. For this purpose we
define the following operation for α, β ∈ [0, 1]

α⊕ β =


1 if α + β ≥ 1

0 if α + β ≤ 0

α + β otherwise

Definition 20. Let T = 〈W, i, R, Π〉 be a PLTS. Taking v ∈ [−1, 1], the positive v-approximation
T⊕+v is a PLTS 〈W, i, R′, Π〉 where

3.6. Other operations 41

R′ = {(w, π, w′, α⊕ v, β)|(w, π, w′, α, β) ∈ R}.

Given two PLTS T1 and T2, some v ∈ [−1, 1] and a morphism (σ, λ) : T1 → T2 there is a
functor that sends Ti to Ti⊕

+
v , for i = {1, 2} and (σ, λ) to itself.

Definition 21. Let T = 〈W, i, R, Π〉 be a PLTS. Taking v ∈ [−1, 1], the negative v-approximation
T⊕−v is a PLTS 〈W, i, R′, Π〉 where

R′ = {(w, π, w′, α, β⊕ v)|(w, π, w′, α, β) ∈ R}.

Given two PLTS T1 and T2, some v ∈ [−1, 1] and a morphism (σ, λ) : T1 → T2 there is a
functor that sends Ti to Ti⊕

−
v , for i = {1, 2} and (σ, λ) to itself.

Lastly, we propose an operation that removes all transitions in a PLTS for which the
positive accessibility relation is below a certain value and the negative accessibility relation
is above a certain value.

Definition 22. Let T = 〈W, i, R, Π〉 be a PLTS. Taking v1, v2 ∈ [0, 1], the constraint Tv1↑↓v2 is
a PLTS 〈W, i, R′, Π〉 where

R′ = {(w, π, w′, α, β)|(w, π, w′, α, β) ∈ R and α ≥ v1 and β ≤ v2}

Given two PLTS T1 and T2 and a morphism (σ, λ) : T1 → T2 there is a functor that sends
Ti to Tiv1↑↓v2

, for i = 1, 2, and (σ, λ) to (σ′, λ′) : T1v1↑↓v2 → T2v1↑↓v2 given by:

– σ′(x) = σ(x) and
– λ′(x) = λ(x).

4

M I P L - A M O D A L I N T U I T I O N I S T I C PA R A C O N S I S T E N T L O G I C

This chapter presents the design of a logic which takes PLTS as relational structures for the
definition of its semantic models.

4.1 syntax - signatures and formulas

Given a set of propositions Prop, the formulas of MIPL are generated by the following
grammar:

ϕ := p|⊥|>|¬ϕ|∼ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 → ϕ2|ϕ1 ↔ ϕ2| ϕ|3ϕ|/ ϕ|/3ϕ

where p ∈ Prop. We denote this set of formulas by Fm(Prop).

The nullary connective⊥ is a bottom particle interpreted as False; > a redundant (nullary)
connective interpreted as True and it is defined in terms of ⊥ as > := ¬⊥. Binary connec-
tives ∧, ∨ and → have their usual interpretations as conjunction, disjunction and implica-
tion, respectively. Unary connectives ¬ and ∼ are distinct negation connectives. We refer
to ∼ as natural negation, or simply ∼-negation, because ∼ϕ is an abbreviation for ϕ → ⊥.
We refer to ¬ as twist-negation, or simply ¬-negation. The binary connective ↔ is also
redundant: ϕ1 ↔ ϕ2 stands for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1). Here, the modal unary connectives

, 3, /, /3 represent distinct operations not inter-defined, unlike classical modal logics oper-
ators 3 and which are dual: in classical modal logics, 3 is redundant and given in terms
of as 3 ≡ ¬ ¬, or conversely. Moreover, in classical modal logics the sentence ”is not
necessary that ϕ” is expressed by ¬ ϕ (which is logically equivalent to 3¬ϕ) and the sen-
tence ”it is not possible that ϕ” is expressed by ¬3ϕ (logically equivalent to ¬ϕ). In that
sense, a single modal operator (or 3) is required to represent two distinct alethic modal-
ities. In MIPL a modal operator is defined to represent each of these modalities. Formulas

ϕ and 3ϕ naturally stand for the sentences ”it is necessary that ϕ” and ”it is possible that
ϕ”, respectively, while the formula / ϕ expresses the sentence ”it is not necessary that ϕ”
and the formula /3ϕ expresses the sentence ”it is not possible that ϕ”.

44 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

4.2 semantics and satisfaction

Definition 23. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra and Prop a set of atomic
propositions. An MIPL model is a triple M = 〈W, R, V〉, where

– 〈W, R〉 is an A-PLTS over the set of actions Π and
– V : Prop×W → A× A is a valuation function. For p ∈ Prop and w ∈ W, V(p, w) =

(γ, δ) gives a pair of truth values γ, δ ∈ A, where γ the degree to which there is
evidence of p being true and δ is the degree to which there is evidence of p being
false, in w.

Accordingly, for a specific p ∈ Prop and w ∈ W, the valuation function V of an MIPL
model appoints two truth values and in order to consider either of these values separately,
we introduce two functions that simply give the projections onto the first and second values
of V. These are the positive valuation function v+ : Prop −→ AW and the negative
valuation function v− : Prop −→ AW , such that for p ∈ Prop and w ∈W,

v+(p)(w) = P1V(p, w) and v−(p)(w) = P2V(p, w)

where P1, P2 are the projections onto the first and second values of V, respectively.

The satisfaction relation for an MIPL model, formally defined below, is a function |=:
W × Fm(Π, Prop) −→ A × A, which gives a valuation to formulas of Fm(Prop), in the
worlds of the underlying A-PLTS, and it is a mapping to pairs (α, β) such that α, β ∈ A. If,
for instance, 〈W, R, V〉 is an MIPL model such that 〈W, R〉 is G-PLTS then we have α, β ∈ G
and (α, β) ∈ G./.

The positive and negative valuation functions of atomic propositions extend to a positive
and negative satisfaction of a formula ϕ. Let the satisfaction of a formula ϕ in a world
w ∈ W be given by the pair (α, β); we define (w |= ϕ)+ ≡ (α, β)+ ≡ α and (w |= ϕ)− ≡
(α, β)− ≡ β.

To define the satisfaction of modal formulas ϕ, 3ϕ, / ϕ and /3ϕ we need to introduce
four new operations. These are �, �, 3+ , 3− : W × Fm(Prop)× {+,−} → A given by:

• �(w, ϕ, ∗) =
d

w′∈R[w](R+(w, w′) ↪→ (w′ |= ϕ)∗)

• �(w, ϕ, ∗) =
d

w′∈R[w](R−(w, w′) ↪→ (w′ |= ϕ)∗)

• 3+(w, ϕ, ∗) = ⊔
w′∈R[w](R+(w, w′) u (w′ |= ϕ)∗)

• 3−(w, ϕ, ∗) = ⊔
w′∈R[w](R−(w, w′) u (w′ |= ϕ)∗)

where R[w] = {w′|(w, w′, α, β) ∈ R, for some α, β ∈ A}.
The definitions are given in terms of the generic symbols t and→, to be replaced by the

operations of a chosen residuated lattice.

4.2. Semantics and Satisfaction 45

Definition 24. Let A = 〈A,u,t, 1, 0, ↪→〉 be an MTL-algebra, Prop be a set of atomic propo-
sitions and 〈W, R〉 be an A-PLTS. The satisfaction relation of an MIPL model M = 〈W, R, V〉
is function

|=: W × Fm(Π, Prop) −→ A× A

defined for each ϕ ∈ Fm(Prop) as follows:

– (w |= >) = (1, 0)
– (w |= ⊥) = (0, 1)
– (w |= p) = V(p, w)

– (w |= ¬ϕ) = ¬(w |= ϕ)

– (w |= ∼ϕ) ≡ (w |= ϕ→ ⊥)
– (w |= ϕ1 ∧ ϕ2) = (w |= ϕ1) ∧∧ (w |= ϕ2)

– (w |= ϕ1 ∨ ϕ2) = (w |= ϕ1) ∨∨ (w |= ϕ2)

– (w |= ϕ1 → ϕ2) = (w |= ϕ1) =⇒ (w |= ϕ2)

– (w |= ϕ1 ↔ ϕ2) ≡ (w |= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1))

– (w |= ϕ) = (�(w, ϕ,+), 3+(w, ϕ,−))
– (w |= 3ϕ) = (3+(w, ϕ,+),�(w, ϕ,−))
– (w |= / ϕ) = (3−(w, ϕ,−),�(w, ϕ,+))

– (w |= /3ϕ) = (3−(w, ϕ,+),�(w, ϕ,−))

Two formulas ϕ, ψ ∈ Fm(Prop) are semantically equivalent, in symbols ϕ ≡ ψ, if for any
w ∈W, (w |= ϕ) = (w |= ψ). We say that ϕ is valid if, for any w ∈W, (w |= ϕ) = (1, 0).

The pairs given by the satisfaction relation are interpreted in the same way as the pairs
given by the valuation function, that is, the satisfaction of any formula ϕ in the grammar,
at each w ∈ W, is a pair (α, β) ∈ A./ where α quantifies the evidence of ϕ being true
and β quantifies the evidence of it being false, in w. Indeed, for atomic propositions, the
satisfaction relation (in w) is simply given by the valuation function of the proposition (in
w). The truth ordering 4t in A./ establishes a relation between any two pairs given by the
satisfaction relation of an MIPL model.

It is no surprise that the worlds of the PLTS may provide conflicting information about
the formulas in the grammar. Moreover, there might be no information whatsoever on
wether some ϕ is true or false, if its satisfaction has value (0, 0). Since 0 is the least value in
the underlying truth space, this means there is no evidence that ϕ is true and neither there
is evidence that it is false.

We now explain the difference between ¬-negation and ∼-negation. It might be helpful
to see how ∼ϕ behaves wrt ϕ:

46 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

ϕ ∼ϕ

(0, 0) (1, 0)

(0, β) (1, 0)

(α, 0) (0, α)

(α, β) (0, α)

Figure 2: Satisfaction of the formula ∼ϕ according to the satisfaction of ϕ

Note that ∼ϕ = >, whenever the evidence of truthfulness of ϕ is zero. Thus if ϕ is not
true (and by this we mean either it is only false or neither true nor false), ∼ϕ is only true;
if ϕ is true (only true or both true and false), ∼ϕ is only false. Then ∼ϕ is read as ”ϕ is
not true”, meaning that ∼ distinguishes if the evidence of a formula being true is zero or
greater than zero.

The negation ¬ introduces formulas ¬ϕ in the grammar which may be considered the
converse of ϕ, since the evidence of ¬ϕ being true is given by the evidence of ϕ being false,
and vice-versa.

Theorem 1. The following formulas are valid in any MIPL model:

> ↔ ∼⊥ (9)

∼(ϕ1 ∧ ϕ2) ↔ (∼ϕ1 ∨∼ϕ2) (10)

∼(ϕ1 ∨ ϕ2) ↔ (∼ϕ1 ∧∼ϕ2) (11)

Proof.

Firstly, we note that for any ψ, ψ′ ∈ Fm(Prop),

(w |= ψ↔ ψ′) =
(
(w |= ψ) =⇒ (w |= ψ′)

) ∧
∧
(
(w |= ψ′) =⇒ (w |= ψ)

)
(12)

since,

(w |= ψ↔ ψ′)

= { definition of↔ }

(w |= (ψ→ ψ′) ∧ (ψ′ → ψ))

= { definition of |= }

(w |= ψ→ ψ′) ∧∧ (w |= ψ′ → ψ)

= { definition of |= }(
(w |= ψ) =⇒ (w |= ψ′)

) ∧
∧
(
(w |= ψ′) =⇒ (w |= ψ)

)

4.2. Semantics and Satisfaction 47

1. Then, in order to prove (1), we observe that

(w |= > ↔ ∼⊥)

= { (12) }

((w |= >) =⇒ (w |= ∼⊥)) ∧∧ ((w |= ∼⊥) =⇒ (w |= >))
= { definition of |= }

((1, 0) =⇒ (w |= ⊥ → ⊥)) ∧∧ ((w |= ⊥ → ⊥) =⇒ (1, 0))

= { definition of |= }

((1, 0) =⇒ ((0, 1) =⇒ (0, 1))) ∧∧ (((1, 0) =⇒ (0, 1))) =⇒ (1, 0))

= { definition of =⇒ }

((0, 1) =⇒ (1, 0)) ∧∧ ((1, 0) =⇒ (1, 0))

= { definition of =⇒ }

(1, 0) ∧∧ (1, 0)

= { definition of ∧∧ }

(1, 0)

2. In order prove (2) let us consider fix (w |= ϕ1) = (α, β) and (w |= ϕ2) = (α′, β′).

48 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

(w |= ∼(ϕ1 ∧ ϕ2))

= { definition of ∼ }

w |= (ϕ1 ∧ ϕ2)→ ⊥

= { definition of |= }

(w |= (ϕ1 ∧ ϕ2)) =⇒ (w |= ⊥)

= { definition of |= }

((w |= ϕ1) ∧∧ (w |= ϕ2)) =⇒ (0, 1)

= { (12) }(
(α, β) ∧∧ (α

′, β′)
)
=⇒ (0, 1)

= { definition of ∧∧ }

(α u α′, β t β′) =⇒ (0, 1)

= { definition of =⇒ }

((α u α′) ↪→ 0, α u α′)

(w |= (∼ϕ1 ∨∼ϕ2))

= { definition of |= }

(w |= ∼ϕ1) ∨∨ (w |= ∼ϕ2)

= { definition of ∼ }

((w |= ϕ1) =⇒ (0, 1)) ∨∨

((w |= ϕ2) =⇒ (0, 1))

= { − }

((α, β) =⇒ (0, 1)) ∨∨(
(α′, β′) =⇒ (0, 1)

)
= { definition of =⇒ }

(α ↪→ 0, α) ∨∨ (α
′ ↪→ 0, α′)

= { definition of ∨∨ }

(α→ 0t α′ → 0, α u α′)

By Eq. (8) in Lemma 1, ((α u α′) ↪→ 0, α u α′) = (α ↪→ 0 t α′ ↪→ 0, α u α′). Hence
w |= ∼(ϕ1 ∧ ϕ2)↔ (∼ϕ1 ∨∼ϕ2).

3. In order to prove (3) let us consider fix (w |= ϕ1) = (α, β) and (w |= ϕ2) = (α′, β′).

4.2. Semantics and Satisfaction 49

(w |= ∼(ϕ1 ∨ ϕ2))

= { definition of ∼ }

w |= (ϕ1 ∨ ϕ2)→ ⊥

= { definition of |= }

(w |= (ϕ1 ∨ ϕ2)) =⇒ (w |= ⊥)

= { definition of |= }

((w |= ϕ1) ∨∨ (w |= ϕ2)) =⇒ (0, 1)

= { (12) }(
(α, β) ∨∨ (α

′, β′)
)
=⇒ (0, 1)

= { definition of ∨∨ }

(α t α′, β u β′) =⇒ (0, 1)

= { definition of =⇒ }

((α t α′) ↪→ 0, α t α′)

(w |= (∼ϕ1 ∧∼ϕ2))

= { definition of |= }

(w |= ∼ϕ1) ∧∧ (w |= ∼ϕ2)

= { definition of ∼ }

((w |= ϕ1) =⇒ (0, 1)) ∧∧

((w |= ϕ2) =⇒ (0, 1))

= { − }

((α, β) =⇒ (0, 1)) ∧∧(
(α′, β′) =⇒ (0, 1)

)
= { definition of =⇒ }

(α ↪→ 0, α) ∧∧ (α
′ ↪→ 0, α′)

= { definition of ∧∧ }

(α ↪→ 0u α′ ↪→ 0, α t α′)

By Eq. (6) in Lemma 1, ((α t α′) ↪→ 0, α t α′) = ((α ↪→ 0) u (α′ ↪→ 0), α t α′). Hence
(w |= ∼(ϕ1 ∨ ϕ2)) = (w |= (∼ϕ1 ∧∼ϕ2)).

Remark 2. Note that the definition ∼ coincides with the definition of classic and intuitionistic logic.
Intristingly, De Morgan duality applies to ∧ and ∨ wrt ∼, which is not the case in intuitionistic
logic. On the other hand, the rules of material implication and double negation are not valid for ∼
and the rule of material implication is not valid for ¬. This means that ∼ and ¬ do not satisfy the
axioms of an intuitionistic negation and moreover they do not satisfy the axioms of a strong negation.
(For the definition of strong negation see for instance [Sed16] or [Vak77].) Indeed, ¬ϕ → ∼ϕ and
∼ϕ→ ¬ϕ are not valid formulas in MIPL so neither of these negations is ”stronger” than the other.

It is clear from Definition 24 that modal operators are not dual in the classical sense.
Nonetheless we shall prove the following equalities between modal formulas.

Theorem 2. The following semantical equivalences are true in any MIPL model:

¬ϕ ≡ ¬3ϕ (13)

3¬ϕ ≡ ¬ ϕ (14)

/¬ϕ ≡ /3ϕ (15)

/3¬ϕ ≡ / ϕ (16)

∼ϕ ≡ ∼3ϕ (17)

/∼ϕ ≡ ¬∼/3ϕ (18)

50 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

Proof.

(i) (¬ϕ) = ¬(3ϕ)

(w |= ¬ϕ)

= { definiton of |= }(
l

w′∈W

{R+(w, w′) ↪→ (w′ |= ¬ϕ)+},
⊔

w′∈W

{R+(w, w′) u (w′ |= ¬ϕ)−}
)

= { definition of |= }(
l

w′∈W

{R+(w, w′) ↪→ (¬(w′ |= ϕ))+},
⊔

w′∈W

{R+(w, w′) u (¬(w′ |= ¬ϕ))−}
)

= { definition of ¬ }(
l

w′∈W

{R+(w, w′) ↪→ (w′ |= ϕ)−},
⊔

w′∈W

{R+(w, w′) u (w′ |= ϕ)+}
)

= { definition of �, 3+ }

(�(w, ϕ,−), 3+(w, ϕ,+))

= { definition of ¬ }

¬(3+(w, ϕ,+),�(w, ϕ,−))

= { definition of |= }

(w |= ¬(3ϕ))

(ii) 3(¬ϕ) = ¬(ϕ)

4.2. Semantics and Satisfaction 51

(w |= 3(¬ϕ))

= { definition of |= }(⊔
w′∈W

{R+(w, w′) u (w′ |= ¬ϕ)+},
l

w′∈W

{R+(w, w′) ↪→ (w′ |= ¬ϕ)−}
)

= { definition of |= }(⊔
w′∈W

{R+(w, w′) u (¬(w′ |= ϕ))+},
l

w′∈W

{R+(w, w′) ↪→ (¬(w′ |= ϕ))−}
)

= { definition of ¬ }(⊔
w′∈W

{R+(w, w′) u (w′ |= ϕ)−},
l

w′∈W

{R+(w, w′) ↪→ (w′ |= ϕ)+}
)

= { definition of 3+ , � }

(3+(w, ϕ,−),�(w, ϕ,+))

= { definition of ¬ }

¬(�(w, ϕ,+), 3+(w, ϕ,−))

= { definition of |= }

(w |= ¬(ϕ))

(iii) /¬ϕ = /3ϕ

52 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

(w |= /(¬ϕ))

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u (w′ |= ¬ϕ)−},
l

w′∈W

{R−(w, w′) ↪→ (w′ |= ¬ϕ)+}
)

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u (¬(w′ |= ϕ))−},
l

w′∈W

{R−(w, w′) ↪→ (¬(w′ |= ϕ))+}
)

= { definition of ¬ }(⊔
w′∈W

{R−(w, w′) u (w′ |= ϕ)+},
l

w′∈W

{R−(w, w′) ↪→ (w′ |= ϕ)−}
)

= { definition of 3− , � }

(3−(w, ϕ,+),�(w, ϕ,−))

= { definition of |= }

(w |= /3ϕ)

4.2. Semantics and Satisfaction 53

(iv) /3¬ϕ = / ϕ

(w |= /3(¬ϕ))

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u (w′ |= ¬ϕ)+},
l

w′∈W

{R−(w, w′) ↪→ (w′ |= ¬ϕ)−}
)

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u (¬(w′ |= ϕ))+},
l

w′∈W

{R−(w, w′) ↪→ (¬(w′ |= ϕ))−}
)

= { definition of ¬ }(⊔
w′∈W

{R−(w, w′) u (w′ |= ϕ)−},
l

w′∈W

{R−(w, w′) ↪→ (w′ |= ϕ)+}
)

= { definition of 3− , � }

(3−(w, ϕ,−),�(w, ϕ,+))

= { definition of |= }

(w |= / ϕ)

(v) (∼ϕ) = ∼(3ϕ)

54 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

(w |= (∼ϕ))

= { definition of |= }(
l

w′∈W

{R+(w, w′) ↪→ (w′ |= ∼ϕ)+},
⊔

w′∈W

{R+(w, w′) u (w′ |= ∼ϕ)−}
)

= { definition of |= }(
l

w′∈W

{R+(w, w′) ↪→ ((w′ |= ϕ) =⇒ (0, 1))+},
⊔

w′∈W

{R+(w, w′) u ((w′ |= ¬ϕ) =⇒ (0, 1))−}
)

= { definition of =⇒ }(
l

w′∈W

{R+(w, w′) ↪→ ((w′ |= ϕ)+ ↪→ 0)},
⊔

w′∈W

{R+(w, w′) u (w′ |= ϕ)+}
)

= { by Eq. (3) }(
l

w′∈W

{(R+(w, w′) u (w′ |= ϕ)+) ↪→ 0},
⊔

w′∈W

{R+(w, w′) u (w′ |= ϕ)+}
)

= { by Eq. (6) in Lemma 1 }(⊔
w′∈W

{(R+(w, w′) u (w′ |= ϕ)+)} ↪→ 0,
⊔

w′∈W

{R+(w, w′) u (w′ |= ϕ)+}
)

= { definition of 3+ }

(3+(w, ϕ,+) ↪→ 0, 3+(w, ϕ,+))

= { definition of =⇒ }

(3+(w, ϕ,+),�(w, ϕ,−)) =⇒ (0, 1)

= { definition of |= }

(w |= 3ϕ) =⇒ (w |= ⊥)

= { definition of |= }

(w |= ∼(3ϕ))

(vi) /∼ϕ = ¬∼/3ϕ

4.2. Semantics and Satisfaction 55

(w |= /(∼ϕ))

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u (w′ |= ∼ϕ)−},
l

w′∈W

{R−(w, w′) ↪→ (w′ |= ∼ϕ)+}
)

= { definition of |= }(⊔
w′∈W

{R−(w, w′) u ((w′ |= ϕ) =⇒ (0, 1))−},
l

w′∈W

{R−(w, w′) ↪→ ((w′ |= ¬ϕ) =⇒ (0, 1))+}
)

= { definition of =⇒ }(⊔
w′∈W

{R−(w, w′) u (w′ |= ϕ)+},
l

w′∈W

{R−(w, w′) ↪→ ((w′ |= ϕ)+ ↪→ 0)}
)

= { by Eq. (3) }(⊔
w′∈W

{R−(w, w′) u (w′ |= ϕ)+},
l

w′∈W

{(R−(w, w′) u (w′ |= ϕ)+) ↪→ 0}
)

= { by Eq. (6) in Lemma 1 }(⊔
w′∈W

{R−(w, w′) u (w′ |= ϕ)+}, (
⊔

w′∈W

{R−(w, w′) u (w′ |= ϕ)+}) ↪→ 0

)
= { definition of 3− }

(3−(w, ϕ,+), 3−(w, ϕ,+) ↪→ 0)

= { definition of ¬ }

¬(3−(w, ϕ,+) ↪→ 0, 3−(w, ϕ,+))

= { definition of =⇒ }

¬((3−(w, ϕ,+),�(w, ϕ,−)) =⇒ (0, 1))

= { definition of |= }

¬((w |= /3ϕ) =⇒ (w |= ⊥))

= { definition of |= }

¬(w |= ∼(/3ϕ))

= { definition of |= }

(w |= ¬(∼(/3ϕ)))

56 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

4.3 modal preservations

In this section we will define the notions of simulation and bisimulation between MIPL
models and study the preservation of formulas between similar and bisimilar models.

Consider two PLTS T1 = 〈W1, R1〉, T2 = 〈W2, R2〉 and MIPL models M1 = (T1, V1) and
M2 = (T2, V2) over Σ = (Π, Prop).

Definition 25. A relation S ⊆W1×W2 is a simulation between MIPL models M1 and M2 if

– S is a simulation between PLTS T1 and T2

– for any p ∈ Prop and 〈w, v〉 ∈ S, V1(w, p) 4t V2(v, p)

Lemma 7. If S ⊆W1 ×W2 is a simulation between models M1 and M2 and 〈w, v〉 ∈ S then

(w |=M1 ϕ) 4t (v |=M2 ϕ) for ϕ ∈ Fm+3

where Fm+3 is the positive fragment of MIPL with a single modal connective 3.

Proof.
In the proof the subscript of 4t is omitted and 4 represents the truth ordering of A./. We

consider as an induction hypothesis that for any ϕ, (w |=M1 ϕ) 4t (v |=M2 ϕ).

• if ϕ = >

(w |=M1 >) = (1, 0) = (v |=M2 >)

∴ (w |=M1 >) 4 (v |=M2 >)

• if ϕ = ⊥

(w |=M1 ⊥) = (0, 1) = (v |=M2 ⊥)

∴ (w |=M1 ⊥) 4 (v |=M2 ⊥)

• if ϕ = p : p ∈ Prop

(w |=M1 p)+

= { definition of |= }

V+
1 (w, p)

≤ { definition of S }

V+
2 (v, p)

4.3. Modal preservations 57

(w |=M1 p)−

= { definition of |= }

V−1 (w, p)

≥ { definition of S }

V−2 (v, p)

∴ (w |=M1 p) 4 (v |=M2 p)

• if ϕ = ϕ1 ∧ ϕ2

(w |=M1 ϕ1 ∧ ϕ2)
+

= { definition of |= }

(w |=M1 ϕ1)
+ u (w |=M1 ϕ2)

+

≤ { Induction Hypothesis (w |=M1 ϕ)+ ≤ (v |=M2 ϕ)+ and monotonicity of u }

((v |=M2 ϕ1)
+ u (v |=M2 ϕ2)

+)

= { definition of |= }

(v |=M2 ϕ1 ∧ ϕ2)
+

(w |=M1 ϕ1 ∧ ϕ2)
−

= { definition of |= }

(w |=M1 ϕ1)
− t (w |=M1 ϕ2)

−

≥ { Induction Hypothesis (w |=M1 ϕ)− ≥ (v |=M2 ϕ)− and monotonicity of t }

((v |=M2 ϕ1)
− t (v |=M2 ϕ2)

−)

= { definition of |= }

(v |=M2 ϕ1 ∧ ϕ2)
−

∴ (w |=M1 ϕ1 ∧ ϕ2) 4 (v |=M2 ϕ1 ∧ ϕ2)

58 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

• if ϕ = ϕ1 ∨ ϕ2

(w |=M1 ϕ1 ∨ ϕ2)
+

= { definition of |= }

(w |=M1 ϕ1)
+ t (w |=M1 ϕ2)

+

≤ { Induction Hypothesis (w |=M1 ϕ)+ ≤ (v |=M2 ϕ)+ and monotonicity of t }

(v |=M2 ϕ1)
+ t (v |=M2 ϕ2)

+

= { definition of |= }

(v |=M2 ϕ1 ∨ ϕ2)
+

(w |=M1 ϕ1 ∨ ϕ2)
−

= { definition of |= }

(w |=M1 ϕ1)
− u (w |=M1 ϕ2)

−

≥ { Induction Hypothesis (w |=M1 ϕ)− ≥ (v |=M2 ϕ)− and monotonicity of u }

(v |=M2 ϕ1)
− u (vM2 |= ϕ2)

−

= { definition of |= }

(v |=M2 ϕ1 ∨ ϕ2)
−

∴ (w |=M1 ϕ1 ∨ ϕ2) 4 (v |=M2 ϕ1 ∨ ϕ2)

• if ϕ = 3ϕ1

4.3. Modal preservations 59

(w |=M1 3ϕ1)
+

= { definition of |= }⊔
w′∈W1

{R+
1 (w, w′) u (w′ |=M1 ϕ1)

+}

= { for some x ∈W1 such that 〈x, x′〉 ∈ S }

R+
1 (w, x) u (x |=M1 ϕ1)

+

≤ { definition of S R+
1 (w, x) ≤ R+

2 (v, x′) and Induction Hypothesis (x |=M1 ϕ1)
+ ≤ (x′ |=M2 ϕ1)

+ }

R+
2 (v, x′)+ u (x′ |=M2 ϕ1)

+

≤ { monotonicity of t }⊔
v′∈W2

{R+
2 (v, v′) u (v′ |=M2 ϕ1)

+}

= { definition of |= }

(v |=M2 3ϕ1)
+

(w |=M1 3ϕ1)
−

= { definition of |= }
l

w′∈W1

{R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

−}

For any w′ ∈W1 exists v′ ∈W2 such that 〈w′, v′〉 ∈ S and:

R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

−

≥ { definition of S R+
1 (w, w′) ≤ R+

2 (v, v+) and Eq. (2) }

R+
2 (v, v′) ↪→ (w′ |=M1 ϕ1)

−

≥ { and Induction Hypothesis (w |=M1 ϕ)− ≥ (v |=M2 ϕ)− and Eq. (1) }

R+
2 (v, v′) ↪→ (v′ |=M2 ϕ1)

−

60 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

l

w′∈W1

{R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

−}

≥ { monotonicity of u }
l

v′∈W2

{R+
2 (v, v′) ↪→ (v′ |=M2 ϕ1)

−}

= { definition of |= }

(v |=M2 3ϕ1)
−

∴ (w |=M1 3ϕ1) 4 (v |=M2 3ϕ1)

Remark 3. As expected, there are some formulas which are not preserved by these mappings. Such
are the cases of ¬ϕ, ϕ1 → ϕ2, ϕ, / ϕ and /3ϕ, as presented below.

• if ϕ = ¬ϕ1

(w |=M1 ¬ϕ1)
+

= { definition of |= }

(w |=M1 ϕ1)
−

≥ { Induction Hypothesis (w |=M1 ϕ)− ≥ (v |=M2 ϕ)− }

(v |=M2 ϕ1)
−

= { definition of |= }

(v |=M2 ¬ϕ1)
+

(w |=M1 ¬ϕ1)
−

= { definition of |= }

(w |=M1 ϕ1)
+

≤ { Induction Hypothesis (w |=M1 ϕ)+ ≤ (v |=M2 ϕ)+ }

(v |=M2 ϕ1)
+

= { definition of |= }

(v |=M2 ¬ϕ1)
−

4.3. Modal preservations 61

∴ (w |=M1 ¬ϕ1)/4(v |=M2 ¬ϕ1)

In fact (v |=M2 ¬ϕ1) 4 (w |=M1 ¬ϕ1).

• if ϕ = ϕ1 → ϕ2

(w |=M1 ϕ1 → ϕ2)
+

= { definition of |= }

(w |=M1 ϕ1)
+ ↪→ (w |=M1 ϕ2)

+

We give a counterexample, using the Gödel algebra, which proves that (w |=M1 ϕ)+ ≤
(v |=M2 ϕ)+ is not always true for 〈w, v〉 ∈ S. For instance, it is possible to have a simulation
where

(w |=M1 ϕ1)
+ = 0.3 and (v |=M2 ϕ1)

+ = 0.8

(w |=M1 ϕ2)+ = 0.6 and (v |=M2 ϕ2)+ = 0.7

Here,

(w |=M1 ϕ1 → ϕ2)
+

= { definition of |= }

0.3 ↪→ 0.6

≥ { by Eq. (2) }

0.8 ↪→ 0.6

≥ { by Eq. (1) }

0.8 ↪→ 0.7

= { definition of |= }

(v |=M2 ϕ1 → ϕ1)
+

∴ (w |=M1 ϕ1 → ϕ2)/4(v |=M2 ϕ1 → ϕ2)

Moreover, note that ϕ = ∼ϕ1 is an instance of ϕ = ϕ1 → ϕ2.

∴ (w |=M1 ∼ϕ)/4(v |=M2 ∼ϕ)

• if ϕ = ϕ

62 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

(w |=M1 ϕ1)
+

= { definition of |= }
l

w′∈W1

{R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

+}

A counterexample using the Gödel algebra shows that (w |=M1 ϕ1)
+ ≤ (v |=M2 ϕ1)

+ is
not necessarily true is the case where both worlds w and v have a single transition and where

R+
1 (w, w′) = 0.3 and R+

2 (v, v′) = 0.8

(w′ |=M1 ϕ1)
+ = 0.6 and (v′ |=M2 ϕ1)

+ = 0.7

Here R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

+ = 0.3 ↪→ 0.6 whereas R+
2 (v, v′) → (v |=M2 ϕ1)

+ =

0.8 ↪→ 0.7 and we have proved 0.3 ↪→ 0.6 ≥ 0.8 ↪→ 0.7.

∴ (w |=M1 ϕ)/4(v |=M2 ϕ)

• if ϕ = / ϕ1

(w |=M1 / ϕ1)
+

= { definition of |= }⊔
w′∈W

{R−1 (w, w′) u (w′ |=M1 ϕ1)
−}

For any w′ ∈W1 exists v′ ∈W2 such that 〈w′, v′〉 ∈ S and:

R−1 (w, w′) u (w′ |=M1 ϕ1)
−

≥ { definition of S R−1 (w, w′) ≥ R−2 (v, v′) and Induction Hypothesis (w′ |=M1 ϕ)− ≥ (v′ |=M2 ϕ)− }

R−2 (v, v′) u (v′ |=M2 ϕ1)
−

4.3. Modal preservations 63

⊔
w′∈W1

{R−1 (w, w′) u (w′ |=M1 ϕ1)
−}

≥ { monotonicity of t }⊔
v′∈W2

{R−2 (v, v′) u (v′ |=M2 ϕ1)
−}

= { definition of |= }

(v |=M2 / ϕ1)
+

(w |=M1 / ϕ1)
−

= { definition of |= }
l

w′∈W1

{R−1 (w, w′) ↪→ (w′ |=M1 ϕ1)
+}

For any w′ ∈W1 exists v′ ∈W2 such that 〈w′, v′〉 ∈ S and

R−1 (w, w′) ↪→ (w′ |=M1 ϕ1)
+

≤ { definition of S R−1 (w, w′) ≥ R−2 (v, v′) and by Eq. (2) }

R−2 (v, v′) ↪→ (w′ |=M1 ϕ1)
+

≤ { Induction Hypothesis (w |=M1 ϕ)+ ≤ (v |=M2 ϕ)+ and by Eq. (1) }

R−2 (v, v′) ↪→ (v′ |=M2 ϕ1)
+

l

w′∈W1

{R−1 (w, w′) ↪→ (w′ |=M1 ϕ1)
+}

≤ { monotonicity of u }
l

v′∈W2

{R−2 (v, v′) ↪→ (v′ |=M2 ϕ1)
+}

= { definition of |= }

(v |=M2 / ϕ1)
−

64 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

∴ (w |=M1 / ϕ1)/4(v |=M2 / ϕ1)

In fact, (v |=M2 / ϕ) 4 (w |=M1 / ϕ)

• if ϕ = /3ϕ1

(w |=M1 /3ϕ1)
+

= { definition of |= }⊔
w′∈W1

{R−1 (w, w′) u (w′ |=M1 ϕ1)
+}

A counterexample using the Gödel algebra shows that (w |=M1 /3ϕ1)
+ ≤ (v |=M2 /3ϕ1)

+ is
not necessarily true is the case where both worlds w and v have a single transition and where

R−1 (w, w′) = 0.8 and R−2 (v, v′) = 0.6

(w′ |=M1 ϕ1)
+ = 0.7 and (v′ |=M2 ϕ1)

+ = 0.5

Here,

R−1 (w, w′) u (w′ |=M1 ϕ1)
+

= { - }

0.8u 0.7

≥ { since 0.8 ≥ 0.6 and 0.7 ≥ 0.5 }

0.6u 0.5

= { definition of |= }

R−2 (v, v′) u (v |=M2 ϕ1)
+

∴ (w |=M1 /3ϕ1)/4(v |=M2 /3ϕ1)

Definition 26. A relation B ⊆W1×W2 is a bisimulation between MIPL models M1 and M2

if

– B is a bisimulation between PLTS T1 and T2

– for any p ∈ Prop and 〈w, v〉 ∈ B, V1(w, p) = V2(v, p).

4.3. Modal preservations 65

Theorem 3. Let B be a bisimulation between two MIPL models and 〈w, v〉 ∈ B. Then (w |=M1

ϕ) = (v |=M2 ϕ) for ϕ ∈ Fm(Π, Prop).

Proof.
We consider as an induction hypothesis that for any ϕ, (w |=M1 ϕ) = (v |=M2 ϕ).

• if ϕ = > (w |=M1 >)+ = (v |=M2 >)+ = 1 (w |=M1 >)− = (v |=M2 >)− = 0

• if ϕ = ⊥ (w |=M1 ⊥)+ = (v |=M2 ⊥)+ = 0 (w |=M1 ⊥)− = (v |=M2 ⊥)− = 1

• if ϕ = p such that p ∈ Prop

(w |=M1 p) = V1(w, p)

= { 〈w, v〉 ∈ B }

(w |=M1 p) = V2(v, p)

∴ (w |=M1 p) = (v |=M2 p)

• if ϕ = ¬ϕ1

(w |=M1 ¬ϕ1)

= { definition of |= }

((w |=M1 ϕ1)
−, (w |=M1 ϕ1)

+)

= { Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

((v |=M2 ϕ1)
−, (v |=M2 ϕ1)

+)

= { definition of |= }

(v |=M2 ¬ϕ1)

∴ (w |=M1 ¬ϕ1) = (v |=M2 ¬ϕ1)

• ϕ = ϕ1 ∧ ϕ2

(w |=M1 ϕ1 ∧ ϕ2)

= { definition of |= }

(w |=M1 ϕ1) ∧∧ (w |=M1 ϕ2)

= { Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(v |=M2 ϕ1) ∧∧ (v |=M2 ϕ2)

= { definition of |= }

(v |=M2 ϕ1 ∧ ϕ2)

∴ (w |=M1 ϕ1 ∧ ϕ2) = (v |=M2 ϕ1 ∧ ϕ2).

66 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

• if ϕ = ϕ1 ∨ ϕ2

(w |=M1 ϕ1 ∨ ϕ2)

= { definition of |= }

(w |=M1 ϕ1) ∨∨ (w |=M1 ϕ2)

= { Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(v |=M2 ϕ1) ∨∨ (v |=M2 ϕ2)

= { definition of |= }

(v |=M2 ϕ1 ∨ ϕ2)

∴ (w |=M1 ϕ1 ∨ ϕ2) = (v |=M2 ϕ1 ∨ ϕ2).

• if ϕ = ϕ1 → ϕ2

(w |=M1 ϕ1 → ϕ2)

= { definition of |= }

(w |=M1 ϕ1) =⇒ (w |=M1 ϕ2)

= { Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(v |=M2 ϕ1) =⇒ (v |=M2 ϕ2)

= { definition of |= }

(v |=M2 ϕ1 → ϕ2)

∴ (w |=M1 ϕ1 → ϕ2) = (v |=M2 ϕ1 → ϕ2)

• if ϕ = 3ϕ1

First note that any pair 〈w, v〉 of a bisimulation between MIPL models satisfies the
following condition:

– ∀w′∈W1∃v′ ∈W2 such that R+
1 (w, w′) = R+

2 (v, v′), R−1 (w, w′) = R−2 (v, v′) and 〈w′, v′〉 ∈
B. (∗)

This follows directly from the definition of bisimulation between two PLTS.

4.3. Modal preservations 67

(w |=M1 3ϕ1)
+

= { definition of |= }⊔
w′∈W1

(R+
1 (w, w′) u (w′ |=M1 ϕ1)

+)

= { by (∗) and Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }⊔
w′∈W1

(R+
2 (v, v′) u (v′ |=M2 ϕ1)

+)

= { definition of |= }

(v |=M2 3ϕ1)
+

(w |=M1 3ϕ1)
−

= { definition of |= }
l

w′∈W1

(R+
1 (w, w′) ↪→ (w′ |=M1 ϕ)−)

= { by (∗) and Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }
l

v′∈W1

(R+
2 (v, v′) ↪→ (v′ |=M2 ϕ)−)

= { definition of |= }

(v |=M2 3ϕ1)
−

∴ (w |=M1 3ϕ1) = (v |=M2 3ϕ1).

• if ϕ = ϕ1

68 Chapter 4. MIPL - A modal intuitionistic paraconsistent logic

(w |=M1 ϕ1)

= { definition of |= }

(
l

w′∈W1

(R+
1 (w, w′) ↪→ (w′ |=M1 ϕ1)

+),
⊔

w′∈W1

(R+
1 (w, w′) u (w′ |= ϕ1)

−))

= { by (∗) and Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(
l

v′∈W2

(R+
2 (v, v′) ↪→ (v′ |=M2 ϕ1)

+),
⊔

v′∈V1

(R+
2 (v, v′) u (v′ |=M2 ϕ1)

−))

= { definition of |= }

(v |=M2 ϕ1)

∴ (w |=M1 ϕ1) = (v |=M2 ϕ1)

• if ϕ = / ϕ1

(w |=M1 / ϕ1)

= { definition of |= }

(
⊔

w′∈W1

(R−1 (w, w′) u (w′ |=M1 ϕ1)
−),

l

w′∈W1

(R−1 (w, w′)→ (w′ |=M1 ϕ1)
+))

= { by (∗)16 and Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(
⊔

v∈W2

(R−2 (v, v′) u (v′ |=M2 ϕ1)
−),

l

v∈W2

(R−2 (v, v′) ↪→ (v′ |=M2 ϕ1)
+))

= { definition of |= }

(v |=M2 / ϕ1)

∴ (w |=M1 / ϕ1) = (v |=M2 / ϕ1)

4.3. Modal preservations 69

• if ϕ = /3ϕ1

(w |=M1 /3ϕ1)

= { definition of |= }

(
⊔

w′∈W1

(R−1 (w, w′) u (w′ |=M1 ϕ1)
+),

l

w′∈W1

(R−1 (w, w′) ↪→ (w′ |=M1 ϕ1)
−))

= { by (∗)16 and Induction Hypothesis (w |=M1 ϕ) = (v |=M2 ϕ) }

(
⊔

v∈W2

(R−2 (v, v′) u (v′ |=M2 ϕ1)
+),

l

v∈W2

(R−2 (v, v′) ↪→ (v′ |=M2 ϕ1)
−))

= { definition of |= }

(v |=M2 /3ϕ1)

∴ (w |=M1 /3ϕ1) = (v |=M2 /3ϕ1)

5

C O N C L U S I O N

5.1 summary of contributions

In this work we have proposed a new family of transition systems, the Paraconsistent La-
belled Transition Systems, also written PLTS, whose transitions are described by two fuzzy
relations, besides the usual labelling action. These transition systems are suited to model
any dynamic process where there is some kind of contradiction or lack of information re-
garding the existence of transitions between states, also supporting consistent scenarios.
We have established different forms of equivalence between PLTS, given by the definition
of morphism, simulation and bisimulation. We also developed the notion of equivalence
between states with the definition of traces and trace equivalence.

Motivated by the possible use of PLTS as a model for quantum computation, illustrated
below, we defined a category of PLTS and their morphisms, which we endowed with con-
structions that could serve as a basis for the definition of a process algebra and thus as a
possible formalism for parallel quantum computations. We have proposed a modal intu-
itionistic paraconsistent logic, MIPL, whose semantic models are defined over PLTS. The
valuation of propositions and the satisfaction of formulas in MIPL model the lack and ex-
cess of information, besides consistent valuations. MIPL supports inconsistency and vague-
ness both at the level of the accessibility relations in its underlying relational structure and
at the level of proposition variables. Given some process modeled by a PLTS, MIPL is a tool
for talking about its properties as well as to compare the satisfaction of formulas in models
related by the equivalence notions mentioned above.

5.2 modeling quantum circuits - an application of plts

Quantum circuits (QC) are a promising model for quantum computing, but superconduct-
ing qubits may hold in a superposition state for a limited period of time, i.e. the coherence
time. Decoherence consists in decay of a qubit in superposition to its ground state and may
be caused by distinct physical phenomena, each with a certain probability of occurring. A

72 Chapter 5. Conclusion

quantum circuit is effective only if gate operations and measurements are performed to
superposition states within a limited period of time after their preparation. When that time
is exceeded there is an increasing probability that the circuit does not behave according
to its design, since there may be decayed states in place of superposition states. One ap-
proach to solve this problem is to enhance superconducting qubits performance, increasing
their coherence time. If the coherence time is large enough to ensure that no decay will
occur over the time the circuit is being executed, decoherence is no longer an error factor
to quantum computations. Here we do not explore this possibility. Instead, we provide a
model for quantum circuits which incorporates the possible decoherence of state of the art
superconducting qubits as an error factor. This way, quantum circuits are translated into
a structure which models not only the desired computation but the behavior of the circuit
when executed in a real setting.

5.2.1 From quantum circuits to PLTS

We will use PLTS to model quantum circuits, taking advantage of their accessibility relations
in the following way. Coherence of qubits is not an exact measure, but usually given by a
time interval. This fixes two values of coherence, corresponding to a worst case scenario
and a best case scenario. We employ the two accessibility relations in a PLTS to model both
scenarios simultaneously.

Other important observation for the conversion of quantum circuits to PLTS is that quan-
tum circuits always have a sequential execution. Simultaneous operations performed to
distinct qubits are combined using the tensor product construction ⊗ into a single opera-
tion to the whole collection of qubits treated by the circuit.

Thus a quantum circuit may be described by a sequence of executions e1, e2, e3, ... where
each ei is the tensor product of the operations performed to the qubits at each execution
step. Starting from the initial state where, for instance, all qubits are in the state |0〉, each
ei takes the collection of qubits to a new state, specified by the state of each qubit after ei is
performed.

Example 17. Consider, for instance, the following circuit designed with IBM Quantum
Composer, an online tool for designing and testing quantum circuits. It is a simple circuit
which creates a superposition state in a qubit resister, with the application of the Hadamard
gate, and after performs a measurement to that qubit.

5.2. Modeling Quantum Circuits - an application of PLTS 73

Figure 3: Circuit 1 (designed with IMB Quantum Composer online software)

This quantum circuit deals with a single qubit register q. Its initial state s1 is given by
the initial state of q and its first execution e1 is the application of the Hadamard gate to q,
which leaves q in the familiar superposition state 1√

2
(|0〉+ |1〉) ≡ |+〉. The last execution e2

measures the state of q leaving it in a definite state, either |0〉 or |1〉. In short, this circuit is
described by the following sequence of states s1, s2 and s3.

s1 : q[0] = |0〉; s2 : H(q[0]); s3 : M(H(q[0]))

H and M stand for Hadamard gate and measurement, respectively.
Now consider another circuit, given below, which differs from the previous one only by

the addition of a new qubit register.

Figure 4: Circuit 2 (designed with IMB Quantum Composer online software)

Although the addition of a second qubit does not change the outcome of this computa-
tion, the states of the latter circuit differ from those in the former, since each circuit state
is specified by the states of all its qubits at each particular instant. Moreover, when the
Hadamard gate is applied to the first qubit, it is being omitted that the Identity is simulta-
neously applied to the second qubit. Then, the sequence of states describing this circuit is
distinct from the sequence above, and given by:

s1 : q[0] = |0〉 ; q[1] = |0〉; s2 : H ⊗ I(q[0]⊗ q[1]); s3 : M⊗ I(H ⊗ I(q[0]⊗ q[1]))

This leads to the first rules of conversion from QC to PLTS.

1. Each circuit state, given by the states of all qubit registers between executions, corre-
sponds to a state of a PLTS, and the starting state of the circuit is the initial state of
that PLTS;

74 Chapter 5. Conclusion

2. Each execution, taking the circuit from a state to another, defines a transition between
the corresponding states of the PLTS, and the action labeling this transition is given
by the tensor product of the gates in that execution (no gate means the Identity gate).

Now we need a procedure to assign values to the positive and negative accessibility
relation of each transition that takes into account the possibile decoherence of superposition
states. The main idea is that when performing a gate operation with execution time τG or
a measurement with execution time τM to a superposition state whose coherence time is
τ, there is a probability τG/τ that the gate is applied to a decayed state, and a probability
τM/τ that the measurement is applied to a decayed state. These values are defined under
the following considerations:

– After τ the state has decayed with probability 1 and
– the probability of decoherence has a linear time evolution.

Of course, the last assumption may be suitably replaced given another (maybe more realis-
tic) time evolution for the probability of decoherence.

Considering the minimum coherence time τmin and the maximum coherence time τmax,
two values are yield for the possibility of decoherence during some circuit execution. The
value of τmax will determine the positive accessibility relation, interpreted as the probability
to which the system remains coherent, and the value of τmin will determine the negative
accessibility relation, interpreted as the probability to which the system evolves to a de-
coherent state. How coherence and execution times shape the accessibility relations is
illustrated in the examples below.

For a somewhat realistic model we take the values of coherence time and gate or mea-
surement execution from [ZDL+

19] and define:

– The largest and smallest coherence time of a superconducting qubit are τmax = 100µs
and τmin = 10µs, respectively;

– The execution time of a single qubit gate is τG = 20µs and the execution time of a two
qubit gate is 2τG = 40µs;

– The time execution of a measurement is τM = 300ns ∼ 1µs.

For a simplified model we consider the time execution of a measurement to be τM = 1µs
hereafter.

Example 18. We start with the simple example given by the first circuit of 17. We give an
intermediate representation of this circuit obtained through the application of rules 1 and
2. This gives the states and the transitions with respective labelling actions.

5.2. Modeling Quantum Circuits - an application of PLTS 75

q[0] : |0〉

q[0] : H(|0〉)

q[0] : M(H(|0〉))

H

M

The positive and negative accessibility relations characterizing each transition are given
as follows.

1. For the first transition, labelled with H:

Note that the Hadamard gate is applied to a qubit in a definite state |0〉. The problem
of decoherence does not concern qubits in a definite state, but only those in super-
position states. Then coherence of the qubit is guaranteed during this execution and
the probability of decoherence is just 0. We conclude the values for the positive and
negative accessibility relations are 1 and 0, respectively.

2. For the second transition, labelled with M:

M is applied to a superposition state, so indeed there is some probability that the
state decays during this execution.

On the one hand, we consider the best case scenario, i.e. that the qubit has a coherence
time of 100µs. After 100µs the state has decayed with probability 1. So after τM = 1µs
the state has decayed with probability 1µs/100µs = 0.01. In this case the state is
coherent with probability 0.99. This is the value for the positive accessibility relation.

On the other hand, we consider the worst case scenario, i.e. that the qubit has a
coherence time of 10µs. In this case the state decays with probability 1µs/10µs = 0.1.
This is the value for the negative accessibility relation.

Therefore the circuit translates into the following PLTS.

q[0] : |0〉

q[0] : H(|0〉)

q[0] : M(H(|0〉))

(H, 1, 0)

(M, 0.99, 0.1)

76 Chapter 5. Conclusion

Moreover, the PLTS for the second circuit of 17 is constructed following the same steps
and depicted below.

q[0]; q[1]

q[0]; q[1]

q[0]; q[1]

(H ⊗ Id, 1, 0)

(M⊗ Id, 0.99, 0.1)

Example 19. Now consider the following quantum circuit, which creates two superposition
states by applying the Hadamard gate to two distinct qubit registers and then creates an
entangled state with the application of a CNOT gate to both qubits.

Figure 5: Circuit 3 (designed with IMB Quantum Composer online software)

The intermediate representation of this circuit obtained through the application of rules
1 and 2 is the following.

q[0]; q[1]

q[0]; q[1]

q[0]; q[1]

q[0]; q[1]

H ⊗ I

I ⊗ H

CNOT

Now we must give the values of the positive and negative accessibility relations charac-
terizing each transition.

5.2. Modeling Quantum Circuits - an application of PLTS 77

1. For the first transition, labelled with H ⊗ I:

Again, it is straightforward that the positive and negative accessibility relations are 1
and 0, respectively.

2. For the second transition, labelled with I ⊗ H:

Note that when the Hadamard gate is applied to a register in a definite state which
will not decay during this transition. Nonetheless, the first qubit is in a superposition
state and it may decay, leaving the system in an unwanted state.

Through the time of this execution, given by τG = 20µs, the first qubit has, at most, a
probability 1− (20µs/100µs) = 0.8 of staying coherent. The probability that the state
decays to its ground state cannot be given by the formula τG/10µs, since this yields
a value greater than 1. When τG/10µs > 1 we simply say that the state decays with
probability 1.

3. For the last transition, labelled with CNOT:

CNOT is a two qubit gate, with an execution time of 40µs. By the time this transition
is performed, both qubits are in a superposition state so the system may collapse due
to decoherence of either of them. The qubit which has been in superposition for the
longest time obviously has a greater chance of decaying to its ground state. The circuit
performs correctly if:

– The first qubit holds in superposition for the time execution of the second and
third transitions, given by 20µs + 40µs = 60µs.

– The second qubit holds in superposition for the time execution of the third tran-
sition, which is 40µs.

The first qubit has at most a probability 1− (60µs/100µs) = 0.4 of staying coherent
and the second qubit has at most a probability of 1− (40µs/100µs) = 0.6 of staying
coherent. The positive accessibility relation is given by the minimum of these values,
i.e. 0.4.

Both qubits decay with probability 1, since the 60µs/10µs yields a value greater than
1, as well as 40µs/10µs.

Therefore the circuit translates into the following PLTS.

78 Chapter 5. Conclusion

q[0]; q[1]

q[0]; q[1]

q[0]; q[1]

q[0]; q[1]

(H ⊗ I, 1, 0)

(I ⊗ H, 0.8, 1)

(CNOT, 0.4, 1)

Note that the CNOT gate acts as if fresh superposition states were prepared, resetting
their coherence. Any gate leaving a qubit in a ”new” superposition state restores its coher-
ence and only the circuit executions after this preparation should be accounted to inspect
coherence or decoherence of the system subsequently.

Given a quantum circuit the following steps give a systematic procedure to convert that
circuit into a PLTS:

1. Each circuit state, given by the states of all qubit registers between executions, corre-
sponds to a state of a PLTS, and the starting state of the circuit is the initial state of
that PLTS;

2. Each execution, taking the circuit from a state to another, defines a transition between
the corresponding states of the PLTS, and the action labeling this transition is given
by the tensor product of the gates in that execution (no gate means the Identity gate);

3. Compute the positive and negative accessibility relations characterizing each transi-
tion as follows. Let t be a transition between s1 and s2.

3.1 If state s1 is such that all registers are in a definite state, the positive and negative
accessibility relations are 1 and 0, respectively.

3.2 If state s1 is such that some registers q1, q2, ..., qn are in superposition, for each qi com-
pute: (i) the execution time τ of all transitions immediately after qi’s superposition
was prepared and until s1; (ii) the probability that qi stays coherent in the best case
scenario, given by P+

i = τ/τmax(qi), and (iii) the probability that qi decays in the
worst case scenario, given by P−i = τ/τmin(qi), where τmax(qi) and τmin(qi) are the
maximal and minimal coherence times of qi. Finally (iv) compute the value for the
positive accessibility relation as

r+ =


1 if

∧n
i=1{1− P+

i } ≥ 1∧n
i=1{1− P+

i } if
∧n

i=1{1− P+
i } ≥ 0

0 otherwise

5.3. Prospect for future work 79

and the value for the negative accessibility relation as

r− =

1 if
∨n

i=1{P−i } ≥ 1∨n
i=1{P−i } otherwise

5.3 prospect for future work

Enrich MIPL with a consistency connective

In the same way the conflation operation was used to determine if a particular transition
of an A-PLTS, where A is an MTL-algebra over [0, 1], was within the intuitionistic, strictly
consistent or paraconsistent domain, it could be used to determine the consistency of for-
mulas in an MIPL model over a such a PLTS. A formula ϕ is considered consistent if the
evidence of it being true and the evidence of it being false are non-contradictory, which in
the fuzzy framework means they add to 1 or to a value less than 1. In other words, if the
satisfaction of ϕ is given by the pair (a, b), ϕ is consistent only if (a, b) ≤a (a, b) where a
is, as before, the conflation operation.

In light of this consideration, we could extend MIPL grammar with a consistency connec-
tive ◦ and define the satisfaction of a formula ◦ϕ in a world w of an MIPL model over an
A-PLTS as follows.

(w |= ◦ϕ) =

(1, 0) iff (a, b) ≤a (a, b)

(0, 1) otherwise

Another possibility is to endow the underlying MTL-algebra of a PLTS with the structure
of a metric space and a notion of distance.

Definition 27. A = 〈A,u,t, 1, 0, ↪→, d〉 is a metric MTL-algebra if

1. A = 〈A,u,t, 1, 0, ↪→〉 in an MTL-algebra, and
2. (A, d) is a metric space, that is, for any x, y, z ∈ A, d : A× A→ R+

0 is such that:

– d(x, y) = 0 iff x = y
– d(x, y) ≤ d(x, z) + d(z, y)

Moreover, we can define a bilattice over A and a distance metric D : (A× A)× (A× A)→
R+

0 over bilattice pairs. For instance, for any (a, b), (c, d) ∈ A× A we could have

D((a, b), (c, d)) =
√

d(a, c)2 + d(c, d)2

or
D((a, b), (c, d)) = d(a, c) + d(c, d)

80 Chapter 5. Conclusion

In this way we could define the sets of intuitionistic and paraconsistent pairs, ∆P, ∆I ,
respectively, as

∆I = {(a, b)|D((a, b), (0, 0)) ≤ D((a, b), (1, 1))}

∆P = {(a, b)|D((a, b), (1, 1)) ≤ D((a, b), (0, 0))}

Then, it is possible to establish if a bilattice element (a, b) represents incomplete or con-
tradictory information by comparing its distance to the elements (0, 0) and (1, 1). Moreover,
the bilattice elements equally distant from (0, 0) and (1, 1) are those representing complete
information, lying in the set of strictly consistent pairs ∆, formally defined as

∆ = ∆P ∩ ∆I

A formula in MIPL is consistent when its satisfaction is given by (a, b) such that (a, b) ∈
∆I (note that ∆ ⊂ ∆I); it is inconsistent when (a, b) ∈ ∆P \ ∆. Thus satisfaction of a formula
◦ϕ in a world w of a MIPL model over a metric MTL-PLTS would be defined as

(w |= ◦ϕ) =

(1, 0) iff (w |= ϕ) ∈ ∆I

(0, 1) otherwise

Develop a process language and design a dynamic extension of MIPL

The constructions defined in Chapter 3 could be explored to develop a process language.
Having programs described by PLTS, as, for instance, quantum circuit executions, such a
language would allow to represent parallel executions of those programs. Following this
line of work, the next step would be to extend MIPL to a dynamic logic.

Improve the description of quantum circuits as PLTS

Finally, it would be interesting to further explore the description of quantum circuits
as PLTS and improve the method described above for this conversion. The notions of
simulation and bisimulation fail to describe the equivalence of circuits in the examples
above, so one needs to study how to better characterize suitable mappings between PLTS.
If the conversion from QC to PLTS is worthwhile in the engineering of quantum software,
it is possible to design a tool for representing classes of equivalent quantum algorithms
and to define metrics of quality, establishing which circuit implementation better performs
a given algorithm.

B I B L I O G R A P H Y

[BEGR09] Félix Bou, Francesc Esteva, Lluı́s Godo, and Ricardo Oscar Rodrı́guez. On the
Minimum Many-Valued Modal Logic over a Finite Residuated Lattice. Journal of
Logic and Computation, 21(5):739–790, 10 2009.

[Bel77] Nuel Belnap. A useful four-valued logic. 1977.

[BS11] Alexandru Baltag and Sonja Smets. Quantum logic as a dynamic logic. Synthese,
179(2):285–306, 2011.

[BvN37] Garrett Birkhoff and John von Neumann. The logic of quantum mechanics. Jour-
nal of Symbolic Logic, 2(1):44–45, 1937.

[CCM07] Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Logics of Formal Incon-
sistency. Handbook of Philosophical Logic, pages 1–93, 2007.

[Com98] Stephen D. Comer. Paul halmos and steven givant. logic as algebra. the dol-
ciani mathematical expositions, no. 21. the mathematical association of america,
washington 1998, ix 141 pp. Journal of Symbolic Logic, 63(4):1604–1604, 1998.

[EG01] Francesc Esteva and Lluis Godo. Godo, l.: Monoidal t-norm based logic: To-
wards a logic for left-continuous t-norms. fuzzy sets and systems 124(3), 271-288.
Fuzzy Sets and Systems, 124:271–288, 12 2001.

[Fit89] Melvin Fitting. Bilattices and the theory of truth. Journal of Philosophical Logic,
18(3):225–256, 1989.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Mathematical aspects of com-
puter science, 19(19-32):1, 1967.

[Gin86] Matthew L. Ginsberg. Multi-valued logics. In Proceedings of the Fifth AAAI Na-
tional Conference on Artificial Intelligence, AAAI’86, pages 243–247. AAAI Press,
1986.

[Gin88] Matthew Ginsberg. Multivalued logics: A uniform approach to reasoning in ai.
Computer Intelligence, 4(1):256–316, 1988.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

82 bibliography

[HTK00] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

[Jaś69a] Stanisław Jaśkowski. Propositional calculus for contradictory deductive systems.
Studia Logica, 24(1):143–157, 1969.

[Jaś69b] Stanisław Jaśkowski. Propositional calculus for contradictory deductive systems.
Studia Logica, 24(1):143–157, 1969.

[Kel76] Robert Keller. Formal verification of parallel programs. Commun. ACM, 19:371–
384, 07 1976.

[Koz85] Dexter Kozen. A probabilistic pdl. Journal of Computer and System Sciences,
30(2):162–178, 1985.

[Kra98] Marcus Kracht. On extensions of intermediate logics by strong negation. Journal
of Philosophical Logic, 27(1):49–73, 1998.

[KS14] Sofia Kouah and Djamel Eddine Saidouni. Fuzzy labeled transition refinement
tree: Application to stepwise designing multi agent systems. International Journal
of Agent Technologies and Systems, 6:1–31, 07 2014.

[LL34] C. I. Lewis and C. H. Langford. Symbolic logic. Erkenntnis, 4(1):65–66, 1934.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, 1991.

[MN04] Erik Meineche Schmidts Mikkel Nygaard. DAIMI FN : Transition systems : algo-
rithms and data structures. Matematisk Institut, Aarhus Universitet, Datalogisk
Afdeling, Aarhus, 2004.

[MNM16] Alexandre Madeira, Renato Neves, and Manuel A. Martins. An exercise on
the generation of many-valued dynamic logics. Journal of Logical and Algebraic
Methods in Programming, 85(5, Part 2):1011–1037, 2016. Articles dedicated to Prof.
J. N. Oliveira on the occasion of his 60th birthday.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th
edition, 2011.

[OW10] Sergei P. Odintsov and Heinrich Wansing. Modal logics with belnapian truth
values. Journal of Applied Non-Classical Logics, 20(3):279–301, 2010.

[PBW18] Graham Priest, Francesco Berto, and Zach Weber. Dialetheism. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Fall 2018 edition, 2018.

bibliography 83

[Pla10] Andr Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer Publishing Company, Incorporated, 1st edition, 2010.

[Plo04] Gordon Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 07 2004.

[Pre18] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,
Aug 2018.

[RJJ15] Umberto Rivieccio, Achim Jung, and Ramon Jansana. Four-valued modal logic:
Kripke semantics and duality. Journal of Logic and Computation, 27(1):155–199, 06

2015.

[Sed16] Igor Sedlár. Propositional dynamic logic with belnapian truth values. 08 2016.

[Usp92] Vladimir A. Uspensky. Kolmogorov and mathematical logic. Journal of Symbolic
Logic, 57(2):385–412, 1992.

[Vak77] D. Vakarelov. Notes on n-lattices and constructive logic with strong negation.
Studia Logica, 36(1):109–125, 1977.

[vAS15] Mark van Atten and Göran Sundholm. L.e.j. brouwer’s ‘unreliability of the logi-
cal principles’. a new translation, with an introduction, 11 2015.

[WD38] Morgan Ward and R. P. Dilworth. Residuated lattices. Proceedings of the National
Academy of Sciences of the United States of America, 24(3):162–164, 1938.

[WN95] Glynn Winskel and Mogens Nielsen. Models for Concurrency, pages 1–148. Oxford
University Press, Inc., USA, 1995.

[ZDL+
19] Yu Zhang, Haowei Deng, Quanxi Li, Haoze Song, and Leihai Nie. Optimizing

quantum programs against decoherence: Delaying qubits into quantum superpo-
sition. 2019 International Symposium on Theoretical Aspects of Software Engineering
(TASE), Jul 2019.

A
S U P P O RT M AT E R I A L

Auxiliary results which are not main-stream; or
Details of results whose length would compromise readability of main text; or
Specifications and Code Listings: should this be the case; or
Tooling: Should this be the case.

NB: place here information about funding, FCT project, etc in which the work is framed. Leave empty otherwise.

	1 Introduction
	2 Paraconsistent Labelled Transition Systems PLTS
	2.1 Truth space
	2.2 Model definition
	2.3 Morphism, Simulation and Bisimulation
	2.4 Traces and Trace equivalence

	3 Constructions over PLTS
	3.1 Restriction
	3.2 Relabelling
	3.3 Parallel composition
	3.4 Sum
	3.5 Prefixing
	3.6 Other operations

	4 MIPL - A modal intuitionistic paraconsistent logic
	4.1 Syntax - Signatures and Formulas
	4.2 Semantics and Satisfaction
	4.3 Modal preservations

	5 Conclusion
	5.1 Summary of contributions
	5.2 Modeling Quantum Circuits - an application of PLTS
	5.2.1 From quantum circuits to PLTS

	5.3 Prospect for future work

	A Support material

