Universidade do Minho
Escola de Engenharia

Henrique Manuel Palmeira Pereira

Avoiding Question-Answering Congestion
on Health Services using Chatbots

December, 2021

Universidade do Minho
Escola de Engenharia

Henrique Manuel Palmeira Pereira

Avoiding Question-Answering Congestion
on Health Services using Chatbots

Master’s Dissertation

Integrated Master’s in Informatics Engineering

Work supervised by
Professor Doutor Joaquim Macedo

Professora Doutora Olga Craveiro

December, 2021

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.
Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated
licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

@080

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

Braga 28/12/2021

(Location) (Date)

///////o// 1

(Henrlque Ma ueI Palmeira Pereira)

Henrique Pereira
Braga

Henrique Pereira
28/12/2021

Acknowledgements

First of all, | would like to thank both my supervisors, Professor Doutor Joaquim Macedo and Professora
Doutora Olga Craveiro, for all the patience and support provided during this year.

To my parents, Monica and Manuel, for always providing me everything | needed to complete my
education and for making me the man | am today. Also, to my brother Eduardo for teasing me that he
would finish his dissertation first than me.

To Sofia Cruz, my love, for bringing me up in my lowest moments and for always helping me find my
motivation.

To my friends Braga, Cacador, Joaozinho, Pedro and Pedro, for sharing the same pains as me and for
being the backbone of my university adventure.

To my Uphold colleagues from the Data team, mainly Yuliana, Guilherme, Zé and Mario, for letting me
discuss my thesis with them and for always being ready to help.

To all my other friends that | do not mention personally, for all the good times that made this trip so

beautiful.

Abstract

The proliferation of social networks presents a significant amount of fake news and fake information
every day and every second. The COVID-19 pandemic confirms this situation. The general ignorance of
this disease causes the spreading of misleading information, harming people’s lives and governments’
actions to contain it.

To fight this infodemic, the populations resorted to the health services' phone lines, congesting them
with questions, most of them repeated among different individuals and locations. A chatbot for COVID-19-
related questions would redirect this workload from the health services, mitigating such congestion. This
chatbot should work for both the English and Portuguese languages.

This work provides a background overview about web crawlers, information processing and chatbot
development, which are the three components of the application. A systematic literature review was done
to provide an analysis of the existing literature on the mentioned thematics.

The application presented in this work consists of three main modules: a web crawler, using the ACHE
crawler application, which downloads the web pages from the trustworthy sources; a text processor, that
parses the web pages and indexes them according to their language to the respective ElasticSearch index;
and a chatbot component, composed by a fine-tuned BERT model with the SQUAD 2.0 dataset and a web
interface that queries the ElasticSearch indexes for the most relevant pages and extracts the answers to
the given questions by the users. To comply with the English and Portuguese requirement, two sets of
reliable sources were defined (one for each language) and a translated version of SQUAD 1.1 dataset was
used to train the Portuguese BERT model. The chatbot queries the correct model using the web browser’s
defined language.

Our system was evaluated using a set of COVID-19 QA pairs extracted from the United Nations website,
and the obtained results are described in this work. These were far from the desirable outcomes, so some
improvements were applied to the crawler and to the ElasticSearch indexes. However the results were still

not satisfactory, requiring a set of future modifications that are presented in this work.

Keywords: chatbot, COVID-19, information processing, natural language processing, web crawling

Resumo

Com a proliferacdo das redes sociais, um numero significativo de fake news é disponibilizado as
pessoas todos os dias, a cada segundo. Isto foi confirmado durante a pandemia da COVID-19, onde um
desconhecimento geral da doenca causou a difusdo de informacao enganosa, colocando em risco a vida
das pessoas e as a¢des governamentais que visavam o controlo da doenca.

Para combater esta infodemia, as populacdes recorreram as linhas telefénicas dos servicos de satde
nacionais, congestionando-as com questdes muitas vezes repetidas. Com o intuito de mitigar este con-
gestionamento, um chatbot para a COVID-19 ajudaria a redirecionar esta carga de trabalho dos servicos
de saude para a aplicacéo. Este chatbot deve suportar as linguas Portuguesa e Inglesa.

Este trabalho apresenta uma visdo geral acerca de web crawlers, de processamento de informacao
e de desenvolvimento de chatbots. Uma revisao sistematica da literatura foi conduzida com o intuito de
apresentar uma analise da literatura existente. A aplicacao apresentada neste trabalho consiste em trés
componentes principais: um web crawler, usando a aplicacao ACHE, que descarrega as paginas web das
fontes confidveis; um componente de processamento de texto, que processa as paginas e as indexa de
acordo com a sua lingua no respetivo indice de ElasticSearch; e um chatbot, composto por um modelo
BERT treinado e refinado com o dataset SQUAD 2.0 e uma interface web, que pesquisa no ElasticSearch
as paginas mais relevantes e extrai dai as respostas para as perguntas dos utilizadores. Para satisfazer o
requisito das duas linguas, dois conjuntos de paginas confidveis foram definidos (um para cada lingua),
e uma versao traduzida do SQUAD 1.1 foi utilizada para treinar o modelo BERT em Portugués. O chatbot
guestiona o modelo correto consoante a lingua configurada no browser utilizado.

0 sistema foi avaliado usando um conjunto real de perguntas e respostas sobre COVID-19, sendo
apresentados neste trabalho os resultados obtidos. Estes ficaram longe do desejado, pelo que algumas
melhorias foram aplicadas ao sistema. Porém, os resultados permaneceram ainda assim insatisfatorios,

necessitando de um conjunto de futuras alteracdes que sao apresentadas neste trabalho.

Palavras-chave: chatbot, COVID-19, processamento de informacéo, processamento de linguagem na-

tural, web crawling

Contents

List of Figures ix
List of Tables Xi
Listings xii
Acronyms Xiii
1 Introduction 1
1.1 Contextand Motivation 1

1.2 Objectives e 3

1.3 Achievements 3

1.4 DocumentStructure 4

2 Background 5
2.1 COVID-19 Reliable Sources 5
22 WebCrawling e 6
2.2.1 Information Retrieval 6

2.2.2 SearchEngines 7

223 WebCrawler 8

224 Typesof Web Crawlers 10

2.2.5 Selection of the Web Crawler's Type 14

2.2.6 Web Crawling Policies 14

2.2.7 Web CrawlingChallenges 15

2.3 Information Processing 15
2.31 HTIMLParsing e 15

2.3.2 TextSegmentation 17

2.3.3 TextClassification 18

2.4 Chatbot Application 18
2.4.1 Chatbot Classification 19

2.4.2 Approaches to Chatbot Development 20

Vi

CONTENTS

2.4.3 Selection of Chatbot Development Approach

3 Systematic Literature Review

4

5

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10 Conclusion

Methodology
Research Questions
321 WebCrawling
3.2.2 Chatbot Development
Literature Sources and Search Strings
Inclusion and Exclusion Criteria
Studies Selection L.
Quality Assessment
Data Extraction
Data Synthesis
3.8.1 Studies Overview
3.8.2 Research Questions Findings

Limitations

Architecture and Solution Design

4.1
4.2
4.3
4.4

System Overview
Web Crawler
Text Processor
Chatbot Application

System Implementation

5.1

5.2

5.3
54

Web Crawler
511 Scripts.
5.1.2 ACHE Configurations
513 Models.
514 Executon
Text Processor
521 FileMover
5.2.2 FileProcessor
ElasticSearch
Chatbot Application
541 RESTAPI
54.2 Chatbot Models
5.4.3 Web Application

Vil

23

................... 23
................... 24
................... 24
................... 25
................... 25
................... 26
................... 27
................... 27
................... 28
................... 28
................... 29
................... 33
................... 39
................... 39

41

................... 41
................... 42
................... 44
................... 45

48

................... 48
................... 49
................... 50
................... 51
................... 51
................... 53
................... 53
................... 54
................... 55
................... 55
................... 55
................... 56
................... 60

CONTENTS

6

7

Testing and Tuning

6.1 COVID-19QATestSet

6.2 Results

6.2.1 NoTuning (Raw Indexing)
6.2.2 With Crawling Restrictions

6.2.3 With Crawling Restrictions and ElasticSearch Indexes Enhancement

6.3 QOutcome Analysis

Conclusions
7.1 Conclusion . . .
7.2 Future Work . .

Bibliography

Appendices

A Systematic Literature Review: Quality Assessment

B Web Crawler: ACHE Configuration File

C

D

B.1 Target Storage .
B.2 Link Storage . .

B.3 Crawler Manager

Code Listings
C.1 Chunkify, Tokenize

and Get Answer with BERT model

C.2 Get Answer with BERT model usinga Pipeline

COVID-19 Testing QA Set (10 QA pairs)

D.1 English QA Set .
D.2 Portuguese QA Set

viii

62
62
63
64
65
67
69

71
71
73

75

86

86

20
90
91
91

93
93
95

96
96
99

List of Figures

1.1 Evolution of COVID-19 cases and deaths worldwide (WHO Coronavirus (COVID-19) Dashboard) 2

2.1 Categorization of information retrieval approaches (adapted from Saini and Arora (2016)) 7
2.2 General search engine architecture (Arasu etal. (2001))

2.3 Basic Web Crawler architecture and behaviour

2.4 Taxonomy of Web Crawlers (Kumaretal. (2017)) 10
2.5 Basic Architecture for a Focused Web Crawler (Joe Dhanith and Surendiran (2019)) 13
2.6 Web Scraper Main Components (Parvezetal. (2018)) 16
2.7 DOM tree example (Parvezetal. (2018)) 16
2.8 Text Classification Flowchart (Mironczuk and Protasiewicz (2018)) 19
2.9 Chatbot Classification Criteria (Nimavat and Champaneria (2017)) 20
2.10 Chatbot Classification (Barbosa et al. (2020)) 21
3.1 Steps to conduct a SLR (adapted from Amara et al. (2016)) 24
3.2 Web Crawling Studies: Year and Type of Publication 29
3.3 Web Crawling Studies: Language or Tool 30
3.4 Web Crawling Studies: Approach 31
3.5 Chatbot Development Studies: Year and Type of Publication 31
3.6 Chatbot Development Studies: Language/Tool 32
3.7 Chatbot Development Studies: Algorithm/Approach 32
3.8 Chatbot Development Studies: Dataset Type 33
4.1 System Overview: High-Level Architecture 41
4.2 Information Flowcharts: Web Crawler + Text Processor 42
4.3 Information Flowcharts: Chatbot Application 43
4.4 Web Crawler: Low-Level Architecture 44
4.5 Text Processor: Low-Level Architecture oo 44
4.6 Chatbot Application: Low-Level Architecture 45
4.7 Overall Pre-training and Fine-tuning Procedures for BERT (Devlin et al., 2018) 46
4.8 BERT Input Representation (Devlinetal.,, 2018) 47
5.1 ACHE Crawler: Monitoring Tool 52

LIST OF FIGURES

5.2 Web Application: Ul (English and Portuguese) 61

6.1 ElasticSearch Scoring Function (Lucene’s Practical Scoring Function) 63

3.1
3.2
3.3
3.4
3.5
3.6

51
5.2
53

6.1
6.2
6.3
6.4
6.5

6.6

Al
A2

List of Tables

Search Terms and Alternative Spellings and Synonyms
Distribution of found and selected studies (Web Crawling)
Distribution of found and selected studies (Chatbot Development)
Quality Assessment Checklist
Data Extraction Form e

Web Crawling Tools Comparison e e e

BERT: Scores averaged over all examplesinthedevset
BERT: Scores averaged over only positive examples (have answers)

BERT: Scores averaged over only negative examples (no answers)

No Tuning - Application Results on EnglishQASet
No Tuning - Application Results on Portuguese QASet
With Crawling Restrictions - Application Results on English QA Set
With Crawling Restrictions - Application Results on Portuguese QA Set
With Crawling Restrictions and ElasticSearch Indexes Enhancement - Application Results on
English QASet e
With Crawling Restrictions and ElasticSearch Indexes Enhancement - Application Results on

Portuguese QA Set e

Quality Assessment: Web Crawling

Quality Assessment: Chatbot Development

Xi

26
27
27
28
29
37

59
59
59

64
65
66
66

69

69

86
89

5.1
5.2
5.3
54
5.5
5.6
6.1
6.2
B.1
B.2
B.3
Cl
C.2

Run ACHE crawler on Docker container . . .
ACHE Seed URLfile
ACHE Page Classifier Model
Decode Base6d text.
Run BERT Finetuning (EN)
Run BERT Fine-tuning (PT)
ElasticSearch Indexes Enhancement
ElasticSearch Portuguese Index Enhancement
ACHE Target Storage Configurations
ACHE Link Storage Configurations
ACHE Crawler Manager Configurations . . .

Listings

Chunkify, Tokenize and Get Answer with BERT model

Get Answer with BERT model using a Pipeline

Xii

49
51
51
54
57
58
67
68
90
91
91
93
95

Acronyms

ACHE Adaptive Crawler for Hidden-Web Entries

ANN Artificial Neural Networks

BERT Bidirectional Encoder Representation from Transformers
CBR Case-based Reasoning

CDC Centers for Disease Control and Prevention
COVID-19 Coronavirus Disease

CRF Conditional Random Field

DNN Deep Neural Network

DOM Document Object Model

ECDC European Center for Disease Prevention and Control
FAQ Frequently Asked Questions

HITS Hyperlink-Induced Topic Search

HMM Hidden Markov Model

HTML HyperText Markup Language

loT Internet of Things

IR Information Retrieval

LDA Latent Dirichlet Allocation

LSI Latent Semantic Indexing

LSTM Long Short Term Memory

MLM Masked Language Modeling

MM Multinomial Mixture

Xiii

ACRONYMS

NHS National Health Service

NLP Natural Language Processing

NLU Natural Language Understanding

NPMI Normalized Pointwise Mutual Information
NSP Next Sentence Prediction

PLSA Probabilistic Latent Semantic Analysis
QA Question Answering

RL Reinforcement Learning

RNN Recurrent Neural Network

RQ Research Question

SLR Systematic Literature Review

SQuAD Stanford Question Answering Dataset

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

Ul User Interface

URL Uniform Resource Locator

VIPS Vision-based Page Segmentation
VSM Vector Space Model

WHO World Health Organization

WWW World Wide Web

Xiv

Chapter

Introduction

This chapter introduces the purpose of this dissertation by providing the context, goals and outcomes on
the topic of providing reliable information about COVID-19 through conversation agents and thus avoiding

the question-answering congestion on Health Services.

1.1 Context and Motivation

In late 2019, an outbreak of the novel coronavirus SARS-CoV-2, which started in Hubei Province of the
People’s Republic of China, spread to many other countries in the world. In January 2020, the WHO
(World Health Organization) Emergency Committee declared a global health emergency, given the growth
of cases internationally (Velavan and Meyer, 2020).

Yuki et al. (2020) state that the outbreak of SARS-CoV-2 originally started via a zoonotic transmission
associated with the seafood market in Wuhan, China. Later it was recognized that human-to-human trans-
mission played a major role in the subsequent outbreak. The disease caused by the aforementioned virus
was named COVID-19 (Coronavirus Disease 19) and it affects mostly the respiratory system. Symptoms
of the disease include fever, dry cough, dyspnea (short of breath), headaches, vomiting and diarrhea.
However, the initial clinical sign of the SARS-CoV-2-related disease which allowed case detection was
pheumonia.

The transmission of the virus from human to human occurs through coughing, sneezing, and the
spread of respiratory droplets or aerosols, as well as through indirect contact (contaminated objects and
airborne contagion) (Loffi et al., 2020).

However, the general ignorance and initial disregard of the disease led to its wide-spreading, incapac-
itating health systems to treat all the diseased, growing this way the number of fatalities related to the
COVID-19. In Figure 1.1 (extracted from WHO Coronavirus (COVID-19) Dashboard), the evolution of the

numbers of cases and deaths worldwide is presented.

CHAPTER 1. INTRODUCTION

Global Situation - BEX
101,917,147

confirmed cases

Jun 20

2,205,515

deaths

Jun 20

Figure 1.1: Evolution of COVID-19 cases and deaths worldwide (WHO Coronavirus (COVID-19) Dashboard)

With the proliferation of social networks, an increasing amount of fake news and fake information
is being presented to people every day at every second. Between 2012 and 2017, 40% of the medical
news shared on social media contained misinformation (Waszak et al., 2018). This phenomenon could be
well confirmed during the COVID-19 pandemic (Naeem and Bhatti, 2020), where misleading information
spread like wildfire. In order to clarify doubts and to verify the information read on the internet, people
can contact the Health Services (e.g. SNS24, Portugal’s Health Services’ contact center), thus congesting
them and leading to the inability to treat more urgent medical issues.

Chatbots can be used to relieve this congestion, allowing people to easily get an answer for their
questions without the intervention of another human agent, usually a doctor or a nurse (Dale, 2016).
However, chatbots need to be fed with reliable and trustworthy information from renowned sources, in
order to mitigate the fake information dissemination. This way, the proposed work would be composed of

three parts:

1. Reliable Information Gathering: textual information will be retrieved by a web crawler through reliable

sources;

2. Information Processing: information collected by the crawler must be treated using text segmenters

and classifiers;

3. Chatbot Development: implementation of an intelligent conversation agent that provides answers

to the users’ questions.

By grouping all the three parts, an application without any previous data can answer the given ques-
tions, parsing the text accordingly and providing the right reliable information that was gathered or redi-
recting to a more complete source.

Odhiambo and Okungu (2020) identified the need for trusted public health information sources as
one of the top 15 COVID-19 research topics and areas, as well as the creation of datasets related to the
disease. This work is thus an interesting contribution to both topics, providing an application that provides

trustworthy information and creating a dataset for that purpose.

CHAPTER 1. INTRODUCTION

1.2 Objectives

The purpose of this research is to set the foundations for the implementation of a Chatbot fed by reliable
information in order to answer people’s questions about the COVID-19 disease.

There are several web crawling approaches and tools, and this work means presenting a review of
them, while also mentioning some of the available tools to extract information from web pages.

The same applies to the information processing step: several methodologies for text segmentation,
classification and summarization are available in the literature.

When it comes to chatbots, there are applications using different algorithms. Some make use of ma-
chine learning and deep learning, generating responses based on an intelligent algorithm, while others
rely on predefined rules to fetch the answers for each question.

In order to review the existing modern approaches to each of the mentioned thematics, a Systematic
Literature Review (SLR) will be conducted, allowing the identification of relevant works in the field and the
reproducibility of the study. The SLR will be applied to each of the application’s parts, stated previously.

Before this review, a background overview needs to be done, helping to set the research questions
addressed by the SLR.

The application to be developed should fulfill the following basic requirements:

The application should be available as a web or mobile application.
* The application should be a chatbot, providing answers that are grammatically correct and coherent.

* Given users’ questions about COVID-19, the application should answer them correctly and ask the
user for feedback.

¢ The knowledge base should be constructed from reliable and trustworthy sources of information.

¢ The application should work with both English and Portuguese languages.

1.3 Achievements

The application developed in this work was a chatbot made available to the users as a web application
and with its knowledge base built upon information extracted from reliable sources like governmental or
organizational web pages, e.g. the World Health Organization and the Portuguese Health Ministry websites.

The application works in both English and Portuguese. This is done by having two sets of reliable
sources, from which the pages will be downloaded, thus building an English and a Portuguese knowledge
bases. Also, a second BERT model was trained using a translated version of the dataset SQUAD 1.1.
The correct version of the BERT model is used according to the defined web browser’s language used to
connect to the web interface.

However, there are some flaws and drawbacks when it comes to the quality of the answers provided.

Frequently, they are incomplete or incorrect, misleading the users. This is due to many possible factors, but

CHAPTER 1. INTRODUCTION

the ones we could identify directly were the fact that the model was extracting the answers from questions
in a FAQ web page, instead of the answers themselves. On the other hand, they are grammatically correct
and coherent since they are extracted directly from the original text.

In conclusion, most of the requirements were achieved, although the answers’ quality was not the
expected and required, as mentioned before. The only requirement that was not developed was the request

for user feedback, as it was not deemed an essential feature.

1.4 Document Structure
The present work is structured as follows:

o After the present introductory chapter, comes the State of the Art, where an overview of the the-
matics (web crawling, information processing and chatbot application) is presented (Chapter 2),
followed by the conducted SLR (Chapter 3);

e Then, the Architecture and Solution Design of the proposed application (Chapter 4), where the

system overview of the application and the architectures for its components;

¢ This is followed by the Implementation steps (Chapter 5), where the development of the application
and each of its modules are described, as well as the multiple issues faced and how we overcame

them;

* With the application already implemented, the Tests and Tuning made to it in order to document

the outcomes and improve the results are shown (Chapter 6);

e At last, the Conclusions of this work are presented (Chapter 7), making an overview of the whole

work and documenting some improvements that could be developed as future work.

Chapter

Background

This chapter sets the foundations for the wanted application, by providing an overview of the different
thematics contemplated in this work. Therefore, a list of reliable sources is presented, along with the
first investigation on web crawlers, information processing and chatbot development. This chapter is a

preliminary study to set the basis of the SLR.

2.1 COVID-19 Reliable Sources

Given the fact that we are currently facing an infodemic, as said by Cinelli et al. (2020), where misin-
formation about COVID-19 is damaging not only people’s lives but also government actions to fight the
pandemic.

As an example, when CNN anticipated the Lombardy (Italy) lockdown and its inhabitants crowded the
public transports to escape the region. This happened before it was officially communicated and potentially
increasing the spreading of the virus.

It is very important to use the information provided from accredited and certified sources, in order to
make sure it is reliable and trustworthy, as well as being scientifically comproved.

To aid the identification of reliable sources and fighting the infodemic, Shahi and Nandini (2020)
developed a dataset to help identifying fake news related to COVID-19, due to the disease being the biggest
challenge fact-checkers have ever faced (Brennen et al., 2020).

On the other hand, the recommended information sources are the WHO and the Centers for Disease
Control and Prevention (CDC), according to Carver and Phillips (2020), as well as governmental and public
health organizations in general, according to Rochwerg et al. (2020).

Therefore, a list of reliable websites was built both for English and Portuguese languages.

English sources

CHAPTER 2. BACKGROUND

1. WHO: www.who.int/emergencies/diseases/novel-coronavirus-2019
2. CDC: www.cdc.gov/coronavirus/2019-ncov
3. NHS (UK): www.nhs.uk/conditions/coronavirus-covid-19

4. ECDC: www.ecdc.europa.eu/en/coronavirus

Portuguese sources
1. Portuguese Health Ministry: covid19.min-saude.pt

2. Portuguese Government: covid19estamoson.gov.pt

2.2 Web Crawling

In the modern era of technology, the Internet has experienced explosive growth, with huge amounts of in-
formation being stored and sought each second. Without a proper methodology of indexing and searching,
it would be extremely inefficient and complicated to obtain the information needed. The users would need
to know the specific storing address of the documents they wanted or navigate from link to link until finding
what they wanted. To solve this issue, search engines were developed to ease the process of fetching the

required data with a few clicks.

2.2.1 Information Retrieval

The problem of obtaining information from a huge data source lies under the scope of Information Retrieval
(IR), the activity of obtaining information from a number of informational resources. Saini and Arora (2016)
state that IR can be divided in two approaches: the traditional and the automated, as seen in Figure 2.1.

The traditional IR systems are index-term based search models, which are divided into three primary

categories, according to the survey conducted by Dong et al. (2008):
* theoretic: boolean, case-based reasoning (CBR), fuzzy set and extended boolean models

* algebraic: vector space (VSM), generalized vector space, latent semantic indexing (LSI) and neural
network models (ANN)

* probabilistic: inference network, brief network and probabilistic models

To decrease the information overload caused by the tremendous explosion in the amount of unstruc-
tured data, both internal, corporate document collections, and the immense and growing number of docu-
ment sources on the Internet, the need for effective methods of automated IR has grown in importance, as
sustained by Greengrass (2000), since the traditional IR methodologies were usually applied within small,
controlled and non-linked collections of documents. These automated approaches have been modeled

after the traditional search systems and are used in:

6

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.nhs.uk/conditions/coronavirus-covid-19/
https://www.ecdc.europa.eu/en/coronavirus
https://covid19.min-saude.pt/
https://covid19estamoson.gov.pt/

CHAPTER 2. BACKGROUND

e web crawling: downloads web pages for further processing by search engines for indexing the visited

pages

¢ indexing: allows content extraction

e querying languages: including query syntaxes such as boolean queries, natural language queries,

phrasal queries, proximity queries and patterns matching

» data mining: extracts useful and meaningful data, uncovering hidden relationships among it

* machine learning: helps solve complex and challenging problems through statistical natural lan-

guage processing and information retrieval

Search engines can be described as important tools that allow users to take advantage of automated

information retrieval.

Information Retrieval
(IR)

Traditional

Approaches:

v

v

Set Theoretic

Algebraic

Probabilistic

» Automated

Usages

|

l

A 4

l

!

Web Crawling

Indexing

Query Language

Data Mining

Machine Learning

Figure 2.1: Categorization of information retrieval approaches (adapted from Saini and Arora (2016))

2.2.2 Search Engines

As stated previously, a boom of information has flooded the World Wide Web (WWW), and without the

search engines the process of finding information is similar to seeking a needle in a haystack (Kumar

et al., 2017), so they became an essential and indispensable part of our digital lives. A search engine has

three primary components:

* Web crawler: an application that keeps traversing the web and gathering the numerous sources and

information

¢ |ndexer: which, as the name indicates, indexes the data gathered by the crawler and allows the data

to be correctly delivered for a given query

CHAPTER 2. BACKGROUND

¢ Searching-ranking algorithm: that makes it possible to deliver the best results for the users’ queries,

ordered by relevance.

Crawler(s)

Indexes: Text gpo ture Utility

J 1

Usage feedback

Figure 2.2: General search engine architecture (Arasu et al. (2001))

However, Arasu et al. (2001) presents a more complex and complete general architecture, seen in
Figure 2.2.

Every engine has its foundation on a crawler, that browses the web from a given start set of URLs and
fetches the URLs inside the retrieved pages.

Then, the URLs are passed to the crawl control module, which decides what links to visit next and
passing them again to the crawler.

The crawlers also provide the downloaded web pages to the page repository. The indexer and collection
analysis modules then generate a lookup table from the words existent in each page of the page repository.

The query engine is responsible for processing the users’ search requests, relying heavily on the
indexes generated by the previously mentioned modules to provide the right results, which are ordered by
relevance through the ranking module.

Since the focus of this work is the development of an application that, given a set of URLs representing
a reliable source database, can fetch the maximum of related and relevant information about COVID-19,
we will focus on the crawler and crawl control modules.

We will merge both modules and refer to them as Web Crawler from now on.

2.2.3 Web Crawler

Gupta and Anand (2015) provided a clear and concise definition of web crawling.

8

CHAPTER 2. BACKGROUND

It is the automated traversal of the web to collect all the useful informative pages, effectively and
efficiently in order to gather information about link structure interconnecting those informative pages.

Usually, search engines require web crawlers (also known as spiders) to discover pages continuously,
in an attempt to try to answer all the users’ queries.

This approach is called by Kumar et al. (2017) as universal or broad crawlers, which keep on following
links endlessly and getting all the pages encountered, without limiting them to a certain topic or domain.

Besides broad crawlers, Kumar et al. (2017) state that there was no standard taxonomy for web
crawlers in the literature at that moment, but that we could nevertheless divide them in several types

and purposes: preferential, hidden web, mobile and continuous/incremental crawlers.

Local Repository Web
A
Store Page
Get Page
» Downloader
Add URL
v v
-
% URL Extractor Visited URLs
A 4
URL Queue < Start Set of URLs

Figure 2.3: Basic Web Crawler architecture and behaviour

All the same, they share a basic common architecture, with differences between them, but with the

same foundations. A web crawler is composed of:

e Start set of URLs - this is the seed of the crawling process, which means the crawler will start
downloading them and extracting the URLs from these set and adding them to the URL list

¢ Downloader - which downloads the pages and adds them to the local repository as well as marking
the URL as visited

* URL extractor - a component that given a web page extracts the URLs present in it and adds them

to the queue
¢ URL queue - contains the URLs of the pages yet to be crawled

* Local repository - stores the downloaded pages, to be later processed by another application (or
module) outside the crawler.

CHAPTER 2. BACKGROUND

By integrating all the previous parts, we obtain a functional web crawler that only stops when all the
URLs in the queue have been visited. Figure 2.3 exemplifies the mentioned architecture and flow.
In the next subsection, the several types of web crawlers that were already mentioned will be further

explained.

2.2.4 Types of Web Crawlers

The taxonomy of web crawlers proposed by Kumar et al. (2017) is graphically presented in Figure 2.4.

s "

Web crawler

J

}

I 1 , . :
: . _ , Continuous /
Universal / Preferential Hidden web Mobile incremental
broad crawler crawler crawler crawler crawler

. J

[Focused crawler] [Topical crawler] [Forum crawler]

Figure 2.4: Taxonomy of Web Crawlers (Kumar et al. (2017))

The mentioned types are described below.

2.2.4.1 Universal / Broad Crawler

The broad crawlers have already been pointed in this work as the standard type of crawlers for the usual
search engines. They scatter the web in order to index as many pages as they can, not discarding any

page due to any reason.

2.2.4.2 Preferential Crawler

This type of crawler, as opposed to universal crawlers, does not crawl every URL they come across. Instead,
that only happens when the web page is related to a given topic, subject or condition submitted by the

user. Kumar et al. (2017) also identify three subtypes of the preferential crawler:

* Focused crawler: works similarly to the topical version, but assumes also the existence of a dataset

of web pages labeled as relevant and non-relevant;
» Topical crawler: used to fetch information on a specified topic;
* Forum crawler: used to crawl only online forum content.

To make this possible, there are several approaches to execute the filtering. The survey conducted by

Kumar et al. (2017) identified the following, ordered by frequency:

10

CHAPTER 2. BACKGROUND

10.

Using soft computing techniques: machine learning algorithms are used to classify a web page
and determine if it belongs to the wanted topic. For example, neural networks are used to learn the
page’'s characteristics and decide its relevance, but many other algorithms and techniques are
employed, such as clustering (e.g. formal concept analysis), genetic algorithms, ontology-based or
Hidden Markov Models (HMM).

Application-based: crawlers developed for a specific task or application, e.g. crawling medical

data for sentiment analysis or searching for malicious YouTube videos.

Based on link, text and URL: these crawlers use the text of the web page and in the URL for
deciding its relevance. This methodology allows the URLs to be discarded without downloading
the page, by using only its URL. For example, a study is mentioned to use link distance instead
of probability or relevance score. Also, some of these methodologies allow the classification to be
made without the whole text of the web page, by partitioning it in blocks, or even using the text

around a link to speculate if it is relevant or not.

Based on context graphs, decision trees and DOM: here the Web is visualized as a graph
or decision tree where every page represents a node. This methodology links nodes with similar
interest to each other, thus allowing the identification of relevant pages through the taxonomy of

topics.

Semantic crawling: crawlers in this category exploit the semantics of the Web content and use
some ontology heuristics, by calculating a web page relevance using domain knowledge related to

the wanted topic.

Learnable crawling: with this approach, the crawlers need to maintain a continuously updated

knowledge base, using either supervised or unsupervised algorithms for the classification.

Topic specific: this kind of crawler is used to build a repository of web pages on a given topic,

using a topic similarity to determine the category that best fits a page.

Parallel and distributed: given the large size of available web documents, using a parallel and
distributed crawler allows a faster and lighter processing, by dividing the web in segments and
assigning each one to one of the parallel agents. By distributing the computing resources, each
agent will have less overload and classify the pages more efficiently, which means more pages

crawled in less time.

Language classification-based: these crawlers are used to construct a repository of web pages

on a specific language or topic corpora.

TF-IDF- and rule-based: TF-IDF is a metric that indicates a word’s importance in a document for
a collection of documents and rule-based crawlers use linkage statistics among topics, by being

trained with a predefined topic taxonomy to generate the rules with a probability score.

11

CHAPTER 2. BACKGROUND

11. Vertical search engines: these special search engines differ from the normal ones in the fact

that the results obtained are selected from a smaller set of websites.

12. Based on query, metadata and keyword: as it indicates, crawlers that follow this methodology
use metadata present in the web page to classify its relevance, using queries’ keywords provided

by the users for training and relevance feedback.

13. Location- and geographical-based: the goal of these crawlers is to gather the web pages rel-
evant to the location (e.g. city-state pairs) provided by the user. To achieve this goal, crawlers use

the geospatial information hidden in the page’s data.

14. Incremental and revisit policy-based: this methodology tries to tackle the crawling difficulty
created by the Web’s dynamism and continuously changing state, proposing a revisit policy that
programs the crawler to recrawl a web page after a specified period of time if it detects any change

on its text or structure and act accordingly, processing it again.

On the other hand, Gupta and Anand (2015) make a simpler division and identification of preferential
crawling approaches. In their study, they identified priority-based, structure-based, context-based, learning-
based and other crawlers (this last category includes all the approaches that do not fit in none of the
others).

Priority-based crawlers store the extracted links from a web page in a priority queue, according to
their relevance.

Structure-based crawlers are divided in three classes: the ones using division score and link score
and the ones using a combination of content and link similarity. Link score is calculated on the basis of
division score and average relevance score of parent pages of a particular link. Division score means how
many topic keywords belong to the division in which the particular link belongs.

Context-based crawlers are comparable to the previous approach, with the difference that here
the user context and environment are also taken into account.

At last, learning-based crawlers use datasets (composed of four relevance related attributes: URL
words, anchor text, parent page and surrounding text) to train classification machine learning algorithms
(like Naive Bayes), thus predicting the relevance of the unvisited URLs.

Ganguly and Raich (2014) divides the focused crawlers in different categories, mentioning ontology-
based, reinforcement learning, intelligent and concept graph focused crawling.

Despite the existing differences regarding the classification and division of approaches, a basic com-
mon architecture for focused crawling is proposed by Joe Dhanith and Surendiran (2019), as seen in Figure
2.5.

2.2.4.3 Hidden Web Crawler

The hidden web is the part of the web that is not reachable by following the links in a website, but only

through some kind of form (e.g. login, query or search interfaces). Thus, a traditional web crawler cannot

12

CHAPTER 2. BACKGROUND

User
Seed URLs Topic
crawling
strategy
request a
weh page
parsea Relevancy
rob Calculation
page !
8 &8 l
request a
Web web Priority
page Assignm ent

Figure 2.5: Basic Architecture for a Focused Web Crawler (Joe Dhanith and Surendiran (2019))

usually access it, so special efforts are needed to do so and the heterogeneous and dynamic nature of the
web makes it a tough challenge. This is where hidden web crawlers come into play. According to Kumar et
al. (2017), the used approaches (ordered by frequency) are: keyword query-based, form-based, revisit policy

and incremental, attribute and label extraction, labeled value set-based, and domain- or topic-specific.

2.2.4.4 Mobile Crawler

Mobile crawlers tackle the limitations of traditional web crawlers, eliminating the centralized data access,
web page filtering and indexing. These types of crawlers can move themselves to the web server to down-
load information and contents available on the server, therefore bringing "code to data”instead of the usual
"data to code”. Like with other types, studies around mobile crawlers can be divided into categories such

as freshness and revisit policy-based, user feedback-based, agent-based and ontology-based.

2.2.4.5 Continuous / Incremental Crawler

At last, Kumar et al. (2017) specified the continuous/incremental crawler type. Given that the Web is
dynamic and the web pages’ data is frequently changing, this type of crawler is used to maintain the
search engines’ index database. The challenge with incremental crawlers is the trade-off between resource
consumption and web page freshness, since keeping the information about all the billions of existing pages

updated requires a tremendous computational effort and availability.

13

CHAPTER 2. BACKGROUND

2.2.5 Selection of the Web Crawler’s Type

Since the present work’s web crawler objective is to obtain web pages related to COVID-19 from a selected
set of reliable sources, the most adequate type of web crawler is the preferential one, excluding the forum
crawler. Generally, topical crawlers are included in the focused crawler category.

The start set of our crawler is restricted to a few official sources, given the newness of the topic. The
CQOVID-19 pandemic started in 2020, but the disease was discovered in 2019.

In addition, we intend to use a small number of reliable sources. So, we don't need the use of a parallel
crawler.

As we intend to process the web pages’ text content in a different module, the mobile crawler was
also discarded. Also, a hidden web crawler is not necessary since the information to be fetched is usually
obtained through links displayed in the web pages in order to allow people to easily access it and to fight
misinformation and fake news, an issue that prejudiced the health and lives of those who followed and
believed in the information wrongly spread on the internet, e.g. social networks.

The focused web crawler leads to a more efficient web page processing, once the reduced number of
pages gathered (and the trustable guarantee that it belongs to the specified topic) simplifies the information
processing process and thus provides better and more related answers to the users’ queries in this work'’s
chatbot.

With the wide diversity of methodologies and approaches regarding focused web crawlers, a systematic
literature review was conducted (see Chapter 3) to investigate the most appropriate approach for this work’s
purpose, as well as surveying which tools are available to develop and deploy it.

An important point to take into account is that the trustworthy information sources about COVID-19
are mostly governmental and taking into account that around 40% of the Internet traffic and consumption
of bandwidth is attributed to web crawlers (Badawi et al., 2013), an effort needs to be made as a way
of not overloading these web pages (and shutting down their servers, risking peoples’ access to them).

Koster (1994) defined a set of policies that must be followed, which are made explicit next.

2.2.6 Web Crawling Policies

As stated, there is a set of policies that must be followed in order to keep the servers working and not

crashing them or creating a bottleneck in their services (Koster, 1994).

* Politeness policy: a crawler should not hamper any website with the requests, as servers may
be overloaded as they have to handle the requests of the viewers of the site as well as the crawler’s
requests. To lighten the load there are solutions such as setting an interval between requests, as
well as respecting the robots exclusion policy. This is defined by the websites’ administrators in the

robots.txt file, which sets the pages not reachable by the crawler.

* Parallelization policy: this policy is aimed at controlling the access to the web pages made by

multiple web crawlers, with the goal of maximizing its download rate. Thus, the URLs discovered

14

CHAPTER 2. BACKGROUND

in the crawling process should follow the policy which states they should be assigned to different

threads running in parallel.

* Revisit policy: used to minimize the cost associated with updating outdated web pages by the
crawler, which needs to revisit them in order to keep the indexes of a search engine up-to-date. This

revisiting should be uniform or proportional, following the appropriate policy for each.

* Robustness policy: a crawler must be immune to any kind of malicious behaviours perpetrated

by web servers.

2.2.7 Web Crawling Challenges

In addition to the need to follow the policies aforementioned, there are other challenges faced when de-
veloping a web crawler.

As said before, the Web is very dynamic and is constantly changing, while also having inconsistent
data structures, as websites are built with no sense of universal standard or norm. Despite that, there
are many web pages poorly formatted, and even with errors. Thus, an extra effort is needed to parse the
information contained in the downloaded web pages.

In the next section, an overview of the needed information processing is made, including mainly web
page parsing and relevant data extraction, laying, therefore, the foundations for this work’s application

module responsible for such processing.

2.3 Information Processing

Having the relevant web pages downloaded, the need for extracting the relevant data arises. Therefore, a
module that processes the web pages, discarding the unwanted metadata associated with the documents’
structure, segmenting the text in phrases or blocks of text with similar meanings and then classifying them,
before feeding the information to the chatbot module. The next subsections provide an overview on the

topic, divided by phases.

2.3.1 HTML Parsing

The process of extracting data from web documents is also called web scraping. Parvez et al. (2018)
states that given the dynamic nature of the web, it would be very difficult to scrape the web pages, so
automation is used whenever possible, such as with web crawling. Parvez et al. (2018) divided a web
scraper application in two components: the already describer web crawler and a data extractor (Figure
2.6).

Given the unstructured nature of a web document, the data extractor aims at extracting meaningful
data from these unstructured documents. There are several tools and techniques available for this step of

the processing, which Parvez et al. (2018) have listed summarily:

15

CHAPTER 2. BACKGROUND

Web Scraper

Data

Web Crawler B tract

Figure 2.6: Web Scraper Main Components (Parvez et al. (2018))

e Human copy and paste: most common and traditional approach to extract information from the

web sources but requires tremendous effort for large datasets.

e HTML parser: allows fast and real-time parsing of web pages, is widely used because of its simple

design, processing speed and ability to handle real-world HTML.

e HTTP programming: with socket programming, HTTP requests are sent to the remote servers,

assuring this way that the exact data from web pages is retrieved.

* Tree-based techniques: web pages are generally in a semi-structured form leading to a labeled
ordered rooted tree usually called Document Object Model (DOM), depicting web pages as a hi-
erarchical structure (exemplified in Figure 2.7). This DOM tree is used in some data extraction
techniques, addressing the elements in the tree using XPath (a query language to select specific

nodes) or with tree edit distance matching algorithms.

* Web wrapper: procedure of extracting structured data from unstructured (or semi-structured) data

sources. Can follow approaches based on regular expressions, logic or machine learning algorithms.

Document
Root Element
<htmi>
|
 J | 4
Element Element
<head> <body>
|
‘ ! '
Element ELement Element
<title> <a> <hl>
Text Attribute Text Text
<mytitie> <href> <mylink> <myheader>

Figure 2.7: DOM tree example (Parvez et al. (2018))

We will focus on the HTML parser, since it plainly and simply provides the functionalities to satisfy the

requirement of cleaning the HTML documents. Parvez et al. (2018) described two HTML parsing tools,

16

CHAPTER 2. BACKGROUND

one for Java called JSoup1 and another for Python called BeautifuISoupZ, the latter being one of the most
widely used tools for data extraction. It provides services like cleaning and parsing the extracted document
due to its ease of use and because of many of the NLP applications being written in Python (it has lots of
reputable third-package libraries for that purpose (e.g. NLTK, spaCy) and allows the implementation and
deployment of many machine learning algorithms).

Also, BeautifulSoup is thoroughly documented by Richardson (2017), which led as well to the decision
of choosing BeautifulSoup for the first component of this work’s data extractor.

After removing the unwanted information from the web documents, we need to break it into text chunks,
grouped by their meaning and central idea. Thus, text segmentation followed by text classification is needed
and will be discussed next.

2.3.2 Text Segmentation

Text segmentation is the method of splitting a text into smaller parts, where each segment has a relevant
meaning (Pak and Teh, 2018). It can be useful for emotion extraction, sentiment mining, opinion mining,
topic identification, language detection and information retrieval.

Pak and Teh (2018) stated in their review that there are different types of segments, including topic,
sentence and word, and that these types were selected based on their analyzing targets and specifications.
They also discovered that the most frequent type is word segmentation, as it can include the character
segmentation problem associated with the Asian languages, where, unlike English or Portuguese, words
are not explicitly delimited by whitespaces (Huang et al., 2003).

Given the objective of grouping the web page texts according to their meaning, the most appropriate
method is topic segmentation or sentence segmentation followed by its classification. This work will focus
on English and Portuguese. Generally sentence segmentation for those languages would be done using

nn

rather simple regular expressions, dividing the text by the dot character (".”), interrogation ("?") and ex-

”IH

clamation ("!”) marks. This may require some tweaks for extraordinary situations like dialogs. The topic
segmentation would be much more complex, as described next.

In their review, Pak and Teh (2018) identified that the second most frequent methodology for text seg-
mentation was topic-based. This type of segmentation can be extremely useful when it comes to mitigating
information overload when a whole document is presented, by presenting only the relevant parts.

The review identified different approaches for topic segmentation: orthographic division with similarity
scores (Osman and Yearwood, 2007), probabilistic latent semantic analysis (PLSA) (Brants et al., 2002),
unsupervised algorithms like TextTiling, DotPlotting and C99 (Flejter et al., 2007) or using Latent Dirichlet

Allocation (LDA) and Multinomial Mixture (MM) (Misra et al., 2011).

Lhttps://jsoup.org/
Zhttps://beautiful-soup-4.readthedocs.io/en/ latest

17

CHAPTER 2. BACKGROUND

2.3.3 Text Classification

Text classification is the process of assigning text into two or more categories (Miner et al., 2012). The
goal of text classification is to extract no more than the category from the text, being usually applied to
documents. The basic approach followed in text classification is deriving a set of features and applying
an algorithm to process and use these features to select the most likely category. An example of a text
classification application is spam filtering.

Text classification algorithms usually employ a statistical model to assign labels, but also existing rule-
based approaches.

For the feature creation step, according to Miner et al. (2012), most text classification problems require
a text preprocessing, where the stopwords are stripped, the text is tokenized and stemmed, in order to use
words (often called terms or tokens) as the primary feature, putting them in a standardized form before the
classification. Tokenization is the process of dividing up raw text into discrete words, while stemming is the
process of normalizing word forms. Another challenge is the choice of which text to use: documents may
contain unstructured text, titles, abstracts or even metadata. There are other features like the document
structure or even its length. Also, most of the text classification algorithms assume that the text has been
converted to a vector of features.

Regarding the classification algorithms, Miner et al. (2012) presents two of the most popular, both
being efficient for high-dimensional data and being among the most accurate for text classification: Naive
Bayes and Maximum Entropy. These classifiers need to be trained in order to set the numerical parameters
of the model (feature weights and thresholds). Once the training is finished, they can be used to classify
new and previously unseen text. However, if the training set is not correctly constructed, the classification
will not be precise and correct.

Mironczuk and Protasiewicz (2018) present in their review a flowchart of text classification, seen in
Figure 2.8. The classification process starts with the data acquisition from various text sources and, from
there, a dataset representing a physical or business process is obtained. The next step is to preprocess the
dataset to generate a representation required by the selected learning method. Features are constructed
and weighted with the feature representation algorithm, being the number of features reduced at last by the
feature selection algorithm. Then, the classification model is developed and trained, allowing new inputs
to be classified according to their features.

In the review, Mironczuk and Protasiewicz (2018) described different methodologies for each of the text
classification phases, summarizing extensively the existing literature (including the most recent studies)

on the matter.

2.4 Chatbot Application

The chatbot is the application that can give the correct answers based on correct information.

Question-answering (QA) systems enable the process of retrieving precise answers to natural language

18

CHAPTER 2. BACKGROUND

... Data f?“f!”-‘i'f‘l" —

t Data set

-

.......Data analysis and labelling |

™

[Labelled data set

I
Feature construction and weigthing

7

[Data representation J

. Training of a classification model

-
(Classifier
Solution evaluation

Figure 2.8: Text Classification Flowchart (Mironczuk and Protasiewicz (2018))

questions (Andrenucci and Sneiders, 2005). These systems were introduced between late 1960s and early
1970s and the rise of WWW allowed the QA systems growth and evolution, with the need for user-friendly
search engines.

Along with QA systems, chatbots are quickly gaining a relevant position in the contemporary paradigm
of intelligent systems. They allow an easy interaction between users and information systems. Among the
most popular chatbots and conversational agents are Amazon'’s Alexa, Microsoft's Cortana and Google's
Google Assistant (Nithuna and Laseena, 2020). These applications can not only answer users’ enquiries
by searching the web and returning the most popular results but also make a call to the wanted person or

set up an alarm. Therefore, we can divide chatbots into different types, as specified next.

2.4.1 Chatbot Classification

Barbosa et al. (2020) reviewed the chatbot taxonomy, and based on Nimavat and Champaneria (2017)

identified the following criteria of chatbot classification (presented in Figure 2.9):

¢ Knowledge Domain: being either closed-domain, meaning they are trained and focused on a
particular area of expertise (e.g. a restaurant booking bot), or open-domain agents, which can

replicate a conversation talking about general topics (acting as a chit-chat bot).

* Service Provided: differ on emotional proximity to the user: interpersonal chatbots give informa-

tion to the user (e.g. booking assistants or FAQ bots); intrapersonal agents exist in a personal area,

19

CHAPTER 2. BACKGROUND

acting as companions with a unique personality to the user (e.g. calendar managers or behavioural
therapist bot); and inter-agents can be defined by Internet of things (loT) communication, where

two or more systems have their services linked and integrated.

¢ @Goals: information based (retrieving information stored from querying a database), conversation
based (replicating a human being with continuous conversation) and task based (where their actions

are under a specific task following predefined events).

* Response Generation Method: intelligent systems handle the method of processing inputs
and designing responses using Natural Language Understanding (NLU) to comprehend the users’
queries (sustained by a selflearning algorithm), while rule-based systems use parsing and pattern
matching methods to create rigid answers (with limited and fixed outcomes) and hybrid systems
combine the two previous approaches, using rules to manage the conversation flow and machine

learning to provide the responses.

Chatbot

[Based On

| | l

e 4 3
froa Input processing and
KE:S;ZGV?E Psrzxra\i’g:eed Goals Response Generation
: ‘ ‘ methods
l l Inter- Intra- Task Information = Intelligent Rule based
Open Closed Personal personal based based systems systems
domain Domain
Conversation Hybrid
Inter-agent Based systems

Figure 2.9: Chatbot Classification Criteria (Nimavat and Champaneria (2017))

But, Barbosa et al. (2020) concluded based on recent studies that following an overall chatbot clas-
sification can be subjective and deprecated to the scope of a specific use, since the chatbot field is very
dynamic, mainly due to the emerge of new technologies, and so proposed a new chatbot classification, as
seen in Figure 2.10, where they are classified according to their knowledge domain (broad or restrict) and

to their conversation design (rule-based or artificial intelligence).

2.4.2 Approaches to Chathot Development

Following the classification presented by Barbosa et al. (2020), for either broad or restrict, the chatbot
design can be based on rules or artificial intelligence. For the second methodology, chatbots can be

retrieval-based or generative-based.

20

CHAPTER 2. BACKGROUND

Broad

Restrict

Knowledge Area —_

Rule-based
Conversation Design
/

Chathot Classification

Artificial Intelligence

Figure 2.10: Chatbot Classification (Barbosa et al. (2020))

2.4.2.1 Rule-Based Approach

Chatbots answer questions based on specific rules in which they are trained. However, they cannot provide
a correct answer if the input does not match the predefined patterns. Therefore, these bots are straight-
forward to implement, but it is almost impossible and very time consuming to develop rules for every
scenario.

Rule-based chatbots are a good approach for simple input applications, but fail on processing complex

queries, compared to the artificial intelligence approaches.

2.4.2.2 Retrieval-Based Approach

Chatbots are trained on a set of questions and their likely outcomes, identifying the most accurate answers
from a repository of all possible answers for each question. This identification can be based on a rule
basis or machine learning classifiers. However, these bots can not generate new responses nor process
syntactically incorrect phrases, as they are solely based on predefined answers.

Retrieval-based chatbots can be used when the data is limited and the knowledge area is restricted to

a few conversation scenarios.

2.4.2.3 Generative-Based Approach

Chatbots can generate new answers, as they are not dependent on a predefined response repository,
making them intelligent systems. The responses are produced by interpreting the question word by word.
On the other hand, they are prone to errors and wrong answers, as they take into account spelling and
grammar.

Generative-based chatbots outperform rule-based models as they can adapt to complex and unforeseen

scenarios, once they are trained using large amounts of processed data.

2.4.3 Selection of Chathot Development Approach

Regarding the knowledge area, this work’s application will have a strict knowledge base, focusing only on
the COVID-19 pandemic.

21

CHAPTER 2. BACKGROUND

Regarding the conversation design, a retrieval-based approach is not feasible, as a dataset of ques-
tions and answers does not exist. The data used to provide responses to the users will rely solely on the
information crawled and processed by the application from the selected reliable sources.

Also, a rule-based approach is not adequate as well, given the fact that COVID-19 is always being
updated with new scientific facts and knowledge, outdating the previously released information about the
disease. Therefore, a new set of rules would be needed to be able to answer the users’ queries every time
an update was made. This goes against the objective of the present work of having the latest available
reliable information.

So, the best approach would be following a generative-based approach, which should allow the chatbot
to answer most of the questions inputted, whether they are simpler or complex, hence achieving the goal
of bringing COVID-19 correct information to every user.

In order to understand what is the best algorithm and tool for the wanted application, this thematic

will also be focused on the SLR already mentioned.

22

Chapter

Systematic Literature Review

This chapter describes the methodology followed to perform the literature review, describing each of the
steps, from the Research Questions’ definition to the Data Extraction phase.

In the end, a synthesis of the selected studies is presented.

3.1 Methodology

Using a systematic approach to review the existing literature represents an efficient way to identify relevant
works to a defined set of research questions. This approach also allows studies to be easily peer-reviewed
and replicated (Keele et al., 2007), since a SLR should follow a strict methodology defined previously,
describing the exact way the relevant studies were selected.

Instead of following the SLR method described by Keele et al. (2007), this work first tried to follow
the one described by Wohlin (2014), where the guidelines for snowballing a SLR are defined. Rather than
using databases and research queries to gather the studies needed to answer the research questions, this
method has its basis on an initial set of studies. Then, through Backward Snowballing (the works cited by
a given paper) and Forward Snowballing (the works that cite a given paper) more studies are referenced.

However, starting with a start set of 27 papers, after the first iteration of backward snowballing more
than 700 papers were obtained and given the lack of automated tools to aid the process of analyzing the
papers for inclusion or exclusion, the method was rejected. In fact, given the wideness of this work’s scope
(having three different thematics), analyzing the huge quantity of papers gotten through the snowballing
procedure was consuming too much time and efforts while providing comparable results with the classic
SLR approach (Badampudi et al., 2015; Jalali and Wohlin, 2012).

Having decided to use the classic SLR approach (Keele et al., 2007), the steps to carry it out can be

graphically visualized in Figure 3.1.

23

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Define Research Questions

A 4

Specify Literature Sources
and Search Strings

h 4

A

Select Relevant Studies Inclusion / Exclusion Criteria

h 4

Quality Accessment
Checklist

Access Selected Studies

A

A 4

Extract Data From Studies [« Data Extraction Form

h 4

Synthesize Findings

Figure 3.1: Steps to conduct a SLR (adapted from Amara et al. (2016))

3.2 Research Questions

As stated previously, the SLR was executed on web crawling and chatbot development. So, the research
questions will be divided into two groups. However, if the chatbot development findings revealed the need

for an advanced text processing module, the review would be extended to also cover that thematic.

3.2.1 Web Crawling

RQ1: Which technique should be used to crawl the defined sources?

Motivation: With the exponential increase of web sites and data sources and the continuous
research of new search engine algorithms to improve the process of finding information, many
strategies for the collection of data have been developed. With such a diversity, there are various

types of web crawling approaches, each one focusing a different problem to be solved.

Despite the inexistence of an official taxonomy for web crawlers, they can be divided in various
types (Kumar et al., 2017). Since we want to gather information from a previously defined set of
sources (websites) we want to use a focused web crawler, that starts crawling from the specified
seeds. There are many techniques to perform the focused crawling and therefore this RQ is aimed
at defining which one is the best for our work.

RQ2: Which open-source or free tools are available for focused web crawling?

24

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Motivation: This study aims to do a small survey on open-source tools to allow the implementation
of focused crawlers and its deployment. In this work, a continuous information retrieval is essential
to provide the chatbot with fresh data. For research purposes, an open-source tool is preferred due to
community support, the continuous improvement and the open code to analyze the implementation
(Bonaccorsi and Rossi, 2003; Scacchi, 2007).

3.2.2 Chatbot Development

RQ3: Which generative deep learning algorithms can be used for the chatbot application?

Motivation: One of the earliest NLP applications was a chatbot named Eliza, developed in 1960,
so chatbots are not a new and unknown topic Dale (2016). With decades of research and develop-
ment, there are many algorithms and tools that allow software engineers to build and deploy such

applications.

For this work, a generative-based approach is wanted to provide the more correct and precise an-
swers to each asked question. These generative approaches are usually implemented using deep
learning algorithms. This research question aims at discovering which of the mentioned algorithms
are adequate for this work. Unsupervised approaches are preferable due to the unnecessary exis-
tence of a pre-built dataset. It is also expectable to find tools that can aid the implementation of the

algorithm.

3.3 Literature Sources and Search Strings

The literature sources used in this SLR are some of the major online databases available: ACM, IEEE

Xplore, ScienceDirect, Scopus and Web of Science.

Having the list of sources defined, a search string will be constructed regarding each part of this study,

following the approach by Keele et al. (2007):

1. ldentify major search terms;
2. Check keywords of already analyzed studies to find more search terms;
3. Identify alternative spellings or synonyms of the chosen major terms;

4. Construct search string by joining the terms: boolean ORs are used to join alternative spellings/syn-

onyms and ANDs to join major search terms.

For the reliable information gathering part, the major terms were identified, easily identified in Table
3.1.
From the identified terms, the following search strings were built:

25

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Table 3.1: Search Terms and Alternative Spellings and Synonyms

Thematic Terms Alternative terms and synonyms
Web Crawling Focused Web Crawler Focused Crawler, Focused Crawling, Focused Web Crawling
Techniques Algorithms, Tools
Chatbot Chatbot Chatterbot
Development
Deep Learning Machine Learning
Generative Generative-based
Algorithm Tool, Model

* ("Focused Web Crawler” OR "Focused Crawler” OR "Focused Crawling” OR "Focused Web Crawl-
ing”) AND ("Techniques” OR "Algorithms” OR "Tools")

e ("Chatbot” OR "Chatterbot”) AND ("Deep Learning” OR "Machine Learning”) AND ("Generative”
OR "Generative-Based”) AND ("Algorithm” OR "Tool” OR "Model”)

3.4 Inclusion and Exclusion Criteria

In order to select the appropriate studies for inclusion in the review, both inclusion and exclusion criteria
were specified.

Following the approach of the authors in Amara et al. (2016), the inclusion criteria were obtained:
¢ |f a study has a journal and a conference version available, only the journal version is kept;
 |f a study has several versions published, only the most recent is kept;

* |f a study exists in more than one source, only one copy is included.

To exclude ineligible studies, exclusion criteria were also defined:

¢ Studies that do not consider any of the thematics of this work;

Studies that only focus on ethical or legal aspects of the thematics;

¢ Studies that are not peer-reviewed;

Studies that are not written in English;

¢ Studies prior to 2010;

Studies where the file cannot be obtained.

26

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Table 3.2: Distribution of found and selected studies (Web Crawling)

Source Studies Found Studies Selected
ACM 202 13

IEEE Xplore 42 19
ScienceDirect 134 16

Scopus 220 29

Web of Science 69 9

Total 667 86

3.5 Studies Selection

Using the stated literature sources and the Web Crawling search string defined in section 3.3, 667 studies
were found (as seen in Table 3.2).

In sum, 86 studies were selected after removing the duplicates, with an efficiency rate of 6.44% for
ACM (13 studies), 45.24% for IEEE Xplore (19 studies), 11.94% for ScienceDirect (16 studies), 13.18% for
Scopus (29 studies) and 13.04% for Web Of Science (9 studies).

Using the Chatbot Development search string, 170 studies were found (as seen in Table 3.3).

Table 3.3: Distribution of found and selected studies (Chatbot Development)

Source Studies Found Studies Selected
ACM 74 8

IEEE Xplore 6 3
ScienceDirect 65 8
Scopus 18 2
Web of Science 7 0
Total 170 21

After removing the duplicates and the articles without any available or free readable document, 21
studies were selected, with an efficiency rate of 10.81% for ACM (8 studies), 50% for IEEE Xplore (3
studies), 12.31% for ScienceDirect (8 studies), 11.11% for Scopus (2 studies) and 0% for Web Of Science
(O studies).

3.6 Quality Assessment

After selecting the studies for this review, a quality assessment checklist (Table 3.4) was built in order to
clearly and systematically classify them. Studies with a score minor than 3 were considered ineligible for
this literature review and were excluded.

With this minimum score required, we excluded from this review:

e Web Crawling: 10 studies out of 86 (11.63%)

27

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Table 3.4: Quality Assessment Checklist

Question

Score

QA1

Is the study published in a recognized journal or
scientific event proceeding?

- Journals (JCR Ranking):
Ql: 2

Q2:15

03:1-Q4: 0.5

No JCR: 0

- Conferences/Workshops
(CORE Ranking):

A: 1.5

B: 1

C:0.5

No CORE: 0

QA2

Is there a clear statement of the aim of research?

Yes: 1
Partially: 0.5
No: 0

QA3

Is the experimental procedure carefully explained?

Yes: 1
Partially: 0.5
No: O

QA4

Are the findings clearly stated and presented?

Yes: 1
Partially: 0.5
No: O

QA5

Was the paper cited by other researchers?

Yes: 1
No: 0

* Chatbot Development: 2 studies out of 21 (9.52%)

The results of the quality assessment are detailed in Appendix A.

3.7 Data Extraction

To aid the data extraction process, a form that lists the key information to be collected from the gathered

studies was built, helping to get a general view of the results. This form is described in Table 3.5.

3.8 Data Synthesis

Synthesising the data collected aims to summarise and report the relevant results of the analysed research.

With this, this phase answers each one of the research questions established from the extracted data above

and identifies any possible research gaps and recommendations.

28

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Table 3.5: Data Extraction Form

Data ID Data

D01 Study Identifier
D02 Authors
D03 Year of Publication
D04 Title
D05 Type (Journal, conference/workshop proceedings)
D06 Quality Assessment Score
Thematic (Reliable Information Gathering, Information Processing
D07
or Chatbot Development)
D08 Tool (if applicable)
D09 Algorithm (if applicable)

3.8.1 Studies Overview

This overview will be divided in three parts, each addressing one of the areas related to the search queries
defined: web crawling, text segmentation and classification and chatbot development.

3.8.1.1 Web Crawling

Regarding the Web Crawling part, we were able to produce the graphs seen on Figure 3.2 (year of the
study’s publication and its type: journal or conference), Figure 3.3 (language or tool on which the crawlers

mentioned in the studies were developed) and Figure 3.4 (approach followed to crawl the web pages).

Publication Year Publication Type
15

Journal

Studies

Conference

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

Figure 3.2: Web Crawling Studies: Year and Type of Publication

From the 86 studies that were selected, 11 were reviews or surveys on the matter, so these are not
contemplated in the graphs regarding the language/tool and approach.

As seen on Figure 3.3, most of the studies do not mention the language or tool used to develop the
crawler. However, when it is mentioned, we can observe that the most used language is Java (18 studies
cite it or cite a tool developed in it: Nutch, ACHE, Heritrix, crawler4j and BUbING). The second most relevant
is Python (4 studies cite it directly and 1 cites Scrapy which is built on it). The relevance of Java is due
to its multithreading feature, allowing higher scalability and processing power, which results in more web

pages crawled in a lower amount of time. Python can have its place here explained by its ease of use and

29

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

lots of third-party packages that allow programmers to do almost everything (from NLP tools and machine

learning algorithms and frameworks to web crawling applications).

Language/Tool used to implement the Crawler

Undefined
Python
Nutch
Java
ACHE
BUDING
AJAX

R

Heritrix
C#

C++
Scrapy
crawlerdj

0 10 20 30 40

Studies

Figure 3.3: Web Crawling Studies: Language or Tool

In regard to the algorithm used for the web pages’ classification or URL priority, the most used are
Naive Bayes (a probabilistic machine learning algorithm, mostly used in NLP for text classification, due to
its high scalability) and the TF-IDF metric (a numerical statistic that is intended to reflect how important a
word is to a document in a collection), which is used in conjunction with other algorithms like HITS or LSI.

Nonetheless, many different algorithms are mentioned, each for a different purpose and approach.
For example, some studies use machine learning algorithms to classify the web pages’ content or URL
while others use ontologies to provide the most relevant keywords or terms and then use VSM to compare
and then filter the web pages related to the given ontology. Besides these two methods, other two are
also mentioned in the studies: clickstream-based algorithms (that classify the web pages on a user-guided
basis from previous actions) and clustering-based (which groups web page or URL features into categories,
therefore being able to verify if they belong to a certain topic or not).

When it comes to the crawling approach, from Figure 3.4 we concluded that the most used is based
on the web page’s content (metadata, HTML tags and text), representing almost 33% of the studies’
approaches. Some studies also combine the content with the URL for the classification, while others use
only the URL. These three types represent circa 75% of the studies. However, there are also studies which
combine the common approaches with anchor text and context, providing a seemingly more contextualized
and focused way of classification. A minority set of studies take "unorthodox"approaches, like classifying

the web pages based on context graphs, specific HTML elements or even on only HTML tags or terms.

3.8.1.2 Chathot Development

Regarding the Chatbot Development part, we were able to produce the graphs seen on Figure 3.5 (year

of the study’s publication and its type: journal or conference), Figure 3.6 (language or tool on which the

30

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Crawling Approaches

Content-and URL-based
URL-based

URL-and anchor-based
Content- and anchor-based
Content-based

Undefined

Context Graph

Specific HTML elements

Anchor-based

Content-, URL- and anchor-
based

HTNL tags or terms
0 5 10 15 20

Studies
Figure 3.4: Web Crawling Studies: Approach

chatbot or its algorithm was developed), Figure 3.7 (algorithm/approach implemented in the chatbots)

and Figure 3.8 (dataset type used for generating the answers).
From the 21 studies that were selected, 5 were reviews or surveys on the matter, so these are not

contemplated in the graphs regarding the language/tool, algorithm and approach.

Publication Year Publication Type
8

6 Conference

4

Studies

Journal

2015 2016 2017 2018 2019 2020 2021

Year

Figure 3.5: Chatbot Development Studies: Year and Type of Publication

After analyzing Figure 3.5, it is interesting to point out that even though having a time range for article
inclusion from 2010 to 2021, the great majority of selected studies are very recent (the most prominent
year was 2020).

Despite more than 30% of the studies not specifying the language or tool used to implement the
chatbot, in Figure 3.6 we can observe that most of the other 70% of the studies used Machine Learning
and Deep Learning framework based on Python, like Tensorflow (which was the most used), Keras and

Pytorch. Theano and NLTK are also referred to as auxiliary tools in some processes. Google Assistant and

31

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Language/Tool used to implement the Chatbot (algorithm)
lf’ytthon NLTK and K_e{as

Tensorflow and Keras

Google Assistant

Pytorch

BERT

NLTK Undefined

Theano

Tensorflow

Figure 3.6: Chatbot Development Studies: Language/Tool

BERT (Google's Bidirectional Encoder Representations from Transformers) are used as complementary

solutions for the already mentioned frameworks.

Algorithm/approach used to implement the Chatbot

DNN

seq2seq

RNN and LSTM
seq2seq and LSTM

Deep Context Modeling

Probabilistic Finite State
Automata

Dual-Factor Generation
Model (seq2seq improved)

o
N}
w
IS
o

Studies

Figure 3.7: Chatbot Development Studies: Algorithm/Approach

Concerning the algorithms or approaches used, most of the selected studies were based on Artifi-
cial Neural Networks, in their variances of Deep Neural Networks (DNN) and Recurrent Neural Networks
(RNN). In the 16 studies, 9 mentioned the use of the seq2seq (sequence to sequence) approach, which
implements a RNN where the context for each item is the output from the previous one, leading to a
conversation contextualization and follow-up. 7 studies also mentioned the use of LSTM (Long Short Term
Memory), which is an RNN architecture used for deep learning. This distribution can be seen on Figure
3.7.

32

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Dataset Type

QA Dataset

Conversation Dataset

Conversation and QA
Dataset

QA Dataset and Labeled
Topic Text Dataset

Conversation Dataset and
Web Crawling

NER Dataset

Studies

Figure 3.8: Chatbot Development Studies: Dataset Type

When it comes to the type of dataset used to feed the chatbots’ algorithms, they can be divided into
two major types: conversational datasets (e.g. based on movie transcriptions) and QA datasets (e.g. FAQs,
forums). Based on Figure 3.8, we can conclude that more than a half of the studies used the first type
of datasets, either alone or together with other types of datasets (like QA or web pages crawled from the

internet).

3.8.2 Research Questions Findings

In this subsection, the research questions defined previously will be answered with the information retrieved

from the selected literature.

RQ1: Which technique should be used to crawl the defined sources?

Unlike Kumar et al. (2017), we divided the studies found regarding focused crawling in categories based
on the elements of the web page used for its classification of topic relevance. So, we found studies that
classified them based only on its content (text), which was the most frequent method, based on the URL
only and based on the anchor text and link context. Also, there are studies that combine two or more of the
above. Along with these most prominent methodologies, we also found studies that used context graphs
and metadata like HTML tags or terms.

While the approaches based on the page’s content require its download, the approaches based on the
URL alone can filter them before it is downloaded, leading to less processing effort.

Besides its category, most studies follow different approaches. The most common is the approach
using soft computing, applying the Naive Bayes algorithm. However, there are many other approaches

found, such as the combination of TF-IDF and other algorithms (like Latent Semantic Indexing, PageRank

33

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

or even Naive Bayes), ontology-based (e.g. using semantic relevance), clickstream-based or using context
graphs.

Starting with the content-based methodologies, Wang et al. (2018) applied to news-related websites
the Latent Dirichlet Allocation (LDA) algorithm to classify different news through their titles’ keywords. LDA
is an unsupervised machine learning used for topic modelling that allows users to cluster a collection of
documents so that more similar documents are grouped together and less similar documents are put into
different categories.

Rheinlander et al. (2016) used the Naive Bayes algorithm to classify the main text of a web page, which
was previously extracted and converted to a bag-of-words. Also using Naive Bayes, Wang et al. (2010)
combines it with TF-IDF which is used to compute the weight of each word in the link context in order to
calculate its crawling priority, while Amalia et al. (2016) suggested the use of Larger-Sites-First algorithm
for the same purpose in the context of crawling health related articles. However, the use of the Larger-
Sites-First did not bring a significant increase of related crawled pages. Saleh et al. (2017) implemented
an optimized Naive Bayes algorithm, through the exclusion of outliers with a Support Vector Machine
(SVM) optimization using a genetic algorithm and the selection of the most informative examples from the
available ones.

When it comes to the URL-based classification, all the proposed crawlers differed in their approaches.
It goes from a simple regex filtering process (Khalil and Fakir, 2017) to the usage of online incremental
learning described by Singh et al. (2012), which sees URL:-based topic classification as a stateless Re-
inforcement Learning (RL) problem. On the other hand, Rajalakshmi and Aravindan (2013) developed a
crawler with the page classification being done with SYM and Maximum Entropy classifiers on character n-
gram based features extracted from the URL, comparing both methodologies and obtaining similar results
for both.

Zheng (2011) combined the genetic and ant algorithms, taking the advantages of the two algorithms
to overcome their shortcomings. Feng et al. (2010) proposes a focused crawler with an algorithm called
Navigational Rank, which computes each link’s capability of leading to target pages by considering both
the target and non-target pages it leads to using a Multinomial Naive Bayes as a classifier, but stating it
can be used with any classification algorithm. Another approach is presented by Suebchua et al. (2018),
which uses the already downloaded pages to estimate the relevance of another through the neighbouring
feature.

Hernandez et al. (2016) suggested a custom algorithm, using an unsupervised methodology based
exclusively on URL features and being agnostic to variables like domain and language. Zhang and Lu (2010)
focused on a semi-supervised clustering-based approach, with the usage of fuzzy class memberships and
Q-values.

Considering only anchor text and link context in the topic relevance calculation, Zheng and Qian (2016)
followed a keyword extraction approach based on the TF-IDF metric. Naghibi and Rahmani (2012) uses
the vision-based page segmentation (VIPS) algorithm, which allows the web page to be divided into blocks

using DOM in addition to some visual clues of the page’s layout to detect related parts of the page, and then

34

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

considering the text of a block as the context text of the links contained there. At last, a clustering-based
approach is presented by Liu and Peng (2014), where a new kind of data structure called CFu-tree is used
to speed up the process of hierarchical clustering.

As mentioned above, there are also studies combining these approaches. Using a domain ontology,
Bedi et al. (2012) proposed a focused crawler that uses semantic similarity based on the Vector Space
Model (VSM) derived from the web page's content text and URL, while a similar approach is followed by
Du et al. (2015) but using the content and anchor texts instead. Torkestani (2012) also used the VSM, but
combined it with a learning automata, developing this way an adaptive crawler that uses content text and
the URL.

This last combination of content and URL is also present in the following studies: Deng (2020) (se-
mantic similarity methodology using TF-IDF and HITS algorithm), Mali and Meshram (2011) and Tan and
Mitra (2010) (both using the algorithm implemented in Google search engine PageRank, while the latter
uses also a clustering approach combining it with TF-IDF), Taylan et al. (2011) and Pawar et al. (2016) (us-
ing a Naive Bayes classifier), Liu and Milios (2012) (that proposes two crawlers: one using Hidden Markov
Models (HMM) and other using Conditional Random Fields (CRFs), both probabilistic methodologies) and
Goyal et al. (2016) and Yan and Pan (2018) (both adopting the genetic algorithm, but the second presented
some improvements to it).

Yet, regarding the use of context and anchor texts, Joe Dhanith and Surendiran (2019) suggested an
ontology-based crawler using Normalized Pointwise Mutual Information (NPMI) and Resnik based seman-
tic similarity algorithm, in an effort to mitigate the problems created when applying TF-IDF weights: the
creation of severe deviations from the priorities of unvisited web pages and the fact that the similarity
calculation only happens if the word occurs in the web page.

Using only the URL and the anchor and context texts is also possible, as demonstrated by Dahiwale
et al. (2014) and Venu et al. (2016) (the first using a Naive Bayes classifier and the second the HITS
algorithm for unsupervised domain ontology learning).

An approach using all of the above (URL, content text, anchor text and link context) is described by
Xu et al. (2019), which uses the Mutation Improving Particle Swarm Optimization Algorithm, belonging to
the learning focused crawler category. Seyfi et al. (2016) proposes an hierarchical structure called T-Graph
to define the priority score for each unvisited link using specific HTML elements of a page to predict the
topical focus of all the pages that have an unvisited link within the current page.

Each study has its advantages and disadvantages: there are simpler approaches, but most require a
labeled dataset of previously collected web pages, while there are more complex algorithms but without
the need of said dataset. Most of the proposed crawlers present a topic classification accuracy of over 80%
which already represents a significant decrease in terms of number of pages to be later processed. How-
ever, the desired approach must use an unsupervised algorithm or another methodology which excludes
the need of a pre-processed labeled dataset.

After analyzing COVID-19 related government websites, they all include some reference to it on the

URL, because the link structures are organized in a centralized way so that people can easily access all

35

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

the information about the disease in a simplified interaction. Thus, an URL-based crawler should be enough
to filter the relevant pages. However, if the results are not satisfactory at the time of the implementation,
another contextualization should be added to the algorithm, like including link context as a feature into the
classification.

Another important point is the need to crawl international sources in English, but also national entities’
websites in Portuguese, so the algorithm should be language-agnostic. This represents an obstacle to
semantic approaches or ontology-based, given that at least two datasets would be needed, one for each
language, with the increased difficulty of later expanding to other languages. At first, a regex approach will
be followed, given the universality of the terms "COVID"and "coronavirus”. However, if that is not enough
to filter the adequate web pages, the tool proposed by Hernandez et al. (2016) seems to be a good option,

since it is unsupervised and language-agnostic.

RQ2: Which open-source or free tools are available for focused web crawling?

Although most of the studies either did not specify which tool they used for the development of the web
crawler or developed an application with the wanted algorithm from root, the remaining studies mentioned

only free and open-source frameworks:

e Nutch! - Nutch is a software project included in the Apache Foundation. It is coded entirely in
Java and has a highly modular architecture. Nutch allows developers to create plugins for several
purposes, e.g. media-type parsing, data retrieval, querying and clustering. Nutch is one of the
most used and well-established web crawlers due to its high scalability, since it is built on Hadoop
data structures, improving the performance of batch processing. However, Nutch alone is not a
focused web crawler, but can be modified to work that way with the use of plugins. Nutch is used
in Almuhareb (2016), Hassan et al. (2017), Rheinlander et al. (2016) and Pasari et al. (2016).

e ACHEZ - ACHE is a focused web crawler developed in the Visualization, Imaging, and Data Analysis
Center at New York University, which allows the collection of web pages that belong to a given
domain or that contain user-defined rules. ACHE is built in Java and allows web page classification

and URL prioritization. This tool is mentioned in Santos et al. (2016).

« BUDbING3 - BUbING is a web crawler tool developed by Boldi et al. (2018), in the Laboratory of Web
Algorithmics from University of Milan. It is also built in Java and is a high-speed distributed crawler

that coordinates autonomously to download data from the web.

J crawlerélj4 - crawlerdj is an open source web crawler for Java which provides a simple interface for

crawling the Web. The setup is very simple when comparing to other crawlers: developers define

hitps://github.com/apache/nutch
Zhttps://github.com/ViDA-NYU/ache
3https://github.com/LAW-Unimi/BUbING
“hitps://github.com/yasserg/crawlerd

36

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

two functions, shouldVisit (which sets if a given URL from a web page should be visited or not) and
visit (which sets the action triggered when a web page is successfully downloaded). With the first
function, a focused crawler can be deployed. Even though Crawlerdj does not support distributed
operations it can be scaled up by adding multiple threads. So, the performance and efficiency of
crawler4j can be improved by increasing the number of crawler threads and reducing the politeness
delay. It is used by Bedi et al. (2012).

e Heritrix° - Heritrix is another web crawler built in Java, but mainly designed for web archiving and it
is maintained by The Internet Archive. Heritrix is extensible and a web-scale crawler. The definition
of rules for the crawling process can be done, allowing thus focused crawling, although it is not as

straightforward as other tools. Heritrix is used by Hao et al. (2011).

« RCrawler® - RCrawler is a R package developed by Khalil and Fakir (2017), that automatically tra-
verses and parses all web pages of a website, and extracts all data you need from them at once
with a single command. It also allows developers to build a network representation of a website's
internal and external hyperlinks, aiding them to better understand a website’s structure. Also, fo-
cused crawling is possible through URL and content-type filtering. Besides that, the main features

of RCrawler are multi-threaded crawling, content extraction, and duplicate content detection.

. Scrapy7 - Scrapy is one of the most used web crawlers, being built in Python. It allows crawling in a
fast, simple, yet extensible way. However, Scrapy defaults are optimized for crawling specific sites,
and only allows focused crawling by itself through URL filtering. This web crawler is cited in Xie and
Xia (2014).

An overall comparison of the aforementioned tools is presented in Table 3.6.

Table 3.6: Web Crawling Tools Comparison

Focused Continuous Parallel Content-based URL-based Mixed

Tool Language Crawler Crawling Crawling Extensible Crawling Crawling Crawling Maintenance
Apache Nutch Java Partially No Yes Yes Yes Yes Yes Yes

ACHE Java Yes Yes No No Yes Yes Yes Yes

BUbING Java No Yes Yes No No No No Yes
crawlerdj Java Yes Yes Partially No No Yes No Partially
Heritrix Java Partially Yes Yes Yes No Yes No Yes
RCrawler R Partially No Yes No No Yes No Partially
Scrapy Python Partially No Yes Yes No No No Yes

After analyzing all the presented web crawlers, ACHE was the selected tool, since it has many features
considered relevant to the scope of the project: continuous crawling, web page classifiers and URL prior-
itization to crawl only topic-related data (regarding COVID-19) and the indexing of the crawled pages with

Elasticsearch. Also, the data processing step was not taken into account in this step as it can easily be

Shitps:// github.com/internetarchive/ heritrix3
bhttps://github.com/salimk/Rcrawler
https://github.com/scrapy/scrapy

37

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

done in a module apart from the crawler itself. Another point that weighted favourably to ACHE was the

fact that it is built in Java and allows fast and scalable processing (due to multi-threading).

RQ3: Which generative deep learning algorithms can be used for the chatbot application?

Neither of the studies selected followed the approach of having raw text extracted from the web as input
for the intelligent self-learning algorithms used in the chatbots: they either used conversational datasets
(like Whatsapp conversations in Chandra and Suyanto (2019) or English-French translation task from the
WMT'14 in Nguyen and Shcherbakov (2018)), QA datasets (e.g. QA pairs from the Kaggle healthcare
services competition in Vamsi et al. (2020) or Yahoo! Answers dataset in Gao and Ren (2019)) or a
combination of both (Cornell movie dialogue and a custom-built insurance QA datasets in Nuruzzaman
and Hussain (2020)).

Since in this work we do not want to start from a pre-built labelled conversational dataset or FAQ
documents, none of the presented solutions can be followed "as is”. However, we were able to identify
some indirect alternatives which can be used to solve the problem of creating a chatbot based on raw

textual data:

¢ Nuruzzaman and Hussain (2020) presented in their study a review of the existing dialog-based
chatbot approaches, where they identified one that could be applied in this work (although they were
not the main subject of their study). It consists of a search-engine based model, by applying indexing
and search software (like Apache Luceneg) to the gathered web documents and then, given the
users' queries, obtain the most relevant answer. Following this methodology, the web pages could be
segmented in either sentences or paragraphs (using topic segmentation) and then indexed one by
one. The multi-lingual requirement here would not be a problem, as the indexes would allow precise
searches in either languages (English and Portuguese). However, a conversational dialog would not
be possible with this approach per-se: an extra component would be needed in the application in

order to allow responding to "chit-chat”interactions (e.g. greetings).

e The second alternative is based on the approach presented by Li et al. (2021). It uses BERT,
Google’s pre-trained language model. In our case, the model could be trained on QA datasets like
SQuAD (Stanford Question Answering Dataset9), but there is the need for two different models: one
for each language (English and Portuguese). Also, the textual data crawled from the web sources
would be fed to the model and the answers to the users’ questions would be retrieved from that data.
The downside is the grammar inconsistency in the generated answers, as they are parts directly

retrieved from the text. This approach is also partially applied by Barbosa et al. (2020) in their work.

* Another applicable approach identified was found in the study conducted by Adamopoulou and
Moussiades (2020). It consists in using the Knowledge Connector BETA functionality of Dialogﬂowlo.

8https://lucene.apache.org/
9https://rajpurkar.github.io/ SQuAD-explorer/
Ohttps://cloud.google.com/ dialogflow

38

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Dialogflow (formerly known as api.ai) is a natural language understanding platform owned by
Google, that allows the creation of conversational user interfaces. It supports more than 30 different
languages, but it is mainly rule-based. On the other hand, the Knowledge Connectors functionality
parses documents to find automated responses, without the need of pre-defined rules. One of its
advantages is the fact that it keeps learning with the usage of the tool, providing better answers
each time. The cons are that it is not entirely free and the functionality that is compatible with our

use case is only on the BETA phase.

» Also, a fourth alternative is to combine both the search-engine based model and the BERT model.
The raw textual data can be separated in paragraphs, which are then indexed by the search-engine
tool and lately retrieved the best match to serve as the context paragraph where BERT will extract the
answer to the provided user query. This way, a more precise answer is given and BERT computes

on a smaller input.

After analyzing these four possibilities, we decided to follow the last described approach: search-engine
based model combined with BERT, which allows less text processing and the generation of precise and
concise answers. This model can be extended to other thematics easily, by changing the input textual data.
However, a separation of processes will be needed to differentiate English and Portuguese sources/ques-

tions.

3.9 Limitations

The conducted SLR provides a solid overview of the existing literature around focused web crawlers and
the associated chatbot implementation. However, there are some limitations to this research approach.
Without having a clear and precise search query (when there is not a deep understanding of the
thematics to be researched), a significant number of studies will be found. As many of them can be found
irrelevant after a deep analysis, it is difficult to retain the focus.
Also, filtering them with a Quality Assessment can exclude interesting studies that can provide a dis-

ruptive and innovative solution to the problem.

3.10 Conclusion

This systematic literature review presents an overview on how a chatbot application can be built based on
crawled textual data from reliable sources, which can be very useful to fight misinformation dissemination
(in this case, regarding COVID-19).

Firstly, a list of web crawling applications/tools was presented, as well as a concise comparison be-
tween them. Also on this topic, the existing approaches for focused crawling were discussed and ultimately

a pair of tool and approach was defined by the authors as the go-to solution.

39

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Secondly, four alternatives were identified for the development of the chatbot itself, fed by the crawled
data. These alternatives were either indirectly extracted from the found studies or proposed by the authors,
as there was not a direct approach for the problem being addressed in this study. All the studies found
relied on a pre-build dataset of conversational text or QA pairs.

However, there might be the need for an additional review regarding text processing and text summa-
rization. After analyzing the results presented in Chapter 6, future work is required to remove irrelevant

textual information on the downloaded web pages.

40

Chapter

Architecture and Solution Design

This chapter presents the solution design for work, describing the architectures of the whole system and

of its components: web crawler, text processor and chatbot application.

4.1 System Overview

With the state of the art described, a model of the system’s architecture could be designed, consisting of

three main components: Web Crawler, Text Processor and Chatbot Application.

Web «—~retch Web Pages— Web Crawler —Download Web Pages—l

Text Processor ————Get Fileng

-

flndex Documents
— - _;\"\v

\ElasticSearch/

_LRetrieve Document—— Chatbot «—Question/Answer—> Application g

Figure 4.1: System Overview: High-Level Architecture

As seen on Figure 4.1, the system'’s behaviour starts with the Web Crawler fetching the relevant web
pages from the Internet and then storing them on the local file system. The Text Processor parses the

downloaded web pages, removing the HTML metadata and other irrelevant data and indexes the text in

41

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

ElasticSearch. The Chatbot Application interprets the users’ questions, queries ElasticSearch for the most
relevant document and then generates the answer using a trained BERT model, sending the response to
the users as the last step.

Two flowcharts were developed to help understanding the flow of the information across the system:
the first depicts the gathering and storage of the information (Web Crawler and Text Processor: Figure 4.2),
while the second shows the fetching and generation of the answer to a given question (Chatbot Application:
Figure 4.3).

Check Web Page

Is Relevant?

Web
Crawler

No—»| Ignore

Yes

Download to
configured folder

Text
Processor
Already been
processed? Yes—P| Ignore
Move to FAILED
v . folder -

No

¢ Ye T—Yc
Copy to Text

Processor SOURCE
folder
No No No
\ 4 T T T I
Move to
- Parse HTML and get Detect content Index Document to
IN*P?O%%?ESS | Decode Base84 clean text content language ElasticSearch

Figure 4.2: Information Flowcharts: Web Crawler + Text Processor

The architecture for each of the system’s components is presented in detail in the next sections.

4.2 Web Crawler

The Web Crawler component is responsible for downloading the relevant pages from the reliable websites

(which are passed to the web crawler as the start set of URLs to be crawled) and then storing them to

42

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

) User sees question
User asks question has no answer

A

h 4

Question parsed by REST API replies
Mobile application with no answer
Y

No

A 4

Request made to
REST API

Yes

Document found?

A 4
Get most relevant
document from
ElasticSearch
response

h 4

REST API receives Query to
request and parses ElasticSearch with
question the parsed question

A 4

A 4

A 4

Query the BERT

P model with the P Chunkify and
Parse BERT results | processed textand |- tokenize text
question
v
REST API replies User sees the
with the generated answer to
answer its question

Figure 4.3: Information Flowcharts: Chatbot Application

make them available for the Text Processor component in order to allow its information extraction.

As stated in section 3.8.2, the selected tool for web crawling is ACHE. It is developed in Java, allowing
multi-threading and thus more efficient processing, with more pages crawled in a reduced amount of time.
Also, it comes with multiple useful features, like the easy setup of the page classifier, in order to allow the
focused crawling of the web pages.

ACHE can be deployed locally using a Docker container, with bound volumes connecting to the local
file system (thus sharing files like the configurations and the output downloaded pages).

The ACHE crawler was developed to run with a set of parameters. The seeds file contains the list of
websites that are going to be crawled. The crawler configuration file which is a YAML file with configurations
like the output format and the crawling strategy. The filtering model is described also in a YAML file and
it defines which pages are considered relevant or not. This filtering model can either be a regex validation
on the web pages’ URL, body or both, or a Machine Learning model previously trained. The configurations
and filtering model is further discussed in Chapter b.

In Figure 4.4, the Web Crawler’s architecture is graphically presented.

The deployed crawler fetches the web pages, classifies them as relevant or not (following the given

page classifier) and, if so, downloads and stores them in the local file system'’s defined folder.

43

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

N EF, &

Reliable Sources crawler Configuration Filtering Model

Fetch Web Pages (seeds.txt) (ache.yml) (pageclassifieryml) | Download Web Pages
Web «——

docker

Local File System

Figure 4.4: Web Crawler: Low-Level Architecture

4.3 Text Processor

The Text Processor is responsible for extracting relevant textual information from the crawled web pages.

The architecture for this component is presented on Figure 4.5.

Download Web Pages

Web Crawler —l

Text Processor Local File System

Index documents [N magd Process files from Copy files to file_mover.py
in ElasticSearch server Text Processor FS Text Processor FS
/ /> Get files downloaded

J 507E e T

by Crawler

-

-

-
,E_IasticSearcIl)

Figure 4.5: Text Processor: Low-Level Architecture

In order to do what it is supposed to, this component is composed by two submodules:

* The File Mover, which fetches the downloaded web pages by the crawler and moves them to the Text
Processor working area. This area is used to better manage file processing, keeping a consistent

pipeline of successfully processed files and those that finished with errors.

e The File Processor, which does the text processing, consisting in parsing the files, decoding the
Base64 strings (ACHE's predefined HTML output encoding) and extracting the textual content from
the HTML (removing the tags and other metadata irrelevant for the chatbot). When the processing
is complete, this submodule stores the generated document in an ElasticSearch server, which
indexes it and allows a near realtime search of the documents. Thus, the bridge between the

Text Processor’s processed files and the chatbot application is built using ElasticSearch.

44

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

4.4 Chatbot Application

The Chatbot is the application that allows the interaction with users. It parses the users’ questions and
tries to answer it through a RESTful API. An overview of this component’s architecture can be seen on
Figure 4.6.

‘\glasticSearcrh,, '

- o O FastAPI
T HTTP requests

Retrieve Document ~ Question/Answer ﬁ
)
A >

ﬁlF
> 4 HTTP responses
@ RESTful API

Trained BERT model

A

Figure 4.6: Chatbot Application: Low-Level Architecture

The user can interact with the application through a web application, for easier and simple access,
given the fact that almost everyone nowadays possesses a device with internet connection. This applica-
tion can be developed in React, allowing a straightforward development and little time to market. Also,
React is one of the most popular frontend development frameworks, having a huge community and lots
of documentation and support.

The application interprets the questions and passes them to the backend module, which will be pre-
sented as a RESTful API. This API can be developed using FastAPI. This framework allows the development
of APIs in an agile way, with simple definitions and access management. Being based on Python, it can
also be useful as there are many packages available for machine and deep learning.

The API will process the questions, query the ElasticSearch server for the most relevant document and
provide it to the trained BERT model, which will then extract the answer to the given question. At last, the
API returns it to the application, which displays the "conversation”on the users’ phone.

BERT is the machine learning model that will be used to generate the answers for the given ques-
tions, using a context paragraph for the purpose. BERT is an open source framework for Natural Language
Processing which is used to help understand the meaning of ambiguous language in text by using sur-
rounding text to establish context (Lutkevich, 2020). BERT was trained using text from the Wikipedia (in
one language or many, depending on the model) and can be fine-tuned using other text-based datasets,
e.g. SQUAD (Stanford Question Answering Dataset).

BERT is based on a deep learning model called Transformer, an attention mechanism that learns con-
textual relations between words (or sub-words) in a text (Horev, 2018). A Transformer model is composed

by two distinct mechanisms: an encoder that reads the text input and a decoder that produces a prediction

45

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

for the task. BERT is bidirectional in the sense that a sequence of words is read at once instead of sequen-
tially, allowing the model to learn the context of a word based on all of its surrounding. Also, since BERT's
objective is to generate a language model, only the encoder is necessary, thus its name of "Bidirectional

Encoder Representations from Transformers”.

NSP Mask LM Mask LM NLI /@ SQuAD Start/End Sph
P *

S o
BERT ale = = 8 0 n ale =« wfa]s BERT
Eas) E, | . Ey Esery E/ | Ey Eiais) E, |- Ey Eiser) E | .. Ey'
[eea]le] [&][Ewn]le] [&]
Masked Sentence A - Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Figure 4.7: Overall Pre-training and Fine-tuning Procedures for BERT (Devlin et al., 2018)

BERT was first introduced by Devlin et al. (2018) and his colleagues from Google. In his work, the
process of pre-training and fine-tuning BERT for question answering is described and can be observed in
Figure 4.7. Apart from output layers, the same architectures are used in both pre-training and fine-tuning
and are composed of two unsupervised tasks, the first being Masked Language Modeling (MLM) and the
second Next Sentence Prediction (NSP).

Masked LM consists of giving BERT a sentence and optimizing the weights inside BERT to output the
same sentence on the other side. While MLM teaches BERT to understand relationships between words,
NSP teaches BERT to understand longerterm dependencies across sentences. NSP consists of giving
BERT two sentences and it infers if one is subsequent to the other. During training, 50% of the inputs are
a pair in which the second sentence is the subsequent sentence in the original document, while in the
other 50% a random sentence from the corpus is chosen as the second sentence. The assumption is that
the random sentence will be disconnected from the first sentence. The model calculates the probability of
one sentence following the other using softmax.

Before entering the model, the inputs are processed as seen on Figure 4.8:

1. A"[CLS]"token is inserted at the beginning of the first sentence and a "[SEP]"token is inserted

at the end of each sentence.
2. A sentence embedding indicating Sentence A or Sentence B is added to each token.

3. A positional embedding is added to each token to indicate its position in the sequence.

46

CHAPTER 4. ARCHITECTURE AND SOLUTION DESIGN

Input ([CLS] 1 (my W (dog W (is Mcute M [SEP] W (he M likes M play W [##ing M [SEP] W

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay E##ing E[SEP]
L = L L 2 L = L L 2 L 2 L =

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +

Position

Embeddings EO El EZ E3 E4 E5 E6 E7 E8 E9 ElO

Figure 4.8: BERT Input Representation (Devlin et al., 2018)

Training BERT is done by predicting 15% of the tokens in the input, where the tokens are pre-processed
by replacing 80% of the tokens with a "[MASK]"token, 10% with a random word and 10% with the original
word.

Due to its great performance, by October 2020 almost every single English-based query was processed
by BERT (Schwartz, 2020).

47

Chapter

System Implementation

This chapter describes the implementation process of the whole system, describing the issues that were
faced and how we solved them. We focused on a bottom-up development, starting with the Web Crawler,
then the Text Processor, and at last, the Chatbot Application (REST APl and Web Application).

5.1 Web Crawler

Given that our whole system is based on the reliable information gathered, we started the implementation
by developing the Web Crawler. The code is available in a public GitHub repositoryl.
As said, we used the ACHE crawler to provide this functionality. In order to easen the use of the Web

Crawler, we structured the project as follows:

» /configs - this folder will contain a subfolder relative to each project (in this case, we only have one
called gavid. Each project should contain three files: ache.yml, seeds.txt and settings.env.
The first one will contain the specifications used to run ACHE, the second the seed URLs used by
the crawler to start fetching the pages and the last the environment variables used to allow a more

customizable execution.

* /models - similarly to configs, the models folder will contain a subfolder for each project. Then,
each project must contain the model used to classify web pages as relevant or not. This configuration

should be present in a file called pageclassifier.yml.

* /scripts - The scripts folder contains Shell scripts used to install, start and stop the Crawler’s
execution. These are helpful given the fact that makes the connection through Docker abstract and

direct.

Lhitps://github.com/hpereira98/qavid 19_crawler

48

10

11

12

CHAPTER 5. SYSTEM IMPLEMENTATION

5.1.1 Scripts

The ACHE Crawler can be installed using Docker, Gradle or Conda. Given our familiarity with Docker, and
given the fact that it mainly eliminates the execution discrepancies between different machines and differ-
ent operating systems and their versioning, we followed that approach. In order to facilitate the installation
and usage of the tool, we developed scripts that assist this process.

To install the ACHE, one just needs to run install_ache. sh. This script verifies the dependencies
(JAVA version greater or equal than 8 and Docker), and, if they are already installed, proceeds with the
ACHE installation fetching the latest version of the Docker imagezvidanyu/ache and then building the
container.

To start the ACHE crawler once it is installed, one can run the script start_crawler.sh <project>
<classification_model>, where project is the name of the crawling project to be ran (in our case, it
will be qavid19) and classification_model is the name of the folder which contains the pageclassifier.ym/
(url_regex in our case). These parameters will be used to fetch the correct configuration files, either for
the crawling execution and for the classification model. After loading the environment variables needed,

the script will try to run the already built ACHE container.

Listing 5.1: Run ACHE crawler on Docker container

nohup sudo docker run \
-v ${CONFIGS_FOLDER}:/configs/${CRAWLER_APPLICATION} \
-v ${DATA_FOLDER}:/data/${CRAWLER_APPLICATION} \
-v ${MODELS_FOLDER}/${CLASSIFICATION_MODEL}:/models/${CRAWLER_APPLICATION}/${
< CLASSIFICATION_MODEL} \
-p 8080:8080 \
--name ${DOCKER_CONTAINER_NAME} \
vidanyu/ache startCrawl \
-c /configs/${CRAWLER_APPLICATION}/ \
-s /configs/${CRAWLER_APPLICATION}/seeds.txt \
-0 /data/${CRAWLER_APPLICATION}/ \
-m /models/${CRAWLER_APPLICATION}/${CLASSIFICATION_MODEL}/ \
&>${0UTPUT_LOG_FILE} &

As seen on Listing 5.1, it will create shared volumes on the folders configs, data and models, allowing
files to be shared between our local machine and the Docker container. Also, we are setting the name to
DOCKER_CONTAINER_NAME, which translates to <project>_crawler (in our case, qavid19_crawler). The
other flags are setting the application, model and seeds configuration files locations. An important aspect
is that this is executed using nohup, which makes the Docker container running in the background, while
logging the output to the file specified as OUTPUT_LOG_FILE.

ACHE stores execution metadata, allowing us to stop and continue the crawler from the same state
when it was stopped. In order to stop the container, one can use the script stop_crawler.sh <project>,

which stops the Docker container called <project>_crawler.

Zhttps://hub.docker.com/r/vidanyu/ache

49

CHAPTER 5. SYSTEM IMPLEMENTATION

However, if you want to fully restart your crawler, by removing the cached metadata and the down-
loaded pages, you can run reset_crawler.sh <project>. This will remove the Docker container called

<project>_crawler and the downloaded web pages.

5.1.2 ACHE Configurations

ACHE is very rich when it comes to functionalities and customization. It allows us to chose the output file
format, the classification model we want to use to classify relevant pages, data compression, limit pages
to crawl (and per domain), hard focus (if the crawler should only crawl the seed domains), link classifier
strategy and the crawler’s agent, for example.

These configurations are all provided to the crawler through the ache.ym! YAML file. For our QAVID19

crawler, we set the configurations as seen on Appendix B:

* Regarding Target Storage, we are storing files as JSON, hashing the filenames and only storing
pages classified as relevant. We are not hard focusing and not using a bipartite crawler. To limit the
crawler execution, we set the maximum number of pages to visit as 1.000.000.000, to guarantee

that we get the most of the seed web pages.

* Regarding Link Storage, we are setting the limit of pages from each domain to 1.000.000.000,
and allowing the crawler to follow only forward links. The crawler can also fetch pages outside of
the provided seed list, given that they are mentioned in the seeds. The crawler is using a random
strategy when it comes to the order the pages are crawled, grouped with a Top K Selector. Also, we
are configuring the crawler to recrawl sitemaps every 6 hours (360 minutes) in order to find new

web pages.

e Regarding Crawler Manager, we set the user agent information like name (ACHE), URL (ACHE's
GitHub project) and email (a80261@alunos.uminho.pt). We also set the number of threads used to
download the web pages (100), as well as the maximum number of download retries (3). Another

important aspect of this configuration is that our crawler only accepts the following MIME types:

text/xml

text/html!

text/plain

application/x-asp

application/xhtml+xml|

application/vnd.wap.xhtml+xml

This way we guarantee we are not downloading binary data like PDF files or images.

50

CHAPTER 5. SYSTEM IMPLEMENTATION

Another required configuration we had to provide to ACHE in order for it to perform as a Focused
Crawler was the URL seeds, which are the crawler’s starting point. Thus, having the defined seed URLs

defined in Section 2.1, we created the seeds.ixt file containing what is seen on Listing 5.2.

Listing 5.2: ACHE Seed URL file

https://covid19.min-saude.pt

https://covidl9estamoson.gov.pt
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.nhs.uk/conditions/coronavirus-covid-19/

https://www.ecdc.europa.eu/en/coronavirus

5.1.3 Models

Having the base of the Web Crawler configured, we needed to configure the page classifier model, in order
to filter the relevant pages. As specified in the RQ1 answer in Section 3.8.2, given the fact that most
COVID-19 related pages are highlighted at the moment, they have most of the times a reference to it on
the URL itself, thus a URL Regex filter should be enough to only obtain the relevant pages.

Following the ACHE documentation3, we were able to define our classifier model in the file pageclassi-
fieryml. Listing 5.3 represents the mentioned file. As expected, we are filtering pages whose URLs contain

the words "covid”, "corona”or "coronavirus”.

Listing 5.3: ACHE Page Classifier Model

type: url_regex
parameters:
regular_expressions: [
" . *xcovid.*",

".xcorona(virus)?.*x",

5.1.4 Execution

ACHE Crawler provides a monitoring tool, which allows us to check the crawling progress and some statis-
tics, like the percentage of relevant pages found, the number of failed downloads and the distribution of
HTTP requests’ answer codes, for example (as seen on Figure 5.1).

The downloaded files are JSON files, containing metadata along with the HTML data encoded in
Base64. The metadata is composed by the URL, the content type, the response headers, the date it was
fetched, the relevance score and other HTML related information (which is not very relevant for the purpose
of this thesis).

3https://ache.readthedocs.io/en/latest/ page-classifiers.htmlurl-regex

51

CHAPTER 5. SYSTEM IMPLEMENTATION

m Crawlers Start Crawl
Monitoring
Crawler ID: default
General
Uncrawled Links in Frontier 17,172
Successfull Requests 1,515
Failed Requests 389
Aborted Requests 245
HTTP Response
HTTP 2XX: Success
Error HTTP 401: Unauthorized 0
Error HTTP 403: Forbidden 16
Error HTTP 404: Not Found 68
Error HTTP 5xx: Server Errors 2

1,500

1,000

100 110 120 130 140 150 160 170 180 190

— downloader fetches successes
— downloader fetches.aborted
— downloader.htip_response status.2xx
— downloader.fetches.errors

500

300

200

BTV VN VA W

120 130 140 150 160 170 180 190 20i 210
— downloader.pending_downloads
— downloader.running_handlers

— downloader.running_requests

1,399

Page Relevance

Total Pages 1,185
Relevant Pages 440
Irrelevant Pages 745
Harvest Rate 37.131%
Page Fetcher Performance
Fetch Time (Mean) 2270.91 ms
Fetch Time (Percentile 75) 2361.60 ms
Fetch Time (Percentile 95) 5192.92 ms

Fetch Rate: Last 15 min (pages/sec)

Fetch Rate: Last 5 min (pages/sec)

400

300

200

100

10,000

8,000

6,000

4,000

2,000

0

1.65 pages/sec

3.90 pages/sec

100 110 120 130 140 150 160 170 180 190

— downloader.dispatch_gueue.size

— downloader.download_gueue size

120 130 140 150 160 170 180 190 200 210

— frontier_manager.scheduler.non_expired_domains

— frontier_manager.scheduler.number_of_links

— frontier_manager.schedulerempty_domains

Figure 5.1: ACHE Crawler: Monitoring Tool

52

CHAPTER 5. SYSTEM IMPLEMENTATION

On a first run of the crawler, we deactivated the recrawling functionality and left it running for circa 4
hours. In this period of time, nearly 7.5GB of data was downloaded, which is translated to 34 484 web
pages. From these, 219 pages were in Portuguese and 28086 were in English (which were the languages
of the seed URLs). Despite having the seeds in two languages, we were able to fetch 2102 pages in French,
845 in Spanish, 462 in German and 882 in Indonesian. However, many pages were also found in other
languages, while 30 we were not able to detect (either due to no text features in the web page or to text
breaking characters not compliant with utf-8). We could conclude that without the hard-focus functionality,
we were able to crawl a significant number of pages, but regarding the Portuguese language, the results
were not very satisfactory. This could be overcame by keeping the crawler running for longer periods of
time (in order to fetch more data in Portuguese) or by disabling the hard-focus functionality (only fetching
data from the seeds, assuring we only kept pages in the language of the seed websites) or by limiting the
crawler to follow links within a given "hops”from the seeds (reducing the number of pages found in other
languages but possibly shortening the information gathered).

This data will be used as the test basis for the chatbot application as it seems sufficient for the purpose.
However, when it comes to properly testing the application, we may need to run the crawler for a longer
period of time or apply the mentioned changes to the crawler’s configurations, allowing it to gather as
much data as it is possible.

With the relevant web pages downloaded, and the mechanism to keep this process running developed,

we were able to feed the next module of our system, the Text Processor.

5.2 Text Processor

Following the approach described in the Solution Design (Section 4.3), this module was divided in two
independent parts: the File Mover and the File Processor, which are going to be described in the next

sections. Both parts were developed using Python.

5.2.1 File Mover

The first part of the Text Processor module is responsible for copying the data downloaded by the Web
Crawler into a specified folder. This is useful to guarantee that downloaded data is not processed more
than once, which could create entropy and slow down the process.

The File Mover uses an auxiliary file called processed_files.txt, where it records the names of
the files it has already copied.

In order to make sure the downloaded files are being processed continuously, the script is executed in

an infinite cycle, executing every 2 hours and sleeping in the meanwhile.

53

CHAPTER 5. SYSTEM IMPLEMENTATION

5.2.2 File Processor

The second part of the Text Processor is the more important one, since it is responsible for parsing the
text from the downloaded web pages and indexing it to ElasticSearch.

File Processor needs a set of 3 folders in order to execute:

* IN_PROGRESS - the script moves files from the SOURCE folder (File Mover’s output directory) to
IN_PROGRESS every two hours and then processes them;

e FINISHED - folder that contains the files successfully processed;
¢ FAILED - folder that contains the files where the processing failed.

This folder structure allows us to have the File Processor running continuously, while also allowing the
failed files to be processed again.

The File Processor works as follows, after moving files into IN_PROGRESS:
1. First, each file is loaded into a Python dictionary, to facilitate data parsing.

2. Then, we decode the Base64 information in the dictionary’s content field. This is done using the

code in Listing 5.4.

Listing 5.4: Decode Base64 text

1 def decode_baseb64(str):

2 base64_bytes = str.encode('utf-8')

3 message_bytes = base64.b64decode(baseb4_bytes)

4 message = message_bytes.decode('utf-8")

5 return message

3. Next, the decoded text is parsed using a cleaning engine to extract the text only from the HTML page,

thus removing its tags and irrelevant metadata. This is done using the Python library html2text.

This engine was configured to ignore links, images, emphasis and tables.

o

. Having the text cleansed and extracted from the web page, its language is detected using the Python

library langdetect, that identifies the content’s language seamlessly.

(6]

. The language is then used to set the ElasticSearch index used to store the parsed text. This index
follows, in this case, the format covid_<language>. This means that a page in Portuguese will be

indexed inside covid_pt and an English page will be indexed in covid_en.

(o))

. With the index defined, the page is actually indexed to ElasticSearch using their official Python API
library. The web page is placed in the mentioned index, having as its ID the web page’s URL encoded

as Base64. Its body is composed of the parsed text content.

~

. If this whole process is completed with success, the original file is moved to the FINISHED folder,
else it is moved to FAILED.

54

CHAPTER 5. SYSTEM IMPLEMENTATION

5.3 ElasticSearch

ElasticSearch is the bridge between the Text Processor and the Chatbot application itself. It allows the
chatbot to request the most relevant page for the given page, providing it as a context for the BERT model
to extract the best possible answer.

In a first stage, the default configurations were used. While developing, a local instance was created,
but it can easily be scaled to the Cloud (having the budget).

These default configurations include the following:

* The instance runs on localhost:9200.

e Before indexing, words are lowercased and splitted and punctuation is removed.
» Stopwords are not removed.

» ElasticSearch creates 5 primary shards and one replica for each index.

5.4 Chatbot Application

The Chatbot Application is the "final"module of this system. It is responsible for making it available to
the end users, by presenting an interactive and easy to use Ul and by providing answers to the asked
questions.

This module is composed by three main parts: the Web application (which is what the end user sees, it
is the Ul used to communicate with the application), the REST API (that receives the questions in the form
of HTTP requests and responds to them, carrying the answer to the given interrogation) and the Chatbot
Models (trained BERT models in each available language: English and Portuguese in this works’ context).
Next, each of these parts is described.

5.4.1 RESTAPI

The REST API was developed in Python, using the FastAPI framework. The API is responsible for receiving
the chatbot’s questions and for providing the correct answer. As its purpose is solely the communication
between the BERT models and the web application, it contains a very reduced set of endpoints. At the
moment, it only contains two: one for checking the ElasticSearch instance status and another for receiving
and answering the users’ questions.

The API is structured in two modules, one for the Machine Learning models and another for the API
itself (composed by the endpoint definition and connections to the defined services, e.g. ElasticSearch and
the ML models).

When the API receives a question, one of the arguments must be the language the question is in. This
is necessary for the API to request the right BERT model. Otherwise, given the duality of languages in this

project, the answers would not be extracted successfully. Then, a query is made to ElasticSearch to the

55

CHAPTER 5. SYSTEM IMPLEMENTATION

correct index (taking language into consideration), and thus fetching the most relevant web page for the
provided query’s words. The mentioned query is done as a match query in the text field of the index, in
the format "query”: "match”: "text”: <query>. This allows the API to get the context needed for the BERT
engine to work properly and extract the answer. In order to communicate with the BERT model, the Python
library transformers was used, along with PyTorch, the framework used to train the models.

Given the fact that the context may very well exceed most BERT models token limit (512), the approach
defined in the Cloudera’s Fast Forward Blog on NLP for Question Answering (Building a QA system with
Bert on Wikipedia): the context is divided into chunks, which are then tokenized and provided the BERT
model, which tries to extract answers from these chunks. However, this can create answer discrepancies

if an answer can be extracted from an irrelevant chunk. For example:

Question: When was Barack Obama born?
Top wiki result: <WikipediaPage 'Barack Obama Sr.'>

Answer: 18 June 1936 / February 2 , 1961 /

Here, we can observe that for the Wikipedia page on Barack Obama Sr., the engine could extract two
answers for the question "When was Barack Obama born?”. This is because the model obtained an answer
in the paragraph describing Barack Obama Sr. and another one in the paragraph describing its son, the
former President of the United States of America. The code used for this mechanism is represented in
Listing C.1 from Appendix C, which was adapted from the aforementioned blog.

To overcome this issue, we needed to follow a windowing approach, which would go over all the chunks
but keeping some tokens from the previous chunk, thus preventing the context from being broken. This
was achieved using the pipeline4 functionality of HuggingFace’s Transformers. However, as expected, the
processing time is longer, but with the outcome of extracting a better answer, avoiding the context data

being disrupted. On Listing C.2, the code developed for this approach is presented.

5.4.2 Chatbot Models

The Chatbot machine learning models (fine-tuned BERT in English and Portuguese) are the pieces that do
the "magic”of providing the right answers to the provided questions.

BERT is used for many purposes, one of them being Question-Answering. However, it does not offer
this functionality out-of-the-box. BERT models are made available with a diverse set of pre-training. In
this work, we used the multilingual cased BERT model, which was pre-trained using the whole Wikipedia
database in several languages. Despite being a much heavier model than the rest, it brings the advantage
of allowing it to be trained in most of the languages, widening the range of our system if we later wanted to
add more supported languages to it. These pre-trained models are made available publicly in the google-

research/bert GitHub Repository.

https://huggingface.co/transformers/main_classes/ pipelines.html

56

CHAPTER 5. SYSTEM IMPLEMENTATION

Having the pre-trained model, we needed to fine-tune them using a QA dataset, enabling the model
to extract answers from a context paragraph. For this, we trained our models using the SQUAD dataset5,
which contains 100000 questions and was developed by Rajpurkar et al. (2016). The SQUAD datasets
are very complete, and contain context paragraphs, questions related to it and the correct answers. For
the English model, we trained it using the second version of the dataset, SQUAD2.0. This dataset also
contains 50000 unanswerable questions, making the model even more robust. However, we could not
find a Portuguese version of this dataset. We tried to translate it, but the costs were too high, as no
free platform was found and the Google Translator API presented several limitations, which did not allow
the execution. Therefore, we used the SQUAD1.1 dataset, translated by the Google translation APl and
made available in the GitHub repository nunorc/squad-v1. 1-pt. However, this dataset also presents some
limitations: as it was automatically translated, and the dataset contains the starting position of the answer
in the context paragraph, due to the differences between English and Portuguese, the starting position
could not be validated. Thus, in these cases, the starting position was set to 0.

With the datasets and the pre-trained BERT model, we started to fine-tune the latter. This was done
using the Python script provided by the Google Research team who developed BERT, called run_squad.py.
This script, which was adapted from Tensorflow to PyTorch by HuggingFace (we decided to use this one
given the fact we were also using PyTorch in the REST API), fine-tunes the given BERT model using a
version of the SQUAD dataset. As said, the selected model was the multilingual cased BERT, which is
called bert-base-multilingual-cased.

Given the fact that the multilingual cased BERT model was significantly heavy, the fine-tuning was slow.
Lacking GPUs and local machines which could enhance the performance of the models’ training, we had
to set up a Virtual Machine within Google Cloud Platform (using the trial voucher of 300$). This VM also
had no GPU, but since it was running no other significant process, we were able to reduce the execution
time (from nearly 15 days on a local machine to 7 days). The VM was a nl-standard-4 instance, with 4
vCPUs and 15 GB of memory.

The English model was trained with the specifications seen on Listing 5.5, while the Portuguese model

with the ones seen on Listing 5.6.

Listing 5.5: Run BERT Fine-tuning (EN)

python3 run_squad.py \
--model_type bert \
--model_name_or_path bert-base-multilingual-cased \
--output_dir models/bert/ \
--data_dir data/squad_en \
--overwrite_output_dir --overwrite_cache \
--do_train \
--train_file train-v2.0.json \
--version_2_with_negative \

--do_eval \

Shitps://rajpurkar.github.io/ SQuUAD-explorer/

57

11

12

13

14

15

16

17

18

10

11

12

13

14

15

16

17

CHAPTER 5. SYSTEM IMPLEMENTATION

--predict_file dev-v2.0.json \
--per_gpu_train_batch_size 2 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \

--threads 10 \

--save_steps 5000

Listing 5.6: Run BERT Fine-tuning (PT)

python3 run_squad.py \
--model_type bert \
--model_name_or_path bert-base-multilingual-cased \
--output_dir models/bert_pt/ \
--data_dir data/squad_pt \
--overwrite_output_dir --overwrite_cache \
--do_train \
--train_file train-vi1.1l.json \
--do_eval \
--predict_file dev-vl.1.json \
--per_gpu_train_batch_size 2 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--threads 10 \
--save_steps 5000

The English model (trained on SQUAD2.0) took nearly 7 days to complete the training, while the
Portuguese model (trained on SQUAD1.1) took circa 4 days to complete (since the dataset was smaller
and less complex. These models trained for QA can be evaluated with two metrics: Exact Match and F1.

Exact match is a strict metric which states if for each question-answer pair, the characters of the
model’s prediction exactly match the characters of at least one of the True Answers.

F1 is a common metric used in classification models but also widely used for QA, calculated with
precision and recall. Precision is the ratio of the number of shared words to the total number of words in
the prediction, and recall is the ratio of the number of shared words to the total number of words in the
provided answer (in this case, True Answer). F1, as in Wikipedia (2021), is calculated using the following

formula:

precision X recall
precision + recall

F1=2x

Table 5.1, Table 5.2 and Table 5.3 were obtained from the fine-tuning outputs, with the intent of helping

us evaluate and analyze the performance of the BERT models. In these tables, the total values refer to the

58

CHAPTER 5. SYSTEM IMPLEMENTATION

number of question-answer pairs used for that metric in the dev set.

Model bert-base-multilingual-cased | bert-base-multilingual-cased
SQuAD Version | 2.0 (original EN) 1.1 (translated to PT)
exact 73.19969679103849 50.74739829706717

fl 76.20200818956586 68.16061545510546

total 11873 10570

Table 5.1: BERT: Scores averaged over all examples in the dev set

In Table 5.1, the Exact Match for the English model was circa 73.2 while the Portuguese one got circa
50.75, with a significant loss compared to the first model. This can be due to the Portuguese translated
dataset missing the correct answer positions. Regarding the F1 score, the English model got circa 76.2,
where the Portuguese model got circa 68.16. We concluded that the results of the English model were
satisfactory, compared with the results generally obtained with BERT and SQUAD 2.0 (presented in the
dataset’s web page). When it comes to the Portuguese model, despite having a low Exact Match, it can
still provide a rather precise answer. If a version of the SQUAD dataset was available for the Portuguese
language (with the correct answer positions and correct translation to European Portuguese), we believe

the results would be better.

Model bert-base-multilingual-cased | bert-base-multilingual-cased
SQuAD Version | 2.0 (original EN) 1.1 (translated to PT)
HasAns_exact | 68.35357624831309 50.74739829706717
HasAns_f1 74.36680891273862 68.16061545510546
HasAns_total 5928 10570

Table 5.2: BERT: Scores averaged over only positive examples (have answers)

Table 5.2 presents the results obtained from the question-answer pairs in the dev set which effectively
had an answer. Since the SQUAD version 1.1 only had positive examples, the results for the Portuguese
model are the same as the ones on Table 5.1 (this can be concluded also by the same total value). On the
other hand, the English results were worse than the ones in Table 5.1, but still presenting an overall good

performance regarding the F1 score (only 2 points lower, while the Exact Match value lowered by nearly 5

points). The total examples used in the English model were almost half of the dataset.

Model bert-base-multilingual-cased | bert-base-multilingual-cased
SQuAD Version | 2.0 (original EN) 1.1 (translated to PT)
NoAns_exact 78.03195962994113 -

NoAns_f1 78.03195962994113 -

NoAns_total 5945 -

Table 5.3: BERT: Scores averaged over only negative examples (no answers)

When it comes to negative examples (question-answer pairs with no answer), Table 5.3 showed us that

the English model improved its performance on the other half of the dataset, increasing the Exact Match

59

CHAPTER 5. SYSTEM IMPLEMENTATION

value and F1 score to both 78.03. The Portuguese model had no outputs for these metrics due to the fact

that the SQUAD version 1.1 does not provide negative examples.

5.4.3 Web Application

The web application was developed using React. It is a simple application (which can be used on any device
with internet connection and a browser), containing a chat to allow users to interact with the chatbot.
The application first tries to check the user’s device language (it uses English by default). Then, a Ul
is presented as shown in Figure 5.2. The user interacts with a virtual "doctor”called Dr. Eugenius, which
is actually our chatbot. Any questions written in the application are transmitted to the REST API, which

provides the answers. These are then printed on the chat-like application screen.

60

CHAPTER 5. SYSTEM IMPLEMENTATION

' QAVID-19 " QAVID-19

Get a trustworthy answer for your COVID-19 Get a trustworthy answer for your COVID-19
questions! questions!

Are antibiotics effective in
Welcome to QAVID-19 preventing or treating
chatbot! | am Dr. Eugenius COVID-19?
and I'm here to answer any
question you have on COVID-
19. So, how can | help you?

Q* Hmmm let me think...

03:17
03:17

¢ ; Please, wait a few moments
' while I'm looking in my
reliable sources!

03:17

q‘?‘ This is what | found:
' "CANNOT prevent". You can
find more here.

0318

Type your question... Type your question...

. QAVID-19 " QAVID-19

Responde as tuas questdes acerca da COVID-19 Responde as tuas questdes acerca da COVID-19
de forma confiavel! de forma confiavel!

Bem-vindo(a) ao QAVID-19! Quanto tempo sobrevive o
Eu sou o Dr. Eugenius e estou virus nas superficies?
aqui para responder a

qualquer questao que possas

ter sobre a COVID-19! Entéo,

€OmMo posso ajudar-te? q"?‘ Hmmm deixa-me pensar...

03:16 03:12

Q‘ ; Por favor, espera um
' momento enquanto procuro
nas minhas fontes seguras!

03:12

q‘ ; Isto foi 0 que encontrei:
' "horas ou até dias,". Podes
descobrir mais aqui.

03:14

Escreve a tua questéo... Escreve a tua questéo...

Figure 5.2: Web Application: Ul (English and Portuguese)

61

Chapter

Testing and Tuning

This chapter presents the results obtained from the Chatbot application and the refinements developed

and applied to achieve better results.

6.1 COVID-19 QA Test Set

In order to test our application, a set of questions related to COVID-19 was obtained both for Portuguese
and English languages from legit and trustworthy sources. This way, we were able to compare the official
responses with the ones obtained using the developed chatbot.

The English FAQs is a subset of ten questions from the ones present on the United Nations’ website
(Coronavirus disease (COVID-19) FAQs):

ENQ1 How does COVID-19 spread?

ENQ2 What are the symptoms of COVID-19?

ENQ3 How do | know if it is COVID-19 or just the common cold?

ENQ4 Can the virus that causes COVID-19 be transmitted through the air?
ENQ5 What can | do to protect myself and prevent the spread of disease?

ENQ6 Should | wear a mask while exercising?

ENQ7 Are the symptoms of COVID-19 different in children than in adults?

ENQ8 Are antibiotics effective in preventing or treating COVID-197

ENQ9 Can humans become infected with COVID-19 from an animal source?

62

CHAPTER 6. TESTING AND TUNING

ENQI1O How long does the virus survive on surfaces?

The Portuguese question set, in order to guarantee consistency, is the same as the English one. It is
presented, as well as the answers to each of the aforementioned questions, on Appendix D.

Before running our application with these question sets, we could identify some questions that could
create some issues, e.g. the questions that do not mention COVID-19 or coronavirus can be answered with
information written on the context of other diseases or viruses. Also, despite not being part of this question

set, composed questions (more than one sentence) can also be tricky to the application.

6.2 Results

In this section, the results obtained are presented for each of the application’s configurations.

In order to try to get the best answer, the top three documents were fetched from ElasticSearch (except
in Section 6.2.3, where only the most relevant document is retrieved), and the answer with the best score
is the one presented, as well as the BERT execution time for that document/answer pair. However, this
approach led to a significant overall response time from 4 to 8 minutes for each request on the English
QA Set (on the Portuguese QA Set the average was between 8 and 12 minutes).

Also, the tables with the results in the following sections present the ElasticSearch score obtained for
the chosen document with the given query. The ElasticSearch scoring function is described in Lucene’s

Practical Scoring Function and it's calculated as seen on Figure 6.1.

score(q,d) = @

queryNorm(q) @

coord(q,d) ©

> | (4)
tf(t ind) @
idf(t)?2 6
t.getBoost() @
norm(t,d) (8)

) (t in q) (4]

Figure 6.1: ElasticSearch Scoring Function (Lucene’s Practical Scoring Function)

Breaking the formula in Figure 6.1 into parts, we can see that:
1. score(q,d) is the relevance score of document d for query g;

2. queryNorm(q) is the query normalization factor (which is an attempt to normalize a query so that

the results from one query may be compared with the results of another);

63

CHAPTER 6. TESTING AND TUNING

3. coord(qg,d) is the coordination factor (which is used to reward documents that contain a higher

percentage of the query terms);
4. The sum of the weights for each term t in the query g for document d

5. tf(t in d) is the term frequency for term t in document d (calculated with the square root of the

number of times the term appears in the document);

6. idf(t) is the inverse document frequency for term t (the logarithm of the number of documents in

the index, divided by the number of documents that contain the term);

7. t.getBoost() is the boost that has been applied to the query (parameter defined at search time to

give one query clause more importance than another);

8. norm(t,d) is the field-length norm, combined with the index-time field-level boost, if any (calculated

with the inverse square root of the number of terms in the field).

This score is merely used by ElasticSearch to calculate the most relevant documents indexed, it does
not indicate if the answer to the given query is present in the document. So, the scores in the tables below
are only indicative and cannot be used to draw conclusions on the answer obtained. However, if the scores

were too low, we could deduct that no relevant documents could be retrieved from the indexes.

6.2.1 No Tuning (Raw Indexing)

Firstly, we ran the application with no tuning whatsoever. This means that the ElasticSearch indexes do
not have any special configuration other than the defaults and the contexts (web pages) are used as they

were indexed, without any further treatment.

Question ID Answer Answer Score Execution Time (s) ES Score
ENQ1 "more easily than SARS” 0.68192 116.753583 6.968636

ENQ2 "Coronavirus Disease” 0.99244 103.691477 5.240504

ENQ3 "missing it” 0.01309 57.702309 19.04191

ENQ4 "COVID-19 can spread via airborne transmission.” 0.14192 134.216533 13.339786
ENQ5 "Wash your hands,” 0.37165 43.985272 20.417625
ENQ6 "Compulsory” 0.43212 56.817268 19.259638
ENQ7 "very different” 0.70116 65.293769 13.397824
ENQS8 "preventing” 0.34662 92.693266 20.021086
ENQ9 "kids generally don't seem to be getting severely ill.” 0.28995 104.239747 22.822405
ENQ10 "prolonged periods of time.” 0.98337 493.596096 19.434814

Table 6.1: No Tuning - Application Results on English QA Set

From the results presented on Table 6.1, we could observe some responses were correct, despite
some being ambiguous (e.g. ENQ1 or ENQ2, which are not incorrect but also does not provide the required
response) or incomplete (e.g. on ENQ5 the comma indicates the phrase could have more important infor-

mation). Regarding ENQ®6, the response was correct but for a period of time and on a given country (in this

64

CHAPTER 6. TESTING AND TUNING

case, the answer was fetched from a news page about Singapore in April 2020). For ENQ3 and ENQ9, the
answers obtained did not actually provide an answer to the questions presented. On ENQ7, the response
was correctly extracted from the context, which stated that "it is important to recognize that symptoms in

children can be very different than in adults”, despite contradicting the response provided by the UN.

Question ID Answer Answer Score Execution Time (s) ES Score
PTOQ1 "através de alimentos,” 0.99668 238.27001 6.22378
PTQ2 "Corona Virus Disease” 0.99431 75.942465 5.870456
PTQ3 "telefone.” 0.40931 237.712855 11.642396
PTQ4 "através de alimentos,” 0.99185 236.858443 14.410699
PTQ5 "lavar as maos” 0.82095 275.750014 15.750288
PTQ6 "colaboradores” 0.00182 236.649484 12.931345
PTQ7 "Coronavirus Disease” 0.06816 166.522164 15.853691
PTO8 "antibioticos ndo sao efetivos” 0.02884 236.007342 11.729201
PTQ9 "coronavirus disease” 0.10511 49.596555 11.184871
PTQ10 "3 a 20 dias,” 0.99560 117.555118 17.520554

Table 6.2: No Tuning - Application Results on Portuguese QA Set

As for the Portuguese QA Set results, seen on Table 6.2, the outcomes were far from the expected.
Most answers were wrong, not even answering the provided question. However, this is due to two situations:
some pages returned by ElasticSearch were FAQ pages, which contained both the question and the answer,
thus confusing our model which extracted the answer from the question and not from the answer (e.g.
PTQ1 and PTQ4), and also the pages returned not containing the answers required (e.g. PTQ3 and PTQ6).

A relevant fact that was noticed was that some answers were being extracted from some dubious
websites for the purpose. For example, for one question the answer was being extracted from an article
called "Overhyped Coronavirus Weaponized Against Trump”in the web page of a political show, which
was a politically corrupted commentary, instead of scientifically correct data. Also, other answers were
extracted from news sources (and also they were identified as belonging to private entities). This can lead
to outdated and contextual information, as well as to manipulated data. Thus, the first approach to try to
improve the chatbot's results were to restrict the crawler's application to only download pages from the

trustworthy set of initial sources. The results for that approach are presented in the next section.

6.2.2 With Crawling Restrictions

As specified in the previous section, the first approach to improve the results relied on restricting the
crawler's amplitude of pages to download: now it should only crawl web pages from the sources indicated
as seeds, which we know are reliable sources of information and not politically corrupted.

This was done by setting the crawler configuration 1ink_storage.link_strategy.use_scope:
true. The crawler ran for circa 5 hours, having downloaded 3063 web pages. Of those, 2301 were in

English and 553 in Portuguese. However, some pages were also found in other languages in the seed web

65

CHAPTER 6. TESTING AND TUNING

pages: 9 in Spanish, 9 in French and 10 in Indonesian for example. Also, 171 pages had their language
set as "undefined”due to a language detection failure. These pages correspond to nearly 500MB of data,
meaning that with an hour less of execution, the first iteration of the crawler gathered more 7GB of data
than the curated iteration we just presented. Having the pages already indexed (we used a new naming
for these pages, in order to maintain the previously indexed pages: covid_<language>_v2), we could run

our QA Sets again, but now fetching the documents from the newly created indexes.

Question ID Answer Answer Score Execution Time (s) ES Score
ENQ1 "through faeces?” 0.79060 9.932024 4.313481
ENQ2 "coronavirus” 0.02161 4.308737 3.2946343
ENQ3 "Coronavirus disease” 0.25852 80.132636 17.5334
ENQ4 "Efforts to control COVID-19 transmission have reduced economic activity” 0.10635 29.505251 12.520907
ENQ5 "Read How to Protect Yourself to learn more.” 0.39509 163.305069 12.355144
ENQ6 "you should still keep physical distance from others as much as possible.” 0.11743 49.666623 13.833112
ENQ7 "they any different from grownups,” 0.13189 40.774625 10.547417
ENQ8 "CANNOT prevent” 0.07910 67.925064 11.104211
ENQ9 "Transmission could occur through direct contact with an infected individual,” 0.07502 20.81589 16.366974
ENQ10 "how long” 0.18234 35.32768 14.195935

Table 6.3: With Crawling Restrictions - Application Results on English QA Set

As seen on Table 6.3, with the crawling restrictions, the results on the English QA Set were still very
ambiguous and incorrect on multiple questions, despite the fact we are now guaranteeing the trustworthi-
ness of the information. We could still observe the answer being fetched from the question, instead of the
answer, when the data source is a FAQ page (e.g. ENQ1). The execution times were better, but that only
depends on the web page's size. The scoring was very low, meaning the answer could not be successfully

extracted for most cases. The results were again unsatisfactory.

Question ID Answer Answer Score Execution Time (s) ES Score
PTQ1 "para |he fornecermos a melhor experiéncia de navegacao.” 0.11047 11.724692 5.920704
PTQ2 "recuperacao econdémica e social.” 0.12353 13.480936 4.981772
PTQ3 "desencadear efeitos indesejaveis.” 0.06333 100.835392 16.16233
PTQ4 "através de alimentos,” 0.96423 163.395218 10.164611
PTQ5 "acbes preventivas habituais” 0.81296 165.699992 16.783964
PTQ6 "clientes,” 0.04648 162.602775 10.801659
PTQ7 "os dois virus s@o muito diferentes” 0.03020 163.270843 12.067888
PTQ8 "antibioticos ndo séo efetivos” 0.06301 163.275156 12.119408
PTQ9 "goticulas respiratorias.” 0.96316 163.912693 9.70346
PTQ10 "horas ou até dias,” 0.87411 163.424213 14.458093

Table 6.4: With Crawling Restrictions - Application Results on Portuguese QA Set

Regarding the Portuguese QA Set, the results obtained with the crawling restrictions are presented on
Table 6.4. The execution times of the BERT answer extraction were mainly rounding 3 minutes, which is
a very significant response time given the need for a quick answer. Also, we again observe the answer
being extracted from the question of a FAQ (PTQ4), which resulted in a wrong and misleading answer. This
issue cannot be overcome using the model we are providing and the web pages containing the questions
themselves. Despite PTQ8 and PTQ10 having a correct answer and PTQ5 providing a generalist and
imprecise answer, the others were not nearly correct.

Without changing the Text Processor logic, one more tweak we could provide to our system is the

improvement of the ElasticSearch indexes. Since we are fetching the top 3 web pages from ElasticSearch,

66

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 6. TESTING AND TUNING

and then returning the answer with the highest score, the most relevant page can have its answer discarded
(which could be the correct one) if the score returned by BERT was lower than a less relevant page. Thus,
in order to guarantee that we retrieve the most relevant page effectively, and this way discarding the need
of fetching the 3 pages (reducing the execution time by a third, given the fact that BERT will only execute
over one page), we could enhance our ElasticSearch indexes by removing stop words (for English and
Portuguese) and also by changing the tokenizer’s approach to "whitespace”instead of the standard one.
This last enhancement prevents splitting terms with dashes, like "COVID-19”, into two tokens, only splitting
tokens that are separated by whitespaces. The results gotten with this approach are presented in the next

section.

6.2.3 With Crawling Restrictions and ElasticSearch Indexes

Enhancement

Trying to always fetch the most relevant web page for a given question while at the same moment reducing
the execution times, we enhanced the ElasticSearch indexes, by changing the default analyzer and remov-
ing the stop words. This was done with the requests to our ElasticSearch instance seen on Listing 6.1,
which creates new indexes with the naming "covid_<lang>_v3", keeping the previously created indexes
untouched.

Listing 6.1: ElasticSearch Indexes Enhancement

curl -X PUT 'localhost:9200/covid_en_v3?pretty' -H 'Content-Type: application/json' -d '
{
"settings”: {
"analysis”: {
"analyzer”: {

"covid_en_analyzer”: {
"type”: "whitespace”,

"stopwords”: "_english_",

"{gnore_case”: true

curl -X PUT 'localhost:9200/covid_pt_v3?pretty' -H 'Content-Type: application/json' -d '
{
"settings”: {
"analysis”: {
"analyzer”: {
"covid_pt_analyzer”: {
"type”: "whitespace”,

”

"stopwords”: "_portuguese_ ",

67

24

25

26

27

28

29

10

11

12

13

14

15

16

17

18

19

20

21

CHAPTER 6. TESTING AND TUNING

"ignore_case”: true

The stop word lists (English and Portuguese) are the default ones defined in the Lucene repository as
stated in the official ElasticSearch documentation (Stop token filter: Elasticsearch Guide [7.15]). In order
to guarantee all the stop words are ignored, we used the "ignore case”option (this ignores stop words
regardless of their letters’ casing). After being created, the documents were reindexed to the newly created

indexes, as seen on Listing 6.2.

Listing 6.2: ElasticSearch Portuguese Index Enhancement

curl -X POST "localhost:9200/_reindex?pretty” -H 'Content-Type: application/json' -d'
{

"source”: {

"index"”: "covid_en_v2"
}7
"dest”: {

"index”: "covid_en_v3”
}

curl -X POST "localhost:9200/_reindex?pretty” -H 'Content-Type: application/json' -d'
{

"source”: {

"index”: "covid_pt_v2"
}s
"dest”: {

"index"”: "covid_pt_v3”
}

Having the new indexes created and the documents reindexed to these, we could extract and analyze
the results obtained with this refactoring.

As seen on Table 6.5, the execution times were greatly reduced, and even more considering this was
the sole execution of the BERT model. However, the answers themselves remain poorly extracted. Only two
of them were actually correct (with one being too vague), while the other were extracted from questions
or provided a wrong answer for the question (we got three questions with the answer "coronavirus”or
"coronavirus disease”). The scores obtained were also significantly low (with more than 60% being below

the 0.1 mark) The fact that this is faster does not compensate for the wrongly generated answers.

68

CHAPTER 6. TESTING AND TUNING

Question ID Answer Answer Score Execution Time (s) ES Score
ENQ1 "through faeces?” 0.72600 15.667076 4.4349594
ENQ2 "coronavirus” 0.02161 4.609956 3.2946343
ENQ3 "Coronavirus disease” 0.25852 81.557437 17.5334
ENQ4 "Coronavirus disease” 0.00565 29.834129 12.521194
ENQ5 "Read How to Protect Yourself to learn more.” 0.39509 162.154876 12.355144
ENQ6 "fabric mask,” 0.00407 22.504819 14.622446
ENQ7 "even when the employee or a family member are exhibiting symptoms compatible” 0.06033 49.545466 11.737822
ENQ8 "CANNQOT prevent” 0.07910 68.100438 11104211
ENQ9 "Transmission could occur through direct contact with an infected individual,” 0.07502 20.84661 16.366974
ENQ10 "how long” 0.18234 35.314053 14.195935

Table 6.5: With Crawling Restrictions and ElasticSearch Indexes Enhancement - Application Results on
English QA Set

Question ID Answer Answer Score Execution Time (s) ES Score
PTQ1 "saude.pt/?p=3579435" 0.06071 8.271065 8.08448

PTQ2 "Apoios Eletricidade” 0.00008 6.323288 5.1191373
PTQ3 "pandemia da doenca COVID -19.” 0.01162 34.272169 19.957014
PTQ4 "através de alimentos,” 0.94156 169.374324 10.164611
PTQ5 "acdes preventivas habituais” 0.62834 162.131818 16.783964
PTQ6 "colaboradores” 0.00692 163.114517 10.801659
PTQ7 "0s dois virus sdo muito diferentes” 0.03012 163.356272 12.067888
PTQ8 "antibidticos nao sao efetivos” 0.06301 613.835261 12.119408
PTQ9 "goticulas respiratorias.” 0.96316 833.484162 9.70346

PTQ10 "horas ou até dias,” 0.85417 166.543576 14.458093

Table 6.6: With Crawling Restrictions and ElasticSearch Indexes Enhancement - Application Results on
Portuguese QA Set

When it comes to the Portuguese results, observed on Table 6.6, they were even worse than the
previously obtained answers: we got a part of an URL now (PTQ1) and despite the high score PTQ4
and PTQ9 are wrong. Again, PTQ4 was again extracted from the question on the FAQ page. PTQ2 is
nowhere near the requested answer, with its meaning being far away from the question. On the other
hand, an improvement on the execution times was noted, despite an outlier with more than 800 seconds

of execution (PTQ9), that translated to a wrong answer at the same time.

6.3 Outcome Analysis

Comparing the results obtained with the three described iterations (No Tuning, With Crawling Restrictions

and With Crawling Restrictions and ElasticSearch Indexes Enhancement), we can conclude that:

 for the English QA Set, the answers obtained were very distinct between the first and the other two
iterations. This is due to the fact that the web pages that served as input were reduced to only the
reliable sources. However, the answers were better extracted in the first iteration, providing more
meaningful responses to the questions presented. On the other, those could be misleading since
they were retrieved from dubious websites, not considered trustworthy or having political interest
conflicts. Regarding the second iteration, only four answers could be used to respond to the query

in a correct or incomplete way. As for the third iteration, only two could be used.

69

CHAPTER 6. TESTING AND TUNING

When it comes to the BERT scores outputted, they were significantly higher than the ones obtained
in the second and third iterations. Nonetheless, this is merely a score on how BERT could retrieve
the answer from the context. A correct answer could have a lower score if BERT did not consider it
"easy"or direct to retrieve according to its training and fine-tuning. The execution times were also
greatly reduced, moving from the minimum of 43 seconds in the first iteration to circa 4 seconds

in the second and third iterations).

¢ for the Portuguese QA Set, the outcomes are similar to the ones obtained for the English QA Set,
with the answers gotten in the first iteration diverging largely from the two latter ones. The first
iteration produced the best results, but with the drawback of having not so trustworthy sources.
Also, only 3 answers were correct or incomplete, the others having a context far away from the
required answer. The fact that some answers were extracted from FAQ questions led to a number of
incorrect and misleading responses. The results worsen on the second and third iterations, having
in the last one part of an URL as the answer. The number of correct answers declined from 3 to

two in the second and third iterations.

Regarding the BERT scores, they went downhill between iterations, mirroring the difficulty of the
model in extracting the correct answer (in the third iteration, we got a BERT score of circa 0.000075
for the most relevant retrieved web page, which did not contain the answer in it). However, not
everything is bad. The execution times reduced significantly (from the minimum 49 seconds on the
first iteration to nearly 12 seconds in the second and circa 6 in the third), but it does not compensate

for the fact that the answers were not correct.

When it comes to the ElasticSearch scores, no relevant difference could be observed between the last
two iterations (the first one is not comparable given the fact that the documents indexed were different
collections with significant differences in volume).

In conclusion, without a better treatment of the web pages, the BERT model cannot successfully extract
or generate the correct answer. Also, the fact that running the model requires a windowing approach rather
than processing the whole context brings limitations like the breakage of context and the upper execution
times needed. To improve the results, we could also use another, more evolved, transformer model, or

even BERT with a better fine-tuning, with more resources and more epochs for instance.

70

Chapter

Conclusions

In this final chapter, the work is concluded, making an overview of what was done and accomplished and

describing the future work that could be done to improve it and obtain better results.

7.1 Conclusion

Chatbots can make a huge difference in the modern world. They can facilitate communication between
people and services, helping them answer all of their doubts or questions, and even allowing them to take
several actions for them, e.g. booking a flight. However, these chatbots need to be well trained and fine
tuned to each expected task. This dissertation focused on chatbots that could lighten the weight put on
Health Services in the situation of a new disease or health concern that could create a lot of doubts, even
more in a time where social media is used a mean to spread fake news and false information, leading
people to commit action that can put theirs lives at risk. The context used in this work was the COVID-19
pandemic, given its contemporaneity.

This dissertation described how an intelligent chatbot could be built using solely the information avail-
able on trustworthy sources of information. In the context of health services, these sources were the gov-
ernmental and organizational websites, like the Health departments of a country or of the United Nations
or World Health Organization, for example.

After analyzing the application that was aimed to be developed, it was established that such needed to
be composed by three main components: the web crawler (responsible for downloading the relevant pages
from the reliable sources), the text processor (which would parse the downloaded pages and store only the
textual information, discarding any metadata) and the chatbot itself (consisting in a Machine Model that
could extract the answer from the stores pages and a Ul that allowed users to interact with the application).

To understand what technologies and approaches should be followed, a systematic literature review

was conducted. With this procedure, an extensive state of the art collection was produced. However, none

71

CHAPTER 7. CONCLUSIONS

of the studies analyzed provided a solution to the problem that this work wanted to solve: the creation of
a chatbot that could answer questions based on raw data extracted from web pages. On the other hand,
from some studies, a solution could be orchestrated, by picking up the developments made and putting
them together in a single solution.

However, the aforementioned investigation had some limitations. Without having a clear and precise
search query, when there is not a deep understanding of the thematics being researched, a significant
number of studies was found. Many of these studies were deemed irrelevant after a deep analysis, making
it difficult to retain the focus. Also, with the Quality Assessment policies, some interesting studies could
be ignored and discarded.

The solution that was developed in this work consisted in, firstly, running a web crawler (the appli-
cation used was the ACHE crawler) that downloaded only the relevant pages concerning COVID-19 (this
was done using a URL-based filter with regular expressions). Then, a text processor application manages
the downloaded pages, by guaranteeing they were not processed multiple times, extracting the metadata
existent in the HTML pages and storing only the textual information. This information is stored in Elas-
ticSearch, a search engine application that would allow the chatbot to retrieve the most relevant pages
(already processed and cleansed) to a given question. At last, the chatbot mainly consisted of a fine-tuned
BERT model with the SQUAD dataset (with more than 100000 question-answer pairs), which was one of
the most cited models used to extract answers from context paragraphs. The BERT model was trained
two times: one with the original version of SQUAD dataset and another with a translated version of it to
Portuguese. Then, a Ul built with the React framework was developed to allow the interaction between the
users and the backend REST API built with FastAPI that made the connection to the trained BERT models.

The chosen crawler application, ACHE, proved to be exactly the tool we were looking for. It is extremely
configurable, allowing us to define the wanted methodology for web page filtering and the re-crawling time
intervals. Also, there is the option of downloading only pages from the domains defined in the URL start
set. This configuration guarantees that only reliable information is downloaded.

To process the downloaded web pages, a Python application was developed using the ‘html2text’
library. Before extracting the HTML metadata, the pages had to be decoded from Base64, which was the
encoding defined by the web crawler. Having the textual information extracted from the HTML documents,
the text processor module identifies its language swiftly using the ‘langdetect’ library and then sets the
correct index for that page.

The bridge between the processed data and the chatbot developed using ElasticSearch was extremely
performant, taking less than a second to find the most relevant pages for a given query. ElasticSearch
allows the creation of several indexes, with a customizable tokenizer and indexing method. In this work we
used mostly the default configurations in the first development phase, which had to be later reviewed and
reconfigured. For each index, the indexing date and the URL of the web page were stored, as well as the
processed text.

The process of fine-tuning BERT was the first major block that was faced in this work. The main fact that

led to this issue was the lack of hardware required to swiftly train the model. Since this work required the

72

CHAPTER 7. CONCLUSIONS

chatbot to work with both English and Portuguese, the pre-trained multilingual BERT model was chosen,
as it had already been pre-trained in multiple languages with Wikipedia data, allowing the addition of other
language support if required. However, this model has a significant dimension compared to the other
versions of BERT, which led to huge amounts of fine-tuning. As there was no physical hardware available
to train the models, this had to be done in a virtual machine in Google Cloud, which did not possess GPU.
So, the processing was entirely done with the CPU. This translated into 7 days of fine-tuning for the English
model and 4 days for the Portuguese model, each with 2 epochs only.

The second issue that delayed the development of the application was the lack of a correctly translated
version to Portuguese of the SQUAD 2.0 dataset. As a solution, a translation of the dataset’s version 1.1
was used, but it was not as complete as the latest version, leading to a loss of performance and accuracy
of the trained chatbot.

Lately, another issue has surged. BERT was not able to process the downloaded pages as most of
them exceeded the token limit defined by the model. Thus, a windowing approach had to be developed to
allow the indexed documents being processed by BERT. However, this created a very significant overhead
in its processing, increasing the response time and harming the application’s usability.

Although the application built served the purpose of having a running chatbot that was fed by reli-
able information downloaded from web pages, the answers that were obtained from the chatbot were far
from satisfactory. Some improvements were developed in order to obtain better results, like restricting the
downloaded pages to only the domains declared as trustworthy and improving the indexing and searching
algorithm of ElasticSearch by removing stop words and changing the tokenizer type, but still the results
were far from the expected.

In conclusion, an application that provides answers to questions using information extracted from
reliable sources was successfully built. On the other hand, these answers were either incomplete or wrong
most of the time, misleading the users, which was the opposite purpose of this work. To overcome this
situation, more developments had to be made, but these are not implemented in this work. Having made
those improvements, the chatbot tool described and developed in this dissertation could be seamlessly

used to reduce the question-answering congestion on Health Services.

7.2 Future Work

In order to improve the outcomes obtained with the developed chatbot, there is a set of changes that could
be developed, each aimed to fix a given issue. These are discussed in this section.

When testing the application, one of the major drawbacks was the significant amount of time it took
to answer a question. This is due to the windowing approach developed to allow BERT processing the
web pages as its context paragraph. To avoid this approach, another, more performant, transformer model
could be used. There are already transformer models that allow bigger text inputs as context paragraphs,

such as Longformer (Beltagy et al., 2020) or CogLTX (Ding et al., 2020). However, these would probably

73

CHAPTER 7. CONCLUSIONS

require pre-training on multi-lingual textual sources, such as the used BERT model which was pre-trained
with Wikipedia data from multiple languages.

If the processing time was not an issue and the focus was rather on getting correct answers, two
implementations could be conducted to increase the model’s performance. First, the BERT model could
be better fine-tuned, with more epochs for both languages and with a translated version of SQUAD 2.0 for
the Portuguese model. Also, a combination of other BERT-derivative models with better accuracy could be
used, such as described in SQUAD’s homepage leaderboard (SQuUAD 2.0).

Disregarding a model change, the used BERT models could still be an option. However, since it is
not being able to extract the answer correctly due to it being confused by FAQ pages for example, where
the model is extracting the answer from the question itself, some refinements could be done on the text
processor component of the application. The questions from FAQ pages could be removed, thus eliminating
the cases where the chatbot is extracting the answer from the question. Another modification that could be
introduced was text summarization. This procedure would both reduce the processing times of the BERT
model (if the summarized texts did not exceed BERT's token limits) but also remove extra information that
may be "confusing”the chatbot.

With the proposed implementation refinements, we believe the chatbot presented in this work could
improve significantly not only the extracted answers but also the response times of the application, elimi-
nating thus the drawbacks aforementioned.

74

Bibliography

Adamopoulou, E. and L. Moussiades (2020). “Chatbots: History, technology, and applications.” Machine
Learning with Applications 2, p. 100006. issn: 2666-8270.

Aggarwal, K. (2019). “An efficient focused web crawling approach.” Software Engineering. Springer, pp. 131-
138.

Ahmadi-Abkenari, F. and A. Selamat (2012). “An architecture for a focused trend parallel Web crawler with
the application of clickstream analysis.” Information Sciences 184(1), pp. 266-281.

Alderratia, N. and M. Elsheh (2019). “Using Web Pages Dynamicity to Prioritise Web Crawling.” Proceedings
of the 2019 2nd International Conference on Machine Learning and Machine Intelligence, pp. 40-44.

Almuhareb, A. (2016). “Arabic poetry focused crawling using SVM and keywords.” 2016 4th Saudi Inter-
national Conference on Information Technology (Big Data Analysis)(KACSTIT). IEEE, pp. 1-4.

Amalia, A., D. Gunawan, A. Najwan, and F. Meirina (2016). “Focused crawler for the acquisition of health
articles.” 2016 International Conference on Data and Software Engineering (ICoDSE). |EEE, pp. 1-6.

Amara, S., J. Macedo, F. Bendella, and A. Santos (2016). “Group formation in mobile computer supported
collaborative learning contexts: A systematic literature review.” Journal of Educational Technology &
Society 19(2), pp. 258-273.

Amrin, A., C. Xia, and S. Dai (Jan. 2015). “Focused Web Crawling Algorithms.” Journal of Computers 10,
pp. 245-251.

Andrenucci, A. and E. Sneiders (2005). “Automated question answering: Review of the main approaches.”
Third International Conference on Information Technology and Applications (ICITA'05). Vol. 1. IEEE,
pp. 514-519.

Arasu, A., J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan (2001). “Searching the web.” ACM
Transactions on Internet Technology (TOIT) 1(1), pp. 2-43.

Badampudi, D., C. Wohlin, and K. Petersen (2015). “Experiences from using snowballing and database
searches in systematic literature studies.” Proceedings of the 19th International Conference on Evalu-
ation and Assessment in Software Engineering, pp. 1-10.

Badawi, M., A. Mohamed, A. Hussein, and M. Gheith (2013). “Maintaining the search engine freshness
using mobile agent.” Egyptian Informatics Journal 14(1), pp. 27-36.

Balaji, S and S Sarumathi (2012). “TOPCRAWL: Community mining in web search engines with empha-
size on topical crawling.” International Conference on Pattern Recognition, Informatics and Medical
Engineering (PRIME-2012). |EEE, pp. 20-24.

75

BIBLIOGRAPHY

Barbosa, A. P. M., J. Macedo, and O. Craveiro (2020). “Chatbot Development to Assist Patients In Health
Care Services.” Relatorio Técnico no Departamento de Informatica da Universidade do Minho.

Bavaresco, R., D. Silveira, E. Reis, J. Barbosa, R. Righi, C. Costa, R. Antunes, M. Gomes, C. Gatti, M.
Vanzin, S. C. Junior, E. Silva, and C. Moreira (2020). “Conversational agents in business: A systematic
literature review and future research directions.” Computer Science Review 36, p. 100239. issn: 1574-
0137.

Baykan, E., M. Henzinger, L. Marian, and |. Weber (2011). “A comprehensive study of features and algo-
rithms for URL-based topic classification.” ACM Transactions on the Web (TWEB) 5(3), pp. 1-29.
Bedi, P., A. Thukral, and H. Banati (2013). “Focused crawling of tagged web resources using ontology.”

Computers & Electrical Engineering 39(2), pp. 613-628.

Bedi, P., A. Thukral, H. Banati, A. Behl, and V. Mendiratta (2012). “A multi-threaded semantic focused
crawler.” Journal of Computer Science and Technology 27(6), pp. 1233-1242.

Beltagy, I., M. E. Peters, and A. Cohan (2020). “Longformer: The long-document transformer.” arXiv
preprint arXiv:2004.05150.

Boldi, P., A. Marino, M. Santini, and S. Vigna (2018). “BUbING: Massive crawling for the masses.” ACM
Transactions on the Web (TWEB) 12(2), pp. 1-26.

Bonaccorsi, A. and C. Rossi (2003). “Why open source software can succeed.” Research policy 32(7),
pp. 1243-1258.

Brants, T., F. Chen, and |. Tsochantaridis (2002). “Topic-based document segmentation with probabilistic
latent semantic analysis.” Proceedings of the eleventh international conference on Information and
knowledge management, pp. 211-218.

Brennen, J. S., F. Simon, P. N. Howard, and R. K. Nielsen (2020). “Types, sources, and claims of COVID-19
misinformation.” Reuters Institute 7, pp. 3-1.

Building a QA system with Bert on Wikipedia. url: https://qa.fastforwardlabs.com/pytorch/h
ugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_wit
h_QA.html#Using-a-pre-fine-tuned-model-from-the-Hugging-Face-repository
(visited on 09/15/2021).

Carver, P. E. and J. Phillips (2020). “Novel Coronavirus (COVID-19): What You Need to Know.” Workplace
Health & Safety 68(5), pp. 250-250.

Chakrabarti, C. and G. F. Luger (2015). “Artificial conversations for customer service chatter bots: Architec-
ture, algorithms, and evaluation metrics.” Expert Systems with Applications 42(20), pp. 6878-6897.
issn: 0957-4174.

Chandra, Y. W. and S. Suyanto (2019). “Indonesian Chatbot of University Admission Using a Question

|”

Answering System Based on Sequence-to-Sequence Model.” The 4th International Conference on
Computer Science and Computational Intelligence (ICCSCI 2019) : Enabling Collaboration to Esca-

late Impact of Research Results for Society 157, pp. 367-374. issn: 1877-0509.

76

https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#Using-a-pre-fine-tuned-model-from-the-Hugging-Face-repository
https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#Using-a-pre-fine-tuned-model-from-the-Hugging-Face-repository
https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#Using-a-pre-fine-tuned-model-from-the-Hugging-Face-repository

BIBLIOGRAPHY

Chen, D., F. Liying, Y. Jianzhuo, and B. Shi (2010). “Semantic focused crawler based on Q-learning and
Bayes classifier.” 2010 3rd International Conference on Computer Science and Information Technology.
Vol. 8. IEEE, pp. 420-423.

Chen, H., X. Liu, D. Yin, and J. Tang (2017). “A Survey on Dialogue Systems: Recent Advances and New
Frontiers.” SIGKDD Explor. Newsl. 19(2), pp. 25-35. issn: 1931-0145.

Chou, T--L. and Y.-L. Hsueh (2019). “A Task-oriented Chatbot Based on LSTM and Reinforcement Learning
- NLPIR 2019: 2019 3RD INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING
AND INFORMATION RETRIEVAL.” 3rd International Conference on Natural Language Processing and
Information Retrieval (NLPIR), Tokushima Univ, Tokushima, JAPAN, JUN 28-30, 2019, 87-91.

Chowanda, A. and A. D. Chowanda (2018). “Generative Indonesian Conversation Model using Recurrent
Neural Network with Attention Mechanism.” The 3rd International Conference on Computer Science
and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a
Better Life 135, pp. 433-440. issn: 1877-0509.

Cinelli, M., W. Quattrociocchi, A. Galeazzi, C. M. Valensise, E. Brugnoli, A. L. Schmidt, P. Zola, F. Zollo,
and A. Scala (2020). “The covid-19 social media infodemic.” arXiv preprint arXiv:2003.05004.

Coronavirus disease (COVID-19) FAQs. url: https://www.un.org/en/coronavirus/covid-19-faqs
(visited on 10/10/2021).

Dahiwale, P., M. Raghuwanshi, and L. Malik (2014). “Design of improved focused web crawler by ana-
lyzing semantic nature of URL and anchor text.” 2014 9th International Conference on Industrial and
Information Systems (ICIIS). IEEE, pp. 1-6.

Dale, R. (2016). “The return of the chatbots.” Natural Language Engineering 22(5), pp. 811-817.

Day, M.-Y., J.-T. Lin, and Y.-C. Chen (2018). “Artificial Intelligence for Conversational Robo-Advisor.” ASONAM
"18, pp. 1057-1064. issn: 978-1-5386-6051-5.

Deng, S. (2020). “Research on the Focused Crawler of Mineral Intelligence Service Based on Semantic
Similarity.” Journal of Physics: Conference Series. Vol. 1575. 1. IOP Publishing, p. 012142.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). “Bert: Pre-training of deep bidirectional trans-
formers for language understanding.” arXiv preprint arXiv:1810.04805.

Ding, M., C. Zhou, H. Yang, and J. Tang (2020). “Cogltx: Applying bert to long texts.” Advances in Neural
Information Processing Systems 33, pp. 12792-12804.

Dong, H., F. K. Hussain, and E. Chang (2008). “A survey in traditional information retrieval models.” 2008
2nd IEEE International Conference on Digital Ecosystems and Technologies. IEEE, pp. 397-402.

Du, Y., W. Liu, X. Lv, and G. Peng (2015). “An improved focused crawler based on semantic similarity
vector space model.” Applied Soft Computing 36, pp. 392-407.

Du, Y., Q. Pen, and Z. Gao (2013). “A topic-specific crawling strategy based on semantics similarity.” Data
& Knowledge Engineering 88, pp. 75-93.

Feng, S., L. Zhang, Y. Xiong, and C. Yao (2010). “Focused crawling using navigational rank.” Proceedings of

the 19th ACM international conference on Information and knowledge management, pp. 1513-1516.

77

https://www.un.org/en/coronavirus/covid-19-faqs

BIBLIOGRAPHY

Flejter, D., K. Wieloch, and W. Abramowicz (2007). “Unsupervised methods of topical text segmentation
for polish.” Proceedings of the Workshop on Balto-Slavonic Natural Language Processing, pp. 51-58.

Ganguly, B. and D. Raich (2014). “Performance optimization of focused web crawling using content block
segmentation.” 2014 International Conference on Electronic Systems, Signal Processing and Comput-
ing Technologies. IEEE, pp. 365-370.

Gao, C. and J. Ren (2019). “A topic-driven language model for learning to generate diverse sentences.”
Neurocomputing 333, pp. 374-380. issn: 0925-2312.

Gaur, R. and D. K. Sharma (2014). “Review of ontology based focused crawling approaches.” 2014 Inter-
national Conference of Soft Computing Techniques for Engineering and Technology (ICSCTET). IEEE,
pp. 1-4.

Goyal, N., R. Bhatia, and M. Kumar (2016). “A genetic algorithm based focused Web crawler for automatic
webpage classification.” 3rd International Conference on Electrical, Electronics, Engineering Trends,
Communication, Optimization and Sciences (EEECOS 2016). IET, pp. 1-6.

Greengrass, E. (2000). “Information retrieval: A survey.”

Gupta, A. and P. Anand (2015). “Focused web crawlers and its approaches.” 2015 International Conference
on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). IEEE, pp. 619-
622.

Gupta, S. (2016). “Design of focused crawler based on feature extraction, classification and term extrac-
tion.” 2016 3rd International Conference on Computing for Sustainable Global Development (INDIA-
Com). |EEE, pp. 3430-3434.

Han, M., P-H. Wuillemin, and P. Senellart (2018). “Focused crawling through reinforcement learning.”
International Conference on Web Engineering. Springer, pp. 261-278.

Hao, H.-W., C.-X. Mu, X.-C. Yin, S. Li, and Z.-B. Wang (2011). “An improved topic relevance algorithm
for focused crawling.” 2011 IEEE International Conference on Systems, Man, and Cybernetics. |EEE,
pp. 850-855.

Hassan, T., C. Cruz, and A. Bertaux (2017). “Ontology-based approach for unsupervised and adaptive
focused crawling.” Proceedings of The International Workshop on Semantic Big Data, pp. 1-6.

Hernandez, I., C. R. Rivero, D. Ruiz, and R. Corchuelo (2016). “CALA: ClAssifying Links Automatically
based on their URL.” Journal of Systems and Software 115, pp. 130-143.

Horev, R. (2018). BERT Explained: State of the art language model for NLP. url: https://towardsdat
ascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21la
9b6270 (visited on 10/10/2021).

Huang, X., F. Peng, D. Schuurmans, N. Cercone, and S. E. Robertson (2003). “Applying machine learning
to text segmentation for information retrieval.” Information Retrieval 6(3-4), pp. 333-362.

Hussain, S., 0. Ameri Sianaki, and N. Ababneh (2019). “A Survey on Conversational Agents/Chatbots
Classification and Design Techniques.” Advances in Intelligent Systems and Computing 927. Cited By
:16 Export Date: 21 March 2021, pp. 946-956.

78

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

BIBLIOGRAPHY

Jaganathan, P and T Karthikeyan (2015). “Highly Efficient Architecture for Scalable Focused Crawling
Using Incremental Parallel Web Crawler.” Journal of Computer Science 11(1), p. 120.

Jalali, S. and C. Wohlin (2012). “Systematic literature studies: database searches vs. backward snow-
balling.” Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineer-
ing and measurement. |EEE, pp. 29-38.

Jian, F., C. Jing-zhou, and C. Lei (2014). “Design and Implementation of A Focused Crawler—TargetCrawler.”
International Journal of Grid and Distributed Computing 7(4), pp. 149-156.

Joe Dhanith, P. and B Surendiran (2019). “An ontology learning based approach for focused web crawling
using combined normalized pointwise mutual information and Resnik algorithm.” International Journal
of Computers and Applications, pp. 1-7.

Keele, S. et al. (2007). Guidelines for performing systematic literature reviews in software engineering.
Tech. rep. Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

Khalil, S. and M. Fakir (2017). “RCrawler: An R package for parallel web crawling and scraping.” SoftwareX
6, pp. 98-106.

Koster, M. (1994). A standard for robot exclusion. NEXOR.

Kulkarni, T., M. Kabra, and R. Shankarmani (2019). “User Profiling Based Recommendation System for
E-Learning.” 2019 IEEE 16th India Council International Conference (INDICON). IEEE, pp. 1-4.

Kumar, M., R. Bhatia, and D. Rattan (2017). “A survey of Web crawlers for information retrieval.” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7(6), e1218.

Kumar, M., A. Bindal, R. Gautam, and R. Bhatia (2018). “Keyword query based focused Web crawler.”
Procedia Computer Science 125, pp. 584-590.

Kumar, M. and R. Vig (2013). “Online Library Content Generation Using Focused Crawling Based Upon
Meta Tags and Tf-Idf.” 2013 International Symposium on Computational and Business Intelligence.
IEEE, pp. 158-161.

LI, C.x., Y.-r. SU, R.4. WANG, Y.-y. WEI, and H. Huang (2012). “Structured AJAX data extraction based on
agricultural ontology.” Journal of Integrative Agriculture 11(5), pp. 784-791.

Li, L., C. Li, and D. Ji (2021). “Deep context modeling for multi-turn response selection in dialogue sys-
tems.” Information Processing Management 58(1), p. 102415. issn: 0306-4573.

Li, X., M. Xing, and J. Zhang (2011). “A comprehensive prediction method of visit priority for focused
crawler.” 2011 2nd International Symposium on Intelligence Information Processing and Trusted Com-
puting. IEEE, pp. 27-30.

Liu, H. and E. Milios (2012). “Probabilistic models for focused web crawling.” Computational Intelligence
28(3), pp. 289-328.

Liu, L. and T. Peng (2014). “Clustering-based topical Web crawling using CFu-tree guided by link-context.”
Frontiers of Computer Science 8(4), pp. 581-595.

Liu, W. and Y. Du (2014). “A novel focused crawler based on cell-like membrane computing optimization

algorithm.” Neurocomputing 123, pp. 266-280.

79

BIBLIOGRAPHY

Lotfi, M., M. R. Hamblin, and N. Rezaei (2020). “COVID-19: Transmission, prevention, and potential ther-
apeutic opportunities.” Clinica chimica acta.

Lu, H., D. Zhan, L. Zhou, and D. He (2016). “An improved focused crawler: using web page classification
and link priority evaluation.” Mathematical Problems in Engineering 2016.

Lucene’s Practical Scoring Function. url: https://www.elastic.co/guide/en/elasticsearch/gu
ide/master/practical-scoring-function.html (visited on 11/18/2021).

Luo, J., Y. L. Lu, and C. X. Lin (2014). “Research on Content Analysis algorithm of Focused Crawler based
on LBTF-IDF." Advanced Materials Research. Vol. 971. Trans Tech Publ, pp. 1722-1725.

Lutkevich, B. (2020). What is Bert (language model) and how does it work? url: https://searchenter
priseati.techtarget.com/definition/BERT-language-model (visited on 10/10/2021).
Mali, S, S Ninoriya, and B. Meshram (2011). “Freshness tuning in focused crawler.” Proceedings of the

International Conference & Workshop on Emerging Trends in Technology, pp. 548-552.

Mali, S. and B. Meshram (2011). “Focused web crawler with revisit policy.” Proceedings of the International
Conference & Workshop on Emerging Trends in Technology, pp. 474-479.

Mallawaarachchi, V., L. Meegahapola, R. Madhushanka, E. Heshan, D. Meedeniya, and S. Jayarathna
(2020). “Change Detection and Notification of Web Pages: A Survey.” ACM Computing Surveys (CSUR)
53(1), pp. 1-35.

Miner, G., J. Elder IV, A. Fast, T. Hill, R. Nisbet, and D. Delen (2012). Practical text mining and statis-
tical analysis for non-structured text data applications. Chap. Text Classification and Categorization,
pp. 881-892.

Minhas, G. and M. Kumar (2013). “LSI based relevance computation for topical web crawler.” Journal of
Emerging Technologies in Web Intelligence 5(4), pp. 401-406.

Mironczuk, M. M. and J. Protasiewicz (2018). “A recent overview of the state-of-the-art elements of text
classification.” Expert Systems with Applications 106, pp. 36-54.

Misra, H., F. Yvon, O. Cappé, and J. Jose (2011). “Text segmentation: A topic modeling perspective.”
Information Processing & Management 47(4), pp. 528-544.

Mor, J., N. Kumar, and D. Rai (2019). “An Improved Crawler Based on Efficient Ranking Algorithm.”
International Journal of Advanced Trends in Computer Science and Engineering 8(2), pp. 119-125.

Naeem, S. B. and R. Bhatti (2020). “The Covid-19 ‘infodemic’: a new front for information professionals.”
Health Information & Libraries Journal.

Naghibi, M. and A. T. Rahmani (2012). “Focused crawling using vision-based page segmentation.” Inter-
national Conference on Information Systems, Technology and Management. Springer, pp. 1-12.
Nguyen, T. and M. Shcherbakov (2018). “A Neural Network based Vietnamese Chatbot.” 2018 International

Conference on System Modeling Advancement in Research Trends (SMART), pp. 147-149. issn: VO

Nimavat, K. and T. Champaneria (2017). “Chatbots: an overview types, architecture, tools and future

possibilities.” Int. J. Sci. Res. Dev 5(7), pp. 1019-1024.

80

https://www.elastic.co/guide/en/elasticsearch/guide/master/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/master/practical-scoring-function.html
https://searchenterpriseai.techtarget.com/definition/BERT-language-model
https://searchenterpriseai.techtarget.com/definition/BERT-language-model

BIBLIOGRAPHY

Ning, H., H. Wu, Z. He, and Y. Tan (2011). “Focused crawler URL analysis model based on improved genetic
algorithm.” 2011 IEEE International Conference on Mechatronics and Automation. |EEE, pp. 2159~
2164,

Nithuna, Sand C. Laseena (2020). “Review on Implementation Techniques of Chatbot.” 2020 International
Conference on Communication and Signal Processing (ICCSP). IEEE, pp. 0157-0161.

Nuruzzaman, M. and O. K. Hussain (2018). “A survey on chatbot implementation in customer service
industry through deep neural networks.” 2018 IEEE 15th International Conference on e-Business En-
gineering (ICEBE). |\EEE, pp. 54-61.

Nuruzzaman, M. and O. K. Hussain (2019). “Identifying Facts for Chatbot’s Question Answering via Se-
guence Labelling Using Recurrent Neural Networks.” ACM TURC '19. issn: 978-1-4503-7158-2.

Nuruzzaman, M. and O. K. Hussain (2020). “IntelliBot: A Dialogue-based chatbot for the insurance indus-
try.” Knowledge-Based Systems 196, p. 105810. issn: 0950-7051.

Odhiambo, J. and J. Okungu (Oct. 2020). “Top 15 Covid-19 Research Topics and Areas.” preprint on
webpage at https://www.researchgate.net/publication/343380794_Top_15_Covid-19
_Research_Topics_and_Areas.

Onan, A. (2016). “Classifier and feature set ensembles for web page classification.” Journal of Information
Science 42(2), pp. 150-165.

Osman, D. J. and J. L. Yearwood (2007). “Opinion search in web logs.” Proceedings of the eighteenth
conference on Australasian database-Volume 63, pp. 133-139.

Ozel, S. A. (2011). “A web page classification system based on a genetic algorithm using tagged-terms as
features.” Expert Systems with Applications 38(4), pp. 3407-3415.

Pak, I. and P. L. Teh (2018). “Text segmentation techniques: a critical review.” Innovative Computing,
Optimization and Its Applications. Springer, pp. 167-181.

Parvez, M. S., K. S. A. Tasneem, S. S. Rajendra, and K. R. Bodke (2018). “Analysis Of Different Web
Data Extraction Techniques.” 2018 International Conference on Smart City and Emerging Technology
(ICSCET), pp. 1-7.

Pasari, R., V. Chaudhari, A. Borkar, and A. Joshi (2016). “Parallelization of vertical search engine using
Hadoop and MapReduce.” Proceedings of the International Conference on Advances in Information
Communication Technology & Computing, pp. 1-5.

Patel, A. and N. Schmidt (2011). “Application of structured document parsing to focused web crawling.”
Computer Standards & Interfaces 33(3), pp. 325-331.

Pawar, N., K Rajeswari, and A. Joshi (2016). “Implementation of an efficient web crawler to search medici-
nal plants and relevant diseases.” 2016 International Conference on Computing Communication Con-
trol and automation (ICCUBEA). IEEE, pp. 1-4.

Peng, T. and L. Liu (2013). “Focused crawling enhanced by CBP-SLC.” Knowledge-Based Systems 51,
pp. 15-26.

Pham, K., A. Santos, and J. Freire (2018). “Learning to Discover Domain-Specific Web Content.” Proceed-

ings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 432-440.

81

https://www.researchgate.net/publication/343380794_Top_15_Covid-19_Research_Topics_and_Areas
https://www.researchgate.net/publication/343380794_Top_15_Covid-19_Research_Topics_and_Areas

BIBLIOGRAPHY

Pirkola, A. and T. Talvensaari (2010). “A topic-specific Web search system focusing on quality pages.”
International Conference on Theory and Practice of Digital Libraries. Springer, pp. 490-493.

Prassanna, J., K. Khadar Nawas, J. Christy Jackson, R. Prabakaran, and S. Ramanathan (2020). “Towards
building a neural conversation chatbot through seq2seq model.” International Journal of Scientific and
Technology Research 9(3). Export Date: 21 March 2021, pp. 1219-1222.

Qiu, J., Q. Du, W. Wang, K. Yin, C. Lin, and C. Qian (2017). “Topic Crawler for OpenStack QA Knowl-
edge Base.” 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). IEEE, pp. 309-317.

Rajalakshmi, R and C. Aravindan (2013). “Web page classification using n-gram based URL features.”
2013 fifth international conference on advanced computing (ICoAC). IEEE, pp. 15-21.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang (Nov. 2016). “SQuAD: 100,000+ Questions for Machine
Comprehension of Text.” Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics: Austin, Texas, pp. 2383-2392.

Rheinlander, A., M. Lehmann, A. Kunkel, J. Meier, and U. Leser (2016). “Potential and pitfalls of domain-
specific information extraction at web scale.” Proceedings of the 2016 international conference on
management of data, pp. 759-771.

Richardson, L. (2017). “Beautiful Soup Documentation.[online].” url: https://www.crummy.com/sof
tware/BeautifulSoup/bs4/doc (visited on 07/05/2021).

Rochwerg, B., R. Parke, S. Murthy, S. M. Fernando, J. P. Leigh, J. Marshall, N. K. Adhikari, K. Fiest, R.
Fowler, F. Lamontagne, et al. (2020). “Misinformation during the coronavirus disease 2019 outbreak:
How knowledge emerges from noise.” Critical Care Explorations 2(4).

Saini, C. and V. Arora (2016). “Information retrieval in web crawling: A survey.” 2016 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI). |IEEE, pp. 2635-2643.

Saleh, A. I., A. E. Abulwafa, and M. F. Al Rahmawy (2017). “A web page distillation strategy for effi-
cient focused crawling based on optimized Naive bayes (ONB) classifier.” Applied Soft Computing 53,
pp. 181-204.

Santos, A., B. Pasini, and J. Freire (2016). “A first study on temporal dynamics of topics on the web.”
Proceedings of the 25th International Conference Companion on World Wide Web, pp. 849-854.
Scacchi, W. (2007). “Free/open source software development.” Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, pp. 459-468.

Schwartz, B. (2020). Google: BERT now used on almost every English query. url: https://searcheng
ineland.com/google-bert-used-on-almost-every-english-query-342193 (visited on
10/10/2021).

Selamat, A. and F. Ahmadi-Abkenari (2011). “Architecture for a parallel focused crawler for clickstream
analysis.” Asian Conference on Intelligent Information and Database Systems. Springer, pp. 27-35.

Seyfi, A. and A. Patel (2016). “A focused crawler combinatory link and content model based on T-Graph
principles.” Computer Standards & Interfaces 43, pp. 1-11.

82

https://www.crummy.com/software/BeautifulSoup/bs4/doc
https://www.crummy.com/software/BeautifulSoup/bs4/doc
https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193
https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193

BIBLIOGRAPHY

Seyfi, A., A. Patel, and J. C. Junior (2016). “Empirical evaluation of the link and content-based focused
Treasure-Crawler.” Computer Standards & Interfaces 44, pp. 54-62.

Shahi, G. K. and D. Nandini (2020). “FakeCovid-A Multilingual Cross-domain Fact Check News Dataset
for COVID-19." arXiv preprint arXiv:2006.11343.

Shang, S., H. Wu, and J. Ma (2019). “An Improved Focused Web Crawler based on Hybrid Similarity.”
International Journal of Performability Engineering(10).

Shrivastava, G. K., P. Kaushik, and R. K. Pateriya (2019). “Comprehensive Analysis of Web Page Classi-
fier for Fsocused Crawler.” International Journal of Innovative Technology and Exploring Engineering
Regular Issue 8(9), pp. 57-65.

Singh, N., H. Sandhawalia, N. Monet, H. Poirier, and J.-M. Coursimault (2012). “Large scale url-based clas-
sification using online incremental learning.” 2012 11th International Conference on Machine Learning
and Applications. Vol. 2. IEEE, pp. 402-409.

Sleiman, H. A. and R. Corchuelo (2012). “A survey on region extractors from web documents.” IEEE
Transactions on Knowledge and Data Engineering 25(9), pp. 1960-198]1.

SQUAD 2.0. url: https://rajpurkar.github.i0/SQuAD-explorer/ (visited on 12/03/2021).

Stop token filter: Elasticsearch Guide [7.15]. url: https://www.elastic.co/qguide/en/elasticsea
rch/reference/current/analysis-stop-tokenfilter.html#analysis-stop-tokenfil
ter-stop-words-by-lang (visited on 11/18/2021).

Suebchua, T., B. Manaskasemsak, A. Rungsawang, and H. Yamana (2018). “Efficient topical focused
crawling through neighborhood feature.” New Generation Computing 36(2), pp. 95-118.

Szpektor, I., D. Cohen, G. Elidan, M. Fink, A. Hassidim, O. Keller, S. Kulkarni, E. Ofek, S. Pudinsky, A. Re-
vach, S. Salant, and Y. Matias (2020). “Dynamic Composition for Conversational Domain Exploration.”
WWW 20, pp. 872-883. issn: 978-1-4503-7023-3.

Tan, Q. and P. Mitra (2010). “Clustering-based incremental web crawling.” ACM Transactions on Informa-
tion Systems (TOIS) 28(4), pp. 1-27.

Taylan, D., M. Poyraz, S. Akyokus, and M. C. Ganiz (2011). “Intelligent focused crawler: Learning which
links to crawl.” 2011 International Symposium on Innovations in Intelligent Systems and Applications.
IEEE, pp. 504-508.

Torkestani, J. A. (2012). “An adaptive focused web crawling algorithm based on learning automata.” Ap-
plied Intelligence 37(4), pp. 586-601.

Uemura, Y., T. ltokawa, T. Kitasuka, and M. Aritsugi (2012). “An effectively focused crawling system.”
Innovations in Intelligent Machines—2. Springer, pp. 61-76.

Vamsi, G. K., A. Rasool, and G. Hajela (2020). “Chatbot: A Deep Neural Network Based Human to Ma-
chine Conversation Model.” 2020 11th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pp. 1-7. issn: VO -,

Velavan, T. P. and C. G. Meyer (2020). “The COVID-19 epidemic.” Tropical medicine & international health
25(3), p. 278.

83

https://rajpurkar.github.io/SQuAD-explorer/
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-tokenfilter.html#analysis-stop-tokenfilter-stop-words-by-lang
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-tokenfilter.html#analysis-stop-tokenfilter-stop-words-by-lang
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-tokenfilter.html#analysis-stop-tokenfilter-stop-words-by-lang

BIBLIOGRAPHY

Venu, S. H., V. Mohan, K. Urkalan, and T. Geetha (2016). “Unsupervised domain ontology learning from
text.” International Conference on Mining Intelligence and Knowledge Exploration. Springer, pp. 132-
143.

Wai, H. P. M., P. P. Tar, and P. Thwe (2018). “Ontology Based Web Page Classification System by Us-
ing Enhanced C4. 5 and Naive Bayesian Classifiers.” 2018 International Conference on Intelligent
Informatics and Biomedical Sciences (ICIIBMS). Vol. 3. IEEE, pp. 286-291.

Wang, W., X. Chen, Y. Zou, H. Wang, and Z. Dai (2010). “A focused crawler based on naive bayes classifier.”
2010 Third International Symposium on Intelligent Information Technology and Security Informatics.
IEEE, pp. 517-521.

Wang, Y., Z. Hong, and M. Shi (2018). “Research on Ida model algorithm of news-oriented web crawler.”
2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). |EEE,
pp. 748-753.

Waszak, P. M., W. Kasprzycka-Waszak, and A. Kubanek (2018). “The spread of medical fake news in social
media-the pilot quantitative study.” Health policy and technology 7(2), pp. 115-118.

WHO Coronavirus (COVID-19) Dashboard. url: https://covid19.who. int/ (visited on 03/01/2020).

Wikipedia (2021). F-score — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index
.php?title=F-score&oldid=1030531397. (Visited on 10/24/2021).

Wonhlin, C. (2014). “Guidelines for snowballing in systematic literature studies and a replication in soft-
ware engineering.” Proceedings of the 18th international conference on evaluation and assessment in
software engineering, pp. 1-10.

Xie, D. X. and W. F. Xia (2014). “Design and implementation of the topic-focused crawler based on scrapy.”
advanced materials research. Vol. 850. Trans Tech Publ, pp. 487-490.

Xu, G., P. Jiang, C. Ma, M. Daneshmand, and S. Xie (2019). “VRPSOFC: a framework for focused crawler
using mutation improving particle swarm optimization algorithm.” Proceedings of the ACM Turing
Celebration Conference-China, pp. 1-7.

Yan, W. and L. Pan (2018). “Designing focused crawler based on improved genetic algorithm.” 2018 Tenth
International Conference on Advanced Computational Intelligence (ICACI). IEEE, pp. 319-323.

Yang, S.-Y. (2010). “OntoCrawler: A focused crawler with ontology-supported website models for informa-
tion agents.” Expert Systems with Applications 37(7), pp. 5381-5389.

Yang, S.-Y. and C.-L. Hsu (2010). “An ontology-supported web focused-crawler for Java programs.” 2010
3rd IEEE International Conference on Ubi-Media Computing. IEEE, pp. 266-271.

Yin, Z., K-H. Chang, and R. Zhang (2017). “DeepProbe: Information directed sequence understanding
and chatbot design via recurrent neural networks.” Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Cited By :15 Export Date: 21 March 2021,
pp. 2131-2139.

Yu, Y.-B., S.-L. Huang, N. Tashi, H. Zhang, F. Lei, and L.-Y. Wu (2018). “A survey about algorithms utilized
by focused web crawler.” Journal of Electronic Science and Technology 16(2), pp. 129-138.

84

https://covid19.who.int/
http://en.wikipedia.org/w/index.php?title=F-score&oldid=1030531397
http://en.wikipedia.org/w/index.php?title=F-score&oldid=1030531397

BIBLIOGRAPHY

Yuki, K., M. Fujiogi, and S. Koutsogiannaki (2020). “COVID-19 pathophysiology: A review.” Clinical Im-
munology 215, p. 108427. issn: 1521-6616.

Zhang, H. and J. Lu (2010). “SCTWC: An online semi-supervised clustering approach to topical web
crawlers.” Applied Soft Computing 10(2), pp. 490-495.

Zhang, R., J. Guo, Y. Fan, Y. Lan, and X. Cheng (2020). “Dual-Factor Generation Model for Conversation.”
ACM Trans. Inf. Syst. 38(3). issn: 1046-8188.

Zhang, Y., T. Xu, and Y. Dai (2019). “Research on Chatbots for Open Domain: Using BiLSTM and Sequence
to Sequence.” AICS 2019, pp. 145-149. issn; 978-1-4503-7150-6.

Zheng, S. (2011). “Genetic and ant algorithms based focused crawler design.” 2011 Second International
Conference on Innovations in Bio-inspired Computing and Applications. |EEE, pp. 374-378.

Zheng, Z. and D. Qian (2016). “An improved focused crawler based on text keyword extraction.” 2016 5th
International Conference on Computer Science and Network Technology (ICCSNT). IEEE, pp. 386-
390.

85

Appendix

Systematic Literature Review: Quality Assessment

The following tables (ordered by Score and then alphabetically by Study) represent the Quality Assessment

results performed on the selected studies within the SLR conducted.

Table A.1: Quality Assessment: Web Crawling

Study Q01 02 03 04 Q5 Score

Du et al. (2015)

Hernandez et al. (2016)
Mallawaarachchi et al. (2020)
Peng and Liu (2013)

Pham et al. (2018)

Saleh et al. (2017)

Santos et al. (2016)

Tan and Mitra (2010)
Ahmadi-Abkenari and Selamat (2012)
Baykan et al. (2011)

Feng et al. (2010)

N NN NN DD DN DN DN
A OO0 OO0 OO O O O

=
o1

5.5
5.5

=
o1

Kumar et al. (2017) 1.5 5.5
Liu and Du (2014) 1.5 5.5
Seyfi et al. (2016) 1.5 55
Seyfi and Patel (2016) 1.5 5.5
Sleiman and Corchuelo (2012) 1.5 5.5
Torkestani (2012) 1.5 5.5

N
b b b e e e e e e e e e e e
o
T S TSV S S S 1 [T YO S S S UGS S (T
e e e T S e e Ty
L e T e S e S e T T = T = T e S S S e e e N
ol
ol

Yang (2010) 1.5 5.5

86

APPENDIX A. SYSTEMATIC LITERATURE REVIEW: QUALITY ASSESSMENT

Table A.1 continued from previous page

Study Q1 Q2 03 04 05 Score

Bedi et al. (2013) 1 1 1 1 1 5
Boldi et al. (2018) 1 1 1 1 1 5
Du et al. (2013) 1.5 1 1 05 1 5
Hao et al. (2011) 1 1 1 1 1 5
Lu et al. (2016) 1 1 1 1 1 5
Ning et al. (2011) 1 1 1 1 1 5
Onan (2016) 1 1 1 1 1 5
Patel and Schmidt (2011) 1.5 1 05 1 1 5
Zhang and Lu (2010) 1.5 1 1 05 1 5
Bedi et al. (2012) 0.5 1 1 1 1 4.5
Dahiwale et al. (2014) 0.5 1 1 1 1 4.5
Han et al. (2018) 1 1 05 1 1 4.5
Ll etal. (2012) 0.5 1 1 1 1 4.5
Liu and Milios (2012) 1 1 05 1 1 4.5
Liu and Peng (2014) 0.5 1 1 1 1 4.5
Singh et al. (2012) 0.5 1 1 1 1 4.5
Suebchua et al. (2018) 0.5 1 1 1 1 4.5
Taylan et al. (2011) 0.5 1 1 1 1 4.5
Wang et al. (2018) 0.5 1 1 1 1 4.5
Almuhareb (2016) 0 1 1 1 1 4
Amalia et al. (2016) 0 1 1 1 1 4
Amrin et al. (2015) 0 1 1 1 1 4
Balaji and Sarumathi (2012) 0 1 1 1 1 4
Ganguly and Raich (2014) 0 1 1 1 1 4
Gaur and Sharma (2014) 0 1 1 1 1 4
Gupta and Anand (2015) 0 1 1 1 1 4
Hassan et al. (2017) 0 1 1 1 1 4
Khalil and Fakir (2017) 0 1 1 1 1 4
Lietal. (2011) 0 1 1 1 1 4
Mali et al. (2011) 0 1 1 1 1 4
Mor et al. (2019) 0 1 1 1 1 4
Pawar et al. (2016) 0 1 1 1 1 4
Rajalakshmi and Aravindan (2013) 0 1 1 1 1 4
Rheinlander et al. (2016) 0 1 1 1 1 4
Venu et al. (2016) 0 1 1 1 1 4

87

APPENDIX A. SYSTEMATIC LITERATURE REVIEW: QUALITY ASSESSMENT

Table A.1 continued from previous page

Study Q1 Q2 03 04 05 Score

Wai et al. (2018) 0 1 1 1 1 4
Wang et al. (2010) 0 1 1 1 1 4
Xu et al. (2019) 0 1 1 1 1 4
Yan and Pan (2018) 0 1 1 1 1 4
Yang and Hsu (2010) 0 1 1 1 1 4
Yu et al. (2018) 0 1 1 1 1 4
Alderratia and Elsheh (2019) 1 1 1 05 0 3.5
Mali and Meshram (2011) 0 1 1 05 1 3.5
Naghibi and Rahmani (2012) 0 1 05 1 1 3.5
Ozel (2011) 0 1 05 1 1 35
Pasari et al. (2016) 0 1 1 1 05 3.5
Selamat and Ahmadi-Abkenari (2011) 0.5 1 05 05 1 3.5
Zheng (2011) 0 1 05 1 1 35
Zheng and Qian (2016) 0 1 1 05 1 3.5
Chen et al. (2010) 0 1 05 05 1 3
Deng (2020) 0 1 1 1 0 3
Goyal et al. (2016) 0 1 1 1 0 3
Gupta (2016) 0 05 1 05 1 3
Jaganathan and Karthikeyan (2015) 0 1 05 05 1 3
Joe Dhanith and Surendiran (2019) 0 1 1 1 0 3
Kumar et al. (2018) 0 1 05 05 1 3
Shrivastava et al. (2019) 0 1 1 1 0 3
Xie and Xia (2014) 0 05 1 05 1 3
Jian et al. (2014) 0 1 1 05 0 2.5
Minhas and Kumar (2013) 0 1 0 05 1 2.5
Pirkola and Talvensaari (2010) 1 05 0 0 1 2.5
Qiu et al. (2017) 0 1 1 05 0 2.5
Shang et al. (2019) 0 1 1 05 0 2.5
Uemura et al. (2012) 0 05 1 0 1 2.5
Aggarwal (2019) 0 05 05 O 1 2
Kulkarni et al. (2019) 0 05 1 05 0 2
Kumar and Vig (2013) 0 1 0 05 0 1.5
Luo et al. (2014) 0 05 05 05 0 1.5

88

APPENDIX A. SYSTEMATIC LITERATURE REVIEW: QUALITY ASSESSMENT

Table A.2: Quality Assessment: Chatbot Development

Study Q01 02 Q3 04 Q5 Score

Bavaresco et al. (2020) 2 1 1 1 1 6
Chakrabarti and Luger (2015) 2 1 1 1 1 6
Gao and Ren (2019) 2 1 1 1 1 6
Li et al. (2021) 2 1 1 1 1 6
Nuruzzaman and Hussain (2020) 2 1 1 1 1 6
Yin et al. (2017) 2 1 1 1 1 6
Szpektor et al. (2020) 2 1 1 05 1 5.5
Nuruzzaman and Hussain (2018) 1 1 1 1 1 5
Zhang et al. (2020) 1.5 1 1 1 0 4.5
Adamopoulou and Moussiades (2020) 0 1 1 1 1 4
Chen et al. (2017) 0o 1 1 1 1 4
Hussain et al. (2019) 0 1 1 1 1 4
Nguyen and Shcherbakov (2018) 0 1 1 1 1 4
Chou and Hsueh (2019) 0 1 05 1 1 3.5
Chowanda and Chowanda (2018) 0 1 1 05 1 3.5
Day et al. (2018) 0 1 05 1 1 35
Nuruzzaman and Hussain (2019) 0 1 1 05 1 3.5
Chandra and Suyanto (2019) 0 1 05 05 1 3
Vamsi et al. (2020) 0 1 1 1 0 3
Prassanna et al. (2020) 0 1 1 0O 0 2
Zhang et al. (2019) 0 0 05 0o 1 1.5

89

10

11

12

13

14

15

16

17

18

19

20

Appendix

Web Crawler: ACHE Configuration File

The listings in this Appendix are the representation of the configurations used to setup the ACHE Web

Crawler, defined in the ache.yml file.

B.1 Target Storage

Listing B.1: ACHE Target Storage Configurations

Change to false if you don't want to store pages classified as irrelevant

target_storage.store_negative_pages: false

Configuration for data format used to store crawled data
target_storage.data_format.type: FILESYSTEM_JSON
target_storage.data_format.filesystem.hash_file_name: true

target_storage.data_format.filesystem.compress_data: false

Performs hard focus or soft focus. When hard focus is enabled,
the crawler only follows links from pages classified as relevant

target_storage.hard_focus: false

Run bipartite crawler

target_storage.bipartite: false

Maximum number of pages to visit

target_storage.visited_page_limit: 1000000000

Store only pages that contain english text using language detector

target_storage.english_language_detection_enabled: false

90

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

APPENDIX B. WEB CRAWLER: ACHE CONFIGURATION FILE

B.2 Link Storage

Listing B.2: ACHE Link Storage Configurations

Max number of pages to be crawled from each web domain
link_storage.max_pages_per_domain: 1000000000

Restricts the crawler to crawl the websites provided as seeds
link_storage.link_strategy.use_scope: false

Allows the crawler to follow forward links

link_storage.link_strategy.outlinks: true

Gets backlinks of the pages from a search engine used by the bipartite crawling

link_storage.link_strategy.backlinks: false

Type of link classifier used by link storage

- LinkClassifierBaseline: random link strategy when no page classifier is provided,
or Soumen's baseline strategy when a page classifier is provided

- LinkClassifierImpl: link strategy using a link classifier

- LinkClassifierAuthority: link strategy for the bipartite crawling

link_storage.link_classifier.type: LinkClassifierBaseline

Retrain link classifiers on-the-fly

link_storage.online_learning.enabled: false

link_storage.link_selector: TopkLinkSelector

Enable recrawling of sitemaps using at fixed time intervals (in minutes)
link_storage.recrawl_selector: SitemapsRecrawlSelector

link_storage.recrawl_selector.sitemaps.interval: 360 # 6 hours

Discovery of new links using sitemap.xml protocol

link_storage.download_sitemap_xml: true

link_storage.max_size_cache_urls: 10000

Directory to store link storage's frontier database

link_storage.directory: "data_url/dir”

link_storage.scheduler.host_min_access_interval: 5000

link_storage.scheduler.max_links: 10000

B.3 Crawler Manager

Listing B.3: ACHE Crawler Manager Configurations

1 ‘crawler_manager.downloader.user_agent.name: ACHE

91

10

11

12

13

14

15

16

17

18

19

20

21

22

APPENDIX B. WEB CRAWLER: ACHE CONFIGURATION FILE

crawler_manager.downloader.user_agent.url: https://github.com/ViDA-NYU/ache

crawler_manager.downloader.user_agent.email: a80261@alunos.uminho.pt

crawler_manager.downloader.download_thread_pool_size: 100

crawler_manager.downloader.max_retry_count: 3

crawler_manager.downloader.valid_mime_types:

text/xml

text/html

text/plain
application/x-asp
application/xhtml+xml

application/vnd.wap.xhtml+xml

Use OkHttpFetcher instead of SimpleHttpFetcher

crawler_manager.downloader.use_okhttp3_fetcher: true

okhttp3 proxy Configuration

crawler_manager.downloader.okhttp3.proxy_host: null

crawler_manager.downloader.okhttp3.proxy_username: null

crawler_manager.downloader.okhttp3.proxy_password: null

crawler_manager.downloader.okhttp3.proxy_port: 8080

92

10

11

12

13

14

15

16

17

18

19

20

21

Appendix

Code Listings

This Appendix contains listings of the code used to build the application.

C.1 Chunkify, Tokenize and Get Answer with BERT model

Listing C.1: Chunkify, Tokenize and Get Answer with BERT model

import torch

from collections import OrderedDict

def tokenize(tokenizer, model, question, text):
inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors="pt”
—)

input_ids = inputs[”input_ids”].tolist()[0]

chunked = False

if len(input_ids) > model.config.max_position_embeddings:
inputs = chunkify(inputs)

chunked = True

return chunked, inputs

def chunkify(inputs):
create question mask based on token_type_ids
value is 0 for question tokens, 1 for context tokens
gmask = inputs['token_type_ids'].1t(1)
gt = torch.masked_select(inputs['input_ids'], gmask)

chunk_size = model.config.max_position_embeddings - qt.size()[0] - 1

93

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

APPENDIX C. CODE LISTINGS

the ”-1” accounts for having to add an ending [SEP] token to the end

create a dict of dicts; each sub-dict mimics the structure of pre-chunked model input
chunked_input = OrderedDict()
for k,v in inputs.items():

q
C

torch.masked_select(v, gmask)

torch.masked_select(v, ~gmask)

chunks = torch.split(c, chunk_size)

for 1, chunk in enumerate(chunks):
if 1 not in chunked_input:

chunked_input[i] = {}

thing = torch.cat((q, chunk))
if 1 != len(chunks)-1:
if k == 'input_ids':
thing = torch.cat((thing, torch.tensor([102])))
else:
thing = torch.cat((thing, torch.tensor([1])))

chunked_input[1][k] = torch.unsqueeze(thing, dim=0)

return chunked_1input

def convert_ids_to_string(tokenizer, input_ids):

return tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_1ids))

def get_answer(tokenizer, model, chunked, inputs):

if chunked:
answer = "'

for k, chunk in inputs.items():

answer_start_scores, answer_end_scores = model(**chunk)

answer_start = torch.argmax(answer_start_scores)
answer_end = torch.argmax(answer_end_scores) + 1
ans = convert_1ids_to_string(tokenizer, chunk['input_ids'][0][answer_start:answer_end
— 1)
if ans != '[CLS]':
answer += ans + " /"
return answer
else:

answer_start_scores, answer_end_scores = model(**inputs)

94

65

66

67

68

10

11

12

13

14

15

16

17

18

19

20

21

22

APPENDIX C. CODE LISTINGS

answer_start = torch.argmax(answer_start_scores) # get the most likely beginning of
< answer with the argmax of the score
answer_end = torch.argmax(answer_end_scores) + 1 # get the most likely end of answer

— with the argmax of the score

return convert_1ids_to_string(tokenizer, inputs['input_1ids'][0][answer_start:answer_end],

— tokenizer)

C.2 Get Answer with BERT model using a Pipeline

Listing C.2: Get Answer with BERT model using a Pipeline

import torch

from transformers import pipeline, BertTokenizer, BertForQuestionAnswering

model_path is the location of the folder containing the trained BERT model files

initialize BERT tokenizer

tokenizer = BertTokenizer.from_pretrained(model_path, use_fast=False)

initialize BERT model

model = BertForQuestionAnswering.from_pretrained(model_path, return_dict=False)

initialize the Pipeline

pipe = pipeline('question-answering', model=model, tokenizer=tokenizer)

def get_answer_with_pipeline(pipe, context, question):
answer = pipe(
{
'question': question,

'context': context

)

return answer

95

Appendix

COVID-19 Testing QA Set (10 QA pairs)

This appendix contains the QA set used for testing the application. It is composed of ten question-answer
pairs in English and their translation to Portuguese. This set was adapted from Coronavirus disease (COVID-
19) FAQs.

D.1 English QA Set

ENQ1 How does COVID-19 spread?

SARS-CoV-2, the virus that causes COVID-19, can spread from person to person through droplets
produced during coughing or breathing during close contact with an infected individual. Infection can
also occur indirect contact when these droplets land on objects and surfaces around the infected
individual and the other person touches these objects or surfaces, then touches their eyes, nose
or mouth. This is why it is important to stay at least 1-2 meters (3-6 feet) away from a person who
is sick. Given that some individuals have no symptoms while still infected with the virus, physical

distancing of 1-2 meters should be observed regardless of whether the other person seems sick.

ENQ2 What are the symptoms of COVID-19?

The most common symptoms of COVID-19 are fever, cough and fatigue. Some patients may have
loss of taste or smell, conjunctivitis, headache, muscle aches and pains, nasal congestion, runny
nose, sore throat, diarrhea, nausea or vomiting, and different types of skin rashes. These symptoms
are usually mild and begin gradually. Some people become infected but don't develop any symptoms
and don't feel unwell. Most people (about 80%) recover from the disease without needing special
management. Approximately 1 out of every 6 people who get COVID-19 becomes seriously ill and
develops symptoms of severe COVID-19, which include difficulty breathing/shortness of breath,

confusion, loss of appetite, persistent pain or pressure in the chest, and needs hospitalization.

96

APPENDIX D. COVID-19 TESTING QA SET (10 QA PAIRS)

ENQ3

ENQ4

ENQ5

Older people and those with underlying medical problems like high blood pressure, heart problems
or diabetes are more likely to develop serious iliness. People with fever, cough and difficulty breathing

should seek medical attention.

How do | know if it is COVID-19 or just the common cold?

A COVID-19 infection has similar signs and symptoms as the common cold or influenza, and you

can only differentiate them through laboratory testing to determine the virus type.

Can the virus that causes COVID-19 be transmitted through the air?

Studies to date suggest that the virus that causes COVID-19 is mainly transmitted through respiratory
droplets rather than through the air. See previous answer on “How does COVID-19 spread?” Aerosols
may be generated during certain medical procedures and other activities, such as singing, but are

not considered the predominant route of spread for this infection.

What can | do to protect myself and prevent the spread of disease?

Review the latest information on the COVID-19 pandemic available in the WHO website and through
your national and local public health authority. The situation is dynamic so check regularly for the

latest news.

You can reduce your chances of being infected or spreading COVID-19 by taking the following

precautions:

- Clean your hands regularly and thoroughly with an alcohol-based hand rub or wash them with
soap and water. Washing your hands with soap and water or using alcohol-based hand rub kills

viruses that may be on your hands.

- Maintain at least 1-2-meter (3-6 feet) distance between yourself and anyone who is coughing or
sneezing. When someone coughs or sneezes, they spray small liquid droplets from their nose or
mouth which may contain virus. If you are too close, you can breathe in the droplets, including the
COVID-19 virus if the person coughing or sneezing has the disease.

- Follow physical distancing rules of at least 1-2-meter (3-6 feet) distance between yourself and

others regardless of whether they are showing symptoms.

- Avoid touching your eyes, nose and mouth. Hands touch many surfaces and can pick up viruses.
Once contaminated, your hands can transfer the virus to your eyes, nose or mouth. From there, the

virus can enter your body and can make you sick.

- Make sure you and the people around you follow good respiratory hygiene. This means covering
your mouth and nose with your bent elbow or tissue when coughing or sneezing, then disposing
of the used tissue immediately. Droplets spread virus. By following good respiratory hygiene, you

protect the people around you from viruses such as the common cold, flu and COVID-19.

97

APPENDIX D. COVID-19 TESTING QA SET (10 QA PAIRS)

ENQ6

ENQ7

ENQ8

ENQ9S

- Stay home if you feel unwell. If you have a fever, cough and difficulty breathing, seek medical
attention and call in advance. Follow the directions of your local health authority. National and
local authorities will have the most up to date information on the situation in your area. Calling in
advance will allow your health care provider to quickly direct you to the right health facility. This will

also protect you and help prevent spread of viruses and other infections.

- Wear a mask for the duration of your illness and while you have symptoms.as source control to

prevent onward spread of COVID-19 if you are infected.

- Wear a mask as part of the comprehensive public health measures targeted to prevent the spread

of COVID-19 even if you do not have symptoms and/or are not infected.

- Keep up to date on the latest COVID-19 hotspots (cities or local areas where COVID-19 is spreading
widely). If possible, avoid traveling to those places — especially if you are an older person or have
diabetes, heart or lung disease, because you have a higher chance of catching COVID-19 in one of
these areas.

Should | wear a mask while exercising?

The WHO recommends that masks not be worn during vigorous physical activity. Please ensure a

1-2-meter distance from others when exercising and that there is adequate ventilation.

Are the symptoms of COVID-19 different in children than in adults?

The symptoms of COVID-19 are similar in children and adults. However, children with confirmed
COVID-19 have generally presented with mild symptoms. Although children tend to have a milder
disease, critical illness have been reported. A COVID-19 Multisystem Inflammatory Syndrome in

Children (MIS-C) has also been described in children and adolescents.

Are antibiotics effective in preventing or treating COVID-19?

Antibiotics are used to treat bacterial infections. Since COVID-19 is a virus, antibiotics are not indi-
cated for the direct treatment. However, it may be required in some instances, such as for treating

secondary bacterial infections.

Can humans become infected with COVID-19 from an animal source?

Possible animal sources of COVID-19 have not yet been confirmed though are postulated. To protect
yourself, such as when visiting live animal markets, avoid direct contact with animals and surfaces
in contact with animals. Ensure good food safety practices at all times. Handle raw meat, milk or
animal organs with care to avoid contamination of uncooked foods and avoid consuming raw or

undercooked animal products.

ENQIO How long does the virus survive on surfaces?

It is not certain how long the virus that causes COVID-19 survives on surfaces, but it seems to behave

like other coronaviruses. Studies suggest that coronaviruses (including preliminary information on

98

APPENDIX D. COVID-19 TESTING QA SET (10 QA PAIRS)

the COVID-19 virus) may persist on surfaces for a few hours or up to several days. This may vary

under different conditions (e.g. type of surface, temperature or humidity of the environment).

If you think a surface may be infected, clean it with simple disinfectant to kill the virus and protect
yourself and others. Cleaning your hands with an alcohol-based hand rub or washing them with

soap and water is very important. Avoid touching your eyes, mouth, or nose.

D.2 Portuguese QA Set

PTQ1

PTQ2

PTQ3

Como se transmite a COVID-19?

0 SARS-CoV-2, o virus que causa a COVID-19, pode se espalhar de pessoa para pessoa por meio de
goticulas produzidas durante a tosse ou respiracao durante o contato proximo com um individuo
infetado. A infecao também pode ocorrer por contato indireto, quando essas goticulas pousam
em objetos e superficies ao redor do individuo infetado e a outra pessoa toca esses objetos ou
superficies e, a seguir, toca seus olhos, nariz ou boca. E por isso que é importante ficar a pelo
menos 1 a 2 metros (3 a 6 pés) de distancia de uma pessoa doente. Dado que alguns individuos
nao apresentam sintomas quando estao infetados com o virus, deve-se manter um distanciamento

fisico de 1-2 metros, independentemente de a outra pessoa parecer doente ou nao.

Quais sao os sintomas da COVID-19?

Os sintomas mais comuns de COVID-19 sao febre, tosse e fadiga. Alguns pacientes podem ap-
resentar perda de paladar ou olfato, conjuntivite, dor de cabeca, dores musculares, congestao
nasal, corrimento nasal, dor de garganta, diarreia, nausea ou vomito e diferentes tipos de erupcoes
cutaneas. Esses sintomas sdo geralmente leves e comecam gradualmente. Algumas pessoas ficam
infetadas, mas nao desenvolvem quaisquer sintomas e nao se sentem mal. A maioria das pessoas
(cerca de 80 %) recupera da doenca sem precisar de tratamento especial. Aproximadamente 1
em cada 6 pessoas que apanham COVID-19 fica gravemente doente e desenvolve sintomas de
COVID-19 grave, que incluem dificuldade em respirar / falta de ar, confusdo, perda de apetite, dor
persistente ou pressdo no peito e precisa de hospitalizacdo . Idosos e pessoas com problemas
médicos subjacentes, como hipertensao, problemas cardiacos ou diabetes, tém maior probabili-
dade de desenvolver sintomas graves. Pessoas com febre, tosse e dificuldade respiratoria devem

procurar atendimento médico.

Como posso saber se tenho COVID-19 ou uma constipacao?

Uma infecdo por COVID-19 tem sinais e sintomas semelhantes aos da constipacdo comum ou

gripe, e so se pode diferencia-los por meio de testes laboratoriais para determinar o tipo de virus.

PTQ4 O virus que transmite a COVID-19 pode ser transmitido pelo ar?

99

APPENDIX D. COVID-19 TESTING QA SET (10 QA PAIRS)

PTQ5

Os estudos até ao momento indicam que o virus que causa COVID-19 é transmitido principalmente
por goticulas respiratorias, e ndo pelo ar. Consulte a resposta anterior em “Como se transmite a
COVID-19?7". Aerossois podem ser gerados durante certos procedimentos médicos e outras ativi-
dades, como cantar, mas nao sdo considerados o método predominante de propagacao desta

infecao.

0 que posso fazer para me proteger e evitar a disseminacao da doenca?

Reveja as informacdes mais recentes sobre a pandemia de COVID-19 disponiveis no site da OMS
ou através da sua autoridade nacional e local de saude publica. A situacao é dinamica, portanto,

verifique regularmente as ultimas noticias.

Pode reduzir as hipdteses de estar infectado ou espalhar COVID-19 tendo em consideracao as

seguintes precaucoes:

- Limpe as maos regularmente e cuidadosamente com um produto a base de alcool ou lave-as com
agua e sabao. Lavar as maos com agua e sabao ou usar um produto a base de alcool elimina os

virus que podem estar nas suas maos.

- Mantenha uma distancia de pelo menos 1-2 metros (3-6 pés) entre si e qualquer pessoa que esteja
a tossir ou a espirrar. Quando alguém tosse ou espirra, pequenas gotas de liquido do nariz ou da
boca que podem conter virus sao espalhadas. Se estiver muito perto, pode respirar as goticulas,

incluindo o virus COVID-19, se a pessoa que tosse ou espirra tem a doenca.

- Siga as regras de distanciamento fisico de pelo menos 1 a 2 metros (3 a 6 pés) de distancia entre

si e 0s outros, independentemente de apresentarem ou nao sintomas.

- Evite tocar nos olhos, nariz e boca. As maos tocam em muitas superficies e podem apanhar virus.
Uma vez contaminadas, as suas méaos podem transferir o virus para os seus olhos, nariz ou boca.

A partir dai, o virus pode entrar no seu corpo e deixa-lo doente.

- Certifique-se de que o proprio e as pessoas ao seu redor seguem uma boa higiene e etiqueta
respiratoria. Isso significa cobrir a boca e o nariz com o cotovelo dobrado ou com um lenco de papel
ao tossir ou espirrar e, em seguida, descartar o lenco usado imediatamente. As gotas espalham
virus. Ao seguir uma boa higiene respiratoria, protege as pessoas ao seu redor de virus como a

constipacao comum, gripe e COVID-19.

- Fique em casa se nao se sentir bem. Se tiver febre, tosse e dificuldade em respirar, procure
atendimento médico e ligue com antecedéncia. Siga as instrucdes da autoridade de saude local. As
autoridades nacionais e locais terdo as informacdes mais atualizadas sobre a situacao na sua area.
Ligar com antecedéncia permitira que o seu médico o encaminhe rapidamente para a unidade de

salde certa. Isso também o protegera e ajudara a prevenir a propagacao de virus e outras infecoes.

- Use uma mascara durante a doenca e enquanto tiver sintomas, de maneira a evitar a propagacao
de COVID-19 se estiver infectado.

100

APPENDIX D. COVID-19 TESTING QA SET (10 QA PAIRS)

PTQ6

PTQ7

PTQ8

PTQ9

- Use uma mascara como parte das medidas abrangentes de saude publica destinadas a prevenir

a propagacdo de COVID-19, mesmo néo tendo sintomas e/ou nao estiver infectado.

- Mantenha-se atualizado sobre os pontos de acesso COVID-19 mais recentes (cidades ou areas
locais onde a COVID-19 esta a espalhar-se amplamente). Se possivel, evite viajar para esses lugares,
especialmente se for uma pessoa idosa ou tiver diabetes, doenca cardiaca ou pulmonar, porque

tem uma maior probabilidade de apanhar COVID-19 numa dessas areas.

Devo usar mascara enquanto faco exercicio?

A OMS recomenda que as mascaras nao sejam utilizadas durante atividades fisicas vigorosas.
Certifique-se de que mantenha uma distancia de 1-2 metros de outras pessoas ao exercitar-se e

de que haja ventilacao adequada.

Os sintomas da COVID-19 sao diferentes nos adultos e nas criancas?

Os sintomas de COVID-19 sdo semelhantes em criancas e adultos. No entanto, as criancas com
COVID-19 confirmado geralmente apresentam sintomas leves. Embora as criancas tendam a ter
uma doenca leve, sintomas criticos foram também relatados. Um sindrome inflamatorio multi-

ssistémico COVID-19 em criancas (MIS-C) também foi observado em criancas e adolescentes.

Os antibidticos sao eficazes na prevencao ou tratamento da COVID-19?

Antibidticos sao usados para tratar infecoes bacterianas. Por ser o COVID-19 um virus, os antibioti-
cos nao sao indicados para o tratamento direto. No entanto, podem ser necessarios em alguns

casos, como para o tratamento de infecdes bacterianas secundarias.

Os humanos podem ser infetados com a COVID-19 através de animais?

Possiveis fontes animais de COVID-19 ainda nao foram confirmadas, embora sejam postuladas.
Para se proteger, como ao visitar mercados de animais vivos, evite o contato direto com animais e
superficies em contato com os animais. Garanta boas praticas de seguranca alimentar em todos
0s momentos. Manuseie carne crua, leite ou 6rgaos de animais com cuidado para evitar a contam-

inacdo de alimentos crus e evite consumir produtos de origem animal crus ou mal cozinhados.

PTQ10 Quanto tempo sobrevive o virus nas superficies?

Nao se sabe ao certo quanto tempo o virus que causa a COVID-19 sobrevive em superficies, mas
parece comportar-se como outros coronavirus. Estudos sugerem que os coronavirus (incluindo
informacodes preliminares sobre o virus da COVID-19) podem persistir nas superficies por algumas
horas ou até varios dias. Isso pode variar em diferentes condicdes (por exemplo, tipo de superficie,

temperatura ou humidade do ambiente).

Se acha que uma superficie pode estar infetada, limpe-a com um desinfetante simples para matar
0 virus e proteger-se a si e a outras pessoas. E muito importante limpar as maos com um produto

a base de alcool ou lava-las com agua e sabao. Evite tocar nos seus olhos, boca ou nariz.

101

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and Motivation
	Objectives
	Achievements
	Document Structure

	Background
	COVID-19 Reliable Sources
	Web Crawling
	Information Retrieval
	Search Engines
	Web Crawler
	Types of Web Crawlers
	Selection of the Web Crawler's Type
	Web Crawling Policies
	Web Crawling Challenges

	Information Processing
	HTML Parsing
	Text Segmentation
	Text Classification

	Chatbot Application
	Chatbot Classification
	Approaches to Chatbot Development
	Selection of Chatbot Development Approach

	Systematic Literature Review
	Methodology
	Research Questions
	Web Crawling
	Chatbot Development

	Literature Sources and Search Strings
	Inclusion and Exclusion Criteria
	Studies Selection
	Quality Assessment
	Data Extraction
	Data Synthesis
	Studies Overview
	Research Questions Findings

	Limitations
	Conclusion

	Architecture and Solution Design
	System Overview
	Web Crawler
	Text Processor
	Chatbot Application

	System Implementation
	Web Crawler
	Scripts
	ACHE Configurations
	Models
	Execution

	Text Processor
	File Mover
	File Processor

	ElasticSearch
	Chatbot Application
	REST API
	Chatbot Models
	Web Application

	Testing and Tuning
	COVID-19 QA Test Set
	Results
	No Tuning (Raw Indexing)
	With Crawling Restrictions
	With Crawling Restrictions and ElasticSearch Indexes Enhancement

	Outcome Analysis

	Conclusions
	Conclusion
	Future Work

	Bibliography
	Appendices
	Systematic Literature Review: Quality Assessment
	Web Crawler: ACHE Configuration File
	Target Storage
	Link Storage
	Crawler Manager

	Code Listings
	Chunkify, Tokenize and Get Answer with BERT model
	Get Answer with BERT model using a Pipeline

	COVID-19 Testing QA Set (10 QA pairs)
	English QA Set
	Portuguese QA Set

