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A B S T R A C T

The availability of omics data, being transcriptomics, proteomics or pathogen-host inter-
actomics, is being explored for in silico testing of drugs. This a priori testing gives useful
insights, avoiding wasting of time and money in the functional evaluation of a high amount
of drugs.

In this work, we applied such a strategy to the dengue fever disease, which is caused by a
virus transmitted to humans by mosquitoes. Published omics in dengue patient samples are
available for total blood or specific blood cells, but no information was obtained for other
tissues, which display symptoms in dengue disease and/or where the virus multiplies, such
as liver, spleen and encephalon. Our reasoning was that an effective treatment of dengue
disease should take into account these important tissues. So, we began by obtaining the
complete human protein-coding gene expression profiles in 22 samples from liver, spleen
and encephalon tissues from five Cuban patients that died due to dengue disease and from
three deceased controls due to other causes. We applied a workflow to process the FASTAQ
files, tested between local and global alignment, and after quality control, ended up with
18 samples (three dengue patients versus three controls for each tissue). We then estimated
the differentially expressed genes, used gene set enrichment analysis to investigate which
biological pathways were altered in the disease, and inputted the 150 upregulated and 150

downregulated genes into the CMap tool to investigate possible effective drugs in the three
tissues and when comparing with published blood datasets.

As expected, due to tissue specialization, different pathways were altered in the differ-
ent tissues: in blood, pathways related with the immune system, response to pathogens
and cell cycle/repair mechanisms; in liver and spleen, the biggest differences were in
metabolism, especially of lipids; in brain, alterations were mainly response to infection
and changes related with neurotransmitters/cerebral diseases. CMap results, accordingly,
indicated mainly antineoplastic drugs as potentially active in blood, anti-inflammatory and
related with metabolism in liver and spleen, and anti-inflammatory and interfering with re-
ceptors in encephalon. Although these mechanisms seem to be dissimilar, there are several
drugs that overlap in different parts of the complex networks and should be careful eval-
uated in treating dengue disease. The workflow used in this work is publicly available at
GitHub (https://github.com/danielcarpsoares/Drug-Repurposing-Dengue) so that it can
be used in other tissues or other diseases.
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R E S U M O

A vasta quantidade de dados omic disponíveis, sejam de transcriptómica, proteómica ou
interatómica agente patogénico-hospedeiro, tem vindo a ser explorada com o intuito de
testar fármacos in silico. Este método permite reduzir, a priori, a quantidade de recursos
despendidos no teste da eficácia de um fármaco numa determinada doença.

Neste trabalho, aplicamos esta estratégia à Febre da Dengue, uma doença viral que é
transmitida por mosquitos a humanos. Atualmente existem dados de transcriptómica
disponíveis para esta doença em amostras de sangue, mas não para outros tecidos onde
o vírus se replica e/ou apresentam sintomas, como é o caso do fígado, baço e encéfalo. A
nossa motivação é a de que um tratamento eficaz desta doença deveria ter em conta todos
estes tecidos. Desta forma, inicialmente foi obtida a expressão completa de todos os genes
que codificam proteínas em 22 amostras de fígado, baço e encéfalo recolhidas de cinco
Cubanos que morreram devido à Dengue e de três controlos que morreram por outras
causas. Uma pipeline foi aplicada aos dados da sequenciação destes tecidos, nomeadamente
aos ficheiros FASTAQ obtidos, seguida de comparação da qualidade entre alinhamento lo-
cal ou global e controlo de qualidade das amostras. No final, 18 amostras (três pacientes
de Dengue e três controlos para cada tecido) foram analisadas quanto aos genes difer-
encialmente expressos, vias biológicas significativamente alteradas, e potenciais fármacos
eficazes a contrariar a Dengue (pela inserção dos 150 genes mais sobre- e sub-expressos na
ferramenta CMap) em cada tecido e por comparação com o sangue.

Tal como esperado, devido à especialização dos tecidos, as vias alteradas nos vários teci-
dos eram variáveis: em sangue verificou-se que estavam mais relacionadas com o sistema
imune, resposta a agente patogénicos e ciclo celular; em fígado e baço, as maiores difer-
enças verificaram-se naquelas relacionadas com o metabolismo, principalmente de lípidos;
em encéfalo, verificou-se maioritariamente resposta à infeção, e relacionados com neuro-
transmissores e doenças neurológicas. Em concordância, os resultados do CMap, indicaram
diferentes potenciais fármacos benéficos: antineoplásicos em sangue; anti-inflamatórios e
relacionados com metabolismo em fígado e baço; e anti-inflamatório e relacionados com
recetores em encéfalo. Embora estes mecanismos de ação aparentem ser muito diferentes,
alguns fármacos podem ser simultaneamente efetivos em diversos pontos das complexas
redes biológicas e deveriam, por isso, ser avaliados como potencialmente interessantes
no tratamento da Dengue. A pipeline, assim como todo o código utilizado está publi-
camente disponível na plataforma GitHub (https://github.com/danielcarpsoares/Drug-
Repurposing-Dengue).
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1

S TAT E O F T H E A RT

1.1 dengue fever disease

1.1.1 Virus, Vector and Transmission

Dengue Virus (DENV) belongs to the family of viruses Flaviviridae, genus Flavivirus. This
virus has four distinguishable serotypes, DENV-1, DENV-2, DENV-3 and DENV-4. All of
these four serotypes share epidemiological similarities, being responsible for the develop-
ment of Dengue disease after infecting humans, but are genetically distinguishable (Chen
and Vasilakis, 2011). Dengue is, according to the World Health Organization (WHO), the most
rapidly spreading mosquito-borne viral disease in the world (Stehman et al., 2002), being
transmitted to humans through the bite of an infected female mosquito.

The main and most effective vector in Dengue transmission is the mosquito of the species
Aedes aegypti. This species is also responsible for spreading other arboviruses like the Yellow
Fever, Zika and Chikungunya viruses (Kraemer et al., 2015). Although this mosquito is
thought to be original from Africa it has spread through many other regions of the globe,
like Asia, Australia, the Americas and the South Pacific (Higa, 2011). Though less effective
and with a limited ability to transmit DENV when compared to Aedes aegypti, other species
among the Aedes genus like Aedes albopictus are also important vectors, responsible for
the transmission of dengue virus to humans. Aedes albopictus is original from Asia and
particularly common in countries like Japan and China and is mainly found in urban areas
with nearby green spaces like gardens or parks, where they reproduce and feed on humans,
transmitting the virus (Higa, 2011).

Both species optimally fixate in areas with high urbanization and population density,
bad sewers and places nearby reservoirs of stagnant water combined with green spaces like
parks (Higa, 2011). Besides these factors, temperature and humidity are also key in the
ability of the mosquito to survive and reproduce.

The cycle of virus transmission occurs when a DENV infected mosquito bites a previ-
ously non-infected human, and when a previously non-infected mosquito bites an infected
human becoming able to spread the virus. Because of this and since there is no intermedi-
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1.1. Dengue Fever Disease 2

ate host between mosquitoes and humans nor another mechanism of transmitting DENV,
worldwide occurrence of Dengue cases is a direct cause of the global distribution of Aedes
aegypti and Aedes albopictus mosquitoes (Higa, 2011). This can be seen in the Figures below
where after overlapping the global distribution of these two mosquitoes (Figures 1 and 2)
results in the Dengue risk areas worldwide (Figure 3).

Figure 1.: Global distribution of Aedes aegypti, adapted from (Kraemer et al., 2015).

Figure 2.: Global distribution of Aedes albopictus, adapted from (Kraemer et al., 2015).

Figure 3.: Areas of Dengue disease risk, adapted from (Wilder-Smith et al., 2013).
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1.1.2 Epidemiology

Dengue is an infectious disease present in tropical and subtropical regions of the world.
Because of this it is estimated that up to 3.6 billion people (about 40% of the world pop-
ulation) are at risk of getting Dengue infected sometime in their lives, making it the most
common mosquito-borne viral disease (Brady et al., 2012). Although Dengue was only
reported as endemic in nine countries before 1970, according to WHO, nowadays it is con-
sidered as such in more than 100 countries throughout African and American continents,
Eastern Mediterranean, South-East Asia and Western Pacific regions. Of these regions, Pan
American Health Organization (PAHO), South East Asia Region (SEARO) and Western Pacific
Region (WPRO) are the most seriously affected (Figure 4).

Figure 4.: Cases and deaths in Pan American Health Organization (PAHO), South East Asia Region
(SEARO) and Western Pacific Region (WPRO), adapted from (World Health Organization).

Epidemiologic studies regarding this disease are difficult since there are some limitations
in diagnostic methods and most Dengue cases happen in very poor countries with a poor
health system, which leads to misdiagnosis or even no diagnosis at all. Misdiagnosis hap-
pens because diagnosis of Dengue based on clinical symptoms is not trustworthy and there
is a need of confirmatory laboratory diagnostic tests. These laboratory tests are not widely
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used in the regions where Dengue happens and, additionally, there is a high similarity of
symptoms between Dengue and other viral diseases, being often misinterpreted as common
flu or Yellow Fever cases, which are also common in these zones (Atkins et al., 2004).

Besides these factors, there is a deficiency in reporting known cases to organizations like
WHO or the Centers for Disease Control and Prevention (CDC), which keep track of these
situations. Despite this, it is estimated that Dengue has an incidence of 50-200 million
infections per year and more than 20,000 deaths occur every year as a direct cause of this
disease (Brady et al., 2012). Of all the regions referred above, Southeast Asia is the zone of
the globe that suffers the most with Dengue, with children being the most affected by it, as
the adults that did not die from it acquired resistance (Hussain et al., 2015).

Further studies also show the heavy socio-economic burden Dengue brings to countries,
health care systems and people where this disease is endemic (Gubler, 2012). Estimations
show that yearly Dengue costs go around 46.45 million dollars in Latin America and 950

million dollars in Southeast Asia (Halasa et al., 2012). Individually, each hospitalized pa-
tient is thought to cost about 1394 dollars (Suaya et al., 2009).

1.1.3 Symptoms and Presentation

After being exposed to the virus through a vector, patients can either go asymptomatic
(about 75% of the cases) or develop symptoms that range from a flu to more severe cases
in which coagulopathy happens. Later cases where the disease does not go asymptomatic
usually happen after an incubation period that lasts between 4 to 10 days after contact with
the virus (Sheperd, 2017).

The milder form of the disease in which only a flu-like syndrome occurs is known as
Dengue Fever (DF). DF is characterized by a rapid onset of fever, which is accompanied
by severe headaches, myalgias, arthralgias and gastrointestinal discomfort. Although rare,
haemorrhagic manifestations might happen. Typically, these symptoms last between 7 and
14 days after which homeostasis is normally restored (Diamond and Pierson, 2015).

The more severe cases are characterized by the symptoms previously referred in DF com-
bined with coagulopathy, spontaneous bleeding, low to moderate liver injury and increased
vascular fragility and permeability (Diamond and Pierson, 2015). These cases are known as
DHF.

DHF can eventually progress to an even more severe case, known as Dengue Shock Syn-
drome (DSS). Besides all the other symptoms already referred, DSS is characterized by rapid
fluid loss that leads to severe hypotension and haemorrhagic episodes, mainly bleedings in
the skin and the gastrointestinal tract. These symptoms can sometimes be deadly (Martina
et al., 2009).
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Several organs like liver, spleen and encephalon have known altered functions after
Dengue onset. Although liver function and its involvement in Dengue pathogenesis is still
not completely known, this is one of the main organs whose metabolism is known to be al-
tered and compromised after onset of Dengue disease. DENV affects the normal functions
and pathways of hepatocytes, leading to auto-immune response on liver cells, circulatory
compromise, hypoxia and hypotension caused by vascular leakage (Trung et al., 2010). His-
tological changes comprise hepatocyte necrosis, alterations in fat metabolism, hyperplasia,
death of Kupffer cells, Councilman Bodies and infiltration of cells at the portal tract. Hep-
atic dysfunction happens as a consequence of this infection and usually presents itself with
hepatomegaly and a rise, although it can be slight, of transaminase levels (Samanta and
Sharma, 2015).

Clinical findings show an increase in Aspartate Aminotransferase (ALS) and Alanine Amino-
transferase (ALT), being both correlated with Dengue severity, especially with the amount
and occurrence of bleeding events (Samanta and Sharma, 2015; Trung et al., 2010). How-
ever, some doubts arise from the high values of both ALS and ALT and its direct relation
with liver disfunction. Even though it is known that the liver can be the main source of
ALT and ALS, it is theorized that both substances can come from a different tissue/organ.
Although in reduced quantities when comparing to liver, ALT is also found in cardiac and
skeletal muscle and ALS can be found in erythrocytes, cardiac and skeletal muscle, kidneys
and brain. More evidence of alteration in these tissues comes when looking at Dengue
symptoms, mainly regarding musculoskeletal injury and pain (Samanta and Sharma, 2015;
Trung et al., 2010).

Encephalon alterations due to DENV infection result as a consequence of the virus ability
to cross the blood-brain barrier and enter the central nervous system. The main manifesta-
tions that occur as a result of this phenomenon are Encephalitis, Encephalopathy and less
commonly Meningitis. Besides this, and combined with the alterations in the circulatory
system caused by DENV, stroke episodes in patients are also common (Gupta et al., 2015).

As for spleen alterations, although the exact mechanism through which it occurs is not
precisely known, cases of sudden spleen rupture have been reported. Despite being more
common in the early acute phase of the disease, these cases have also been reported in
patients at the convalescent phase. If not treated immediately through surgery these cases
can be fatal (De Silva and Gunasekera, 2015).

1.1.4 Physiopathology and Risk Factors

Although the exact mechanisms by which DENV infects human cells and develops into the
sometimes deadly disease are still not completely known, there are some hypotheses that
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try to explain how this occurs and how the disease has such different ways of manifesting
as described above.

One of the observations already made is that when a patient is infected for the first time
with DENV, he becomes immunized against the serotype he was infected with and usually
develops a milder form of the disease (DF). After this primary infection, if a second infec-
tion by a different serotype happens, then the patient usually develops the disease with
a more aggressive spectre of symptoms (DHF or even DSS) (Martina et al., 2009). This is
thought to happen due to a phenomenon known as cross-reactive T-cell response. In this
situation, instead of granting protection against the viral agent, memory T-cells cause the
immunopathology (Farrell, 2013). It is believed that this happens after the first infection
with DENV, at the convalescent phase, when there is the creation of memory T-cells for
the specific DENV-serotype the individual was primarily infected with. When the second
infection with a different DENV serotype happens the previously formed memory T-cells
are activated, being this known as cross-reactive T-cell response. The newly activated mem-
ory T-cells, ineffective in combating the infection with the new serotype, are responsible for
the production of high concentrations of inflammatory cytokines like IFN-γ, TFN but low
concentration of anti-inflammatory ones like IL-10 and IL-13. This explains the symptoms
experienced in extreme cases of Dengue infection, being responsible for the exaggerated
immunopathology referred above (Martina et al., 2009).

Besides cross-reactive T-cell response, other factors have been indicated to explain the
different ways the disease manifests and its diverse clinical severity. Virulence is related to
the strain of DENV (Martina et al., 2009; Sessions et al., 2013), as exemplified in the 1981

outbreak in South America, when disease evolution and outcome was distinct between
the less virulent and dangerous DENV-2 indigenous genotype and the more aggressive
DENV-2 Southeast Asian genotype (Martina et al., 2009). Other studies showed that age
(being more dangerous in children than adults) (Hoang et al., 2010), the serotype sequence
of infection (primary infection with DENV-1 followed by DENV-2 or DENV-3 serotypes
are more dangerous) and the time span between the first and second infection (longer time
between infections translates into more dangerous outcomes), influence the way the disease
develops (Kwissa et al., 2014).

Another very important factor affecting disease outcome is human host genetic diversity.
The presence of certain gene loci have been linked with a higher propensity to develop
more aggressive manifestations of Dengue. Some of these loci are located at genes related
with the immunologic system, more specifically, HLA-I and HLA-II, TNF-α, Fc receptor,
TAP and DC-SIGN (Cahill et al., 2018). Additionally, comparisons between DF and DSS
phenotypes considering the ancestry of the patients were made. Protective and suscepti-
ble haplotypes were identified in genes MICB, PLCE1, PLCB4, CHST10, AHRR, PPP2R5E
and GRIP1. Results show that the populations with the higher risk of developing both the
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more severe and milder Dengue phenotypes are the Northeast and Southeast Asian popu-
lations. Regarding DSS phenotype, Europeans and populations from North-America also
have a greater genetic predisposition to develop it. Contrastingly Africans have higher ge-
netic protection against DF and DSS (Sierra et al., 2017), whereas European and American
populations only have protection against DF (Oliveira et al., 2018).

Interestingly, a genome-wide association study demonstrated that African ancestry is
protective against Dengue showing that differentially expressed haplotypes between popu-
lations in the genes OSBPL10 and RXRA are favourable in the way the African population
responds to the disease. These genes play an important role in the Liver X Receptor-Retinoid
X Receptor (LXR-RXR) activation pathway that is linked with lipid metabolism and immune
function, more specifically cytokine production, viral replication and their entrance in cells
(Sierra et al., 2017).

Retinoids are a class of lipids, normally in low body concentrations, that are linked with
important organism functions such as vision, embryonic development, gene expression,
tissue differentiation, immune function and activation of tumour suppressor genes (Kiser
et al., 2014). Despite this, when in higher concentrations, specially of vitamin A, they are
dangerous for the body, being prooxidant, cytotoxic, mutagenic and teratogenic (Mawson,
2013). Dengue infection has been associated with higher levels of these substances by a
mechanism in which the damaging effects of the virus cause death of hepatocytes and
consequentially the emission of retinoids (Mawson, 2013). It is proposed that this is also
responsible for viral replication and disease pathogenesis. More evidence for this arises
when comparing the similar symptoms of Dengue and retinoid intoxication.

1.1.5 Increasing Risk in Dengue Infection

Most recent statistics show not only an increase in the number of Dengue cases reported
in the last years, but also an increase on the propensity one might get infected in the
future. Hereafter it is expected an increase not only in the global incidence of Dengue
cases worldwide but also in its geographical expansion, which will lead to an escalation in
the resulting problems of the disease. It is important to state that Dengue transmission is
mainly affected by the spatial distribution of the vectors Aedes aegypti and Aedes albopictus.
Factors responsible for this distribution are temperature, rainfall, highly densely populated
zones and bad sewer systems (Kraemer et al., 2015). The main reasons for these previsions
are:

- The increase in global temperatures due to climatic changes. Higher temperatures
allow a more suitable environment for the vector, increasing its survival capability. On
the other hand, increase in global temperatures will make previous non-endemic regions
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into endemic ones, since it will allow the migration of the Aedes mosquitoes outside of the
tropics into new suitable regions (Liu-Helmersson et al., 2016; Wilder-Smith et al., 2013).

- The increase of more virulent strains of DENV in humans and mosquitoes when com-
paring to less virulent ones. According to epidemiological and phylogenetic studies, over-
all percentage of more aggressive strains, with an higher capability of infecting hosts, is
increasing when compared to milder ones (Wilder-Smith et al., 2013).

- Globalization and the increase of worldwide travels. The increase of travelling not only
into but also outside of endemic regions is a risk factor regarding the increase of Dengue
cases since it enables the migration of vectors outside of their natural habitat, reaching non-
endemic zones. Additionally, it increases the number of people in contact with the vector
in endemic zones (Wilder-Smith et al., 2013).

- Socioeconomical factors, such as the increase and rapid growth of highly densely pop-
ulated urban areas, as well as the economical gaps between countries, mark the difference
on how countries manage the incidence of the disease, despite the identical environmental
factors shared within the endemic zone. The most important factors that help and grant
the ideal habitat for vector survival and growth in these zones are: high human population
density and urbanization, bad health systems, poor sanitation and the presence of water
reservoirs with stagnant water (Wilder-Smith et al., 2013).

Recent outbreaks in current non-endemic zones, like the one that happened in 2012 in
Madeira island, Portugal, and in other zones of South Europe show the reality and danger
of these predictions (Liu-Helmersson et al., 2016).

Figure 5 illustrates vectoral capacity for Aedes aegypti in different cities of Europe in the
past, present and compares it with future predictions. Representative Concentration Pathway
(RCP) is a projection of our future climate considering greenhouse gas emission. Higher
values of RCP mean more extreme climates with a higher degree of climate changes. As
it can be seen in the image, predictions show an extreme increase in vectoral capacity for
Aedes aegypti. This will probably reflect in Dengue disease to emerge in Europe, mainly in
South Europe, a posterior non-endemic zone for this disease.
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Figure 5.: Past and present occurrence of Dengue, and future predictions for the disease in Europe
considering Representative Concentration Pathway (RCP), adapted from (Liu-Helmersson
et al., 2016).

1.1.6 Antiviral Drugs and Vaccines

Due to the lack of knowledge on the complex physiopathology regarding Dengue infection
there are still no antiviral drugs to treat it, neither an effective preventive vaccine. Many
efforts have been made to change this since much of the worldwide population has already
been or is at risk of being infected.

Regarding vaccines, two big challenges arise. Firstly there is no good animal model
that mimics the way Dengue infects and develops in humans, making the study of the
pathogenic mechanisms more difficult and restricted to in vitro studies and field patient
observation. On the other hand, evidence shows that being already immune to one of
Dengue’s serotypes increases the risk of developing Haemorrhagic Fever and more aggres-
sive phenotypes of the disease when infected by another of the four different serotypes. This
way, and in order to develop safe and effective vaccines, they must grant immunization to
all Dengue serotypes at once. To date there are two different vaccines with the characteris-
tics previously referenced: one by GlaxoSmithKline (already on clinical trials) and another
by Sanofi Pasteur (already introduced in some countries) (Rajapakse et al., 2012). However,
recent fatalities of children with severe dengue in Philippines have halted the vaccination
with the Sanofi Pasteur vaccine. Because of this, and according to WHO, further tests are
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needed to assess this vaccine safety (Iacobucci, 2018). More recently (May, 2019), Food and
Drug Administration (FDA) approved the reintroduction of this vaccine. Although this is an
important step in combating Dengue disease, there are still some limitations on this vac-
cine, since it will only be available for those in endemic areas with ages between nine and
16 years old and who have been laboratory confirmed previously infected.

Concerning Dengue treatment, there is still no actual specific antiviral medication for
this infection. Instead, infected patients receive treatment to handle and try to minimize
the symptoms (Rajapakse et al., 2012). This way patients experiencing symptoms usually
receive antipyretics to reduce pain and fever, which is one of the main problems common
to all patients infected with Dengue, especially in the early stage of the disease (Rajapakse
et al., 2012).

In more serious cases of patients who developed Haemorrhagic Fever or even Shock
Syndrome, additional treatments are required besides fever and pain control, so that vas-
cular integrity and fluid volume is maintained. Thus, crystalloids and volume expanders
are administered. The first are responsible for the maintenance of intravascular volume,
blood pressure and normal urine formation. The second are given to patients when there
is a deficit of intravascular volume and are responsible for the restauration of intravascular
volume, blood pressure and tissue perfusion (Sheperd, 2017).

Although, as previously referred, the immune system plays an important role in Dengue
disease physiopathology, treatment with immunomodulators, corticosteroids and other
nonsteroidal anti-inflammatory drugs show no results when treating the disease and should
even be avoided. Besides this, close monitoring of the patient should be maintained during
the course of the infection, mainly regarding heart, hepatic and renal function (Rajapakse
et al., 2012; Weerakoon et al., 2011).

Statins belong to a group of drugs known as HMG-CoA reductase inhibitors. These
drugs are administrated to patients with hyperlipidaemia for their lipid-lowering proper-
ties, mainly Low Density Lipoprotein (LDL) cholesterol. Additionally, they improve endothe-
lial normal function, which has been hypothesised could bring beneficial effects in the
stabilization of Dengue’s vasculopathy (Martinez-Gutierrez et al., 2014). In vitro studies
showed that statins, because of their reduction in Dengue’s virion assembly, might have
antiviral properties (Martínez-Gutierrez et al., 2011). In an in vivo study, mice were infected
with Dengue and posteriorly treated with Lovastatin. Results showed that the usage of
this drug in infected mice increased their survival rate and decreased their overall DENV
viremia (Martinez-Gutierrez et al., 2014). In spite of these findings, clinical trials where
statins were administrated in patients infected with Dengue showed that although statin
usage was well tolerated by infected patients, they had no beneficial effects in reducing
Dengue’s symptoms neither significantly reducing viremia (Chia et al., 2018).
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1.2 high-throughput information

1.2.1 Transcriptomic Analysis

Transcriptomics is one of the many omics technologies allowing, in this case, the profiling of
the whole set of RNA transcripts, known as transcriptome. Transcriptomics is very helpful
since it allows the quantification of the organism gene expression at a given moment in
specific conditions, enabling the comparison of normal versus altered tissues, for example
(Lowe et al., 2017).

Nowadays, there are two main transcriptomic technologies: microarrays and RNA-Seq.
Microarrays use known and pre-synthetized nucleic acid sequences, named as probes,
which are attached to an array plate. Following a first step of hybridization between sam-
ples and probes, it is possible to perform relative quantification of mRNA transcripts, indica-
tive of gene expression levels. Because of its ability to quantify nucleic acids, microarrays
have been widely used in gene expression analysis and genotyping (Bumgarner, 2013).

After the implementation of high-throughput next-generation sequencing technologies
there was a major progress in transcriptomics through the development of RNA-Seq, a rev-
olutionary technology which has many advantages over microarrays. RNA-Seq has better
quality when quantifying gene expression, enabling not only the quantification of known
transcripts but also of novel ones (Kukurba and Montgomery, 2015). Another advantage of
RNA-Seq when comparing to microarrays is that this technology has increased quantifying
sensitivity for genes expressed at very low concentrations (Wang et al., 2009).

Transcriptomic analysis is very helpful in many diverse fields such as diagnostics and re-
search, more specifically in understanding how the human and pathogen interaction affects
metabolism, in annotating gene function and in clarifying the physiopathology of diseases.
This kind of technology is especially helpful after quantification, since it enables the extrac-
tion, after normalization and statistical analysis of the data, of which genes are differentially
expressed (Lowe et al., 2017).

Regarding RNA-Seq, after sample preparation and sequencing is performed, output un-
dergoes a quality control and differential expression workflow (Figure 6). FASTQ file is a
common file format used as output for RNA-Seq technologies, similarly used by different
companies that perform sequencing, such as Illumina. It consists of a file with a header
containing information relative to the sequence ID and its length. After the header, it is pre-
sented the sequence per se, containing the coding letters for RNA or DNA. Finally comes
the quality string which contains a numerical score for the sequencing quality (Cock et al.,
2009).
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Figure 6.: Workflow for RNA-Seq analysis.

These files are posteriorly used in quality control to assess if they have enough sequenc-
ing quality to be used in later analysis. A widely used software to perform this is FASTQC.
FASTQC uses the previously referred score present in the quality string of the FASTQ file.
Additionally, this software analyses the sequence GC content as well as over or under rep-
resented sequences, which can indicate if the samples were contaminated. From the output
information a decision whether the samples have enough quality for further analysis or not
can be taken (Leggett et al., 2013). Besides these quality control steps, trimming of the se-
quences is also performed. Trimming consists of removing the adapter or continuously low
quality reads that are below a defined threshold. An example of a software that performs
this and is Trimmomatic (Bolger et al., 2014).

From here, alignment of the sequences needs to occur. Bowtie and Burrows-Wheeler Align-
ment (BWA) both perform alignment of the reads to a reference sequence. Both algorithms
are based on the Burrows-Wheeler Transform, a method for character compression that
saves computational resources. They work by building indexes of the reference sequence,
that will later serve as guides for the alignment (Langmead, 2011). Alignments can either be
global or local, being the main difference between both that local alignments try to match
portions of the reads to the reference sequence, whereas in global alignments matching is
done for the whole read (Polyanovsky et al., 2011). Finally, Bowtie and BWA give as output
a BAM or SAM file.

To conclude, these aligned reads contained in the BAM files need to be quantified to
be used in later expression analysis. HTSeq is an open-source Python bioinformatic tool
developed to manipulate biological. This tool is designed for performing many analysis
such as indexing, variant calling and quantification. Quantification is especially important
in this kind of analysis since it enables the association between the reads and the genes.
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HTSeq gives as output a txt file with the counts per gene across the studied individuals
(Anders et al., 2015).

Differentially expressed genes, either overexpressed or underexpressed, are particularly
interesting when comparing diseased and healthy tissues, helping to understand the pathol-
ogy and to identify potential biomarkers, therapeutic targets or gene expression patterns in
disease that can be used in diagnostics (Rodriguez-Esteban and Jiang, 2017). Discovery of
these differentially expressed genes starts on the file with the quantified reads, and several
tools are widely used and available as packages in R Bioconductor. One of these packages,
limma, enables the analysis of both RNA-Seq and microarrays, containing tools to read,
normalize and obtain differentially expressed genes (Ritchie et al., 2015). Other tools like
limma used for this kind of analysis on count data are edgeR and DESeq2, although not
being available for microarrays and being both limited for RNA-Seq technologies. These
packages allow normalization of the reads, after which statistical tests such as the Wald test
are done. This test calculates a p-value for the expression of each read, of which the ones
that are statistically significant can be hypothesized as differentially expressed (Love et al.,
2014; Robinson et al., 2009).

From this set of interesting genes further analyses are done to try to better comprehend
the functional significance of such expression values. This important step in the omics field
is commonly known as enrichment or pathway analysis. This is done by associating the dif-
ferentially expressed gene names to their biological annotations and grouping in molecular
pathways. Examples of these annotations are the Gene Ontology (GO) (Carbon et al., 2017)
terms (BP, CC and MF) and KEGG (Kanehisa et al., 2018), which have information regard-
ing gene name, function, or the pathways the gene is a part of. Afterwards, enrichment
analysis algorithms identify which annotations are over or under represented in the set of
genes in pairwise comparisons (Tipney and Hunter, 2010). One of these softwares is Gene
Set Enrichment Analysis (GSEA), a tool that allows enrichment analysis in gene expression
data that shares same biological function or regulation (Subramanian et al., 2005). When
working with transcriptomics, usually with large quantities of data (approximately 20,000

genes), this kind of procedure narrows the large list of initial genes to a smaller group of
genes whose function is probably altered.

1.2.2 Transcriptomics in Dengue

Regarding Dengue, several transcriptomic analyses have already been done in different
populations, such as Thai and Vietnamese, and considering different phenotypes (healthy,
DF, DHF and DSS) (Kwissa et al., 2014; Loke et al., 2010; Long et al., 2015; Nascimento et al.,
2009; Popper et al., 2012; Sessions et al., 2013).
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Attending to the diverse phenotypes, it was shown that the phenotype groups clustered
separately, especially the acute phase patients who had high heterogeneity, proving that
there is different gene expression patterns considering disease state (Long et al., 2015).

Another variable studied is how transcriptional profiles behave considering the amount
of viral load present on the infected person. Data showed that patients with high viremia
had a positive correlation with the NS-1 antigen (antigen used in the diagnostic of Dengue).
Besides this, concentration of NS-1 had an inverse correlation with the duration of the acute
phase of the disease (Kwissa et al., 2014).

Genes correlated with high viremia and acute phase of Dengue were associated with
upregulation of immunological pathways such as sensing of viruses and production of IFN-
I. Genes linked with low viremia and a later stage of the disease were mainly associated
with pathways regarding cell cycle, proliferation, cell metabolism and translational control,
typical of a more normal, healthy cell condition (Long et al., 2015).

Another investigation took into account the infection with different strains of DENV
and how it affects transcription. Transcriptomic behaviour was different amongst different
DENV serotypes. This demonstrates that cells have different ways of responding to DENV
infection, having some common pathways activated among strains but having others that
are serotype specific (Sessions et al., 2013).

Studies like these not only help to increase Dengue knowledge but also enable the iden-
tification of potential biomarkers that can, in the future, be helpful in developing new
diagnostic tests. This is achievable by analysing which genes are differentially expressed
between the different stages of the disease (DF, DHF and DSS) and healthy controls. This
way, models with specific transcript profiles can be used to predict patient disease state
(Nascimento et al., 2009).

Analysis of available literature shows that the study of the transcriptome in Dengue dis-
ease cases has always been done from blood samples and mostly using microarrays. As the
transcriptome information obtained is always a snapshot of the sample tissue at the precise
moment it was collected (Lowe et al., 2017), these studies provide a limited insight into al-
terations occurring in the body of dengue patients. It would be very informative to analyse
other tissues since the transcriptome profile differs with tissues/organs specialization.

1.3 In silico investigation of drugs

1.3.1 Current Methods

With recent developments in technology and the capability of sequencing biologic data
much easier when compared to the past there has been a great increase in available biologi-
cal data. The mining of such information could revolutionize the way research facilities and
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pharmacological companies address the discovery and development of new drugs (Loging
et al., 2007). This kind of technology is especially helpful in the initial stages of drug re-
search, being able to narrow the identification of potential genes or pathways the future
drug will affect. Since there is a significant reduction of targets, benefits of using such
pipelines are the reduction of the time it takes to develop a drug as well as the financial
cost associated with it, once there is a decrease of trial-error research. Besides this, such
information can be used in personalized medicine, since patients respond differently to
disease and this information can help adjust therapy, maximizing its response (Agren et al.,
2014).

Examples of in silico methods for the investigation of new drugs are: homology mod-
elling, which predicts and generates the 3D structure of the protein of interest based on
its sequence; molecular docking, predicts binding affinity between molecules based on
molecular interactions; virtual high-throughput screening, is based on the evaluation of
compounds and their potential to bind to specific sites inside a molecule of interest; Quan-
titative Structure Activity Relationship (QSAR), enables the association between structural
properties of molecules and their biological activity; conformational analysis, considers the
bonding between a molecule and its receptor site and calculates the most favourable confor-
mational energy; omics analysis, where through the analysis of transcriptomics, genomics
or proteomics it is possible to predict which genes and pathways are altered, giving helpful
information when trying to discover new drug targets or biomarkers (Ferrero et al., 2017).

For the purpose of this study omics analyses will be focused on. In this field there is a spe-
cially interesting software, CMap. It contains genetic expression profiles from tissues that
were treated with many different molecules creating the bridge between transcriptomics
analysis and in silico drug discovery. This tool uses as input the previously determined
up or downregulated genes, returning the drugs related with that gene expression pattern.
This is performed through data mining and pattern searching algorithms. Because of this,
CMap is especially helpful in drug repurposing, using existing drugs as new candidates
for diseases with no therapy (Lamb et al., 2006).

Successful examples of combining transcriptomics and drug administration were ob-
tained in cancer. In one of these studies (Uhlen et al., 2017), the analysis of transcriptomics
from patients with different types of tumours showed the relation between identified differ-
entially expressed genes, referred to as candidate prognostic genes, and clinical outcome,
helping in predicting patient survival as well as in adapting their therapy to have better
results. In another study (Agren et al., 2014), specific for hepatocellular cancer, transcrip-
tomics from patients were analysed and with the help of in silico algorithms identification
of potential new anticancer drugs was possible and specific for each patient, increasing
positive clinical outcomes.
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1.3.2 Published Data on Dengue Disease

Although there is not much literature available regarding in silico drug investigation on
Dengue disease, there are some studies focused on the discovery of antiviral drugs for this
virus.

One of these studies emphasizes on the discovery of new antiviral drugs that target
DENV’s NS2B/NS3 protease complex, an important enzyme in the virus capability of repli-
cation. In order to do this, an in silico approach was performed so that small molecules
with the ability of inhibiting this complex were retrieved. From the set of molecules only
those with high affinity for binding with NS2B/NS3 were kept and after this, five of these
molecules, that were commercially available, were studied in vitro. When tested in vitro
with DENV, two of the molecules exhibited an inhibitory effect on DENV’s replication, be-
ing possible new drug candidates for Dengue disease treatment (Cabarcas-Montalvo et al.,
2016).

In another study computational methods were used as a mean to better predict an effec-
tive vaccine formula for Dengue disease. With this purpose epitopes (parts of the antigen
that are recognized by the immune system) from Dengue were selected using available
databases such as the Immune Epitope Database and Analysis Resource (IEDB). After this, affin-
ity between epitopes and the Major Histocompatibility Complex (MHC) was predicted using
a specific tool from IEDB, from which only those with lower affinity were selected since
they are less prone to develop dangerous secondary effects when administrated in the vac-
cine. Subsequently, epitopes that had identical HLA binding profiles were removed leaving
only one epitope per HLA. The final proposed vaccine formula is composed of 15 epitopes,
having a predicted efficacy of 92.49% (Murphy et al., 2018).

More recently a new study was developed which detected new drug candidates for
Dengue Disease. Here a different strategy was implemented where information from tran-
scriptomics, proteomics and protein-protein interactions was used. From the transcriptomic
analysis performed in three different datasets with DHF and control individuals, 3.892 sig-
nificant genes were obtained. These genes were then used in CMap, a tool used to relate
gene expression patterns with drugs and diseases, and 85 drug candidates were obtained.
Proteomic information was gathered from available literature, returning proteins with sig-
nificant differences in expression, between infected and normal individuals. Interactions
between these proteins and drug candidates was established by STITCH, returning 548

drug candidates. In protein-protein interactions, a search for human and dengue proteins
interaction was performed returning 221 proteins. Similarly to what was done in pro-
teomics, these proteins were analysed in STITCH, returning 415 drug candidates. Finally,
all drug candidates from the three different analysis were evaluated together, reaching eight
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common drug candidates. These drugs thus be potentially repurposed and tested for the
treatment of Dengue disease (Amemiya et al., 2019).



2

A I M S

Due to the lack of knowledge on the complex physiopathology regarding Dengue infection
there are still no antiviral drugs to treat it. Many efforts have been made to change this
since epidemiology shows a steady increase in the incidence of Dengue and much of the
worldwide population is either at risk or has already been infected with this virus.

In this work, in silico models of the impact of Dengue virus in cell metabolism from di-
verse tissues were developed in order to identify possible interfering drugs which could be
used for treatment of Dengue disease. First, we analysed the transcriptome from liver, en-
cephalon and spleen in deceased patients due to dengue disease versus controls (our own
data; no similar datasets available so far in literature), as well as in blood (publicly available
data). We checked for significantly differentially expressed genes in the pairwise compar-
isons and evaluated which molecular pathways were significantly changed. Secondly, we
evaluated through Cmap which drugs could interfere with the expression profiles from
each of the tissues in the Dengue context.

The workflow used in this work will be available with the R code implemented at GitHub,
so that it can be easily applied by other researchers in dengue or other disease contexts.
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M AT E R I A L S A N D M E T H O D S

3.1 testing in blood samples from published datasets

3.1.1 Datasets

Three datasets from microarrays with Dengue infected patients and healthy controls were
retrieved from the database Gene Expression Omnibus (GEO) (Barrett et al., 2013), iden-
tified by IDs GSE18090 (Nascimento et al., 2009), GSE38246 (Popper et al., 2012) and
GSE51808 (Kwissa et al., 2014). GSE18090 and GSE38246 were both collected from Peripheral
Blood Mononuclear Cells (PBMCs), while GSE51808 was collected from whole blood samples.
GSE18090 is from Brazilian adults, while GSE38246 is from children of Nicaragua and
GSE51808 from children and adults of Thailand. The chips used for GSE18090, GSE38246

and GSE51808 were Affymetrix Human Genome U133 Plus 2.0 Array, SMD Print1430 hr1

and Affymetrix HT HG-U133+ PM Array Plate, respectively.
Within each dataset, samples were divided in two groups considering disease status:

DHF patients and healthy controls. Individuals with DSS and DF were excluded from
further analysis. DFs were removed because they have the milder form of the disease, and
are more difficult to identify/diagnose. As for the DSS cases, although this is the most
severe form of the disease, only GSE38246 had individuals with this phenotype. This way,
it was decided to remove them from the analysis once it was not possible to perform a
consistent comparison across the three datasets. Table 1 summarizes the final distribution
of DHF and healthy individuals used in the analysis across the three microarrays.

Table 1.: Distribution of Control and DHF individuals across GSE18090, GSE38246 and GSE51808.

GSE18090 GSE38246 GSE51808
DHF 10 32 10

Control 8 8 9
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Since data was obtained from microarrays, occurrence of multiple probes per gene is
present. As we need one expression value per gene, we used the “genefilter” package from
R, more specifically the featureFilter function, which keeps only the probe with the highest
expression variance for each gene.

Additionally, for GSE38246 after a first analysis of the data we realized it contained
probes specific for viruses, bacteria, miRNA, shRNA or ncRNA. Since the purpose of this
study is confined to the analysis of human transcriptomics of genes coding proteins, those
probes were removed.

3.1.2 Differential Expression Evaluation in Array Data

Gene differential expression was obtained using the pipeline from the “limma” package in
Bioconductor R, specific for the analysis of microarray data Ritchie et al. (2015). Firstly the
lmFit function was used with the purpose of fitting the expression values from each probe
of the microarray into a linear model. Then the linear model was used in the makeContrasts
function which calculates coefficients and standard deviations between two groups (DHF
patients and healthy controls). This output is then used in the eBayes function, which esti-
mates p-values and logarithmic fold changes for each gene using standard errors towards
a common value of expression. Since multiple analyses were performed, p-values were
adjusted through the topTable function, which applies the Benjamini-Hochberg procedure
for False Discovery Rate (FDR) to handle multiple tests. The threshold used for admitting a
gene as differentially expressed was an adjusted p-value <0.05.

Volcano plots for the expression profiles of the microarrays were created using the R
packages “ggplot2” and “ggrepel”, giving as inputs the Gene symbol, adjusted p-value and
the logarithmic fold change of each gene. The common upregulated and downregulated
genes between the three datasets were easily identified in the Venn diagrams built using
the “VennDiagram” package of R.

3.2 testing in other tissue samples from our own datasets

3.2.1 Biological samples and NGS-expression kit laboratorial processing

Tissue samples were post-mortem collected from Cuban individuals. Both Dengue infected
and control samples (accidental death) were retrieved from liver, spleen and encephalon.
Individuals were identified with an ID: those infected are 875, 900, 37478, 39538 and 39539

(although 875 and 900 only have spleen and hepatic samples). Controls are identified with
F1, F2 and F4.
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Gene expression evaluation was done by Next Generation Sequencing (NGS) at the i3S
Scientific Platform, using the Ion AmpliSeq Transcriptome Human Gene Expression Kit from
Thermo Fisher Scientific (Waltham, Massachusetts, USA), which was sequenced in the Ion
550

TM Chip kit and Ion S5
TM XL System (Thermo Fisher Scientific, Waltham, Massachusetts,

USA). This kit contains one amplicon per protein-coding gene, which is amplified and
sequenced, allowing to infer expression levels of the targeted 20,812 genes. This is not a
proper RNA-Seq, which sequences all transcripts present in the cells, implying higher level
of raw reads and more expensive processing of samples. As we were only interested in
global expression levels and not in identifying alternative transcripts, the AmpliSeq strategy
is as informative as the traditional RNA-Seq. The total raw reads allowed in the chip for
each sample were around 10.8 million reads.

3.2.2 AmpliSeq bioinformatic analysis

From the sequencing, FASTQ files for all samples were obtained. A first quality control
check was performed by uploading FASTQ files to the software FASTQC, which retrieves
the overall sequence quality scores, the base sequence content, the sequence GC content
and the presence of duplicated or overrepresented sequences. From the analysis of these
parameters it can be concluded if sequencing went according to plan, if the samples have
enough quality for further analysis or if they had contaminants.

Samples that passed this first step of quality control were posteriorly used in trimmo-
matic to filter those reads that had a low sequencing quality score. FASTQ files were
inputted in the software and filtering parameters were set as: sliding window 4:15 (the se-
quence is scanned in a four nucleotide span and reads with an average sequencing quality
score below 15 are removed); and minlen 40 (reads shorter than 40 bases are removed).

Output FASTQ files from trimmomatic were then uploaded to the i3S local server, and
global and local alignments were performed on each sample using Bowtie2 with the hg19

human genome as reference. The aligned files have BAM extension. Afterwards, reads per
gene were counted and the matrix with the expression values was created in the python
package HTSeq. This software uses as input the BAM files from the alignments and matches
the reads to the genes in the chip. The numbers in the matrix represent the number of reads
of a given gene in a sample, and as the AmpliSeq kit contains one amplicon per gene (same
size), the expression normalization by gene length is not required. This file is therefore
ready to be used in differential expression.

Pearson correlation coefficients between local and global alignments inside the same tis-
sue were calculated using the “Correl” function from Excel for the control samples. Plots
relating the two alignments were also done in Excel using the “Scatterplot” function.
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3.2.3 Differential Expression Evaluation in AmpliSeq Data

Gene differential expression was estimated for each tissue matrix (resulting from the local
alignment) using the pipeline from the “DESeq2” package in Bioconductor, specific for the
analysis of RNA-Seq data (Love et al., 2014). Information whether individuals were infected
or controls was used as the variable in the DESeqDataSetFromMatrix function which creates a
DESeqDataSeq object. The estimateSizeFactors function was then applied to the DESeqDataSeq
object, which normalizes the data considering the median value of each gene expression
across samples.

Afterwards the statistical testing of differential expression occurs. First, DESeq performs
automated independent filtering, in which by removing the weakly–expressed genes from
the input, more genes can be found to be significant among those kept for analysis, im-
proving the power of the test. The Wald test was applied in the nbinomWaldTest function,
elucidating if a given variable (in this case, disease state) significantly affects the model (in
this case gene expression). Results consist of individual p-values for differential expression
for each gene, which are adjusted by using the FDR procedure.

Similarly to what was done in the microarray data, volcano plots for the expression
profiles across the three tissues were created using the R packages “ggplot2” and “ggrepel”.

3.3 enrichment analysis

Enrichment analysis was achieved using GSEA (Subramanian et al., 2005). Initially, expres-
sion matrices with all genes and samples for each microarray and tissue were uploaded
in GSEA. Gene set enrichment analysis was performed for GO (CC, BP and MF) and the
KEGG pathway databases for each of the uploaded datasets. To perform such, default pa-
rameters from GSEA were used, except the “Min size: exclude smaller sets” parameter that
was reduced from 15 to 10 which will include all annotations that have a minimum of 10

genes.
With the results from the Gene set enrichment analysis a leading edge analysis from

GSEA was done with a posterior GSEApreranked. The leading edge analysis enables the
observation of the distribution of the genes across the annotations. GSEApreranked runs a
gene set enrichment analysis taking into account an ordered list of genes, usually using the
p-value for differential expression as a parameter.

3.4 drug repurposing

For the drug repurposing step, the CMap Query tool from clue.io (https://clue.io/query)
was used. For the blood information, the first 150 (this number is a limitation from the
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tool) genes that were significantly up and down regulated (FDR values) between patients
and controls were uploaded in the Query tool. Only genes that appeared commonly in at
least two of the three datasets were inputted and were ordered accordingly to the highest
absolute mean fold change value across the three datasets. In the case of the AmpliSeq data,
Query analyses were made independently for each tissue. We inputted the 150 upregulated
and downregulated genes ranked by the lowest p-values (even if they were not statistically
significant).

The human cell lines that are contained in the Cmap Query tool are: A375 (malignant
melanoma), A549 (non-small cell lung carcinoma), HCC515 (non-small cell lung adenocar-
cinoma), HEPG2 (hepatocellular carcinoma cell line), MCF7 (breast adenocarcinoma), PC3

(prostate adenocarcinoma), VCAP (metastatic prostate cancer), HT29 (colorectal adenocar-
cinoma), and HA1E (kidney epithelial immortalized).

Cmap query output consists in a list of perturbagens rank-ordered by the similarity of
differentially expressed gene sets to the query gene set. A positive score indicates there is
similarity between a given perturbagen’s signature and that of the query, while a negative
score indicates that the two signatures are opposing. So, we considered scores of below
-90 as the drugs that could potentially treat dengue disease. The drugs are complemented
with information for their molecular mechanism of action. We then classified these drugs
into seven main groups of actions: antineoplastic, antibiotic, antiparasitic, immunosuppres-
sant, cardiovascular, anti-inflammatory, antiviral and other. This classification was based
on information contained in several databases: Inxight: Drugs (https://drugs.ncats.io/);
PubChem (Kim et al., 2019); Drugbank (Wishart et al., 2018); FDA (https://www.fda.gov/);
EMA (https://www.ema.europa.eu/en); ClinicalTrials (https://clinicaltrials.gov/). Some
molecular mechanisms of actions can be affiliated in more than one main group of action.
The bar plots created for demonstrating the distribution of drugs among different groups
of action were created using the “ggplot2” package from R.
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R E S U LT S

4.1 expression profiles and drug discovery in the blood samples from

dengue cohorts

The dendrogram analyses performed in the blood dengue cohorts allowed to confirm that
most of the samples group in the respective cluster of infected or control expression profiles
(Figure 7). We decided to keep all of them in the following analyses, maintaining the
variance that can occur within groups.

When illustrating the results of the differential expression analyses in volcano plots (Fig-
ure 8; full information provided in Supplementary Tables S1-S3), it is clear that a consid-
erable number of genes are significantly differentially expressed in each dataset. This is
especially so in GSE51808, whose higher variability can be explained by it being made of
several types of blood cells in comparison with the two other datasets made of only one
type of blood cell. The statistically differentially expressed genes amounted in: 637 for
GSE18090, 804 for GSE38246 and 7185 for GSE51808.

Applying Venn diagrams to the upregulated and the downregulated sets of these genes
(Figure 9), it was possible to confirm the sharing of a number of genes between datasets:
for the upregulated, 66 in the three datasets, 71 in GSE18090-GSE38246, 190 in GSE38246-
GSE51808 and 400 in GSE18090-GSE51808; for the downregulated, 14 in all three datasets,
92 in GSE18090-GSE51808 and 172 in GSE38246-GSE51808.
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Figure 7.: Dendrograms for the gene expression profiles in the three blood datasets: (A) GSE18090,
(B) GSE38246 and (C) GSE51808. The red points indicate the infected individuals, while
the blue points indicate control samples.
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Figure 8.: Volcano plots for the gene differential expression in the three blood datasets: (A)
GSE18090, (B) GSE38246 and (C) GSE51808. The points represented in red are the sta-
tistically significant genes. The negative side of the graph refers to downregulated genes
in patients when compared to controls; the positive side of the graph refers to upregulated
genes in patients when compared to controls.

Figure 9.: Venn diagrams of the upregulated (A) and downregulated (B) genes in the three blood
datasets.
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In order to investigate which type of genes were upregulated and downregulated, we con-
ducted gene set enrichment analysis in each of the three datasets. Figure 10 represents the
top most significantly enriched pathways, when using the database KEGG (results with GO
databases are reported in Supplementary Figures S1-S3 and Supplementary Tables S7-S18).
As can be observed in the figure, biological pathways related with the immune system and
response to pathogens are downregulated in the infected group, while biological pathways
related with the cell cycle and repair mechanisms are upregulated in the infected group.

The CMap tool results for the drug discovery indicated a total of (Supplementary Table
S31) 148 known compounds that were inferred (CMap score inferior to -90) as having poten-
tial impact in dengue haemorrhagic fever treatment. Figure 11 summarizes the amount of
compounds taking into account its mechanism of action (some compounds have more than
one mechanism of action). These drugs are spread across seven main different mechanisms
of action being them antineoplastic (120), antibiotic (12), antiparasitic (10), immunosuppres-
sant (eight), cardiovascular (seven), anti-inflammatory (six) and antiviral drugs (five).
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Figure 10.: Top KEGG pathways (cutoff value; -log p ≥ 2) in the three blood datasets: (A) GSE18090,
(B) GSE38246, (C) GSE51808. Positive NES (in red) mean upregulated pathways in the
infected individuals versus controls; while negative NES values (in blue) mean downreg-
ulated pathways in the infected individuals versus controls.
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Figure 11.: CMap (score inferior to -90) identified compounds that potentially impact dengue haem-
orrhagic fever treatment, according to their mechanism of action.

4.2 liver , spleen and encephalon samples from dengue cohorts

4.2.1 AmpliSeq data Processing

The AmpliSeq characterization aimed at approximately 10 million reads per sample. These
samples were collected in deceased people, after the decaying processes occurring after
death began (Ferreira et al., 2018). So, it is not surprising that the initial amount of reads ob-
tained was lower, varying between 1,410,487 and 9,239,028, being in mean 5,412,203. There
was no effect of the tissue analysed, as the mean of initial reads was similar between tissues:
5,987,967 in spleen; 5,136,132 in encephalon; and 5,077,912 in liver.

The quality control done through the GC content showed that the available tissue sam-
ples (liver and spleen) from cases 900 and 875 did not follow the theoretical unimodal
distribution, presenting bimodal distributions, an indication of some form of contamina-
tion. Although we processed these samples for trimming and alignment, we ended up
removing them from further analyses. Table 2 summarizes samples in terms of the number
of initial reads, reads after trimming, and globally and locally aligned reads.
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The trimming process reduced further the number of reads to continue under analyses,
ending up with around 3.5 million reads. We then tested both local and global alignments,
which lead to a mean number of reads of 3.4 and 2.8 millions, respectively. By performing
linear regression analyses (Figure 12) in the controls between the number of reads per
gene between local and global alignments, we confirmed the high correlation in all tissues
(r2=0.871 in liver; r2=0.760 in spleen; and r2=0.992 in encephalon), so we decided to use the
local aligned reads (higher amounts) for further analyses.

Table 2.: Amount of reads obtained in the various samples along the processing.

Case/Control Tissue Sample ID Init Reads Trim Reads Loc Reads Glob Reads

Spleen 37478-B2 5912869 3468999 3087301 2424472

Case 37478 Enceph. 37478-ENC 3265359 1977898 1890646 1629243

Liver 37478-HEP 3599850 2077442 1953011 1555946

Spleen 39539-B2 7487948 4578828 4056040 3182181

Case 39539 Enceph. 39539-ENC 2555179 1558651 1491919 1307360

Liver 39539-HEP 2920431 1708452 1588579 1263524

Spleen 39538-B2 5748724 3425399 3057317 2438116

Case 39538 Enceph. 39538-ENC 3181759 1790796 1679569 1369419

Liver 39538-HEP 1410487 744213 641014 539616

Case 900 Spleen 900-B2 4123839 2798065 2709844 2382675

Liver 900-HEP 4561069 2648159 2485305 2132127

Case 875 Spleen 875-B2 2865948 1751492 807150 696681

Liver 875-HEP 3377876 1937712 1709855 1485398

Spleen F1-B2 4971485 3171544 2862997 2292589

Control F1 Enceph. F1-ENC 5730768 3398798 3225538 2723449

Liver F1-HEP 2021538 1167422 1047472 872742

Spleen F2-B2 7594924 5403008 5143529 4189310

Control F2 Enceph. F2-ENC 8515179 6519338 6383762 5821274

Liver F2-HEP 8881841 6069089 5745221 4648833

Spleen F4-B2 7964950 5568306 5268896 4219780

Control F4 Enceph. F4-ENC 7568552 5909657 5856624 5635984

Liver F4-HEP 9172251 6498742 6169857 4939151
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Figure 12.: Linear regression between the local and global aligned number of reads in the control
samples in the various tissues (A - liver; B - spleen; C – encephalon).

4.2.2 Expression profiles and drug discovery in the liver, spleen and encephalon samples from
dengue cohorts

The dendrogram analyses performed in the three tissues allowed to confirm that most of
the samples group in the respective cluster of infected or control expression profiles (Figure
13).
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Figure 13.: Dendrograms for the gene expression profiles in the liver (A), spleen (B) and encephalon
(C) datasets. The red points indicate the infected individuals, while the blue points
indicate control samples.
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The profiles of expression obtained in the various tissues indicated that the amount of
genes with at least one read was between 75-88% of total genes evaluated: 15,675 in liver,
16,627 in spleen and 18,301 in encephalon. The number of genes maintained for each tissue
after the DESeq2 independent filtering was 15,605 in liver, 5,169 in spleen and 11,956 in
encephalon. The volcano plots for the differential expression (Figure 14; full information
provided in Supplementary Tables S4-S6) reveal that the following numbers of significantly
upregulated and downregulated genes were found in each tissue: 72 and 88 in liver; 518

and 102 in spleen; and 2362 and 168 in encephalon.

Figure 14.: Volcano plots for the gene differential expression in the liver (A), spleen (B) and en-
cephalon (C) datasets. The points represented on red are the statistically significant
genes. The negative side of the graph refers to downregulated genes in patients when
compared to controls; the positive side of the graph refers to upregulated genes in pa-
tients when compared to controls.

Figure 15 illustrates the top most significantly downregulated pathways in the patients
compared with controls for the KEGG database (results with GO databases are reported
in Supplementary Figures S4-S6 and Supplementary Tables S7-S18). Results show a strong
relation with metabolism, namely of lipids (propanoate, retinol, glycosphingolipid, fatty
acid) in liver and spleen, while for encephalon, significant changes were observed in the
downregulation in patients cohort of pathways related with response to infection and with
neurotransmitters/cerebral diseases.
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Figure 15.: Top KEGG pathways (cutoff value; -log p ≥ 2) in the (A) Liver, (B) Spleen and (C) En-
cephalon. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.



4.2. Liver, spleen and encephalon samples from dengue cohorts 35

The CMap tool results, when considering all the cell lines included in the database (Fig-
ure 16A; Supplementary Tables S32; S34; S36) identified a diverse pattern from the one
in blood, with more drugs of the anti-inflammatory class, cardiovascular (possibly related
with lipids) and other (which includes the drugs for obesity and diabetes, thus metabolism
acting drugs). As one of the cell lines used is derived from a hepatocellular carcinoma,
we also obtained information on CMap when limiting to this cell line. This analysis has
the advantage of avoiding averaging CMap scores amongst perturbagen’s signatures from
diverse cell lines, leading to a higher number of potentially effective drugs (Figure 16B;
Supplementary Tables S33; S34; S37).

The comparison of CMap identified drugs between tissues does not indicate one drug
effective in all tissues, at most, a few drugs (n=14) were identified in two tissues. Given the
high stochasticity in identifying a drug from a connectivity map including 1,000,000 pro-
files, we instead based the comparison between tissues in the CMap molecular mechanism
of action (Supplementary Table S38). There was only one mechanism of action common to
all four tissues, the “histamine receptor antagonist”, supporting the further testing of ap-
plying this kind of drugs in dengue (Malavige et al., 2018).“Phosphoinositide 3-Kinase (PI3K)”
mechanism was identified in liver, spleen and blood, while the related “Protein Kinase B
(AKT) inhibitor” and “FMS-like Tyrosine Kinase (FLT3) inhibitor” mechanisms were identi-
fied in encephalon, liver and blood, calling attention to a more careful evaluation of these
mechanisms in dengue (Chen et al., 2017). Indications were somewhat contradicting for
neurotransmitter receptors, such as dopamine and serotonin, as well as adenosine and
adrenergic receptors, for which agonist, antagonist and inhibitor mechanisms were simul-
taneously identified (in some cases, even in the same tissue). These opposing insights call
for careful functional evaluation of these drugs in dengue (Smith et al., 2014), especially as
they can have several side effects affecting personality.
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Figure 16.: CMap (score inferior to -90) identified compounds that potentially impact dengue hem-
orrhagic fever treatment, according to their mechanism of action, in liver, spleen and
encephalon. A- When considering all cell lines; B- Comparison versus hepatic cell line.
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D I S C U S S I O N

The decreasing cost of omics profiling has render high-throughput technologies available
for understanding the molecular basis of diseases. Compendia of gene expression pro-
files which have been perturbed pharmacologically have been obtained, allowing to glean
gene function (Hughes et al., 2000). In humans, the second phase of CMap, called L1000

(Subramanian et al., 2017), is one of the most complete compendia, including 1,319,138 pro-
files from 42,080 perturbagens (19,811 small molecule compounds, 18,493 shRNAs, 3,462

cDNAs, and 314 biologics), corresponding to 25,200 biological entities (19,811 compounds,
shRNA and/or cDNA against 5,075 genes, and 314 biologics) for a total of 473,647 signa-
tures (consolidating replicates). Some authors already compared blood expression profiles
of dengue patients against CMap (Amemiya et al., 2019), but a broader picture for other
affected tissues was in demand.

Post-mortem human tissue samples are crucial for studying the patterns of gene expres-
sion underlying tissue specificity, as sampling many tissues, especially from encephalon,
from living individuals would be impossible. A drawback of the post-mortem human tissue
samples is the significant reduction of RNA, which is degraded fast upon death (Ferreira
et al., 2018). Thus, post-mortem RNA-Seq analysis poses similar alignment issues to DNA
samples retrieved from ancient or historical specimens, in being typically highly degraded
into small fragments and having contaminant molecules hampering amplification. A com-
monly strategy used in the analysis of ancient sequence data is to perform local alignment
(Taron et al., 2018), where sub-portions of the query sequence are tested in the alignment
to the reference sequence. By contrast, in the global alignment, the entire query sequence is
aligned to the reference target sequence, this way it is also referred to as end to end align-
ment. Thus local alignments are best adjusted to degraded samples, leading to a higher
number of aligned reads. In our samples, although we aimed at an AmpliSeq characteri-
zation of around 10.8 million reads per sample, the values obtained varied widely between
samples, attaining a mean of 5.4 million of initial reads, concordant with some degradation
of the samples. After local alignment, a mean of 3.4 million aligned reads was obtained.
Linear regression analyses confirmed that the general profile of gene expression between
local and global alignments was highly concordant, being higher in the local than global
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alignment, as expected in theory. This observation supported the use of the local alignment
inferred expression levels in this work.

Thus, the analysed samples in this work allowed to characterize the main gene expres-
sion changes occurring in blood, liver, spleen and encephalon of dengue patients, and to
identify candidate drugs directed to those changes. In blood, pathways related with the
immune system and response to pathogens were downregulated, demonstrating the fail-
ure of the immune system in responding to the disease in these deceased patients, while
those related with cell cycle/repair mechanisms were upregulated as was already described
(Kwissa et al., 2014). Concordantly, CMap identified 58.8% of antineoplasic drugs amid
the 204 identified drugs-mechanism of action in blood. In liver and in spleen there was
a significant downregulation of metabolic pathways, especially of lipids, and many anti-
inflammatory and related metabolism drugs were pointed out. In brain, pathways of re-
sponse to infection and related with neurotransmitters/cerebral diseases were increased,
concordant with CMap identification of drugs acting in neurotransmitters, adenosine and
adrenergic receptors.

The dissimilarity in the results between tissues, which reflects tissue specificity, could at
first instance indicate that a cocktail-based treatment would be more suitable to address
this diversity. However, given the high connectivity between molecular networks in the
body, and the multi-effects of drugs, some candidate drugs can be effective in the various
tissues in dengue disease. Some important insights can already be summarized from our
results, which coupled with previous independent in vitro and in vivo testing, inform us on
how pursuit further on drug repurposing for treatment of later phases of dengue disease.
The only signal common to all four tissues was for the “histamine receptor antagonist”.
Four drugs were identified in the four tissues, but these are highly related with rupatadine,
an orally available second-generation antihistamine that has been already tested in dengue
(Malavige et al., 2018). Rupatadine has long acting dual histamine-1-receptor blocking ac-
tivities and platelet activating factor receptor blocking activities, useful for the treatment of
allergic disease and chronic urticarial, while in dengue it also significantly reduced endothe-
lial permeability by dengue in vitro, and significantly inhibited the increased haematocrit
in dengue-infected mice with dose-dependency (Malavige et al., 2018). These authors con-
ducted a randomised, placebo-controlled trial in 183 adult patients in Sri Lanka with acute
dengue, which showed that: (1) rupatadine up to 40 mg daily appeared safe and well-
tolerated, (2) higher platelet counts and lower aspartate-aminotransferase levels on day 7

in the rupatadine group compared to the placebo group, and (3) smaller effusions on day
8 in the subgroup of patients with pleural effusions. A larger sample size and range of
recruitment time in the future will allow to evaluate more securely the potential beneficial
effects of rupatadine in dengue.
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Host cell kinases are important for the replication of some hemorrhagic fever viruses, and
panels of kinases inhibitors have been tested for their ability to block these viruses’ repli-
cation (Mohr et al., 2015). One signalling pathway, the PI3K/AKT pathway, was reported
to be essential for the propagation of the viruses, and accordingly, the CMap results indi-
cated “PI3K inhibitor” in liver, spleen and blood, while the related “AKT inhibitor” was
identified in encephalon, liver and blood. Also, “FLT3 inhibitor” mechanism was detected
in encephalon, liver and blood, which may reflect the fact that constitutive activation of
FLT3 is involved in leukemogenesis, partially through phosphorylation/activation of the
serine-threonine kinase (Chen et al., 2010). Again, all this mechanisms are related with
“MTOR inhibitor” (detected in spleen and blood), as the mammalian target of rapamycin
(mTOR), an important downstream effector of AKT and a master regulator of cell growth
and metabolism, seems to have its signalling activated by FLT3 kinase (Chen et al., 2010).

There were many signals for the involvement of various receptors, as of dopamine, sero-
tonin, adenosine and adrenergic, for which agonist, antagonist and inhibitor mechanisms
were simultaneously identified. Previously, (Smith et al., 2014) identified a group of small
molecules that inhibited infection with dengue and other flaviviruses, and interestingly
those molecules were similar in structure to tricyclic antipsychotic compounds that act as
antagonists of serotonin and dopamine receptors. Further knockdown of dopamine re-
ceptor D4 reduced DENV replication, via inhibition of Epidermal Growth Factor Receptor
(EGFR)-related kinase (ERK) phosphorylation. Although it seems strange the involvement
of receptors that are mainly located in neurons, it has been shown that dopamine receptors
are expressed on rodent and human macrophages, a primary target cell of DENV infec-
tion. These macrophage related dopamine receptors may be the ones being influenced by
DENV. The link with EGFR was also detected in CMap related in liver and blood, as “EGFR
inhibitor”.

At first instance, there were not many indications of lipid-related drugs in the CMap
results. This may be so because of the late stage of the disease analysed in this work,
while lipids may be more important in the first stages of entrance of the virus into the cells
and in their replication in the acute phase (Sierra et al., 2017). Even so, a “LXR agonist”
mechanism was identified in liver, “Vitamin D receptor agonist” and “Vitamin K antagonist”
were detected in encephalon, and statins (lovastatin and simvastatin, respectively) were
highlighted in spleen and blood. These results call for a continuation on trials with statins
(bigger sample sizes; different concentrations of intake; different times of intake), as at least
the few clinical trials already realized (Whitehorn et al., 2015; Chia et al., 2018) showed that
treatment or continuation of statin intake has no negative effects on dengue patients.
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C O N C L U D I N G R E M A R K S A N D F U T U R E W O R K

The work conducted here testifies the gain in information on drug repurposing through the
performance of omics analyses in the various tissues affected in a disease. In this way, the
in silico evaluation of drugs can take into consideration the effects of tissue specialization
for the design of a more efficient treatment strategy, through the selection of a compound
effective in several tissues or a cocktail of drugs able to deal with this diversity. This strategy
is especially important in discovering innovative drug treatments for neglected diseases, as
the funding for the study of these diseases is scarce.

Specifically, the work developed by us sheds more light in the complicate physiopathol-
ogy of Dengue, giving more insight in the alterations in specific tissues (liver, spleen and
encephalon), pathways and genes. Additionally, the relation of these alterations with drugs,
also performed by us, could also contribute in the discovery of treatments for this disease
which is still untreated.

Several paths can now be followed departing from these first results. In terms of bioinfor-
matics, machine learning could be applied to the transcriptomic data in the various tissues,
as an alternative methodology to identify effective drugs. These methods should be trained
in another database different from the one used in CMap, so that biases due to the lim-
ited number and type of cell lines and of tested drugs can be avoided. Also, given that
post-mortem samples are prone to degradation, alignment algorithms that were specifically
designed for degraded DNA samples could be applied and compared with our results.

In biological terms, an increase in the number and quality (decreasing time since death
for the extraction of RNA) of samples per tissue should be procured, in order to replicate
the study. Despite this, the identification of a few drugs biologically meaningful in the
context of dengue disease, could already support the pursuit of functional evaluation tests,
first in vitro (infection assays in diverse types of cells) and then in vivo (in mice models of
dengue disease).
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a.1 supplementary tables

Supplementary Table 1 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for the GSE18090, contains information regarding

probe ID, adjusted p-value, p-value, logarithmic fold change, gene symbol and gene title.
Genes with pink shade were considered as differentially expressed.

Supplementary Table 2 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for the GSE38246, contains information regard-

ing probe ID, adjusted p-value, p-value, logarithmic fold change and open reading frame.
Genes with pink shade were considered as differentially expressed.

Supplementary Table 3 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for the GSE51808, contains information regarding

probe ID, adjusted p-value, p-value, logarithmic fold change, gene symbol and gene title.
Genes with pink shade were considered as differentially expressed.

Supplementary Table 4 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for Spleen samples, contains information regard-

ing gene ID, logarithmic fold change and p-value. Genes with pink shade were considered
as differentially expressed.

Supplementary Table 5 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for Hepatic samples, contains information regard-

ing gene ID, logarithmic fold change and p-value. Genes with pink shade were considered
as differentially expressed.

Supplementary Table 6 (Excel file “Supplementary Tables 1-6”)
Table with gene differential expression for Encephalon samples, contains information

regarding gene ID, logarithmic fold change and p-value. Genes with pink shade were
considered as differentially expressed.
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Supplementary Table 7 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the KEGG anno-

tations in GSE18090. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 8 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC annota-

tions in GSE18090. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 9 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF annota-

tions in GSE18090. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 10 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in GSE18090. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 11 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the KEGG anno-

tations in GSE51808. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 12 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC annota-

tions in GSE51808. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 13 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF annota-

tions in GSE51808. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 14 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in GSE51808. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 15 (Excel file “Supplementary Tables 7-30”)
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Table with results from the enrichment analysis performed on GSEA for the KEGG anno-
tations in GSE38246. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 16 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC annota-

tions in GSE38246. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 17 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF annota-

tions in GSE38246. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 18 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in GSE38246. Table has information on the enriched gene sets as well as the statistics
on each of the annotations.

Supplementary Table 19 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the KEGG anno-

tations in Hepatic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 20 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC annota-

tions in Hepatic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 21 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF annota-

tions in Hepatic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 22 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in Hepatic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 23 (Excel file “Supplementary Tables 7-30”)
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Table with results from the enrichment analysis performed on GSEA for the KEGG anno-
tations in Spleen samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 24 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC anno-

tations in Spleen samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 25 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF anno-

tations in Spleen samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 26 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in Spleen samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 27 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the KEGG anno-

tations in Encephalic samples. Table has information on the enriched gene sets as well as
the statistics on each of the annotations.

Supplementary Table 28 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the CC annota-

tions in Encephalic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 29 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the MF annota-

tions in Encephalic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 30 (Excel file “Supplementary Tables 7-30”)
Table with results from the enrichment analysis performed on GSEA for the BP annota-

tions in Encephalic samples. Table has information on the enriched gene sets as well as the
statistics on each of the annotations.

Supplementary Table 31 (Excel file “Supplementary Tables 31-37”)
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Table with results from the drug discovery step, performed on CMap for the microarray
data. Table contains score, name of the drug and mechanism of action for the outputted
drugs.

Supplementary Table 32 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the hepatic data.

Table contains score, name of the drug and mechanism of action for the outputted drugs.

Supplementary Table 33 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the hepatic

data limited to the hepatic cell line on CMap. Table contains score, name of the drug and
mechanism of action for the outputted drugs.

Supplementary Table 34 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the spleen data.

Table contains score, name of the drug and mechanism of action for the outputted drugs.

Supplementary Table 35 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the spleen data

limited to the hepatic cell line. Table contains score, name of the drug and mechanism of
action for the outputted drugs.

Supplementary Table 36 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the encephalon

data. Table contains score, name of the drug and mechanism of action for the outputted
drugs.

Supplementary Table 37 (Excel file “Supplementary Tables 31-37”)
Table with results from the drug discovery step, performed on CMap for the encephalon

data limited to the hepatic cell line. Table contains score, name of the drug and mechanism
of action for the outputted drugs.
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a.2 supplementary figures

Figure S1.: Top BP pathways (cutoff value; -log p ≥ 2) in the (A) GSE18090, (B) GSE38246 and (C)
GSE51808. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.
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Figure S2.: Top CC pathways (cutoff value; -log p ≥ 2) in the (A) GSE18090, (B) GSE38246 and (C)
GSE51808. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.
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Figure S3.: Top MF pathways (cutoff value; -log p ≥ 2) in the (A) GSE18090, (B) GSE38246 and (C)
GSE51808. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.
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Figure S4.: Top BP pathways (cutoff value; -log p ≥ 2) in the (A) Liver, (B) Spleen and (C) En-
cephalon. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.
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Figure S5.: Top CC pathways (cutoff value; -log p ≥ 2) in the (A) Liver, (B) Spleen and (C) En-
cephalon. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.



A.2. Supplementary Figures 63

Figure S6.: Top MF pathways (cutoff value; -log p ≥ 2) in the (A) Liver, (B) Spleen and (C) En-
cephalon. Positive NES (in red) mean upregulated pathways in the infected individuals
versus controls, while negative NES values (in blue) mean downregulated pathways in
the infected individuals versus controls.
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