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A B S T R A C T

Electron Microscopy (EM) of nanomaterials relies on grey-scale images to display the ma-
terial’s atomic arrangement, and a high resolution EM can simultaneously capture multiple
atomic structures into a single image. However, the extraction of useful information from
these images is still limited to the determination of the material’s orientations, an under-
utilisation of the powerful features of an EM equipment and less productive EM sessions.
This is due to the compute-intense tasks that have not been automated yet.

This dissertation aims to significantly reduce the time required to extract useful data from
EM images and to remove the user bias when analysing high resolution (S)TEM images, by
automating most user routine tasks and integrating them into a software tool, Im2Cr.

The deployed Im2Cr tool aimed to aid an EM user to find the most probable atomic
structure orientation of a nanomaterial in a single 2D image from a set of pre-defined
materials, with a minimal user interaction.

Im2Cr was designed and built with a simple and intuitive Graphical User Interface (GUI)
that runs on a common modern laptop. It takes as input a high resolution (S)TEM image
and multiple CIF files with candidate atomic structures to describe the material under
observation. After performing the Fourier Transform (FT) on selected Regions Of Interest
(ROI) in the image, the tool automatically detects periodic information related to the atom’s
positions by the brighter spots on the image FT. With a set of geometric computations it
tries to match the theoretical values computed with the measured ones by assigning a
custom made merit index. This quantitative evaluation avoids possible user bias and/or
errors on image characterisation. Im2Cr outputs at the end a report with the best matching
crystallographic structure, its orientation and the indexation table.

This tool was successfully tested for robustness and execution efficiency in a wide range
of high resolution (S)TEM images from crystalline nanomaterials, with domain size ranging
from 4 to 100 nm. The autonomous indexation with preset parameters has a very high
success rate and runs in a small fraction of typical (S)TEM images acquisition time by
taking advantage of the inherent hardware parallelism. Alternatively, the user can change
some relevant parameters related to the ROI selection on the (S)TEM image and on the FT
peaks detection.

Im2Cr promising results point to the possibility of real-time image analysis with reduced
user interaction, allowing for an increased (S)TEM characterisation yield and also enabling
the interpretation of complex images, such as those from nanocrystalline materials imaged
in high-order zone axis orientations.
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R E S U M O

A microscopia eletrónica (EM) de nanomateriais usa imagens em escala de cinza para
representar a estrutura atómica de um material, sendo a EM de alta resolução capaz de
capturar simultaneamente múltiplas estruturas atómicas numa única imagem. No en-
tanto, a extração de informação útil destas imagens ainda é limitada pela determinação
das orientações do material representado, o que resulta numa subutilização de equipa-
mentos de EM e em sessões menos produtivas. A grande razão para esta limitação deve-
se à atual baixa automação de tarefas computacionalmente intensivas necessárias para a
caracterização do material.

Esta dissertação tem como objetivo reduzir significativamente o tempo necessário para ex-
trair informação das imagens EM, removendo da equação uma possı́vel análise tendenciosa
inconsciente do utilizador através da automação deste processo numa nova ferramenta,
Im2Cr.

O Im2Cr tem como objetivo ajudar o utilizador a encontrar a orientação da estrutura
atómica mais provável de determinado nano material a partir de um conjunto de materiais
pré-definidos e uma única imagem 2D, com o mı́nimo possı́vel de interação do utilizador.

O Im2Cr foi desenhado e construı́do para fazer uso de uma simples e intuitiva interface
gráfica (GUI) capaz de ser executada num normal computador pessoal. Esta aplicação
recebe como dados de entrada uma imagem (S)TEM de alta resolução e vários ficheiros
CIF com as estruturas atómicas candidatas para descrever o material observado. Após
aplicação da Transformada de Fourier (FT) na região de interesse (ROI) selecionada na
imagem, a ferramenta é capaz de detetar automaticamente informação periódicas relativa
às posições dos átomos através dos pontos mais claros na imagem FT. Com base num
conjunto de cálculos geométricos, a aplicação tenta combinar os valores teóricos calculados
com os valores medidos, avaliando assim as correlações com base num recém-criado ı́ndice
de mérito. Esta avaliação quantitativa evita possı́veis influências do utilizador e/ou erros de
cálculo na caracterização da imagem. No final, o Im2Cr exporta um relatório com a melhor
estrutura cristalográfica encontrada, a sua orientação e a respetiva tabela de indexação.

Esta ferramenta foi submetida a testes de robustez e eficiência de execução com base
numa ampla variedade de imagens (S)TEM de alta resolução de nanomateriais cristalinos,
cujo tamanho variava entre 4 a 100 nm. A indexação autónoma com uso de parâmetros
predefinidos tem uma taxa de sucesso significativa e é executada numa fração do tempo
quando comparada com o tempo tı́pico de captura de imagens (S)TEM, fazendo uso do
paralelismo de hardware existente. Alternativamente, o utilizador tem o poder de poder
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alterar alguns parâmetros relevantes relacionados à seleção da ROI na imagem e à deteção
de picos na FT.

Os resultados obtidos apontam para a possibilidade da análise de imagens em tempo real
com uma reduzida interação do utilizador, permitindo assim um aumento do desempenho
na caracterização de imagens (S)TEM e possibilitando ainda a interpretação de imagens
mais complexas, nomeadamente imagens de materiais nanocristalinos com orientações
menos convencionais.
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1

I N T R O D U C T I O N

1.1 context

The study of the atomic structures in nanotechnology has a significant relevance at the
present time, since it is an area that reveals the potential application of different materials
to different areas of research.

Figure 1.: TEM microscope
schematic

The potential applications of such materials are revealed by
its properties, which depends on their structure at the atomic
level. At the scale below 100 nanometres, nanotechnology re-
search aims to explore materials properties in order to better
suit real world application, for example, transistors for the semi-
conductor industry or catalysts for chemical industry.

To improve nanostructured devices performance, it is neces-
sary to understand and optimise their atomic arrangement. Ma-
terials characterisation techniques with high spatial resolution
are fundamental for this task.

In nanotechnology research conventional optical microscopes
do not have the required resolution to be able to separate indi-
vidual columns of atoms. An Electron Microscope overcomes
this problem by using a beam of electrons instead of a light
source, being able to achieve resolutions bellow ångströms.

Electron Microscopy (EM) uses one of two main methods
to capture atomic structure images: Transmission Electron Mi-
croscopy (TEM) or Scanning Transmission Electron Microscopy
(STEM).

TEM is a versatile tool that can be used to characterise materials. The use of high-
energy electrons allows an improved resolution with respect to optical microscopy - modern
(S)TEM equipments can reach resolution down to 50 picometers.

1
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1.2. Motivation and Goals 2

Figure 2.: STEM micro-
scope schematic

In addition to atomic resolution imaging, (S)TEM is able
to provide information about the atomic arrangement through
electron diffraction and chemical information species quantifi-
cation through spectroscopy.

TEM is based on a broad electron beam that illuminates a
large field of view (up to several microns) of a thin sample. At
lower magnifications, images are formed similarly to an optical
microscope in transmission mode.

To retrieve the atomic structure from periodic (crystalline)
samples, TEM can be used to directly generate Electron Diffrac-
tion (ED) patterns, or to promote the interference of diffracted
electrons to form atomic resolution images. Both approaches
generate images containing information on the periodicity of
the sample structure.

STEM is based on a small (0.1 nm or smaller) electron beam
that is scanned over an area of interest of a thin sample. The
transmitted electrons can be detected by a set of detectors in
different annular ranges. The most widely used is the High
Angle Annular Dark Field (HAADF) region, which comprise
electrons scattered at high angles (from 80 milliradians) and can
be used directly to form atomic resolution images.

Both TEM and STEM approaches lead to high resolution im-
ages containing information on the sample’s atomic structure.
However, a demanding procedure of image analysis is required
to their interpretation.

1.2 motivation and goals

The usage of EM technology to characterise materials is well established on today’s in-
dustry as a mean to find the best suited materials for a specific application. As such,
researchers are constantly experimenting with new materials combinations to study their
properties and potential applications.

An important step for this study is to know which material is being displayed as well as
its orientation. Using this information, it is possible to perform adjustments to achieve a
desired result.

One example of application of image characterisation is the reconstruction of a 3D model
of the material being studied. In this process it is required to know which material, orien-
tation and dimensions prior to try to simulate a 3D model.
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(a) (b)

Figure 3.: Example of TEM (a) and STEM (b) images of CeO2

The validation of the three-dimensional analysis using two-dimensional images is al-
ready proven through different methods (Stroppa et al., 2013) (Jia et al., 2014), having all
in common the process of validation by comparing the experimental image with the im-
age resulting from the application of the simulation process to the atomic structure model
expected.

However, the analysis of the experimental image still requires human intervention in
the delimitation of Regions Of Interest (ROI), as well as expertise in the determination of
the atomic structure model and its orientation. These requirements result in the under-
utilisation of TEM microscopy technology due to, in large part, the time required to charac-
terise each acquired image.

This dissertation aims to develop a new autonomous tool, Im2Cr (stands as image to
crystal). This application should be used to extract crystalline structure information from
(S)TEM images in a process known as indexing. The expected output should be a model of
the observed material in the correct orientation.

With regards to user requirements, the tool should be easy to use by having a robust
and user-friendly Graphical User Interface (GUI) and should be validated with several real
TEM, STEM and ED images. The user experience should also be taken into consideration
by being responsive and performing the task quickly. Also, the tool should be usable with
current laptops/desktops.
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1.3 contribution

To address the previously mentioned problem, the introduction of a semi-autonomous
tool which require little user interaction and can perform multiple image characterisation
should greatly reduce the time needed for the analysis of experimental images. Also, the
use of computational power to perform extensive image analysis should enable the char-
acterisation of images which, in current manual process, would not be used due to, for
instance, a high order zone axis in which the atomic structure is represented in the image.

To achieve this, the developed software should receive as user inputs the images to be
indexed and the Crystallographic Information File (CIF) regarding to the expected unit
cells to be in the image and output the best suited material found and its orientation. To be
less subjective on the classification of each material, a merit index is applied, which in turn
allows less experienced users to use the tool and understand the results displayed.

Regarding the computational performance, the developed application should make use
of current modern processors features, namely the hardware support for vectorization and
multiple threads at each core, the multitude of the available cores, and a careful balance of
the available memory hierarchy.

To minimise the computational penalty of creating and deleting threads, these should not
be larger than the number of allocated cores: the developed software should reuse threads
when possible, using a task pool, which increases the overall efficiency and reduces the
time taken to perform batch indexation.

1.4 dissertation structure

This dissertation addresses the current state-of-the-art on (S)TEM images indexation,
from the initial developments to the most up-to-date studies and applications in the field.

Next chapter describes the developed application with details on its development, faced
challenges and how they were overcome. For an easier readability about the development
process, this chapter is approached with a top-down perspective: it describes the avail-
able user interface and on the following sections a more detailed description of the inner
processes and algorithms.

To demonstrate the contributions made possible with this application, the following chap-
ter benchmarks the application and display its results, addressing the application thread
utilisation and the used optimisation, as well as a comparison with a non-optimised ver-
sion of the application.

The final chapter draws conclusions from a comparison between the application expec-
tations and the work outcomes. This chapter also addresses the application potential by
suggesting further developments from this dissertation work.
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D E S I G N I N G A 3 D M O D E L F R O M A N ( S ) T E M I M A G E

The process of determination of zone axis and upward vector is a well-known and essen-
tial in the analysis of images of electron microscopy. It is from this indexing procedure that
it is possible to determine the orientation of the unit cell and, based on this information, to
simulate the image obtained from theoretical information about the observed crystal.

The automation of this process has been developed in recent years with resort to different
approaches, each having their respective advantages and disadvantages. Likewise, techno-
logical evolution at the computational level has seen significant advances that contribute to
a faster and easier indexation process.

In this sense, the present chapter will address the existing algorithms and implementa-
tions in the field of electron microscopy as well as the main evolutions in computational
technology.

2.1 related work

The analysis of experimental images is an essential procedure in the crystallographic
characterisation in electron microscopy. One of the key steps in this process is to identify
the observed crystal and determine its orientation, process also known as indexing.

The theoretical steps of this process are widely known (Bunge, 1982) and are often per-
formed manually. Thus, the indexation of crystals can be considered a time-consuming and
error-prone process, although not necessarily complex.

In this sense, efforts have been made to automate this process in a robust and reliable
way. One of the first developments of automatic tools is described in a paper by Stefan
Zaefferer (Zaefferer, 2000) where two different approaches of indexing the orientation of
the observed material are presented.

One of the indexing methods described makes use of Kikuchi’s lines displayed in the
diffraction pattern image. A very simplified description of the Kikuchi lines is that they are
characterised by pixel lines observable in captured images. These lines can then be mapped
against a line map of the respective crystal where the goal is to determine the interception
between the lines displayed and to which planes these interceptions correspond.
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Figure 4.: Kikuchi lines, from Wikipedia

In the second method, it is suggested the indexation from electron diffraction patterns.
The diffraction patterns are characterised by regions of higher intensity present in the image
and are directly related to the arrangement of the atoms in the sample, since they are the
ones that cause the diffraction of the electrons from the beam.

Figure 5.: Example of an electron diffraction image, from Wikipedia

In this study, it was found that indexing through the Kikuchi lines is more sensitive to
deformations in the sample, when compared to the diffraction of electrons; but on both it
is possible to index the observed crystal.

The automation of the electron diffraction indexation process is described based on four
main phases:

• obtaining the image and correctly identifying the coordinates of the spots present;

https://upload.wikimedia.org/wikipedia/commons/9/95/SapphireKikuchi.png
https://upload.wikimedia.org/wikipedia/commons/7/76/Icosahedrite_Diffraction_Pattern.jpg
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• determination of the angles and magnitudes of the vectors of the diffraction pattern;

• calculation of the theoretical values for each plane hkl and a comparison with the ex-
perimental values, assigning the theoretical value according to the tolerance allowed;

• confirmation of correct indexation using the simulation of the crystal structure in the
calculated orientation.

To increase indexation accuracy, this paper mentions the use of automation in image
processing, to determine the coordinates of the centre of each spot. For this purpose, it is
used the centre of gravity of the sum of the pixel intensities in each spot.

As limitations, it could be said that the sample used needs to have some thickness in
order to produce the Kikuchi lines. This requirement excludes the feasibility of this process
for nanocrystals indexation.

Regarding automatic image analysis, in 2005 a paper related to a new methodology using
diffraction patterns was released (E. and Laurent, 2005).

In this paper it is mentioned that the use of a camera capable of registering 8 bits per
pixel is enough to perform a good indexation while keeping low image acquisition times.

In this study it is also verified that this level of scanning can be used in images down to
a minimum resolution of 128x128.

Regarding the indexation process, a new approach is suggested using pre-calculated and
stored templates. A calculation is then made to correlate each template with the obtained
experimental image. Regarding the size of the template database, the author of this study
considers that about two thousand templates will be enough to index images with a margin
of error less than 1 degree.

About the indexation process through image correlation, it is mentioned that the simple
use of the correction index is not enough to determine the orientation of the sample. To
demonstrate this scenario, a case is exposed where two templates have a very close correla-
tion index, generating ambiguity.

To solve this problem, the author suggests a reliability index, which considers the two
highest correlation indices. If the value of both is very close, the total value applying the
suggested formula is close to 0. On the other hand, if the values have a significant difference,
the result will be close to 100. Using the formula, the study suggests that indexes with
values greater than 15 are safe. Likewise, values over 40 are excellent.

With this study it was concluded that the use of templates is useful to reduce the compu-
tation time required indexing experimental images.

As a limitation of template matching algorithms, it can be said that the input images must
be diffraction pattern images and its indexation process rely on the comparison with all
computed patterns, which translates into a considerable amount of useless computations.
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On the other hand, this process allows great flexibility by allowing image indexation on
images with less than ideal zone axis.

In the following year a criticism was made (Morawiec and Bouzy, 2006) regarding the use
of the template-based method, in the sense that it presents ambiguity in the 180 degrees
indexation. Additionally, it is suggested that simple voltage variation would eliminate such
ambiguity. This paper concludes that the automation of orientation determination based
on templates should act as a complement in the analysis of samples, not removing however
the merit in the indexation of samples with deformations.

In response to the problem of ambiguity, the author of the 2005’s paper wrote in the
same publication (E. and Laurent, 2006) to note that this is a more technical than theoretical
problem in the sense that this ambiguity can be removed in three distinct ways: (i) the use
of more distant spots, (ii) the use of beam stoppers to avoid saturation of the detector and
allowing the use of spots with more precise angles, and (iii) the acquisition and indexation
of a second image taking into account the changed angle, thus eliminating ambiguity.

In a more recent paper (Meng and Zuo, 2017), one more study was made about the algo-
rithms at the time, where two alternative implementations related to automatic indexation
were proposed: (i) an improvement of the algorithm of indexation by template matching, or
(ii) a pattern matching algorithm for 2D coordinates, based on the comparison of triangles
formed by each set of 3 coordinates.

In the first implementation the improvement takes into consideration the information re-
garding the angles and distances of each spot, both in the experimental image and in the
simulated template. After this process, a 1D Normalised Cross-Correlation (NCC) calcu-
lation is performed between the values obtained on both the experimental image and the
created simulated patterns. Based on this comparison, a number of simulations are then
chosen to be compared to the experimental image using 2D NCC (similar to the original
template matching algorithm) using a formula presented in the paper.

In the second implementation, based on a 1986 study for the area of astrology (Groth,
1986), the algorithm calculates the comparison of the triangles between the original image
and the simulated image, based on ”polls” that represent the possibility of a certain spot
being common to both images. The author suggests the use of this algorithm applied to the
coordinates of the spots in electron diffraction images.

Regarding the first approach, it is indicated that the improved algorithm of template
matching has some limitations, namely the magnification used must be known. The de-
viation relative to the zone axis can also have an impact on the indexation result. On the
other hand, in Groth’s triangle-based indexation it is possible to index images with some
deviation from the zone axis, but it is also dependent on the good delimitation of the spots
in the diffraction pattern.
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In terms of execution times, the author reports approximate times of 6 seconds for the
improved template-matching implementation in a 256x256 image. For the Groth’s triangle
implementation it takes about 10 times longer.

Despite this significant increase in execution time, this paper concludes that the use of
Groth’s triangles is recommended when reliability is desired. On the other hand, the first
approach is suggested when the execution times are important, and the diffraction patterns
spots are well defined.

An alternative MATLAB-based implementation to this dissertation was published in 2015

(Klinger and Jäger, 2015). This implementation is composed of three individual but com-
plementary applications: (i) diffractGUI, used to index electron diffraction, (ii) ringGUI,
to index circular electron diffraction and (iii) cellViewer, which displays a 3D model of a
crystal and allows the manipulation and calculation of orientations.

In the diffractGUI application the automatic calculation of the centre of the diffraction
patterns can be performed; however, it has a significant impact in terms of performance and
execution times. After determining the centre, the indexation is performed using theoretical
values of the observed crystal. In this indexation process an automatic routine searches for
false positives and false negatives. To achieve this functionality, the RANSAC algorithm was
implemented in the application, which, from a number of detected spots, tries to determine
two primitive vectors that allow to build the observed lattice. Based on the comparison
between the constructed lattice and the experimental image the valid spots are subsequently
adjusted.

Similarly, based on the implementation of the RANSAC algorithm, the author states that
it is possible to process two or three overlapping diffraction patterns. To achieve this the
application executes the algorithm and determines a first lattice. Afterwards the algorithm
is executed again, ignoring the spots in the previous lattice.

Regarding the application of circular electron diffraction, ringGUI, the author of the paper
states that the application is capable of processing images whose circular shape is not fully
formed, as long as the image has not been distorted. In this application it is also possible to
use images that contains or not a beam stopper. If it is present, the application interpolates
the missing values in order to allow the determination of the centre of the diffraction. As a
result, the application shows the reconstructed pattern (in the case of the experiment image
containing the beam stopper) and the plane corresponding to each circular diffraction.

Finally, the 3D visualisation application of crystal forms, cellViewer, allows the user to
visualise the result of the indexation computed in the previous applications, as well as to
display a theoretical simulation of the lattice produced by a given orientation.

With relation to performance, according to the paper, a benchmark was set comparing
the time taken by using the application and the time taken by performing the indexation
process manually by two experienced analysts. For this test the analysts could use computer
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tools as long as they did not perform parts of the indexing process automatically. As for the
application, it was run on a Lenovo ThinkPad E540 laptop with a 2.3GHz Core i7 processor
in a single core. In the benchmark result, the application ran between 12 and 22 seconds
for four images, while the two analysts recorded times between 390 and 980 seconds and
960 and 2700 seconds, respectively.

Based on these results, the author suggests that the application allows speedups between
30 and 60 times compared to manual indexing. As a conclusion, the paper highlights the
fact that the application allows significant time savings using the application, while recog-
nising that there will always exist difficult cases were the automation shows its limitations.

2.2 end-user requirements

With the end user requirements, the optimal outcome of this dissertation work would
be the deployment of an autonomous tool that, from an input image, could detect the
displayed ROIs, select the best suited CIF files and perform the indexation process for
each ROI. The software should output the best matching crystallographic structure, its
orientation and the indexation table. These steps should be fast enough to be performed
during a experimental EM session, right after an image capture, or, in the optimal case,
using a video feed as input.

Taking into consideration current image acquisition times, the time taken to capture a
STEM image is in the range of 2 to 20 seconds, while TEM images takes around 0.1 to
1 seconds. If we look at the state of the art related to image capture of TEM, there is
equipment available that allows video up to 1000 Frames Per Second (FPS).

For system requirements, the software should be able to run on a common modern laptop
for single image indexation or a more robust computer for the use case of video as input.

Regarding the Operating System (OS) to be supported, it should be possible to run the
software on all main OSs: Linux, Mac OS and Windows, being the latter two the more
suitable to be run on the end user laptop and the first one targeted to a more robust
computer, mainly a server.

2.3 challenges

The previous section displayed all the desirable requirements. However, some of those re-
quirements are still beyond current computer capabilities, being these currently minimised
with the aid of parallel execution.

As such, there are a number of limitations that prevent all above-mentioned user require-
ments to be fulfilled. Following are some examples of these limitations that were identified
or found during the software development.
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2.3.1 Autonomous ROI selection

The end user requirements stated that the tool should perform image indexation without
user intervention to select the ROIs on the image. Preliminary work was done in order to
assess this requirement, which showed some promising results.

As one can see in both images 6a and 6b, the ROI detection displayed in image 6b is a
good selection from the input image 6a.

To achieve this result, the input image had its rows and columns scanned and a statistical
variation was performed on them. This computation showed that the regions with greater
variation were usually where the ROI was located, since the atom’s columns are usually
represented through a significant pixel contrast when compared with its neighbour pixels.
The algorithm then performed a best fit polynomial function of order 5 to the variation
results and registered the polynomial maximum and minimum values of the polynomial
function. If the difference between these two values was significant, then a ”water line” was
set and only the pixel coordinates which had polynomial values above the water line were
accepted, being the coordinates below this threshold discarded. Performing this process to
the image rows and columns lead to the ROI selection in image 6b.

The algorithm results displayed could lead to believe that autonomous ROI detection
should be possible without human intervention. This interpretation was later discovered as
deceiving, since this algorithm has an intrinsic limitation to find a single ROI on each input
image.

Being EM currently focused on increasing image resolution, the future perspective on
image indexation is to use higher resolution images displaying more than one ROI. As
such, autonomous multiple ROI detection is currently a challenge to be addressed on future
work, being the solution in the meantime to have the user selecting the ROI area.

2.3.2 Autonomous CIF selection

Another desirable software functionality was to automatically select the best suited CIF
files in order to perform image indexation.

The main challenge on this functionality is the various similarities present on different
unit cells. As an example, one cubic unit cell with its structure displayed on the experi-
mental image could be indexed with another unit cell with double the lateral dimension
and some atoms at the middle of each edge. Both CIFs would have the same angles and
spacings.

This still is a challenge on its own, being used special tools, namely Energy-Dispersive
X-ray (EDX) spectroscopy, to find which elements are present on the sample.
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(a) Detected ROI selection (b) ROI selection

Figure 6.: CeO2 0.009nm with autonomous ROI selection

(a) Variation along image width (left-right)

(b) Variation along image height (top-down)

Figure 7.: CeO2 0.009nm with autonomous ROI selection
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The optimal solution would be to perform indexation in parallel, having multiple CIFs
being indexed at the same time. This added to the possibility of excluding CIFs based
on image information taken after some image segmentation, could make the process more
efficient. However, given the number of CIFs available over 400 000 (Crystallography Open
Database) it would require a machine with many processor units.

To address this problem, the current software implementation requires the CIF files to be
provided by the user, who have some knowledge about the material and should reduce the
false positive results.

2.3.3 Graphical User Interface

Taking into consideration the previously mentioned challenge of ROI selection, there is
a need for user interaction with the software. To solve this problem, the more intuitive
solution would be to implement a Graphical User Interface (GUI) where the user can see
the image and select on it the desired ROI.

The development of a GUI in itself is not a challenge, but the requirement of a portable
GUI implementation added to the time required to learn the Application Programming
Interface (API) and implement the code for all the user controls, could restrict the time
available to implement useful functionalities and code optimisations.

Also, the use of a GUI should make the greatest bottleneck on the application perfor-
mance, since user interaction should be measured in the order of the seconds and is hardly
optimisable, while the code could be optimised and should execute in the order of millisec-
onds.

So, to reduce the time taken by user interaction, the challenge is to develop a simple
interface that requires the minimum user inputs possible, while being flexible allowing the
configuration of the indexation process for more advanced users.

2.3.4 Parsing of proprietary image formats

The Im2Cr software should be able to read images in the most popular formats used by
EM researchers. Some of these formats are open and in most cases there is already a library
implemented to read these formats. A practical example of one of these formats used by
the Im2Cr is the TIF or TIFF format, which is already supported by the OpenCV library
used in the application.

However, there are many proprietary image formats, whose specifications are not dis-
closed, being only available information compiled by the research community. Some of
such formats used by the Im2Cr tool are the TIA’s SER format and the GATAN’s DM3

format. Being proprietary formats, its use is confined to the official tools or open software

http://www.crystallography.net/cod/
http://www.crystallography.net/cod/
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implemented in some other software language without API documentation. As a result, a
new parser should be implemented in order to be able to read these formats.

2.3.5 3D model display

Since the indexation process aims to find the crystallographic structure orientation de-
fined by its Zone Axis (ZA) and Upward Vector (UV), a 3D representation of the indexed
CIF in the correct orientation is required.

In the indexation process the ZA is set as axis coefficients that creates the vector to which
the material is being observed while the UV is the vector perpendicular to ZA resulting
from a computation using each two spot indexed planes. In a 3D model this could be used
as the camera’s direction and the up vector respectively.

To satisfy this requirement, an interactive 3D scene should be software rendered. This
inclusion implies the implementation of a set of functionalities such as user mouse interac-
tion with the model, scene lighting, atomic representation, atoms colours, etc. Similar to
the GUI challenge, even if the implementation of a model render is not complex by its own,
the implementation process requires a great time allocation.

2.3.6 Libraries and its licences

To minimise the development time, the use of currently available software is encouraged.
After selecting an implementation language, if any functionality or component of a func-
tionality was already available through a library, its use should be taken into consideration.
This however does not mean that any library should be used. Its API, complexity, perfor-
mance and the license used should also be taken into consideration.

The API documentation and integration complexity have a significant impact in the ap-
plication development time, so the choice to use any library should measure its future cost
in the development phase and afterwards support.

The library license used is also a factor, since the final destination for the developed
software is still unknown. As such, the libraries used should have licenses commercial free
when possible or, at least, not be closed for public use.



3

I M 2 C R : A T O O L T O I N D E X C RY S TA L L O G R A P H I C I M A G E S

Given the user requirements, the objective of this dissertation is to apply current knowl-
edge and develop an integrated application for CIF indexation. The main goal to achieve
in this application is to prove its usefulness by reducing the time taken to perform this task
while maintaining or improving the results quality. The name given to this application was
Im2Cr.

This chapter presents a top-down view of the of the tool, beginning with the GUI from the
user perspective and detailing some of the main algorithms used on the following sections.

3.1 user graphic interface

Being a tool aimed to be used by researchers of EM, its use should be kept simple and
intuitive by not requiring specialised knowledge in order to use the tool. The objective is
to get the users to use the tool as fast as possible and not deviate their focus to how to
use the tool. With this goal in mind, the use of a terminal based tool which would accept
user commands as input and display or output files as result would be in conflict with this
requirement. Also, the requirement to select a ROI with image pixels coordinates is easier
to do with a mouse over a displaying image then to select coordinates from a text box. For
these reasons, the Im2Cr is a cross-platform GUI based tool which aims to require low user
input by setting a number of presets found to be appropriate from a set of test images.

The GUI of Im2Cr was developed to display the three main phases: (i) input of images
and CIFs, (ii) ROI selection and indexing configuration and (iii) display index results.

3.1.1 User inputs

Once the user initialises the application, the file inputs screen is displayed, as shown on
image 8. This window may contain six distinct areas:

15
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Figure 8.: Image and CIFs inputs

1. List of input images

On the top left of the screen, there is a list of currently loaded images. The input
images may be in one of three different formats: TIF(F), SER or DM3. This list box
allows the user to add or remove one or more images at a time.

2. Preview of the selected image.

At the top on the middle is the image preview. When the user selects the image on
the list, a preview is shown on this area.

3. Display of image properties.

In this area, some fields are not allowed to be modified. These fields are mainly
information about file name, format and image dimensions. However, there are some
properties enabled to be modified by the user. These fields are used to inform the
software that the selected image is a TEM, STEM or ED image and its pixel size in
nanometres per pixel.
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4. List of input CIF files.

Similar to the image selection box, the bottom left contains the list of currently loaded
CIFs. This list box also allows the addition or removal of multiple items at the same
time.

There is also a special function to import CIF files directly from an online database.
Choosing the COD button the tool opens a window as displayed in figure 9. Here
the user can either enter the chemical compounds manually or click on them from the
table. After searching and receiving the results the user can then choose which CIF
file to download.

5. Preview 3D model of the selected CIF unit cell.

This interactive model may be used to display some arbitrary combination of zone
axis and upward vector by using the controls on the right side. Also, it may display
the model with more than one unit cell in each dimensions, labelled as supercell.

The main purpose for this model is to allow the user to confirm if the CIF loaded is
the expected one. It also represents the model with a standard colour provided by
Jmol software, which should ease the visual identification.

6. Selected CIF properties.

This area is mainly used for CIF confirmation, as it displays the CIF file properties,
unit cell information of its dimensions and angles, and displayed atoms.

Figure 9.: CIF search from COD database

After setting all inputs, by selecting the next button, all the inputs are validated. In order
to proceed to the next phase, there must be at least one image and one CIF. Also all the
images must have their pixel size property. Failing to comply with these requirements will
result in a warning box with the probable cause.

http://jmol.sourceforge.net/jscolors/
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3.1.2 ROI selection

Once loaded all required files, the user is requested to select the desired ROIs in each
image. The ROI will then be used to compute the Fourier Transform (FT).

An FT image is a visual representation of the information present on the original image
by frequency. This image is used to identify frequency spots correspondent to the repetition
of information on the image, i.e. unit cells of the supercell present on the ROI.

The spot identification and selection process is automatic. However, if the user is not
pleased with the automatic selection, there is a functionality to modify the spots location.

Figure 10.: ROI selection

The interface displayed at image 10 shows an example of a ROI selection.

1. List of loaded images

On the top left, is a list box with the loaded images on the previous screen. By
selecting each image, the interface should be cleared for a new ROI selection.
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2. ROI selection area

In this area, the user should use its mouse to drag a box from one of the ROI’s corner
to the opposite one, being displayed a dashed red box previewing the ROI selected.
Note that the box selection is only suited for TEM or STEM images. On the ED images,
the selection is done by setting two opposite spots, being the centre the half distance
between these two.

3. ROI selection details and indexing configuration

On this property list the user may see the ROI selection properties. These include the
ROI’s name, centre and lateral size dimensions. There is also the possibility to modify
these values directly, being the centre and lateral size dimensions reflected on the ROI
selection upon modification.

Bellow this information are indexing configuration properties as the number of spots
to be selected and the maximum angle and maximum spacing allowed for the index
process. These fields should be set with the preset values for the image type. This
functionality is set in order to minimise user iteration with the tool, being these values
the ones found to be best from the study of multiple images. These values are also
configurable by a configuration file and may be changed by the user.

4. Selected ROI list

After ROI selection and upon click on the Add button, the selected ROI’s name is
added on this list. Here should be all the selected ROIs to be indexed by the applica-
tion.

When selecting an item from this list, the interface will display the original image and
the selected ROI, as well as the FT of the ROI and selected spots.

5. ROI preview

On the bottom centre is a preview of the ROI selected. This is a representation of the
image used to perform the FT. This image is changed when the user selects a different
ROI or updates an existing one.

6. ROI Fourier Transform preview

On the bottom right, similar to the ROI preview, upon ROI selection this area displays
the cropped ROI FT. Also, it is possible to see which spots were detected on the FT.
Note that the number of automatically detected spots are configured above on area 3,
being the changes made reflected on the image displayed.

For higher resolution ROIs, the FT spots may be too small on the preview. For this
purpose, there is a zoom functionality, which enables up to four times zoom. Bellow
these controls is the spot correction functionality seen on image 11.
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Figure 11.: Spot correction

7. ROI selection spot fix

If the user does not agree with the automatic spot selection or wants to make adjust-
ments on the spots, the interface on image 11 is available by clicking on the target
icon. In this interface, the user may select from the list of spots detected the one to be
modified and, either by using the mouse and clicking on the image or by introducing
the pixel coordinates on left, adjust the spot location.

Note that the spot is displayed with red accent in order to be easily identifiable.

Once all modifications are performed, the user may select save or revert the changes
made by clicking on reset. All the changes made are reflected on the ROI selection
interface.
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After adding the ROI, the user may notice the ROI’s name being update on the list. First
it appears the suffix ”Loading” and after some time, without it. This is an optimisation
introduced that, when the ROI information is complete, the indexation process begins on
background while the user is free to select more ROIs.

Once all ROIs are selected, the user may proceed to the last interface, which displays the
best indexation found for each ROI.

3.1.3 Index results

Figure 12.: Indexation results

The last interface page is dedicated to display the index results. As displayed on the
image 12, the user may see the best matching CIF’s unit cell with its zone axis and upward
vectors highlighted on the bottom left.

The interface layout may be splitted into four main areas.
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1. List of selected ROIs.

This list is the main control for displaying index results. By selecting different ROIs,
the other areas are refreshed accordingly. This list box is the same present on the
previous interface after adding a new ROI.

2. ROI and FT spots display.

These images are also present in the previous interface. The main reason to also
display them in this interface is so the user can compare the simulated 3D model to
the real image. Also, the FT image with spot numbers have a special importance,
since the numbers displayed are directly correlated to the spot number on the index
table.

3. Index result table.

This area is where the main focus of this software is. At this table, the indexed
CIFs are ordered from left to right by their matching rate, being the first tab the
best indexation found. Regarding the table, this contains FT spots with their miller
indexes, experimental angle and measured d-spacing values from the image and the
theoretical values computed in the indexation process for each CIF.

4. 3D model

At the bottom centre is the 3D model representation of the CIF’s supercell in the orien-
tation given by the index process. Note that these values are also configurable on the
right by the model properties where the user may change the supercell dimensions,
as well as try other orientations.

The objective of this 3D model is to compare the theoretical best CIF found with the
ROI image above. If the experimental image is representative of the atomic structure,
then this model should display the same pattern.

Once the user agrees with the indexation performed, he may export the images and
a print of the 3D model by clicking on the Report button. This will produce an HTML
page with the indexation table and the images. This will also export an XML file with the
information present in the indexation table, so that other applications may use this output
for other purposes.

3.1.4 Report

At the end of an indexation session, the results are exported into a printable HTML report
page, similar to the image 13. This page contains all the important information displayed
on the last application interface.
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Figure 13.: Report exported

One requested functionality was to not limit the use of the images to the report page
only. As such, when exporting a report, the images used are also exported with their full
resolution, allowing the user to use them for other purposes.

From the end user perspective, this completes the software overview. The next section
will cover in more detail the application design from the software development view.

3.2 application design

The development of a software tool involves a careful study of many factors, from the
user interface to the code language used. One of the most important phases of the devel-
opment is the software design, where all the application components are specified and the
interaction between them drawn.

This section will present the application structure by first looking at the components
present and latter to the interactions between them.
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Figure 14.: Overview of the application structure

3.2.1 Application overview

When designing the internal structure of the application, a major concern was to be able
to reuse the application logic with multiple interfaces. In order to accomplish this, the
Im2Cr implements the Model–View–Controller (MVC) architectural pattern to separate the
interface from both data and application logic. In the image 14 it is possible to see this
separation by the GUI and Im2Cr packages.

Regarding the user interface, this contains all the main interfaces displayed to the user.
Each one of them contains the interface components as buttons, list boxes, image, etc, and
the controllers for each input by the user.

For the Im2Cr package, the application core, the goal here was to be able to accept in-
puts from multiple user interfaces. As such, the data and execution logic are all contained
within this package. To input/retrieve data and perform operations, ”Managers”, which
are coloured in orange, were created. These are an implementation of the Facade pattern.
The objective is to have controlled access points to the application, which hides all the inner
logic. This encapsulation in turn allowed to introduce code parallelisation and optimisa-

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Facade_pattern
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tions without changing the interface code, making this design modular and giving more
freedom for development.

Data exchange between the interface and the core is performed by the included data
types, coloured in green. Each data type has been modulated into an object with the
respective information stored on it.

To be able to use the same core with other interfaces, this was encapsulated into a library
project, which sets a clear separation between interface and core logic, at the cost of better
application optimisation.

3.2.2 Manager execution

Figure 15 gives an overview of the Manager execution interaction.

Figure 15.: Generalisation of a manager execution

The application to be developed should try to meet all the end user requirements while
maintaining a good performance. Nowadays, the computer performance technology has
shifted their paradigms from increased CPU clock frequency to increased number of avail-
able processor units, or native threads. While this could mean that the overall application
performance has the potential to be increased by each added processor unit, the same
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cannot be said for the real-world performance of existing software. In some cases, the
performance of older software may even be equal or worst on modern CPU.

The fundamental problem is that most legacy software was programmed to execute in
serial, using only a single processor which have a strong dependency from its clock speed.
In the present time, the way to extract the maximum performance available is to use all the
processor units at the same time. To achieve this, it is required to write parallel code and
minimise code dependencies.

Taking this into consideration, the design of Im2Cr started from the perspective of max-
imising the execution in parallel.

Starting with the graphical user interface, the user should not perceive the interface as
”frozen”, which means that the thread used to run the interface must be detached from all
the execution at all time and kept as lightweight as possible.

Having the interface not waiting for the input results, this means that inner logic execu-
tion must be performed in parallel to the interface execution.

To keep the code organised and take advantage of available resources on the computer,
every time data is requested, their respective Manager is called. Figure 15 is an example of
how this process occurs.

When the user triggers some action which requires data, the interface executes a set of its
own validation and procedures and calls the respective Manager. As example of this action
is when the user adds a new image file. In this case, the interface gets a file path, which
in turn asks the Image Manager to read the file at that location. While requesting the file
load action, it also sets the procedure to execute once the file has been loaded, typically an
interface refresh. This procedure is also known as a Callback function, which can have its
own arguments. After making the request, the graphical interface is free to receive other
user inputs, while the execution proceeds on background.

After receiving the request, the manager calls a set of internal functions. The reason
for this higher-level encapsulation is to make the API more readable by keeping the code
simple and maintainable. Once the internal component retrieves the data, this is added/-
modified/removed from the manager data structures and the callback function is called.
For instance, in the case of an input image, while it is being loaded the image name in
the interface has the suffix ”loading”. Once the image is loaded and the callback function
called, this function removes the ”loading” word, which tells the user that the image is
ready to be used. Also in this example, if the image loaded is to be displayed, the image
automatically appears on the interface.

This ”Manager” based design requires all the main objects in the application to have
its own manager. Also, these managers may be used on different interfaces, which could
create a problem of different instantiations for each manager and, in turn, with data spread
by each instance.
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To solve this problem, all Managers have been based on the Singleton pattern. This
pattern makes a class to only have a single object instance across the program. With this
implementation, all the data structures are shared between all objects with references to the
manager class. This creates the possibility of this application to be executed on a server
where there could be many client interfaces, all sharing the same data.

3.2.3 Parallel execution

Until now parallel execution was referred as background execution. This was because
there are many ways to have parallel execution, from within the processor to across multiple
computers connected on a network. However, not all of them are well suited for any kind
of application. For this reason, there must be a study on which kind of parallel execution
the application should implement.

For this application, the work performed revealed to not be too computational sensitive
in the sense that the execution of most procedures took a minimal amount of time. For
this reason, the distributed parallelisation on a network have been excluded, since it would
require a significant amount of time to send information across the network.

Even within the same computer, there are different approaches to be taken based on the
work to be performed. For example, simple tasks applied to multiple data could benefit
from the parallelisation using accelerators as the Graphics Processing Units (GPU) or Intel
Xeon Phi. The last level and most simple parallelisation design is to use all cores available
in the CPU. This last one revealed to be the best suited for this application use case, given
the hardware it is expected to be executed, a desktop/laptop.

Regarding the parallelisation within the CPU, the most basic one is by using the available
threads, assigning each task to a single thread. However, if many tasks are expected to
be executed, the time taken by thread creation, deletion and context switch could have a
significant impact on performance.

For this reason, the parallelisation implementation in this application is based on a thread
pool, which combines the execution on multiple threads, while keeping the cost of creation
and deletion to a minimum. Also, the use of a thread-based parallelism still has costs
associated with context switching, which occurs every time a thread is set on hold in favour
of another to be executed. When this occurs, the variables used by the replacing thread
must be loaded into memory. To remove even this overhead, the approach taken was to use
task parallelism Intel (2012), in this case, the Intel Threading Building Blocks (TBB) library
implementation. This kind of parallelism assigns a task to a thread (which could already
have other tasks assigned) and have the threads allocated on a thread pool.

The parallelism implementation in the application occurs mainly on file inputs, both
images and CIF files, and on the indexation of all loaded CIFs. All these tasks are fully

https://en.wikipedia.org/wiki/Singleton_pattern
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independent, having the only dependency the addition/removal from the data structures
on the managers. These operations are performed atomically, which should keep the data
structures consistent and solve concurrent access.

3.3 implementation

With the user requirements and the application layout set, the next phase in the applica-
tion development is the individual component implementation.

In this section is described in detail the algorithms and logic applied to each component
in the application.

3.3.1 File inputs

The first step taken by the user with the Im2Cr is to load images and CIF files. Since the
target audience for this application is somewhat limited, the number of open-source and
license free libraries are scarce or non-existent. For this reason, some of the file formats had
to be implemented in order to extract the required information.

In the context of the Im2Cr application, the image formats supported are SER, DM3 and
TIFF. This last one is currently supported by the image processing library used, OpenCV,
which simplifies the implementation. However, the same cannot be said for the other two
image formats. For these, a custom implementation had to be made. For the Crystallo-
graphic structures, a custom CIF parser was also implemented.

Following is a brief description of the implemented parsers and some detail about their
internal structure.

3.3.1.1 SER format

The SER file format is a proprietary format and was developed by the Emispec company.
This company has now been bought by FEI, another microscope company, but this file
format is still one of the most used file formats.

Since this is a proprietary file format, the implementation of a parser for this file had its
specifications taken from community shared information1.

This format has some flexibility in allowing up to 4 dimensions of data to be stored. Its
structure is comprised by six parts, being the first the header, followed by dimension array,
data offset array, tag offset array, data elements and data tags.

For Im2Cr, the useful information is: (i) the ”CalibrationDelta”, with the pixel size in
meters; (ii) ”ArrayLength”, which contains the lateral size of the square image; (iii) the

1 TIA (Emispec) file format: http://www.er-c.org/cbb/info/TIAformat/

http://www.er-c.org/cbb/info/TIAformat/
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”DataType”, which sets the image pixel encoding in bytes; and (iv) the variable size ”Data”,
that stores the image information.

3.3.1.2 DM3 format

The DM3 file format is also a proprietary format used by the Gatan company. This
format is greatly more complex when compared with the above SER format, but much more
flexible, as the information is layout in a tree format, having each node a name associated
with the information contained.

The format in itself is quite simple, having only an header, a tag directory which contains
n tags. Each tag could be a simple value, an array of values, a group (struct) or an array of
groups.

Because of the flexible tree structure, it is not possible to point where the image infor-
mation is without reading all the file. According to the community file specification page
”There is no simple way of finding the length of a type 15 tag without completely decoding
it and working out the number of bytes in each data type”2. This means that DM3 images
imported on the application must have their entire file parsed before being able to get the
image information.

In the Im2Cr context this implies that, once the file is loaded and parsed, the tags must
be searched in order to find where the image data and other useful information is. In
the Im2Cr, the important tags are: ”LowLimit” and ”HighLimit” with the values for the
lowest and highest pixel intensities, the ”Width” and ”Height” of the image inside the
”Dimensions” tag, the ”Scale” inside ”Calibrations” with the pixel size information, and
both the data type and image information inside the ”Data” tag.

Once the image information is read into an openCV Mat structure with the informed
data type, the image is normalized with the low and high limit values.

3.3.1.3 CIF format

For the crystallographic information there was a need for a CIF format parser. This
format is used globally as a way to describe crystallographic information and other related
information, as the author and publication.

This format has a very simple text-based structure, containing usually a single block
which has either single data values or multiple data values. The first one can be thought of
as a simple ¡key, value¿ pair, while the second is like a table, where the headers are specified
on the start and then each row contains data.

The best and worst of this file format is its flexibility. There is no fixed structure specified,
nor the tables have the number of elements set. This makes the parsing of a CIF file
somewhat complex, by always having to search the following line and then decide if it is

2 Digital Micrograph file format: http://www.er-c.org/cbb/info/dmformat/index.html

http://www.er-c.org/cbb/info/dmformat/index.html


3.3. Implementation 30

still an element of the table being parsed, a comment, another table begin or a single data
value. Even the single data values can have their value on the same line or on the next line.

In the Im2Cr, all CIF files are loaded into memory and only then the properties are read.
The extracted information includes: a, b and c distances related to the dimensions of the
unit cell, alpha, beta and gamma angles between axis, the table of atoms and their initial
location, and a table of atom’s simmetries.

Unit cell representations of CIF files make use of the a, b and c dimensions multiplied by
fractional coordinates3 (normalized location between 0 and 1) of each atom and applied to
each symmetry on the table.

3.3.2 Selection of ROI

The ROI selection process still is one of the most challenging tasks from which to remove
the human intervention. In this process, the user is required to select the ROIs in the image.

From the computational standpoint, some preliminary work was made in order to au-
tomate this process. The work done relied on the higher pixel contrast each ROI had in
comparison with the remaining amorphous regions on the image. Taking this into account,
the designed algorithm scanned the experimental image by its rows and by its columns and
built a graph with the variance of each dimension. Once the graph was plotted, then the
algorithm tried to fit a polynomial function of a fifth order. The reason for the fifth order
polynomial was to have the best possible fit and to have represented four inflection points.
With this information, then the variance from the maximum and the minimum values of
this polynomial was measured and, if it was considered relevant (by a configurable param-
eter), a water line was set. Using this algorithm, only the middle curve above the water line
was considered as a ROI. This implementation may be seen in images 6 and 7.

The study of a test set of images showed promising results, having this algorithm selected
good approximations to the real ROIs. However, this algorithm had a significant flaw in its
conception that was to assume that only a single ROI was displayed at each image.

Since the state of the art on the electron microscopy reveals that microscopes are cap-
turing increasingly higher resolution images, the prospects for image indexation is to have
multiple ROIs displayed in a single image. For this reason, the preliminary works described
above had to be halted for future improvements, since its current state was still considered
unreliable.

To overcome this limitation the human intervention is still required to select the ROI on
the image. With the direct user input being required, the software design had to take this
into consideration, making the user experience one of the main focus areas.

3 A Guide to CIF for Authors: https://www.iucr.org/__data/assets/pdf_file/0019/22618/cifguide.pdf

https://www.iucr.org/__data/assets/pdf_file/0019/22618/cifguide.pdf
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The solution found was to make a GUI and allowing the user to draw with the mouse
the ROI area on the image. This solution however came with other related problems, the
arbitrary actions made by the user. In the particular case of ROI selection, it was necessary
to limit the area drawn to be squared. This limitation was necessary mainly because the
distortions present on a non-squared Fourier Transform, described on the following section.

3.3.3 Fourier Transform

After the image was cropped into a ROI, the next step is to study the atomic periodicity
in the image. The objective is to compute the distance between atoms and their relative
angles. For this task, a widely used operation is to obtain a Fourier Transform of the image.

The FT operation converts the spatial information into the frequency domain in the form
of waves. Since a wave is represented by its phase and amplitude, a common representation
for this information is by using complex numbers.

In the case of images, the input spatial information is in two dimensions. As a result,
the output transformation is a two-dimensional matrix of complex numbers. In order to
visualize the FT result, there is a need to transform two-dimensional matrix of complex
numbers into a two dimensional matrix of real numbers, to be later displayed as an image.
This transformation is made using a modulus computation of each complex number.

From the experience taken from developing the software tool Peakfinder Silva and So-
bral (2015), the majority of the atomic information is given at the higher intensity pixels
on the FT image, namely the ones closer to the centre but not including the centre. On
the Peakfinder tool, the goal was to remove the amorphous background from the image,
highlighting the atomic structure. For this task a pass-band filter was applied, having as
high pass filter the radial distance after which the radial variance of pixel intensities no
longer had significant peaks or had already been selected the desired number of peaks. As
a low pass filter, an approximate position between the centre and the first radial of FT spots.
With this experience, it was clear the FT peaks did contain useful information about the
structure periodicity.

On the Im2Cr tool, the approach taken was a little different, as the goal was not to
remove the background noise on the images, but to locate the FT spots related to the atom’s
positions. For this task, the objective was to perform image segmentation by selecting only
the FT spots on the FT image.

Image segmentation is widely used as a step to remove background information from
foreground information. The core of this algorithm can be summarised in considering as
background the pixels which are bellow some reference value and foreground the pixels
equal or above this value. Note that there is a need to input the threshold value which was
considered as the reference value.
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On the developed tool, the manual input from the user about the threshold level was
impractical, as this would likely translate into a trial and error process until the user had the
desired spots located. Instead of this approach, the algorithm introduced use the desired
number of spots to be located as the user input, making the determination of a threshold
value an automated process.

3.3.4 Autonomous spot detector

Once the FT was applied to the experimental image, the objective was to locate the FT
spots displayed. For this task image segmentation should be performed in order to extract
the FT spots from the image. Since the user is not required to input the threshold value to
be used, another kind of input is needed. For the Im2Cr, the input required from the user
is the interval of spots to be detected on the image.

The algorithm used consists of performing image segmentation with an initial config-
urable value and count the number of spots detected. If the number of spots is within
the spot interval given by the user the algorithm stops, otherwise the threshold value is
increased or decreased depending if the number of spots found was respectively bellow
or above the interval. This process is repeated until the previous condition of the number
of spots is within the interval or the number of iterations is greater than a configurable
number of maximum iterations, to avoid the application to be kept in a possible loop.

Describing the segmentation process in more detail, this process starts by applying the
threshold value to every pixel on the image, marking every pixel with a flag of background
or foreground if the pixel value is below or above the threshold value. Once this process
is completed, the next step is identifying spots of foreground pixels. For this task, the
algorithm starts by mapping all pixel coordinates with a flag ”not visited” and searching
from the beginning for foreground pixels, marking all pixels along the way as ”visited” if
they are background pixels. Once a foreground pixel is found, the flag matrix switches
the pixel position to ”queued” and searches is neighbour pixels for more ”not visited”
foreground pixels. To each neighbour foreground pixel, the algorithm marks its position as
”queued” and moves to its location to search for more foreground pixel positions. When no
more foreground pixels are found, the algorithm starts popping ”queued” pixel positions
and adding them to a spot structure. While this process is done, all popped pixels are
marked as ”visited”, having this flag the objective of its position to not be searched again
or included on another spot structure. With this algorithm, all pixels are visited only once.

When the spot location algorithm finishes, the result is a list of spots structures, having
each one of them the original pixels location. With this information it is possible to compute
the centroid of each spot. For this computation, the polygon centroid formula was used,
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which requires the coordinates of the polygon perimeter. In this case, the polygon is the
spot and its perimeter the outer pixel positions.

Once this process is applied, the result is the number of spots detected and its centroid
positions.

However, if the first threshold value did not produce the expected number of detected
spots, a correction should be made to this value. For this task a new algorithm was intro-
duced to autonomously find the best threshold value.

The developed algorithm starts by requiring the information about the previously num-
ber of spots detected in relation to the expected interval. If the number of detected spots
was above the user expectations, a more restricting threshold value should be used, oth-
erwise a lower threshold. Regarding the new threshold value, this is computed from a
variation of the binary search or half-interval search algorithm. On the original algorithm,
for a given initial value on an interval and a target value on a sorted list, the algorithm
splits the interval in halves in the direction of the targeted value until the value is found.

On the Im2Cr application, the implementation of this algorithm for threshold determina-
tion was not suitable. The non-suitability of this algorithm was found after studying the
behaviour for a set of test images. In this algorithm, if the first threshold value had not
found the number of expected spots, most probably the second iteration would not find it
as well, because the next threshold value would be too high or low with relation to the final
threshold value.

To overcome this inefficiency, some adaptation was needed, in this case, the interval
reduction. On the original algorithm the search interval is always reduced to half the
original size and the new value is at the middle of the new interval. On the implemented
adapted version, the interval reduction is configurable, being found that a 90% reduction
at each iteration made the new value much closer to the final threshold value, reducing as
well the number of required iterations and consequently, the time taken by the application
to execute.

3.3.5 Angle and d-Spacing computation

When the application finishes executing the automatic threshold algorithm, the number
of spots, its location and its centroid are known. However, the centroid position was based
on a computed value, which may not correspond to the real centroid due to the margin
of error introduced by the image segmentation process. Taking this into consideration,
there is a need to compare the computed centroid to the highest intensity pixel on the
delimited spot, which indicates the real centroid. Most of the times, the computed centroid
corresponds to the real centroid position however, if the spots are scattered over a wide area
or if in one dimension the frequency spread is wider than the other, the computed centroid
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may be slightly misaligned. In these cases, a centroid correction is performed in order to
switch its position to the correct one.

Having performed a centroid correction, enables the computation of d-spacings and the
relative angles from the spot to the centre position. To compute the d-spacing of each spot,
first should be done a scale calibration. This calibration may be needed if the image was
cropped, as the reduction of the original lateral size on the original image corresponds to
its inverse on the FT image. So the pixel size on the cropped FT should be recalculated
from the lateral dimension of the cropped ROI, given by the multiplication of the pixel size
by the number of pixels on one dimension. Note the ROI image is a square image, so the
pixel count is the same for both width and height.

Once the new pixel size is computed, the d-spacing is obtained by multiplying it by the
distance in pixel from the centre to the spot centroid. This distance is a simple computation
of the hypotenuse of a triangle made by the centroid coordinates on the image in relation
to the FT centre coordinates, considered as the origin.

For the computation of the angle, first it should be set a reference point to which the
angle is zero. In this application it was considered as a reference point the closest spot from
the FT centre (known as reference point). Then, each spot centroid angle is computed from
the angle formed by the reference point, the FT centre and the centroid position.

From this point forward, the d-spacing and angle values computed above will be con-
sidered as experimental values, as these have direct correlation to the input image. These
values will later be compared to the theoretical ones in the indexation process.

3.3.6 CIF indexation

Once the angle and d-spacing of each spot have been computed, the next step is the
comparison of these values with the expected values from different unit cells.

The information about each unit cell is present in a CIF file. The CIF file contains a
standard structure mainly used to describe the crystallographic information about each unit
cell, given by its atomic composition, the relative position of each atom, the unit cell lateral
dimensions and angles in a three-dimensional space, and many other optional information,
from the original authors to the journal it was published on.

For this application, the relevant information to begin the indexation process is the unit
cell lateral dimensions (a,b and c) and its angles (α, β and γ).

This process starts by computing the theoretical values of d-spacing expected to a given
{h,k,l} plane. Since at this point it is unknown the best matching plane for each spot, the
theoretical value should be computed to a set of expected planes. In the Im2Cr application,
it is computed all combinations with values from -4 to 4 in each component, being this
value configurable. The formulas used to obtain the d-spacing value are directly related
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to the unit cell geometrical form. So, a cubic structure has a different formula than a
tetragonal one for example. To overcome this limitation, the Im2Cr implements the most
generic formula that could be applied to any geometrical structure, known as triclinic.
Even if this formula requires more computations, the computations needed for geometrical
determination of the input unit cell structure could made the written code more prone to
errors and more complex. Giving as input the unit cell dimensions, its angles and a plane,
the output is the theoretical d-spacing for that plane. This process is repeated for every
expected plane.

At this point, the developed application has a set of planes and its d-spacings to which
the experimental ones can be compared. To give a sense of the number of computations
required in this process, the option to study all planes from -4 to 4 for each h, k and l com-
ponent result in 728 possible combinations, excluding the origin point. If the application
were to compare all these possibilities to all the spots detected, the number of combinations
grow exponentially with the number of spots to be indexed, making the indexation pro-
cess unfeasible and unscalable for multiple spots. To address this problem, the only {h,k,l}
planes considered are the ones that have a theoretical d-spacing between the maximum and
minimum experimental d-spacings. To this interval of values it is added a configurable rel-
ative margin to the top and lower endpoints values. After the possible planes are selected,
each spot is given its own set of possible indexable planes.

Indexing only by the best matching d-spacing could result in erroneous results. For
instance, in a cubic form, there are multiple planes with the same distance from the centre.
To overcome this problem, the angles should also be part of the indexation process.

To compute the angle between planes, the geometrical shape should be taken into account.
Like the d-spacing computation, for angles between two different planes there is a triclinic
formula, which outputs the cosine of the angle. Since the interest is on finding the angle,
to this value it should be applied the arc cosine.

With the angle computation, the indexation process may now proceed to find the best
matching plane to each spot. The selection formula used (1) is custom made to have more
sensibility to variations on the angles than the d-spacings.

Classi f ication = ∏N
i=0(1− SpacingDi f fi) ∗

(
180− AngleToRe f Di f f0,i

180

)2

(1)

SpacingDi f f (i) = |MeasuredSpacingi − ComputedSpacingi| (2)

Spacing =
1

‖~p‖ ∗ CalibratedFT
(3)

‖~p‖ =
√
(centrex − pointx)2 + (centrey − pointy)2 (4)
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Being:
p - Length vector of the vector formed after subtracting the centre to the point location

CalibratedFT =
1

PS ∗ LR
(5)

Being:
PS - Image pixel size in nm
LR - Number of pixels in one dimension

AngleToRe f Di f f (~r,~v) = arccos
(~r ·~v)
‖~r‖ · ‖~v‖ (6)

Being:
r - reference vector
v - vector
The decision to differentiate d-spacings and angles was taken because d-spacings are

more prone to variations due to its low precision than the angles, which should not vary as
much. Using this formula, the values should be between 0 and 1, being 1 the best indexation
possible.

To be noted however that the classification formula is applied for a single plane for each
spot. While indexing each spot has its list of plane candidates. This makes the classification
computation to be performed multiple times for each combination of spot plane candidates
before the best indexation is found.

3.3.7 Zone axis and upward vector determination

While performing plane indexation to each spot, the angle formed by the planes indexed
should also be take into consideration, as this has a major impact on the zone axis determi-
nation.

The zone axis computation basically uses the {h,k,l} components of each two plane can-
didates and compute the matrix determinant in order to find the third {h,k,l}, or in this
case the zone axis.

For index consistency, all two spot combinations from the number of spots selected to be
indexed should have the same zone axis. Having this condition makes the plane combina-
tions that do not comply to be rejected as solutions.

UV = n ∗ A + m ∗ B (7)

Once the zone axis was successfully found, the next step is to find its upward vector.
This computation starts by using two spots and the angles formed between their location
and a reference point. The reference point is an arbitrary location on the image that should
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be applied to all angle computations. In this application, it was chosen the point at the
height centre and full width, being this aligned in the height dimension of the image centre.
With the spots and their angles, it is applied the linear combination of the spots locations
represented in the formula (7) to find the proportion of each component that gives the
vector pointing up on the image.

n = −1 ∗
(

Spacing−1
spot2 ∗ cos β

Spacing−1
spot1 ∗ cos α

)
(8)

Since the interest is to find the proportion, we can set one of the constants to 1 so that
we can determine the n constant. The formula (8) represents the computation needed to be
performed, being α the angle formed from the reference point and the first spot, and β the
angle formed between reference point and the second spot, both at the image centre.

After the n value is found, it can then be applied to the planes that represent each spot,
giving the upward vector.

3.3.8 Model render

The last step is to visualise the best matching CIF file with the indexation information
taken from the previous step.

For this the application displays the best CIF indexation found for each ROI using the
CIF symmetries provided. Along with atomic representation, it is also needed the camera
position and the upward vector of the model. Both of this are already known from the
previous steps, so that the 3D representation uses these for the model orientation.

Related to the atomic representation, the CIF file content does not have any information
regarding the atom size nor its colour. To overcome this problem, the application makes
use of the database information taken from the JMOL software. This application is already
well known in the crystallographic research area, so the model representation should have
colours familiar to most users.

3.4 tool portability and licensing

Regarding the Im2Cr implementation and portability, this application aimed to be used
by many researchers. As a result, the environment in which the tool may be used could be
the most diverse possible. Also taken into consideration was the possibility of the devel-
oped application being integrated into other applications. With this in mind, a special care
was taken when selecting libraries to be used on the Im2Cr.

In relation to the Operating System (OS) supported, the objective was to support all
major OS systems: Windows, Linux and Mac OS. To reduce the need for OS specialization,
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the GUI library should be portable to these OS. The two different libraries which offer
this functionality was the Qt and the wxWidgets. Being the first limited commercially, the
choice was for the latter.

For the image edition, the mainly used library on C++ is the OpenCV4 library. This
library has ample documentation and a wide community supporting the project. It is also
known for being well optimised for image processing.

For functionalities like thread management, thread safety and some other file system
operations, it was used the Boost5 library. This library is also well known for its care about
application performance while being open source.

As for the configuration files management, these are XML based files. As a result, a
XML library was selected to parse these files, being chosen the PugiXML6 for its light-
weight and great performance while sacrificing the validation functionality. Since the files
used are configuration files automatically built by the application, this limitation was not
considered significant.

The symmetries computation from the CIF file was relegated to the MuParser7 library.
This library takes variable values and a mathematical expression and outputs its value.
This was useful, since it was not necessary to spend time parsing the symmetries present
on the CIF file.

Lastly, the ROI selection through a selectable GUI rectangle was made using the wxRect-
Tracker8, more specifically the version included on the RPhoto open source application.

4 OpenCV https://opencv.org/

5 Boost C++ https://www.boost.org/

6 PugiXML https://pugixml.org/

7 MuParser http://beltoforion.de/article.php?a=muparser
8 wxRectTracker http://www.lprp.fr/soft/rphoto/wxrecttracker/index_en.php3

https://opencv.org/
https://www.boost.org/
https://pugixml.org/
http://beltoforion.de/article.php?a=muparser
http://www.lprp.fr/soft/rphoto/wxrecttracker/index_en.php3
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VA L I D AT I O N A N D P E R F O R M A N C E A N A LY S I S

After the development phase the application should be tested and the performance tuned
to the targeted systems. The application functionality is validated for several computing
platforms, mainly those where it is expected to be executed.

This chapter starts to describe the test environment and used methodology to run the
tests. The tests results are recorded and later further analysed. The application perfor-
mance is then evaluated, where the parallel optimised version is compared with the original
application performance.

4.1 testbed and methodology

The validation and evaluation of the application tool performance, in several computing
platforms, require a fixed data set and a normalised methodology.

The validation methodology was based on a static test dataset to give equivalent results
on all computing systems. The selected test dataset contains 7 images and 12 CIFs. Some
of the images contain more than one ROI, leading to a total of 11 ROIs to test.

The metric of interest in this validation was the average time taken to process each dataset.
This should represent the expected times from the application in a real-world scenario. The
median is also displayed as a metric representative of the application execution time. This
metric should avoid outliers and better represent the application performance.

Since the main target platform for this application are researchers laptops or laboratory
computers with consumer oriented parts, the selected testbeds used available systems: two
legacy systems, a desktop and a laptop with 2012 CPU models, and a more recent enterprise
level equipment, a laptop with a 2015 CPU model. This choice of equipment aimed to give
the expected results from the perspective of broadly available ageing systems.

The key specification data for the selected equipment follows:

39
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Desktop 1:

• CPU: Intel Core i5 3570k @ 4.2GHz

• Cores/Threads: 4/4

• Cache: 6MiB L3

• Vectorization: SSE4.2, AVX

• Memory: 16GiB DDR3 @ 1600MHz (dual channel)

• OS: Windows 10 x64 (10.1803)

Laptop 1:

• CPU: Intel Core i7 3610QM @ 2.3-3.3GHz

• Cores/Threads: 4/8

• Cache: 6MiB L3

• Vectorization: SSE4.2, AVX

• Memory: 6GiB DDR3 @ 1300MHz (dual channel)

• OS: Windows 10 x64 (10.1803)

Laptop 2:

• CPU: Intel Core i7 6820HQ @ 2.7-3.6GHz

• Cores/Threads: 4/8

• Cache: 8MiB L3

• Vectorization: SSE4.2, AVX2

• Memory: 16GiB DDR4 @ 2133MHz (dual channel)

• OS: Windows 10 x64 (10.1709)

The measured values were taken on three runs, being the final result the average execu-
tion time of the three runs. This number of runs will try to minimize potential outliers such
as concurrent process execution by the operating system (such as context switching), which
could have a performance impact on the application (for example on the cache utilization).

Also, to minimize external process interference and give a more accurate picture of the
application performance, all concurrent applications should be closed before running the
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tests. This measure should keep the context switching at a minimum and give the best
results that could be expected from this application.

A set of specific images and CIF files were used for the validation tests. Also, the ROIs
should have the same coordinates selection. To achieve this, the application project files
were used, which have all this information and also the user’s configurations for the image
indexation.

The application exports a log file with the results, which contains the execution time for
the indexation of each CIF file as well as the overall time duration to index each ROI. These
values are used to plot a graphical representation of the execution times at each computing
platform.

4.2 tool validation and results

This section presents graphs with the average and median execution times of each ROI
indexation group, at each computing platform.

Note that the indexation process is executed in parallel, so the total real execution time
cannot be summarized to the simple sum of the times of each indexation, since they are
the times each processing unit took. This subject will later be discussed in another section
dedicated to the analysis of parallelism and vectorization of the application.

4.2.1 Overall time

Figure 16 shows the measured execution times in each run at each system. These results
considered the elapsed time between the time the user chooses the application project file
to be loaded until the indication of the last indexation been performed.
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Figure 16.: Project load and indexation time per run
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By analysing the values, it is possible to notice a similarity between values in Desktop 1.
However, both Laptops 1 and 2 contain times with some discrepancy values. After a more
detailed analysis of the results obtained through a larger number of runs, it was possible to
conclude a relation between the times obtained with the clock frequency of the CPU at the
time of execution of the tests.

This way, due to the oscillating temperatures of the laptops, when the CPU temperatures
approached smaller values, its clock speed increases, thus allowing lower execution times.
In turn, when temperatures are higher, the top clock speed margin of the CPU is lower,
thus recording higher execution times.

This fact will be taken into consideration for a later analysis of the execution times
recorded at each system.

However, based on the graph of figure 16, it is possible to conclude that the application
execution times are in the interval between 2.5 and 3.5 seconds. It is also visible that the
best recorded time is for the most recent laptop, with higher level of parallelism and clock
speed when compared to the other systems.

4.2.2 Desktop 1

Analysing the application performance on the desktop 1 in figure 17, it is possible to
clearly visualize a variation in execution times depending on the ROI to be indexed. This
behaviour is normal and is expected, since in these tests a set of images with a set of CIF
files were joined without taking into account the real relevance between both. In this sense,
it is expected that the images whose indexation is not relevant to have lower execution
times.
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Figure 17.: ROI indexation times for Desktop 1
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From the plotted execution it is possible to conclude that with the exception of the ROI
with the longest execution time, all other indexes had times lower than 1 second. Similarly,
the four shortest indexation execution times are less than 100 ms long.

When analysing the execution times of the three runs, the most significant ones, some
occurrences had two runs with similar duration and a third run with an unexpected result.
This can be visualised at the median column: when the median bar is considerably shorter
than the average one, is a clear indication that one run took considerably longer than ex-
pected. In Desktop 1 this happened with ROI9, where the value of two runs were much
lower than the time recorded in the third run.

The reason for this discrepancy can be attributed to the way in which indexing is per-
formed, that is, the execution of these tests is carried out in parallel, so discrepancies in
time between tests are expected, but it is expected that the total time of the indexation
process to be similar or very close to the total loading and indexing time of the project, as
shown in figure 16.

In this system, adding all execution times and dividing the value by the number of
CPU threads results in a theoretical execution time per thread. In this exercise, the sum
of average times is 6995.18 ms, which when divided by 4 CPU threads results in a total
indexation time per thread of 1748.8 ms.

This way, it is possible to have an idea of the time dedicated only to the indexation
process without taking into account the time dedicated to the other processes involved in
loading and presenting information from a file loaded from disk.

4.2.3 Laptop 1

The test results performed in Laptop 1 are represented in figure 18.
When comparing these values with those presented in figure 17, previously analysed, it

is possible to notice a pattern with respect to the execution times by ROI. In these results
the comparison between the average time and the median shows very similar values, which
reveals low variation between runs.

However, in terms of absolute execution times per ROI, these are generally higher than
those recorded in Desktop 1. This variation is normal and expected since the processors
have different clock frequencies and similar architectures. Likewise, the heat dissipation
capacity is different, with Desktop 1 theoretically superior in this aspect, which improves
its performance by boosting the clock frequency. On the other hand, the number of threads
available in Laptop 1 is twice the number of threads in Desktop 1.

In these results it is worth noting a higher indexation time per ROIs, the increase being
approximately doubled, with the exception of the ROI with the highest indexation time,
whose time has increased by approximately 500 ms.
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Figure 18.: ROI indexation times for Laptop 1

By performing a theoretical calculation of indexation time per thread it is possible to
conclude that the sum of average times totals 11801.66 ms. This value is higher in about 4.8
seconds, representing an increase of 69% when compared with Desktop 1. When dividing
this value by the number of threads in the system, the average theoretical ROI indexation
time per thread is 1475.21 milliseconds, which is 16% lower than the one registered in
Desktop 1.

Comparing the average times of the three tests between machines, Laptop 1 experienced
a time increment of 11%, when compared to Desktop 1.

Based on this analysis, it is possible to conclude that, despite of the apparent significant
increase of indexing time by ROI, the existence of a greater number of threads available
causes the application to maintain execution times similar to those registered in a machine
with higher performance per core, thus making the parallelism capability of the application
a significant aspect to be taken into consideration. This point will be discussed in more
detail in the next section.

4.2.4 Laptop 2

Following the previous analysis methodology, the same tests were performed on a more
recent laptop. The execution times are plotted in figure 19. To be noted that these results
follow the same pattern obtained in figure 18.

In terms of variations, this graph shows some significant variations, namely in ROIs 1, 2,
7 and 9. In these ROIs, and with the exception of 4 indexations, the median value is lower
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Figure 19.: ROI indexation times for Laptop 2

than the computed average, which means that the value of the third largest execution time
was significantly higher to translate into a visible difference on the graph.

The difference between measured values can be considered normal if taken into account
the parallel execution of the application. This way, the set of ROIs to be indexed at any given
moment is arbitrary and managed by the processor scheduler. Similarly, the concurrent
execution of the indexes can contribute to different times per execution, but it is expected
that the time to index all ROIs to remain similar. In this aspect figure 16 illustrates that the
variation between tests totals about 500 ms.

The sum of the average times totals 11959.55 ms. This value divided by the number of
threads available on the system gives an average of 1494.94 ms per thread. Both values are
slightly above that obtained in Laptop 1. However, Laptop 2 has a better execution time
of about 500 ms, lower than the best time registered by Laptop 1; therefore, a potential of
better application performance is acknowledged for Laptop 2.

In relative terms, the sum of the indexation times of Laptop 2 are 71% higher than the
ones registered in Desktop 1 and 1.3% higher than Laptop 1. The average time per thread
of Laptop 2 is 15% lower than Desktop 1 and 1.3% higher than Laptop 1.
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4.3 vectorization and code parallelism

The previous results were achieved extracting the most performance possible from the
computer system. This was possible by using all available threads and by parallelizing
computer instructions using vectorization.

To graphically visualise the performance of the application the extension ”Concurrency
Visualizer for Visual Studio” was used. This tool monitors several performance indicators
with the objective of analysing the use of parallelism in modern processor architectures.

Figure 20 shows a simple execution of the application to determine the zone axis and
upward vector from an image of an unknown material.

Figure 20.: Performance of complete process for one image and multiple CIF files

The profiled execution makes use of one image and thirteen CIF files. This information
delimits a ROI to be indexed and exports the indexation results into an HTML report file.

Looking at the graphical representation of the execution times it is possible to visualise
that the system where it was executed had 8 available threads. In the vast majority of the
time the application had near the totality of the computational power available. This can
be seen through the white colour in the graph.

Represented with green colour is the effective use of the application of the available
threads. In terms of runtime, the application was active for about 45 seconds.

Performing an analysis of the data represented, it is possible to see a peak with a longer
duration at around the 27 s mark with an approximate duration of 1 s. In this peak it
is possible to observe also that the application used 7 of the 8 available threads. This
peak represents the indexation process of a ROI in which the application makes use of the
parallelism available in the multicore device, with the exception of the last thread.

The other peaks in the image do not have a significant duration.
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The main objective of figure 20 is to illustrate the performance of the application using
the graphical user interface for interaction with the user. In this case it is clearly visible a
bottleneck of the human factor.

In order to illustrate the actual performance of the application, it is important to remove
the human factor from the performance analysis. However, since it is an application with
a graphical user interface and with the aim of being used by a person, it is important
to demonstrate the scenario where its performance may be relevant in the time taken for
image analysis.

To illustrate a more intensive use scenario, the application performance was analysed
with the data used to obtain the results analysed in the previous section. In this scenario,
after starting the application, an application project file with all the information necessary
for indexing was selected. The results are shown in figure 21.

Figure 21.: Performance for indexing multiple images and multiple CIF files from a project file

Similar to the previous figure, also in this graph are present the 8 available threads in
the vertical axis and the elapsed time in the horizontal axis. With respect to the time axis,
in this test the opening and indexing of an application project file takes about 5.8 seconds
with the indexation of 11 ROIs obtained from 7 images and related to 12 CIFs.

Regarding the represented elapsed times, it can be divided into different phases:

1. initialization of the application with the graphical interface: from 0 s to about 0.25 s
mark;

2. inactivity by user reaction time: from 0.25 s to 0.5 s mark, followed by execution of
the project loading interface up to 1 s;

3. selection of the project file in the GUI: from 1 s to 2 s mark;

4. start loading images, CIFs, configurations and ROIs, followed automatically by the
indexation of the meanwhile loaded ROIs: from 2 s to 5 s mark;
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5. inactivity due to the human reaction time and closing action of the application in the
final section of the graph: the remaining time.

Based on the time axis of the graph it is possible to conclude that the application ran
for about 3 seconds on Laptop 2, which is in line to the results presented in the previous
section. It is also possible to observe that the application makes use of 7 of the 8 available
threads during most of the time during this procedure. This is due to the use of a thread
pool functionality provided by the Intel Threading Building Blocks library. In this particular
implementation it is in the interest of the application to maintain an active thread available
for control of the GUI. For this reason, the application always maintains a thread allocated
to the GUI and in which the user can continue to use the tool without interfering in the
indexation process that occurs in the background.

Similar to the analysis performed for a normal execution of the application, in this figure
it is possible to verify the large amount of computational power available that is not used.
For the most part this unused potential result from the graphical implementation of the
tool, on which there is no way of increasing efficiency without modifying the library used.

Likewise, it should be mentioned that the displayed results are from the compilation of
the application making use of the automatic optimisation from the compiler that favours
performance over file size. These optimizations range from the automatic placement of
inline functions, to reduce function calls and associated stack accesses, through analysis and
pre-allocation of registers for the most used variables, optimisation of loops by extracting
static computations, replacing them with variables, replacing some functions by optimised
versions present in the processor architecture, releasing and making use of the EBP register,
among others.

Figure 22.: Same test as figure 21 but with a non optimised executable
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Also, the application build makes use of AVX vectorization, whose support was started
in 2011 with Intel’s Sandy Bridge and AMD’s Bulldozer architectures. This feature allows
the simultaneous computation of vector instructions on data equal or larger than 128 bits.

To illustrate the lack of optimisation, a test version was compiled without any optimisa-
tion and performed the same test of figure 21. The results are shown in figure 22.

As it can be seen in the figure, not even maintaining the parallelism of the application
can compensate for the significant penalty in terms of execution time during the indexation
process. The indexation process goes from about 3 s of the optimised version to about 19

seconds, 6.3 times slower.



5

C O N C L U S I O N

2D (S)TEM images of nanomaterials may require image interpretation to adequately char-
acterise the atomic structure of the material(s) in the image, in a process known as image
indexation. Some optimised approaches do exist to perform some of the required tasks, but
there is not yet a fully integrated software tool to perform these tasks in almost real-time,
with a simple and efficient user interface. A new tool was developed in this work to address
the indexation process, Im2Cr.

The work described in this dissertation shows that this process may be simplified allow-
ing EM users to have a less steep learning path to extract useful information from crystal-
lographic EM images. This does not restrict experienced users from adjusting the tool’s
parameters to achieve clearer indexation results. For both of them, the advantages are the
less time it takes to identify the sample orientation and the better use of their time to do
more useful work.

To allow the user to understand the indexation results, Im2Cr makes use of 3D models
representation of the unit cell in the orientation found and a value for each indexation
representing its classification. With this later value, the user is capable of deciding if the
indexation result is trustworthy or not.

With relation to the tolerances allowed by the tool, this application is capable of reading
popular image format files and accepting a wide range of images, being them TEM or STEM
images with some distortion or not. This flexibility was achieved by allowing the user to
perform refinements on the automated spot location while selecting each ROI location.

Taking into consideration the end user requirements, it can be said that most of the
requirements were achieved, being this a semi-autonomous tool that can perform image
indexation requiring only the user to input the images, CIFs and selecting the ROI area.
From this information the tool computes the Fourier Transform of each ROI and indexes the
detected spots to each CIF, displaying at the end a table with a orientation and quantitative
evaluation of each indexed material. All this is performed on a common modern laptop
with a broadly used operating system and with low execution times, when compared with
the image acquisition time.

50
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Regarding the application performance, this tool strives to hit a balance point between
ease of use and efficient computational power utilisation. As the results shows, the use of
a GUI favours an intuitive interface in respect to the used computational power. To coun-
terbalance this, the application tries to perform most computations at the earliest moment
when all information is gathered. An example of this is when the user finishes selecting
a ROI that, even if the user wants to continue selecting more ROIs, the application starts
performing the indexation process on background, allowing the results to be displayed as
quickly as possible.

The key components for the application performance are the implemented and/or en-
abled optimisations. This fact is also emphasised on the displayed results, being the per-
formance of the optimised application compared with an unoptimized version of the same
tool. The gains are clear, being the tool 6.3 times faster on the optimised version.

As a conclusion, this dissertation aimed to show that the automation of a routine process
as image indexation is possible and that it is an actual problem with many ways to be
solved. The developed tool is intended as a contribution to solve this problem, proposing
a new approach for its automation with reliable results. Looking at the results, the times
achieved are on pair or better when compared with other approaches and are a significant
step forward compared to the time taken to perform this process manually.

5.1 future work

At its current state, Im2Cr still have some room for improvements. One of such improve-
ments is the support of diffraction pattern images.

Since the applications allows the detection of spots on the reciprocal space, the imple-
mentation of electron diffraction should be straightforward. The main difference for the
(S)TEM images is that the process of applying the FT to the image is no longer required
since the image is already on the reciprocal space. Instead, the challenge is the determina-
tion of spacings by ring radius on the images. The representation of a beam stopper could
also have impact on a possible automation of ring detection.

Another point of expansion could be the integration of this tool into the software used
for image acquisition. With such functionality, the user could save a significant amount of
time when trying to capture a specific orientation of the sample.

The integration on other tools could also be a path to be taken. As an example, image
indexation is a requirement for image simulation process. Its current state could be inte-
grated into an application specialized in image simulation, having the indexation results
exported by this application being used as input for the image simulation tool.

While developing the tool, a special care was taken in keeping the inner components
into modules. The main objective for this was to keep the potential to use this tool on a
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server. This would allow to have multiple remote clients where the user only performs the
required inputs. All the heavy work would be done on the server, where the resources
could be more efficiently used.

With relation to known limitations, the current state only allows the representation of
orthogonal unit cells. The parameterisation of the tool is not complete yet, having some
trouble handling arbitrary user inputs. The background indexation process still requires
some adjustment to abort currently running processes.

All in all, Im2Cr have many ways to grow and either be a fully-fledged application or
being integrated into other applications. The above mentioned is only a vision of this tool
potential. The path this tool will take is still open for future developments.
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Indexation results

− Detected spots are labelled with overlays on each of selected ROI FTs and ED patterns

− The best matching CIF and the indexing results are summarized

− A merit index based on the relative deviation with respect to the CIF structure is displayed

− The crystalline structure orientation is described by the zone axis and upward vectors

Figure 3: a) List containing the previously selected ROIs. b) Indexing results for the best matching CIF

(Fe3O4 - #1011032). c) Interactive 3D atomic model.

Application report

− Indexing results can be exported to a printable HTML file

− Source images and tables can be also exported separately

− Indexing presets and results can be saved in a project file for further application

Figure 4: Simplified report example including a) original (S)TEM image, b) selected ROI, c) FT with

detected spots, d) unit cell structure, and e) table with indexing results. The individual image can be

exported with lossless compression.

Summary

− Im2Cr allows semi-automated and real-time (S)TEM results indexing

− Multiple (S)TEM images, ED patterns and CIF files can be processed simultaneously

− Im2Cr is optimized for parallel processing, allowing fast and scalable analyses for PC

− Quick setup with few-clicks operation, does not require specialized knowledge in crystallography

− Quantitative results and a merit index allows the assessment of indexing quality
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Motivation

− (S)TEM image and ED patterns indexation is typically done manually and prone to user mistakes

− Real-time TEM results indexation would support the characterization of complex materials

− TEM characterization yield could be greatly improved by (semi-) automated data analysis

Im2Cr functionalities

− Support for popular (S)TEM image formats – TIFF, DM3 and SER

− Flexible 3D visualization of unit cell structures from Crystallographic Information Files (CIF)

− Simultaneous processing of multiple images, diffraction patterns and CIFs

− Straightforward customization of peak finding algorithm and spots indexing

− Time-efficient images and ED indexation – (<1 s)

− Automated report routine that includes indexing results and source images

Input information

− Multiple (S)TEM images and/or ED patterns with pixel size information

− Multiple CIFs including atomic coordinates

Figure 1: Im2Cr graphic user interface screenshot. (a) List of input (S)TEM images, (b) List of input CIF, (c)

(S)TEM image preview, (d) Unit cell structure preview, (e) (S)TEM image details, (f) Unit cell structure

details.

ROI selection and Centre determination

− One or more regions of interest (ROI) may be selected in each of the (S)TEM images input

− ED patterns centre determination is carried out after an estimation by the user

− Automatically detected spots on the ROIs Fourier Transform (FT) and ED patterns can be edited

− The number of indexed spots is customizable

Figure 2: ROI selection graphic user interface . (a) The inset (red square) indicates the selected ROI. In

case of ED pattern, a centre estimation routine is available instead. (b) An automatic spot detection is

displayed for user validation before indexing procedure

Im2Cr: An efficient tool for crystallographic indexing 
of (S)TEM images and ED patterns
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This work presents Im2Cr, a new software tool to aid the crystallographic indexing of nanostructured materials using high resolution (S)TEM images and electron diffraction patterns. Im2Cr implementation aims for a minimal user

interaction and includes an efficient peak detection process applied to images and/or their Fourier Transform (FT). Crystallographic indexation is carried out autonomously via comparison with a list of candidate structures named by

the user, and a ranking of the best matching combinations of crystallographic structures and viewing zone axes is generated. Im2Cr was successfully tested for robustness and execution efficiency in a wide range of (S)TEM images

from crystalline nanomaterials, with domain size ranging from 4 to 100 nm. The autonomous indexation with preset parameters has a very high success rate, and runs in a small fraction of typical (S)TEM images acquisition time.

Alternatively, the user can operate Im2Cr in a semi-autonomous mode and control relevant parameters related to the region of interest (ROI) selection on the (S)TEM image and on the peaks detection. Im2Cr promising results point

to the possibility of real-time TEM results analysis with reduced user interaction, allowing for an increased (S)TEM characterization yield and also enabling the interpretation of complex images and diffraction patterns.
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