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Tratamento de Revestimentos de Barreira Térmica por Laser  

e sua Modelação 

Resumo 

 
 

O recurso a lasers para o desenvolvimento das propriedades dos revestimentos de barreira 

térmica (Thermal Barrier Coatings - TBCs) tem vindo nos últimos anos a demonstrar um elevado 

potencial. A redução da rugosidade e eliminação da porosidade superficial, as quais resultam 

numa melhoria da resistência à erosão e à corrosão a altas temperaturas, associadas à criação 

de uma rede de fissuras que promove a resistência ao choque térmico, são algumas das 

principais potencialidades.  

É neste campo que se enquadra o trabalho desenvolvido no âmbito desta dissertação, que 

consiste em duas partes: uma primeira experimental e a segunda de carácter teórico. Na 

primeira procedeu-se ao estudo do efeito da irradiação por laser na superfície dos revestimentos, 

nomeadamente alteração da morfologia superficial e microestrutura, estabilidade estrutural 

(Capítulo 3) e avaliação da resistência à corrosão a altas temperaturas (Capítulo 4). Para isso, 

utilizaram-se dois tipos de lasers com diferentes características: CO2 e Nd:YAG e procedeu-se aos 

tratamentos variando os principais parâmetros. No entanto, a quase totalidade dos trabalhos 

apresentados referem-se ao laser de CO2. A segunda parte consistiu na elaboração de um 

modelo computacional que proporcionasse um conhecimento mais profundo acerca da 

influência dos parâmetros de processamento e características do material, ajudando a prever 

resultados experimentais como distribuição de temperaturas, largura e profundidade das pistas 

geradas pelo feixe de laser e distribuição de tensões térmicas (Capítulo 5). O modelo foi pensado 

para simular os fenómenos ocorridos apenas no revestimento cerâmico externo e tem em conta 

a sua rugosidade, microestrutura, propriedades físicas, térmicas e mecânicas, tendo sido 

consideradas algumas delas dependentes da temperatura.  

A tese começa por apresentar detalhadamente o “estado da arte” de modo situar o actual 

panorama de investigação no campo dos revestimentos de barreira térmica (Capítulo 1), dando 

enquadramento aos trabalhos desenvolvidos. Segue-se, no Capítulo 2, uma descrição dos 

princípios básicos, modo de operação, características e aplicações de lasers em processamento 

de materiais. 
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Laser-glazing of Plasma-sprayed Thermal Barrier Coatings – 

Experimental and Computational Studies 

Abstract 

 

 

The use of lasers has been demonstrating a great potential for the development of the 

properties of TBCs deposited by plasma-spraying. These include the reduction of the roughness 

and elimination of the porosity at the surface which result in the improvement of the high 

temperature corrosion and erosion response, and the generation of a crack network which lead 

to an increase of the thermal shock resistance. 

This is the research field in which the work developed and presented in this thesis is based 

on. It consisted on two components: an experimental and a theoretical one. The first component 

refers to the study of the morphological, structural and microstructural modifications imposed by 

the laser irradiation on the surface of the coatings (Chapter 3). Two types of lasers have been 

used, CO2 and YAG, and the main operating parameters were varied. However, almost all 

presented results refer only to the CO2 laser. Furthermore, it has also been evaluated the hot 

corrosion response of both as-sprayed and laser-glazed coatings, and the corrosion mechanisms 

were revealed (Chapter 4). The second component consisted on the development of a 

computational model which could provide a deeper insight about the influence of the material 

properties and laser characteristics on the laser-glazing process, by predicting experimental 

results such as temperature and stress distribution within the material, and width and depth of 

the melted tracks (Chapter 5). The model was developed taking into account the phenomena 

occurring solely on the external ceramic layer and considers the material’s physical, thermal and 

mechanical properties. Moreover, typical features such as surface roughness and porosity were 

also included. 

The thesis begins with a detailed overview of the state-of-the-art in what concerns to thermal 

barrier coating research directions (Chapter 1) being a background support for the work carried 

out. Subsequently, in Chapter 2, is made a description of the basic fundamentals, operation, 

characteristics and applications of lasers in material processing.  
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 List of acronyms / abbreviations 

 
 

 

APS  – Atmospheric plasma-spraying/sp rayed 

BE  –  Backscattered electron 

BS  –  Backscattered 

CW  –  Continuous wave 

DXF  –  Autocad data exchange format 

EB-PVD  – Electron beam physical vapor deposition/deposited 

EDS  –  Energy dispersive X-ray spectroscopy 

FDM  –  Finite difference method 

FEM  –  Finite element method 

IR  –  Infrared 

PS  –  Plasma-spraying/sprayed 

SE – Secondary electron 

SEM  – Scanning electron microscopy/microscope 

TBC  – Thermal barrier coating 

TDP –     Temperature-dependent properties 

TIP –      Temperature-dependent properties 

UV  – Ultraviolet 

VRML – Virtual reality modeling language 

YAG  – Yttrium aluminum garnet  

 
 


