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A B S T R A C T

This master thesis studies Tor, an anonymous overlay network used to browse the Internet.
It is an open-source project that has gain popularity mainly because it does not hide its
implementation. In this way, researchers and security experts can examine and confirm its
security requirements.

Its ease of use has attracted all kinds of people, including ordinary citizens who want
to avoid being profiled for targeted advertisements or circumvent censorship, corporations
who do not want to reveal information to their competitors, and government intelligence
agencies who need to do operations on the Internet without being noticed. In opposite, an
anonymous system like this represents a good testbed for attackers, because their actions
are naturally untraceable.

Traffic characteristics are studied in detail, which can be used to detect Tor. Further,
a detection mechanism was developed to prevent users from reaching the Tor network.
Finally, some changes are proposed so that Tor can better disguise its traffic with traditional
web browsing traffic to overcome any intention of blocking it.

Keywords— anonymity, privacy, security, Tor, traffic classification
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R E S U M O

Esta tese de mestrado estuda o Tor, uma rede overlay anónima que é usada para aceder a informações
na Internet. Trata-se de um projeto open-source que ganhou popularidade principalmente porque
não esconde a sua implementação. Desta forma, investigadores e especialistas em segurança podem
examinar e confirmar os requisitos de segurança especificados.

A sua facilidade de uso atraiu diferentes tipos de pessoas, incluindo cidadãos comuns que pre-
tendem evitar a publicidade e os anúncios direcionados ou a censura, empresas que não pretendem
revelar informações aos concorrentes e agências de inteligência governamentais que precisam de
realizar operações na Internet sem serem vigiadas. Por outro lado, um sistema anónimo como este
representa um bom ambiente de teste para atacantes, porque as suas ações são difı́ceis de controlar.

As caracterı́sticas de tráfego são estudadas em detalhe, e podem ser usadas para detectar o Tor.
Além disso, foi desenvolvido um mecanismo de deteção para impedir que os utilizadores alcancem
a rede Tor. Finalmente, são propostas algumas alterações para que o Tor possa ofuscar melhor o seu
tráfego com o tráfego tradicional Web, de modo a ultrapassar qualquer intenção de bloqueá-lo.

Keywords— anonimato, classificação de tráfego, privacidade, segurança, Tor
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1
I N T R O D U C T I O N

1.1 motivation

Privacy is a human right and online privacy should be no different. While communications and data
need firm protections online, bureaucracy has been slow to respond to the pace of technological
change.

In a world with so many massive databases of personal information, the chance of a data breach
goes through the roof. In Europe, even with the introduction of the General Data Protection Regulation
(GDPR)1, there is no guarantee that organizations comply with it 2. By having more data about
individuals, organizations can be more effective with their marketing and deliver highly targeted
advertisements. For example, a 50 million euro fine was applied by the French data protection
authority to Google, due to the firm processing personal data for advertising purposes without
valid authorization.

The lack of trust in the Information Technology (IT) domain has led individuals to discover dif-
ferent ways of hiding their identities online (online anonymity). Despite the privacy invasion by
companies, governments’ agencies and censors also come into play. The main argument against
online anonymity by governments is about users having a lack of accountability. In other words,
anonymity can harbor criminal activity by making the tracing of online activities more difficult [1].
Just like governments want to control citizens, censors monitor online activity looking for users
that violate established countries’ rules. In more dictatorial countries, the Internet has already been
turned off to obfuscate internal problems from reaching the rest of the world. Further, anonymous
traffic hardens the management and monitoring of network infrastructures because the traffic can-
not be easily associated to its original sources and/or destinations. In this context, detecting and
blocking anonymous traffic may be important, in some cases, to the good operation of the network.

This work studies The Onion Router (Tor), a tool that allows its users to achieve online anonymity.
By using Tor, users can access the public Internet without worrying about censors, governments,
service providers, and so on. The motivation of this work is to take Tor one step further in its
continuous research and help it to make online privacy a reality.

1 The essentials of this regulation is to use as minimum Personal Identifiable Information (PII) as possible, and to
guarantee that this data is properly managed and secured.

2 https://www.helpnetsecurity.com/2019/02/07/gdpr-numbers-january-2019/
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1.2 objetives

The main goal of this work is to detect the presence of Tor in a network in order to prevent users
within a network from using it, if required. The starting point consists of studying Tor. Understand-
ing how it provides online anonymity and examining its characteristics may provide a means of
choosing the right variables to detect in the blocking process. This blocking process can result from
proper actions taken by, for instance, an Intrusion Detection System (IDS).

Furthermore, this work studies if Tor is, or is not, detected by external observers. The detection of
Tor means that more research must be done. In opposite, showing that Tor is undetectable ensures
its usability, and consequently, its scalability.

1.3 research questions

• What are the characteristics of Tor traffic in terms of traffic analysis?

• How does Tor provide online anonymity and how is it different from other traffic?

• Are there any changes that could make Tor look like common traffic?

• Can Tor traffic be effectively detected?

1.4 contributions

First, several differences were discovered between Tor and other types of traffic. More specifically,
between the Tor Browser and other browsers studied. Second, these differences were expressed as
IDS signatures to detect traffic originated from Tor, proving that Tor can be detected. Finally, some
tests were performed to test the detection accuracy by mixing Tor with other kinds of traffic.

1.5 thesis layout

This thesis is organized as follows. Chapter 2 contains all the background information to understand
the rest of the work. Chapter 3 contains the dissemination of Tor that is then used to create the
proper signatures. Chapter 4 explains the tests performed to evaluate the detection of Tor and the
signatures created, and ends with results’ discussion. Finally, Chapter 5 contains some conclusions
and addresses the future in this area of research.



2
S TAT E - O F - T H E - A RT

This chapter presents concepts useful for understanding the rest of the work. Initially, a discussion
about traffic classification, more specifically its evolution and why it has been giving special attention
in the last few years. Then, anonymity systems that are used to prevent network tracking and mini-
mize privacy issues deserve a general discussion (although this work focuses on Tor). Two sections
are dedicated to explain the security protocol that Tor uses and Tor itself. The topic of the fifth
section is IDS, security tools that are used to prevent malicious or suspected traffic from reaching a
network or a single host. The chapter ends with a revision of Tor related works.

2.1 traffic classification

The discipline of traffic classification tries to associate traffic flows or packets with the applications,
or application types, that generated them. A traffic flow can be thought of as a single instance of an
application-to-application flow of packets identified by some pre-defined parameters. A common
one in the context of computer networking is the five tuple: source address, source port, protocol,
destination address, and destination port. This tuple is used to (uniquely) identify different flows,
and is used since the first-generation firewalls [2]. Back in the early days of the Internet, a small
number of applications with known fixed assigned port numbers, added to the fact that security was
not of major concern, has led to simple approaches for traffic classification. Port-based approaches -
checking packets’ port numbers - was enough to achieve high accuracy results [3]. However, over
the last two decades, some developments make it difficult for operators and service providers to
classify traffic flows:

• applications that have no Internet Assigned Numbers Authority (IANA) registered ports, but
instead use ports already registered, randomly selected, or user-defined;

• the use of well-known ports to circumvent filtering or firewalls;

• Internet Protocol version 4 (IPv4) address exhaustion and Network Address Translation (NAT)
usage, where several physical servers may offer services through the same public IP address
but on different ports.

Operators were forced to use another approach, commonly called Deep Packet Inspection (DPI)1,
by looking at packets’ content to discover the application being used [4]. This approach has two
downsides. The use of pattern matching can become easily slow because each incoming packet has

1 To protect the users privacy, some legal restrictions may be imposed to prevent the access to the payload of the
packets.

3
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to be compared with thousands of different signatures [5]. Also, end-to-end encryption is becoming
ubiquitous, which makes it practically useless [6]. Note, however, that this does not mean that the
port-based approach is no longer used. Because checking packets’ header is faster than checking the
payload, this approach can still be a good option in distinguishing traffic at high granularity levels
or in combination with other approaches.

2.1.1 Encrypted data

With the universal adoption of data encryption, motivated by security and privacy issues, classifying
traffic became more difficult [6]. At first glance, with the previous considerations, it seems that none
of the layers could be used to infer applications or application types. However, some information
can be extracted from encrypted connections, typically from the sessions initiation.

The reason for this is that security protocols usually have an initialization phase that is not en-
crypted. This phase can be further divided into an initial handshake, an authentication phase, and
a shared secret establishment. The responsibility of this phase is to prepare all the necessary param-
eters for (encrypted) data transfer.

With the increasing complexity of networks, the classification methods are usually supported with
the help of protocols knowledge [6]. For example, the introduction of the Server Name Indication (SNI)
extension in the Transport Layer Security (TLS) handshake (Client Hello message) process reveals the
name of the server that the user is accessing in plaintext. As already stated, NAT usage by companies
has some limitations. One of them occurs when a company has multiple different services under a
smaller number of public IPv4 addresses. When the mappings between IPv4 addresses and services
is not one-to-one, the server does not know the certificate to retrieve to the client, because the client
only wants access to one of the services. The extension was introduced to prevent this, and when
a server receives it from the client, it immediately retrieves the corresponding certificate. Figure 2.1
illustrates the two cases, with and without the extension. The knowledge of the previous example
would let one create specific signatures to decide whether to filter access to specific services.

Note that encrypted traffic does not prevent well-known services, that have well-known IPv4

addresses, from being classified. The traffic can be encrypted, but it is possible to inspect the
network layer information (IPv4 address) to associate that flow with the (well-known) service being
used. In an attempt to avoid being related to a specific well-known service, users may use a proxy.
With SNI, however, using a proxy may not solve the problem. Before a packet can reach the proxy,
DPI techniques can be used to inspect this field in the TLS handshake and infer the service being
used by the user. A possible solution would be to first establish a tunnel with the proxy and only
then access the service. In that case, the SNI extension would be encrypted until it reached the
proxy.

This previous discussion highlights the arms-race between traffic classification and traffic obfus-
cation. Because of that, in recent years, this area has been giving lots of attention, with trending of
coupling traffic classification with other approaches, such as machine learning, deep learning, and
specific heuristics [3][6]. These approaches are mainly applied to the specific network metrics of each
application characteristics, at different granularity levels. This means that researchers are testing
different metrics combinations to achieve high accuracy classifiers.
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Figure 2.1: Server behavior (a) without SNI and (b) with SNI

Despite this, classifying encrypted traffic is not always possible, especially if operators’ techniques
are publicly known. In this case, developers intentionally change the application’s network metrics
(e.g. Tor Pluggable Transports (TPT)). By modifying them (e.g. packets’ inter-arrival times, pack-
ets’ length, using dynamic ports) it is possible to obfuscate the application generating the traffic.
Obviously, it is easier to distinguish the application type rather than the applications itself. An
application type has its own traffic characteristics and can be identified by simply eavesdropping
the network connection. For example, the differences between inelastic and elastic applications can
be more easily distinguished, even if packets are encrypted, because bandwidth requirements differ
a lot between them. However, knowing that it is an inelastic application, distinguish between Voice
over Internet Protocol (VoIP) or live video stream can become harder. Further, imagine that, with high
accuracy, the traffic is known to be generated from a VoIP application. Discovering the application
itself is even more difficult. To support this, in [7], the authors could increase the Quality of Service
(QoS) by distinguishing VoIP traffic from other types of traffic, but they could not distinguish VoIP
applications between themselves.

This emerging discipline is important because it can be used in areas such as QoS, Quality of
Experience (QoE), Traffic Engineering (TE) or Cybersecurity [4]. It can also be used to perform online
tracking or targeted advertising. In any case, some control over the infrastructure will always be
necessary for its proper functioning. Often, the only way to achieve this is by inspecting packets,
and possibly personal information. For this reason, this issue generates some controversy.

2.2 online anonymity systems

The main goal of anonymity systems is to avoid traffic analysis and network surveillance, and to
block any tracking of users’ identities in the Internet [8]. Why is it needed, if almost all applications’
data is encrypted? First, service providers usually have logging systems to monitor their infrastruc-
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ture. The recorded logs can have information that can be used to keep track of users’ identities or
activities. Secondly, secure communication protocols can reveal information or have implementa-
tion flaws. For example, the Client Hello message in the TLS handshake can carry the server name
in plaintext (SNI extension). Third, as already said, traffic classification techniques are starting to
adopt statistical approaches to classify encrypted traffic, based on network and transport layers in-
formation or communication metrics. In other words, it is still possible to guess, with some level of
certainty, what kind of services users are accessing, even if the communications are encrypted.

These discussed points are the reasons why most of the anonymity systems use techniques in
network or transport layers. In simple words, the goal is to separate the application data from the
lower level layers, as a way to obfuscate who is accessing the service. Typically this is achieved by
bouncing the traffic to an intermediate entity before accessing the final service. That entity then uses
some strategy to obfuscate the traffic (these strategies are discussed through the next subsections).

On the one hand, consumers have the interest in hiding their identities by accessing anonymity
systems. On the other hand, some entities want to monitor network traffic for different purposes
and are against those tools [6]. If the linkage between a user and a service does not exist it does
not matter what service is being accessed. As so, control entities can know that a user is using an
anonymity system, not the service. Similarly, service owners cannot know the user accessing it, only
that the requests came from an anonymity system.

Depending on the architecture, anonymity systems can be used to circumvent geographically
blocked content, dodge targeted marketing or test network attacks. Also, they are a troublesome
for governments in censorship countries, as they allow citizens to access censored websites without
being discovered. As a consequence, those countries’ government agencies and particular service
providers block traffic generated or sent to those tools. When an anonymity system starts to become
more famous, the simplest approach is to block their public IPv4 addresses [9]. In this way, citizens
are forced to access the service without an anonymity system or to find another system less famous
and not blocked yet. Without directly blocking anonymity systems, these agencies would have to
apply other traffic classification techniques already discussed, which is more difficult. If the traffic
is classified by belonging to some anonymity system and is blocked, citizens are unable to access
whatever they like through that system (even if what they would like to access is legal).

Currently, there is no anonymity system capable of leaving all parties satisfied. These systems use
techniques such as proxies, mix networks, tunneling and overlay networks. Each one has its own
design, which means that each one has its specific use case, advantages and disadvantages. This
thesis will focus on Tor, an anonymity system that uses an overlay network to provide anonymity
to its users. Before discussing that system, the following sections present some common design
choices about anonymity systems.

2.2.1 Proxies

In the simplest case, users connect to a single proxy, and this to the destination. You can think of
this as a man-in-the-middle entity. There are two different approaches: Centrally-controlled shared
proxies and Independent personal proxies. In the first (Figure 2.2), companies behind these tools
can have more than one proxy, controlling and operating them centrally, with many different users
getting assigned to only one proxy. In the latter (Figure 2.3), companies deploy applications that
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users can install on their computers. Each user runs a proxy, and relays its own traffic to another
proxy/user. The last approach is slightly better for anti-blocking purposes because it creates smaller
clusters of traffic. If each proxy only has a few users, and there is no central list of proxies, most of
them will never get noticed by censors or service providers.

Figure 2.2: Centrally controlled proxy [9]

Figure 2.3: Independent personal proxies [9]

In general, the main advantage of single proxies is that traffic analysis becomes more difficult.
Also, these systems have better performance than systems that bounce traffic through more than
one relay.

Single proxies provide weak security compared to systems that distribute trust over multiple re-
lays. First, a compromised proxy can trivially observe all of its users actions. Second, an eavesdrop-
per only needs to monitor a single proxy to perform timing correlation attacks against all its users
traffic and thus learn where everyone is connecting. Third, all users need to trust the proxy com-
pany to have good security itself as well as to not reveal user activities. Finally, even if a company
has multiple proxies, a single user connects to just one, which presents a single point-of-failure.

Generally, when a company starts becoming popular, it is blocked by its IPv4 addresses[6]. Then,
they start renting lots of disparate addresses and rotating through them as they get blocked. To
circumvent this problem, they start sending the current addresses through other means (e.g. email)
[9].



2.2. Online Anonymity Systems 8

2.2.2 Mix Networks

Mix networks use a chain of proxy servers known as mixes. As the name suggests, each incoming
message is mixed (shuffled) with several other messages. Outgoing messages are destined to another
random proxy. This behavior can occur as many times as needed. Figure 2.4 represents a case where
a client’s messages traverse at least two proxies. Note that in a real scenario, more clients may be
using the infrastructure, which reinforces the anonymity of the system (usability hardens correlation
attacks).

As with single proxies, these systems break the link between the source of the request and the
destination, making it harder for eavesdroppers to trace end-to-end communications. In the case
where all mixes belong to the same entity, the problem of trusting that entity to be benign persists.
If mixes are controlled by different entities, each one only knows the node that it immediately
received the message from, and the immediate destination to send the shuffled messages to, making
the network resistant to malicious mix nodes.

Note that now establishing a correlation is more difficult, but this architecture also increases the
overall latency of the system.

Figure 2.4: Mixing networks

2.2.3 Tunnelling

This technique, many times associated with Virtual Private Network (VPN), establishes a secure tunnel
between the client and a gateway. The latter then communicates with the service that the client
wants to access. The difference to single proxies is that a tunnel hides and possibly encrypts all the
traffic, not only web traffic. Because of that, all applications used by the client that require Internet
access will be secured until reaching the gateway. However, because the discussion is only about
anonymity, the same principles that apply to singles proxies, also apply here. This architecture is
illustrated in Figure 2.5. The pipe is used to highlight that all traffic is hidden, and the intermediate
node is the gateway.



2.2. Online Anonymity Systems 9

Figure 2.5: Tunneling

2.2.4 Overlay networks

The last architecture to discuss are overlay networks, which are nothing more than logical networks
on top of the existing network. The best way to think of an overlay network is as a network that
defines its own nodes and paths on upper layers. For instance, in the existing layer 3 networks, the
path taken by packets is normally handled by devices with layer 3 capabilities (sometimes more).
In an overlay network, the network is controlled by upper-layer devices. Note that with overlay
networks, if layer 3 paths fluctuate, the logical path remains the same. Also, a complete path in the
overlay network may require many paths in the physical network.

Figure 2.6: Overlay network

In Figure 2.6 the black lines represent physical links interconnecting routers, the green dashed
lines represent the logical path in the overlay network, and the blue cloud represents the public
internet. The red dotted line illustrates that a physical path can change, but the logical remains the
same. Packets sent from client to server (and vice-versa) can traverse different routers along the way
but must traverse each upper layer devices.
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The difference to mix networks is that in an overlay network a path/circuit is built. In mix
networks, the selection of the next proxy/node to send each message can vary. It is important to
understand this architecture, because Tor relies on it to provide anonymity to its users.

2.3 tls

TLS, as the name suggests, provides security above the transport layer in the Transmission Control
Protocol (TCP)/IPv4 model. It has an intimate relationship with its predecessor, Secure Sockets Layer
(SSL). The latter was first introduced in 1994 by Netscape Communications, but that version was
never published. In the next year, SSLv2 was published and did not last too long. Like the first
version, they both had security flaws. Therefore, SSLv3 had a complete redesign and was published
in 1996.

The TLS protocol was first introduced in 1999 as an upgrade to SSLv3. From this point, TLS has
been improved twice. The actual version is TLS 1.3, which obsoletes previous versions. However,
in this section, only TLS 1.2 is described because is the current version supported by Tor. There is
already a change proposal in Tor’s repository to migrate to TLS 1.3 2. From this point on, TLS 1.2
will be referred simply as TLS.

2.3.1 Overview

To better understand this protocol, notice that it lays between transport and application layers in the
TCP/IPv4 model, or in the Session Layer in the Open Systems Interconnection (OSI) model. Figure 2.7
tries to illustrate where the two TLS layers reside in the TCP/IPv4 model (there are two logic layers
with respect to TLS). At the edges, there are the two well-known layers, Transport and Application.
In the middle, the lower layer is the TLS Record Protocol, which is used in all the messages sent/re-
ceived. Basically, this protocol is responsible of preparing packets between the two adjacent layers
(encrypt/decrypt, verify, compress/decompress, fragment/reassemble). The upper layer can be one
of three TLS Handshaking Protocols or the TLS Application Protocol. The three Handshaking Protocols
are: Handshake Protocol, ChangeCipherSpec Protocol and Alert Protocol [10].

Figure 2.7: TLS protocol and its corresponding layers [10]

2 https://gitweb.torproject.org/torspec.git/tree/proposals/294-tls-1.3.txt

https://gitweb.torproject.org/torspec.git/tree/proposals/294-tls-1.3.txt
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2.3.2 Record Protocol

Every message sent to or received by a host uses the TLS Record Protocol. This fact is also illustrated
in Figure 2.7, which shows that the corresponding layer has only this protocol (messages need to
traverse the layer because there is only one choice). In contrast, in the upper layer, messages can
only use one of four different protocols.

A brief description from the client-side perspective is better to explain this protocol. For this,
suppose that a client application, relying on TLS, generates a message to be transmitted to the
server. First, this message is encapsulated in one of the four protocols mentioned above. Then,
the Record Protocol takes that message, fragments it into blocks if necessary, compresses the data
(optional), applies a Message Authentication Code (MAC) and finally encrypts it. When a response
is sent by the server, the message (received from the transport layer) is decrypted (and verified),
decompressed, reassembled, and delivered to one of the four protocols above it.

All of these operations are performed from a connection state, an operating environment of the
TLS Record Protocol. This state begins with predefined (null) values. If this was not the case, the
client and the server would not be able to understand each other. To actually fill the values of
the connection state, the client and the server must agree on a set of security parameters, which is
achieved with the Handshaking Protocol. After establishing these parameters, six items are gener-
ated from them: client write MAC key, client write encryption key, client write Initialization Vector
(IV), server write MAC key, server write encryption key, server write IV.

A subtle detail is that all the operations described above are only really applied when a Change-
CipherSpec message is sent. Basically, the connection state has a pending and a current state, and
the Record Protocol only relies on the current. If a new connection is being established, both states
(current and pending) will start with empty values. Performing the handshake will change the
pending state, which is not used yet. Sending a ChangeCipherSpec message will force the current
state to override its values with the pending state values. Only after this message, both parties are
able to securely exchange messages with the agreed parameters.

After discussing how messages are treated, its time to discuss messages’ format. Figure 2.8 shows
the format of Record Protocol messages. The Type field is a one-byte value that indicates one of the
four higher-level protocols used to process the message. The Version field indicates the current
version being employed (version 1.2 in this work). By historical reasons, this version has the value
{3, 3} (TLS 1.0 started as {3, 1}, a continuation of SSLv3, hence the values) which corresponds to
two-bytes, each one with the value 3. Length indicates the length of this fragment in bytes, and the
rest of the message is filled with the higher-level protocol.

2.3.3 Handshaking Protocols

The Handshaking Protocols sit above the Record Protocol, and is composed of three different proto-
cols. Remember that already two of them have been mentioned, Handshake Protocol and Change-
CipherSpec Protocol. These are used to provide security parameters and to update the state to these
parameters, respectively. The Alert Protocol is used to report warnings or fatal errors. Each protocol
has a specific message format, discussed through the following subsections.
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Figure 2.8: TLS Record Protocol message format [11]

Handshake Protocol

In this protocol, the first byte of the message (Type) defines the handshake message type (there are
10 different types). The following three bytes define the Length of the message. Note that the length
space in this message (3 bytes) is greater than the length space in the Record Protocol (2 bytes).
However, the latter can fragment messages passed down if it exceeds the 2-byte length space. The
rest of the message will depend on the handshake message type (Figure 2.9).

Figure 2.9: TLS Handshake Protocol message format [11]

The 10 different types of handshake messages are Hello Request, Client Hello, Server Hello,
Certificate Request, Certificate, Certificate Verify, Client Key Exchange, Server Key Exchange,
Server Hello Done and Finished. Because this protocol is the most exhaustive among the 4 proto-
cols, Figure 2.10 illustrates a flowchart of the previous messages in a complete handshake with no
session resumption.

The words in bold mean that messages are encrypted. The character * indicates that messages
are optional. Typically, servers do not send the Certificate Request message to the client (which
does not send his Certificate and Certificate Verify messages). Also, ChangeCipherSpec is
embraced in square brackets to emphasize that this message is itself a protocol. Each handshake
message type has another specific format, which is not covered here. However, a brief description
of each message type and the most important fields follows:



2.3. TLS 13

Figure 2.10: TLS Handshake Protocol flowchart [10]

• Client Hello - sent to initiate a connection with the server (or in response to a Hello Request

from the server).

– Version - specify the latest (high-valued) version that the client wish to use.

– Random structure - the current time followed by a random generated number (used
latter in the protocol to increase keys generation entropy).

– Session ID - is the current session identifier. It is often used to decide whether a
connection needs to be established from scratch (the server does not know this identifier)
or resumed from an old connection (the server has this identifier in cache).

– Cipher suites - a list of cryptographic options supported by the client, in decreas-
ing order of preference. Each item normally has a key exchange algorithm, an au-
thentication algorithm, a bulk encryption algorithm (with key length and mode of
operation), and a hash function. An example that has all mentioned algorithms is
TLS ECDHE ECDSA WITH AES 128 GCM SHA256. Other items may not have the authentica-
tion algorithm, such as TLS RSA WITH AES 128 CBC SHA.

– Compression methods - a list of compression methods supported by the client, in de-
creasing order of preference. In practice, this methods are not used.

– Extensions - used to inform the server of additional functionality supported by the
client. Commonly used examples are the SNI extension, additional cryptographic pa-
rameters (supported groups, formats and algorithms) or the heartbeat extension.

• Server Hello - sent from the server to the client in response to the Client Hello message.

– Version - specify the highest supported version by the client that is also supported by
the server.
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– Random structure - current time followed by a random number (same as the client).

– Session ID - if the session identifier of the Client Hello message is recognized in
server’s memory, then this value has the same value as the client’s session identifier. In
this case, the server also sends the ChangeCipherSpec message to resume the recognized
session (skipping the full handshake procedure). In any other case, this value is empty
and it means that a new connection needs to be established (full handshake).

– Cipher suites - the selected cipher suite from the list sent by the client. The server
will choose the highest cipher suite from the client’s list that it also supports.

– Compression method - the selected compression method from the list sent by the client.
The server will choose the highest method from the client’s list that it also supports.

– Extensions - added in response to the extensions sent by the client. The server must
only use the extensions that the client sent to him. If this behaviour is not met, the client
must terminate the connection.

• Server Certificate - this message follows the Server Hello message. It conveys the server’s
certificate chain to the client, and is the only field of this message type. Note that this message
is optional. In fact, it is possible to establish a connection between two anonymous parties,
although is not common.

• Server Key Exchange - used to inform the client of additional cryptographic information, that
was not on the Certificate, to agree on a premaster key. This message is optional, because not
all algorithms need those additional parameters.

• Server Hello Done - means that the server is done sending messages to support the key
exchange. This message does not contain any fields.

• Client Key Exchange - with this message, the premaster key is set. The content can be either
the RivestShamirAdleman (RSA) premaster key encrypted with the server’s certificate public
key, or the client’s Diffie-Hellman (DH) public key.

• ChangeCipherSpec - this message is not a handshake message, but one of the four protocols.
This message contains a simple byte with value 1, encrypted and compressed with the current
state. Its unique purpose is to indicate the receiving side that the current state is now - at the
time right after sending this message - overwritten with the pending state.

• Finished - this message is always sent after a ChangeCipherSpec message to verify that the
key exchange and authentication processes were successful.

– Verification Data - this field contains the hash of three different values: master secret,
finished label and the hash of previous messages. The master secret is the final key used
between the parties to perform encryption and decryption operations. Finished label
is a simple string with the value client finished or server finished, depending on who has
sent the message. The last value is the hash of all previous handshake messages, ex-
cluding Hello Request messages. Also, note that ChangeCipherSpec messages, Alert
messages and Record Protocol messages are not handshake message types, so these
are not included.
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Hello Request, Certificate Request and Certificate Verify message types were not covered
in the discussion above because they are both optional and uncommon. The first is sent by the server,
at any time, to renegotiate security parameters. By others words, to begin the handshake anew (it
must not be sent in the middle of a handshake). The purpose of the last two messages is to request
the client for his certificate and to provide the correspondent verification with digital signatures,
respectively.

ChangeCipherSpec Protocol

As Figure 2.11 shows, this protocol message format consists of one single byte that has the value 1.
Sending this message indicates the receiving side that the prior has changed the current state with
the pending state.

Figure 2.11: TLS ChangeCipherSpec Protocol message format [11]

Alert Protocol

This protocol is intended to report warnings or fatal errors to the other entity. Level is the first
byte of the message and indicates the level of severity (warning or fatal error). The second byte
(Description) depends on the previous byte, and is the description of the alert (Figure 2.12). Note
that it is not a description text (string), but an integer used to map its value to predefined descrip-
tions.

Figure 2.12: TLS Alert Protocol message format [11]
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2.3.4 Application Protocol

Finally, the last protocol presented here is the one used to transfer application data. Data is treated
transparently by the Record Protocol, which simply performs all previous described operations
(encryption, compression, etc). Figure 2.13 shows that this protocol does not need any specific
format, it just sends the data down to the Record Protocol.

Figure 2.13: TLS Application Protocol message format [11]

2.4 tor

Tor (or Tor Project), is a continuously growing open-source project that provides anonymity at net-
work/transport layers in the TCP/IPv4 model. Its first release was in 2002 with the name The Onion
Router (hence its actual abbreviated name). More specifically, Tor is a circuit-based low-latency
anonymous communication service that provides perfect forward secrecy, congestion control, direc-
tory authorities, integrity checking, configurable exit policies, and a practical design for location-
hidden services via rendezvous points.

Before explaining all those terms, some literature issues are discussed next. Back in 2004, a very
complete academic document was published describing all Tor characteristics [12]. Since then, 13

design changes were made, described in three separated pages on the official website. Currently,
there is no official paper gathering all information about how Tor works, the more recent being
a draft from 2014 [13]. Because of that, many works are outdated. Nevertheless, this work takes
into account all of the latest and up-to-date Tor specifications, as described in the Design Documents
section in the official website 3.

Returning to the definition of Tor, it was said that the service is circuit-based because before
sending any data, it creates a route of nodes through which the data will pass. Depending on the
position in the circuit, each node can be called entry/guard, middle or exit. Further, instead of
nodes, they can be called onion routers or relays. It is a low-latency service because it was deployed
to be used in interactive or non-linear environments, such as web browsing. Perfect forward secrecy
means that once the session keys are deleted, subsequently compromised nodes cannot decrypt
old traffic (unique session keys are created for different sessions). Tor uses an incremental path-
building design, where the initiator negotiates session keys with each successive hop in the circuit.

3 https://2019.www.torproject.org/docs/documentation.html.en#DesignDoc

https://2019.www.torproject.org/docs/documentation.html.en#DesignDoc
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Congestion control is also implemented to prevent onion routers from getting congested. Directory
authorities are trustworthy servers responsible for retrieving control information to clients (e.g. list
of onion routers that will make up the circuit). Integrity checking is performed in two stages. First,
onion routers use the TLS protocol to communicate with each other. Second, specific Tor messages
called relay cells contain an end-to-end checksum for integrity checking. Configurable exit policies,
as the name suggests, is a feature that enables users to circumvent problems with service usage
(e.g. choose the country of the last onion router in the circuit). Location-hidden services provide
anonymous services to other users (users remain anonymous too), like e-commerce, news or illegal
activities [12].

2.4.1 Overview

A typical architecture of Tor is depicted in Figure 2.14. This architecture is simplistic and hides
much of the details about Tor’s operation. At its core, Tor is simply a tool that can build paths given
a set of routers [9].

Figure 2.14: Tor architecture

The part corresponding to the unencrypted link (red line) is becoming more unlikely to occur. In
fact, nowadays it is rare that the link is unencrypted because almost every website supports Hypertext
Transfer Protocol Secure (HTTPS). That is included in the diagram because it shows what fraction of
the network is not controlled by Tor. The Figure also highlights that the website is the only element
that can understand the messages sent by the user. For these reasons, Tor’s users should not send
personal information to the website. Therefore, most people use pseudonyms when using Internet
forums or message boards from Tor.

Figure 2.15 depicts some more details. One relay is chosen more frequently, the guard node,
which is highlighted in the Figure. In the one hand, this relay is a special trustworthy one that
always acts as the entry relay, as long as it is not compromised or (periodically) rotated. On the
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Figure 2.15: Tor architecture

other hand, middle relays and exit relays are chosen proportionally to their available bandwidth4.
There are fewer exit relays than middle relays, because Tor allows volunteers to run either as middle
or exit relays. The reason is that exit relays do not know what websites are being accessed by users,
and so they are more vulnerable to attacks if the websites are (intentionally) compromised [13].

Another detail is the introduction of directory authorities, which are responsible for distributing
control information across the (overlay) network. Basically, they agree on a consensus, a compressed
document, so that each relay can check its validity. The user communicates with one of them through
the guard node. Note that the previously red link’s color was changed to reflect the fact that the link
is usually TLS encrypted. Communications within Tor use their own defined encryption techniques
(after the TLS), also depicted in the Figure.

2.4.2 Tor Cells

Before deepen in how Tor works, it is important to understand the information format exchanged
between Tor nodes. This specific format has been given the name Cell. Each cell has a fixed-size
of 512 bytes5, a header and a payload. The header consists of a circuit identifier circID and a
command CMD. The command defines what must be done with the payload. It can be one of three
types: control, relay or relay early. If an onion router receives a control cell, it must interpret
the correspondent payload. Otherwise, the cell must be relayed to the next onion router. Figure 2.16

shows the overall structure of a cell. An important aspect is that circuit identifiers are connection-
specific. This means that in the same built circuit, different end-to-end connections have different
circuit identifiers between each other.

4 The bandwidth is constantly tested by directory authorities, to prevent attacks were relays claim to have more
bandwidth than they really have, and are chosen more frequently [14][13]

5 Some cell’s types, used for connection establishment, have a variable length.



2.4. Tor 19

Figure 2.16: Overall cell structure [13]

Control Cells

The structure of this type of cell is the same as in Figure 2.16. In this context, the possible commands
of fixed-size control cells are:

• padding - for keep-alive or link padding;

• create or created - to set up a new circuit;

• create fast or created fast - used to set up a new circuit to the first hop, without public
key computation;

• netinfo - used to help nodes discover the current time and their own address;

• destroy - to tear down a circuit.

Possible commands for variable-length control cells are:

• versions - used for link-protocol negotiation;

• vpadding - variable length padding;

• certs, auth challenge, authenticate, and authorize - used for onion router/onion router
and onion proxy/onion router authentication;

The data field depends on the command itself. For example, if the cell’s command is create,
then the receiving onion router knows that the data field carries the first half of the DH handshake
protocol, encrypted with his onion router public short-term onion key. Thus, it can decrypt with his
correspondent private short-term onion key.

Relay Cells

Relay cells need an additional header, as Figure 2.17 shows. This header contains a stream identifier
StreamID to allow many streams to be multiplexed over a circuit, an end-to-end checksum for
integrity checking Digest, the length of the relay payload Len and a relay command CMD. This last
command should not be confused with the command that decides between a control or a relay cell.

The relay command can be one of the following:

• data - for data flowing down the stream;

• begin - to open a stream;



2.4. Tor 20

• begin dir - to open a local stream for directory information;

• end - to close a stream cleanly;

• teardown - to close a broken stream;

• connected - to notify the onion proxy that a relay begin has succeeded;

• extend and extended - to extend the circuit by a hop, and to acknowledge, respectively;

• truncate and truncated - to tear down only part of the circuit, and to acknowledge, respec-
tively;

• sendme - used for congestion control;

• resolve and resolved - used for anonymous Domain Name System (DNS);

• drop - used to implement long-range dummies.

The entire contents of a relay cell - except for the CircID - are encrypted or decrypted together
as the cell moves along the circuit, using the 128-bit Advanced Encryption Standard (AES) cipher in
counter mode to generate a cipher stream.

Figure 2.17: Relay cell structure [13]

Relay early Cells

These cells work similarly to relay cells but are distinguished to enforce the maximum path length.

2.4.3 Tor Operation

In order to describe Tor’s operation in more detail, three different logic steps are explained:

• Fetching information from directory authorities

• Building a circuit

• Relaying traffic through the established circuit
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Fetching information

The idea behind directory authorities is very simple. Basically, each one creates an abbreviated
version of each descriptor they recommend. The descriptors are a summary of the router’s exit
policy, and the router’s current public onion key. Of course, verification is also done. Servers
exchange each one’s information periodically to agree on a consensus and sign the document at
the end to prevent the case where a single compromised directory authority can advertise false
descriptors. This solution, retrieving control information from static IPv4 addresses, makes the
blocking of Tor traffic very easy for service providers or censors [9]. To prevent this, the Tor team
emerge with the idea of Tor Bridges, special Tor nodes which are not published in the directory
authorities, and can be used as entry points to the network (both for downloading the authority
information and also for building circuits). This hardens network blocking but is not a perfect
solution either. Although it makes blocking more difficult, it is a matter of time until censors can
detect all of these IPv4 addresses [9]. However, how do clients fetch these special nodes, if they
cannot use any directory authority? From the official documentation, it is suggested to use e-mail
exchange, social networks interaction, or even to speak in person to someone that knows about
some Tor bridge. After getting one bridge that can reach the overlay network, it is possible to get
a few more (some can be blocked at any time, and this approach prevents the client to be fully
disconnected from the network again).

Building a circuit

Assuming that routers’ information has been fetched, an onion proxy needs to choose his path. Re-
member that directory authorities deliver not only three routers but a set of recommended routers,
so the client can pick only a subset of them (normally three). To this end, as stated in the official Tor
website, nodes are chosen proportionally to their bandwidth, as weighted by an algorithm to opti-
mize load-balancing between nodes of different capabilities 6. Now, suppose that the client chooses
three onion routers with the previous algorithm. By incrementally negotiating session keys with
each onion router (e.g. key1, key2 and key3) the client successively encrypts the message. For ex-
ample, a message m is encrypted as follows, E( E( E(m, key3), key2), key1), where E(message,

key) is the encryption algorithm. Each onion router in the path then strips off a layer of encryp-
tion, until the exit node decrypts the last layer and becomes able to redirect the original message’s
request. Figure 2.18 illustrates this process with only two onion routers (in real operation there are
at least three).

Figure 2.18: Tor Encryption Layers [13]

6 https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2

https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2
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Relaying traffic

Finally, traffic can be relayed from the onion proxy to the final destination, through the circuit just
built. When the first node (guard node) receives a message from the client, it checks the correspond-
ing circuit this message belongs to, and, because it knows the next hop associated with this circuit,
it simply sends this message to the IPv4 address associated with. Remember that each host has a
different circuit identifier, although all belong to the same circuit. This process continues until the
message reaches the final onion router, the only one that can decrypt the traffic, that checks the pay-
load, and makes all necessary requests. Thus, the resource that responds to these requests (server)
only knows about this last onion router IPv4 address.

2.4.4 Tor example

In this section, a step by step of Tor operation is explained. This will help to understand all the
details about datagrams, segments, and messages contents. For this, it is assumed that the client
has just downloaded an official version of the Tor Browser and, because of that, has not fetched any
information from the directory authorities.

In the first step, the client will choose a directory authority that comes hardcoded in the Tor
source code [9]. However, it will not communicate with that server directly. Before that, a guard
node is used, an onion router that the client chooses as the first hop for all circuits (which comes
hardcoded as well). This guard node is periodically rotated (4-8 weeks)[13]. The client will establish
a TLS connection with that node.

After the TLS handshake, both parties will start exchanging Tor cells through this connection.
Note that they will not start sending application data just yet. Some security parameters need to be
exchanged, specifically the two secrets between them (one secret for each direction). To achieve this,
the client creates a control cell. The payload of this cell contains the first half of the DH handshake,
encrypted with the guard node public RSA key. The guard node will respond with a created cell
containing the other half of DH handshake, along with a hash of the negotiated session key (this is
not the final key, but instead is used to derive four other keys: one for each direction for AES, and
one in each direction for integrity) [13].

After receiving the created cell, the client sends a relay cell with the Hypertext Transfer Protocol
(HTTP) request to the directory authority chosen. Upon receiving this cell, the guard node looks
up the corresponding circuit and decrypts the relay cell with one of the two session keys. Then, a
plaintext HTTP request is made to the directory authority to fetch the current state of the (overlay)
network. After receiving the response from the directory authority, the guard node wraps the
response in a relay cell, encrypts it with the other direction session key, and sends the cell back to
the client. Finally, the client decrypts the cell and obtains a list of available onion routers.

To this point, the client has a guard node with a Tor connection already established, and a list of
some onion routers. Now, the client executes an algorithm7 that will return a path of at least three
of these routers.

To extend the circuit by one more hop, the client creates a relay extend cell, specifying the address
of the next chosen onion router and, as with the first hop, the first half of the DH handshake

7 https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2

https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2
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encrypted with the chosen onion router public RSA key. The onion proxy encrypts the cell using
the negotiated AES key between himself and the guard node. The client sends the relay extend cell
to the guard node. After receiving the cell, the guard node decrypts it with the AES symmetric key,
creates a control cell containing the received encrypted DH data, and sends to the received address
(the next onion router). After receiving that cell, the onion router will respond with the other half
of the DH in a created cell (basically the same procedure between the client and the guard node).
At some point, the guard node receives that cell, wraps it in a relay extended cell, and sends it
back to the client. Receiving that type of message, the client knows that the circuit was successfully
extended by one more hop. The client has negotiated two symmetric keys with the two first hops in
the circuit. The operation to extend the circuit through more hops is the same as described above.

After completing the circuit, the onion proxy generates its messages as normal, typically HTTPS,
and encrypts it with each negotiated key. When the message arrives at the last node, it will perform
the last decryption, understanding the message and making the necessary requests. This process
is transparent to the user, and the last node cannot understand the contents of the HTTPS data. If
HTTP is used instead of HTTPS, this last node can understand every message sent by the user.

2.5 intrusion detection systems

An IDS is a security software program that monitors network packets or local files for malicious
activities, policy violations or unsuspected behavior. It can be a dedicated device because specific
hardware increases processing speed.

These systems are commonly used by Internet Service Providers (ISP), organizations or institutions
in conjunction with a firewall. While the firewall prevents undesired traffic from entering the net-
work, the IDS complements this task by monitoring traffic that may bypass firewall’s rules (for
example, if there is no rule for a specific malformed packet).

The literature defines different categories of IDS depending on specific attributes. Depending on
the system’s role, it can be a Host-based Intrusion Detection System (HIDS), when it monitors files
in the local host operating system, or a Network-based Intrusion Detection System (NIDS), when it
monitors network traffic.

Depending on the system’s reaction, an IDS can be passive or reactive. Passive systems only
report information after a security breach. The latter, also known as Intrusion Prevention System
(IPS), tries to adjust local configurations in real-time after a rule violation.

The last category depends on the detection approach. The two common approaches are signature-
based and anomaly-based. Signature-based systems have a predefined set of rules (called signatures)
that are compared with the information being monitored. If a match is found, the system generates
an alert. Note that it requires previous knowledge of the possible attacks to generate accurate
signatures. Even if a signature is matched, it may not be the result of an attack, so a false alarm is
generated. Also, note that every packet must be compared with an extensive collection of signatures,
and the system can easily run out of resources [3][5].

The other approach, anomaly-based, is often associated with machine learning. The idea is to
train the system with the expected normal behavior, creating a profile. Then, when in operation,
any unusual behavior that exceeds some threshold deviation will trigger an alarm. Thus, as oppo-
site to signature-based systems, attacks not yet known/documented can be detected. Despite the
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mentioned drawbacks, most IDS deployments are primarily signature-based, although some include
anomaly-based features [5].

Some newly different categories have been suggested in the literature, as well as different com-
binations among them. For example, some hybrid approaches join host-based and network-based
in a single IDS. Other systems are simultaneously passive and reactive, known as IDPS (Intrusion
Detection and Prevention System) [15].

2.5.1 Open-source IDS

To be able to detect the Tor traffic, the choice fell on a signature-based system. As will become
more clear in the next chapter, this choice relies on the knowledge in advance about the traffic
characteristics to detect. There are many open-source IDS to choose from, such as Snort, Bro or
Suricata.

Here, the IDS to choose from is not a major concern, as long as it allows one to test the signatures
desired. To this end, it was decided to choose Snort. Along the fact that it is the de-facto open-source
IDS, it was developed in an open-source operating system. These facts enhance its diffusion and
exchange of knowledge among all interested.

In all Snort’s features, the more significant to this work are the support of stateful inspection, the
capability of acquiring the traffic (to inspect) in different modes, and the flexibility in its configura-
tion and logging systems.

2.5.2 Snort

Snort8 is a free open-source network-based IDS and IPS, created in 1998 by Martin Roesch. He latter
founded Sourcefire, the company behind Snort development, which was acquired by Cisco in 2013.

Figure 2.19: Snort architecture [16]

Snort can be executed in three different modes:

• Sniffer mode - reads network packets and displays them on the screen;

• Packet logger mode - logs the packets to disk;

8 https://www.snort.org/

https://www.snort.org/
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• Network Intrusion Detection System mode - performs detection and analysis of network
traffic.

In the present context, the interest is in the last mode, because it allows not only monitoring
network packets but also comparing them with a predefined set of rules9. Snort comes with a lot of
different configuration and filtering options, supports different packet acquisition libraries, provides
rules already tested (called community rules), among many other features [16].

Attending to the focus of the work, two more topics need to be discussed, namely understanding
how to create rules in Snort and understanding the format of logs to interpret the generated alerts.

Rules Format

The syntax of Snort rules is very simple. Listing 2.1 represents the syntax that the rules must comply
with, while Listing 2.2 materializes that syntax and makes it easier to understand.

action protocol ip_address port direction ip_address port \

(option_keyword_1:value; option_keyword_2:value; \

option_keyword_3:value ...)

Listing 2.1: Snort rules syntax

Snort rules are divided into two logical sections, the rule header and the rule options. The rule
header contains the rules action (alert, drop, etc), protocol, source and destination IPv4 addresses
and netmasks, and the source and destination ports information. The text up to the first parenthesis
is the rule header (the \ character is used to break lines). The rule option section contains alert
messages and information on which parts of the packet should be inspected to determine if the rule
action should be taken (section enclosed in parenthesis). The words before the colons in the rule
options section are called option keywords.

alert tcp 192.168.1.0/24 any -> 183.21.34.234 80 \

(flags:S; msg:"SYN packet";)

Listing 2.2: Snort rule example

The example shows a rule that triggers for each attempt of initiating a TCP connection (SYN flag)
to the IPv4 address 183.21.34.234, from the subnet 192.168.1.0/24. When triggered, the alert shows
the message SYN packet.

Alerts and logs

When a packet reaches the detection engine, it will be compared with rules defined in several files
(.rules). In the configuration file, one specifies which ones to include in a specific execution. The
number of comparisons performed depends on whether the packet will match a rule or not. If
there is no rule matching the packet, Snort will iterate through all of them, and will not trigger any
action. Otherwise, after a match, Snort will trigger the action (drop, alert, etc) specified in that

9 In Snort’s jargon, rules are the same as signatures.
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rule. The detection engine will match only once, meaning that it will stop comparing a packet to
the remaining rules after a first match. When a packet matches a rule, it is said that a violation has
occurred.

Listing 2.3 shows an alert log generated after a violation. By default, Snort logs do not have all this
information. Logs like that in the Listing are generated after adding the line output alert full:

alert.full to the configuration file. It simply means to log (output) the alerts in the alert full
format, to a file called alert.full. It is possible to check that the rule’s generator (GID) has the value
402 and the rule’s code inside that group (SID) has the value 7. The GID is used to categorize
different kinds of rules. For example, backdoor rules have a different GID than SNMP rules. The SID

is then used inside each group to give each rule an identifier. It is also possible to inspect the alert’s
description, followed by its classification and priority (according to whom created the rule). Finally,
a dump of the packet that generated the alert, which includes a timestamp and network/transport
layer information.

[**] [1:402:7] ICMP Destination Unreachable Port Unreachable [**]

[Classification: Misc activity] [Priority: 3]

10/22 -11:15:04.559114 172.16.16.24 -> 172.16.16.16

ICMP TTL :128 TOS:0x0 ID :41606 IpLen :20 DgmLen :216

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** ORIGINAL DATAGRAM DUMP:

172.16.16.16:53 -> 172.16.16.24:56454

UDP TTL:64 TOS:0x0 ID :8716 IpLen :20 DgmLen :188 DF

Len: 160 Csum: 25868

(160 more bytes of original packet)

** END OF DUMP

Listing 2.3: Snort alert example

2.6 related work

This section presents the literature review. Only Tor’s related works are included, but some of them
may deviate from the aim of this work. Nevertheless, all of them are recent and can be used to
perceive the different areas of research about Tor.

In [17], machine learning techniques are used for traffic classification, in three different anony-
mous tools: Tor, JonDonym and I2P. They measure three different levels of granularity to distinguish
between anonymous tool, traffic type and application. The work was based in the Anon17 dataset10.
The results showed nearly 100% accuracy in the first granularity level (anonymous tool), around 85%
in the second level, and 67% in the last (application). The percentage values presented here coincide
at the moment after receiving the flows’ eighth packet. This choice (eighth packet) is comprehensi-
ble because the beginning of a flow contains the negotiation of parameters, and requests between
client and server or between peers, with protocol-specific headers and message sequences [3]. De-
spite this, the authors also show the maximum achieved accuracy and F-measure, along with the
number of packets needed to achieve those results. Additionally, the effects of feature importance

10 https://web.cs.dal.ca/~shahbar/data.html

https://web.cs.dal.ca/~shahbar/data.html
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and temporal-related features to the network are investigated 11. This work has the disadvantage of
a closed world assumption.

Another work [18] demonstrates the presence of hot exit points in Tor. These are exit-nodes ag-
glomerations, controlled by some ISP, that are almost always used, despite the existence of other
exit-nodes options. The results are based on 1.5 years of recorded data, and, by our previous discus-
sion about Tor, is a threat to anonymity (ISP can correlate traffic more easily).

A different Tor design is proposed in [19]. By introducing group signatures, a cryptographic tech-
nique, it is possible to distinguish between legitimate and illegitimate users. When some malicious
action is performed by a user, it is possible to block or denounce him. This approach is not perfect.
Although relay volunteers and ISP gain trust in the overlay network, benign users have to trust the
entity in charge of blocking or denouncing them (basically the same problem of mixing proxies).

One more contribution comes from Identifying TLS abnormalities in Tor [11]. The work begins
by identifying TLS characteristics in Tor (e.g. certificate extensions). Then, Snort rules are created
according to the characteristics mentioned above, which could effectively identify the presence of Tor
traffic. However, in the time of that writing, Tor supported TLS 1.0. Further, with the introduction
of TPT, TLS characteristics are obfuscated. For example, previous versions of Tor used to only
support the strongest cipher suites in the TLS Handshake. Because famous websites supported a
bigger collection of cipher suites, checking the supported number of cipher suites could suggest the
presence of Tor.

The work in [20] begins by identifying the most known attacks that could be used to de-anonymize
Tor circuits. The two outlined categories of attacks are traffic correlation and webpage fingerprint-
ing. Further, the vulnerable identified areas are the guard-node selection & rotation algorithm, the
inter-cell transmission timings and other traffic metrics (cell order, amount, interval, size and di-
rection). Then, the authors research these areas to collect the proposed and already-implemented
countermeasures that could enhance Tor resistance in the three mentioned vulnerabilities. Finally,
the process of evaluation is accomplished by comparing each countermeasure with a set of (security)
requirements previously defined (following the MoSCoW method).

A longitudinal study about the Tor network is presented in [21]. The work is based on a passive
analysis of TLS traffic over more than three years in four large universities. The results show that it is
possible to identify Tor, specifically through some information present in X.509 certificates and other
exchanged parameters within the TLS handshake. Despite this, it is assumed that Tor’s detection
will remain an arms-race.

2.7 summary

This chapter has reviewed concepts needed to follow the rest of the work. It started by examining
the discipline of traffic classification, its evolution and the state-of-the-art. Anonymity systems were
also introduced, as the architectural ways employed to provide anonymity to users.

TLS and Tor were described in the following two sections. In the one hand, TLS is the protocol
that Tor relies on to provide most of its security requirements. On the other hand, Tor was the
chosen case study of an anonymity system. Given their importance in this context, each one was
described with some detail.

11 The number of features goes to a maximum of 74, which are then correlated.
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The chapter ended with a discussion about IDS and the related work about Tor. After a brief
description about IDS systems, a specific IDS, Snort, was chosen and explained to allow one to
materialize the detection of Tor traffic. The related work summed up the most recent contributions
and studies about Tor.



3

M E T H O D O L O G Y

This chapter introduces some more concepts discussed in the previous chapter, but this time already
applied to Tor. First, the considered assumptions and a brief discussion about the different contexts
of monitoring observers. Second, a study of Tor traffic characteristics, through an individual anal-
ysis of each layer in the TCP/IPv4 model. Finally, the Snort rules created according to the traffic
characteristics studied.

3.1 external observers

3.1.1 Observer positioning

This section is dedicated to discuss the observer’s position or which portion of traffic it can monitor.
In terms of positioning, note that it can be:

• between the onion proxy and the guard node;

• between two onion routers (or a guard node and an onion router);

• between the exit node and the final destination.

Figure 3.1 illustrates these three different cases, that are discussed next.

Onion proxy and guard node

An external observer eavesdropping any link between the onion proxy and the guard node can infer
some information. First, the (partial) location can be exposed through the inspection of the IPv4

addresses involved in the connection. Second, it is possible to conclude if the client is using Tor.
Either inspecting the IPv4 address and comparing it to known guard nodes1, or inspecting the TLS
handshake (assuming that the connection was not already established).

Note that by accessing different websites, the onion proxy will remain connected to the guard
node, and an observer, in this case, can only monitor network metrics.

1 Figure 3.1 does not illustrate the presence of Tor Bridges. In that case, the onion proxy connects to a bridge
before the guard node and can obfuscate itself from his regional ISP. That is, the regional provider could only
conclude that the onion proxy was communicating with another peer.

29
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Figure 3.1: Observer different positions in the Tor network

Two onion relays

This case and the first have different traffic patterns. The TLS handshakes are slightly different, but
an external observer cannot distinguish them. One might think that it is easy to distinguish the
two different handshakes, because in the first case only one party authenticate himself (the guard
node), and in this case both need to authenticate (prevent impersonation attacks). Tor handles this
by performing a TLS handshake first, always as a server-only authentication handshake, and then
an inner handshake to complete the authentication. To better illustrate this, imagine that two onion
relays need to communicate. They will start by performing a normal client/server TLS handshake,
and only one of them (the next in the circuit) will authenticate himself with his certificate. Only
after that, inside the TLS session just created, will they complete the authentication in an inner
handshake, specified by Tor (not a TLS handshake). In this inner handshake, they will agree in a
common version, exchange certificates, and other parameters. To an external observer, the outer
handshake is the same for those two cases.

After the handshake phase, traffic patterns can be slightly different. Only the first case (onion
proxy and guard node) uses connection-level padding. Any other connection does not use it (a
connection to a bridge is treated as the first case2). There are change proposals about circuit-level
padding between onion relays but are not yet implemented. In connection-level padding, cells carry
the same value as always, but new dummy cells are introduced to obfuscate traffic from external
observers. So, in theory, this and the last case have different traffic patterns from the first.

Exit node and destination

This last case, from the exit node to the final destination, despite being a traditional HTTP/ HTTPS
connection, can be measured to possibly detect the Tor presence. One way is to inspect the IPv4

2 https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt

https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt
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addresses involved in the connection and compare them to a list of known Tor (exit) nodes. The
other possible way is to measure network metrics and infer that it is a Tor exit node because the
delay of packets is higher than the normal. In this case, the packets’ length is not fixed. The size of
messages follows the normal operation of the HTTP protocol, but the exit node readjusts them to fit
the fixed demanded size (512 bytes) in the Tor network.

This might be helpful, for example, if a website administrator does not want Tor users to access
his website. One possible reason for an administrator to want to block Tor under these conditions
is that the information collected (IPv4, interactions, etc) is no longer related to the original client’s
IPv4, and is now related to the exit node. Worse than that, a different client may use the same exit
node, but they look the same to the website because both requests came from the same address.

3.1.2 Observer portion

In normal conditions, a passive observer can only monitor one link. However, monitoring more
than one (overlay) link in Tor can be only achieved if that observer spans different countries. In fact,
Tor assumes that does not have a defense against a global adversary [13]. By global adversary is
meant a passive observer that can monitor more than one link, thus correlating flows and inferring
the circuit that an onion proxy is using.

Of course, one global adversary can be made of smaller adversaries working together. Being it
in real-time or in recorded logs, it is possible to aggregate that information and correlate it to know
what website a client was accessing through Tor.

3.1.3 Assumptions

To test the detection of Tor, some facts are assumed to simplify the evaluation process. First, Tor
is tested only in the first observer’s position case (between the onion proxy and the guard node).
The traffic sniffed in the computer executing the onion proxy is the same as the traffic that an
eavesdropper can sniff between the two points. Second, the detection approach was developed
taking in mind that only a single point in the architecture could sniff traffic (small adversary between
the onion proxy and the guard node). Third, any change that could change Tor normal operation
was not considered. This includes the usage of bridges, TPT, or any software’s change.

3.2 traffic characteristics

The presence of Tor traffic can be detected by examining its characteristics in detail and create rules
that match all of them. The main advantage of this approach has to do with its higher accuracy.
Nonetheless, an increasing number of rules, or a more extensive single rule, will also increase the
system’s workload. In an overloaded IDS, that already needs to compare thousands of signatures,
looking for hundreds of different protocols, the worthiness of introducing more rules about Tor can
be questionable. Even if no Tor traffic is being generated, for each packet Snort will search all the
rules anyway, looking for a match (this was explained in subsection 2.5.2).
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Another solution is to choose as few characteristics as possible which can correctly classify Tor.
Because browsers and many websites have common traffic characteristics, Tor can be distinguished
among them. This leads to a trade-off between rules completeness (accuracy) and workload. Generic
rules are computationally less expensive and will detect Tor, but possibly generating false positives.

An external observer can inspect packets’ payloads, but those are encrypted and do not retrieve
any useful information (at least individually). Because of that, one can only inspect lower levels,
such as network, transport and session layers. Simultaneously, measuring some network metrics
can help in detecting Tor traffic. In cases where TPT is being used, it is more complicated (by
default it is not used). Perhaps the most important metrics in this context are the length of packets
and the delay. The former is useful because Tor uses fixed-size messages with 512 bytes (connection
establishment cells are variable-sized 3). The latter (delay) can suggest the presence of Tor, because
the values will typically be higher than the normal (packets have to traverse onion relays across
different countries). It should be used in conjunction with other metric/rules for completeness (a
network congestion could produce a false positive).

As a brief note, in subsection 2.3.1, TLS is said to be between transport and application layer,
as stated in the official Request For Comments (RFC) 5246 [10]. However, in Snort, TLS is included
in the application data (payload), and so the discussion about the payload being encrypted is not
absolutely right in this case. Because of that, from now on, TLS handshake is considered to be
application layer data.

Having discussed overall considerations about Tor traffic characteristics, it follows a discussion of
how Tor treats each protocol individually.

3.2.1 Network Layer

At the network layer, the IPv4 is the first protocol worth to be inspected. It is known that some
ISPs are already blocking static IPv4 addresses used by directory authorities, onion relays or guard
nodes (it was this fact that led to the introduction of Tor bridges) [9].

There are lots of websites that show the current active onion relays, their associated IPv4 ad-
dresses, geographical location, and sometimes the volunteer’s personal information (Twitter pro-
file).4 Further, even with the introduction of bridges, it is assumed that there is no magic bullet
for their discovery. Although it is more difficult to enumerate all the bridges IPv4 addresses, it is a
matter of time until censors enumerate them all [9].

3.2.2 Transport Layer

Tor Browser currently uses random ports to communicate with the guard node. Onion proxies use
the port that guard nodes chose. The same applies to fetch network information through other relays
(up to 3 connections). Each relay can optionally act as a directory authority to help in the distribution

3 In Wireshark, one can check this by examining the TLS Record Protocol Encrypted Application Data field.
Successive packets have 538 bytes. The length is not exactly 512 because the connection recorded used Ga-
lois/Counter Mode (GCM) (Authenticated Encryption with Associated Data (AEAD) cipher), that will produce larger
encrypted blocks than the received (un)compressed block [10].

4 https://torstatus.blutmagie.de/index.php?SR=Bandwidth&SO=Desc

https://torstatus.blutmagie.de/index.php?SR=Bandwidth&SO=Desc
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of the consensus document, but the ports are randomly chosen as well. The randomness of ports at
this layer makes it useless from a signature-based IDS point of view. However, an anomaly-based
IDS could probably deduce some information if some ports were used more than others.

3.2.3 Session Layer

In the case of TLS, the followed approach is simple. The objective is trying to detect fields and
parameters that are different from other TLS flows (web browsers). By comparing the Tor Browser
with others, one can start ruling out other TLS sources until there is only the Tor Browser left.

According to [21], there are lots of fields in the TLS protocol that can be used to detect Tor. This
work takes that list as a starting point to discuss some of the TLS fields that will be used to create
the rules. To each field, there is a simple discussion that justifies the reason why each one is or is
not used in the rules.

Client Hello

Starting with the Client Hello handshake message, the first useful parameter to inspect is the
TLS version. Because current browsers (not all of them) already support TLS 1.3, every website
connection within the browser will use an extensive list of TLS extensions in Client Hello messages.
That is how backward compatibility is handled. A client that supports version 1.3 sends way more
extensions than a client that only supports version 1.2. If the server also supports that version (1.3),
it will reply to that specific extensions. If it does not, it will reply as it would for version 1.2 or
below. Inspecting the TLS version field is useless, because both versions use the value Ox0303 for
backward compatibility.

Because Tor nodes do not resume sessions, the Session ID field can be helpful. Services com-
monly used can have these values in cache. When both client and server have the same values,
the full handshake process becomes a partial handshake. For example, when the network being
monitored only uses known services that usually resumes old connections, this information can be
profitable in ambiguous cases.

Regarding cipher suites information, each browser supports the list of cipher suites desired. A
major exclusion parameter is the ciphersuites length. If this value is the same between Tor and
any other browser, one can compare the actual ciphersuites list (the length can be the same, but
the list can be different). Remember that each client sends the cipher suites list in decreasing order
of preference.

The compression methods field is not commonly used. Neither the studied browsers nor the Tor
support compression methods.

Extensions can vary among browsers. In the one hand, they can be different because some
browsers do not yet support TLS 1.3, and some extensions were created specifically for that version.
On the other hand, even if the versions match, each one can have different design choices. At
the moment of this writing, IANA has 45 specified extensions. Additionally, it reserves a range
of values for private use5. One downside of using the extension length field is that, unlike the
cipher suites length field, the length differs for each extension. Each cipher suite is identified

5 https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt

https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt
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by a two-byte value, which does not happen in the case of extensions. For example, the hearbeat

extension has 1 byte, and the signature algorithms extension is a list containing two-byte values
(a list of 15 algorithms gives 30 bytes).

Table 3.1 compares two of the discussed fields in the Client Hello message for Tor and the most
used browsers according to w3schools 6.

Browser Ciphersuites Extensions

Tor 14 6

Chrome 17 17

Safari 23 8

Edge 19 10

Firefox 18 14

Opera 17 17

Table 3.1: Client-side TLS parameters

Opera and Firefox generate some TLS 1.3 traffic, because both use some Google services (such as
Google Analytics).

Server Hello

The Server Hello handshake message also carries useful information. However, the scope is bigger
in this case. The discussion is not about the client-side (browsers), but the server-side. This message
should only be inspected to complement the prior, because the number of different servers is very
large, and each server has to follow the client behavior. Relying on this single message could give
many false positives.

To accomplish what was just said, the previous message needs some sort of state. More advanced
firewalls and IDS/IPS provide stateful control of traffic flows [2] (as is the case of Snort). In real
operation, these messages can be separated by hundreds of milliseconds. In that interval, depending
on the link’s capacity and the current traffic, many more packets can arrive. A choice has to be
made between maintaining flows’ state and waiting for this second message, or use this message
individually. Another option is not even to consider this message alone if it is shown that gives to
many false positives. Again, it is a trade-off between accuracy and performance.

The discussion about the version field applies here the same way it applies to the Client Hello.
A typical server will try to choose the securest cipher suite supported that the client also supports.

This remains true in Tor.
The extensions field, taking the previous discussion about Client Hello fields, can be a major

field in the detection process. As it was said, the version field is the same for TLS 1.2 and 1.3.
Servers know that a client is using TLS 1.3 because the client uses some specific extensions in the
Client Hello message that are only used in that version. Because of this behavior, if servers want to
communicate with the client via TLS 1.3, they will respond with an unusual extensions list (unusual

6 https://www.w3schools.com/browsers/default.asp
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to a TLS 1.2 communication). Even if the communications uses TLS 1.2, Tor chooses to use an
extension list that usually has a length of 13 or 18.

Certificate

Another important message is the one that carries the Certificate. In previous versions, Tor’s use
of fixed two-certificate chains was a giveaway to anyone wanting to block it [13]. Now, Tor nodes
send their own certificates, signed by other authority nodes. An external observer can inspect all
the fields, but the subject name (whom the certificate belongs to), the issuer name (who signed)
and the validity time are important fields to distinguish different websites.

The subject and issuer names are important because Tor does not use them as usual. Typically,
a website uses the subject field in the certificate as a traditional Uniform Resource Locator (URL), or
at least in an understandable way. For example, just by opening Goggle Chrome (with a Google
account signed in) a few connections are established. Each connection uses TLS 1.3 and has its
own certificate. The certificates’ subject names are all related to the Google name, and all of the
certificates’ issuer is Global Trusted Sign (the trusted entity that issued them).

In the case of Tor, two characteristics stand out. The first is that both name fields, subject and
issuer, are random strings (e.g. www.e635txx4ywriqq.net). Second, the issuer’s name is not from
a known trusted entity (like Digicert). Instead, it is another random string, that is issued by Tor’s
directory authorities. So, Tor does the proper Public Key Infrastructure (PKI) validation with its own
trusted Certificate Authority (CA) system. Nodes will automatically generate X.509 server certificates,
which they periodically rotate. As it turns out, Tor’s current certificate algorithm leaves them iden-
tifiable through pattern matching, enabling passive observers to distinguish Tor connections from
other TLS connections. Tor nodes authenticate each other by validating the exchanged certificate’s
signature with the public keys from the directory authorities [21].

Another field is the Validity Time, that has two values, Not Before and Not After, indicating
the period in which the certificate is valid. Here, the interest does not reside in the specific dates,
which vary from server to server, but on how long the periods are. Examining some websites can
give us insight about commonly used times, and help in distinguishing Tor.

Table 3.2 presents relevant fields and parameters of Certificates messages from the 10 most
used websites. The values are from Qualys SSL Labs 7, a website that can test TLS parameters of
clients and servers.

Note that the values from Table 3.2 can assume different values. A website can retrieve a slightly
different certificate chain depending, for example, on the browser being used. As it is possible to
check, Tor nodes only retrieve a single certificate in the chain, while other websites retrieve at least 2.
Also, as previously stated, issuer names are from globally trusted companies, except for Tor. Only
one validity time has the same time-space of Tor, which is the first certificate offered by Facebook.
What should be retained is that by correlating more than one field it should not be difficult to detect
a Tor’s certificate (chain).

7 https://www.ssllabs.com/

https://www.ssllabs.com/
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Servers
Certificate
Validity time

Certificates Issuer

Tor 3 months 1 (Random)

Google
1 year

10 years
2 Global Trusted Sign

Facebook
3 months

10 years
2 DigiCert

Baidu
1 year

10 years
2 GlobalSign

Wikipedia
1 year

11 years
2 GlobalSign

Tencent QQ
1 year

10 years
2 DigiCert

Taobao
1 year

10 years
2 GlobalSign

Tmall
1 year

10 years
2 GlobalSign

Yahoo!
6 months

15 years
2 DigiCert

Twitter
1 year

15 years
2 DigiCert

Amazon
1 year

15 years
5 years

3

DigiCert
VerySign

Table 3.2: Server’s certificate parameters

3.3 snort rules

Taking the previous details into account, the Snort rules were created according to the described
characteristics. The first rule is listed in Listing 3.1. Expressed in words, this rule will trigger
for every TLS packet which initiated from the internal network $HOME NET to the external network,
which is a TLS Handshake Client Hello message with the Cipher Suites Length field with the
value 28 (14 cipher suites supported).
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# This rule checks for ciphersuites_length in TLS ClientHello packet

# It does not alert , only sets a state for the next rule

alert tcp $HOME_NET any -> any any \

(content:"|16|"; offset :0; depth :1; \

content: "|00 1c|"; offset :44; depth :47; \

flowbits:set ,tor_browser; flowbits:noalert; sid :1000001)

Listing 3.1: Client Hello rule

Snort will not generate an alert for each packet that matches this rule. Instead, the tor browser

variable will be set with the flowbits:set rule option. The alert is only generated if the response
packet matches one of the two rules following this one (that is the purpose of the rule option
flowbits:isset). Listing 3.2 shows these two rules. Basically, they will match response (Server
Hello) packets that have the Extension Length field with the values 13 or 18.

# These rules checks for extensions_length in TLS ServerHello packet

# It only alerts if the previous have saved the state

alert tcp any any -> $HOME_NET any \

(msg: "TOR BROWSER DETECTED ! ! !"; \

content:"|16|"; offset :0; depth :1; \

content:"|00 0d|"; offset :47; depth :50; \

flowbits:isset ,tor_browser; sid :1000002)

alert tcp any any -> $HOME_NET any \

(msg: "TOR BROWSER DETECTED ! ! !"; \

content:"|16|"; offset :0; depth :1; \

content:"|00 12|"; offset :47; depth :50; \

flowbits:isset ,tor_browser; sid :1000003)

Listing 3.2: Server Hello rule

Note that the values expressed here correspond to hexadecimal values in the rules. Also, the
assumption that only Client Hello or Server Hello messages can match the rules can be violated,
because the protocol following TCP can be other than TLS. However, it is unlikely that a different
protocol exactly matches the content rule options specified.

Further, Snort can recognize TLS sessions with the ssl state rule option, when the SSL prepro-
cessor is enabled. The usage of ssl state:client hello and ssl state:server hello could be
used to replace the content:"|16|", and prevent the previous unlikely problem. Nonetheless, using
that rule option did not produce the expected results, hence the previous adaptation.

Because the administrative actions after a violation are context-dependent, they are not covered
here. For example, the actions of adding the IPv4 address that generated the violation to an Access
Control List (ACL) or dropping the packet may not be intended.
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3.4 summary

This chapter covered all the details and assumptions about the test case employed. It starts by
examining the observer’s position and the portion of traffic that it can monitor. This work assumes
that the observer position lies in the middle of the onion proxy and the guard node. Then, Tor TLS
traffic characteristics are discussed, aiming at the identification of variables of interest to create the
proper rules. The chapter ends with an explanation of the rules created to detect Tor related traffic.
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E X P E R I M E N TA L E VA L U AT I O N

This chapter starts with a brief introduction about the test environment and a description about the
evaluation process. As will be described, two different tests were performed. Then, the results of the
two tests are shown and analyzed in detail. The chapter ends with a discussion about the results.

4.1 test environment

To test the rules presented so far, background traffic was generated, along with Tor connections. Two
types of tests were carried out. The simpler consisted of traffic generated from the browsers studied
in the previous chapter. The more complex test consisted of real traffic captured in an enterprise.

The Tor connections were originated from a script that executes the Tor Browser Bundle to connect
to the Tor network 17 times, each time to a different guard node 1. To prevent the case where the first
connection is always established with the same guard node, the solution was to add each node IPv4

address to the list of wanted EntryNodes in the configuration file torrc. This node rotation makes
the test more complete because it can detect cases where guard nodes use a different handshake.
Only one address is present in the configuration file at a time, replacing each other from subsequent
executions.

Both background traffic and Tor specific traffic were locally sniffed with tcpdump, and then
merged to a final file. Then, Snort takes that file as input to test the rules created. The process
is illustrated in Figure 4.1.

Figure 4.1: Test environment

1 50 guard nodes were used, but only 17 were successfully connected
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4.1.1 Browsers traffic

In this first test, a python script has established connections to the fifty more accessed websites in
Portugal2, using the five web browsers discussed in subsection 3.2.3. The purpose of using different
browsers is to have Client Hello messages varying the cryptographic parameters supported, and
thus offered. In this way, at least 250 handshakes are performed (some websites perform more than
one). The script was executed in a laptop within a domestic network.

4.1.2 Real traffic

In the second test, a Sophos XG 105 Firewall sniffed all traffic generated by 10 persons in the same
Local Area Network (LAN) for one hour. The traffic passing through the firewall does only include
each person’s laptop in that LAN. The resulting network trace includes lots of different applications,
such as OpenVPN, CiscoVPN, Microsoft OneDrive, Microsoft Teams, Skype, Slack, Spotify, EMC Avamar,
Tortoise SVN, NetBeans or Maven. This is not a complete list of applications, and the trace could have
more applications. Also, those 10 persons were not alerted to prevent interfering with the purpose
of the capture.

4.2 evaluation

As previously said, Snort takes the merged files as input and logs the triggered alerts to a file.
Simultaneously, Snort displays some statistics about the traffic evaluated, such as the time execution,
the total numbers of packets, the number of alerts generated or information about TLS packets.

The accuracy of the rules created is measured by checking if the number of Snort alerts about
Tor is the same as the connections established in the script. That is, both tests must give 17 alerts
about Tor to achieve an accuracy of 100%. More alerts not related to Tor do not interfere with
the results. Further, each false positive drowns a false negative (or vice-versa). For example, the
obtained results could have 17 alerts about Tor, 16 true positives, one false positive and one false
negative. To prevent this, each packet is compared with the file containing only Tor traffic. This
approach avoids misunderstanding the results as a theoretical accuracy of 100% would be wrong.

4.3 results

A preliminary test showed that executing the Tor Browser generated an alert in Snort. Further
refinements to the tests showed that it is possible to have false positives using the rules defined.

The first test, with traffic generated by five different browsers, had 100% accuracy. In a more
realistic scenario, the second test has generated 70 alerts, but only 21 were triggered by the rules
created. The other alerts were triggered by community rules already included in the configuration
file. Because only 17 Tor connections were established, this gives 4 false positives. These false
positives were all related to the same service, namely the Microsoft Teams desktop application.
Inspecting these 4 alerts proved that the TLS handshake parameters are exactly the same as the

2 https://www.similarweb.com/top-websites/portugal

https://www.similarweb.com/top-websites/portugal
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rules created. The other 17 alerts about Tor were manually confirmed to actually belong to Tor, by
comparing the IPv4 addresses in the logs to the addresses used in the script to force Tor connections
purposely.

Figure 4.2 illustrates the number of total packets of each test case and the number of packets
that Snort could analyze. As shown, Snort could analyze all packets. The real traffic test case
was analyzed in less than 3 seconds, which gives approximately 8 Gbps of throughput. However,
remember that the analysis was not in real-time. In Figure 4.3, the number of Tor alerts and logs
are shown. Snort could correctly log all the alerts generated, but the real traffic network trace gave
4 more Tor alerts.

Figure 4.2: Number of packets per test

Figure 4.3: Number of Tor alerts per test

In subsection 3.2.3, it was discussed the importance of the session ID field. The rules created
have each specific offset because when analyzing Tor traffic, no session identifiers were present.
When there is no session identifier, the Client Hello message has only one field in this context,
the Session ID length with the value zero. When there is an identifier, the Client Hello message
has the length field and the corresponding value following it. Hence, when creating the rules, the
field following the session ID length was not the actual value, but the next, which is the cipher
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suites length field. All the 4 instances that were erroneously classified had a session identifier,
which should make them not trigger the alerts. However, the alerts were generated, so it is assumed
that Snort can ignore the identifier value or shift the offset accordingly.

Browser Real

Client Hello 1626 13567

Server Hello 578 13485

Certificate 420 4579

Server Done 2166 26393

Client Key Exchange 1164 4733

Server Key Exchange 71 2165

Change Cipher 2592 26060

Client Application 1674 15063

Server Application 720 8146

Alert 79 529

TLS packets 8760 159467

Table 4.1: TLS statistics

The values in Table 4.1 refer to specific statistics about the TLS traffic in both tests. The test with
browsers has a bigger percentage of TLS traffic among its total traffic. This is because the captured
trace was about requesting each website only via HTTPS, which gives this higher amount of TLS
traffic. The real traffic test has a higher diversity of applications and protocols, which leads to a
decrease in the percentage of TLS traffic.

4.4 discussion

The first test has generated 17 alerts, all about Tor. By examining all the IPv4 addresses in the logs,
it was confirmed that all addresses were Tor nodes with no duplicates. This result is not surprising
because the study of the TLS parameters used by browsers was previously made. However, the
requests made with the browsers had the same version used in that previous study. The results
could have been different if the requests were made to the same websites with different browsers’
versions [22].

Note that the requests to the 50 different websites are only meaningful if the length of the cipher

suites offered in the Client Hello equals that of Tor. To the same version, browsers always offer
the same set of cipher suites. If the first set differs, the rules will not trigger an alert (at least Tor
alerts), and the remaining 49 will differ too. In case that the set is equal, the results will depend on
the website’s behavior when handling requests.

The false positives encountered in the second test originated from the same service. Like this
one, more services can match rules’ parameters because this work only tried to distinguish the Tor
Browser among other browsers. By previously enumerating more services, the need to introduce
more parameters to the rules would arise beforehand. For example, if the Microsoft Teams appli-
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cation that generated the false positives was included in the study (like the browsers), one more
rule could be added to check the parameters of the server’s certificate. Optionally, other parameters
could be included in the rules created. For example, the SNI extension in the Client Hello could be
examined and compared to a list of trusted server names.

4.5 summary

The results have shown that the rules created can correctly identify Tor traffic. More specifically,
can correctly identify that a Tor-like TLS handshake was performed. Some services can match the
chosen parameters, as the second test showed. The possible outcomes to this are to analyze each
alert and check if its IPv4 address is related to some known service, if its SNI extension is not a
random string, or if the certificate is not from a known service.



5

C O N C L U S I O N

This work shows that Tor can be detected. Ensuring that Tor is undetectable increases its security
by bringing more users to the network. As previously stated, usability is a security requirement in
areas such as traffic analysis. Tor traffic should be better disguised because its usage is problematic
in some censorship countries. The rest of the conclusion revisits the research questions and summa-
rizes the findings.

What are the characteristics of Tor traffic in terms of traffic analysis?
The characteristics of Tor traffic can be identified in traffic analysis. In the one hand, specific IPv4

addresses are publicly related to Tor nodes. On the other hand, the TLS handshake is a plaintext
process that leaks information about Tor usage.

How does Tor provide online anonymity and how is it different from other traffic?
Tor only provides online anonymity if no personal information is submitted. Assuming this, it

provides online anonymity by bouncing the traffic through more nodes than what would be neces-
sary. By doing this, it guarantees that each node can only know one thing from two possible. Either
the service being accessed, or who is accessing it.

Are there any changes that could make Tor look like common traffic?
Yes. Tor should upgrade its TLS version in the first place to leak less information in the TLS

handshake process. Also, it should better mimic its traffic with browser’s traffic by continuously
updating it accordingly.

Can Tor traffic be effectively detected?
It depends. Tor traffic between an onion proxy and the guard node, or between two onion relays

can be detected, if one can monitor the TLS handshake. Tor detection without looking at the hand-
shake was not covered in this work (that includes Tor traffic between exit relays and websites which
do not perform a Tor-like handshake).

Knowing that Tor is detectable, performing some tests showed that the number of false positives
depends on the type of traffic, and their probability tends to increase as the number of different
applications used in the infrastructure increases.

With respect to this area of research, it will remain an arms race between the entities that search for
online anonymity and the ones that search for surveillance/censorship. The investigation showed

44
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that currently there is no one-fits-all solution to this problem. Different strategies have arisen due to
the increasing interest in this area, but those only solve the problem to some extent.

5.1 future work

Throughout this work, it was assumed that clients were not able to modify Tor’s built-in options,
files’ configuration, or any library that could change the normal operation of Tor. In the real world,
the rules presented here would be useless if a client could effectively change its normal behavior to
overcome the rules created. Because of that, more research must be done to address these challenges.
For example, by changing the openssl library to offer fewer cipher suites than the ones commonly
used by Tor, a client could surpass the detection approach.

In addiction, continuous research is important because a software update can completely over-
come the rules created before that update (unless an intelligent or autonomous system can adapt
to those changes). Another line of investigation is to study not only the observer’s position studied
here but also between two onion proxies and between the exit node and the final destination. TPT is
mainly used between two onion proxies. As so, it is a topic that should be better covered in future
works.

Most importantly, the anonymous systems research line must continue to evolve to allow everyone
to have online privacy. This includes Tor, which has to invest resources to continue the arms race
against all the privacy intruders. Fortunately, many works come from academic and nun-funded
research, because it is an open-source project, non-profitable, and a topic that is important to the
common good.
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