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1. Introduction

The spectral theory of graphs is an active area of research in modern mathematical
physics (see, for example, [3, 8], and the references therein). This is due in part to problems
concerning the theory itself but also to many applications found in biology, economics and
social sciences, computer science and the theory of information and communication (see,
for example [9, 14]).

The method of isospectral graph transformations introduced in [5, 4, 6] provides a
way of understanding the interplay between the topology of a network (considered as a
weighted graph) and its dynamics. More precisely, the authors introduce a concept of
transformation of a graph (either by reduction or expansion) with the key property of
preserving part of the spectrum of the graph’s adjacency matrix. More recently in [11]
the second and third authors proved that isospectral graph reductions also preserve the
eigenvectors associated with the eigenvalues of the graph’s weighted adjacency matrix.
The results of this paper also explain how to reconstruct an eigenvector of the graph’s
adjacency matrix from an eigenvector of the reduced matrix. Because the spectral ap-
proach in [11] to isospectral graph reduction theory was based on eigenvectors, instead of
eigenvalues, it was a natural question to ask about possible generalizations of this theory
to infinite dimensions. Notice that in finite dimensions the eigenvalues are the zeros of the
characteristic polynomial, a meaningless concept in infinite dimensions where eigenvalues
correspond to the existence of non-trivial solutions of the eigenvalue equation. In [12] the
isospectral reduction theory was generalized to infinite dimensions.
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In this paper we provide a more general extension to infinite dimensions of the isospec-
tral reduction theory (see Theorem 3). This new result opens the way to the main purpose
of this work which is to prove the existence of stationary measures for certain stochastic
processes defined on a class of infinite graphs (see Theorem 4). More precisely, we pro-
pose a method based on iterated isospectral reductions (see Section 6) to approximate the
stationary measure (which is proved to exist) that converges in a super-exponential way,
which is faster than the exponential speed of convergence of the classical Perron-Frobenius
method.

The paper is organized as follows:
In Section 2 we describe the theory of isospectral graph reductions and the reduction

statements for finite graphs. In Section 3 we extend the finite dimensional version of this
theory, developed in [12], to reductions over arbitrary sets. In Section 4 we define Markov
chains and introduce the class of birth-and-death processes to which our results apply. In
Section 5 we introduce some auxiliary dynamical systems that play a key role in the proof
of the main results leading to the existence of stationary measures for certain classes of
infinite graphs. In Section 6 we introduce a class of tridiagonal stochastic infinite graphs
and prove the existence of stationary measures for this class, providing a method based
on iterated isospectral reductions to approximate the stationary measure. In Section 7 we
apply previous results to the lattice Z2 and to the Bethe lattice. Finally, in Section 8 we
describe an isospectral reduction-reconstruction algorithm and use a numerical example
to compare its execution times with those of a standard algorithm.

2. Isospectral reduction theory on finite graphs

A key concept in Bunimovich-Webb’s isospectral theory is that of a structural set.
It specifies the class of subsets of the vertex set of a graph over which an isospectral
reduction (expansion) is performed, allowing one to investigate how the structure of a
graph is affected by an isospectral transformation. A key concept in [11] to perform the
reconstruction of eigenvectors of the original matrix from the eigenvectors of the reduced
matrix, recursively, is the depth of a vertex. The coordinates of the eigenvector on vertices
of depth n are explicitly given (see item (3) of Theorem 1) in terms of the values of the
eigenvector at vertices of depth < n.

Given a finite set V we denote by CV the finite dimensional complex space of all
functions f : V → C which can be represented as vectors (f(i))i∈V . Similarly, a vector
w ∈ CV×V will be described as a V × V matrix and represented as a list (w(i, j))i,j∈V .

Consider a finite weighted graph, i.e., a pair G = (V,w) where the vertex set V is finite
and w : V × V → C is any function (called the weight function of G). We make the
convention that j → i is an edge of G iff w(i, j) 6= 0. 1 Denote by A = Aw : CV → CV

the operator defined by the weighted adjacency matrix (w(i, j))i,j∈V .

1Notice that for instance in [5, 4, 6, 11] the authors make the opposite convention.



STATIONARY MEASURES ON INFINITE GRAPHS 3

A path γ = (i0, . . . , ip) in the graph G = (V,w) is an ordered sequence of vertices
i0, . . . , ip ∈ V such that w(i`, i`+1) 6= 0 for 0 ≤ ` ≤ p−1. The integer p is called the length
of γ. If the vertices i0, . . . , ip−1 are all distinct the path γ is called simple. If i0 = ip then
γ is called a closed path. A closed path of length 1 is called a loop. Finally, we call any
simple closed path a cycle. If S ⊆ V we will write S̄ := V \ S.

Definition 2.1. Let G = (V,w). A nonempty vertex set S ⊆ V is a structural set for
G if each cycle of G, that is not a loop, contains a vertex in S.

Given a structural set S, a branch of (G,S) is any simple path β = (i0, i1, . . . , ip−1, ip)
such that i1, . . . , ip−1 ∈ S̄ and i0, ip ∈ S. Denote by Bij the set of all branches that start
in i and end in j. Define Σ := {w(i, i) : i ∈ S̄} and let λ ∈ C \ Σ. For each branch
β = (i0, i1, . . . , ip) we define the λ-weight of β as follows:

w(β, λ) := w(i0, i1)

p−1∏
`=1

w(i`, i`+1)

λ− w(i`, i`)
.

Given i, j ∈ S set

RS,λ(i, j) :=
∑
β∈Bij

w(β, λ) .

The reduced operator RS(λ) : CS → CS is given by the matrix (RS,λ(i, j))i,j∈S.

We can also view the reduced operator RS as an S×S matrix with entries in the field of

rational functions f(λ) = p(λ)
q(λ)

, where p(λ) and q(λ) are polynomials in a formal variable

λ. We then define the spectrum of RS(λ), denoted by sp(RS), to be

sp(RS) := {λ ∈ C \ Σ: det(RS(λ)− λ I) = 0} .

Definition 2.2. Assuming S is a structural set, the depth of a vertex is defined recur-
sively as follows: a vertex i ∈ S has depth 0 and a vertex i ∈ S̄ has depth n iff i hasn’t
depth < n, and w(i, j) 6= 0 implies j has depth < n, for all j ∈ V .

One can see that the depth of a vertex i ∈ V is the length of the longest path in S̄ from
a vertex in S to i (all the nodes in this path, except the first one, must be in S̄).

From now on, given u ∈ CV , we denote by uS the restriction of u to S, i.e., uS = (ui)i∈S.
For finite graphs, results concerning isospectral reductions can be stated as follows.

Theorem 1. Let S be a structural set of the graph G = (V,w). Then for the associated
operator A = Aw

(1) sp(A) \ Σ = sp(RS).
(2) If λ0 ∈ C \ Σ is an eigenvalue of A and u ∈ CV is an associated eigenvector,

Au = λ0 u, then RS(λ0)uS = λ0 uS.
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(3) If λ0 ∈ C \ Σ is an eigenvalue of RS(λ0) and v = (vi)i∈S is an associated eigen-
vector, RS(λ0) v = λ0 v, then the following recursive relations

ui = vi for i ∈ S0 = S

u` =
∑

j∈Sn−1

w(`, j)

λ0 − w(`, `)
uj for all ` ∈ Sn \ Sn−1

uniquely determine an eigenvector u of A associated with λ0, where Sn denotes the
set of all vertices of depth ≤ n.

Item (1) corresponds to a simplified 2 version of Bunimovich-Webb isospectral reduction
theorem (see [5, Theorem 3.5.]), and items (2) and (3) correspond to [11, Theorem 1 and
Proposition 2.1], respectively.

Theorem 1 was extended to infinite dimensions in [12, Theorem 3.12, Theorem 3.8,
Theorem 3.18].

In [16] and [6, §1] the theory of isospectral reduction is extended to arbitrary sets not
necessarily structural. More precisely, given a finite weighted graph G = (V,w), consider
an arbitrary set S ⊆ V . Recall that CV denotes the space of all functions f : V → C and
identify CS, resp. CS̄, as subspaces of CV consisting of functions f : V → C which vanish
outside S, resp. S̄. With these identifications we have CV = CS ⊕CS̄. Let πS : CV → CS

and πS̄ : CV → CS̄ be the canonical projections. We define the component operators of
A = Aw : CV → CV by

ASS : CS → CS, ASS = πS ◦A ◦ πS,

AS̄S : CS → CS̄, AS̄S = πS̄ ◦A ◦ πS,

ASS̄ : CS̄ → CS, ASS̄ = πS ◦A ◦ πS̄,

AS̄S̄ : CS̄ → CS̄, AS̄S̄ = πS̄ ◦A ◦ πS̄.

Next we introduce the reduced operator on CS, R(λ) = RS(λ) : CS → CS,

RS(λ) := ASS −ASS̄ (AS̄S̄ − λ I)−1
AS̄S

which is well defined for λ ∈ C \ sp(AS̄S̄). Note that the reduced operator R(λ) is the so
called Schur complement of AS̄S̄ − λ I plus λ I.

Since we are in a finite dimensional context, all these operators and projections can
naturally be represented by matrices. In particular, ASS, AS̄S, ASS̄ and AS̄S̄ can be
regarded as submatrices of A.

2This statement corresponds to [5, Corollary 3] where the adjacency matrix has complex entries.
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A simplified 3 version of the isospectral reduction theorem in this setting (see [16, The-
orem 2.1.], [6, Theorem 1.1.]), which is a consequence of Schur complement’s determinant
formula, can be stated as follows:

Theorem 2. Let G = (V,w), A = Aw and ∅ 6= S ( V . Then,

sp(A) \ sp(AS̄S̄) = sp(RS).

Example 2.1. Consider the graph G = (V,w) given in Figure 1. Recall that w(i, j) is the
weight of the edge from j to i. The operator A = Aw is given by the (column)-stochastic
block tridiagonal matrix

A =


11
12

3
4

3
4

0
1
12

0 1
6

0

0 1
6

0 3
4

0 1
12

1
12

1
4

 .

The set S = {i1, i4} is not a structural set because the nonloop cycle i2, i3 does not contain
a vertex in S. The component operators of A relative to S are given by

ASS =

[
11
12

0

0 1
4

]
, AS̄S =

[
1
12

0

0 3
4

]
, ASS̄ =

[
3
4

3
4

1
12

1
12

]
, AS̄S̄ =

[
0 1

6
1
6

0

]
.

Clearly, sp(AS̄S̄) = {−1
6
, 1

6
} and, therefore, the reduced operator RS(λ) is well defined for

all λ ∈ C \ {−1
6
, 1

6
} by

RS(λ) =

[
11
12

0

0 1
4

]
−

[
3
4

3
4

1
12

1
12

]
.

[
−λ 1

6
1
6
−λ

]−1

.

[
1
12

0

0 3
4

]
=

[
13−132λ
24−144λ

− 27
8−48λ

1
24(−1+6λ)

1+12λ
−8+48λ

]
.

The spectrum of A is sp(A) = {1, 5
12
,−1

6
,− 1

12
} while the spectrum of RS(λ) is sp(RS) =

{1, 5
12
,− 1

12
} = sp(A) \ sp(AS̄S̄).

The cost of greater generality in this extension to arbitrary sets (not necessarily struc-
tural) is a less explicit reconstruction formula involving inverses which can only be rep-
resented as sums of infinite series (see [16, equation 15 on p. 157], [6, equation 5.6 on
p. 137]). Moreover, from a graph theoretical perspective, the graph’s path and cycle
structure associated with structural sets provide a natural combinatorial interpretation
which is lost in this extension.

3This statement corresponds to [16, Corollary 2.1.], [6, Corollary 1.1.] where the adjacency matrix has
complex entries.



6 A. BARAVIERA, P. DUARTE, AND M. J. TORRES

Figure 1. A stochastic finite graph.

3. Extension of Isospectral reduction theory to infinite dimension

In this section we extend the infinite dimension theory developed in [12] for structural
sets to arbitrary sets. In particular, we extend Theorem 2 to infinite dimensions. This
extension allows for possible applications to nonlinear problems which can be reduced to
the analysis of infinite dimensional linear operators.

Let E be a Banach space with direct sum decomposition E = S⊕ S̄ into closed subspaces
S and S̄. Let πS : E→ S and πS̄ : E→ S̄ be the canonical projections associated with this
decomposition.

Let T : E→ E be a bounded operator. We define the component operators

TSS : S→ S, TSS = πS ◦ T ◦ πS,
TS̄S : S→ S̄, TS̄S = πS̄ ◦ T ◦ πS,
TSS̄ : S̄→ S, TSS̄ = πS ◦ T ◦ πS̄,
TS̄S̄ : S̄→ S̄, TS̄S̄ = πS̄ ◦ T ◦ πS̄.

We denote by sp(T) the spectrum of the operator T, i.e.,

sp(T) := {λ ∈ C : T − λI is not invertible } .

Recall that a complex number λ ∈ C is called an eigenvalue of T if the equation
(T−λI)u = 0 has non-zero solutions u ∈ E, which are referred to as the eigenvectors of T
associated with λ. The eigenvalues of T are the elements of the spectrum such that T−λI
fails to be injective. In infinite dimensions, the spectrum may also contain elements λ ∈ C
such that T − λI is injective but fails to be surjective.
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Next we introduce the family of reduced operators on S, R(λ) = RT,S,S̄(λ) : S→ S,

R(λ) := TSS − TSS̄ (TS̄S̄ − λ I)−1
TS̄S (3.1)

defined for λ ∈ C \ sp(TS̄S̄).

Definition 3.1. The spectrum of the family of operators R(λ) is the set

sp(R) := {λ ∈ C : R(λ)− λI is not invertible } .

Given u ∈ E, we denote by uS the projection uS := πS(u). Similarly we write uS̄ := πS̄(u).

The following result extends theorems 1 and 2 to this infinite dimensional setting.

Theorem 3. Let T : E → E be a bounded operator on a Banach space E with a direct
sum decomposition E = S⊕ S̄. Then

(1) sp(T) \ sp(TS̄S̄) = sp(R).
(2) Given λ0 ∈ C \ sp(TS̄S̄), λ0 is an eigenvalue of T iff λ0 is an eigenvalue of R(λ0).
(3) If λ0 ∈ C \ sp(TS̄S̄) is an eigenvalue of T and u ∈ E is an associated eigenvector,

T u = λ0 u, then R(λ0)uS = λ0 uS.
(4) If λ0 ∈ C\sp(TS̄S̄) is an eigenvalue of R(λ0) and v ∈ S is an associated eigenvector,

R(λ0) v = λ0 v, then the following relations uS = v ∈ S

uS̄ = −(TS̄S̄ − λ0I)−1 TS̄S uS ∈ S̄

(3.2)

uniquely determine a reconstructed eigenvector u = uS + uS̄ ∈ E of T, i.e., such
that T u = λ0 u.

Proof. First we prove item (3) and the direct implication in (2). Let λ0 ∈ C \ sp(TS̄S̄) be
an eigenvalue of T and let u = uS +uS̄ ∈ E be an associated eigenvector. Since T u = λ0 u,
one has

TSS uS + TSS̄ uS̄ = λ0 uS, (3.3)

and

TS̄S uS + TS̄S̄ uS̄ = λ0 uS̄ . (3.4)

From equation (3.4) we get

uS̄ = −(TS̄S̄ − λ0I)−1 TS̄S uS . (3.5)

Observe that the operator TS̄S̄ − λ0I is invertible, given that λ0 /∈ sp(TS̄S̄). Since

(R(λ0)− λ0I)uS = TSS uS − TSS̄(TS̄S̄ − λ0I)−1TS̄S uS − λ0 uS ,

using (3.5), we get

(R(λ0)− λ0I)uS = TSS uS + TSS̄ uS̄ − λ0 uS ,
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and then, using (3.3), we obtain that

(R(λ0)− λ0I)uS = 0 .

This proves that λ0 is an eigenvalue of R(λ0) with R(λ0)uS = λ0 uS.

Next we prove (4) and the converse implication in (2). Let λ0 ∈ C \ sp(TS̄S̄) be an
eigenvalue of R(λ0) and v ∈ S be an associated eigenvector. Since R(λ0) v = λ0 v, one has

TSS v − TSS̄(TS̄S̄ − λ0I)−1TS̄S v = λ0 v . (3.6)

Let u = uS + uS̄ ∈ E be defined by uS := v

uS̄ := −(TS̄S̄ − λ0I)−1 TS̄S uS

(3.7)

From the definition of uS̄ we obtain

TS̄S uS + TS̄S̄ uS̄ = λ0 uS̄ . (3.8)

On the other hand, using the definition of uS and uS̄ in equation (3.6), we obtain

TSS uS + TSS̄ uS̄ = λ0 uS . (3.9)

Together, equations (3.8) and (3.9) are equivalent to T u = λ0 u. This proves that λ0 is
an eigenvalue of T with associated reconstructed eigenvector u ∈ E defined by (3.7).

Finally we prove (1).
Given λ0 /∈ sp(TS̄S̄), assume that λ0 /∈ sp(R). We first prove that the operator T − λ0 I

is surjective, i.e., that given f = fS + fS̄ ∈ E there exists u = uS + uS̄ ∈ E such that

(T − λ0I)u = f ,

i.e., such that  (TSS − λ0I)uS + TSS̄ uS̄ = fS

TS̄S uS + (TS̄S̄ − λ0I)uS̄ = fS̄ .
(3.10)

Since λ0 /∈ sp(R), the operator R(λ0)− λ0 I is invertible, hence surjective. Thus, given
fS − TSS̄(TS̄S̄ − λ0I)−1 fS̄ ∈ S there exists uS ∈ S such that

(R(λ0)− λ0 I)uS = fS − TSS̄(TS̄S̄ − λ0I)−1 fS̄ . (3.11)

Let

uS̄ := (TS̄S̄ − λ0I)−1(fS̄ − TS̄S uS) ∈ S̄ . (3.12)

Clearly, equation (3.12) defining uS̄ is equivalent to the second equation in (3.10). On the
other hand, equation (3.11) is equivalent to

TSS uS − TSS̄(TS̄S̄ − λ0I)−1TS̄S uS − λ0 uS = fS − TSS̄(TS̄S̄ − λ0I)−1fS̄ ,
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which in turn is equivalent to

(TSS − λ0I)uS + TSS̄ (TS̄S̄ − λ0I)−1(fS̄ − TS̄S uS)︸ ︷︷ ︸
uS̄

= fS ,

which at last, by (3.12), is equivalent to the first equation in (3.10). All together, we have
proved that the operator T − λ0I is surjective. On the other hand, by (2), this operator
must be injective. Hence T − λ0I is invertible, which implies that λ0 /∈ sp(T).

Conversely, assume that λ0 /∈ sp(TS̄S̄) but λ0 ∈ sp(R), so that R(λ0) − λ0 I is not
invertible. By the Open Mapping Theorem this operator is either non-injective or non-
surjective.

If R(λ0)− λ0 I is not injective then λ0 is an eigenvalue of R(λ0) and by (4) it is also an
eigenvalue of T. Therefore λ0 ∈ sp(T) \ sp(TS̄S̄).

Otherwise, if R(λ0)−λ0 I is not surjective we can choose fS ∈ S such that the equation
(R(λ0) − λ0 I)uS = fS has no solutions uS ∈ S. Take fS̄ = 0, let f = fS = fS + fS̄ and
consider the equation (T − λ0 I)u = f . This equation may be written in the form (3.10).
Any solution of (3.10) gives rise to a solution of (3.11), that is a solution of the equation
(R(λ0)−λ0 I)uS = fS, which is not possible. Hence the operator T−λ0 I is non-invertible
and, therefore, λ0 ∈ sp(T) \ sp(TS̄S̄).

�

We introduce the family of reconstruction operators ΦT = ΦT,S,S̄ : C \ sp(TS̄S̄)→ L(S,E)
that to each λ ∈ C \ sp(TS̄S̄) and v ∈ S associates the unique function u = ΦT(λ)(v) ∈ E

defined by (3.2). This operator takes values in the space L(S,E) of bounded linear maps
L : S→ E. These reconstruction operators will play a key role in the statement and proof
of the main theorem (Theorem 4 in Section 6).

In the infinite dimension theory developed in [12] for structural sets, the authors were
able to reconstruct the eigenfunctions for the so called structural sets of type B (see [12,
Definition 3.5]), through recursive relations (see (3.7) in [12]), which are much simpler
than (3.2) in Theorem 3. Off course, when dealing with structural sets of type B, the two
reconstruction formulas coincide.

4. Markov chains, birth and death processes

A Markov chain is a stochastic process {Xi : Ω→ E}i∈N on a probability space (Ω,F,P)
with values on a finite or countable space E such that

P(Xn+1 = j |X0 = i0, X1 = i1, . . . , Xn = in) = P(Xn+1 = j |Xn = in) ,

that is, the state Xn+1 of the system at time n+ 1 depends only on the state Xn at time
n. When the probability P(Xn+1 = j |Xn = i) is independent of n, the Markov chain is
said to have stationary transition probabilities. A Markov chain with stationary transition
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probabilities can be described by a (column) stochastic matrix P = (pij)i,j∈E, where pij
denotes the transition probability from j to i.

A stationary probability measure for a Markov chain is the common distribution of a
stationary Markov chain with stationary probability transitions. It is represented by a
vector π = (πj)j∈E such that πj ≥ 0,

∑
j∈E πj = 1, and Pπ = π.

One of the motivations for the main result in Section 6 is a class of random walks on the
set of states E = {0, 1, 2, . . .} also known as the discrete time birth-and-death process,
where the state space can be interpreted as the size of a certain population (for more
details see [13]). It is interesting to remark that many problems of the real world can
be modeled by birth-and-death processes: frequently cited examples include problems
in evolutionary biology, ecology, population genetics, epidemiology and queuing theory
(see [2, 7, 15] and references therein). The most simple example of this class can be
defined as follows: the transition probability from the state j to the state i is given by pij
where pii = δi, pi+1,i = bi and pi,i+1 = ci+1 (where i ∈ {0, 1, . . .}), satisfying

δ0 + b0 = 1, δi + bi + ci = 1 for any i ∈ {1, 2, . . .}
i.e.,

P = (pij) =


δ0 c1 0 . . .
b0 δ1 c2 . . .
0 b1 δ2 . . .
0 0 b2 . . .
...

...
...

...


is a column stochastic tridiagonal matrix.

In the particular case where bi = b and ci = c for all i, with b < c, it is possible to obtain

the stationary probability π explicitly as πi =
(
b
c

)i
π0 for i ∈ {0, 1, . . .}, just writing the

equations for the components of π in a recursive way. This procedure can be generalized
and the reader can easily check that the vector whose components are

πj =
b0b1 . . . bj−1

c1c2 . . . cj
π0 for j ≥ 1 (4.1)

satisfy Pπ = π. Hence if ∑
j=0

πj < +∞

this vector can be normalized and then there exists an invariant probability for this
process, say, a measure that is stationary for this stochastic process.

Inspired by this class of models one can consider the more general situation where each
state i ∈ {0, 1, . . .} is replaced by a finite set of states Γi, but keeping the interactions
among states stratified, in the sense that a point in Γi can only connect with other points
in Γi, Γi−1 or Γi+1. Rephrasing this idea, we consider a graph whose vertices are

⋃
i≥0 Γi

and whose edges (i, j) correspond to the following three cases (where k ∈ N):



STATIONARY MEASURES ON INFINITE GRAPHS 11

• i, j ∈ Γk
• i ∈ Γk and j ∈ Γk+1

• i ∈ Γk+1 and j ∈ Γk

With this set of states, the transition probabilities are now described by matrices ∆i, Bi

and Ci (for the precise definition, see Section 6) instead of the real parameters δi, bi and ci.
One can still consider the question of the existence (and uniqueness) of a stationary state;
an adapted version of (4.1) seems meaningless (since the matrices Ci are not necessarily
square, and even if they are square they do not need to be invertible), so an exact ex-
pression for the stationary probability is not known. Here we bypass this difficulty using
isospectral reduction theory.

5. Auxiliary Dynamics

In this section we introduce some auxiliary dynamical systems which will play a key
role in the proof of the main results leading to the existence of stationary measures for
a class W of tridiagonal stochastic infinite graphs. The strategy is based on the fact
that the isospectral reduction of a stochastic graph in W can be viewed as a graph in
W, which determines a nonlinear isospectral reducing map R : W → W. In the next
section we introduce a projection (β, γ) : W → R2 that to each stochastic graph in W

associates a pair of parameters (β, γ) ∈ W ⊂ R2 and a map F : W → W on the space
W of parameters (β, γ). The projection (β, γ) : W → W partially semi-conjugates the
isospectral reducing map R : W → W to F : W → W (see Proposition 6.4). This will
provide a sort of Lyapunov function to control the dynamics of map R : W→W.

Consider the map f : R\{1} → R defined by f(x) := x2

(1−x)2 (see Figure 2).

Figure 2. A trapping interval [0, 3−
√

5
2

] .
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The map f has a super attractive fixed point at the origin, where f(0) = f ′(0) = 0,

and a repelling fixed point at x = 3−
√

5
2

. Hence we have:

Proposition 5.1. For any 0 ≤ x < 3−
√

5
2

, limn→∞ f
n(x) = 0, with quadratic convergence.

Definition 5.1. Let W := {(β, γ) : 0 ≤ β < 1, 0 < γ < 1, β
γ2 <

3−
√

5
2
} and F : W → R2

be the map

F (β, γ) :=

(
β2

γ
, γ − β

γ

)
.

Next proposition shows that the function F induces a dynamical system on the space of
parameters W . The dynamics of F will be used to control, by comparison, the dynamics
of the isospectral reducing map R : W→W.

Proposition 5.2. If (β, γ) ∈ W and (β∗, γ∗) = F (β, γ) then

β∗

(γ∗)2
≤ f(β/γ2) <

3−
√

5

2
.

In particular, F (W ) ⊆ W .

Proof. Let (β∗, γ∗) = F (β, γ). Then

β∗

(γ∗)2
=
β2

γ

1

(γ − β
γ
)2

=
β2

γ3

1

(1− β
γ2 )2

≤ β2

γ4

1

(1− β
γ2 )2

= f(β/γ2) <
3−
√

5

2
,

where the last inequality holds because of Proposition 5.1 and the observations that
precede it. Since (β, γ) ∈ W we have that β < γ2 with γ ∈ (0, 1) which implies that
β2 < γ4 < γ. Hence β∗ ∈ [0, 1).

Because β ∈ [0, 1) we have that β/γ ≥ 0 which implies that γ∗ < 1. On the other hand,
γ∗ > 0 is equivalent to β < γ2, which holds because (β, γ) ∈ W . Hence γ∗ ∈ (0, 1). �

By the previous proposition the map F : W → W defines a dynamical system on the
set W (see Figure 3).

Definition 5.2. Given two maps F : X → X and f : Y → Y where (Y,≤) is a partially
ordered set, any function h : X → Y such that h ◦ F ≤ f ◦ h is called a partial semi-
conjugacy between F and f .

Consider the function ϕ : W → R, ϕ(β, γ) := β/γ2.

Corollary 5.3. ϕ ◦F ≤ f ◦ϕ, i.e., the function ϕ : W → R is a partial semi-conjugacy

between the maps F : W → W and f : [0, 3−
√

5
2

]→ [0, 3−
√

5
2

].
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Figure 3. This picture represents the region W and its image F (W ).

Proof. Let (β∗, γ∗) = F (β, γ). Then, using Proposition 5.2,

(ϕ ◦ F )(β, γ) = ϕ(β∗, γ∗) =
β∗

(γ∗)2
≤ f(

β

γ2
) = (f ◦ ϕ)(β, γ) .

�

Corollary 5.4. ϕ ◦ F n ≤ fn ◦ ϕ, for all n ∈ N.

Proposition 5.5. For all γ ∈ (0, 1), (0, γ) is a super-attractive fixed point of F : W → W

with Jacobian matrix JF (0, γ) =

(
0 0
− 1
γ

1

)
.

Proof. Straightforward calculation. �

Finally we describe the dynamics of the control map F : W → W .

Proposition 5.6. For every (β, γ) ∈ W there exists a unique fixed point (0, c) ∈ W such
that F n(β, γ) converges quadratically to (0, c).

Proof. Define (βn, γn) := F n(β, γ). Then

c := γ
∞∏
j=0

(
1− βj

γ2
j

)
≥ γ

∞∏
j=0

(
1− f j

(
β

γ2

))
> 0 (5.1)

because, by Corollary 5.4 and Proposition 5.1, the
βj
γ2
j
≤ f j( β

γ2 ) decays quadratically to 0.

By induction we get for all n ≥ 1

γn = γ

n−1∏
j=0

(
1− βj

γ2
j

)
.
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Thus c = limn→∞ γn with c ≤ γn and quadratic convergence.
Moreover, since βn ≤ fn(β/γ2), the sequence βn converges quadratically to 0. �

Remark 5.1. The function h : W → R, c = h(β, γ) defined in (5.1) is F -invariant. Its
levels sets are the flow lines of the dynamics of F , depicted in Figure 3.

6. Tridiagonal Stochastic Infinite Graphs

In this section we introduce a class of tridiagonal stochastic infinite graphs for which
the existence and uniqueness of a stationary measure is proven. The proof exploits the
dynamics of a nonlinear isospectral reduction operator, acting on some appropriate space
of tridiagonal stochastic graphs, and provides a super-exponential numerical scheme to
approximate the stationary measure.

Let N be the set of non-negative integers and let `1(N) be the Banach space of summable
sequences of real numbers endowed with the norm ‖x‖1 :=

∑
i∈N

∣∣xi∣∣. Consider a stochastic
operator T : `1(N)→ `1(N) determined by a block tridiagonal matrix

T =


∆0 C1 0 0 · · ·
B0 ∆1 C2 0 · · ·
0 B1 ∆2 C3 · · ·
0 0 B2 ∆3

. . .
...

...
...

. . . . . .

 (6.1)

where {dk}k≥0 is a sequence of positive integers, ∆k ∈ Matdk×dk(R), Bk ∈ Matdk+1×dk(R)
for k ≥ 0 and Ck ∈ Matdk−1×dk(R) for k ≥ 1 are sub-stochastic matrices.

We say that a matrix A ∈ Matd×d′(R) is sub-stochastic, resp. strictly sub-stochastic, if it
has non-negative entries and the sum of each column is ≤ 1, resp. < 1. When the sum of
each column is 1 we say that the matrix is stochastic. For an operator T : `1(N)→ `1(N),
represented by an infinite matrix (tij)i,j∈N with non-negative entries, we say that T is
stochastic if

∑
i∈N tij = 1, for all j ∈ N.

Consider the associated weighted graph G = (N,T) which can be described as follows.
Partition N as the union of a sequence of intervals {Id0 , Id1 , . . .}, where each Idk is the
integer interval with dk elements defined by

Idk :=

[
k−1∑
j=0

dj,−1 +
k∑
j=0

dj

]
.

Notice that Id0 = {0, 1, . . . , d0−1}, Id1 = {d0, d0+1, . . . , d0+d1−1}, etc. Let Γk = (Idk ,∆k)
for k ≥ 0, and consider the graph sequence (Γk)k≥0. The graph G can be viewed as the
union of the graphs Γk, where the matrix Bk describes the transitions from Γk to Γk+1

(k ≥ 0), the matrix Ck describes the transitions from Γk to Γk−1 (k ≥ 1) and ∆k represents
the internal transitions on Γk. No other transitions exist (see Figure 4).
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Figure 4. The first three subgraphs of the sequence (Γk)k≥0.

Consider the structural set S = Id0 ∪ Id2 ∪ · · · which corresponds to the vertices of the
graphs Γ2k, k ≥ 0.

Let E = `1(N), S = `1(S) and S̄ = `1(S̄). The subspace S, resp. S̄, will be regarded as a
subspace of E by extending its elements as 0 outside S, resp. S̄. With these identifications
we have E = S⊕ S̄.

The reduced operator on S for λ = 1, T∗ := RT,S,S̄(1) : S→ S (see (3.1))

T∗ = TSS − TSS̄ (TS̄S̄ − I)−1
TS̄S (6.2)

is well defined when 1 /∈ sp(TS̄S̄).
Making the canonical identification S̄ ≡ N, the operator TS̄S̄ is represented by the

matrix

TS̄S̄ =


∆1 0 0 · · ·
0 ∆3 0 · · ·
0 0 ∆5 · · ·
...

...
. . .

 .

In the sequel we introduce a class of tridiagonal stochastic operators W such that
1 /∈ sp(TS̄S̄) for all T ∈W.

Remark 6.1. The stochastic reductions defined by equation (6.2) were used in a finite
dimensional setting in [1] where a method was introduced for predicting the formation
or the detection of unobserved links in real-world networks, referred to as the method of
effective transitions. This method relies on the theory of isospectral matrix reductions to
compute the probability of eventually transitioning from one vertex to another in a (biased)
random walk on the network.

In the sequel we will be using the following notation: On the Euclidean space Rd we
consider the sum norm

‖x‖ :=
∑
i

|xi|
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and for a matrix A = [aij] we consider the matrix norm

‖A‖ := max
j

∑
i

|aij|.

Notice that these norms satisfy ‖Ax‖ ≤ ‖A‖ ‖x‖. These relations also hold for infinite
matrices with the obvious adaptations of the norm’s definitions. Let 1 =

[
1 1 · · · 1

]
denote any array with all entries equal to 1. With this notation a matrix A with non-
negative entries is stochastic, resp. sub-stochastic, if 1A = 1, resp. 1A ≤ 1. The
stochastic character of T is equivalent to 1∆0 +1B0 = 1 and 1Ck +1∆k +1Bk = 1 for
all k ≥ 1.

The norm ‖T‖ of the stochastic operator T defined by (6.1) is clearly 1.

We assume that the operator T defined by (6.1) and its block matrices satisfy

(a) all matrices ∆k, Bk and Ck have non-negative entries,
(b) 1∆0 + 1B0 = 1,
(c) 1Ck + 1∆k + 1Bk = 1, for all k ≥ 1,
(d) ‖Bk‖ ≤ β, for all k ≥ 0,
(e) 1Ck ≥ γ 1, for all k ≥ 1,

for some constants 0 ≤ β < 1 and 0 < γ < 1 such that

β

γ2
<

3−
√

5

2
(6.3)

Let W denote the space of all operators T satisfying (a)-(e) for some (β, γ) ∈ W .
Notice the sequence of dimensions {dk} is not fixed in the definition of W, which means
that different operators in W may be associated to sequences of graphs with different
dimensions.

Conditions (a)-(c) imply that T is a stochastic operator. In particular, ‖T‖ = 1.
Condition (d) says that β is an upper bound for the column’ sums of all matrices Bk,

while condition (e) says that γ is a lower bound for every column’ sum of all matrices Ck.
In particular, Ck 6= 0, for all k ≥ 1. Hence, we always have transitions from the graph Γk
to the graph Γk−1 for all k ≥ 1. Conditions (c) and (e) ensure that all matrices ∆k and
Bk are strictly sub-stochastic for all k ≥ 1. In particular TS̄,S̄ is a strictly substochastic
operator with ‖TS̄,S̄‖ < 1. Hence the reduced operator (6.2) is well defined.

We can represent the operator T by a stochastic matrix (tij)i,j∈N and consider the
Markov chain with state space N in which the transition from j to i has probability tij.
A fixed point Tq = q ∈ `1(N) with

∑
j∈N qj = 1 and qj ≥ 0 for all j ∈ N is called a

stationary probability measure of T. A stationary probability measure is called ergodic if
it is an extremal point of the compact convex set of all stationary probability measures.

We say that j leads to i if there exists m ≥ 1 such that tmij > 0, where tmij is the (i, j)-
entry of Tm. Two states i and j communicate when i leads to j and j leads to i. The
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recurrent set is defined as the set of all states i ∈ N such that i leads to i. This set can be
split into equivalence classes, each class being formed by states that communicate with
each other. The set of all these classes is then partially ordered as follows: C1 ≥ C2 if i1
leads to i2 for some i1 ∈ C1 and i2 ∈ C2. At the bottom of this hierarchy are the essential
classes. More precisely, a class C is called essential if for every i ∈ C, if i leads to j then
j leads to i.

Recall that a matrix A ∈ Matd×d(R) with non-negative entries is primitive when there
exists n ≥ 1 such that all entries of An are strictly positive.

The next proposition establishes the uniqueness of the stationary probability measure
for an operator T ∈ W. The less trivial issue of existence of a stationary probability
measure will be dealt with latter (see Corollary 6.17).

Proposition 6.1. If T ∈ W and ∆0 is primitive, then T has at most one stationary
probability measure whose support contains Id0.

Proof. From the Theory of Markov Chains (see [10, Theorem 5.7]) each ergodic stationary
probability measure on N is associated with an essential class of states in N.

Since ∆0 is primitive all states in Id0 are recurrent and communicate among themselves,
i.e., they are contained in the same class. On the other hand, since 1Ck ≥ γ 1 all states
in N lead to a state in Id0 . Hence all states in Id0 are essential. Moreover every essential
class must contain a state in Id0 . Therefore there exists a unique essential class, which
matches the support of a unique ergodic stationary measure. This implies that there is
at most one stationary probability measure. �

Next we describe the reduction T∗ in (6.2) of an operator T ∈ W. We make the
identification S = N which formally corresponds to defining T∗ := Ψ◦RT,`1(S),`1(S)(1)◦Ψ−1,
where Ψ : `1(S)→ `1(N) is the bounded linear isomorphism (Ψu)(n) := u(2n).

Proposition 6.2. Given T ∈W the reduced operator is

T∗ =


∆∗0 C∗1 0 0 · · ·
B∗0 ∆∗1 C∗2 0 · · ·
0 B∗1 ∆∗2 0 · · ·
0 0 B∗2 0 · · ·
...

...
...

. . .


with

∆∗0 = ∆0 + C1 (I −∆1)−1B0

∆∗k = ∆2k + C2k+1 (I −∆2k+1)−1B2k +B2k−1 (I −∆2k−1)−1C2k

B∗k = B2k+1 (I −∆2k+1)−1B2k

C∗k = C2k−1 (I −∆2k−1)−1C2k .
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Proof. Follows from the definition of the reduced operator in (6.2). �

In the following proposition we note that isospectral reduction preserves the stochastic
character of an operator T ∈W.

Proposition 6.3. If T ∈W then T∗ is stochastic.

Proof. Since (I − ∆k)
−1 =

∑∞
n=0 ∆n

k , all these matrices have non-negative entries. It
follows that ∆∗k, B

∗
k and C∗k have also non-negative entries. Using Proposition 6.2 and

that 1Ck + 1Bk = 1− 1∆k = 1 (I −∆k) for all k ≥ 1, we have that

1C∗k + 1∆∗k + 1B∗k = 1C2k−1 (I −∆2k−1)−1C2k + 1∆2k + 1C2k+1 (I −∆2k+1)−1B2k

+1B2k−1 (I −∆2k−1)−1C2k + 1B2k+1 (I −∆2k+1)−1B2k

= (1C2k−1 + 1B2k−1) (I −∆2k−1)−1C2k + 1∆2k

+(1C2k+1 + 1B2k+1) (I −∆2k+1)−1B2k

= 1 (I −∆2k−1) (I −∆2k−1)−1C2k + 1∆2k

+1 (I −∆2k+1) (I −∆2k+1)−1B2k

= 1C2k + 1∆2k + 1B2k = 1 .

Analogously, we can check that 1∆∗0 + 1B∗0 = 1. �

We introduce a couple of measurements β, γ : W→ R of an operator T ∈W:

β(T) := inf{b > 0: 1Bk ≤ b1, ∀k ≥ 0 }
γ(T) := sup{c > 0: 1Ck ≥ c1, ∀k ≥ 1}

By the definition of W, these are the components of a joint function (β̂, γ̂) : W → W ,
where the set W was introduced in Definition 5.1.

We call reducing map to R : W → L(`1(N), `1(N)), defined by R(T) := T∗. In the
following proposition we prove that the reducing map takes values in W, thus inducing
a dynamical system R : W → W. We also introduce a partial order on the space W for
which the operator R : W → W is partially semi-conjugated to the maps F : W → W

and f : [0, 3−
√

5
2

]→ [0, 3−
√

5
2

]. This will allow us to control the dynamics of the reduction
procedure.

Proposition 6.4. If T ∈W then

β(T∗)

γ(T∗)2
≤ f

(
β(T)

γ(T)2

)
<

3−
√

5

2
.
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In particular T∗ ∈W.

Proof. Let β = β̂(T) and γ = γ̂(T). Because 1Ck ≥ γ 1 we have

‖∆k‖ = ‖1∆k‖∞ ≤ 1− γ

and hence

‖(I −∆k)
−1‖ ≤ 1

1− ‖∆k‖
≤ 1

1− (1− γ)
=

1

γ
.

Since

B∗k = B2k+1 (I −∆2k+1)−1B2k

we get

‖B∗k‖ ≤
β2

γ
.

Thus β∗ := β(T∗) ≤ β2

γ
.

Since

C∗k = C2k−1 (I −∆2k−1)−1C2k

from (c) we get

1C∗k = 1C2k−1 (I −∆2k−1)−1C2k

= ((1 (I −∆2k−1)− 1B2k−1) (I −∆2k−1)−1C2k

= 1C2k − 1B2k−1 (I −∆2k−1)−1C2k

≥ γ 1− ‖1B2k−1 (I −∆2k−1)−1C2k‖∞ 1.

On the other hand

‖1B2k−1 (I −∆2k−1)−1C2k‖∞ = ‖B2k−1 (I −∆2k−1)−1C2k‖
≤ ‖B2k−1‖ ‖(I −∆2k−1)−1‖ ‖C2k‖

≤ β

γ
.

Thus

1C∗k ≥ (γ − β

γ
)1

and γ∗ := γ(T∗) ≥ γ − β
γ
. From the inequalities β∗ ≤ β2

γ
and γ∗ ≥ γ − β

γ
and using

Proposition 5.2, we deduce that

β(T∗)

γ(T∗)2
=

β∗

(γ∗)2
≤ f

(
β(T)

γ(T)2

)
<

3−
√

5

2
.

In particular, T∗ ∈W. �
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We denote by Rn the n-th iterate of the map R : W → W, i.e., Rn := R ◦ · · · ◦ R
(composition with n factors) for n ≥ 0.

Consider the partial order relation on W defined by (β1, γ1) . (β, γ) if β1 ≤ β and
γ1 ≥ γ.

Corollary 6.5. (β̂, γ̂) ◦ R . F ◦ (β̂, γ̂), i.e., the function (β̂, γ̂) : W → W is a partial
semi-conjugacy between R : W→W and F : W → W .

Corollary 6.6. Given T ∈W, let Tn := Rn(T), for n ≥ 0. Then

(1) βn := β(Tn) decays quadratically to 0.
(2) There exists c = c(T) > 0 such that γn := γ(Tn) ≥ c for all n ≥ 1.

Proof. Since (β̂, γ̂) : W→ W is a partial semi-conjugacy we have

(βn, γn) = ((β̂, γ̂) ◦ Rn)(T) . (F n ◦ (β̂, γ̂))(T) = F n(β0, γ0).

By Proposition 5.6, (β]n, γ
]
n) := F n(β0, γ0) converges quadratically to some fixed point

(0, c) ∈ W where c = c(T) > 0. Hence βn ≤ β]n converges quadratically to 0. Moreover
γn ≥ γ]n, where γ]n converges to c. Therefore γn ≥ c. �

We now show that R : W → W has an attractor W0 consisting of all T ∈ W such
that Bk = 0 for all k ≥ 0. Given T ∈ W0 and assuming ∆0 is primitive, arguing as in
Proposition 6.1, the set Id0 is the unique essential class. Because Id0 is finite, in this case
there exists a unique stationary probability measure supported in Id0 .

Next define a projection Π: W→W0, T 7→ T0, by

T0 :=


∆0
k = ∆k + B̃k if k ≥ 0

C0
k = Ck if k ≥ 1

B0
k = 0 if k ≥ 0

, (6.4)

where B̃k ∈ Matdk×dk(R) is the matrix with all rows equal to 1
dk
1Bk. Remark that if ∆0

is primitive then so it is the matrix ∆0
k.

The next proposition is a first step to prove that W0 is an attractor of R : W→W.

Proposition 6.7. Given T ∈ W, let Tn = Rn(T), n ≥ 0, and consider the associated
family of sub-stochastic matrices (Bn

j ,∆
n
j , C

n
j+1)j≥0. Then the sequence of matrices ∆n

0

converges to a stochastic matrix ∆∞ ∈ Matd0×d0(R).
Moreover if ∆0

0 is primitive then so is ∆∞.

Proof. Since, by Proposition 6.2 and Corollary 6.6,

‖∆n+1
0 −∆n

0‖ = ‖Cn
1 (I −∆n

1 )−1Bn
0 ‖ ≤ ‖Cn

1 ‖ ‖(I −∆n
1 )−1‖ ‖Bn

0 ‖ ≤
βn
γn
≤ βn

c
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and βn converges quadratically to 0, the sequence ∆n
0 is Cauchy. Thus it converges to

some matrix ∆∞.
Because Tn is a stochastic operator we have for all n ≥ 0

1∆n
0 + 1Bn

0 = 1.

Since Bn
0 converges to 0 taking the limit as n→∞ we get 1∆∞ = 1, which proves that

∆∞ is a stochastic matrix.
Finally notice that ∆n+1

0 = ∆n
0 + Cn

1 (I − ∆n
1 )−1Bn

0 ≥ ∆n
0 because the matrices Cn

1 ,
(I −∆n

1 )−1 =
∑∞

j=0(∆n
1 )j and Bn

0 have non-negative entries. Choose k ∈ N such that the

matrix (∆0
0)k has all its entries positive. The previous inequality implies by induction that

(∆n
0 )k ≥ (∆0

0)k. Consequently, taking the limit we have (∆∞)k ≥ (∆0
0)k which implies

that ∆∞ is primitive. �

To control the convergence (in our scheme) to the stationary measure, we need the
following family of weighted norms. Given a parameter µ > 1 we introduce a seminorm
on the space of sequences X = (Xn)n∈N, where Xn ∈ Rdn for each n ∈ N, defined by

‖X‖µ :=
∞∑
n=1

µn ‖Xn‖1.

Let `1
µ(N) be the space of sequences X = (Xn)n∈N such that ‖X‖µ < +∞.

Proposition 6.8. Given T ∈W, a number µ > 1 and any norm ‖·‖∗ on Rd0 the operator
T :

(
`1
µ(N), ‖·‖∗µ

)
→
(
`1
µ(N), ‖·‖∗µ

)
is bounded, where ‖·‖∗µ stands for the norm ‖X‖∗µ :=

‖X0‖∗ + ‖X‖µ.

Proof. Analogous to that of the following Proposition 6.9. �

The projection Π defined at (6.4) contracts the norm ‖·‖µ.

Proposition 6.9. Given T ∈ W let Π = Π(T). Taking c = c(T) ∈ (0, 1) as in Corol-
lary 6.6 and setting µ = 2/c then the truncated operator Π :

(
`1
µ(N), ‖·‖µ

)
→
(
`1
µ(N), ‖·‖µ

)
is a (1− c

2
)-contraction, i.e., for all X ∈ `1

µ(N),

‖Π(X)‖µ ≤ (1− c

2
) ‖X‖µ.

Proof. Let Π = Π(T) and consider the associated sub-stochastic matrices (∆k, Ck+1)k≥0.
If X ′ = Π(X) then ∀n ≥ 0

X ′n = ∆nXn + Cn+1Xn+1
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Hence

‖Π(X)‖µ = ‖X ′‖µ =
∞∑
n=1

µn ‖∆nXn + Cn+1Xn+1‖1

≤
∞∑
n=1

‖∆n‖µn ‖Xn‖1 +
1

µ
‖Cn+1‖µn+1 ‖Xn+1‖1

≤ (1− c+
1

µ
) ‖X‖µ

Since

µ =
2

c
⇔ 1− c+

1

µ
= 1− c

2
the claim follows. �

Given Π = Π(T) with T ∈ W as above consider the following Π-invariant direct sum
decomposition into closed linear subspaces

`1
µ(N) = E0 ⊕ E1

where

E0 = {X ∈ `1
µ(N) : Xn = 0, ∀n ≥ 1} ≡ Rd0

E1 = {X ∈ `1
µ(N) : X0 = 0}.

Proposition 6.10. Given T ∈W let Π = Π(T) and assume that the sub-stochastic matrix
∆0 = ∆0(T) is primitive. Then there exists a Π-invariant direct sum decomposition into
closed linear subspaces

E0 = H0 ⊕ 〈q0〉
where Π(q0) = q0 and H0 is the space of vectors supported in Id0 with zero total mass.
Moreover Π|H0 : H0 → H0 is a contraction on the finite dimensional subspace H0 ' Rd0−1.
Furthermore, the contraction rate of Π|H0 depends only on ∆0(T).

Proof. Note that if we make the identification E0 ≡ Rd0 then the operator Π|E0 is repre-
sented by the primitive stochastic matrix ∆0 = ∆0(Π).

Note also that ∆0(Π)k ≥ ∆0(T)k in a component-wise sense. �

Corollary 6.11. Given T ∈ W let Π = Π(T) and assume that the sub-stochastic matrix
∆0 = ∆0(T) is primitive. Then there exists an adapted norm ‖·‖∗ on E0 and a Π-invariant
direct sum decomposition into closed linear subspaces

`1
µ(N) = (E1 ⊕H0)⊕ 〈q0〉

where Π(q0) = q0 and Π|E1⊕H0 : E1 ⊕ H0 → E1 ⊕ H0 is a contraction w.r.t. the norm
‖X‖∗µ := ‖X0‖∗ + ‖X‖µ on `1

µ(N).

Proof. Follows from the previous two propositions adapting the norm on H0. �
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The following proposition shows that β controls the distance from T ∈W to W0.

Proposition 6.12. Given T ∈W there is a constant C <∞ depending only on ∆0(Π(T))
such that ‖T − Π(T)‖∗µ ≤ 2C β, where ‖·‖∗µ denotes the operator norm w.r.t. the norm

‖·‖∗µ on `1
µ(N).

Proof. Up to some constant c0 <∞ which depends only on the adapted norm ‖·‖∗ (hence
depending only on ∆0(Π(T))) we have that

‖B̃0X0‖∗ =
1

d0

‖B0X0‖∗ ≤ c0 β ‖X0‖∗.

Therefore writing Π = Π(T)

‖T(X)− Π(X)‖∗µ = ‖B̃0X0‖∗ +
∞∑
n=1

µn ‖Bn−1Xn−1 + B̃nXn‖1

≤ c0 β ‖X0‖∗ +
∞∑
n=1

β µn ‖Xn−1‖1 +
∞∑
n=1

β µn ‖Xn‖1

≤ c0 β ‖X0‖∗ + µβ ‖X0‖1 + µβ ‖X‖µ + β ‖X‖µ
≤ c1 β ‖X0‖∗ + (1 + µ) β ‖X‖µ ≤ C β ‖X‖∗µ

for some appropriate constant c1 <∞ and where C := max{c1, 1 + µ}. �

Given T ∈ W, making the canonical identification S ≡ N, the reconstruction operator
ΦT = ΦT,S,S̄(1) : `1(S)→ `1(N) becomes an operator on `1(N) which can be characterized
as follows: Given V = (Vk)k∈N and U = (Uk)k∈N such that each Uk is a vector with dk
elements and each Vk is a vector with d2k elements,

U = ΦT(V ) ⇔


Uk = V k

2
if k even

Uk = (I −∆k)
−1Ck+1V k+1

2
+ (I −∆k)

−1Bk−1V k−1
2

if k odd
.

Next we provide a bound for the norm of the reconstruction operator ΦT.

Proposition 6.13. If T ∈W then the operator ΦT has norm

‖ΦT‖ ≤
1 + γ + β

γ
.
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Proof. Given V = (Vk)k∈N ∈ `1(N), we have that

‖ΦT(V )‖1 =
∑
k even

‖V k
2
‖1 +

∑
k odd

‖(I −∆k)
−1Ck+1V k+1

2
+ (I −∆k)

−1Bk−1V k−1
2
‖1

≤
∑
k even

‖V k
2
‖1 +

∑
k odd

(
‖(I −∆k)

−1‖‖Ck+1‖‖V k+1
2
‖1 + ‖(I −∆k)

−1‖‖Bk−1‖‖V k−1
2
‖1

)

≤
(

1 +
1

γ
+
β

γ

)
‖V ‖1 =

1 + γ + β

γ
‖V ‖1 .

�

Consider the convex cone

`1
+(N) := {x ∈ `1(N) : xj ≥ 0, ∀j ∈ N}

and the ∞-dimensional simplex

∆1(N) := {x ∈ `1
+(N) :

∑
j∈N

xj = 1}.

Let π : `1
+(N)→ ∆1(N) be the canonical (nonlinear) projection π(x) := x/‖x‖.

Lemma 6.14. For all x, y ∈ `1
+(N) with ‖x‖1 ≥ h and ‖y‖1 ≥ h,

‖π(x)− π(y)‖1 ≤ 2h−1 ‖x− y‖1.

Proof. It is enough proving this proposition with ‖x‖1 = h = 1 and ‖y‖1 ≥ 1. Notice that
π is a map of class C1 such that for any x ∈ ∆1(N) and any u ∈ `1(N)

Dπx(u) = u− (
∑
k

uk)x.

Thus

‖Dπx(u)‖1 ≤ ‖u‖1 + (
∑
k

∣∣uk∣∣) ‖x‖1 = 2 ‖u‖1.

Hence, if π(x) = x and ‖y‖1 ≥ 1 then

‖π(x)− π(y)‖1 = ‖x− y∑
k yk
‖1 ≤ ‖y − (

∑
k

yk)x‖1

= ‖y − x− (
∑
k

yk − xk)x‖1 = ‖Dπx(y − x)‖1

≤ 2 ‖y − x‖1.

�

Next define the nonlinear map Φ̃T : ∆1(N)→ ∆1(N) setting Φ̃T = π ◦ ΦT.
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Proposition 6.15. Given T ∈W, then for all V, V ′ ∈ ∆1(N),

‖Φ̃T(V )− Φ̃T(V ′)‖1 ≤
2 (1 + γ + β)

γ
‖V − V ′‖1 .

Proof. If V ∈ ∆1(N) and U = ΦT(V ) then Uk = V k
2

when k is even while otherwise

Uk = (I −∆k)
−1Ck+1V k+1

2
+ (I −∆k)

−1Bk−1V k−1
2
.

Therefore, when k is odd, because 1Ck ≥ γ1 and ‖I −∆k‖ ≤ 1, we have

‖Uk‖ = ‖(I −∆k)
−1Ck+1V k+1

2
+ (I −∆k)

−1Bk−1V k−1
2
‖

≥ ‖(I −∆k)
−1Ck+1V k+1

2
‖

≥ ‖(I −∆k)(I −∆k)
−1Ck+1V k+1

2
‖

= ‖Ck+1V k+1
2
‖ ≥ γ ‖V k+1

2
‖ .

Thus, since
∑
k even

‖V k
2
‖ = 1 and

∑
k odd

‖V k+1
2
‖ = 1− ‖V0‖, one has

‖ΦT(V )‖ ≥ 1 + γ (1− ‖V0‖) ≥ 1.

By Lemma 6.14 and Proposition 6.13, it follows that

‖Φ̃T(V )− Φ̃T(V ′)‖1 ≤ 2 ‖ΦT(V )− ΦT(V ′)‖1

≤ 2 ‖ΦT‖ ‖V − V ′‖1

≤ 2 (1 + γ + β)

γ
‖V − V ′‖1 .

�

The following lemma is an easy exercise.

Lemma 6.16. Let (X, d) be a complete metric space and Tj : X → X be Lipschitz con-
tractions, for j = 1, 2, such that Lip(T1) ≤ κ < 1. If xj = Tj(xj) is the unique fixed point
of Tj, j = 1, 2, then

d(x1, x2) ≤ d∞(T1, T2)

1− κ
,

where d∞(T1, T2) := supx∈X d(T1(x), T2(x)).

We now state and prove our main theorem which establishes the existence and unique-
ness of a stationary measure, also providing a method to approximate this stationary
measure for any stochastic operator T ∈W. The convergence of this method is quadratic,
faster than any other method based on the Perron-Frobenius theorem.
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Theorem 4. Given T ∈ W such that ∆0 is primitive the stochastic operator T has a
unique stationary probability measure q ∈ ∆1(N). Moreover q can be well approximated
in the following way: Set Tj = Rj(T) for 0 ≤ j ≤ n and let q0 := (V0, 0, 0, . . .) ∈ `1(N) be
the unique fixed point of Π(Tn) in ∆1(N), where V0 is a vector with d0 entries. Then

‖q∗n − q‖1 ≤ 2n+1

(
1 + γ + β

γ

)n
βn where q∗n = (Φ̃T0 ◦ Φ̃T1 ◦ · · · ◦ Φ̃Tn−1)(q0).

In particular the approximation error εn := 2n+1
(

1+γ+β
γ

)n
βn decays quadratically to 0.

Proof. Given T ∈W consider the stochastic matrix ∆∞ = ∆∞(T) in the previous propo-
sition. Since ∆∞ is primitive we can take an adapted norm ‖·‖0 in Rd0 such that for some
ρ ∈ (0, 1) we have that ‖∆∞x‖0 ≤ ρ ‖x‖0 for all x ∈ Rd0 with

∑
j xj = 0. Let Tn := Rn(T) ,

with associated sub-stochastic matrices (Bn
j ,∆

n
j , C

n
j+1)j≥0. For n large enough ∆n

0 ≈ ∆∞.
Hence we can assume, possibly replacing ρ by ρ1 ∈ (ρ, 1), that ‖∆n

0x‖0 ≤ ρ ‖x‖0 for all
x ∈ Rd0 with

∑
j xj = 0.

Then by Corollary 6.11, Π(Tn) is a good contraction on the space of probability mea-
sures w.r.t the distance d∗µ(q, q′) = ‖q − q′‖∗µ.

Let qn ∈ ∆1(N) be the true fixed point of Tn = Rn(T). By Lemma 6.16 and Proposi-
tion 6.12, we conclude that

‖q0 − qn‖1 ≤ d∗µ(q0, qn) . βn .

Finally, since by Theorem 3, q := (Φ̃T0 ◦ Φ̃T1 ◦ · · · ◦ Φ̃Tn−1)(qn) is an invariant probability
measure of T, using Proposition 6.15 one has

‖q∗n − q‖1 ≤
(

2
1 + γ + β

γ

)n
‖qn − q0‖1

. 2n+1

(
1 + γ + β

γ

)n
βn .

�

We now establish the existence of a stationary measure (the uniqueness was established
in Proposition 6.1) under a slightly different assumption. Compare item (d) below and
item (d) in the definition of the space W.

Corollary 6.17. Assume that the operator T defined in (6.1) and its associated matrices
satisfy for some constant γ > 0

(a) all matrices ∆k, Bk and Ck have non-negative entries,
(b) 1∆0 + 1B0 = 1,
(c) 1Ck + 1∆k + 1Bk = 1, for all k ≥ 1,
(d) ‖Bk‖ ≤ βk, for all k ≥ 0, where the sequence (βk)k∈N0 converges to zero.
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(e) 1Ck ≥ γ 1, for all k ≥ 1.
(f) ∆0 is primitive.

Then T has a unique stationary probability measure.

Proof. We just need to group the graphs Γ0,Γ1, . . . ,Γk for some large enough k so that

βk/γ
2 < (3−

√
5)/2.

�

7. Some examples

We want to exhibit here some examples where Corollary 6.17 can be applied. Let us
fix the constant 0 < γ < 1 and a sequence {βk}k≥0 that converges to zero.

7.1. The Z2 lattice: First consider the following undirected graph GZ2 (with loops)
whose vertices are the points of Z2 and the edges correspond to connections from (i, j) to
(x, y) where ‖(x− i, y− j)‖1 = 1 and ‖(x1, x2)‖1 := |x1|+ |x2|. Then we partition Z2 into
the sets

Γk = {(i, j) : ‖(i, j)‖1 = k} for any k ≥ 0 .

Let GZ2 be the class of stochastic graphs satisfying (see Figure 5):

(1) Every graph in GZ2 is supported on GZ2 , in the sense that all non-zero probability
transitions either correspond to loops or else edges of GZ2 .

(2) The sum of all probability transitions from (i, j) ∈ Γk to any other vertex in Γk+1

is always ≤ βk, for all k ≥ 0.
(3) The sum of all probability transitions from (i, j) ∈ Γk to any other vertex in Γk−1

is always ≥ γ, for all k ≥ 1.
(4) The probability of remaining at (0, 0) is strictly positive.

The graphs of this class satisfy all the hypothesis of Corollary 6.17. Conditions (a)-(c)
hold because these graphs are stochastic. Items (d) and (e) follow from conditions (2)
and (3), respectively. Finally, by (4) the sub-stochastic matrix ∆0 is clearly primitive.

7.2. The Bethe lattice: The Bethe lattice B(z) with coordination number z is the
undirected graph where each vertex is connected to exactly z other vertices. We fix some
site p and call it the origin; the set Γ0 contains only this point. The origin is conected to
z other points, that form the set Γ1. Each point of Γ1 is connected to z other points, one
of them in Γ0 and the others belonging to the set we call Γ2. The procedure is repeated
for the other Γk.

Let GB(z) be the class of stochastic graphs satisfying (see Figure 6):

(1) Every graph in GB(z) is supported on B(z), in the sense that all non-zero probability
transitions either correspond to loops or else edges of B(z).
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Figure 5. The first three subgraphs of the sequence (Γk)k≥0.

(2) The sum of all probability transitions from v ∈ Γk to any other vertex in Γk+1 is
always ≤ βk, for all k ≥ 0.

(3) The sum of all probability transitions from v ∈ Γk to any other vertex in Γk−1 is
always ≥ γ, for all k ≥ 1.

(4) The probability of remaining at the root p is strictly positive.

Figure 6. The first three subgraphs of the sequence (Γk)k≥0 for the Bethe
lattice when z = 3.
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The graphs of this class satisfy all the hypothesis of Corollary 6.17. Conditions (a)-(c)
hold because these graphs are stochastic. Items (d) and (e) follow from conditions (2)
and (3), respectively. Finally, by (4) the sub-stochastic matrix ∆0 is clearly primitive.

7.3. Bounded range lattices. Consider a graph G whose vertex set can be partitioned

as a disjoint union V =
⋃̇
i∈NVi. We say that G is a bounded range lattice if there exists

an integer constant K such that for all i, j ∈ N, if some edge of G has endpoints in Vi
and Vj then |i− j| ≤ K.

For such graphs, defining the new partition

Γj =
⋃

jK≤i≤(j+1)K−1

Vi ,

the interactions only connect sites lying in the same Γi or sites in Γi and Γj such that
|i−j| = 1. Hence the infinite matrix describing the possible transitions of this partitioned
graph is tridiagonal, showing that this operator can indeed be considered as a particular
case of the one analysed in Section 6.

8. Computational algorithm

In this section we describe a numerical algorithm to approximate the stationary measure
of a stochastic graph via an isospectral reduction algorithm implicit to the statement of
Theorem 4.

Isospectral Reduction-Reconstruction Algorithm. An algorithm for approximat-
ing a stationary measure.

Input:

• {(Bn
j ,∆

n
j , C

n
j+1)}j≥0 stochastic operator in W,

• N number of isospectral reduction steps,
• M controls the size 2N+M of the output approximation.

Output: {V 0
j }0≤j≤2N+M approximation of the stationary vector.

The reduction algorithm is based on the following recursive relations: for any n ≥ 0

∆n+1
0 := ∆n

0 + Cn
1 (I −∆n

1 )−1B0

∆n+1
k := ∆n

2k + Cn
2k+1 (I −∆n

2k+1)−1Bn
2k +Bn

2k−1 (I −∆n
2k−1)−1Cn

2k (k ≥ 1)

Bn+1
k := Bn

2k+1 (I −∆n
2k+1)−1Bn

2k (k ≥ 1)

Cn+1
k := Cn

2k−1 (I −∆n
2k−1)−1Cn

2k (k ≥ 0) .

Using these equations one computes {(BN
j ,∆

N
j , C

N
j )}0≤j≤2M . Let MN,M be the nor-

malized stochastic tridiagonal operator obtained from these sub-stochastic blocks and
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compute the normalized eigenvector {V N
j }0≤j≤2M of MN,M . Then using the following

regressive recursion one computes, while n ≥ 0,

V n−1
k := V n

k
2

if k even,

V n−1
k := (I −∆n−1

k )−1Cn−1
k+1V

n
k+1

2

+ (I −∆n−1
k )−1Bn−1

k−1V
n
k−1

2

if k odd.

The approximate normalized eigenvector of the original operator is the vector {V 0
j }0≤j≤2N+M .

Bounds on the computational cost. Let GN,M be a tree whose vertices are the symbols
Bn
j , ∆n

j and Cn
j , with 0 ≤ n ≤ N and 0 ≤ j ≤ 2N+M , that are used in the computation of

{(BN
j ,∆

N
j , C

N
j )}0≤j≤2M through the above recursive equations. Each vertex Bn

k , ∆n
k or Cn

k

is connected to those on which its calculation through the previous recursive equations
depends on. These edges determine a directed graph structure on GN,M .

We also define a tree RN,M whose vertices are the symbols V n
j , with 0 ≤ n ≤ N and

0 ≤ j ≤ 2N+M , that are used in the regressive recursive computation of {V 0
j }0≤j≤2N+M .

Each vertex V n
k is connected to V n+1

k/2 if k is even, or to both V n+1
(k−1)/2 and V n+1

(k+1)/2 when k

is odd. These edges determine a directed graph structure on RN,M .
The roots of GN,M are the output nodes {(BN

j ,∆
N
j , C

N
j )}0≤j≤2M , while the end-leafs

contain the input nodes {(B0
j ,∆

0
j , C

0
j )}0≤j≤2N+M . Analogously, the roots of RN,M are the

output nodes {V 0
j }0≤j≤2N+M , while the end-leafs contain the input nodes {V N

j }0≤j≤2M .
The number of nodes in GN,M is equal to∣∣GN,M ∣∣ = 2M + 3

N∑
j=1

(2j+M + 2j − 1) +N + 1,

which can be bounded as follows:

3 (2N + 1)(2M − 2) ≤
∣∣GN,M ∣∣ ≤ 3 (2N + 1)(2M − 1)

for all M ≥ N ≥ 1. Similarly, the number of nodes in RN,M is equal to∣∣RN,M

∣∣ = N + 1 +
N∑
j=0

2j+M = N + 1 + 2M (2N+1 − 1).

These are good measurements of the computational effort required to determine, respec-
tively, the isospectral reduced matrix MN,M and the reconstruction from the normalized
eigenvector {V N

j }0≤j≤2M . Both formulas were empirically verified for a large number of
values of N and M , although it shouldn’t be difficult to prove them rigorously.

Numerical comparison. The 16-digit machine precision of Mathematica impelled us to
N = 4, since higher number of reduction steps would be wasted by computational errors.

In the following examples the sets Γk have the following dimensions:
∣∣Γ0

∣∣ = 4 and∣∣Γk∣∣ = 2 for all k ≥ 1. The matrix ∆0 was taken to be ∆0 := 0.9×∆, where ∆ is a 4× 4
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stochastic matrix with random entries. Analogously, B0 was chosen as B0 := 0.1 × B,
where B is a 2× 4 stochastic matrix with random entries.

For k ≥ 1 we define

βk =
1

1600 + log k

γk = 10−4 +

√
2 βk

(3−
√

5)− 2/5
.

The matrix C1 is 4 × 2 with all entries equal to γ1/4. For k ≥ 2, the matrix Ck is 2 × 2
with all entries equal to γk/2. Then for all k ≥ 1 we defined Bk to be 2×2 with all entries
equal to βk/2, and ∆k to be 2× 2 with all entries equal to (1− βk − γk)/2.

This family of sub-stochastic matrices determines an operator T in W, to which we
have applied the following algorithms:

• IRRA: Isospectral Reduction-Reconstruction Algorithm
• MEA: Mathematica Eigenvector Algorithm, executed running the command

Eigenvector[A], where A stands for the normalized stochastic matrix determined
by {(B0

j ,∆
0
j , C

0
j )}0≤j≤2N+M .

The table 1 presents execution times (in seconds) for different values of M .

Algorithm M = 4 M = 5 M = 6 M = 7 M = 8

IRRA 0.151439 0.312129 0.723502 1.33863 2.53573
MEA 0.516156 2.6802 20.2746 100.531 737.443

Table 1. Execution times in Mathematica

The Mathematica code used in these experiments can be downloaded from the address
https://webpages.ciencias.ulisboa.pt/~pmduarte/Research/IsospectralAlgorithm/.
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Instituto de Matemática e Estat́ıstica, UFRGS, Av. Bento Gonçalves 9500, 91500,
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