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Abstract—The non-caloric sweeteners market is catching up
with the market of conventionally used sugars due to the
benefits of preventing obesity, tooth decay and other health
problems. Developing strategies for designing easier-to-produce
novel molecules with a sweet taste and less toxicity are up-to-
date motivations for the food industry. In this sense, Machine
Learning (ML) approaches have been reported as cutting-edge
technologies to guide the design of new molecules towards specific
objectives, including sweet taste.

The largest known dataset of sweet molecules is here provided.
The dataset contains fully integrated 9541 sweeteners and 1141
bitterants from FooDB, FlavorDB and literature. This robust
dataset allowed the development of standard Machine and
Deep Learning pipelines towards conceiving Structure-Activity
Relationships (SAR) between molecules and sweetness.

In this work, we showcase that Textual Convolutional Neural
Networks (TextCNN), Graph Convolutional Networks (GCN),
and Deep Neural Networks (DNNs) outperformed most of tradi-
tional ”shallow” learning approaches. These Deep Learning (DL)
models produced platforms to guide the design of new sweeteners
and repurposing existing compounds.

Sixty million compounds from PubChem were evaluated using
these models. Herein, we deliver a dataset of 67724 compounds
that present high probabilities of being sweet. Quick searches
in literature allowed us to find 13 molecules reported as potent
sweetening agents, revealing that our approach is suitable for
finding new sweeteners, valuable to expand food chemistry
databases, repurposing existing chemicals and designing novel
molecules with a sweet taste.

Index Terms—Machine Learning, Deep Learning, Computa-
tional Chemistry, Sweeteners

I. INTRODUCTION

Although the demand for caloric sweeteners is predicted

to increase around 1.5% until 2027 (OECD-FAO, 2018), this

represents a low growth rate compared to previous periods [1].

The undissociated health concerns are the primary cause for

this stagnation and for the race for non-caloric sweeteners in

the last 10-15 years and, expectedly, in the years to come [1].

The sweet taste, unequivocally and innately attractive to

humans, is the product of the interaction of sweet molecules

with T1R2 and T1R3 subunits that compose the heterodimer

belonging to the class C of the G-protein coupled receptor

family [2]. In spite of its impact in the food industry, the sweet

signal transduction response triggered by the T1R2–T1R3

complex remains largely unknown [2].

On the other hand, many authors broadly explored the

molecular basis of sweetness in carbohydrates, amino acids,

and artificial sweeteners [3]. The first theory postulated that

there would be a relation between multiple hydroxyl groups

and chlorine atoms. Later on, a more robust hypothesis the-

orised that a distance greater than 2.5 ångströms (Å) but

not inferior to 4 Å separating two electronegative atoms of

a molecule, let them be A and B, would elicit a sweet taste

[4]. According to this theory, AH was usually an oxygen or a

nitrogen atom attached to a hydrogen, while B was a Lewis

base. The proposed AH-B (2.5-4 Å) group was defined as the

”saporific group”. A hydrophobic X group was later added to

the theory since most amino acid L-enantiomers were sweet

and D-enantiomers were not, even though satisfying the AH-B
requirement [5].

The sensation of sweetness relies on the structure of both

the receptor and the compounds in interaction. In this sense,

the changes in compound structures can lead to shifts in

taste potency and elicitation [6]. While solid lines of evidence

point to the enumerated hypotheses on the molecular basis of

sweetness as grounded theories, they seem insufficient to cover

tweaks in structures or completely explain the phenomena [7].

Other molecular features also seem essential to confer the

sweet taste, hindering the capability of these theories to predict

taste on a large scale [8]. Moreover, as structures of sensory

receptors are not entirely resolved, and although ligand-based

methods have found some success in predicting taste, they

are mainly restricted to specialised families of compounds
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[6]. Correspondingly, determining molecular sweetness is still

a challenging task. However, the advent of online resources

and food chemistry databases provides means for data-driven

approaches toward implementing computational models to

predict sweetness, which are paramount in this context.

Insights into sweeteners’ molecular structures may un-

doubtedly help sustain and strengthen the molecular basis

of sweetness, providing a valuable platform to design novel

molecules with a sweet taste [9]. In this sense, the last

decades were marked with the development of (Quantitative)

Structure-Activity Relationship (QSAR) models for sweetness

prediction. Since the early 1980s, several authors have focused

on training predictive models to discriminate sweet, bitter

and tasteless compounds. From 1980 to 2009, the most used

(Q)SAR models were Local Linear Approximation (LLA),

k-Nearest Neighbours (kNN), Classification and Regression

Trees (CART) algorithms, and Quadratic Discriminant Analy-

sis (QDA). These models were trained with small datasets and

tested against even smaller ones, mostly performing poorly

[10]. The datasets size ranged from 20 to 132 compounds,

including sweet and bitter aldoxime derivatives [5], perillar-

tine derivatives, aspartyl dipeptides, carbosulfamates [11], and

sulfamate derivatives [12]–[14]. More recent studies resorted

to larger datasets to train kNNs [10], Support Vector Machines

(SVM) [15], Random Forests (RF) [6], [15], [16], and partial

least squares (PLS) regression analysis [17], achieving better

results. Moreover, one of these last approaches enumerated

structures and properties likely associated with sweetness

[17], while other delivered platforms to assess the flavour of

molecules in target datasets [6], [16].

The purpose of this work was to compile sweet, bitter

and compounds with other flavours from available online

resources and develop a relevant and robust SAR system

based on both Machine Learning (ML) and Deep Learning

(DL) models. Moreover, we aim at validating one of our

models against the established theories of molecular basis

by interpreting the developed SAR system from a molecular

point of view. Ultimately, the main goal is to create a fast

and optimised system to classify molecules in terms of sweet-

ness. This system was used to conduct an optimised search

over PubChem’s molecular space towards repurposing existing

chemicals, corroborating our approach’s usefulness.

II. MATERIAL AND METHODS

A. DeepMol and overall pipeline

DeepMol is a python package that provides a smoother

approach to ML/DL pipelines applied to chemoinformatics.

The package covers the molecules preprocessing, genera-

tion of features, their selection, model construction, and

hyperparameter optimisation. As for the model construc-

tion, DeepMol uses Tensorflow (https://www.tensorflow.org/),

Keras (https://keras.io/), Scikit-learn (https://scikit-learn.org/)

and DeepChem (https://deepchem.io/) to build custom ML and

DL models or use pre-built ones. Moreover, it uses the rdkit
”Mol” object as the data structure to represent molecules. It is

worth noting that rdkit (https://www.rdkit.org/) is the de facto

package for chemoinformatics and computational chemistry,

providing compliance with a vast number of frameworks,

including those specialised for ML/DL tasks.

The first phase of this work was to collect and integrate

sweet, bitter and molecules with other flavours from various

data sources (Blue line of Fig. 1), developing an Extract-

Transform-Load (ETL) pipeline using the Django framework

(https://www.djangoproject.com/). Afterwards, an ML pipeline

was developed entirely using DeepMol (Red line of Fig. 1).

This pipeline was divided into five steps: data standardisation,

feature generation, feature selection, model construction and

hyperparameter optimisation. These steps will be explained

thoroughly in the following sections.

B. Data preparation

Before developing the ETL pipeline, we set up a stag-

ing area with molecular data from literature [6], [16], [18],

FooDB (November 2021), and FlavorDB. FooDB’s comma-

separated values (CSV) files were downloaded directly from

https://foodb.ca/downloads, whereas FlavorDB’s information

(November 2021) was retrieved with web-scraping and further

converted into a CSV file. In the ”Extract” step, the Simplified

Molecular Input Line Entry System (SMILES) string, flavour

properties, and external references were extracted from the

CSVs. SMILES are computational representations of com-

pounds’ chemical structures, vastly used in ML [19]. In the

”Transform” stage, molecule’s SMILES suffered a simple

standardisation and were converted into InChIKeys and rdkit
”Mol” objects. InChIKeys are unique 27 character keys to hash

the International Chemical Identifier (InChI) information, rep-

resenting compounds’ structures, providing concise notations

to index molecules in databases. Finally, in the ”Load” phase,

compounds were stored in a relational database and integrated

by InChIKeys to avoid redundancy.

SMILES strings were standardised according to the follow-

ing operations: removing isotopes, neutralising charges, keep-

ing the biggest fragment when disconnected; and, kekulizing

molecules to simplify and expose double bonds in aromatic

substructures. Finally, all duplicates were removed.

The dataset included sweet, bitter and compounds with

other flavours. Since the latter set is bigger, undersampling

was performed to balance the dataset. The Elkan algorithm

was used to compute K-Means and find 10 clusters in the

latent space of t-distributed Stochastic Neighbor Embedding

(t-SNE) computed from molecular similarities. The centroid

nearest compounds were chosen and kept for the final set of

molecules. Finally, the bitter ones were included in the class

”Non-sweet”, along with compounds with other tastes. The

final dataset was divided into train (50%) and test (50%) sets

by a stratified split.

C. Molecular representations

There are several ways of representing molecules for super-

vised tasks. Molecular descriptors represent two-dimensional

(2D) chemical properties and substructures, such as molecular

weight and number of rings, for instance. On the other
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Fig. 1. General pipeline. Blue line - Extract-Transform-Load (ETL) pipeline. Red line - Machine Learning pipeline

hand, molecular fingerprints (FP)s are one-dimensional bi-

nary bit-vectors encoding the presence or absence of spe-

cific substructures. These approaches are widely used and

established in developing (Q)SAR systems for sweetness [6],

[10], [15]–[17]. Molecular FPs are mostly divided into atom

pairs, and substructure FPs [20]. Accordingly, the former

hashes the molecular distance between pairs of atoms and

their chemical element, being documented as suitable for

large molecules [20]. In contrast, the latter captures circular

molecular fragments, which are suitable for predicting the

biochemical activity of small organic molecules, especially the

Extended Connectivity Fingerprints (ECFP) [20].
A recent approach is to use molecular graphs to represent

molecules, being the most straightforward way to map the

atoms and bonds into nodes and edges, adding atoms’ spatial

information as nodes or/and edges’ attributes. Even though a

graph is a 2D data structure, this representation can capture

3D information, not as spatial coordinates but as pairwise

relationships [19]. Such an approach provides a suitable

method to include chirality, bond length, and other relevant 3D

information in (Q)SAR [19]. Alternatively, one can encode the

SMILES sequence directly and use the resulting matrix to train

ML/DL models. The encoding process is preceded by SMILES

tokenisation to generate relevant tokens from a chemical point

of view [21].
In this work, all these representations were covered. We

applied rdkit molecular descriptors, circular FPs of two radius

sizes (ECFP4 and ECFP8), atom pair FPs (AtomPairFP), RDK

FPs to enumerate all possible substructures with atom count

from 2 to 4, molecular graphs, and SMILES encodings. As

for molecular graphs, we used two implementations from

DeepChem: Duvenaud graph convolutions [22] to construct

a vector of descriptors for each atom in each molecule with

default parameters, and a graph representation that accounts

for the characterisation of each node and edge. The informa-

tion contained for each node was the following: the atom type,

formal charge, hybridisation, hydrogen bonding, aromaticity,

degree, and the number of hydrogens. The information for

each edge included the bond type, whether the pair of atoms

are in the same ring, and the conjugation. Finally, one-

hot encodings were generated using Smiles Pair Encoding

(SmilesPE) [21] as a tokeniser to train Long Short-Term

Memory (LSTM)s and Bidirectional LSTMs (BiLSTM)s. The

maximum size of tokens was set to 138 to cover 99.9% of the

molecules of the dataset.

D. Feature Selection

The feature selection was the third step of the pipeline,

where three methods were employed:

• Boruta;

• Train a model of our choice and select the features above

a feature importance threshold (threshold of 1e-5) - this

approach will be referred to as ”SelectFromModel”;

• Selection of the k best features using a chi-squared test

(500 for FPs and 100 for 2D molecular descriptors);

Boruta is an algorithm that uses RFs to identify the most

relevant features to the model. This algorithm starts by dupli-

cating the dataset’s features and shuffling the values in each
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duplicated column. These values are referred to as ”shadow”

features. The RF classifier is trained with the ”real” and the

”shadow” features. Ultimately, the algorithm evaluates whether

the ”real” features are more important than ”shadow” features.

This process is repeated several times until all the necessary

and unimportant features have been identified.

The model used for the first and second approach was an

RF with 900 estimators, with a maximum depth of 80 and

2 minimum samples per leaf. The number of iterations for

Boruta was 100.

E. Model construction

One of the aims of this work was to evaluate the per-

formance of established ML algorithms and alternative DL

approaches. Accordingly, default RFs and SVMs from the

Python package Scikit-learn were implemented for each set

of generated FPs and 2D molecular descriptors. Alternatively,

Deep Neural Networks (DNN)s, LSTMs, BiLSTMs, Convolu-

tional Neural Networks (CNN)s, and Graph Neural Networks

(GNN)s were implemented.

DNNs were composed of an input layer with as many

neurons as the number of features, a variable number of dense

hidden layers and neurons in each layer (values that may be

optimised), and a dense output layer with one neuron for

predicting the class. The activation functions of the hidden

and output layers were Rectified Linear Unit (ReLU) and

sigmoid, respectively. Also, a dropout mask was added to

each hidden layer (the dropout rate being a hyperparameter

to optimise) to avoid overfitting. We defined the binary cross-

entropy as the loss function and the training algorithm selected

as another hyperparameter, from Adaptive Moment Estimation

(Adam), Adamax, Adaptive Gradient Algorithm (AdaGrad),

or AdaDelta. DNNs were trained with FPs and 2D molecular

descriptors.

LSTMs and BiLSTMs were composed of a variable number

of (Bi)LSTM, dense layers and number of neurons in each

layer (subject to optimisation). The output layer, the activation

functions, dropout, loss function, and training algorithms were

implemented as in the DNNs. LSTMs and BiLSTMs were

trained with one-hot encoding vectors.

Three GNNs were implemented: Graph Attention Networks

(GAT) [23], Graph Convolution Networks (GCN) [24] trained

with DeepChem’s graph representation, and a GNN trained

with Duvenaud graph convolutions’ features (GraphConv)

[22]. Finally, the textual CNN described in [25] was im-

plemented using DeepChem. The model pads and splits the

SMILES strings into characters that are used to generate one-

hot vectors and applies them to multiple 1D convolutional

filters. This process is followed by a max-over-time pooling

of the filters, extracting one feature per filter. The extracted

features are inputted into hidden dense layers to obtain pre-

dictions.

After implementing the models, a hyperparameter optimi-

sation was conducted with a randomised search. Hence, thirty

combinations of hyperparameters were randomly chosen for

each model and tested on 10-fold cross-validation. Finally,

the best model was selected based on the higher Receiver

Operating Curve-Area Under Curve (ROC-AUC).

Model construction, training and optimisation as well as all

the operations here reported were performed in a computer

with a Graphics Processing Unit (GPU) NVIDIA Tesla T4

with 16GB of memory.

F. Models evaluation - metrics

The SAR system will predict the probability of a com-

pound being sweet. The models’ performance will be assessed

through several metrics: sensitivity/recall, specificity, preci-

sion, Non-Error Rate (NER) (NER or balanced accuracy is

the average Sensitivity and specificity), and ROC-AUC (the

Area Under the Curve of a Receiver Operating Characteristic

curve).

G. Feature explainability

One of the aims of this work is to interpret the developed

SAR system from a molecular point of view. Accordingly, the

best ML/DL models were evaluated using SHapley Additive

exPlanations (SHAP) values. SHAP is a method used in

game theory to determine each player’s contribution in a

collaborative game towards success. When applied to ML

tasks, SHAP values help to measure each feature’s contribution

to the predictions made. The SHAP value for each feature

corresponds to its mean marginal contribution to the model’s

output on all the possible feature combinations.

H. PubChem’s search

The model with best balance in terms of the metrics above

and classification speed was used to perform an optimised

search over a large sample of PubChem’s molecules. These

compounds were classified by the chosen model and filtered

using a threshold of 0.8 (Filter 1 in Fig. 2). Then, the resulting

compounds are classified by an ensemble of the best models

for each molecular representation (Filter 2 in Fig. 2).

Fastest and top-
performance model

Ensemble with high
performance models 

Filter 1 

Filter 2

Repurposed molecules

Fig. 2. PubChem search pipeline. PubChem compounds were classified by
the fastest and more accurate models and filtered by a threshold of 0.80 (Filter
1). Then, the filtered compounds were classified by an ensemble of the best
models in terms of ROC AUC and Precision for each molecular representation.
In the end, a set of repurposed molecules is obtained.
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III. RESULTS

A. Data integration results

After the initial data integration, the database comprised

9541 sweet, 1141 bitter, and 69307 molecules with other

flavours. After standardisation, dropping duplicates, the num-

bers decreased to 8008, 1065 and 67789, respectively. The

primary source of exclusive sweeteners (unique to a given

source) was FlavorDB, followed by Tuwani et al. 2018, as

highlighted in Fig.3. Likewise, the major sources of unique bit-

ter compounds were Tuwani et al. 2018 and FlavorDB. FooDB

was, for a large margin, the primary source of compounds with

other flavours.

The dataset’s molecular space can be visualised in Fig.

4, depicting a t-SNE plot of molecular similarities, showing

three prominent regions. The dark rounded region represents

a ”blend” region, where similar molecules of distinct classes

occupy the same chemical space. Herein, 2539 are sweeteners,

whereas 7833 are not. On the other hand, the green and red re-

gions are spots dominated by sweeteners. 66,7% (2174/3259)

of the sweeteners in the green region are compounds with

amino-acid moieties. On the other hand, 93,2% (2059/2206)

of the sweeteners in the red region possess at least one

ring containing one or more oxygen atoms. The ”blend”

region will represent a set of more challenging molecules

for classification. On the contrary, the red and green regions

will likely be easier to classify, as these are dominated by

molecules belonging to only one class. We will consider a test

set with all regions and another with molecules exclusively in

the ”blend” region.

B. General appreciation on models performance

Four different types of FPs and a set of molecular descrip-

tors were generated to train DNNs, RFs, and SVMs. Three

modes of feature selection can be considered as stated above.

Sixty models were implemented, 20 of each type (DNN, SVM,

RF). Along with the other DL models (GAT, GCN, TextCNN,

Fig. 3. Main data sources of sweet compounds.

Graph convolutions, BiLSTMs and LSTMs), the number of

implemented and optimised models was 66.

Table I shows the performance of the best 12 models per

featurisation method (e.g. ECFP4, graph) and type of model

(e.g. SVM, RF, TextCNN). The results are sorted by the

optimised metric (ROC AUC).

2D-SelectFromModel-RF provided the best ROC AUC for

the test set (0.929), although only by a margin of around

0.001 from the DNN trained with RDK FPs. Similarly, 2D-

SelectFromModel-RF obtained a ROC AUC of 0.877 for

the ”blend” test set, representing around 0,019 more than

the second-best model (TextCNN). Three of the five best

SAR systems were DL models. The fifth best model was an

SVM trained with ECFP4 FPs (0.925), providing an excellent

platform to explain features, as ECFPs are broadly used and

understandable from a molecular point of view.

C. Deep Learning models’ performance and architectures

The first two best DL models are DNNs trained with RDK

FPs and 2D descriptors (0.928). The former is composed of

only one hidden layer with 64 neurons, a dropout mask of

0.5, and a layer for normalising batches. Moreover, the training

algorithm used was AdaGrad, with a learning rate of 0.01. This

DNN achieves high ROC AUC with only one hidden layer. The

latter took as input only the features selected by the 100 k-

Fastest and top-
performance model

Ensemble with high
performance models 

Filter 1 

Filter 2

Repurposed molecules

FFFFasaasastesasteastesasstesasas t andtt aaaandnt andt andandt anat anandandt at an  top-oop-topp-top-top- top-top-op-optoop-ttopopp
perfpeperfperfoperffopperfeerrffperforrfffopp ffop rrmancmanmanmanrmarmaancanmannccancrmrmamanmancnccrmancmmrma e mmommoodooddmodoodddmodmmodddmm eeeleeleeleee

Ensemsememsemmemmsememememble wble wble le wl wle wwe we iththh h hhh hhhh hhh hh hhh ighigghhighighhghiigghg
performancrmmmmarmmamrmmamm e momoodmoddodm dodmm ddelselselslelseellssseelselssss

FiltltFilttFilttttFiltF ltFilttF eer 1eerer erer err 1r 1

FiFFiFiltFiltFFiiFFiFFFiF ter 2er 2er er 2errer 2eerr 2er 2r

Repurposededdddd mm moleol cules

Ring containing >= 1
oxygen SMARTS match

 
Sweeteners: 2059/2206
Not sweeteners: 167/178

Amino-acid SMARTS
match

Sweeteners: 2174/3259
Not sweeteners: 22/33

"Blend" region

 
Sweeteners: 2539 

Not sweeteners: 7833 

Fig. 4. t-SNE of molecular similarities. Three regions are prominent: 1)
green rounded - mostly dominated by sweeteners with amino-acids in their
molecular structure; 2) red rounded - mostly dominated by sweeteners with
a ring containing one or more oxygens; 3) black rounded - a mixed region
with similar sweeteners and non-sweeteners
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best features evaluated by a chi-squared test. The architecture

of this model comprised two hidden layers with 512 and 256

neurons and a layer for batch normalisation. Adam algorithm

was employed to train the network at a learning rate of 0.001.

These models might be avoiding overfitting and achieving high

ROC AUC due to their simple architecture [26].

The fourth best model was the GCN (test ROC AUC

of 0.925), which takes as input the molecular graph. The

optimised architecture comprises four graph convolution layers

with 128-width channels each. The weighted sum and max-

pooling are applied to the node representations, and the results

are concatenated. The resultant matrix is inputted to a DNN

with a single 64-node hidden layer, and a dropout mask of

0.25. The architecture of this model provided better results

than others that used the graph, as is the case of GraphConv

(0.920 for the test set and 0.844 for the ”blend” set) and

GAT (0.914 and 0.812). Finally, the GCN also accomplished

better performances than other CNNs (TextCNN) and RNNs

(BiLSTM and LSTM).

The GAT outperformed all other models, considering the

precision in the test set (0.954). BiLSTM also provided a high

precision score for both the test and ”blend” set, especially for

the latter, as it achieved the best performance (0.949), while

maintaining higher Recall and ROC AUC than GAT. GAT’s

architecture is composed of three convolutional layers (depth

of 32). Similarly to GCN, max pooling and the weighted sum

of the node representations are concatenated and inputted to a

DNN, in this case with a single hidden layer with 265 neurons

and a dropout mask of 0.5. The optimised architecture of

the BiLSTM compiled three bidirectional LSTM layers with

256 neurons each, with a dropout mask of 0.25. The training

algorithm used was Adamax at a learning rate of 0.001. A final

hidden layer with eight neurons is added before estimating

the output label. A high precision means that a model is not

predicting many false positives compared with true positives.

Such a metric can measure how conservative is a model

for predicting sweetness. A highly precise model delivers

more secure predictions for filtering molecules according to

their sweetness. Hence, GAT and BiLSTM were the most

conservative and precise models for classifying sweeteners,

while maintaining satisfactory ROC AUC values.

Models that considered the sequence, namely the described

BiLSTM and TextCNN, still achieved good performances,

especially the latter. Although having been outperformed by

other models in test ROC AUC, TextCNN surpassed all other

DL models in the ”blend” ROC AUC (0.858). This CNN

comprises six kernels with variable sizes, 12 filters and a

dropout mask of 0.5. DL algorithms have been achieving

top-level performance in a wide range of fields, including

(Q)SAR, especially those using larger datasets of molecules

[27]. Notably, DL models developed in this work outperformed

most of the other employed ”shallow” learning models.

D. Models’ speed performance

Table II shows a speed analysis of the best models. The

classification of 1000, 10000, and 100000 molecules from

PubChem was performed to assess the execution time of

feature generation and prediction. The fastest model generating

features and classifying datasets of 1000 and 10000 instances

was BiLSTM. On the other hand, TextCNN was fastest for

100000 molecules, with an execution time of 109,59 seconds.

Although 2D-RF is the slowest, it is faster to predict sweetness

once features are computed.

TextCNN delivers acceptable ROC AUC, Recall and Pre-

cision scores for both test and ”blend” sets, while being fast

to generate features and predict sweetness. Hence, TextCNN

is the most suitable system for optimising search over large

databases (as PubChem).

E. Feature explainability

We calculated the SHAP values of ECFP4 bits in the best

SVM, as ECFPs are circular FPs that allow us to easily

understand structural features in a molecule. Moreover, we

were only able to apply SHAP to descriptors/FPs; DL models

would require other approaches. Specifically, we evaluated the

impact of all bits in the prediction of three artificial sweeteners

(cyclamate, alitame and 1-n-propoxy-2-amino-4-nitrobenzene)

and one sweet carbohydrate (β-D-Glucopyranose).

Fig. 5 shows that structures reportedly associated with

sweetness presented positive SHAP values, meaning that their

presence is pushing up the prediction to the class ”Sweet”.

Accordingly, we show here that the reported electronegative

atoms separated by a distance between 2.5 and 4 Å and the

X hydrophobic structure had a positive impact on classifying

these molecules as sweet. In this sense, this model is in

accordance with the AH-B [4] and the AH-B-X theories [5].

Notably, for the first time, a recent computational inves-

tigation on alitame structure hypothesised that the dihedral

angles of −19.64º and 7.03º between two single NH groups

and two adjacent C=O groups are associated with sweetness

[9]. Our analysis shows that bit 1565 is associated with regions

related to the two dihedral angles. The impact of bit 1565

in the sweetness prediction is of 0.016. Although not being

the bit with the highest impact, it delivers a positive SHAP

value, indicating that this structure contributes to predicting

this molecule as sweet, supporting the theory.

F. PubChem search

Sixty million molecules from PubChem were evaluated with

TextCNN. The molecules with predicted sweetness higher than

0.8 were selected. The resulting molecules were then subjected

to class prediction using an ensemble of the models with

highest ROC AUC and Precision. According to this criterion,

2D-SelectFromModel-RF, RDK-DNN, GCN, ECFP4-SVM,

AtomPairFP-SelectFromModel-DNN, and BiLSTM were cho-

sen to be part of the ensemble. Not only the models used were

very different from each other, but also their molecular repre-

sentations, providing a platform that covered different parts of

the molecular space, including 1D (FPs and sequences) and 2D

descriptors. In this sense, it is worth noting that this platform

can classify isomers differently, providing predictions that take

into account each molecule’s stereochemistry.
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TABLE I
MODELS’ PERFORMANCE

Descriptor-FS Method Test ROC Test Precision Test Recall Blend ROC Blend Precision Blend Recall-Algorithm AUC AUC
2D-SelectFromModel-RF 0.929 0.925 0.933 0.877 0.929 0.815

RDK-DNN 0.928 0.947 0.906 0.849 0.942 0.745
2D-Kbest-DNN 0.928 0.941 0.912 0.857 0.945 0.757

GCN 0.925 0.946 0.901 0.844 0.940 0.736
ECFP4-SVM 0.925 0.937 0.911 0.855 0.942 0.756

AtomPairFP-SelectFromModel-DNN 0.925 0.945 0.902 0.842 0.939 0.732
ECFP8-SVM 0.920 0.930 0.908 0.847 0.936 0.746
GraphConv 0.920 0.931 0.906 0.844 0.926 0.748
TextCNN 0.920 0.915 0.925 0.858 0.907 0.798

GAT 0.914 0.954 0.870 0.812 0.949 0.659
BiLSTM 0.912 0.944 0.884 0.829 0.949 0.699
LSTM 0.729 0.698 0.918 0.687 0.687 0.779

TABLE II
BEST MODELS’ SPEED PERFORMANCE IN THE CLASSIFICATION OF 1000,

10000, AND 100000 MOLECULES.

Model
Feature generation speed Prediction speed

1000 10000 100000 1000 10000 100000
TextCNN 0.76s 7.19s 58.6s 3.28s 7.40s 50.99s
BiLSTM 0.12s 2.53s 114.12s 1.27s 7.14s 77.56s
ECFP4-

5.47s 54.78s 552.51s 3.67s 36.39s 385.07s
SVM
RDK-

8.44s 55.87s 563.90s 0.10s 0.80s 7.51s
DNN
GCN 7.97s 75.80s 844.81s 0.48s 5.40s 50.65s
GAT 7.97s 75.80s 844.81s 0.51s 6.23s 54.90s

2D-RF 16.89s 134.84s 1212.83s 0.10s 0.60s 6.98s

TABLE III
ASPARTAME DERIVATIVES FOUND TO BE REPORTEDLY USED AS

SWEETENING AGENTS.

PubChem Ensemble Referenceidentifier prediction probability
14151484 0.999 EP-0186292-A2 (patent)
14151460 0.999 EP-0186292-A2 (patent)
14151470 0.994 EP-0186292-A2 (patent)
14151451 0.965 EP-0186292-A2 (patent)
11213284 0.939 WO-2021076608-A1 (patent)
22798087 0.930 [28]

1444212 out of sixty million (2.4%) molecules were filtered

using TextCNN (Filter 1). The filter 2 delivered 67724 repur-

posed chemicals (4.6% of the ones obtained from Filter 1). A

substructure search on this set revealed the following number

of derivatives of potent and artificial sweeteners:

• 199 of aspartame (200 times sweeter than sucrose);

• 8 of cyclamate (50x);

• 11 of acesulfame (120x);

• 7 of alitame (2000x);

• 231 of saccharin (500x);

• 3 of dulcin (250x);

A quick search on 30 aspartame derivatives returned 6 that

were reportedly used as sweetening agents (Table III).

Notably, 28 molecules of this subset are compounds

with guanidine moieties. Nofre and Tinti [29] reported that

guanidine-derived molecules demonstrate high efficiency as

sweeteners. A quick search on these 28 molecules revealed that

at least 7 are highly sweet. Table IV provides the PubChem

identifiers, the ensemble’s prediction probability, and an article

or patent reference where the molecules are registered as

sweeteners. These findings reveal the effectiveness of our

β-D-Glucopyranose (82x) 
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and 1257 
(+0.069) 

AH B

B

AH

B

3.12 Å 
(0.34) 
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(0.01) 
AH B
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and 2  
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X
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2.92 Å 
(0.24) 

radius extension
of the bits
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(2000x) 

radius extension
of the bits

bit 1565 
(+0.016) 

1-n-propoxy-2-amino-4-
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Fig. 5. The four structures of cyclamate, alitame, 1-n-propoxy-2-amino-4-
nitrobenzene and β-D-Glucopyranose and their relative sweetness to sucrose
are presented here. Moreover, the bits associated with the AH-B-(X) [4],
[5] and the Altunayar-Unsalan and Unsalan [9] dihedral angles theories are
highlighted and the impact in model prediction is shown between parenthesis.
The distances between atoms are the average of distances calculated for 50
different optimised conformations of the molecule (distances between AH
and B atoms), with the standard deviation between parenthesis. Notably, the
highlighted substructure of alitame covers the adjacent NH and C=O groups,
supporting Altunayar-Unsalan and Unsalan theory [9].
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TABLE IV
GUANIDINES FOUND TO BE REPORTEDLY USED AS SWEETENING AGENTS.

PubChem Ensemble Referenceidentifier prediction probability
13748439 0.879 US-4673582-A (patent)
14230963 0.770 JP-H0655730-B2 (patent)
14230962 0.747 EP-0241395-A2 (patent)
13960823 0.739 EP-0241395-A2 (patent)

4447 0.649 [30]
13960822 0.628 EP-0241395-A2 (patent)
14230964 0.544 EP-0241395-A2 (patent)

approach in finding new sweetening agents.

IV. CONCLUSION

In this work, we implemented an ETL pipeline to integrate

sweet, bitter and tasteless molecules, and 66 ML and DL

models to distinguish molecules with a sweet taste. To the

best of our knowledge, we provide the largest dataset of sweet

molecules and the first DL models to predict sweetness. We

have shown that our models are useful to expand the molecular

basis of sweetness and suitable for large-scale predictions.

Furthermore, we provide accurate and precise classifiers for

the design of new molecules, e.g., using multi-objective evo-

lutionary algorithms (EA), along with deep generative models

[31]. However, EAs should include the absence of toxicity as

one of the objective functions since we neglected that matter

in the data integration and models’ training.

The whole pipeline, models and results can be found in

https://github.com/BioSystemsUM/DeepSweet.
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