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Ondas Gravitacionais de Fusões Binárias
Compactas

Resumo

As ondas gravitacionais (OG) são ondas no tecido do espaço-tempo causadas por fenómenos
astrofísicos como supernovas de colapso do núcleo e fusões binárias compactas. Apesar das
enormes energias envolvidas nestes eventos, a amplitude das OG geradas é notavelmente
pequena, e a sua detecção directa não foi possível até muito recentemente: em 2015, os
dois interferómetros da colaboração LIGO detectaram um evento astrofísico consistente com
a fusão de dois buracos negros, dando início à era da astronomia de OG. A esta rede de
detectores juntaram-se o interferómetro Virgo (Observatório Gravitacional Europeu) em 2017
e o interferómetro KAGRA (Universidade de Tóquio) em 2020, reforçando a nossa capacidade
de detectar e analisar estes eventos.

A sondagem de regimes de gravidade extrema promete abrir novas portas para testes
de física fundamental. Por exemplo, OG de fusões de estrelas de neutrões e supernovas
permitem a exploração de processos nucleares no núcleo de estrelas compactas. Outras
aplicações incluem a utilização de OG de sistemas compactos para testes de gravidade de
campo forte e teorias de gravidade modificada. Futuros interferómetros espaciais, como LISA,
poderão permitir um estudo da física do início do universo para além do que é possível com a
radiação electromagnética. No entanto, as actuais abordagens à análise de dados baseiam-se
em métodos de match-filtering, que têm custos computacionais significativos. As técnicas de
deep learning, que têm tido uma explosão no desenvolvimento ao longo das últimas décadas,
têm demonstrado a capacidade de obter elevados níveis de performace tanto em precisão como
em tempo de execução. Estes métodos foram naturalmente propostos como um potencial
aliado para a detecção e inferência de parâmetros nos sinais de OG.

Neste trabalho, exploramos a aplicação de redes neurais convolutivas em representações de
tempo-frequência de OG de fusões binárias compactas, para a detecção de sinais e inferência
de parâmetros. Mostramos que a detecção destes sinais pode ser alcançada com uma precisão
significativa, e que a inferência de parâmetros físicos é viável nesta implementação.

Palavras-chave: ondas gravitacionais, binários compactos, deep learning, redes neuronais
convolucionais, inferência de parâmetros
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Gravitational Waves from Compact
Binary Mergers

Abstract

Gravitational waves (GW) are ripples in the fabric of spacetime caused by astrophysical phe-
nomena such as core-collapse supernovae and compact binary mergers. Despite the enormous
energies involved in these events, the amplitude of the generated GWs is remarkably small,
and their direct detection has been impossible until very recently: in 2015, the two inter-
ferometers of the LIGO collaboration detected an astrophysical event consistent with the
merger of two black holes, ushering in a new era of GW astronomy. The detector network
was joined by the European Gravitational Observatory’s Virgo interferometer in 2017 and
the University of Tokyo’s KAGRA interferometer in 2020, further bolstering our capacity to
detect and analyse these events.

Probing extreme gravity regimes promises to open new doors for tests of fundamental
physics. For example, GWs from neutron star mergers and supernovae allow for the explora-
tion of nuclear processes at the core of compact stars. Other applications include using GWs
from compact systems for tests of strong-field gravity and modified gravity theories. Future
space-based interferometers such as LISA may allow for a probing of early-universe physics
beyond what is possible with electromagnetic radiation. However, current approaches to
data analysis are based on match-filtering methods, which come with significant computa-
tional costs. Deep learning techniques, which have seen an explosion in development over the
last couple of decades, have shown the capacity for high performace levels in both accuracy
and speed at runtime. These methods have naturally been proposed as a potential ally for
detection and parameter inference on GW signals.

In this work, we explore the application of convolutional neural networks on time-frequency
representations of GW data from compact binary mergers, for both signal detection and para-
meter inference. We show that the detection of these signals can be achieved with significant
accuracy, and that physical parameter inference is feasible in this implementation.

Keywords: gravitational waves, compact binaries, deep learning, convolutional neural net-
works, parameter inference
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1 Introduction

“It’s a warm summer evening, circa 600 BC. You’ve finished your shopping at the
local market, or agora... and you look up at the night sky. There you notice some
of the stars seem to move, so you name them planetes or wanderer.” - Sheldon
Cooper

The observation of the skies has enchanted the human spirit since the depths of prehistory.
From star charts on ornate disks [1] to astronomically aligned megalithic structures of white
quartz cobblestone [2], mankind’s fascination and veneration of celestial objects and their
behaviour is a leitmotif through time.

Our first hint at the usage of mathematics applied to astronomical events comes from
the banks of the Euphrates, where Babylonian scholars studied the length of days and nights
over the year [3]. Indeed the Babylonians gave us also the first exploration of the periodicity
of planetary movement [4]. However, they were not solitary in their endeavours, and many
ancient societies would go on to formalize their studies of the heavens. Of these, the most
influential to the development of western astronomy were the ancient Greeks, who placed
astronomy among the four mathematical arts (along with arithmetic, geometry, and music).
The works of many Greek (and later, Roman) natural philosophers and mathematicians, such
as Claudius Ptolemaeus’s Almagest (whose geocentric system superceded earlier efforts by
Aristarchus of Samos and Seleucus of Seleucia to propose a heliocentric system), found echoes
throughout the Christian and Islamic worlds well into the late medieval period [5, 6]. It was
during the Renaissance period, however, that astronomy met physics, as Isaac Newton’s
Principia revolutionised the mathematical treatment of physical phenomena, managing to
accurately explain most astronomical predictions of the time under the solid theoretical
framework of classical mechanics, the inverse-square law of universal gravitation being a
particular highlight. Newton’s theory was and is immensely influential, and is still widely
used in astronomy for many calculations [7]. However, this theory was still not perfect:
observations of the orbit of mercury showed an acceleration of the perihelion that could not
be described in the theory [8].

Proposed by Albert Einstein in 1915, the theory of general relativity (GR) would come to
be known for its exquisite mathematical elegance and predictive power. Positing gravitational
interactions as a deformation of an underlying spacetime structure, rather than mediated
by a force such as the one in Newtonian gravity, GR’s geometrical nature, sense of scale,
and initially unintuitive coupling of space and time have not only greatly advanced our
knowledge of the cosmos, but have also stoked the flames of popular imagination. GR
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was given mainstream credibility by Einstein’s general relativistic 1915 description of the
anomalous perihelion shift of Mercury, showing a predictive power beyond Newtonian gravity,
and, most famously, by the Eddington experiment’s confirmation of GR’s predicted values for
gravitational lensing (twice the value of previous Newtonian predictions) [9]. A plethora of
further observations have reinforced its place as a remarkably precise tool and a centerpiece
of modern physics [10].

One of the most exotic phenomena predicted by GR is the existence of black holes, regions
of spacetime wherein no causal paths can be used to escape. Similar objects had been alluded
to in the Newtonian framework: in 1784, John Michell proposed the idea of “dark stars”,
stars whose escape velocity exceeded the speed of light for objects with sufficient mass and
density [11], an idea which was also independently proposed by the mathematician Pierre-
Simon Laplace in 1796, with a proof being made available in 1799[12, 13]. Indeed, in 1916,
Schwarzchild’s solution to the Einstein field equations (EFE) for a spherically symmetric, non-
rotating body pointed to a singularity in the metric for a radius rs = 2MG

c² (the Schwarzchild
radius), depending on a choice of integration constant, where the curvature of spacetime
would shoot to infinity [14]. However, a revised version of this solution by Hilbert, using a
different coordinate system, also predicted a singularity at the center of the region, at r = 0

[15, 16]. These singularities were present in subsequent spherical solutions to the EFE, and as
such were widely studied with the eventual realization that the singularity at rs was merely an
artifact of the coordinate system used [17]. The singularity at the center remained nonetheless
unsurmountable, until Stephen Hawking and Roger Penrose developed the Hawking-Penrose
singularity theorems circa 1965, which proved that this point of infinite curvature was a
robust prediction in General Relativity [18, 19]. Objects under these conditions fit the
modern definition of a black hole, and Penrose’s work would come to be honored with half
the 2020 Nobel Prize in Physics [20].

Another exciting prediction of GR is the existence of gravitational waves (GW): ripples
in the fabric of space and time resulting from the dynamics of massive systems or bodies that
meet certain requirements. The gravitational field of an object has no charge, so waves cannot
be produced by dipole objects like in electromagnetism. However, gravitational systems
possessing quadrupole momentum radiate gravitational waves. Significant sources include
compact binary systems and supernovae.

In 1916, Einstein made the initial proposal for the existence of three types of GWs [21];
however, in 1922, Eddington showed two of those types of waves to be simply an artifact
of the coordinate system used, and indeed that they could move at arbitrary speed. The
third type (transverse-transverse), however, was not removable through such means, and in

16



fact was shown to travel at the speed of light [22]. Development of the subject was left
without major breakthroughs for a number of decades, during which Einstein himself cast
some doubt over the existence of this third wave [23]. In 1956 Felix Pirani finally showed
the existence of these waves in a coordinate-independent manner [24]. This, combined with
Richard Feynman’s “sticky bead argument”, which showed that a passing GW could indeed
transfer energy to a system, shifted the general scientific consensus towards the acceptance
of GWs as meaningful predictions of general relativity [25]. Despite some initial attempts
by Weber, in the 70s, to directly detect these waves, the first experimental hint of their
existence was obtained indirectly: in 1975, Hulse and Taylor published a paper announcing
the discovery of the first binary pulsar, where they realized that the periodicity of radio
emissions from the pulsar they were studying meant that it was in fact orbiting around the
center of mass of a binary system, in which the second component was a neutron star [26].
Then, a 1981 paper by Weisberg, Taylor and Fowler found that the orbit of the binary was
contracting in a way that was remarkably consistent with the loss of energy from such a
system through GWs [27]. These works amplified the efforts to develop facilities suitable for
direct detections, and ended up earning Hulse and Taylor the Nobel prize for physics in 1993
[28].

The idea of using a Michelson-style interferometer with hanging mirrors dates back to
1962, when Michael Gertsenshtein and Vladislav Pustovoit, in Moscow, proposed just such
an idea. This was also independently proposed by Weber and Weiss a few years later [29]. In
1994, the LIGO project broke ground in the USA, while the Virgo interferometer in Europe
started construction in Cascina, Italy in 1996. Their respective operations started in 2002 and
2007. The initial runs yielded no detections, which was not surprising given the sensitivity of
the detectors at the time. The instruments were further improved, giving way to Advanced
LIGO [30] and Advanced Virgo [31], and on the 14th of September of 2015, the first binary
black hole (BBH) event, GW150914, was detected during an engineering run - the herald
to the era of GW astronomy. The nature of GWs, given gravity’s weak coupling to other
forms of energy, means that these signals should be relatively undisturbed in the path from
their source to the observer, and as such GW astronomy can offer insights into objects which
other tools, such as X-ray telescopes or cosmic ray detectors, are not able to due to cosmic
interference. Furthermore, GW astronomy offers the enticing possibility of observing exotic
objects which do not interact significantly through Standard Model forces, leaving only a
gravitational signature, such as Proca stars [32].

This dissertation intends to explore novel ways of detecting and interpreting data from
GW interferometers, specifially taking advantage of the exponential progress recently made
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in the application of neural networks for image processing in order to explore 2D represen-
tations of GW data. The document will be split into six chapters: first, we will introduce
concepts from general relativity and derive the expression for the GW strain in the linear
approximation, as well as make some comments on alternate ways of obtaining such results.
A quick discussion of Michelson-Morley laser interferometers is had, and we investigate the
specific implementation of the concept in the LIGO and Virgo facilities. After that we will
introduce some basic concepts from machine learning and neural networks, and consider im-
plementations of such techniques. Then we shall explore the work performed in building a
neural network that is capable of detecting the presence of GW signatures in spectrogram
data. Subsequently we will present a similar construction to perform parameter estimation
on GW events. Finally we will discuss results and consider possible future work.
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2 Introduction to Gravitational Waves

Throughout this work, the signature used for the metric tensor is (−+ ++). We will denote
partial derivatives as Aµ,ν = ∂νAµ and covariant derivatives as Aµ;ν = ∇νAµ. Furthermore
we will be using the D’Alembert operator �A ≡ ∂µ∂µA. Note that Greek indices run from 0
to 3, while Latin indices run from 1 to 3.

2.1 The Einstein Equation

A first description of gravitational waves can be given by taking a linear approximation of
GR far away from a GW source. In this section we will show how to obtain the Einstein
equations and develop this approximation.

The gravitational action is given by the sum of a curvature term and a mass term:

S = SE + SM =
1

c

∫
d4x

[
c4

16πG
R + LM

]√
−g , (2.1)

where the constants c and G stand for the speed of light and the Newtonian constant of
gravitation, respectively. The symbol g, with no scripts, stands for the determinant of the
metric tensor gµν , and R stands for the Ricci scalar, which is given by the trace of the Ricci
tensor Rµν . From the principle of least action we impose δS = 0, and so:

δS =
1

c

∫
d4x

[
c4

16πG

δ (R
√
−g)

δgµν
+
δ (LM

√
−g)

δgµν

]
=

1

c

∫
d4x

[
c4

16πG

(√
−g δR

δgµν
+R

δ
√
−g

δgµν

)
+
δ (LM

√
−g)

δgµν

]
= 0 . (2.2)

If we define
Tµν = − 2√

−g
δ (LM

√
−g)

δgµν

as the stress-energy tensor, then∫
d4x

c4

16πG

(√
−g δR

δgµν
+R

δ
√
−g

δgµν

)
=

∫
d4x

√
−g
2

Tµν ,

where the variation of R is given by:

δR = δ (gµνRµν) = Rµνδg
µν +

(
gµνδΓρµν + gµρδΓννµ

)
;ρ
,
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where we use the Christoffel symbols Γσµν = (1/2) gασ (gαµ,ν + gαν,µ − gµν,α). However, as δR
is being integrated on an arbitrary 4-volume, the second term, which is a total derivative,
generates only a boundary term and as such does not contribute to the dynamics. On the
other hand, the variation of

√
−g is given by

δ
√
−g = − 1

2
√
−g

δg = −1

2

√
−ggµνδgµν .

We can therefore rewrite (2.2) as:∫
d4x

c4

16πG

(
Rµν

√
−g − 1

2
R
√
−ggµν

)
=

∫
d4x

√
−g
2

Tµν ,

and since the integration is made in an arbitrary 4-volume, we thus obtain the Einstein
equations:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (2.3)

2.2 Gravitational waves in the linear approximation

A linear approximation to the Einstein equations can be taken by formulating the metric as
a small perturbation on curved spacetime,

gµν = ηµν + hµν , hµν � 1 .

It is important to note that this approximation does not have the same symmetries as the
original equations. In particular, under the coordinate transformation xµ → x′µ = xµ+ξµ(x),
the metric transforms as:

hµν →h′µν = hµν − (ξν,µ + ξµ,ν) . (2.4)

It is useful at this point to define h = hµµ and

h̄µν = hµν −
1

2
ηµνh ,

hµν = h̄µν −
1

2
ηµν h̄ .
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From the linearization of the Riemann tensor, Rρσµν = ∂µΓρνσ− ∂νΓρµσ + ΓρµλΓ
λ
νσ−ΓρνλΓ

λ
µσ,

we obtain
Rµνρσ =

1

2
[hνρ,µσ + hµσ,νρ − hνσ,µρ − hµρ,νσ] .

Plugging this into (2.3), we get

�h̄µν + ηµν h̄
,ρσ
ρσ − h̄,ρµρ,ν − h̄,ρνρ,µ =

16πG

c4
Tµν . (2.5)

Since the metric tensor is symmetric this results in ten independent equations to be solved.
However, using what we know from (2.4) we can see that

h̄µν → h̄′µν = h̄µν −
(
ξν,µ + ξµ,ν − ηµνξρ,ρ

)
, (2.6)

h̄,νµν →
(
h̄,νµν
)′

= h̄,νµν −�ξµ , (2.7)

and so we can choose an arbitrary ξµ to transform our coordinates such that �ξµ = h̄,νµν , or
equivalently:

h̄,νµν = 0 . (2.8)

This is known as the Lorentz gauge, and it gives the linearized Einstein equations the form
of a simple wave equation:

�h̄µν =
16πG

c4
Tµν . (2.9)

While in general we would have ten independent components in the metric (owing to gµν
being symmetric), the imposition of the Lorentz gauge gives us 4 conditions, and therefore
we can reduce the number of independent tensor components to six.

In regions away from the source of the gravitational perturbation, Tµν = 0, so we can
write a simple solution to the equations,

�h̄µν = 0 ⇐⇒
[
− 1

c2
∂2
t +∇2

]
h̄µν = 0 ,

which immediately highlights that these gravitational waves travel at the speed of light.
However, we still have some gauge freedom in our problem that we can take advantage of.
Condition (2.8) still allows a further coordinate transformation xµ → x′µ = xµ+ξµ(x) so long
as �ξµ = 0, as according to equation (2.7) this will not alter the Lorentz gauge condition.
�ξµ = 0 also means �

(
ξν,µ + ξµ,ν − ηµνξρ,ρ

)
= 0, so we can see from equation (2.6) and

equation (2.9) that this second gauge choice will not alter the form of our equations.
Now we can apply this coordinate transformation once for each coordinate xµ, which
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again according to equation (2.6) allows us to impose another four conditions on h̄µν , thus
reducing the number of independent components of the tensor to two. A convenient choice
is to pick ξ0 such that the trace of h̄ vanishes, in which case we have h̄µν = hµν . We can
then choose our three remaining functions ξi such that h0i = 0. An important consequence
of this is that the Lorentz condition for µ = 0 gives us h̄,ν0ν = −(1/c)∂th00 + ∂ih0i = 0, but
since h0i = 0 we are simply left with

∂th00 = 0 ,

which tells us that under these choices h00 becomes constant in time. This can be seen as
the static part of gravitational interaction (the gravitational potential of the source). Since
we are concerned with the dynamic aspect that gives rise to GWs, for the treatment of this
problem we can ignore h00 by setting it to zero.

The conditions we have set on our problem,

h0µ = 0 , hi
i

= 0 , ∂jhij = 0 ,

define the transverse-traceless (or TT) gauge, wherein we will refer to the metric perturbation
as hTTµν .

2.2.1 Interactions with test masses in the TT gauge

In this gauge, equation (2.9) yields plane wave solutions of the type hTTij (x) = eij(k)eik
µxµ ,

where kµ = (ω/c,k), ω/c = |k| and eij is the polarization tensor (we have two polarizations,
one for each degree of freedom). Since for a plane wave the condition ∂jhij = 0 is equivalent
to njhij = 0 with nj = kj/k, we can choose coordinates such that n is along z, and so we
can write hTT as

hTTµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


µν

cos
[
ω
(
t− z

c

)]
,

or, simplifying with regard to the number of degrees of freedom,

hTTij =

h+ h× 0

h× −h+ 0

0 0 0


ij

cos
[
ω
(
t− z

c

)]
,

22



where h+ and h× are known as the “plus” and “cross” polarizations due to their effect on
rings of particles (which will not be explored here). Note that since in the TT gauge we have
h0µ = 0, we can always refer to the tensor with latin indices to specify that we are treating
only the spatial part. We can now define the spacetime interval for the metric gµν = ηµν+hTTµν

as

ds2 =− c2dt2 + dz2 +
(

1 + h+ cos
[
ω
(
t− z

c

)])
dx2

+
(

1− h+ cos
[
ω
(
t− z

c

)])
dy2 + 2h× cos

[
ω
(
t− z

c

)]
dxdy .

The proper distance s between two test masses at sa = (t, xa, 0, 0) and sb = (t, xb, 0, 0) will
be given by

∆s =

∫ sb

sa

ds =

∫ xb

xa

dx
√

1 + h+ cos(ωt) = |xb − xa|
√

1 + h+ cos(ωt) , (2.10)

and so we can see that under the effect of gravitational waves there is a periodic oscillation to
the proper distance between test masses. Since the travel time of light is given by ∆τ = ∆s

c
,

these small movements will cause phase shifts that can be detected using Michelson-Morley
style interferometers with sufficient sensitivity, as in the case of the LIGO/Virgo detectors
which will be explored later on.

2.3 Gravitational wave generation

For a gravitationally bound two-body system with reduced mass µ and total mass M , the
kinetic energy K = −U/2, where U is the gravitational potential. This translates to

1

2
µv2 =

1

2

GµM

r
=
µc2

4

rs
r
,

or, rearranging:
v2

c2
=
rs
2r
.

We take weak gravitational fields to imply r � rs, and so also v � c. This means that for
gravity-dominated systems the linear weak field approximation implies also a low-velocity
approximation.
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We now look again to the linearized EFE in the Lorentz gauge given in equation (2.9),

�h̄µν = −16πG

c4
Tµν .

This linear equation can be solved using Green’s functions, so that

h̄µν(x) = −16πG

c4

∫
d4x′G (x− x′)Tµν(x′) .

As we are looking at a radiation problem, as in electromagnetism, the appropriate solution
to use is the retarded Green’s function

G (x− x′) = − 1

4π |x− x′|
δ

([
t− |x− x′|

c

]
− t′

)
,

wherein x′ is limited to the source region. The solution to equation (2.9) is then

h̄µν(t,x) =
4G

c4

∫
d3x′

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
. (2.11)

Now we would like to take a look at this solution away from the source, in the TT gauge.
For that we will need to define a projection operator to apply to the obtained solution. We
will first define the tensor Pij(n) = δij − ninj, which is in itself a projector (note that
PijPjk = Pik). Then we can construct the Lambda tensor

Λijkl = PikPjl −
1

2
PijPkl , (2.12)

which has the property which we seek, that is,

hTTij (x) = Λijkl(n)hkl(x) .

Using the lambda tensor, and keeping in mind that hTTµν = h̄TTµν we can then obtain the
solution to our problem in the TT gauge,

hTTij (t,x) =
4G

c4
Λijkl(n)

∫
d3x′

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)
. (2.13)

Defining r = |x| and d as the radius of the source, and knowing that far away from the
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source |x− x′| = r − x′ · n +O (d2/r) ≈ r, we can expand Tkl around (x′ · n) /c as:

Tkl

(
t− r

c
+

x′ · n
c

,x′
)
≈
[
Tkl + (x′ · n) ∂0Tkl +

1

2
(x′ · n)

2
∂2

0Tkl + ...

]
x=(t− rc ,x)

We can now define the momenta of Tij:

Sij(t) =

∫
d3xTij(t,x) ,

S k
ij (t) =

∫
d3xTij(t,x)xk ,

S kl
ij (t) =

∫
d3xTij(t,x)xkxl ,

S kl...z
ij (t) =

∫
d3xTij(t,x)xkxl...xz .

and with this, we can rewrite equation (2.13) as

hTTij (t,x) =
4G

rc4
Λijkl(n)

[
Skl(x) + nm∂0S

m
kl (x) +

1

2
nmnp∂

2
0S

mp
kl (x) + ...

]
x=(t− rc ,x)

. (2.14)

It is now common to define the momenta of the energy density:

M =
1

c2
S00 ,

M i =
1

c2
S00x

i ,

M ij =
1

c2
S00x

ixj .

Using the fact that, from conservation of momentum ∂νTµν = 0 ⇐⇒ ∂0Tµ0 = −∂iTµi:

Ṁ ij = c∂0M
ij =

1

c

∫
d3x∂0

(
T00(t,x)xixj

)
= −1

c

∫
d3x (∂kT0k(t,x))xixj

l(integration by parts)l

=
1

c

∫
d3xT0k(t,x)

(∂kxi)︸ ︷︷ ︸
δik

xj + xi
(
∂kx

j
)︸ ︷︷ ︸

δjk
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=
1

c

∫
d3x

(
T0i(t,x)xj + T0j(t,x)xi

)
,

and so we can arrive at the result

M̈ ij =

∫
d3x∂0

(
T0i(t,x)xj + T0j(t,x)xi

)
=

∫
d3x (Tji(t,x) + Tij(t,x)) .

Since Tµν is symmetric, we have

M̈ ij = 2

∫
d3xTij(t,x) ,

1

2
M̈ ij = Sij ,

which we can now substitute into the leading order of equation (2.14):

hTTij (t,x) =
2G

rc4
ΛM̈12

ijkl(n)M̈kl(t− r

c
,x) . (2.15)

We now want to take care of the effect of the lambda tensor on M̈kl. To that end, we first
look back at the definition of the projector Pij(n) = δij −ninj. If we take n = ẑ = (0, 0, 1),
then it is easy to see that there are no non-diagonal terms and that for Pzz the kronecker
delta term and nznz = 1 cancel out, and so

Pij =

1 0 0

0 1 0

0 0 0


ij

.

We can then calculate Λijkl(n)M̈kl =
[
PikPjl − 1

2
PijPkl

]
M̈kl, where

PikPjlM̈
kl =

M̈
11 M̈12 0

M̈21 M̈22 0

0 0 0


ij

and

1

2
PijPklM̈

kl =
1

2

M̈
11 + M̈22 0 0

0 M̈11 + M̈22 0

0 0 0


ij

.
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Plugging these terms into place, and taking into account that M̈12 = M̈21, we then get:

Λijkl(ẑ)M̈kl =


M̈11−M̈22

2
M̈12 0

M̈12 −M̈11−M̈22

2
0

0 0 0


ij

,

which in tandem with (2.15) gives us the gravitational wave polarization amplitudes

h+ =
G

rc4

(
M̈11 − M̈22

)
,

h× =
2G

rc4
M̈12 .

2.3.1 Gravitational Waves generated by a binary system

We will now use the developed formalism to treat the problem of gravitational waves emitted
by a general astrophysical binary system. It’s important to note that at this point we are
treating the bodies as point masses with no structure. This is a good enough approximation
as long as the bodies are well enough separated. Another approximation we will be using for
the sake of simplicity is the consideration of orbits with no eccentricity (i.e. circular orbits).
We can feel comfortable about this as binary systems with eccentric orbits tend to decay to
circular orbits due to the energy loss from GW emission [33, 34].

Consider then two bodies with masses m1 and m2, at positions r1 and r2. We define the
separation R = |r2 − r1| and assume a circular orbit with orbital frequency

ω =

√
G
m1 +m2

R3
. (2.16)

If we choose our coordinates such that the orbit lies on the (x, y) plane, then in the center-
mass frame we have:

r1 =
µ

m1

R (cos (ωt) , sin (ωt) , 0) ,

r2 = − µ

m2

R (cos (ωt) , sin (ωt) , 0) , (2.17)

where µ = m1m2/m is the reduced mass of the system and m = m1 +m2.
Note that for the weak-field and non-relativistic regime we have T00 = ρc2 and equivalently

M =
∫
d3rρ(r), where ρ(r) is the mass density (outside the mentioned regime there will be

further contributions to T00). For the system described above, where the components are
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point masses, we have
ρ (r) = m1δ (r − r1) +m2δ (r − r2) .

Let us then calculate the mass quadrupole

M ij =
1

c2

∫
d3rT00(t, r)rirj

=

∫
d3rρ(r)rirj

=

∫
d3r [m1δ (r − r1) +m2δ (r − r2)] rirj

= m1 (r1)i (r1)j +m2 (r2)i (r2)j + C ,

such that

M11 =

(
1

m1

+
1

m2

)
µ2R2 cos2 (ωt) + C

= µR2 cos2 (ωt) + C

=
µR2

2
[1 + cos (2ωt)] + C

=
µR2

2
cos (2ωt) + C ,

M22 = µR2 sin2 (ωt) + C

= µR2
[
1− cos2(ωt)

]
+ C

= −µR
2

2
cos(2ωt) + C ,

M12 = µR2 cos(ωt) sin(ωt)

=
µR2

2
sin(2ωt) = M21 .

With this, we can now apply the second time derivative to these elements to ultimately
obtain the polarization amplitudes. If we further use the relation R = (Gm/ω2)

1/3, and
define the chirp massM = µ3/5m2/5, then we have

h+(t) =
G

rc4

(
M̈11 − M̈22

)
= − 4

rc4
(GM)

5
3 ω2/3 cos(2ωt) ,

h×(t) =
2G

rc4
M̈12

28



= − 4

rc4
(GM)

5
3 ω2/3 sin(2ωt) .

We see here that the difference in the amplitude of the waveforms for the different polar-
izations is a simple phase. However, this is only the case because we made the simplifying
assumption that the angular momentum of the system is parallel to the observed propagation
direction ẑ. To be more general we could also consider the case where the angular momentum
of the system is offset from ẑ by an inclination ι, that is, where

r1 =
µ

m1

R (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)) ,

r2 = − µ

m2

R (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)) ,
(2.18)

and by repeating the above process we get

h+(t) = − 4

rc4
(GM)5/3 ω2/3

[
1 + cos2(ι)

2

]
cos(2ωt) ,

h×(t) = − 4

rc4
(GM)5/3 ω2/3 [cos(ι)] sin(2ωt) .

(2.19)

Including the inclination in this way shows that, as long as we are sensitive to both polar-
izations separately, we can infer the inclination of a binary system by analyzing the relative
amplitudes of h+ and h×. Nonetheless, we can see that, to leading order, the radiation
emitted by a binary system in this formalism is monochromatic and has a set frequency.

However, by radiating gravitational waves, the system must necessarily be losing energy.
The power radiated by systems as the one treated above is given by:

P =
dE

dt
=

r2c3

32πG

∫
dΩ
∑
ij

〈(
∂th

TT
ij

)2
〉

=
r2c3

16πG

∫
dΩ
[〈(

∂th
TT
×
)2
〉

+
〈(
∂th

TT
+

)2
〉]

,

where the angular brackets represent the time averaging of the inner term over time (so that
P is the averaged energy loss over some arbitrary number of cycles). The angular distribution
is then

dP

dΩ
=

r2c3

16πG
·
(

4

rc4
(GM)5/3 ω2/3

)2

· g(ι)
[〈

(∂t cos(2ωt))2 + (∂t sin(2ωt))2〉]
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=
1

c5πG
· (GMω)10/3 · g(ι) · [2 + 2]

=
4

πGc5
· (GMω)10/3 · g(ι) ,

with g(ι) = [1/2 + cos2(ι)/2]
2

+ cos2(ι). Integrating g(ι) over the solid angle we have∫
dΩg(ι) = 2π

∫
d cos(ι)g(ι) = 8π/5, and so the total radiation power is

P =
32

5
· (GMω)10/3

Gc5
.

Given that the energy of the orbit for a binary system is Eorb = −Gm1m2/2R, and
dEorb
dt = Gm1m2Ṙ/2R

2. Then, to compensate for GW radiation,

Gm1m2

2R2
Ṙ = −32

5
· (GMω)10/3

Gc5
, (2.20)

which can only be accomplished by Ṙ < 0. Using (2.16), then

Ṙ = −2

3
R
ω̇

ω

= −2

3
(Gmω)1/3 ω̇

ω2

(2.21)

implies ω̇ > 0. The emission of gravitational waves means the component masses of the
binary system grow closer and closer together over time, while the frequency of orbital motion
increases. We can recast (2.20) as

− Gm1m2

3
(
G m
ω2

)2/3
(Gmω)1/3 ω̇

ω2
= −32

5
· (GMω)10/3

Gc5
,

and we can solve for ω̇ to obtain

ω̇ =
96

5c5
(GM)5/3 ω11/3 , (2.22)

which has solutions of the type

ω(t) =

(
5

256

c5

(tcoal − t)(GM)5/3

)3/8

(2.23)

where tcoal is some constant we interpret as the time at which the binary system coalesces.
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Figure 2.1: Evolution of the angular frequency ω(t) over time for a binary system with chirp
massM = 20M�.

We see that at t = tcoal, ω(t) actually diverges, as plotted in Figure 2.1. However, from
equation (2.16), this would mean R(t = tcoal) = 0. Since we do not expect the bodies in our
problem to actually be point masses in a real physical system, we can assume that the two
bodies collide and merge after reaching some critical separation Rcrit > 0, after which (2.23)
is no longer valid. Note that from (2.21) we have Ṙ/R = −(2ω̇/3ω), which we can integrate
in time to obtain

R(t) = R0

(
tcoal − t
tcoal − t0

)1/4

where R0 is the initial value of R at some initial time t0. We can now adjust our coordinates
in (2.18) to account for this time dependence:

r1 =
µ

m1

R(t) (cos(Φ(t)), cos(ι) sin(Φ(t)), sin(ι) sin(Φ(t))) ,

r2 = − µ

m2

R(t) (cos(Φ(t)), cos(ι) sin(Φ(t)), sin(ι) sin(Φ(t))) ,

with

Φ(t) =

∫ t

t0

dτω(τ) = −2

[
c3 t− tcoal

5GM

]5/8

+ Φ0 ,
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where Φ0 is an integration constant.

We can in principle now calculate the time derivatives of the quadrupole mass moment
for the time dependent case in order to build the waveforms h+ and h×. However, we will
first argue that the contributions from the derivatives of R(t) and ω(t) are negligible and can
thus be ignored to leading order. This is because, under the test mass limit, where one of
the masses is much lighter than the other, the radial equations of motion under the geometry
of the Schwarzchild solution tell us that in the equations of motion for the radial coordinate
there is an effective gravitational potential of the form

Ueff =

(
1− Rs

R

)(
c2 +

Λ

R

)
,

where Rs = 2Gm/c2, with m being the total mass of the system, is approximately the
Schwarzchild radius of to the heavier object, and Λ is the specific angular momentum of the
system. This potential has a minimum at

R =
Λ2 +

√
Λ4 − 3c2R2

sΛ
2

c2Rs

.

This value is minimized when the expression under the square root is null, which means
setting Λ =

√
3cRs. Substituting back in the expression for R, we obtain the minimum

separation beyond which no stable circular orbits are allowed, that is, the Innermost Stable
Circular Orbit (ISCO), expressed by

RISCO = 3Rs =
6Gm

c2
.

This in turn implies a maximum frequency,

ωISCO =
c3

2
√

54Gm
.

If we abandon the test mass limit and consider a binary system of comparable mases, the
above equations will require some further treatment [35], but this approximation will serve
for our purposes. From (2.21) we have that Ṙ is negligible so long as ω̇ � ω2 which from
(2.22) is equivalent to the condition ω � c3/2GM. Since this value is larger than ωISCO,
after which the inspiral regime we have been working on is no longer valid, we can neglect the
effects of Ṙ, and similarly of ω̇. Because of this, we simply have to substitute the ωt factor
in the argument of the trigonometric functions in (2.19) with Φ(t), as well as substituting ω
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Figure 2.2: Plot of h(t) for gravitational waves emmited by a system with M = 20M�,
r = 0.1Gpc and ι = π/2.

with our expression for ω(t), and we obtain

h+(t) = −GM
rc3

(
5

cGM
(tcoal − t)

)1/4 [
1 + cos2(ι)

2

]
cos(2Φ(t)) ,

h×(t) = −GM
rc3

(
5

cGM
(tcoal − t)

)1/4

[cos(ι)] sin(2Φ(t)) .

(2.24)

These waveforms increase in amplitude and frequency with time, leading to the charac-
teristic “chirp” signal of gravitational waves as seen in Figure 2.2. This type of signature is
what we will be exploring in the experimental part of this dissertation.

2.4 Post Newtonian expansion and higher order contributions

The formalism we just developed is a mere approximation. In particular, a strong assumption
that was made was that the background spacetime to our perturbations was flat, and inde-
pendent of the motions od the GW source. On the whole, this is not a reasonable assumption
to make and is only applicable to systems whose gravitational fields near the source are small,
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which is a particularly bold assumption for binary systems. A more common method used is
the Post-Newtonian (PN) formalism, which expands on powers of x = (v/c)2, is applicable
to a wider range of systems. In these systems, at higher orders, different physical factors
come into effect. Of particular interest to us will be the effect of the angular momentum of
the component bodies of a binary, or spin. This spin is a vectorial quantity, and it can be
projected into the orbital angular momentum in order to obtain parallel and perpendicular
components, which have distinct effects on the GW waveforms. The parallel component, if
aligned (anti-aligned) with the orbital spin, will cause the binary system to merge at smaller
(larger) separation distances. This is an effect of order 1.5PN, that is, it contains a factor
(v/c)3, and will be of particular interest to us when dealing with experimental data. The
perpendicular component of the spin, which is not going to be explored further in this work,
will cause the orbital angular momentum to precess with respect to the total angular mo-
mentum, which will cause modulations on the amplitude of h(t). A thorough review of the
PN formalism, covering the basics as well as spinning and eccentric cases, can be found in
[36].
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3 Experimental setup

3.1 Michelson Interferometers

Modern gravitational wave detector designs are based on Michelson-type interferometers,
instruments which are extraordinarily accurate at measuring changes in the travel time of
light in its arms. In this chapter we take a quick dive into the inner workings of this type
of devices. We start by pointing to the diagramatic representation of a basic Michelson
interferometer in Figure 3.1: a monochromatic light source1 fires a beam of light towards
a beam splitter, which splits the beams into two with equal probability. The two resulting
beams travel through the two optical paths at the orthogonal arms of the interferometer,
which should be of equal length, then reflected back into the beam splitter. Here each of the
two beams splits again, combining into two different paths: in one path, part of the reflected
light of the horizontal arm passes through the splitter while part of the reflected light from
the vertical arm is reflected at the splitter, and the two beams combine following a path to
the detector. A second combined beam goes towards the source and is irrelevant for practical
purposes, and often (as in our case) is not even diagramatically shown. Depending on the
difference between the lengths of the optical paths, the light on the detector path will suffer
interference, modulating the amplitude of the power registered by the detector. We will now
show the mathematical description of this process.

Consider our monochromatic source to be a laser with frequency ωL. Equivalently, we
have a laser with wavelength λL = 2π/ωL and wavenumber kL = ωL/c . The electric field
generated is then:

E(t,x) = E0e
(−iωLt+ikL·x) .

Take the origin of our coordinate system to be at the beam splitter, so that here kl · x = 0.
The overall phase of the field is conserved during free propagation. Transmission through
the beam splitter introduces a factor of 1/

√
2 in the amplitude, while reflection contributes

with another factor of 1/
√

2, as well as a phase π (that is, an overall (−1) factor) due to
reflection on one of the sides.2 The reflections at the mirrors at the end of the arms also
contribute a phase of π. As such, if we consider the final contribution of the beam traveling
through the horizontal arm of length Lx as Ex and the contribution of the beam traveling

1While monochromatic sources have always been the ideal source in theory, it was not uncommon for early
researchers, Michelson and Morley included, to use (quasi-)monochromatic light to set up the equipment and
use white light for the measurements themselves [37].

2The phase factors happens only on one of the sides depending on the diffraction coefficient of the dielectric
coating on the beam splitter.
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Figure 3.1: The layout for a basic Michelson interferometer. The yellow part of the beam
splitter represents a dielectric coating.

through the vertical arm of length Ly as Ey, and defining the initial times tx0 = t − 2Lx/c

and ty0 = t− 2Ly/c, we have

Ex = −1

2
E0e

(−iωLt+ikLLx) ,

Ey =
1

2
E0e

(−iωLt+ikLLy) ,

and so the electric field at the time of recombination is:

Er = Ex + Ey

=
1

2
E0e

−itωL
(
eikLLy − eiLxkL

)
= iE0e

i[kL(Ly+Lx)−tωL] sin (kL (Ly − Lx)) .

The intensity measured at the detector is then proportional to:

|Er|2 = E2
0 sin2 (kL (Ly − Lx)) ,

meaning that any deviation in the length of the optical paths of the arms will be translated
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to a change in the intensity registered at the detector. Since gravitational waves deform
spacetime and change the geodesics along their paths, the passing of a GW through an
interferometer would change the travel time time of light along the arms, effectively stretching
and shrinking them, which would leave a detectable signature.

3.1.1 Interaction of a gravitational wave with a Michelson interferometer

We saw in 2.2.1 how gravitational waves in the TT gauge would interact with a couple of
test masses. We will now develop that further and see how these ripples in spacetime would
affect the electric field arriving at the detector. Let us consider again the position of the
beam splitter as the origin of our cartesian coordinate system, and define the position of the
mirrors

rx = (Lx, 0, 0) ,

ry = (0, Ly, 0) .

It is important here to raise the point that, as we saw before, the effect of the gravitational
waves in the TT gauge does not manifest itself in the coordinates, but rather it will affect
the spacetime interval and, as such, the propagation of light between two points.

We will start by considering the simpler case of a wave which has only the plus polarization
(such as one emmited from a binary system with inclination ι = π/2), and as usual we will
take it to be propagating in the z direction. We will neglect for now the effect of orbital
decay, and we will for convenience use the GW frequency ωgw = 2ω rather than the orbital
frequency ω. Then, in the plane of the interferometer arms, from 2.19 we get

h+(t) = h0 cos (ωgwt) .

To obtain the relevant spacetime interval we can look at equation (2.10) to obtain

ds2 = −c2dt+ [1 + h+(t)] dx2 + [1− h+(t)] dy2 + dz2 . (3.1)

If we consider the x arm, and knowing that photons follow null geodesics (so ds2 = 0), we
have

dx2 =
c2dt

[1 + h+(t)]
.
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We can reasonably approximate |h0| � 1 to obtain

dx = ±cdt

√
1

[1 + h+(t)]

≈ ±cdt
[
1− 1

2
h+(t)

]
. (3.2)

We have two solutions, the positive one corresponding to the travel from the beam splitter to
the mirror, and the negative corresponding to the return trip. Let us now consider a photon
leaving the beam splitter at time t0. If that is the case, it will reach the mirror at rx at some
time t1 which can be obtained by integrating the positive solution of equation (3.2)∫ Lx

0

dx = c

∫ t1

t0

dt
[
1− 1

2
h+(t)

]
→ Lx = c(t1 − t0)− c

2

∫ t1

t0

dth+(t) ,

and at the same time, in the return trip from the mirror to the beam splitter, arriving at
some time t2, we have ∫ 0

Lx

dx = −c
∫ t2

t1

dt
[
1− 1

2
h+(t)

]
→ Lx = c(t2 − t1)− c

2

∫ t2

t1

dth+(t) ,

so we can sum both paths and get

2Lx = c(t1 − t0) + c(t2 − t1)− c

2

∫ t1

t0

dth+(t)− c

2

∫ t2

t1

dth+(t) ,

which with some minor rearrangement gives us

(t2 − t0) =
2Lx
c

+
1

2

∫ t2

t0

dth+(t) . (3.3)

We see then that in the absence of gravitational waves the round trip time of light in the TT
gauge is simply 2Lx/c, that is, the total distance traveled over the speed of said light. How-
ever, the presence of gravitational waves introduces a small correction given by the integral
in equation (3.3). Since from equation (3.2) we are already neglecting any contributions of
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order O(h2
0) and above, we can approximate t2 ≈ t0 +2Lx/c in the upper limit of the integral.

This limits our calculation to first order, and we get

t2 − t0 =
2Lx
c

+
1

2

∫ t0+ 2Lx
c

t0

dth0 cos (ωgwt)

=
2Lx
c

+
h0

2ωgw
[sin (ωgwt)]

t0+ 2Lx
c

t0

=
2Lx
c

+
h0

2ωgw

[
sin

(
ωgw

[
t0 +

2Lx
c

])
− sin

(
ωgw

[
t0 +

2Lx
c

])]
, (3.4)

and using the identity sin (α + 2β)− sin (α) = 2 sin (β) cos (α + β),

(t2 − t0) =
2Lx
c

+
1

ωgw
h0 cos

(
ωgw

[
t0 +

Lx
c

])
sin

(
ωgw

Lx
c

)
=

2Lx
c

+
1

ωgw
h

(
t0 +

Lx
c

)
sin

(
ωgw

Lx
c

)
.

We can multiply and divide the correction term by Lx/c to rewrite the above equation as

(t2 − t0) =
2Lx
c

+
Lx
c
h

(
t0 +

Lx
c

)
sinc

(
ωgw

Lx
c

)
, (3.5)

where sinc (x) = sin (x) /x, which goes to one as x → 0. We can see then, that as long as
ωgwLx � c, we can again approximate the result as follows

(t2 − t0) =
2Lx
c

+
Lx
c
h

(
t0 +

Lx
c

)
. (3.6)

On the other hand, if we were to consider the extremely high frequency or extremely large arm
cases then as lim

x→∞
sinc (x) = 0 we conclude that the correction term disappears. Intuitively,

we can think of this as all the contributions from the peaks (positive) and troughs (negative)
of the gravitational wave canceling out over space.

The calculations for the vertical y arm are similar, only as we can see in equation (3.1)
the sign of h(t) is inverted. We then get

(t2 − t0) =
2Ly
c
− Ly

c
h

(
t0 +

Ly
c

)
sinc

(
ωgw

Ly
c

)
. (3.7)

In practice we want to calculate what we would measure at the output of the beam splitter at
some observation time t. We should then consider, for generality, that the contributions for
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both arms may have different initial times. Inverting equations (3.6) and (3.7) to first onder
in h0, and taking into account that for arm i we have ti0 +Li/c ≈ t−2Li/c+Li/c = t−Li/c,
we obtain the initial times for each arm:

tx0 = t− 2Lx
c
− Lx

c
h

(
t− Lx

c

)
sinc

(
ωgw

Lx
c

)
, (3.8)

ty0 = t− 2Ly
c

+
Ly
c
h

(
t− Ly

c

)
sinc

(
ωgw

Ly
c

)
. (3.9)

Now, as we saw before, the phase of the electric field at time t ought to be the same as the
initial phase, save for a factor of ±1/2, so:

Ex(t) = −1

2
E0e

−iωLtx0

= −1

2
E0e

−iωL(t− 2Lx
c )+i∆φx(t) , (3.10)

with
∆φx(t) =

ωLLx
c

h

(
t− Lx

c

)
sinc

(
ωgw

Lx
c

)
. (3.11)

Similarly, for the y beam we have

Ey(t) =
1

2
E0e

−iωLty0

=
1

2
E0e

−iωL
(
t− 2Ly

c

)
+i∆φy(t)

, (3.12)

where
∆φy(t) = −ωLLy

c
h

(
t− Ly

c

)
sinc

(
ωgw

Ly
c

)
. (3.13)

In general we expect Lx ≈ Ly, in order to cancel noises common to both arms. With that,
we can substitute Lx and Ly in equations (3.11) and (3.13) with L = (Lx + Ly) /2, so that
∆φy(t) = −∆φx(t), though we will still consider Lx and Ly as distinct outside of these phase
shifts. We can, however, rewrite

2Lx = 2L+ (Lx − Ly) ,

2Ly = 2L− (Lx − Ly) .
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and therefore

Ex(t) = −1

2
E0e

−iωL(t− 2L
c )+iφ0+i∆φx(t) ,

Ey(t) =
1

2
E0e

−iωL(t− 2L
c )+iφ0−i∆φx(t) ,

where φ0 = kL(Lx − Ly). The total recombined electric field at the output of the beam
splitter is then

Er(t) = Ex(t) + Ey(t)

= −iE0e
−iωL(t− 2L

c ) sin [φ0 + ∆φx(t)] .

In the ωgwL/c limit we have

φ0 + ∆φx(t) = kL

[
(Lx − Ly) + Lh

(
t− Lx

c

)]
,

which contextualizes the phase shift resulting from the effect of the gravitational waves as
equivalent to a change in (Lx − Ly). With all this, we have finally the power of the electric
field at the detector as

P =P0 sin2 [φ0 + ∆φx(t)]

=
P0

2
(1− cos [2φ0 + 2∆φx(t)]) ,

(3.14)

which shows us that if we want the effect of the gravitational waves to be as noticeable as
possible then we will want to do what we can to maximize ∆φx(t).3 Looking back at equa-
tion (3.11) we see that the dependence on L is (ωLL/c) sinc (ωgwL/c) = (ωL/ωgw) sin (ωgwL/c).
To maximize the sin factor we then want

ωgw
L

c
=
π

2
,

or equivalently

L =
c

4fgw
' 75000 km

fgw
.

This means that if we wanted to be sensitive to waves of frequency, say, 100Hz, we would need
an arm around 750 km long. Arms with such dimensions are not practically or economically

3Note that for equal length arms, in the absence of any physical effect we have P = 0. This is relevant
because any disturbance in the laser’s power source (which could be modeled by giving P0 a time dependence)
will not be picked up.
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Figure 3.2: Layout of a Michelson interferometer with Fabry-Perot cavities. Note how the
length L now refers to the length of the cavity, and we take the distance traveled outside the
cavity to be negligible.

reasonable to build. A way around this is to use Fabry-Perot (FP) cavities, using coupled
mirrors on each arm to make the laser light bounce back and forth and thus increase its
travel time. A diagrammatic representation is given in Figure 3.2. For full details on the
physical processes behind the functioning of FP cavities we direct the reader to section 9.2
of [38]. The bottom line, however, is that the application of Fabry-Perot cavities in the arms
of a Michelson-type GW interferometer will cause photons to, on average, be “stored” in the
arms for some storage time

τs '
LF
cπ

,

where L is now the length of the FP cavities (we assume the whole length of what we
previously considered arm is converted to a cavity) and F is a numerical factor known as the
finesse, given by

F =
π
√
r1r2

1− r1r2

,

where, for a given arm, r1 is the reflectivity of the first mirror in the cavity and r2 is the
reflectivity of the second mirror. We can also define the pole frequency

fp =
1

4πτs
' c

4FL
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As long as ωgwLx/c � 1 and F ∼ (ωgwLx/c)
−1, this will ultimately contribute to the phase

shift seen in equation (3.11) as follows:

∆φx (t) ' h0
4F
π
kLL

1√
1 +

(
fgw
fp

)2
cos

[
ωgw

(
t− L

c

)]
.

Note that for fgw � fp we have

∆φx (t) ' h0
4F
π
kLL

fp
fgw

=
h0kLc

πfgw
,

and we see that the sensitivity of the detector decreases linearly with fgw. This degradation
is compounded by the sinc(ωgwL/c) factor, which we can no longer approximate as unity
when fgw increases and so deteriorates the response further. This highlights how carefully
these instruments must be tuned for proper functioning.

3.1.2 Geometrical dependence of a GW interferometer detection

Another relevant effect to cover is the effect of the source’s sky position on the detectors’
sensitivity. Let us consider a reference frame centered at the beam splitter and with arms
along the x and y axes, and a second reference frame in the sky as displayed in 3.3. If we
take the polarization matrices in h+ and h× to be referrent to the sky coordinate system,
then the strain of the interferometer is given by

δL(t)

L
= F+ (θ, φ, ψ)h+ (t) + F× (θ, φ, ψ)h× (t) , (3.15)

where F+ and F× are known as the antenna pattern response functions for each polarization,
which can be seen as projecting the effect of the gravitational waves onto the detector frame
[39]. Using the geometry of Figure 3.3 it can be shown that

F+ =
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ , (3.16)

F× =
1

2

(
1 + cos2 θ

)
cos 2φ sin 2ψ

+ cos θ sin 2φ cos 2ψ . (3.17)

43



x'

y'

z'

Detector plane

θ

x

y

z

ϕ

Sky plane

ψ

Figure 3.3: Example of the geometry
for GW detection.

Note that the maximum value for these functions is 1.
For a certain sky position, we can then calculate the
antenna power pattern

P (θ, φ) = F+(θ, φ, ψ)2 + F×(θ, φ, ψ)2 , (3.18)

which is independent from the angle ψ. This gives
us the sensitivity of the detector as a whole to the
sky position of the source. However, we would like to
extend this to multiple-detector networks, as in the
real case of the LIGO-Hanford, LIGO-Livingston and
Virgo detectors, which have been working in tandem
since 2016. The first thing to take care of in order
to achieve this generalization is to use a common co-
ordinate system for all detectors, such as earth-based
spherical coordinates. An in depth treatment of this
problem, taking into account contributions from such
factors as noise correlations in detector networks and
the rotation of the earth can be found in references
[40, 41]. We will limit ourselves to the simpler (yet
reasonable) case of uncorrelated detector noise and
constant time, under which the normalized network
antenna power pattern is given simply by

PN(θ, φ) =
∑
k

(
F 2

+,k + F 2
x,k

)
, (3.19)

where the subscript k stands for the detector consid-
ered for each term. With this quantity we can check the full network’s sensitivity to a certain
sky position, at a certain time during earth’s rotation (we expect the network’s coverage
map to be cyclical over a full rotation). An example of this pattern is given in Figure 3.4.
Note that we seem to find a reflection symmetry in the sky position. This is because, with 3
detectors, a naive triangulation of a signal originating from sky position r is indistinguishable
from a signal originating at −r, though requirement amplitude and phase consistency can
break this degeneracy in some cases [42].
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Figure 3.4: Map of the network antenna power pattern for the advanced LIGO/Virgo network
at gps time (t mod 24 h) = 9742 s.

3.2 Noise in the advanced LIGO and advanced Virgo detectors

The previous subsection explores an idealized version of gravitational wave interferometry.
We turn now to explore some considerations arising from the use of real-world detectors in
gravitational wave astronomy. Current GW interferometers are essentially Michelson-type
interferometers as discussed before, but what makes these instruments marvels of modern
engineering is the tremendous sensitivity they can achieve despite all kinds of environmental
difficulties. In this subsection we will qualitatively cover some of the more significant noise
sources that challenge the detection of GWs (see Figure 3.5) and the systems in place that
have allowed the LVC detectors to overcome them.

3.2.1 Seismic noise

Seismic noise comes from ground motion due to the internal dynamics of the earth (or envi-
ronmental disturbances such as winds, ocean waves and human activity) being transmitted
to the components of the interferometer, with the largest influence on the signal being the
effect on the device’s test masses and beam splitter. The Advanced LIGO and Advanced
Virgo observatories are equipped with highly advanced hybrid mechanical isolation systems
(passively isolating as many perturbations as possible, while using sensors and actuators
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Figure 3.5: Left: Advanced LIGO design sensitivity curves from[30]. Right: Advanced
Virgo design sensitivity curves from [43].

to actively counter inevitable motions) in order to combat this, which manage to signifi-
cally mitigate seismic noise, especially for frequencies higher than 20Hz [30, 31, 44, 45]. A
representation of these can be found in Figure 3.6.

3.2.2 Gravity gradients

Gravity gradient noise comes from density perturbations in the earth cause by seismic activity.
These subtle fluctuations produce changes in the local gravitational forces that the test masses
are subjected to. This type of noise is fundamental and is a limiting factor for both LIGO and
Virgo’s strain sensitivity, with proposals for mitigation dependent on increasingly accurate
modelling of these perturbations [46, 47]. However, the current generation of detectors is still
far from this limit [48].

3.2.3 Quantum noise

Quantum noise refers to artifacts in the interferometer output related to the quantum nature
of the electromagnetic fields involved in measurements. There are a number of phenomena
that contribute to this type of noise: on one hand, there is the issue of the instrinsic quantum
mechanical uncertainty of the mirrors’ position and momenta and the resulting back-action
phenomena, which impose a limit on the minimum measurement error. On the other hand,
radiation pressure noise is induced by quantum vacuum fluctuations at the unused input
port of the beam splitter. Finally, uncertainties regarding the number of photons at the
interferometer output originate a phenomenon known as shot noise. Techniques to mitigate
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Figure 3.6: Seismic isolation systems in gravitational wave interferometers. Left: the seismic
isolation system used in LIGO, from [30] Right: Virgo’s Superattenuator, from [45]

these perturbations usually involve the usage of squeezed states of light. [49, 50, 51]

3.2.4 Suspension thermal noise

Suspension thermal noise is, as the name indicates, the noise resulting from random motion
of the mirrors’ suspension due to thermal effects. The current generation of GW detectors
has significantly minimized this type of noise relative to previous iterations by using fused
silica suspensions in a monolithic arrangement (rather than thin steel wires in a “cradle-like”
arrangement), obtaining increased sensitivity by up to a factor of 10 for the target range of
frequencies [52, 53].

3.2.5 Coating brownian noise

Despite having exceptional optical properties, the silica-tantala (SiO2-Ta2O5) multilayer coat-
ings on LIGO and Virgo mirrors give rise to significant thermal (brownian) noise dominantly
due to mechanical losses in the tantala layers. The mitigation of this effect is a subject of on-
going research and may be achieved through a combination of doping optimization, annealing
techniques and alternative coating materials [30, 54, 55].
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3.2.6 Glitches

Glitches are transient (i.e. short-lasting) noise signals of instrumental or environmental origin
that can interfere with the regular functioning of the detector. Besides the obvious way in
which additional noise can decrease sensitivity to astrophysical GW signals, some glitch
morphologies (such as blip glitches) may mimic the signatures of GW events, sometimes
as often as once per minute [56], though this can be mitigated by requiring GW data to
be consistent in more than one detector (as non-astrophysical signals should not generate
correlated signals at every detector in the network). Recent research has tried to find ways
to classify and remove such glitches from strain data using machine learning methods [57, 58,
59]. Furthermore, a citizen science project known as Gravity Spy [60] makes use of human
volunteers to characterise and analyse LIGO and Virgo glitches.
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4 Machine Learning

Artificial Intelligence (AI) is a scientific term which covers, in a general way, any process
of making computers behave in a manner that resembles human cognition. As a field of
research, Artificial Intelligence was kickstarted in the mid-1950s, with the conceptualization
of the “imitation game” by Alan Turing in 1950 (later to be known as the Turing test) serving
as a foreboding overture to the 1956 Dartmouth Summer Research Project on Artificial
Intelligence, which springboarded much of the research done in AI for the following two
decades. For a long time, the focus of research was on so-called Expert Systems: complex
hand-written programs with a large set of rules and facts, often employing brute search to
perform a pre-defined, unchangeable task. A mediatic example of such a system is IBM’s Deep
Blue, a chess computer that famously and controversially beat then chess world champion
Garry Kasparov in 1997 [61]. However, a problem with such systems is that they require
the tasks to already have some previously known algorithmic solution so that rules can be
implemented, and thus do not perform as well for use cases where variance plays a large part,
or where arbitrary abstractions may play a role. For these cases, examples of which include
tasks like image classification, or finding unknown patterns in data, a different approach is
required.

Machine Learning (ML) is the name given to an implementation of AI which takes strides
towards the mimicking, understanding and aiding of human cognitive processes by processing
and performing inference on, usually, very large amounts of data. In particular, the term
covers algorithms which are capable of automatic self-improvement as they tackle some given
problem, having been fed some amount of training data to “learn” from. The field of ML has
supercharged applications such as natural language processing (NLP) and image recognition.
Deep Learning (DL), an implementation of ML where the data is parsed through several
layers of increasing abstraction in a neural network (NN), which is inspired by the structure
of the human brain, has become particularly prevalent over the last decade.

ML algorithms can roughly be separated into two categories:

• Supervised learning, where, during training, the target outputs (often called “labels”)
for input data are fed to the machine, and so the algorithm’s goal is essentially to
find some configuration of the machine’s parameters in order to behave as a function
mapping the input data to the targets, minimizing some loss function comparing the
algorithm output to the target.

• Unsupervised learning, where during training there are no target outputs, but rather
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the algorithm is asked to find structures and create compact descriptions of the data.
Any new data input to the algorithm will be fitted to one of the created groups.

Within these two broader classes there are many subcategories and niche implementations
which we do not deem necessary to explore here, as our main focus will be on supervised
learning applied to image processing. In this chapter we will explore supervised learning in
particular: we shall look at the concept of a neural network, a particular family of NN ar-
chitectures called Convolutional Neural Networks (CNNs), go over a specific implementation
of these networks in the form of Residual Networks (ResNets) applied to classification and
regression problems, and finish by exploring a technique to associate a level of uncertainty to
a prediction by using Monte-Carlo (MC) dropout. The main references for this chapter are
[62, 63].

4.1 Deep learning and neural networks

Neural networks are a type of ML algorithm (or model) architecture that takes inspiration
from the structure of the human brain. As the basic unit of the human brain is the neuron,
where signals from a number of dendrites are processed in the nucleus and then transmitted
through to the axon as the presence (or lack thereof) of an electrochemical action potential,
the basic unit of the standard NN is the perceptron, an algorithm that takes a number
of inputs, performs a given weighted linear operation on them, and outputs a certain value
(usually 1 or 0) depending on whether some condition has been met by the internal operation.
This can be expressed as a branched function of the inputs x and the respective weights w:

g(w · x) =

f(w · x), if w · x + b > 0

0, otherwise
, (4.1)

where f(w · x) is some chosen activation function.
Neural networks are composed of several interconnected layers of such perceptrons, each of

which has its characteristic weights that can be readjusted as the model compares its output
to the given targets. The number of layers is typically referred to as the depth of the network,
while the dimensionality of each layer constitutes the width. The connectedness of the layers
can vary depending on the architecture chosen: a fully connected neural network (FCNN),
for example, has all the neurons in a given layer connected to all the neurons in the preceding
and following layer (save for the input and output layers, which are only connected to the
following and previous layers, respectively). This is shown in Figure 4.1. The updating of
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Input Layer ∈ ℝ¹² Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁴ Output Layer ∈ ℝ¹

Figure 4.1: Mock model of an FCNN. Each of the nodes is connected to all the nodes in the
previous and following layer, with the exception of the first nodes of the hidden layers, which
serve as a constant bias b to the next layer.

deep NN weights is typically done by backpropagation. Backpropagation is a way to calculate
the gradient (with respect to the weights) of some loss function

L[(w1, w2, ..., wn), X, Y ] , (4.2)

where wi is the value of the i-th weight, X is the input data and Y is the target value, by
recursively multiplying the gradients of the individual layers by means of the chain rule for
differentiation. With the gradient calculated, the position in parameter space of the weights
vector can be updated as

(w′1, w
′
2, ..., w

′
n) = (w1, w2, ..., wn)− α∇L , (4.3)

where α is a scalar multiplier that defines the step size. This is illustrated in Figure 4.2. For
simple architectures backpropagation can be seen simply as matrix multiplication, and thus
the computational performance of the algorithm when updating weights is dependent only on
the hardware’s capacity to perform matrix multiplications. If our input data has thousands
upon thousands of values, such as we see in the pixels of an image (which is essentially a tensor
of size (width)×(height)×(channels)), we may find ourselves not wanting to deal with storing
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Figure 4.2: Mock example of a 2-parameter loss function and its gradient. For some set of
starting values

(
w

(0)
1 , w

(0)
2

)
, the weights can be updated according to the gradient of the loss

function.

and updating quite the same amount of weights, be it for memory reasons or performance
reasons. For such cases, an increasingly popular solution is the usage of convolutional neural
networks.

4.1.1 Convolutional Neural Networks

CNNs are a type of architecture particularly useful for treating grid-like data, such as images
or time-sampled data. In CNNs, instead of assigning weights to each of the input datum, we
use a smaller weighted convolutional kernel and apply it to the data some number of times.
Consider an input which takes the shape of a (n,m) matrix. We can define our kernel to be
a matrix of weights of size (k, l), then apply the kernel over the image, taking the matrix
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Convolution Activation Pooling Convolution Activation Pooling Dense

1@128x128
1@100x100 1@100x100 1@85x85 1@70x70

1@45x45 1x50
1x1

1@70x70

Figure 4.3: Mock model of a CNN, showing a simple set of operations typically performed
in this type of network for a 2-dimensional input.

product of the kernel and the overlapped (k, l) subsection of the input matrix in order to
produce a new data matrix of size (n− k + 1,m− l + 1). In other words, given the input
matrix X and kernel matrix K, we can calculate the elements of the output matrix Y as:

Y i
j =

k∑
a=0

l∑
b=0

X
(i+a)
(j+b)K

a
b . (4.4)

We see that while in a fully connected network every node in a layer affects every node in
the next layer, a node in a CNN will only have an influence on, at most, k × l nodes in the
convoluted layer. This is an example of sparse connectivity. Furthermore, it is common to
subject each element of the output of the convolution to an activation function, similar to
what we saw in equation (4.1), so that

Y i
j = g

(
k∑
a=0

l∑
b=0

X
(i+a)
(j+b)K

a
b

)
. (4.5)

Another common operation in CNNs is pooling, which works as an attempt to summarize
further the result of the convolution. Pooling functions behave much like the convolution
operation, but instead of matrix multiplication we apply a correlated operation like taking
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the average or maximum value of each region. This allows for some level of shift invariance,
that is, the pooled layer should not change significantly if we introduce small shifts in the
spatial position of the data.

There are further changes one can make to these operations, such as using a strided
convolution, ”skipping” some number of steps rather than applying the convolution to every
possible region or padding the data before convolution so that output size is not necessarily
smaller than the input size. In any case, the stereotypical base structure of the CNN tends to
be stacked blocks of convolution, activation and pooling layers, such that the combination of
these three operations is commonly referred to as a convolutional layer. These convolutional
layers perform the task of feature extraction, that is, they attempt to extract the more
relevant parts of some given data. It is common, however, to add some “dense” fully connected
layers before the output to aid with the intended task for the model (classification, regression,
etc.). These models then end up having a basic structure resembling the mock-up shown in
Figure 4.3, though real applications will often have a much larger number of layers, and
different variations of CNNs can have fairly distinct structures.

4.1.2 Residual Networks

Following the trend of being inspired by the human brain, ResNets try to emulate behaviour
from neocortical neurons by allowing skip connections, where the information from a layer
can skip some number of the following layers and recombine [64]. That is, if a number of
layers in what we call a residual block acts on an input x to produce the output y so that

y = f(x) , (4.6)

then in a residual block (pictured in Figure 4.4 we have

y = f(x) + x . (4.7)

This means the network learns by adjusting the residual values from the input (hence the
name “residual network”). Crucially, this makes the network relatively resistant to vanishing
gradients, a problem that occurs when a network’s weights essentially stop updating for
deeper layers due to the chain-rule nature of the calculation of the derivatives. By allowing a
previous layer l to have an impact on the updating of the weights of a layer l+ s, they act to
prevent an exponential diminishing of the gradient of the loss function. Neural networks are
essentially universal function approximators and, in theory, an increase in number of layers

54



+

C
o
n
v
o
lu
tio

n

C
o
n
v
o
lu
tio

n

A
c
tiv

a
tio

n

x
f(x)

x f(x)+x

A
c
tiv

a
tio

n

Figure 4.4: Example of a residual block.

Figure 4.5: An example of different attempts to fit a function to data. a) A linear function
is used to approximate the data. b) A quadratic polynomial is used. c) A high-degree
polynomial is used. The black circles represent the training data, while the red square
represents some datum in the test set. Figure taken from [65].

should result in better accuracy: if some network architecture is capable of approximating a
class of functions C, then the adding of extra layers should result in an architecture capable
of approximating function class C ′ such that C ⊆ C ′. However, due to propagation effects
such as the vanishing gradient problem, many architectures lose performance after a certain
depth. Residual networks are particularly robust against this, in part because it is easier for
the optimization process to learn f(x) = 0 such that y = f (x) +x = x (this can be done by
simply setting the weights of the layers to zero) than to directly learn the mapping f(x) = x.
This means that, in theory, residual networks should more easily be able to approximate a
larger class of functions when compared to simpler architectures.
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4.2 Regularization

In addition to obtaining results on training data, machine learning algorithms need to be
robust enough to be able to reliably analyze new data. To this end, there is a plethora of
techniques that aim to reduce the generalization error (the error obtained when introducing
new data to the algorithm), even if it means increasing the training error. This is said to
reduce overfitting, which is to say it avoids the input→output mapping function being too
specific to that particular set of training data. A common way of introducing this concept
compares linear regression with polynomial regression, as shown in Figure 4.5: while the
high degree polynomial provides the lowest discrepancy with the training data, its error on
the test datum is as large as the linear fit. On the other hand, despite its larger error on
the training set, the quadratic polynomial provides the smallest error at test time. With a
naïve selection of models, the algorithm may tend to prefer the case that simply minimizes
training error, but there are strategies that can be implemented in order to combat this.
These strategies are collectively known as regularization, and their development is one of the
major research foci in machine learning. Here we will cover two of these strategies: weight
decay and droput.

4.2.1 Weight decay

Weight decay, sometimes also known as L2 regularization, is a regularization strategy that
focuses on penalizing large weights vectors. This is motivated by the basic intuition that
the simplest function possible is f(x) = 0, and as such the farther some given function is
from zero, the more “complex” it is. Therefore, taking a simple (and not necessarily singular)
interpretation, if we want to avoid excessively complex functions in our algorithm we should
be able to accomplish this, at least in part, by restricting the norm of the weights vector |w|.
A simple way to do this is by adding a quadratic contribution to the loss function, as follows:

L (w, X, Y ) = L0 (w, X, Y ) +
λ

2
w2, (4.8)

where λ is a chosen numerical parameter and L0 is the unregularized loss function. The 1
2

factor is introduced by convention, so that when we calculate the gradient we have

∇L = ∇L0 + λw . (4.9)
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This way the updating of the weights vector is given by

w′ = w − α∇L

= (1− αλ)w − α∇L0 , (4.10)

and thus we see that, as long as 0 < αλ < 1, large components of the weights vector suffer
a penalty proportional to their size during the update. This restriction can be more or less
severe depending on the choice of λ, which is an experimental problem and highly network
dependent.

4.2.2 Dropout

In the previous section we argued that the complexity of some function could be given in some
way by its norm. However, as mentioned, this is not the only way to interpret complexity.
In particular we shall now probe the issue of the complexity of a function by looking at its
smoothness, and we can explore this by analyzing its robustness against small perturbations.
Bishop showed in 1995 that, indeed, training on input data with artificially added noise is
equivalent to training with (a generalization of) weight decay [66], yet perturbations in the
training data are not the only way to implement this: we can instead introduce perturbations
in a neural network itself, by randomly deactivating (or dropping out) a fraction of the
network nodes when applying the algorithm to a given input during training. This technique,
called dropout in literature, was developed in 2014 and has since then become commonplace
in the design of neural network architectures [67]. Note that dropout is equivalent to applying
a Bernoulli distribution with probability p and random variable r over the set of weights in
a given layer:

w′i = wi ∗B(p, r)

=

wi if r > p ,

0 otherwise .
(4.11)
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5 Towards Bayesian Neural Networks

In regular supervised learning implementations of neural networks, the output given by the
network is a single value (be it some category in the case of classification problems or some
set of real numbers when performing regression). It’s worth taking a moment to reflect on
what this means: let’s imagine some network is built and trained so that it can match some
recorded bird call to a certain species, and then we use it to analyse a recording of a loved one
singing in the shower. Now, it might be difficult to explain, and certainly rather rude, to tell
the person that according to our model they sound like a particularly screechy and annoying
sort of parrot, yet without any further information that is a possible outcome, as our model
does not know how to deal with human voices. Since humanity is prone to silly conflicts
[68, 69], we would like to avoid any tension whenever possible. A possible way around this
would be to find some strategy to quantify the uncertainty of our model, so as to clarify the
fact that the network does not really know what it’s looking at. The typical way of dealing
with such a problem is by using Bayesian inference methods. In this section we will quickly
explore Bayesian statistics and figure out a way of approximating this process using neural
networks. The main references here will be [70], [71] and [72].

5.1 Bayesian modelling and the Gaussian Process

Bayesian statistics has at its kernel Bayes’ theorem. For an abstract set S, we can define
probability as a real-valued function that satisfies the Kolmogorov axioms:

• ∀σ ⊆ S, P (σ) ≥ 0 ,

• ∀σ1, σ2 ⊆ S : σ1 ∩ σ2 = 0⇒ P (σ1 ∪ σ2) = P (σ1) + P (σ2) ,

• P (S) = 1 .

Then Bayes’ theorem is given by

P (A|B) =
P (B|A)P (A)

P (B)
,

where
P (B) =

∑
i

P (B|Ai)P (Ai)

turns out to be just a normalization constant. In the Bayesian approach this theorem is used
with A standing for some hypothesis or set of parameters and B standing for some collected
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data. Therefore:

P (hypothesis|data) ∝ P (data|hypothesis)P (hypothesis) . (5.1)

Conventionally, P (hypothesis|data) is known as the posterior probability, P (data|hypothesis)
is the likelihood function and P (hypothesis) is the prior probability. This last one is not
necessarily unique for a given problem: it can be seen as the degree of belief in some outcome
and thus can be influenced by subjective factors. Equation (5.1) can then be seen as an
update to a prior belief when faced with new data.

Let us now consider the set of N Q-dimensional inputs X ∈ RN×Q and the corresponding
set of D-dimensional outputs Y ∈ RN×D. We would like to find some function f (x) in the
space of functions F such that:

∀x ∈ X∃y ∈ Y : y = f(x) .

To accomplish this, we first consider some prior distribution p(f) over F , giving us the
preliminary beliefs as to which functions may be more likely to fit the data. The posterior
will then be:

p (f |X, Y ) ∝ p (Y |X, f) p (f) .

The choice of the prior here is rather important: if we do not make any particular assumption,
then any function consistent with the data will be taken as equally valid.

One way to deal with this problem would be to choose a prior that restricts the space
of functions significantly (for example, demanding that f(x) is linear). A second way of
approaching the problem would be to give a prior probability to every single function in F ,
giving higher probabilities to less complex (e.g. smoother) functions. The issue with the first
case is that, to obtain good results, we must have a good idea of how to restrict our function
space from the start, as if we narrow down our space to, say, linear functions, but our data
happens to be actually generated by some trigonometric relation, then predictions for new
data will be inaccurate. On the other hand, if we do not narrow down the function space
enough, then we will again run into the original issue of having too many candidates. The
second approach seems to have a computability problem, as without restrictions we may have
an infinite number of functions to compute. However, there is a way around this problem
that can allow us to perform tractable computation: the Gaussian process (GP).

A Gaussian process is a generalization of the Gaussian distribution. While a distribution
describes random scalar or vectorial variables, a process governs the properties of functions.
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In a loose sense, we can look at a function f(x) as an infinite vector consisting of the values
of the function evaluated at every x. The property of GPs that will make our problem
computable is the fact that, when we attempt to figure out the properties of a function at a
finite number of points, inference through a Gaussian process will give an equivalent answer
as if we were working with the full, infinite set of points.

In order to implement this, we want to place a joint Gaussian distribution over all function
values:

p (Y |X) ≈ N (0, K(X,X)) =

√
1

2πK (X,X)
,

where K (X,X) is a chosen kernel or covariance function, which defines the scalar similarity
between every pair of input options4, effectivelyveing equivalent to a choice of basis functions,
and is given by an N ×N matrix. However, the evaluation of the normal distribution implies
inverting this very matrix, an operation with O(N3) time complexity. This is still rather
computationally intensive, so further simplification is needed.

5.2 Variational Inference and MC dropout

A way to approximate the Gaussian process described above is to restrict our functions to
depend only on some set of variables ω. The distribution of predictions for some new input
x∗, given the initial datasets X and Y , is then

p (y∗|x∗, X, Y ) =

∫
p (y∗|x∗, ω) p (ω|X, Y ) dω .

Since p (ω|X, Y ) is not analytically defined, we substitute it with some variational distribution
q (ω) such that we obtain an approximate result

q (y∗|x∗) =

∫
p (y∗|x∗, ω) q (ω) dω .

To validate the above approximation we need to make sure that q (ω) and p (ω|X, Y ) are
as close as possible. This can be done by minimising the relative entropy (also known as

4For a more extensive discussion, chapters 2 and 4 of [72] are recommended.
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Kullback–Leibler (KL) divergence)

KL(q(ω)‖p(ω | X, Y )) =
∑
ω

q(ω) log

(
q (ω)

p(ω | X, Y )

)
,

which is a measurement of the difference between both distributions. This has been shown
to be equivalent to maximizing the log evidence lower bound,

LVI =

∫
q(ω)p(Y | X,ω)dω −KL(q(ω)‖p(ω)) ,

a process that is known as variational inference. It was shown by Gal and Ghahramani in
2016 that with the appropriate choice of covariance function, the Gaussian process can be
approximated such that the log evidence lower bound is proportional to

LV I ∝ −
1

2N

N∑
n=1

‖f (xn)− yn‖2
2 −

p1

2τN
‖M 1‖2

2 −
p2

2τN
‖M 2‖2

2 ,

and that the parameter matrices M opt
1 and M opt

2 that maximize this quantity will be equiv-
alent to the parameters that minimize the mean squared error (MSE) loss for a NN with a
single hidden layer making use of dropout and weight decay,

LD =
1

2N

N∑
n=1

‖f (xn)− yn‖2
2 + λ1||W1||22 + λ2||W2||22 ,

where W 1 and W 2 stand for the weight matrices in between layers [73]. While this result
is, as mentioned, valid for NNs with a single hidden layer, it is extendable to arbitrary depth
and even convolutional architectures [74]. This shows that, while typically only used during
training, keeping a proper implementation of dropout active during inference and passing the
same inputs forward a large number of times will yield a distribution that approximates the
Gaussian process method, giving a natural way to deduce the uncertainty of a network for
some result (at the cost of increasing evaluation time).
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Figure 6.1: Example of a spectrogram produced for a simulation of the coalescence of a
binary system withM = 20M�. Note the similarity with Figure 2.1.

6 Methods

The intent of the work developed in the context of this dissertation was to explore new
machine learning methods for treating gravitational wave data from ground-based GW in-
terferometers such as the advanced LIGO and Virgo detectors. Specifically, we will study
the application of mainstream computer vision (CV) tools such as the residual networks dis-
cussed in 4.1.2 to the time-frequency representation of gravitational waves (“spectrograms”,
such as seen in Figure 6.1). These spectrograms are 2-dimensional data and can be produced
in such a way as to be suitable for interpretation by CV techniques: the majority of digital
images have a colour depth of 8 bits, meaning that for some image with width W , height
H and colour channels N (typically there are 3 colour channels: red, green and blue. Some
images have an additional channel, called the alpha channel, which controls transparency),
its mathematical representation is a W ×H×N tensor whose components are 8-bit integers,
that is, integers in the [0, 255] range. The generation of a spectrogram from some given
timeseries generates a Ws × Hs tensor (the dimensions can be adjusted depending on the
desired time/frequency resolution and ranges), and although the resulting component values
(which translate the power registered at some time and for a certain frequency) are floating
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numbers, they can be normalized to the 8-bit integers. While this does mean we will lose
some resolution in the power values, normalizing in this way makes this sort of data an innate
fit for tools used in computer vision. In particular, since a lot of existing machinery is built to
deal with RGB images, we have a natural way of incorporating data from multiple detectors
by stacking independent spectrograms into a single image. This is explained further in 6.1.2.

6.1 Generating datasets

We begin by describing the generation of the datasets used in our analysis. Generation of GW
data through solving the Einstein equations directly (numerical relativity (NR) waveforms) is
very computationally expensive and is not feasible on a local consumer-level machine. When
large amounts of GW data is needed, it is common to generate events using some relatively
easy to evaluate function, called an approximant, that outputs a waveform with significant
overlap with the NR result. In our case, all CBC waveforms employed in the classification
datasets were obtained using pyCBC [75] with the SEOBNRv4_ROM approximant while the
regression datasets use SEOBNRv4HM_ROM [76], IMRPhenomPv2 [77] and IMRPhenomD [78]. For
the sake of simplicity we start by considering spinless black holes and quasi-circular binaries
with no orbital eccentricity. Furthermore, since current GW detector networks are far more
sensitive to the plus polarization than to the cross one, we only generate plus-polarized waves.
Harking back to equation (2.24), this has the drawback of making impossible to break the
degeneracy between luminosity distance and inclination.

6.1.1 Single detector waveforms for classification

The purpose of this first dataset is to allow our DL models to discern the presence of a
GW signal with data collected from a single detector. In particular we employ a 500 s noise
segment from the Hanford detector with initial GPS time tGPS = 1187058342 s. Defining
τ to be some time from the start of our noise segment, we randomly select τ0 ∈ [5, 495] s
and isolate the window [τ0 − 5 s, τ0 + 5 s]. This strain selection, which we denote as n,
is then whitened through inverse spectrum truncation , using its own amplitude spectral
density (ASD) (that is, the signal is fourier transformed to the frequency domain, divided
by the ASD, then transformed back to time domain). Then, we apply a bandpass filter from
20 Hz to 300 Hz, as well as notch filters at the individual frequencies 60 Hz, 120 Hz and
240 Hz. For the generation of the waveform signal strain h, a random pair of black hole
masses (m1,m2) ∈ U ([5, 100]) M� is selected for a BBH merger with luminosity distance
dL = 2000 Mpc and inclination ι = π

2
. This waveform is whitened using the ASD of the
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selected noise strain n and the same filtering process is undertaken. The resulting waveform
is injected into the noise window in such a way that the maximum amplitude occurs at τ0.
Following this, the constant-Q transform [79] is calculated for the [τ0−0.16 s, τ0+0.4 s] interval
in the composite signal S = h + t, and a spectrogram is produced. A second spectrogram
without signal injection is also generated for the same interval. Both spectrograms are saved
as images and appropriately labeled as “signal” and “background”. This process is iterated
5000 times to build our dataset. The same procedure is taken for the luminosity distances
dL = 100, 300, 1000, 1500 and 2000 Mpc. A summary of the single detector classification
procedure is shown in the first row of Table 6.1.

6.1.2 Multiple detector waveforms for classification

In order to combine the data from all three detectors (Hanford, Livingston and Virgo) we
select coincident segments of 500 s from all detectors starting at a certain tGPS time. The
process is then identical to that of a single detector case with τ0, m1 and m2 randomly
generated. A [τ0−5 s, τ0+5 s] time window is extracted from the longer segments for the three
detectors. The resulting background strain data, nH , nL and nV , for Hanford, Livingston and
Virgo interferometers respectively, is treated in the same way as described above. However,
when injecting a signal, one must make sure that the specific ASD of each detector is being
used. After the generation of the signal waveform and its injection into the background
noise segments, we include the antenna power from each detector into our time series SH ,
SL and SV . At this stage, we can emulate the sky position for the signal by randomly
choosing one of three detectors as a reference, and shift the beginning of the other two time
series according to their time delay with respect to the reference detector. Once the three
spectrograms are produced they are combined into a 560 × 560 × 3 array in such a way
that each of them is represented by a certain colour channel in a RGB image. Specifically,
Hanford, Livingston and Virgo datasets are mapped into the Red, Green and Blue channels
respectively, as can be seen in Figure 6.2(a). As in the single detector case, an equivalent
background spectrogram without signal injection is produced. Both, background (left) and
signal (right) spectrograms, are represented in Figure 6.2(b). Once again, this process is
iterated 5000 times for each luminosity distance we consider. The classification procedure
for the multiple detector case is summarized in the second row of Table 6.1.
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(a)

(b)

Figure 6.2: (a) Combining single detector spectrogram data into a single RGB image, to be
used by the deep learning networks. The Hanford (top-left), Livingston (top-right) and Virgo
(bottom-left) spectrogram data, are used as the Red, Green and Blue images, respectively,
to build the full RGB image (bottom-right). (b) RGB image from background(’bg’) labeled
spectrogram (left) as compared with a spectrogram labeled as signal (’sig’) from a GW
injection into noise (right).
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6.1.3 Mass dependence dataset

The purpose of this dataset is to check how the trained models perform depending on the
BH binary’s component masses and luminosity distance, both for the single and multiple
detector cases. To this end, we consider a number of mass combinations, where for each m1,
ranging from 5 to 100 M� in steps of 2 M�, there is a set of values for m2, in the range
[m1,100] M�, covered also with steps of 2 M�. Regarding the luminosity distance dL, we
use distances ranging from 100 to 2000 Mpc, in steps of 100 Mpc. The inclination is kept
fixed at ι = π

2
. For each dL and each of the 1225 (m1,m2) mass combinations, a waveform

is generated and injected into the detector’s noise following the same procedure as described
above. However, in this case, only the spectrograms with the injections are saved and labeled
with the corresponding distance and mass.

6.1.4 Regression datasets

We want to understand if DL methods can be used to extract information about the physical
parameters from the generated spectrograms. This procedure is typically denoted as regres-
sion. For this purpose, a larger dataset was deemed necessary and only the multiple detector
case, was considered. To avoid a dependence on a particular approximant, three different
datasets for each of the approximants SEOBNRv4HM_ROM, IMRPhenomPv2 and IMRPhenomD were
built. It is also relevant to note that, due to an apparent degradation of the regression close
to the upper range of the sampled distances, we decided to consider distances up to 4 Gpc,
although we set our range of operation to go up to a maximum distance of 2.5 Gpc. Here,
we do not build separate datasets for particular values of the distance but instead let dL be
randomly generated within this range. The component masses m1 and m2 are again ran-
domly sampled in the [5, 100] M� interval while the inclination takes a random value in the
[0, π] interval. We also sample the sky position by taking into account the antenna pattern
of each detector. In our regression dataset black holes are assumed to have a dimensionless
spin in the range [−1, 1] and those are aligned with the orbital angular momentum, allowing
the computation of the effective inspiral spin, χeff ,

χeff =∼ m1χ
‖
1 +m2χ

‖
2

m1 +m2

, (6.1)

where χ‖i is the component of the i-th spin along the orbital angular momentum. Since we
assume from the beginning that a given input to the regression model will necessarily contain
a GW signal of some sort, we need not to worry about generating the background-only cases.
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Classification
Parameters Train size Validation size

Single detector

4000 images 1000 images

(m1,m2) ∼ U(5, 100) M�,
dL = [100, 300, 1000, 1500, 2000] Mpc,

ι = π
2
,

approximant: SEOBNRv4_ROM
560 × 560 pixels
8-bit gray scale
Total images 20000 5000

Multiple detector

4000 images 1000 images(same parameters as above)
560 × 560 pixels

8-bit RGB
Total images 20000 5000

Table 6.1: Description of the classification datasets for training and validation with both
single and multiple detectors. The images are generated from the wave-forms calculated by
pyCBC. For the classification datasets, the individual masses (m1,m2) are sampled with an
uniform distribution within the range of 5 to 100 M�.

Furthermore we impose a threshold for the signal-to-noise ratio (SNR) so that we only allow
cases where SNR > 5. The sizes of the SEOBNRv4HM_ROM, IMRPhenomPv2 and IMRPhenomD

datasets are, respectively, 15961, 12922, and 13281. An extra dataset focused on lower masses
(m1,m2 ∈ [5, 35]M�) was also generated using the SEOBNRv4HM_ROM approximant, containing
15538 events. This was combined with the original SEOBNRv4HM_ROM dataset for a lower-mass
weighted dataset with a total of 31499 items. All this information is summarized in Table
6.1.

6.2 Building a network for classification

6.2.1 Single-detector training distance comparison

For the task of classification, we chose to use a residual network architecture as described
in 4.1.2. We use the fastai library for python, which allows for the quick building of a DL
network and gives access to some pre-trained ResNet architectures. Using the single-detector
classification datasets described in 6.1, we set up a series of 34-layer networks, trained for
10 epochs using cyclical learning rates [80] between 2 × 10−3 and 2 × 10−1 and using L2
regularization with λ = 1× 10−5, in order to explore how the signal injection distance affects
network performance on injections at different distances. This is portrayed in Figure 6.3,
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Regression
Parameters Train size Validation size

Multiple detector

12769 images 3192 images

(m1,m2) ∼ U(5, 100) M�,
dL ∼ U(100, 4000) Mpc,

ι ∼ U(0, π),
χeff ∼ U(−1, 1),

restriction: SNR > 5
approximant: SEOBNRv4HM_ROM

224 × 224 pixels
8-bit RGB

(same parameters as above) 10338 images 2584 imagesapproximant: IMRPhenomPv2
(same parameters as above) 10625 images 2656 imagesapproximant: IMRPhenomD

Total images 43009 14689
Extra dataset

Multiple detector

15538 images

(m1,m2) ∼ U(5, 35) M�,
dL ∼ U(100, 4000) Mpc,

ι ∼ U(0, π),
χeff ∼ U(−1, 1),

restriction: SNR > 5
approximant: SEOBNRv4HM_ROM

224 × 224 pixels
8-bit RGB

Table 6.2: Description of the regression datasets for training and validation. The images
are generated from the wave-forms calculated by pyCBC. For the regression dataset the
parameters of individual masses, distances, inclination and spin are uniformly sampled. The
extra dataset is generated in order to include more examples of small masses and complement
the dataset generated with the SEOBNRv4HM_ROM approximant.
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(a) (b) (c)

Figure 6.3: Performance of the different classifier networks. a) The accuracy of the differently
trained networks on events injected at the same distance as each NN’s training distance. b)
Accuracy of the networks when tested on events injected at 2Gpc. c) Accuracy of the network
trained with 2Gpc injections on events injected at different distances.

where accuracy refers to a metric calculated as

Acc =
TP + TN

TP + TN + FP + FN
,

where TP (TN) corresponds to the correctly identified signals (backgrounds) and FP (FN)
correspond to incorrectly classified signals (backgrounds). We found that, while networks
trained on closer (louder) injections showed very high accuracy (over 99%) for loud events,
they were not able to detect signal injections at larger distances, showing a dismal 50%
accuracy on 2Gpc injections, no better than a coin toss. On the other hand we found that
while training on more distant (quieter) injections yielded a lower accuracy than the first
case, at 72.2%, this network retained the ability to perform its function competently over
all tested injection distances. Following the previously mentioned principle that a residual
network should always retain or increase its performance when more layers are added, we
finally choose to train a 101-layer ResNet on the 2Gpc classification dataset. Though this
did not yield an increase in performance regarding the accuracy metric, the training time is
not prohibitively long, and as such we use this architecture moving forward.

6.2.2 Comparing single-detector and multiple-detector performance

Having settled on an architecture and a training set, we now want to compare the classification
performance when using data from a single detector in a grayscale image versus using data
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Figure 6.4: Simulated signal scores using one single detector for different luminosity distances
and evaluated with DL networks trained with GW waveforms from BBH mergers at a lumi-
nosity distance of 2000 Mpc. Results are shown as a function of the BH masses of the binary
system, m1 and m2, for GW signals from sources at 400 Mpc (left), 1000 Mpc(middle) and
2000 Mpc(right).

Figure 6.5: Simulated signal scores using multiple detectors for different luminosity distances
and evaluated with DL networks trained with GW waveforms from BBH mergers at a lumi-
nosity distance of 2000 Mpc. Results are shown as a function of the BH masses of the binary
system, m1 and m2, for GW signals from sources at 400 Mpc (left), 1000 Mpc(middle) and
2000 Mpc(right).

from multiple detectors in an RGB image. Training a 101-layer ResNet for 5 epochs with
RGB spectrograms of signal injections at 2Gpc for 10 epochs, we obtain an accuracy of 82.4%,
a 14% performance increase when compared to the equivalent single-detector case. This is
further illustrated when we test both the single-detector and multiple-detector networks on
the datasets generated in 6.1.3, as shown in Figures 6.4 and 6.5: for injections at some given
distance, not only is the range of detectable mass combinations (i.e. score > 0.5) larger,
the scores for the multiple detector network are overall higher than the single detector case,
implying this network is generally more confident than its predecessor. Hence we choose to
use multiple detector data for our work.

Having settled on an architecture for our classifier, it is now useful to look at the receiver
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Figure 6.6: ROC curve for the best-performing classifier on multiple-detector 2000Mpc data.
The red star displays the current threshold location on the ROC used for classifying the
events into signal (score ≥ 0.5) or background (score ≤ 0.5).

operating characteristic (ROC) curve of the network in Figure 6.6, regarding the 2000Mpc
data. We can see that using the current score threshold for detection we obtain a signal
efficiency εS = TP

TP+FP = 72% as well as a background rejection 1 − εB = FP
FP+TN = 92%.

However, by adjusting the threshold, we could optimize the classifier’s performance to our
need, depending on whether we would like to be more or less strict with the detection process.

6.3 Building a network for parameter estimation

For the task of parameter estimation (or regression) we will test the ability of our model
to retrieve physical quantities from spectrogram data. Our target parameters for this work
are the luminosity distance dL, the chirp mass of the binary systemM, the NAP captured
by the detector, and the effective inspiral spin χeff. We again choose to use a residual-based
architecture, although there are a few key differences when compared to the classifier network:

• We use a cross-residual network (xResNet), a tweaked version of ResNets that can
enable greater network generalization [81].
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• We use an 18-layer network, as increasing depth in residual networks can actually
hamper regression performance [82].

• We use blur pooling instead of simple max pooling layers, to make the network more
resistant to translational shifts in input data [83].

• We place dropout layers with probability 0.5 after convolutions and before pooling, as
described in [74], in order to obtain an approximately Bayesian network.

For each of the regression datasets described in 6.1.4, a network was trained for 7 epochs
using a cyclical learning rate with an initial value of 1 × 10−2 and using 1 × 10−3 as the λ
parameter for weight decay. Due to the usage of blur pooling and the change in architecture,
this network is more computationally expensive to train than the classifier network. To
compensate for this, we downsample our input spectrograms to a resolution of 128× 128.

Classification
Base architecture Hyperparameters Accuracy

input size: 275× 275× 3(1),
ResNet-101 batch size: 8 images, Single: 0.72

+ custom header learning rate: [2× 10−3, 2× 10−1], Multiple: 0.82
weight decay: 1× 10−5

Cross Entropy Loss (CE)
Regression

Base architecture Hyperparameters
xResNet-18 input size: 128× 128× 3,

+ Blur average layer batch size: 64 images,
+ MC Dropout learning rate: 1× 10−2,
+ custom header weight decay: 1× 10−3,

Mean Squared Error loss (MSE)

Table 6.3: Convolutional Neural Networks architectures employed for the classification, mul-
tiple (single) detectors, and regression tasks. The first two columns show the setup of the
networks, while the last column in the classification table shows the achieved accuracy. The
custom header for the classification CNN is described in (TODO), the custom header for the
regression model has the same structure with the main difference being that the final layer
has only one unit with a linear activation function.

6.3.1 Parameter estimation tests on synthetic injections

Figures 6.7 to 6.10 show the networks’ behaviour on injected signals from each network’s
validation set, for varying values of signal to noise ratio (SNR). To take advantage of MC
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Figure 6.7: Calibration results for dL using the different approximant datasets,
SEOBNRv4HM_ROM (top), IMRPhenomPv2 (middle) and IMRPhenomD (bottom), and for different
SNR thresholds.
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Figure 6.8: Same as 6.7 but showing the calibration results for the network antenna power.
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Figure 6.9: Same as 6.7 but for the chirp mass in the source frame.
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Figure 6.10: Same as 6.7 but for the effective inspiral spin.
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Figure 6.11: Mean absolute error (MAE) of the dL predictions as a function of SNR, for the
SEOBNRv4HM_ROM dataset.

dropout, each spectrogram in the dataset was forward-passed through the network 100 times,
with the dropout layers stochastically turning on and off at each pass. For each event, the
predictions represented in the figures are the mean value of the 100 evaluations.

As a general rule, we do not notice significant differences between networks, suggesting
that, at least in this parameter space, the choice of approximant is not a particularly impactful
factor. As such, Figures 6.11 to 6.14 show the mean absolute error (MAE) for the predictions
as a function of SNR only for the SEOBNRv4HM_ROM dataset.

For the case of the luminosity distance, we see that for the lower SNR threshold we
obtain a significant prediction spread for larger injection distances. As we increase the SNR
threshold we start obtaining distribution closer to the ideal behaviour (represented by the
dashed white line). However, note that due to the 1

dL
dependence in the amplitude, the

requirement of a high SNR implies, on average, a restriction to lower distances. Figure 6.11
shows that the MAE of the predictions starts at around 0.4Gpc for the lowest SNRs and
tends to the order of 0.1Gpc for higher SNRs.

The distribution of predictions for the NAP shows a similar dependence on SNR, however
it is noticeable that with the lowest SNR threshold, along with the distribution of events
around the diagonal line, there is a population of predictions around the horizontal line at
NAP ≈ 0.6. This may be a sign of a fundamental limitation: for lower SNR values, the
likelihood of an event only being clearly visible in a single detector is higher, and in such
cases we would not expect there to be enough information to be able to reconstruct the
NAP. Since this population cannot be discerned in Figure 6.12, interpretations of the MAE
for SNR ∈ [5, 10] are difficult.

The predictions for the chirp mass in the source frame (Figure 6.9) turn out to be quite

77



Figure 6.12: Mean absolute error (MAE) of the NAP predictions as a function of SNR, for
the SEOBNRv4HM_ROM dataset.

Figure 6.13: Mean absolute error (MAE) of theM predictions as a function of SNR, for the
SEOBNRv4HM_ROM dataset.
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Figure 6.14: Mean absolute error (MAE) of the χeff predictions as a function of SNR, for the
SEOBNRv4HM_ROM dataset.

impressive even for lower SNR thresholds, with a very tight prediction distribution, which
becomes even more accurate as SNR increases. Analysis of Figure 6.13 reveals that the worst
case scenario for the MAE of the prediction is a deviation of 4M�, decreasing to around
2.5M� for higher SNRs. This is a remarkable result.

The predictions for the effective inspiral spin (Figure 6.10) follow the behaviour seen for
the chirp mass, though with a larger spread. In Figure 6.14 we see once again a significant
drop of the MAE of the prediction as SNR increases. It is worth noting that this is a higher
order effect in the GW waveform, and the ability to detect these subtler effects is in itself
worthy of highlight.
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7 Results and discussion

Finally, we shall test our classifier and regression networks on real GW data released by the
LIGO/Virgo collaboration. We noticed at this point that the network was hesitant to assign
low chirp mass values to the events, and on further investigation realized that low masses
were quite under-represented in our datasets (likely due to the requirement that SNR > 5).
This was the reason the low-mass extra dataset in Table 6.1 was produced, and a new network
was trained on a superset composed of the original SEOBNRv4HM_ROM data concatenated with
the extra dataset providing the low-mass correction, using a 70/30 train/validation split.
Initially, this analysis encompassed only the ten confident BBH events in GWTC-1 as well
as the “marginal confidence” from the same catalog [84], comprised by the O1 and O2 runs.
However, on the 27th of October, 2020, the LVC released a new catalog, GWTC-2, containing
thirty-seven new BBH events [85]. Despite having had our networks trained on O2 conditions
(the O3 run has a significantly reduced noise floor), we managed to, in a matter of hours
from the release, do a full analysis of the new catalog, obtaining satisfactory results as will
be described below. While ideally the networks should be trained on data under the same
conditions, the fact that these tools can be so quickly applied and show already some degree
of generalization is highly encouraging.

7.1 Classification network

To analyse real GW events we follow a procedure similar to what was described in 6.1,
fetching the strain data for the available detectors at the GPS time described in the released
data and combining the individual spectrograms into RGB images. Since we trained our
detector on BBH signals, we do not analyse data known to belong to binary neutron star or
neutron star-black hole events, leaving out GW170817 from GWTC-1 as well as GW190425
and GW190426 from GWTC-2. GW190814 is included, although one of the objects involved
is officially estimated to have a mass around 2.6M�, which is generally deemed too heavy
for a neutron star but too light for a black hole [86].
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GWTC-1 Confident GWTC-1 Marginal GWTC-2

Event Score Event Score Event Score Event Score

GW170814 1.00 MC151116 0.73 GW190521 1.00 GW190708_232457 0.98

GW150914 1.00 MC161217 0.72 GW190602_175927 1.00 GW190909_114149 0.97

GW170823 1.00 MC170705 0.51 GW190424_180648 1.00 GW190514_065416 0.96

GW170104 1.00 MC170630 0.49 GW190620_030421 1.00 GW190814 0.95

GW170729 0.99 MC170219 0.45 GW190503_185404 1.00 GW190521_074359 0.95

GW170809 0.97 MC161202 0.40 GW190727_060333 1.00 GW190731_140936 0.92

GW151012 0.96 MC170423 0.35 GW190929_012149 1.00 GW190513_205428 0.92

GW170608 0.92 MC170208 0.33 GW190915_235702 1.00 GW190421_213856 0.87

GW170818 0.88 MC170720 0.30 GW190630_185205 1.00 GW190412 0.81

GW151226 0.87 MC151012A 0.26 GW190519_153544 1.00 GW190728_064510 0.77

- - MC151008 0.20 GW190706_222641 1.00 GW190719_215514 0.76

- - MC170405 0.14 GW190413_134308 1.00 GW190803_022701 0.66

- - MC170616 0.12 GW190701_203306 1.00 GW190930_133541 0.58

- - MC170412 0.09 GW190517_055101 1.00 GW190828_065509 0.56

- - - - GW190408_181802 1.00 GW190924_021846 0.40

- - - - GW190910_112807 1.00 GW190707_093326 0.35

- - - - GW190828_063405 0.99 GW190720_000836 0.16

- - - - GW190413_052954 0.99 - -

- - - - GW190512_180714 0.98 - -

- - - - GW190527_092055 0.98 - -

Table 7.1: Classifier scores for GWTC-1 marginal detections (left), GWTC-1 confident de-
tections (middle) and GWTC-2 detections (right). Scores that pass the classifier’s threshold
for detection (score ≥ 0.5) are in bold.

The results from our classifier are displayed in Table 7.1. All the confident BBH detections
from the LVC for GWTC-1 are corroborated by the classifier network, with GW170814,
GW150914, GW170823 and GW170104 getting the maximum score of 1.00, while GW151226
is given a score of 0.87, the lowest of the lot. For the GWTC-1 marginal events we get lower
scores across the board and indeed most of the events are rejected, though there are three
events (MC151116, MC161217 and MC170705) which pass the threshold for detection and
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may warrant further analysis. The results for the GWTC-2 catalog are also impressive,
especially taking into account the lack of optimization: of the thirty-seven events analysed,
thirty-four are corroborated by the network, twenty-seven of which are given scores above
the 0.9 mark. Over both catalogs, this amounts to a ∼ 94% accuracy for our classifier.

As an aside remark, it is interesting to note that we have also obtained high scores for
signals proposed in alternative GW catalogs [87, 88]. For example, our method yields a score
of 0.75 for GW151216, proposed in [88].

7.2 Regression network

7.2.1 GWTC-1

To perform parameter estimation on the GWTC-1 confident detections, we must forward-pass
the spectrograms of the events through a model several times to make use of the Bayesian
properties of MC dropout. The mean and standard deviation of the predictions can then be
calculated. For our analysis we chose to do a total of 1500 passes per event to be safe, though
this is probably excessive and we have obtained similar results using only 200 passes. Our
initial results are presented in Figure 7.1, with the circular marker representing the mean, the
blue box representing the 90% interval, and the red error bars delimiting the 3σ range5. This
is plotted against the 90% confidence interval (in green) reported in the LVC data release.
The top panel shows predictions obtained by passing each event 500 times to each of the 3
networks trained on different approximants, then combining the resulting distributions. The
bottom panel shows the predictions using the network trained on the low-mass-corrected
dataset, with each BBH event spectrogram forward-passed through the network 1500 times,
again making use of MC dropout to obtain a distribution of outputs.

Chirp mass For the case of the chirp mass we find that, using the 3 network combination,
prediction distributions for 6 of the 10 GWTC-1 events are incompatible with the published
LVC data, as represented on the leftmost panel of Figure 7.1a. This is particularly noticeable
in the cases of GW151226 and GW170608: the network is unable to correctly predict lower
chirp-mass values. We expect this to be related to the lack of lower mass representation in
the original datasets. In fact, when we analyse the same data with the network trained on

5It is important to note that we do not expect the uncertainty we obtain from MC dropout to be the
full uncertainty associated with some prediction. Crucially, MC dropout assumes homoskedasticity, that is,
equal variance (or noise) throughout all data, which is not necessarily our case. Furthermore, there may be
sources of variance that MC dropout does not take into account.
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(a)

(b)

Figure 7.1: Predictions of the DL network for the chirp mass (left), luminosity distance
(middle) and effective inspiral spin (left). The top panels (a) do not include the low-mass
correction while the bottom panels (b) do.
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the low-mass corrected dataset, we see a considerable improvement. Looking at the leftmost
panel of Figure 7.1b, we now find that our MC dropout 3σ range for the chirp mass predictions
overlaps with the LVC 90% confidence interval for all 10 GWTC-1 events.

Luminosity distance The middle panel of Figure 7.1a displays the combined results for
the three approximants without the low-mass distribution, for the dL of the GWTC-1 con-
fident BBH detections. For the luminosity distance most of our predictions are compatible
with the LVC predictions up to a network uncertainty of 3σ, with the single exception being
GW170823. However, when we use network trained with the low-mass correcttion, as dis-
played in the middle panel of Figure 7.1b, all of our predictions become compatible with the
LVC values.

Effective inspiral spin When inferring the effective inspiral spin χeff using the combined
results for the three approximants and without including the low-mass distribution, we find
six events with a significant disagreement with published results (in the same sense as dis-
cussed previously for the chirp mass), as can be seen in the rightmost panel of Figure 7.1a.
As shown in the corresponding panel of Figure 7.1b, when the network is trained with the
addition of the low-mass dataset, our results improve. All events, except for GW151226, show
compatibility between the LVC 90% confidence interval and the MC dropout 3σ uncertainty.

7.2.2 GWTC-2

Finally we will discuss the application of our best-performing network (the one trained on
the low-mass corrected dataset) to the BBH events from the GWTC-2 catalog, stressing
the point that our network was not optimized for the noise conditions of the O3 run. As
previously done, we perform parameter estimation on the chirp mass, luminosity distance and
effective inspiral spin, forward-passing the spectrograms of each event through the network
1500 times. The results and comparison with LVC values are plotted in Figure 7.2. For the
chirp mass, we find our MC dropout 3σ range to be compatible with the LVC 90% confidence
interval for 33 of the 37 analysed events. We find a very decent performance in estimating
the effective inspiral spin as well, with 29 compatible events. Our worst performance in the
GWTC-2 events comes in the estimation of the luminosity distance, with only 24 compatible
events. Since all of the incompatibilities come from underestimations of the LVC values, this
may be related to the fact that the distance’s effect on the waveform is simply as a scalar
overall factor. As the noise floor in O3 is lower than in O2 and O1, whose data was used
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Figure 7.2: Best-performing DL network’s prediction for the chirp mass (left), luminosity
distance (middle) and effective inspiral spin (left) for the BBH events from GWTC-2.
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for training, and given the fact that our method for producing the spectrograms casts the
power amplitudes to the 8-bit integers in a relative way, the network may be interpreting a
signal with a higher SNR due to a smaller noise factor as a signal from a smaller distance.
Nonetheless, the fact that the network can infer physical parameters such as chirp mass
and spin with some accuracy despite no optimization for the noise conditions reinforces the
potential inherent to these methods.
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8 Conclusions

The goal of this dissertation was to develop a novel manner of performing detection and
parameter inference of BBH events. While current methods for detection [89, 90, 91, 92]
and parameter estimation [93, 94] exist, the work presented here can serve as the basis of a
pipeline that is able to easily integrate classification and regression tasks. We achieve this
by studying spectrograms (save of signals in the time-frequency domain, and training neural
networks on synthetic signal injections to be able to perform the required tasks.

We started our investigations by training a series of ResNets on signal injections into real
detector strain data at different distances. We found that training a network for far-away,
fainter signals maintained a good level of performance even for closer, louder signals, while
the opposite was not true. Furthermore, we noticed that combining the spectrograms of all 3
available detectors into a single RGB image and training our network on such data provided
a significant boost to the network’s accuracy. On application to real BBH events from the
LVC’s GWTC-1 catalog, the network corroborated all the confident detections and identified
3 candidates from the marginal confidence set as GW signals. Applied to GWTC-2 data
without optimization for different noise conditions, 34 out of 37 candidates for BBH events
pass the network’s threshold for detection.

For the task of parameter inference, or regression, we trained an 18-layer xResNet on RGB
spectrograms of signal injections with varying physical spins, mass, distance and sky position,
setting distance, chirp mass, network antenna power (as a proxy for sky position) and effective
inspiral spin as our regression targets. F̃urthermore, we use MC dropout to obtain a natural
estimation of the network’s uncertainty. At a fledgling level of development, we show that it
is possible to retrieve the relevant parameters from the data with varying levels of accuracy.
Though we found particular success in the case of the chirp mass, it is worth noting that
the efective inspiral spin only has influence in higher-order terms of the GW waveform,
and so the ability to resolve it highlights the presented method’s sensitivity. Performing
parameter inference on GWTC-1, we found remarkable agreement with published data: All
of our prediction distributions for the chirp mass and luminosity distance are compatible
with the LVC’s 90% confidence interval up to an MC dropout uncertainty of 3σ. Among the
effective inspiral spin predictions, only the distribution for GW151226 is incompatible with
the published data. For GWTC-2, again without optimization for different noise conditions,
from a total of 37 BBH events we find 33, 29 and 24 compatible events for our predictions
on the chirp mass, effective inspiral spin and distance, respectively.

It is important to note that despite the initial promising results, there is a lot of room for
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future work:

• While deep residual networks were used for the work presented here, a more in-depth
architecture search could provide a model with better performance.

• By storing our spectrograms as RGB images, we limit ourselves to the 8-bit integer
range. Furthermore, the normalization used (where for each detector’s spectrogram
the minimum value is cast to 0 and the maximum value is cast to 255) means we
lose track of the absolute value of the signal power. This also means that the level of
noise can be suppressed in high SNR injections, which may undermine MC dropout
performance as it assumes homoskedastic noise. Adapting the networks to use pure
floating-point spectrogram tensors, without normalization, may allow for an increase
in performance. This is work in progress at this point.

• This type of classifier can in principle be extended to look at different morphologies of
signal (such as neutron star mergers or core-collapse supernovae). On the other hand,
it could also be used to detect and classify the different types of glitches that plague
GW interferometers. Some initial explorations of this have shown promise.
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