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Abstract

This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems

with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions

for local stability independent of the choice of the delay functions are given, by imposing a weak

nondelayed diagonal dominance which cancels the delayed competition effect. The global asymp-

totic stability of positive equilibria is established under conditions slightly stronger than the ones

required for the linear stability. For the case of monotone interactions, however, sharper conditions

are presented. This paper generalizes known results for discrete delays to systems with distributed

delays. Several applications illustrate the results.
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1. Introduction

Delay differential equations have been extensively used as models in population dynamics,

neural networks, disease modelling and other important areas of science. Rather than considering

ordinary differential equations (ODEs), it is often more realistic to use retarded functional differ-

ential equations (FDEs) to describe such models. In fact, the use of time-delays in differential
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equations arises naturally in mathematical models in biology, to account for the maturation pe-

riod of biological species, synaptic transmission time among neurons, incubation time in epidemic

models, and various other situations.

In this paper, we consider linear FDEs in IRn with undelayed diagonal terms, given by

x′i(t) = −
[
bixi(t) +

n∑
j=1

lij

∫ 0

−τ
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n, (1.1)

and multiple species Lotka-Volterra type models of the form

x′i(t) = ri(t)xi(t)
[
1− bixi(t)−

n∑
j=1

lij

∫ 0

−τ
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n. (1.2)

Here, bi, lij ∈ IR, τ > 0, ri(t) are positive continuous functions and ηij : [−τ, 0]→ IR are normalized

bounded variation functions. In biological terms, only positive solutions of the Lotka-Volterra

system (1.2) are meaningful, and therefore admissible. Special attention to the autonomous case

ri(t) ≡ ri > 0 in (1.2) will be given.

A most interesting topic in population dynamics is the stability of equilibria. For linear FDEs

(1.1), we give in this paper sufficient conditions for asymptotic stability, and investigate whether

such conditions are sharp, or, in other words, whether they are necessary and sufficient conditions

for the asymptotic stability of (1.1) independently of the choices of delay functions ηij , in a sense

to be precised later.

From the point of view of applications, it is particularly important to study the stability and

attractivity of a positive equilibrium of the multiple species Lotka-Volterra equation (1.2), if it

exists. This is the main purpose of this paper. Therefore, when studying (1.2) we shall always

assume that

(H1) there is a positive equilibrium x∗ = (x∗1, . . . , x
∗
n) of (1.2).

When ri(t) ≡ ri > 0, the linearization of (1.2) about x∗ has the form in (1.1) (with coefficients

bi, lij multiplied by x∗i , 1 ≤ i ≤ n), so the local asymptotic stability of x∗ is given by the stability

of (1.1).

In general, large delays are not harmless, and induce instability of equilibria, oscillations and

even existence of unbounded solutions. If the delays are small enough, they are expected to be

negligible, so that an FDE should behave mainly like an ODE. For Lotka-Volterra systems (1.2)

without undelayed intraspecific competitions, i.e., where all bi are zero, the general approach is to

study the attractivity of the positive equilibrium x∗ (if it exists) by imposing constraints of the

size of the delays in the intraspecific terms. This line of investigation has been especially fruitful in

the case of scalar equations since the pioneering work of Wright [28], and an extensive literature on

the so-called 3/2-type conditions has been produced since then. Some valuable works (see e.g. [7,
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8, 10, 11, 14]) have extended this study to n-dimensional delayed Lotka-Volterra systems without

negative feedbacks, a much more difficult situation even for the case of n = 2 with discrete delays.

More recently, Tang and Zou [25] considered Lotka-Volterra systems with distributed delays

of the form

ẋi(t) = ri(t)xi(t)
[
1−

∫ 0

−τii
xi(t+ θ) dηii(θ)−

n∑
j �=i

lij

∫ 0

−τij
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n, (1.3)

where ri(t) are as in (1.2), lij ≥ 0, τij ≥ 0, and ηij are non-decreasing bounded normalized

functions. Eq. (1.3) can be seen as a particular case of (1.2), where all the operators ψ �→
lij

∫ 0

−τij ψ(θ) dηij(θ), ψ ∈ C([−τij , 0]; IR), are positive. In [25], the primary goal of the authors

is to deal with the “pure-delay-type” situation τii > 0 in (1.3), although the situation where

instantaneous negative feedbacks are present can be included in their setting. We further remark

that [25] generalizes results and techniques previously established by the same authors in [24],

for a 2-dimensional system with discrete delays (see also [14]). Several 3/2-type criteria for the

global attractivity of the positive equilibrium of (1.3) are given in [25], by using a “sandwiching”

technique, which extends to systems Wright’s method [28] for scalar equations.

In many situations, however, it is not realistic to assume that the delays are very small. An

alternative setting to study stability of n-dimensional Lotka-Volterra systems (1.2), pursued by

many authors (see e.g. [9, 12, 13, 15, 17–21]) and followed here, is to assume that the so-called

intraspecific competitions without delay bixi(t) dominate, in some sense, the delayed intraspecific

competitions and interspecific interactions. The question is to establish sufficient conditions of

diagonal dominance of the instantaneous negative feedbacks over the total competition matrix , so

that the stability of (1.2) follows for all the choices of delay functions ηij .

The work presented in this paper was strongly motivated by Faria [2], where the scalar equa-

tions (1.1) and (1.2) were studied, and Hofbauer and So [9] and Campbell [1], who dealt with

n-dimensional systems with discrete delays.

In [2], a criterion for the global asymptotic stability of the delayed logistic type equation x′(t) =

r(t)[1− b0x(t)−L0(xt)], where r(t) is continuous and positive, b0 ∈ IR and L0 : C([−τ, 0]; IR)→ IR

is a linear bounded operator, was established. Furthermore, it was also shown that such a criterion

is sharp, in the sense that it provides a necessary and sufficient condition for the asymptotic

stability globally in the delays of the linear scalar FDE x′(t) = −[b0x(t) + L0(xt)] (cf. [2] also for

definitions).

Hofbauer and So [9] considered the particular case of autonomous systems with discrete delays

of the form

x′i(t) = xi(t)
[
ri −

n∑
j=1

aijxj(t− τij)
]
, i = 1, . . . , n, (1.4)

where ri > 0, aij ∈ IR, τij ≥ 0 and aii > 0, τii = 0. Assuming (H1), they gave necessary and

sufficient conditions for the global asymptotic stability of x∗, for all the choices of delays τij ≥
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0, i �= j. Moreover, such conditions coincide with the ones required for its asymptotic stability,

independently of the choices of the delays. Note that in (1.4) there are no delayed intraspecific

competitions. Later on, Campbell [1] studied the local and global stability of the trivial equilibrium

of an FDE used to model artificial neural networks with discrete delays, without the restriction

τii = 0:

x′i(t) = −bixi(t) +
n∑
j=1

xijgj(xj(t− τij)), i = 1, . . . , n,

Here, our goal is to extend both the results in [2] to n-dimensional equations and the results in [1,

9] to a general situation with distributed delays.

There is an extensive literature dealing with local and global stability of Lotka-Volterra systems

with delays. Related to the results presented here, besides the above cited works [1, 2, 9, 24, 25]

we mention the monographs of Gopalsamy [5], Kuang [10] and Smith [21], the papers of He [8],

Kuang [11, 12], Kuang and Smith [13], Saito and Takeuchi [20], So et al. [22, 23], and references

therein. We emphasize however that, in the literature, the usual approach to study the global

stability of equilibria for systems (1.2) and other non-linear FDEs relies on the use of Lyapunov

functionals or Razumikhin methods. In general, constructing a Lyapunov functional for a concrete

n-dimensional FDE is not an easy task. Frequently, a new Lyapunov functional for each model

under consideration is required. Contrary to the usual, our techniques (see also [2, 3, 24, 25]) do

not involve Lyapunov functionals, and our method applies to general Lotka-Volterra systems (1.2),

or even to broader frameworks.

We now give some definitions and set some notation.

Definition 1.1. An equilibrium x∗ of (1.2) is said to be globally asymptotically stable (in the set

of all positive solutions) if it is stable and is a global attractor of all positive solutions of (1.2).

For x = (x1, . . . , xn) ∈ IRn, we say that x > 0 if xi > 0 for i = 1, . . . , n, and that x ≥ 0 if

xi ≥ 0 for i = 1, . . . , n. For x = (x1, . . . , xn) > 0, x−1 is the vector given by x−1 = (x−1
1 , . . . , x−1

n ).

We denote by | · |∞ or simply | · | the supremum norm in IRn, |x|∞ = max1≤i≤n |xi|. If d =

(d1, . . . , dn) > 0, we also consider the norm in IRn given by |x|d = max1≤i≤n(di|xi|). We use ‖ · ‖∞
or simply ‖ · ‖, respec. ‖ · ‖d, to denote the supremum norm in Cn := C([−τ, 0]; IRn) relative to

the norm | · |∞, respec. | · |d, in IRn: ‖ϕ‖∞ = max−τ≤θ≤0 |ϕ(θ)|∞ and ‖ϕ‖d = max−τ≤θ≤0 |ϕ(θ)|d.
For a bounded linear functional L : Cn → IR, where Cn is equipped with the norm ‖ · ‖∞, respec.

‖ · ‖d, we denote the usual operator norm by ‖ · ‖, respec. ‖ · ‖d.
For d ∈ IRn (n ≥ 1), we use d to denote both the real vector and the constant function

ϕ(θ) = d in Cn. Cn is supposed to be partially ordered with

ϕ ≥ ψ if and only if ϕi(θ) ≥ ψi(θ), θ ∈ [−τ, 0], i = 1, . . . , n.

Recall now some concepts from matrix analysis.
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Definition 1.2. If D = [dij ] is a square matrix with non-positive off-diagonal entries, i.e., dij ≤ 0

for all i �= j, we say that D is an M-matrix if all the eigenvalues of D have a non-negative real part,

or, equivalently, if all the principal minors of D are non-negative; D is a non-singular M-matrix if

all the eigenvalues of D have positive real part, or, equivalently, if all the principal minors of D

are positive.

The latter is also equivalent to saying that D is an M-matrix and detD �= 0. M-matrices and

non-singular M-matrices are also often referred to as matrices in class K0 and class K, respectively.

Definition 1.2 agrees with the notation in [1, 22, 23]. In some works ([9]), M-matrices are called

weakly diagonally dominant. On the other hand, some authors ([8, 12, 17]) use the term “M-

matrix” to denote a “non-singular M-matrix” as defined above, a situation the reader should be

aware of, in order to avoid conceptual misunderstandings. For properties of M-matrices, we refer

the reader to [4, Chapter 5].

For an n × n matrix D = [dij ], in the sequel we denote by D̃ the matrix D̃ = [d̃ij ], where

d̃ij = −|dij | for j �= i, d̃ii = dii, i, j = 1, . . . , n.

The remainder of this paper is organized as follows: In Section 2, a criterion for the exponential

asymptotic stability of linear FDEs (1.1) is presented. With bi > 0 (1 ≤ i ≤ n), our criterion is

shown to be optimal, in the sense that it gives necessary and sufficient conditions on the coefficients

bi, lij for the linear FDE (1.1) to be stable independently of the delay functions ηij . These results

generalize the ones in [1, 9], concerning linear equations with discrete delays. In Section 3, we

give sufficient conditions for boundedness of solutions and for the global asymptotic stability of

the positive equilibrium x∗ (if it exists) of (1.2), again improving known results in the literature.

Such conditions are slightly stronger than the ones required for linear stability. Finally, in Section

4 we consider models (1.2) with non-decreasing delay functions ηij , and present sharper criteria

for boundedness of solutions and for the global stability of x∗. Throughout the paper, we illustrate

the results with some well-known models.

2. Asymptotic stability for linear FDEs

Let Cn := C([−τ, 0]; IRn) be equipped with the supremum norm ‖·‖∞ or any equivalent norm.

In the phase space Cn, consider an autonomous system of linear FDEs of the form

x′i(t) = −[bixi(t) + Li(xt)], i = 1, . . . , n, (2.1)

where bi ∈ IR, Li : Cn → IR are linear bounded operators, i = 1, . . . , n. As usual, xt denotes the

function in Cn defined by xt(θ) = x(t+ θ),−τ ≤ θ ≤ 0. Equivalently, one can write Li as

Li(ϕ) =
n∑
j=1

Lij(ϕj), Lij(ϕj) = lij

∫ 0

−τ
ϕj(θ) dηij(θ), ϕ = (ϕ1, . . . , ϕn) ∈ Cn, (2.2)
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for some lij ∈ IR and some normalized functions of bounded variation ηij , ηij ∈ BV ([−τ, 0]; IR)

with V ar[−τ,0]ηij = 1, so that (2.1) reads as

x′i(t) = −
[
bixi(t) +

n∑
j=1

lij

∫ 0

−τ
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n. (2.3)

Set aij = Lij(1). From (2.2), aij = lij(ηij(0) − ηij(−τ)) and |lij | = ‖Lij‖. Let B =

diag (b1, . . . , bn), A = [aij ] and C = [lij ], and define the matrices

M = B +A, N = B + C.

In the sequel, consider also the matrices M̃ = B + Ã, N̂ = B + Ĉ, where Ã = [ãij ], Ĉ = [l̂ij ], for

ãij = −|aij | for j �= i, ãii = aii, l̂ij = −|lij | for i, j = 1, . . . , n:

M̃ =


 b1 + a11 −|a12| . . . −|a1n|

. . .
−|an1| −|an2| . . . bn + ann


 , N̂ =


 b1 − |l11| −|l12| . . . −|l1n|

. . .
−|ln1| −|ln2| . . . bn − |lnn|


 . (2.4)

Note that all the off-diagonal entries of M̃, N̂ are non-positive.

For studying the stability of (2.1), we first translate an algebraic property of the matrix N̂

into an analytical condition on the linear operators Li.

Lemma 2.1. For d = (d1, . . . , dn) > 0, then N̂d ≥ 0 if and only if ‖Li‖d−1 ≤ dibi, i = 1, . . . , n.

Proof. Let Li, Lij be as in (2.2). Then ‖Lij‖ = |lij |, and

‖Li‖d−1 =
n∑
j=1

dj |lij |

for each d = (d1, . . . , dn) > 0. On the other hand, N̂d ≥ 0 is equivalent to

n∑
j=1

dj |lij | ≤ dibi, i = 1, . . . , n. (2.5)

Lemma 2.2. Let τ > 0, bi ∈ IR and Li : Cn → IR be linear bounded operators, i = 1, . . . , n. With

the previous notation, suppose that

(H2) there is d = (d1, . . . , dn) > 0 such that ‖Li‖d−1 ≤ dibi, i = 1, . . . , n.

Then, all the characteristic roots λ of (2.1) have negative real parts, with the possible exception

of λ = 0. If in addition detM �= 0, then (2.1) is exponentially asymptotically stable.

Proof. Write Li as Li(ϕ) =
∑n
j=1 Lij(ϕj), for ϕ = (ϕ1, . . . , ϕn) ∈ Cn = C([−τ, 0]; IRn). The

characteristic equation for (2.1) is

det ∆(λ) = 0, for ∆(λ) = λI +B + [(Lij(eλ·))ni,j=1]. (2.6)
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Let λ = α + iβ �= 0 be a root of (2.6), and consider v ∈ |Cn, v �= 0, such that ∆(λ)v = 0. For

d > 0 as in (H2), let k be such |v|d−1 = d−1
k |vk|. We may suppose vk ∈ IR, vk > 0. We have

(α+ bk)vk = −ReLk(eλθv), βvk = −ImLk(eλθv), (2.7)

where we abuse the notation and write Lk(eλθv) for Lk(eλ·v).

Suppose now that α ≥ 0. Since ‖Lk‖d−1 ≤ dkbk, then |Lk(eλθv)| ≤ dkbk‖eλ·v‖d−1 ≤
dkbk|v|d−1 = bkvk, hence

(ReLk(eλθv))2 + (ImLk(eλθv))2 ≤ b2kv
2
k. (2.8)

If ImLk(eλθv) = 0, from (2.7) we have β = 0 and λ = α, with

(α+ bk)vk = −Lk(eαθv) ≤ bkvk,

implying that α ≤ 0, and therefore λ = α = 0.

If ImLk(eλθv) �= 0, from (2.7), (2.8) we obtain

(α+ bk)vk = −ReLk(eλθv) < |Lk(eλθv)| ≤ bkvk,

and we conclude that α < 0, a contradiction. Thus, all the roots of (2.6) have negative real parts,

with the possible exception of zero.

Finally, note that ∆(0) = B + A = M . If detM �= 0, then λ = 0 is not a root of the

characteristic equation (2.6).

Theorem 2.3. Let τ > 0, bi, lij ∈ IR and ηij ∈ BV ([−τ, 0]; IR) with V ar[−τ,0]ηij = 1, i, j =

1, . . . , n, be given. With the previous notation, suppose that detM �= 0 and N̂ is an M-matrix.

Then, (2.3) is exponentially asymptotically stable. Moreover, bi + aii > 0, i = 1, . . . , n.

Proof. Let Li(ϕ) =
∑n
j=1 Lij(ϕj) be as in (2.2). We consider separately the cases of N̂

irreducible and reducible.

Case 1. If N̂ is irreducible, then there is d = (d1, . . . , dn) > 0 such that N̂d ≥ 0 [4, Theorem

5.9]. In consequence of Lemma 2.1, hypothesis (H2) is satisfied, and the asymptotic stability of

(2.3) follows from Lemma 2.2. From (2.5), we also have bi + aii ≥ bi − |lii| ≥ 0, i = 1, . . . , n; and

if bi + aii = 0 for some i ∈ {1, . . . , n}, then 0 = di(bi − |lii|) =
∑

1≤j≤n,j �=i
dj |lij |, thus lij = aij = 0

for 1 ≤ j ≤ n, j �= i. This together with bi + aii = 0 implies that the ith row of M is zero, which

is not possible since detM �= 0.

Case 2. If N̂ is reducible, after a permutation of rows and columns, which amounts to a

permutation of the variables x1, . . . , xn in (2.3), we may suppose that

N̂ =


 N̂11 . . . N̂1�

. . .
0 . . . N̂��


 , (2.9)
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where N̂km are nk × nm matrices, with N̂kk irreducible or zero nk × nk blocks,
∑�
k=1 nk = n.

Accordingly to (2.9), we have

lij = 0, for n1 + · · ·+nk+1 ≤ i ≤ n1 + · · ·+nk+1, 1 ≤ j ≤ n1 + · · ·+nk, 1 ≤ k ≤ '−1. (2.10)

From (2.2) and (2.10), it follows that [(Lij(eλ·))ni,j=1] as well as the characteristic matrix ∆(λ) in

(2.6) are also upper block triangular matrices. With the obvious notation, we write

∆(λ) = λI + diag (B1, . . . , B�) +



L11(λ) . . . L1�(λ)

. . .
0 . . . L��(λ)


 ,

where Bk = diag (b1+N(k), . . . , bN(k+1)) for N(k) =
∑

1≤m≤k−1 nm and Lkm(λ) are nk×nm blocks.

Let λ = α+ iβ be a root of the characteristic equation (2.6). This means that det ∆(λ) = 0,

or equivalently, det(λInk + Bk + Lkk(λ)) = 0, for some k ∈ {1, . . . , '} (where Ink is the identity

matrix of dimension nk).

If the block N̂kk is irreducible, from Case 1 we conclude that α = Reλ < 0. Now, suppose

that N̂kk = 0 and α ≥ 0. Without loss of generality, we may assume that k = 1, so that

bi = |lii|, 1 ≤ i ≤ n1 and lij = 0, 1 ≤ i, j ≤ n1, i �= j.

The corresponding block λIn1 + B1 + L11(λ) of ∆(λ) is a diagonal matrix, with diagonal entries

λ+ |lii|+ Lii(eλ·), 1 ≤ i ≤ n1. Recall that |Lii(eλ·)| = |lii
∫ 0

−τ e
λθ dηii(θ)| ≤ |lii|.

If det(λIn1 + B1 + L11(λ)) = 0, then λ + |lii| + Lii(eλ·) = 0 for some i ∈ {1, . . . , n1}, and in

particular we get α ≤ 0. If α = 0, then |lii|+ReLii(eλ·) = 0, implying that β = −ImLii(eλ·) = 0,

which is a contradiction, since ∆(0) = M and detM �= 0 imply that λ �= 0. We therefore conclude

that (2.3) is exponentially asymptotically stable.

We show now that bi+aii > 0, i = 1, . . . , n, for a reducible matrix N̂ . Up to a permutation, N̂

has the form (2.9). For irreducible diagonal blocks N̂kk, from Case 1 we derive that the diagonal

entries bi + aii of M are positive. If the block N̂kk is zero, then, for 1 +N(k) ≤ i ≤ N(k + 1), we

have bi = |lii| and the corresponding block Mkk of M is a diagonal matrix with bi+aii as diagonal

entries. On the other hand, these diagonal entries bi+aii are non-zero, otherwise detM = 0, hence

they are positive.

We have also shown that:

Corollary 2.4. Let τ > 0, bi, lij ∈ IR and ηij ∈ BV ([−τ, 0]; IR) with V ar[−τ,0]ηij = 1, i, j =

1, . . . , n, be given. If N̂ is an M-matrix, then all the roots λ of the characteristic equation (2.6)

have negative real parts with the possible exception of λ = 0.

Remark 2.1. If N̂ is an M-matrix, then bi − |lii| ≥ 0, i = 1, . . . , n. For N̂ an irreducible M-

matrix, one can even conclude that bi− |lii| > 0, i = 1, . . . , n. In fact, under these assumptions, N̂

satisfies (H2); as in the proof of Theorem 2.3, bi−|lii| = 0 implies now lij = 0 for j = 1, . . . , n, j �= i,

meaning that the ith-row of N̂ is zero, which is not possible for an irreducible matrix.
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Lemma 2.5. Let bi > 0, lij ∈ IR,i, j = 1, . . . , n, be given, and define N, N̂ as above. If detN �= 0

and N̂ is not an M-matrix, then there exist τij ≥ 0 such that, for ηij defined as the Heaviside

functions ηij(θ) = 0 for −τ ≤ θ ≤ −τij , ηij(θ) = 1 for −τij < θ ≤ 0 and τ = max {τij : i, j =

1, . . . , n}, the characteristic equation for (2.3) has a root λ with Reλ > 0.

Proof. The proof is given in [1, Lemmas 2.4-2.5] (see also [9]), and is omitted.

Theorem 2.6. Let bi > 0, lij ∈ IR,i, j = 1, . . . , n, be given. Then, Eq. (2.3) is exponentially

asymptotically stable for all the choices of τ > 0 and sets of functions η = (ηij) ⊂ BV ([−τ, 0]; IR)

with V ar[−τ,0]ηij = 1, i, j = 1, . . . , n, and such that detMη �= 0, if and only if N̂ is an M-matrix.

Here, Mη is defined by Mη = B + [aij ] for aij = lij(ηij(0)− ηij(−τ)).

Proof. For a given η = (ηij) ⊂ BV ([−τ, 0]; IR) with V ar[−τ,0]ηij = 1, then Mη = ∆(0), where

det ∆(λ) = 0 is the characteristic equation (2.6), and hence detMη �= 0 if and only if λ = 0 is not

a root of (2.6). Also, for η = (ηij) with ηij as in the statement of Lemma 2.5, we have Mη = N .

Now, the sufficiency is given by Theorem 2.3 and the necessity condition by Lemma 2.5.

In applications, (2.1) often takes the form (2.3) with non-decreasing normalized bounded

variation functions ηij . Clearly, in this case

∫ 0

−τ
dηij(θ) = 1, ‖Lij‖ = |lij |, aij = lij , i, j = 1, . . . , n,

and in particular M = N . In this situation, the above theorem translates as:

Theorem 2.7. Let bi > 0, lij ∈ IR,i, j = 1, . . . , n, be given. Then, (2.3) is exponentially asymp-

totically stable for all the choices of τ > 0 and non-decreasing functions ηij : [−τ, 0] → IR with∫ 0

−τ dηij(θ) = 1, i, j = 1, . . . , n, if and only if detM �= 0 and M̂ is an M-matrix. In particular, if

detM �= 0 and M̂ is an M-matrix, then the equation

x′i(t) = −
[
bi xi(t) +

∑
1≤j≤n

lij xj(t− τij)
]
, i = 1, . . . , n (2.11)

is exponentially asymptotically stable for all the choices of discrete delays τij ≥ 0, i, j = 1, . . . , n.

Remark 2.2. Eq. (2.11) was studied in [9], with the restriction τii = 0, and later in [1] without

such constraint. With our notation, for (2.11) we have M = N , and M̃ = M̂ if all the diagonal

delays are zero. In terms of the linear asymptotic stability, our Theorems 2.3 and 2.6 generalize the

results in [1, 9] to the situation with distributed delays. In fact, for (2.11) with τii = 0 Hofbauer

and So [9] proved its asymptotic stability independently of the choices of delays τij ≥ 0 if and only

if lii > 0 (1 ≤ i ≤ n),detM �= 0 and M̂ is an M-matrix, while Campbell [1] proved the same result

without the constraint τii = 0. We further note that So et al. [22] considered (2.11) for the “pure-

delay-type” situation, i.e., with all bi = 0. They established the asymptotic stability of (2.11) with
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bi = 0 by imposing that [l̃ij ], where l̃ij = − 1+ 1
9 liiτii(3+2aiiτii)

1− 1
9 liiτii(3+2aiiτii)

|lij | for j �= i, l̃ii = lii, is a non-singular

M-matrix, together with the 3/2-type condition liiτii < 3/2, i = 1, . . . , n. For generalization of

[22] to non-autonomous linear systems x′i(t) = −
∑

1≤j≤n lij(t)xj(t− τij(t)), i = 1, . . . , n, see [23].

Example 2.1. Consider a scalar linear FDE on C1 = C([−τ, 0]; IR) of the form

x′(t) = −[b0x(t) + L0(xt)],

where b0 ∈ IR and L0 : C1 → IR is a linear bounded operator. We write L0(ϕ) = l0
∫ 0

−τ ϕ(θ) dη(θ),

for |l0| = ‖L0‖ and some normalized bounded variation function η : [−τ, 0] → IR. From Theorem

2.6, the following result is derived:

Corollary 2.8. Let b0, l0 ∈ IR be given. Then, the scalar linear FDE

x′(t) = −
[
b0x(t) + l0

∫ 0

−τ
x(t+ θ) dη(θ)

]
(2.12)

is exponentially asymptotically stable for all the choices of τ > 0 and η ∈ BV ([−τ, 0]; IR) with

V ar[−τ,0]η = 1 if and only if

b0 + l0

∫ 0

−τ
dη(θ) > 0, b0 ≥ |l0|. (2.13)

Remark 2.3. The above result was established in [2], where the general case of a linear scalar

FDE x′(t) = −L(xt), L : C1 → IR a linear bounded operator, was studied. Moreover, it was proven

in [2] that if L(1) > 0 and L satisfies the hypothesis

(H2*) for all ϕ ∈ C1 such that |ϕ(θ)| < ϕ(0) for θ ∈ [−r, 0), then L(ϕ) > 0,

then L has the form

L(ϕ) = b0ϕ(0) + L0(ϕ), ϕ ∈ C1, (2.14)

for some b0 > 0 and (non-atomic at zero) linear bounded operator L0 : C1 → IR, for which (2.13)

holds. Conversely, if (2.13) holds, then L given by (2.14) satisfies L(1) > 0 and (H2*). In the next

section, the relevance of assumption (H2*), translated to the general framework of n-dimensional

FDEs x′ = f(t, xt), will become clear.

Example 2.2. Consider the following model for a ring of neurons with distributed delays

u′i(t) = −biui(t) + αiigi(ut,i) + αi,i−1gi−1(ut,i−1), i = 1, . . . , n, (2.15)

with the convention i − 1 = n for i = 1, where gi : C([−τ, 0]; IR) → IR are smooth functions with

gi(0) = 0 and rescaled so that g′i(0)(1) = 1, i = 1, . . . , n. The particular case of (2.15) with discrete

delays,

u′i(t) = −biui(t) + αiigi(ui(t− τi)) + αi,i−1gi−1(ui−1(t− τi−1)), i = 1, . . . , n,

10



gi : IR→ IR, was studied in [1]. More generally, most of the literature on Hopfield neural networks

with delays addresses models that take the form

u′i(t) = −biui(t) +
n∑
j=1

aijgj(uj(t− τij)), i = 1, . . . , n, (2.16)

where τij ≥ 0 are the synaptic transmission time-delays, bi > 0 is related to the input capacity

of neuron i, A = [aij ] is the connection matrix and gi : IR → IR are C1 sigmoidal-type activation

functions, for which we may suppose (after translating an equilibrium to the origin and a scaling)

that gi(0) = 0, g′i(0) = 1. For several criteria on local and global stability for such models, see e.g.

[1, 6, 16, 26, 27], also for other relevant references.

For the concrete model (2.15), next result generalizes [1, Theorem 4.1] to the situation with

distributed delays.

Theorem 2.9. Suppose that gi : C1 → IR are C1-functions such that gi(0) = 0 and g′i(0)(1) = 1.

For γi = ‖g′i(0)‖, if

n∏
i=1

(bi + αii) >
n∏
i=1

αi,i−1 and (2.17)

|αii|γi ≤ bi, i = 1, . . . , n,

∣∣∣∣∣
n∏
i=1

αi,i−1γi−1

∣∣∣∣∣ ≤
n∏
i=1

(bi − |αii|γi) (2.18)

then the trivial equilibrium of (2.15) is asymptotically stable.

Proof. The linearized equation about zero has the form (2.1), with Lii = αiig
′
i(0), Li,i−1 =

αi,i−1g
′
i−1(0) and Lij = 0 for j �= i, j �= i − 1. From Theorem 2.3, detM �= 0 and N̂ is an

M-matrix imply the asymptotic stability of the trivial solution of (2.15). Here, M = B + A, for

B = diag (b1, . . . , bn) and A = (aij), where aij = −αij for j = i, i−1 and aij = 0 for j �= i, j �= i−1;

and N̂ = B − |C|, for C = (cij), with cij = −αijγj for j = i, i− 1, and zero otherwise. It is easy

to check that (2.18) is equivalent to saying that N̂ is an M-matrix. Together with (2.18), (2.17)

means that detM �= 0.

3. Global stability for Lotka-Volterra systems

The results in this section concern global stability for n species delayed Lotka-Volterra models.

We consider autonomous systems given by

x′i(t) = rixi(t)[1− bixi(t)− Li(xt)] i = 1, . . . , n (3.1)

where bi ∈ IR, ri > 0 and Li : C → IR are linear bounded operators. More generally, we shall also

consider non-autonomous systems of FDEs of the form

x′i(t) = ri(t)xi(t)[αi − bixi(t)− Li(xt)], i = 1, . . . , n
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where bi, Li are as in (3.1), and αi ∈ IR, ri : [0,∞) → (0,∞) are continuous functions. For the

sake of simplicity, we take αi = 1, i = 1, . . . , n, and write

x′i(t) = ri(t)xi(t)[1− bixi(t)− Li(xt)], i = 1, . . . , n (3.2)

As in Section 2, we write Li as (2.2), for some lij ∈ IR and ηij ∈ BV ([−τ, 0], IR) with

V ar[−τ,0]ηij = 1, and denote aij = Lij(1), i, j = 1, . . . , n. Again, B = diag(b1, ..., bn),M =

B + [aij ], N = B + [lij ] and M̃, N̂ are as in (2.4).

In the sequel, for (3.2) the following hypotheses will be considered:

(H1) There is a vector x∗ = (x∗1, . . . , x
∗
n) > 0 such that Mx∗ = [1, . . . , 1]T , i.e., x∗ is a positive

equilibrium of (3.2);

(H2) there is d = (d1, . . . , dn) > 0 such that ‖Li‖d−1 ≤ dibi, i = 1, . . . , n;

(H3) det M̃ �= 0.

(H4) ri(t) is uniformly bounded on [0,∞) and
∫∞

ri(t)dt =∞, i = 1, . . . , n.

If x∗ = (x∗1, . . . , x
∗
n) is a positive equilibrium of (3.2), for yi(t) = xi(t) − x∗i system (3.2)

becomes

y′i(t) = −ri(t)(yi(t) + x∗i )[biyi(t) + Li(yt)], i = 1, ..., n. (3.3)

Due to the biological interpretation of the model, we restrict our attention to positive solutions

of (3.2). Therefore, for (3.2) we take the set of admissible initial conditions as the set

C0̂ = {ϕ = (ϕ1, . . . , ϕn) ∈ Cn : ϕi(θ) ≥ 0 for θ ∈ [−τ, 0), ϕi(0) > 0, i = 1, . . . , n},

and only consider solutions of (3.2) with initial conditions

xt0 = ϕ, ϕ ∈ C0̂, (3.4)

for some t0 ≥ 0. The solution of (3.2)-(3.4) is denoted by x(t, t0, ϕ); for t0 = 0, we also write

x(t, 0, ϕ) = x(t, ϕ). We often suppose that the initial condition (3.4) is fixed, and write simply

x(t) for x(t, t0, ϕ). Since xi(t, t0, ϕ) = xi(t0) exp
( ∫ t

t0
ri(s)[1− bixi(s)− Li(xs)] ds

)
> 0, it is clear

that a solution x(t, t0, ϕ) with initial condition in C0̂ is an admissible solution, in the sense that

xt(t0, ϕ) ∈ C0̂, whenever it is defined. Accordingly, if (H1) holds, the set of admissible initial

conditions for (3.3) is the set C−x∗ = C0̂ − x∗,

C−x∗ = {(ϕ1, . . . , ϕn) ∈ C : ϕi(θ) ≥ −x∗i for θ ∈ [−τ, 0), ϕi(0) > −x∗i , i = 1, . . . , n},

and the solutions yt(t0, ϕ) of (3.3) with initial conditions yt0 = ϕ ∈ C−x∗ are admissible solutions.

In this section, we study the global asymptotic stability of the positive equilibrium x∗ of (3.1),

or (3.2), if it exists. If in addition detM �= 0, then the positive equilibrium of (3.2) is unique. For

(3.1), its local stability is deduced from Theorem 2.3:
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Theorem 3.1. Suppose that x∗ is a positive equilibrium of the autonomous system (3.1). If

detM �= 0 and N̂ is an M-matrix, then x∗ is asymptotically stable.

Next, we prove some auxiliary results, for which it is convenient to write (H2) in a more

suitable form. From Lemma 2.1, (H2) is equivalent to saying that there is d = (d1, . . . , dn) > 0

such that (2.5) holds, i.e., N̂d ≥ 0. (H2) implies the inequalities

di(bi + aii) ≥
∑
j �=i

dj |aij |, i = 1, ..., n. (3.5)

It also implies that N̂ is an M-matrix [4]. In general, the reverse is not true for n ≥ 2: the matrix

D =
(

0 −1
0 1

)
is an M-matrix but there is no d > 0 such Dd ≥ 0. On the other hand, since

M̃ ≥ N̂ , if N̂ is an M-matrix, the same happens to M̃ ; together with det M̃ �= 0, this means

that M̃ is a non-singular M-matrix, thus there is c = (c1, . . . , cn) > 0 such that M̃c > 0 (see [4]).

However, if (H2) and (H3) hold, one cannot conclude that M̃d > 0, for the same vector d > 0 as

in (H2). Also, we recall that if M̃ is a non-singular M-matrix, then detM �= 0 [4, Theorem 5.17];

conversely, for any n ≥ 2, we might have detM �= 0 and M̃ a singular M-matrix. In particular, we

observe that, under (H1)-(H3), x∗ is the unique positive equilibrium of (3.1), or (3.2).

By effecting the change zi(t) = d−1
i yi(t), i = 1, ..., n, where d1, ..., dn > 0 are as in (H2), (3.3)

becomes

z′i(t) = −ri(t)(zi(t) + d−1
i x∗i )[b̂izi(t) + L̂i(zt)], i = 1, ..., n, (3.6)

with b̂i = bidi, âij = aijdj , L̂i(φ) = Li((djφj)nj=1) =
∑n
j=1 djLij(φj).

With the previous notations, we get ‖L̂i‖ = ‖Li‖d−1 . Consequently, if hypothesis (H2) holds

for system (3.3), then for (3.6) we have

‖L̂i‖ ≤ b̂i.

Assuming (H2), one may therefore assume without loss of generality that after translating x∗ to

the origin and a scaling of the variables, (3.2) is transformed into (3.3), with ‖Li‖ ≤ bi, i = 1, . . . , n.

A first lemma is stated in the more general framework of IRn with a norm | · |d, for some

d ∈ IRn, d > 0. Naturally, for FDEs in IRn for which a set S ⊂ Cn = C([−τ, 0]; IRn) is chosen as

the set of admissible initial conditions, a solution y(t) with initial condition yt0 = ϕ ∈ S is said to

be admissible if yt ∈ S for t > t0 whenever yt is defined.

Lemma 3.2. Choose a set S ⊂ Cn as the set of admissible initial conditions for

y′(t) = f(t, yt), t ≥ t0, (3.7)

where f : [t0,∞)×S → IRn is continuous, f = (f1, . . . , fn). Let IRn be equipped with a norm | · |d,
for some d = (d1, . . . , dn) with di > 0, and assume that f satisfies
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(H2*) for all t ≥ t0 and ϕ ∈ S such that |ϕ(θ)|d < |ϕ(0)|d for θ ∈ [−τ, 0), then ϕi(0)fi(t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that |ϕ(0)|d = di|ϕi(0)|.
Then, all admissible solutions of (3.7) are defined and bounded for t ≥ t0. Moreover, if y(t) =

y(t, t0, ϕ) (ϕ ∈ S) is an admissible solution of (3.7) and |y(t)|d ≤ K for t ∈ [t0 − τ, t0], then

|y(t)|d ≤ K for t ≥ t0.

Proof. Let y(t) be an admissible solution of (3.7) on [t0−τ, a) for some a > t0, with |y(t)|d ≤ K

for t ∈ [t0 − τ, t0]. Suppose that there is t1 > t0 such that |y(t1)|d > K, and define

T = min{t ∈ [t0, t1] : max
s∈[t0,t1]

|y(s)|d = |y(t)|d}.

We have |y(T )|d > K and

|y(t)|d < |y(T )|d for t ∈ [t0, T ).

Hence |yT (θ)|d = |y(T + θ)|d < |y(T )|d for −τ ≤ θ < 0. By (H2*), there is i ∈ {1, . . . , n} such that

|y(T )|d = di|yi(T )| and yi(T )fi(t, yT ) < 0 for all t ≥ t0. Suppose that yi(T ) > 0 (the situation

yi(T ) < 0 is analogous). Since diyi(t) ≤ |y(t)|d < diyi(T ) for t0 − τ ≤ t < T , then y′i(T ) ≥ 0. On

the other hand, from (3.7) we have y′i(T ) = fi(T, yT ) < 0, a contradiction. This proves that y(t)

is extensible to [t0 − τ,∞), with |y(t)|d ≤ K for all t > t0.

Theorem 3.3. Let x∗i > 0, ri(t) > 0 for t ≥ 0, i = 1, . . . , n, and S = C−x∗ . If detM �= 0 and

(H2) holds, then (3.3) satisfies (H2*) on [0,∞). In particular, all (admissible) solutions of (3.2)

are defined and bounded on [0,∞).

Proof. As observed above, we may assume that (3.3) satisfies the condition ‖Li‖ ≤ bi, i =

1, . . . , n. Eq. (3.3) reads as (3.7), for fi(t, ϕ) = −ri(t)(ϕi(0) + x∗i )(biϕi(0) + Li(ϕ)), i = 1, . . . , n.

Let t ≥ 0, ϕ ∈ S and suppose |ϕ(θ)|∞ < |ϕ(0)|∞ for θ ∈ [−τ, 0). Set K = |ϕ(0)|∞. Consider the

partition I = I1 ∪ I2 ∪ I3 of I := {1, . . . , n}, where

I1 = {i ∈ I : ϕi(0) = K}, I2 = {i ∈ I : ϕi(0) = −K}, I3 = {i ∈ I : |ϕi(0)| < K}.

Define
−γ1 = min

i∈I1
min

θ∈[−τ,0]
ϕi(θ) > −K,

γ2 = max
i∈I2

max
θ∈[−τ,0]

ϕi(θ) < K,

γ3 = max
i∈I3

max
θ∈[−τ,0]

|ϕi(θ)| < K,

and ε0 = min1≤k≤3(K − γk)/2. Consider

ε = (ε1, . . . , εn) ∈ IRn, with εi =




ε0, i ∈ I1
−ε0, i ∈ I2

0 , i ∈ I3
.
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For #Ik = nk, k = 1, 2, 3, we may suppose that I is ordered in such a way that

I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2}, I3 = {n1 + n2 + 1, . . . , n},

so that ε reads as ε = ε0(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), with the obvious notation for dots.

From the definition of ε0, it is easy to check that |ϕi(θ) − εi| ≤ K − ε0 for all i ∈ I, hence

‖ϕ− ε‖∞ ≤ K − ε0 and |Li(ϕ− ε)| ≤ bi(K − ε0), 1 ≤ i ≤ n.

For i ∈ I1, from (H2) we have

biϕi(0) + Li(ϕ) = ε0bi + (ϕi(0)− ε0)bi + Li(ϕ− ε) + Li(ε)

≥ ε0bi + Li(ε) = ε0


(bi + aii) +

∑
j∈I1,j �=i

aij −
∑
j∈I2

aij


 .

(3.8)

Analogously, for i ∈ I2 we obtain

biϕi(0) + Li(ϕ) = −ε0bi + (ϕi(0) + ε0)bi + Li(ϕ− ε) + Li(ε)

≤ −ε0bi + Li(ε) = ε0


−(bi + aii) +

∑
j∈I1

aij −
∑

j∈I2,j �=i
aij


 .

(3.9)

From (3.5), (3.8) and (3.9), we conclude that

ϕi(0)(biϕi(0) + Li(ϕ)) ≥ 0, i ∈ I1 ∪ I2.

If there is i ∈ I1 ∪ I2 such that ϕi(0)(biϕi(0) + Li(ϕ)) > 0, then (H2*) holds. If ϕi(0)(biϕi(0) +

Li(ϕ)) = 0 for all i ∈ I1 ∪ I2, from (3.8) and (3.9) we deduce that∑
j∈I3
|aij | = 0, i ∈ I1 ∪ I2,

i.e., aij = 0, i ∈ I1 ∪ I2, j ∈ I3. (Note that this includes the case I3 = ∅; however, I1 ∪ I2 �= ∅.)
Hence, one can write

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33


 (3.10)

with Mij matrices of dimensions ni × nj , i, j = 1, 2, 3, and M13 = 0,M23 = 0. Again from (3.5),

(3.8) and (3.9), and the definition of the vector ε, we have(
M11 M12

M21 M22

)
η = 0,

where ε = (η, 0) and η is a (n1 + n2)× 1 vector. But this is a contradiction since detM �= 0, and

M13 = 0,M23 = 0 in (3.10) imply that det
(
M11 M12

M21 M22

)
�= 0.

After having established the boundedness of positive solutions of (3.2), we are in a position to

prove the main theorem in this section. In fact, our main result shows the asymptotic constancy

of bounded solutions for a system more general than (3.2), as follows:
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Theorem 3.4. Consider system

x′i(t) = ri(t)xi(t)[αi − bixi(t)− Li(xt)− hi(t)] i = 1, . . . , n, (3.11)

where αi ∈ IR, bi > 0, Li : Cn → IR are linear bounded operators, ri : [0,∞) → (0,∞), hi :

[0,∞)→ IR are continuous functions, i = 1, . . . , n, with

hi(t)→ 0, t→∞, i = 1, . . . , n. (3.12)

With the above notation, assume (H2)–(H4) and that there is x∗ = (x∗1, . . . , x
∗
n) > 0 such that

Mx∗ = [α1, . . . , αn]T . Then, any positive solution x(t) of (3.11) defined and bounded on [0,∞)

satisfies x(t)→ x∗ as t→∞.

Proof. By translating x∗ to the origin by the change y(t) = x(t)− x∗, (3.11) becomes

y′i(t) = −ri(t)(yi(t) + x∗i )[biyi(t) + Li(yt) + hi(t)], i = 1, ..., n, (3.13)

for which C−x∗ is the set of admissible initial conditions. As in the proof of Theorem 3.3, after a

scaling we may assume (H2) with d = (1, . . . , 1), i.e.,

‖Li‖ ≤ bi, i ∈ {1, . . . , n} := I.

Let y(t) = (yi(t))ni=1 be an admissible solution to (3.13), defined and bounded for t ≥ 0. Set

−vi = lim inf
t→∞

yi(t), ui = lim sup
t→∞

yi(t), i ∈ I,

and

v = max
1≤i≤n

vi, u = max
1≤i≤n

ui.

Note that −x∗i ≤ −vi ≤ ui <∞, i ∈ I.
It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that max(u, v) = u.

(The situation is analogous for |u| ≤ v.)

Consider the decomposition of I, I = I1 ∪ I2 ∪ I3, where

I1 = {i ∈ I : ui = u}, I2 = {i ∈ I : vi = u, ui < u}, I3 = {i ∈ I : −u < −vi ≤ ui < u}.

Since |v| ≤ u, then I1 �= ∅. Observe that the situation where one or both sets I2, I3 are empty

is included in our setting. The proof is divided in several steps.

Claim 1. For each i ∈ I1 ∪ I2, there is a sequence (tik) with tik ↗ ∞, biyi(tik) + Li(yti
k
) → 0,

and yi(tik)→ u if i ∈ I1, yi(tik)→ −u if i ∈ I2, as k →∞.

To prove Claim 1, for each i ∈ I1∪ I2 we shall consider separately the cases of yi(t) eventually

monotone and not eventually monotone.
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Case 1. Assume that yi(t) is not eventually monotone.

Let i ∈ I1, and consider (tik) with tik ↗∞ as k →∞, a sequence of local maximum points so

that yi(tik) → ui = u. Clearly, y′i(t
i
k) = 0 = biyi(tik) + Li(yti

k
) + hi(tik) = lim(biyi(tik) + Li(yti

k
)).

For i ∈ I2, the claim follows by considering a sequence of local minimum points (tik) with tik ↗∞,

yi(tik)→ −u as k →∞.

Case 2. Assume that yi(t) is eventually monotone.

Let i ∈ I1 ∪ I2. In this case,

lim
t→∞

yi(t) = u if i ∈ I1 and lim
t→∞

yi(t) = −u if i ∈ I2, (3.14)

and for t large, either y′i(t) ≤ 0 or y′i(t) ≥ 0. If y′i(t) ≥ 0 for t large, then biyi(t)+Li(yt)+hi(t) ≤ 0,

hence

lim sup
t→∞

(biyi(t) + Li(yt) + hi(t)) = lim sup
t→∞

(biyi(t) + Li(yt)) := c ≤ 0.

If c < 0, then there is t1 > 0 such that biyi(t) + Li(yt) + hi(t) < c/2 for t ≥ t1, implying that

y′i(t) ≥ −cri(t)(yi(t) + x∗i )/2 and

yi(t) + x∗i ≥ (yi(t1) + x∗i ) exp
(
− c

2

∫ t

t1

ri(s) ds
)
, t ≥ t1.

From (H4) and the above inequality, we obtain yi(t)→∞ as t→∞, which is not possible. Thus

c = 0, which proves the claim.

If y′i(t) ≤ 0 for t large, in a similar way we get

lim inf
t→∞

(biyi(t) + Li(yt) + hi(t)) = lim inf
t→∞

(biyi(t) + Li(yt)) := d ≥ 0.

Suppose that d > 0. For any ε > 0, there is t2 such that for t ≥ t2 we have biyi(t)+Li(yt)+hi(t) >

d/2 and ‖yt‖ ≤ u+ ε. Then, for t ≥ t2

0 < yi(t) + x∗i ≤ (yi(t2) + x∗i ) exp
(
−d

2

∫ t

t2

ri(s) ds
)
→ 0 as t→∞.

We therefore conclude that

x∗i + lim
t→∞

yi(t) = 0. (3.15)

Since we have assumed u ≥ 0, (3.14) and (3.15) imply that i /∈ I1; and for i ∈ I2, then u = x∗i .

But, for t ≥ t2

0 < d/2 ≤ biyi(t) + Li(yt) + hi(t) ≤ biyi(t) + bi(u+ ε) + hi(t)→ biε, t→∞.

Since ε > 0 is arbitrary, this is a contradiction. Hence d = 0, and Claim 1 is proven.
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Claim 2. For i ∈ I1∪I2, there is a sequence (tik), t
i
k ↗∞, such that yti

k
→ ϕi = (ϕi1, . . . , ϕ

i
n) ∈

Cn as k →∞, with

biϕ
i
i(0) + Li(ϕi) = 0, ϕii(0) =

{
u if i ∈ I1
−u if i ∈ I2

and

−vj ≤ ϕij(θ) ≤ uj , 1 ≤ j ≤ n,−τ ≤ θ ≤ 0.

Suppose that i ∈ I1 (the situation i ∈ I2 is treated in an analogous way). From Claim 1, let

(tik) be a sequence with tik ↗ ∞, biyi(tik) + Li(yti
k
) → 0 and yi(tik) → u as k → ∞. Consider

(yti
k
) ⊂ Cn, and fix ε > 0. Clearly (yti

k
) is uniformly bounded with ‖yti

k
‖ ≤ u + ε for k ≥ k0. On

the other hand, from (3.12) and (H4) it follows that y′(t) is uniformly bounded for t ≥ 0, thus

(yti
k
) is equicontinuous. By Ascoli-Arzelà theorem, for a subsequence, still denoted by (yti

k
), we

have yti
k
→ ϕi for some ϕi = (ϕi1, . . . , ϕ

i
n) ∈ Cn. By letting k → ∞ and ε → 0, we conclude that

ϕi satisfies all the requeriments in Claim 2.

In the remaining proof, sequences (tik) as in Claim 2 are supposed to be fixed, and ϕi denotes

the limit in Cn of (yti
k
).

Observe that for i ∈ I1 ∪ I2 and j ∈ I2 ∪ I3, we have maxθ∈[−τ,0] ϕ
i
j(θ) < u. Now, define

J i = {j ∈ I1 : min
θ∈[−τ,0]

ϕij(θ) = −u, max
θ∈[−τ,0]

ϕij(θ) = u}, i ∈ I1 ∪ I2.

Claim 3. If u > 0, then J i = ∅ for all i ∈ I1 ∪ I2.

Let u > 0, and fix ε > 0 small. For some t0, we have ‖yt‖ ≤ u + ε and |hj(t)| ≤ εbj for all

j ∈ I and t ≥ t0. Consider e.g. i ∈ I1 and j ∈ J i. Let θ1, θ2 ∈ [−τ, 0] be such

u = ϕij(θ1) = lim
k
yj(tik + θ1), −u = ϕij(θ2) = lim

k
yj(tik + θ2).

Case 1. θ2 < θ1

From (H2) we obtain

y′j(t) ≤ bjrj(t)(yj(t) + x∗j )(u+ 2ε− yj(t)).

By integrating over an interval [s, t] ⊂ [t0,∞), we derive

(yj(t) + x∗j )(u+ 2ε− yj(s))

≤ (yj(s) + x∗j )(u+ 2ε− yj(t)) exp
(

(x∗j + u+ 2ε)bj
∫ t

s

rj(σ) dσ
)
, t ≥ s ≥ t0.

(3.16)
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From (H4), there is β > 0 such that ri(t) ≤ β, t ≥ 0. For t = tik + θ1, s = tik + θ2 in (3.16), by

letting k →∞ we conclude that

(u+ x∗j )(2u+ 2ε) ≤ 2ε(−u+ x∗j ) exp
(
(x∗j + u+ 2ε)bjβτ

)
.

Since ε > 0 is arbitrarily small, we conclude that u = 0, which contradicts our assumption.

Case 2. θ1 < θ2

For this situation, we first prove that u < x∗j . Since |bjyj(t) + Lj(yt) + hj(t)| ≤ bj(2u + 3ε)

for t large, then

y′j(t) ≥ −bj(2u+ 3ε)rj(t)(yj(t) + x∗j ),

leading to

(yj(t) + x∗j ) ≥ (yj(s) + x∗j ) exp
(
−bj(2u+ 3ε)

∫ t

s

rj(σ) dσ
)
, t ≥ s ≥ t0, (3.17)

for some t0 large. With t = tik + θ2, s = tik + θ1 in (3.17), by letting k →∞, ε→ 0+, we get

(−u+ x∗j ) ≥ (u+ x∗j ) exp(−2bjuβτ) > 0,

and hence u < x∗j .

Now, let ε > 0 be small so that u+ 2ε < x∗j . For t ≥ t0, we have

y′j(t) ≥ −bjrj(t)(yj(t) + x∗j )(u+ 2ε+ yj(t)),

and integration over an interval [s, t] ⊂ [t0,∞) yields

(yj(t)+u+2ε)(yj(s)+x∗j ) ≥ (yj(s)+u+2ε)(yj(t)+x∗j ) exp
(
−(x∗j − u− 2ε)bjβ(t− s)

)
, t ≥ s ≥ t0.

(3.18)

From (3.18) with t = tik + θ2, s = tik + θ1, by letting k →∞, ε→ 0+, we obtain

0 ≥ 2u(x∗j − u) exp
(
− bj(x∗j − u)βτ

)
,

and therefore conclude that u = 0, which is a contradiction.

For i ∈ I2, the proof of J i = ∅ is similar.

Claim 4. y(t)→ 0 as t→∞.

Recall that we are considering the case |v| ≤ u. For the sake of contradiction, assume that

u > 0.

Fix i ∈ I1 ∪ I2, and choose ϕi ∈ Cn as in Claim 2. Since J i = ∅ from Claim 3, the definition

of Ij , j = 1, 2, 3, leads to

either min
θ∈[−τ,0]

ϕij(θ) > −u or max
θ∈[−τ,0]

ϕij(θ) < u, j ∈ I.
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Consider now the partition of I

I = Ii1 ∪ Ii2 ∪ I3,

where I3 is as above and

Ii1 = {j ∈ I1 ∪ I2 : min
θ∈[−τ,0]

ϕij(θ) > −u}, Ii2 = {j ∈ I1 ∪ I2 : min
θ∈[−τ,0]

ϕij(θ) = −u}.

Note that the set I3 does not depend on i; also, i ∈ Ii1 if i ∈ I1 and i ∈ Ii2 if i ∈ I2.
We now adapt the procedure followed in the proof of Theorem 3.3. For i ∈ I1 ∪ I2, define

−γi1 = min
j∈Ii1

min
−τ≤θ≤0

ϕij(θ) > −u,

γi2 = max
j∈Ii2

max
−τ≤θ≤0

ϕij(θ) < u,

γi3 = max
j∈I3

max
−τ≤θ≤0

|ϕij(θ)| < u,

and εi0 = min1≤k≤3(u− γik)/2. Consider

ei = (ei1, . . . , e
i
n) ∈ IRn, with eij =




εi0, j ∈ Ii1
−εi0, j ∈ Ii2

0 , j ∈ I3
.

From the definition of εi0, we have ‖ϕi − ei‖∞ ≤ u − εi0. For i ∈ I1, from ‖Li‖ ≤ bi and Claim 2,

we get

0 = biϕ
i
i(0) + Li(ϕi) = εi0bi + (ϕii(0)− εi0)bi + Li(ϕi − ei) + Li(ei)

≥ εi0bi + Li(ei) = εi0


bi + aii +

∑
j∈Ii1,j �=i

aij −
∑
j∈Ii2

aij


 .

(3.19)

Analogously, for i ∈ I2 we obtain

0 = biϕ
i
i(0) + Li(ϕi) ≤ εi0


−(bi + aii) +

∑
j∈Ii1

aij −
∑

j∈Ii2,j �=i
aij


 . (3.20)

Now, from (2.5) (with d1 = . . . = dn = 1), (3.19) and (3.20) we conclude that

∑
j∈I3
|aij | =

∑
j∈I3
|lij | = 0, i ∈ I1 ∪ I2,

or, equivalently,

aij = lij = 0 for i ∈ I1 ∪ I2, j ∈ I3, (3.21)

and

bi =
∑
j∈I
|aij | =

∑
j∈I
|lij |, i ∈ I1 ∪ I2. (3.22)
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At this stage, after a permutation of I, we may suppose that I is ordered in such a way that

I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2}, I3 = {n1 + n2 + 1, . . . , n1 + n2 + n3},

with n1 +n2 +n3 = n. Recall that n2, n3 may be zero. According to this ordering, N̂ has the form

N̂ =
(
(N̂ij)3i,j=1

)

where N̂ij are ni × nj matrices, i, j = 1, 2, 3. If I3 �= ∅, from (3.21) we have N̂j3 = 0 for j = 1, 2.

Next, from (3.21)–(3.22) one writes M in the form (3.10) with M13 = M23 = 0, and concludes that

M̃0η = 0, where M̃0 =
(

M̃11 −|M12|
−|M21| M̃22

)
,

where M̃ii are ni × ni matrices, i = 1, 2, and η = (1, . . . , 1) is a (n1 + n2)-vector. This is not

possible however, since det M̃ �= 0 and M13 = M23 = 0 imply that det M̃0 �= 0.

The above arguments show that u = 0, hence v = 0 as well. This ends the proof of the

theorem.

We finally state our main result on the global asymptotic stability of the equilibrium x∗ of

(3.2).

Theorem 3.5. Assume (H1)–(H4). Then the positive equilibrium of (3.2) is globally asymptoti-

cally stable (in the set of all positive solutions).

Proof. By translating x∗ to the origin, (3.2) becomes (3.3). As already noticed, (H2) and

(H3) imply that detM �= 0. From Theorem 3.3, all admissible solutions of (3.3) are defined and

bounded for t ≥ 0, and the trivial equilibrium of (3.3) is uniformly stable (in the set S = C−x∗ of

all admissible solutions). From Theorem 3.4, we conclude that zero is globally attractive in S.

Some immediate consequences of this result are given below.

Corollary 3.6. Assume (H1), (H3), (H4) and that N̂ is an irreducible M-matrix. Then, the

equilibrium x∗ of (3.2) is globally asymptotically stable (in the set of all positive solutions).

Proof. If N̂ is irreducible, then N̂ is in an M-matrix if and only if (H2) holds (see [4]).

Corollary 3.7. Assume (H1), (H4) and that N̂ is a non-singular M-matrix. Then, x∗ is globally

asymptotically stable (in the set of all positive solutions of (3.2)).

Proof. If N̂ is a non-singular M-matrix, then there is d = (d1, . . . , dn) > 0 such that N̂d > 0,

so (H2) holds. Since M̃ ≥ N̂ , then M̃ is a non-singular M-matrix as well (see [4]).
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Corollary 3.8. Assume (H1), (H2), (H4) and that aii > 0 for i = 1, . . . , n. Then x∗ is globally

asymptotically stable (in the set of all positive solutions of (3.2)).

Proof. For d = (d1, . . . , dn) as in (H2), we have

dibi ≥
∑

1≤j≤n
dj |aij |, i = 1, ..., n,

hence M̃ d ≥ 2 diag (a11, . . . , ann) d > 0. From [4, Theorems 5.1 and 5.7], M̃ is a non-singular

M-matrix.

Remark 3.1. For the class of n-neuron Hopfield networks with discrete delays (2.16), Camp-

bell [1] proved its global asymptotic stability if M̂ is a non-singular M-matrix, as in the above

Corollary 3.7. Note that for FDEs with discrete delays (2.16), our matrices M and N coincide.

We emphasize however that Corollary 3.7 deals with the general situation of distributed delays.

We further remark that Tang and Zou [25] gave stability results for Lotka-Volterra systems with

distributed delays of the form

ẋi(t) = ri(t)xi(t)
[
1−

∫ 0

−τii
xi(t+ θ) dηii(θ)−

n∑
j �=i

lij

∫ 0

−τij
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n, (3.23)

where ri(t) satisfy (H4), ηij are non-decreasing bounded normalized functions, and the constants

lij are non-negative. In particular, in (3.23) all the operators Lij are positive (cf. Section 4,

also for comparison of results). In [25], the authors are primarily interested in the situation

τii > 0, i = 1, . . . , n, where instantaneous negative feedbacks are absent, although the situation of

zero diagonal delays is included in their setting. Several criteria for the global attractivity of the

positive equilibrium of (3.23) (if it exists) are established, by imposing 3/2-type constraints on the

diagonal delays τii, and M-matrix-type conditions. Namely, for M = [lij ], where lij , j �= i, are as

in (3.23) and lii = 1, the following conditions are assumed in [25]: either (DD1) M is diagonal

dominant, i.e., 1 >
∑
j �=i lij , i = 1, . . . , n, or (DD2) M̂ is a non-singular M-matrix.

Observe that hypothesis (H2), which for n ≥ 2 is strictly stronger than having N̂ an M-

matrix, was used throughout the proof of Theorem 3.4. Also (H2) was essential to derive the

global asymptotic stability result in Theorem 3.5, since we invoked Theorem 3.3 to conclude that

admissible solutions of (3.2) are bounded. For system (3.2), written as

x′i(t) = ri(t)xi(t)
[
1− bixi(t)−

n∑
j=1

lij

∫ 0

−τ
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n, (3.24)

it is interesting to investigate situations for which the criterion for the global asymptotic stability of

the positive equilibrium x∗ is sharp, in the sense that it coincides with the necessary and sufficient
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conditions, established in Section 2 for the situation ri(t) ≡ ri > 0, for the local asymptotic

stability independently of τ and ηij in (3.24). Though this is in general an open problem, the goal

of the next section is to give partial answers to this question.

Next, we give sufficient conditions for x∗ to be a global attractor of all bounded solutions of

(3.2).

Theorem 3.9. Assume (H4) and suppose that det M̃ �= 0 and N̂ is an M-matrix. If there is a

positive equilibrium x∗ of (3.2), then x(t)→ x∗ as t→∞ for every bounded solution x(t) of (3.2)

with initial condition x0 = ϕ ∈ C0̂.

Proof. If N̂ is an irreducible M-matrix, the result follows from Theorem 3.5. If N̂ is reducible,

as in the proof of Theorem 2.3, by reordering the variables xi, N̂ is written as (2.9), with the

diagonal blocks N̂kk irreducible or zero, k = 1, . . . , '. We prove the result for ' = 2. The general

result follows by induction.

Suppose that n1 + n2 = n, lij = 0 for n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ n1, and write accordingly

M =
(
M11 M12

0 M22

)
, N̂ =

(
N̂11 N̂12

0 N̂22

)
,

where Mij , N̂ij are ni × nj blocks and N̂ii are irreducible or zero matrices.

Now, consider a positive bounded solution x(t), t ≥ 0, of (3.2). Write x(t) = (y(t), z(t)), x∗ =

(y∗, z∗), with y(t), y∗ ∈ IRn1 , z(t), z∗ ∈ IRn2 , so that (3.2) reads as

y′i(t) = ri(t)yi(t)
[
1− biyi(t)−

n1∑
j=1

Lij(yj,t)−
n2∑
p=1

Li(n1+p)(zp,t)
]
, i = 1, . . . , n1, (3.25)

z′k(t) = rn1+k(t)zk(t)
[
1− bn1+kzk(t)−

n2∑
p=1

L(n1+k)(n1+p)(zp,t)
]
, k = 1, . . . , n2, (3.26)

where yj,t(θ) = yj(t + θ), zp,t(θ) = zp(t + θ) for t ≥ 0, θ ∈ [−τ, 0] and j = 1, . . . , n1, p = 1, . . . , n2.

Note that det M̃ii �= 0, i = 1, 2, and that N̂11, N̂22 satisfy (H2).

For (3.26), from Theorem 3.5 we have zk(t)→ z∗k as t→∞, for k = 1, . . . , n2. Hence, (3.25)

can be written as

y′i(t) = ri(t)yi(t)
[
αi − biyi(t)−

n1∑
j=1

Lij(yj,t)− hi(t)
]
, i = 1, . . . , n1, (3.27)

where αi = 1−
∑n2
p=1 ai(n1+p)z

∗
p and

hi(t) =
n2∑
p=1

Li(n1+p)(zp,t)−
n2∑
p=1

ai(n1+p)z
∗
p → 0 as t→∞, i = 1, . . . , n1.

Note that (3.27) has the form (3.11), for which (H2)–(H4) hold, and that M11y
∗ = [α1, . . . , αn]T .

From Theorem 3.4, we conclude that y(t)→ y∗ as t→∞, for i = 1, . . . , n1.

Another interesting aspect of the analogy of the qualitative behaviour between delayed Lotka-

Volterra systems and their corresponding ODE models is given below.
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Theorem 3.10. Consider the Lotka-Volterra system (3.2), where now ri(t) are defined, continuous

and positive on IR, i = 1, . . . , n. Assume (H1)–(H3) and

(H4±) ri(t) is uniformly bounded on (−∞,∞) and
∫ ±∞

ri(t)dt =∞, , i = 1, . . . , n.

Then the only positive solution of (3.2) which is defined, bounded and bounded away from zero

on (−∞,∞) is the constant solution x(t) = x∗.

Proof. By translating x∗ to the origin, write (3.2) in the form (3.3) with ri(t) defined for

t ∈ IR. Let y(t) be a global bounded solution of (3.3), with y(t)− x∗ ≥ m, t ∈ IR, for some m > 0.

We conclude that y(t)→ 0 as t→ −∞ by adjusting the arguments in the proof of Theorem 3.4, so

details are not presented. Now, fix any ε > 0 and suppose that |y(t)| < ε for t ≤ t0. From Lemma

3.2 and Theorem 3.3, it follows that |y(t)| < ε on the entire real line, hence y(t) must be zero.

Remark 3.2. In fact, under conditions (H1)–(H3) and (H4±), the existence of a positive

heteroclinic χ(t) of (3.2) connecting the equilibria χ(−∞) = 0 to χ(∞) = x∗ is possible, therefore

in the above lemma it is essential to assume that solutions are not only bounded, but also bounded

away from zero on IR. As referred to, the proof of Theorem 3.10 follows closely the proof of

Theorem 3.4; namely, Claims 1 and 2 hold with tik →∞ replaced by tik → −∞ and ui, vi defined

by ui = lim supt→−∞ yi(t), −vi = lim inft→−∞ yi(t). However, for the proof of Claim 1, if yi(t) is

eventually monotone as t→ −∞ with y′i(t) ≤ 0 for t in the vicinity of −∞, we can only conclude

that c := lim supt→−∞(biyi(t) + Li(yt)) = 0 if vi < x∗i , otherwise the situation c < 0 is possible.

We finalize this section with some applications.

Example 3.1 Consider the scalar delayed logistic equation

x′(t) = r(t)x(t)[1− b0x(t)− L0(xt)], t ≥ 0, (3.28)

where b0 ∈ IR, r : [0,∞) → (0,∞) is continuous and L0 : C1 → IR is a linear bounded operator.

Note that for (3.28), (H1)-(H3) translate as

b0 + L0(1) > 0, b0 ≥ ‖L0‖. (3.29)

Theorem 3.5 applied to the particular case n = 1 gives the following result:

Corollary 3.11. For (3.28), suppose that (H4) and (3.29) are satisfied. Then the positive equi-

librium x∗ = (b0 +L0(1))−1 of (3.28) is globally asymptotically stable (in the set of all admissible

solutions).

The above criterion was already established in [2]. Note that (3.29) is exactly the necessary

and sufficient condition for the asymptotic stability of (2.12) in the statement of Corollary 2.8.
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Example 3.2. Consider the following Lotka-Volterra system with distributed delays and

symmetry:

x′1(t) = x1(t)
[
r1 − ax1(t) + α

∫ 0

−τ
x1(t+ θ) dη11(θ) + b12

∫ 0

−τ
x2(t+ θ) dη12(θ)

]

x′2(t) = x2(t)
[
r2 − ax2(t) + b21

∫ 0

−τ
x1(t+ θ) dη21(θ) + α

∫ 0

−τ
x2(t+ θ) dη22(θ)

]
.

(3.30)

Here, τ, r1, r2, a, α, b12, b21 are constants, τ, r1, r2, a > 0, and ηij : [−τ, 0] → IR are non-decreasing

functions with ηij(0)− ηij(−τ) = 1, i, j = 1, 2, and

either b21 = −b12 or b21 = b12.

The first situation models a predator-prey system (cf. [18, 19]), while the second one is used to

describe a cooperative or competition model (cf. [20]).

Theorem 3.12. Consider the predator-prey system with symmetry (3.30), where b21 = −b12 := β.

If

max
(r2β
r1

,−r1β
r2

)
< a− α, (3.31)

then there exists a positive equilibrium x∗ = (x∗1, x
∗
2). Additionally, if

|β| < a− α and |β| ≤ a+ α, (3.32)

then x(t)→ x∗ as t→∞ for every admissible solution x(t) of (3.30).

Proof. With b21 = −b12 := β, (3.31) is equivalent to saying that the equilibrium x∗ = (x∗1, x
∗
2),

x∗1 =
r1(a− α)− r2β
(a− α)2 + β2

, x∗2 =
r2(a− α) + r1β

(a− α)2 + β2
,

is positive. Here M = N =
(

(a− α)/r1 β/r1
−β/r2 (a− α)/r2

)
. With the previous notation, M̂ is an

M-matrix if and only if |α|+ |β| ≤ a; for this situation, this is equivalent to (H2). And det M̃ �= 0

means that |β| �= |a− α|. Under these circunstances, (H2)-(H3) translate as (3.32).

We observe that the predator-prey situation b21 = −b12 := β with discrete and distributed

delays in (3.30) was addressed in [19] and [18], respectively, where the authors proved the global

asymptotic stability of x∗ (assuming its existence) under the weaker requirement

√
α2 + β2 ≤ a.

However, in both papers, the following restrictive assumption in the symmetry was imposed:

η11 = η21 := µ, η12 = η22 := ν. (3.33)
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To be more precise, [19] studied the equation with discrete delays

x′1(t) = x1(t)[r1 − ax1(t) + αx1(t− τ1)− βx2(t− τ2)]

x′2(t) = x2(t)[r2 − ax2(t) + βx1(t− τ1) + αx2(t− τ2)],

whereas [18] dealt with the distributed delays situation

x′1(t) = x1(t)
[
r1 − ax1(t) + α

∫ 0

−τ
x1(t+ θ) dµ(θ)− β

∫ 0

−τ
x2(t+ θ) dν(θ)

]

x′2(t) = x2(t)
[
r2 − ax2(t) + β

∫ 0

−τ
x1(t+ θ) dµ(θ) + α

∫ 0

−τ
x2(t+ θ) dν(θ)

]
.

For a cooperative or competition model with symmetry, in a similar way we deduce:

Theorem 3.13. Consider (3.30) with b21 = b12 := β, suppose that

a− α > max
(
− r2β

r1
,−r1β

r2

)
,

and condition (3.32) is satisfied. Then, there exists a positive equilibrium x∗ = (x∗1, x
∗
2), which is

globally asymptotically stable.

Theorem 3.13 was already obtained by Saito and Takeuchi [20], by using Lyapunov functionals.

Here, we have used models (3.30) to illustrate the advantage of our approach, which enables us to

obtain the global stability of general Lotka-Volterra type models (3.1), without having to construct

specific Lyapunov functionals to each model under consideration, normally a rather difficult task.

For the particular case of (3.30) with b12 = ±b21, from Theorems 2.7 and 3.5, one easily checks

that the local and global stability of x∗, independently of the choices of the delay functions ηij ,

coincide.

4. Monotone operators and sharp conditions for global stability

For the particular case of autonomous systems with discrete delays of the form

x′i(t) = rixi(t)
[
1−

n∑
j=1

αijxj(t− τij)
]
, i = 1, . . . , n, (4.1)

where ri > 0, αij ∈ IR, τij ≥ 0 and αii > 0, τii = 0, Hofbauer and So [9] proved that the positive

equilibrium x∗, if it exists, is globally asymptotically stable for all the choices of delays τij ≥ 0, i �= j,

if and only if detM �= 0 and M̂ is an M-matrix. In the previous notation, for (4.1) we have bi =

αii, aij = lij = αij , i �= j, aii = 0, B = diag (α11, . . . , αnn),M = B+[aij ] and M̃ = M̂ = B−
∣∣[aij ]∣∣.

As already noticed in Remark 3.1, later Campbell [1] overcame the restriction τii = 0 in (4.1), and

considered an additive neural network with discrete delays τij ≥ 0 written (after a translation)

as (2.16), for gj smooth increasing functions with gj(0) = 0, g′j(0) = 1, and showed the global
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attractivity of the trivial equilibrium of (2.16) if M̂ is a non-singular M-matrix. (Note that this

implies that M̃ is a non-singular matrix as well [4]).

In this section, our major aim is to identify a class of Lotka-Volterra systems (3.1), for which

the optimal conditions for the local asymptotic stability of the positive equilibrium (cf. Theorems

2.6 and 2.7) are also sufficient conditions for its global asymptotic stability. In particular, we want

to replace (H2) by the weaker condition of N̂ being an M-matrix in Theorem 3.5.

An important class of Lotka-Volterra models (3.2), which includes the discrete delay system

(4.1) (without the restriction τii = 0), is the one where the operators Lij in (2.2) are all monotone.

We recall that a linear bounded operator L : C1 → IR is monotone (relative to the order in

C1) if L is given by

Lϕ = '

∫ 0

−τ
ϕ(θ) dµ(θ), ϕ ∈ C1,

for some ' ∈ IR and non-decreasing function µ : [−τ, 0] → IR, µ(0)− µ(−τ) = 1. If ' ≥ 0 (respec.

' ≤ 0), then L is said to be positive (respec. negative); this means that L is non-decreasing (respec.

non-increasing), that is, Lϕ ≥ 0 for all ϕ ≥ 0 (respec. ϕ ≤ 0).

For the general autonomous situation of systems (3.24) with a positive equilibrium x∗, we

conjecture that x∗ is globally asymptotically stable for all the choices of τ > 0 and normalized

non-decreasing functions ηij , i, j = 1, . . . , n, if and only if detM �= 0 and M̂ is an M-matrix.

If this conjecture is true, then the local and global asymptotic stabilities of x∗ independently of

the (distributed) delays coincide. Here, we consider monotone operators Lij , and establish some

criteria for the global stability of (3.2), namely that the above conjecture is valid if all Lij are

monotone and aii > 0. In what follows, stability is referred to the set of admissible solutions.

Theorem 4.1. Consider Eq. (3.2), and suppose that the operators Lij in (2.2) are all negative,

i, j = 1, . . . , n. Assume (H4) and that M is a non-singular M-matrix. Then there exists a positive

equilibrium of (3.2), which is globally asymptotically stable.

Proof. The operators Lij are all negative, thus they are given by (2.2), for non-decreasing

functions ηij : [−τ, 0]→ IR with ηij(0)−ηij(−τ) = 1 and lij ≤ 0, i, j = 1, . . . , n. With the previous

notation, we have aij = lij and

M = N = M̃ = N̂ = diag(b1, . . . , bn) + [aij ].

Since M is a non-singular M-matrix, hypothesis (H2) is satisfied; moreover, M−1 ≥ 0 (see [4,

Theorems 5.1 and 5.3]). Let x∗ = (x∗1, . . . , x
∗
n) be the solution of Mx = [1, . . . , 1]T . Since M−1 ≥ 0,

then x∗ ≥ 0; and x∗i = 0 if and only if all the entries of the ith-row of M−1 are zero, which is not

possible. The conclusion follows now from Theorem 3.5.

If all the operators Lij in (2.2) are monotone, Corollary 3.7 gives the following criterion:
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Corollary 4.2. Consider Eq. (3.2), where the operators Lij in (2.2) are all monotone and the

functions ri(t) satisfy (H4), i, j = 1, . . . , n. Assume also that there exists d = (d1, . . . , dn) > 0 such

that M̂d > 0, where M̂ = B −
∣∣[lij ]∣∣. Then, the positive equilibrium x∗ of (3.2) (if it exists) is

globally asymptotically stable.

Remark 4.1. As mentioned before, [25] addresses the question of global attractivity for pure

delay systems (3.23). For the situation τii = 0, 1 ≤ i ≤ n, (3.23) reads as

ẋi(t) = ri(t)xi(t)
[
1−

n∑
j �=i

lij

∫ 0

−τij
xj(t+ θ) dηij(θ)

]
, i = 1, . . . , n, (4.2)

with lij , τij ≥ 0 and ηij non-decreasing bounded functions, normalized so that
∫ 0

−τij dηij(θ) = 1.

From the criterion established in [25, Theorem 2.3], it follows that if (H1) and (H4) are satisfied,

and there exists d = (d1, . . . , dn) > 0 such that M̂d > 0, where M̂ = [l̂ij ] with l̂ij = −lij for j �= i,

l̂ii = 1, then the positive equilibrium is a global attractor of admissible solutions to (4.2).

Lemma 4.3. Assume (H4) and that N̂ is an M-matrix. Suppose that one of the following condi-

tions holds:

(i) the operators Lij are all positive for i �= j, and Lii are all monotone, i, j = 1, . . . , n, and

detM �= 0;

(ii) the operators Lij are all monotone, with lii := Lii(1) > 0, i, j = 1, . . . , n.

Then, all (admissible) solutions of (3.2) are defined and bounded on [0,∞).

Proof. (i) Let x(t) be an admissible solution of (3.2) defined on [−τ, b), with b > 0 or b =∞.

If all the operators Lij , i �= j, are positive, then Lij(xt,j) ≥ 0 for i �= j. For i = 1, . . . , n, write Lii
as in (2.2), with ηii non-decreasing, and either lii ≥ 0 if Lii is positive, or lii ≤ 0 if Lii is negative.

Then,

x′i(t) ≤ ri(t)xi(t)gi(xt,i), i = 1, . . . , n, (4.3)

where xt,i is the ith coordinate of xt and gi : C1 → IR is given by

gi(ψ) = 1− biψ(0) if lii ≥ 0, gi(ψ) = 1− biψ(0)− lii
∫ 0

−τ
ψ(θ) dηii(θ) if lii ≤ 0, ψ ∈ C1.

The positive solutions of the logistic ODEs u′i(t) = ri(t)ui(t)[1 − biui(t)] are bounded on

[0,∞). On the other hand, from Theorem 2.3 and Remark 2.1, conditions detM �= 0 and N̂ is an

M-matrix imply that bi + lii > 0 and bi ≥ |lii|, i = 1, . . . n. From the results for the scalar case in

[2] (cf. Corollary 3.11), we derive that the positive solutions of

u′i(t) = ri(t)ui(t)
[
1− biui(t)− lii

∫ 0

−τ
ui(t+ θ) dηii(θ)

]
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are defined and bounded for t ≥ 0, i = 1, . . . , n. As the function g = (g1, . . . , gn) on the right-hand

side of (4.3) satisfies the quasimonotone condition in [21, p. 78], by (4.3) and comparison results

(see [21, Theorem 5.1.1]) the same happens to x(t).

(ii) If the operators Lij are all monotone, then they are as in (2.2), for normalized non-

decreasing functions ηij : [−τ, 0] → IR and coefficients lij ∈ IR. Note that aij = Lij(1) = lij , and

the matrices M,N coincide. Let x(t) = x(t, ϕ), ϕ ∈ C0̂, be a solution of (3.2). Then,

x′i(t) ≤ ri(t)xi(t)


1− bixi(t)−

n∑
j=1

l∗ij

∫ 0

−τ
xj(t+ θ) dηij(θ)


 , i = 1, . . . , n, (4.4)

where l∗ij = 0 if lij > 0 and l∗ij = lij if lij ≤ 0. (Since lii > 0, then l∗ii = 0.)

With our notation, here the matrices M̃∗ and N̂∗ are given by M̃∗ = N̂∗ = M∗ := B + [l∗ij ].

Now, M∗ ≥ N̂ + εI, where ε = min{lii : 1 ≤ i ≤ n} > 0 and I is the n× n identity matrix. This

means that M∗ is a non-singular M-matrix, and from Theorem 4.1 we derive that system

u′i(t) = ri(t)ui(t)


1− biui(t)−

n∑
j=1

l∗ij

∫ 0

−τ
uj(t+ θ) dηij(θ)


 , i = 1, . . . , n,

has a unique positive equilibrium u∗, which is globally asymptotically stable. Again, the function

on the right-hand side of the above system is quasimonotone. From (4.4) and [21, Theorem 5.1.1],

all admissible solutions of (3.2) are defined and bounded on [0,∞).

Theorem 4.4. Consider system (3.24), where τ > 0, bi > 0, lij ∈ IR, ri : [0,∞) → (0,∞) are

continuous, and ηij ∈ BV ([−τ, 0]; IR), V ar[−τ,0]ηij = 1, with ηij non-decreasing for all i, j =

1, . . . , n, and lij ≥ 0 for i �= j. Define B = diag (b1, . . . , bn), M̃ = B + [l̃ij ], M̂ = B + [l̂ij ], where

l̃ij = l̂ij = −lij for j �= i, l̃ii = lii, l̂ii = −|lii|. Assume (H4), that det M̃ �= 0 and M̂ is an M-matrix.

If there exists a positive equilibrium x∗ of (3.24), then x∗ is globally asymptotically stable.

Proof. Since M̃ is a non-singular M-matrix, then detM �= 0 [4, Theorem 5.17]. Lemma

4.3(i) implies that all positive solutions of (3.24) are bounded. The result is now a consequence of

Theorem 3.9.

Example 4.1. In [21, pp. 94–98], Smith considered the autonomous case of system (3.24),

with all lij ≥ 0 and ηij normalized non-decreasing functions – or, in other words, system (3.1) with

all operators Lij being positive. For this situation, under the condition
n∑
j=1

lijb
−1
j < 1, i = 1, . . . , n, (4.5)

Smith proved the existence of a globally attractive positive equilibrium. We note that (4.5) implies

that M̂d > 0, for d−1 = (b1, . . . , bn). In particular, from (4.5) we deduce that M̂ is a non-singular

M-matrix, so also det M̃ �= 0. Therefore, the criterion in Theorem 4.4 generalizes the one in [21].

Next result presents a sharp condition for global asymptotic stability.
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Theorem 4.5. Let ri > 0, bi > 0, lij ∈ IR with lii > 0, i, j = 1, . . . , n, be given, and define

B = diag (b1, . . . , bn),M = B + [lij ], M̂ = B −
∣∣[lij ]∣∣. Suppose that there is a positive vector

x∗ such that Mx∗ = [1, . . . , 1]T . With ri(t) ≡ ri, then x∗ is a globally asymptotically stable

equilibrium of the autonomous Lotka-Volterra system (3.24) for all the choices of τ > 0 and non-

decreasing functions ηij : [−τ, 0] → IR with ηij(0) − ηij(−τ) = 1, i, j = 1, . . . , n, if and only if

detM �= 0 and M̂ is an M-matrix.

Proof. Take (3.24) with ri(t) ≡ ri > 0. For the sufficiency condition, suppose that detM �= 0

and M̂ is an M-matrix. The boundedness of admissible solutions follows from Lemma 4.3(ii). Now,

if lii > 0, i = 1, . . . , n, then M̃ = M̂ + 2 diag (l11, . . . , lnn) is non-singular [4, Theorems 5.1 and

5.3]. Theorem 3.9 yields the conclusion.

For the necessity, let x∗ be globally asymptotically stable for all the choices of non-decreasing

functions ηij . From [1, 9] (cf. Lemma 2.5), if detM �= 0 and M̂ is not an M-matrix, for some

choices of Heaviside functions ηij , the characteristic equation for (2.3) has a root with positive real

part. Thus, there is a non trivial unstable manifold for the equilibrium x∗ of (3.24). This implies

that x∗ is not a global attractor. On the other hand, if detM = 0, then (3.24) has an infinity of

positive equilibria, which contradicts the global attractivity of x∗.
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