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A B S T R A C T

Machine Learning (ML) gives a computer system the ability to perform a certain task with-
out being explicitly programmed to do it. Although ML is not a new topic in the field
of computer science, these techniques have been gaining increasing popularity due to ad-
vances in hardware (especially GPUs). More powerful hardware supports more efficient
training and a more responsive end-system, once deployed. These algorithms have proven
to be particularly effective in image processing and feature detection, namely with deep
neural networks.

In the context of a vehicle, autonomous or not, perceiving its external and internal envi-
ronment enables the ability to detect and identify left behind objects, its misuse or other
potentially dangerous situations. This captured data is relevant to trigger vehicle intelligent
responses. Bosch is currently developing a system that has these capabilities and plans to
leverage deep learning approaches to implement it.

This work aimed to test and evaluate the suitability of a given embedded device for
the project. It also determined the best strategy to implement deep learning solutions in
the device. The supplied test bed was a NVidia Software Development Kit (SDK) system
for the embedded NVidia Jetson TX2 device with the System-on-Chip (SOC) Parker, an
heterogeneous computing chip with 2 Denver-cores (a NVidia implementation of ARM-64

architecture), 4 CortexA57-cores (also ARM-64), 256 Pascal GPU-cores and support for up to
6 video cameras. The SDK includes several software library packages, including for image
processing and ML.

With the goal of fully exploiting the embedded device compute capabilities, this work
studied several inference frameworks, going as far as implementing an inference engine
from scratch (named Deeploy) that produces inferences based on two libraries provided
by NVidia: cuDNN and TensorRT. Deeploy was evaluated against well known and estab-
lished frameworks, namely Tensorflow, PyTorch and Darknet, in terms of efficiency, resource
management and overall ease of use, maintainability and flexibility. This work also ex-
ploited key performance related features available on the device, such as power modes,
half-precision floating point computation and the implemented shared memory architec-
ture between the GPU-cores and the CPU-cores.
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R E S U M O

Machine Learning dá a um sistema informático a capacidade de completar uma dada tarefa
sem ser explicitamente programado para tal. Apesar de Machine Learning não ser um tópico
novo no campo da engenharia informática, estas técnicas têm-se tornado cada vez mais
comuns devido a avanços no hardware (especialmente nos GPUs). Hardware mais computa-
cionalmente capaz dá origem a treinos mais eficientes e a sistemas em campo mais rápidos.
Este tipo de técnicas, em especial redes neuronais, demonstraram-se eficazes no processa-
mento de imagens e deteção de objetos.

No contexto de um veı́culo, autónomo ou não, perceber o seu interior e o ambiente no
qual este se insere é essencial para detetar objetos esquecidos, o uso indevido do mesmo ou
outro tipo de situações perigosas. Esta informação é essencial para desencadear respostas
inteligentes por parte do veı́culo. A Bosch está atualmente a desenvolver um sistema com
estas capacidades e para o implementar pretende utilizar soluções baseadas em redes neu-
ronais.

Com o projeto pretendeu-se testar e avaliar a aptidão de um dado dispositivo embe-
bido para este projeto. Serviu também para determinar a melhor estratégia para se fazer
a implementação de redes neuronais neste dispositivo. Os testes foram feitos num kit
de desenvolvimento da NVidia que consiste num NVidia Jetson TX2 que contém um chip
de computação heterogéneo composto por 2 cores Denver (implementação da NVidia da ar-
quitetura ARM-64), 4 cores CortexA57 (também ARM-64), 256 cores GPU Pascal e capacidade
de se conectar até 6 camaras de vı́deo. O kit de desenvolvimento inclui várias bibliotecas
de software para processamento de imagem e até para ML.

Com o objectivo de tirar total partido das capacidades computacionais do sistema em-
bebido, este trabalho explorou várias plataformas de inferência, implementando mesmo
um motor de raiz capaz de fazer inferência recorrendo a duas bibliotecas desenvolvi-
das pela NVidia: cuDNN e tensorRT. Foi também feita uma comparação entre as duas
implementações desenvolvidas e frameworks tradicionais como Tensorflow, PyTorch e Dark-
net no que toca a eficiência, facilidade de manutenção e flexibilidade. Este trabalho ex-
plorou também as features chave que estão relacionadas com performance disponibilizadas
pelo dispositivo embebido, como modos de consumo de energia, computação numérica de
virgula flutuante de meia precisão e a arquitetura de memória partilhada implementada
entre os múltiplos cores ARM-64 e os CUDA-cores do GPU.
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1

I N T R O D U C T I O N

Since the 30’s the car has been able to self detect problems and warn the user of many me-
chanical problems Lamm (1984). The dreaded engine or ABS lights turn on once a problem
with the corresponding systems has been detected, preventing possible dangerous situa-
tions. This is obviously possible due to an array of various sensors that monitor numerous
aspects of the vehicle during its normal operation Baltusis (2004). All of the data generated
by these sensors is analysed and if some values are out of the acceptable range the system
alerts the user. This is the standard for the automotive industry today.

On the other hand, the interior of the vehicle is heavily neglected when it comes to self
diagnostics. The most commonly available systems are mostly related to basic passenger
safety (e.g., seat-belt reminder chime or automatic airbag deactivation of the passenger seat
when minimum weight is not detected) ignoring passenger comfort, interior condition and
more complex safety related subjects. Even the more advanced systems (more commonly
found in higher-end models) focus mostly in the driver (e.g., drowsiness and distraction
detection) Kaplan et al. (2015).

Bosch is currently developing a system to answer these needs. It should be able to oversee
not only the driver (if one exists) but also all the vehicle occupants and cabin state. Its main
goal is to detect miss-behaviour inside the cabin (e.g.: occupants fighting or poorly seated),
left behind objects (e.g.: personal belongings or litter) and cabin damage. A system with
these characteristics is appealing for car renting businesses but will play an even more
important role in the self driving future.

Optimistically speaking, fully autonomous driving is expected to arrive around 2030

Litman (2017). Until then, a full cabin sensing system, like the one in development, is
viable for car renting and sharing businesses. It should be capable of assuring that the
vehicle is correctly and safely used and is acceptable for the next client. To a lesser extent, it
can also prove to be interesting for taxi drivers by detecting miss behaviour and left behind
personal belongings Brown (2018).

When fully autonomous vehicles arrive, a system like this one becomes even more rele-
vant. Vehicle sharing is expected to become extremely common Gao et al. (2014); Lambert
(2016) which creates the need to automatically protect both the vehicle and its passengers
from potentially dangerous or damaging situations Broussard (2018). Tesla, one of the lead-
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1.1. Goals, challenges and contributions 2

ing car manufactures researching self driving vehicles, already installed in its latest model
(Tesla Model 3) a camera in its interior Lambert (2017). Although currently disabled, this
camera effectively prepares their latest model for the car sharing future and enables the
possibility of an analogous system being implemented with a software update.

Such a versatile and ambitious system can only be developed based on vision techniques.
Its final version is expected to do the bulk of its monitoring tasks via an array of cameras
installed in the cabin. This makes all visible events potentially detectable by the system and
enables future functionality addition/tuning via a software update. One of the major draw-
backs of such solution is the computational cost of real time image analysis. In particular,
this analysis is expected to rely on state of the art deep learning vision models.

This work is part of the project described and will focus of the deployment and perfor-
mance issues related with it. It is very performance oriented due to the high computation
demand of the typical deep learning model. To answer these needs, the computing system
selected was the NVidia Jetson TX2, an embedded device that has an integrated NVidia
GPU with 256 Compute Unified Device Architecture (CUDA) cores, giving it an extremely
high computational power when compared other devices of this category. Currently, the
project does not have a deployment system selected, providing a very flexible environment
for testing. On the other hand, the project already defined some deep learning architectures
that will be used in the final product, namely YoloV3, making it the focus of this deployment
effort.

1.1 goals , challenges and contributions

The main goal of this dissertation is to explore the suitability of a given embedded de-
vice (NVidia Jetson TX2) to deploy a real-time vehicle interior sensing system stressing
computer vision applications. The work focuses on testing different deployment strategies
and multiple neural network models aiming to achieve the best possible performance. The
deployment strategies tested contain a variety of different frameworks, from well known,
high performance frameworks (e.g.: PyTorch and Tensorflow) to a custom tool developed
specifically for this project named Deeploy. This tool is the main implementation effort of
this work and will be one of its main focus.

A real time analysis of multiple camera feeds using neural networks is very computation-
ally demanding Sze et al. (2017). For a single inference, a relatively well known classification
network, VGG-16 Simonyan and Zisserman (2014), performs 15.300.000.000 multiply/add
float operations Howard et al. (2017). Thus, it becomes imperative to explore multiple
deployment strategies and models to guarantee an efficient hardware optimisation.

The work in this dissertation aimed to reach the following goals:

• to evaluate the available Jetson TX2 performance features;
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• to evaluate alternative inference implementations of several neural networks architec-
tures;

• to propose the best software/hardware configuration suitable for deployment.

To achieve these goals, an inference tool (specifically tuned for the target system) was
developed and multiple others were tested. The developed tool is not only a prototype
of a real world inference engine that fits the performance needs of the main project, but
was also a test bed for cuDNN and TensorRT, two high performance inference libraries
developed by NVidia. Making the inference engine from scratch allows for fine tuning of
all involved components, leading to better performance and a fairer testing environment.
The key challenges for the project were:

• to test the Jetson embedded system with very limited support documentation;

• software compatibility issues: most available software required to be compiled on the
device (with ARM Instruction Set Architecture (ISA));

• to re-implement multiple neural network models on different inference engines.

With these challenges overcome, the project provided an extremely rich testing environ-
ment to assess the real world capabilities of the embedded device. It will also shed some
light on how different deployment frameworks take advantage of the available on-chip GPU
CUDA-cores.

1.2 document outline

After the current chapter, this document has 7 more; the next one, chapter 2, The target sys-
tem, presents the NVidia Jetson TX2 (the embedded device that will be used in the project),
its specifications and its power modes. It also contains the results of an experimental per-
formance evaluation. During this evaluation, the embedded device was tested in multiple
power modes and compared against traditional computing hardware to establish a perfor-
mance baseline.

Chapter 3, Computer vision with neural networks, gives an overview of the connection be-
tween these two fields and goes in detail on the latter. This chapter justifies the computa-
tional demands created by deep learning models, explaining in great detail the operations
performed in each layer type.

Chapter 4, Neural network inference systems, presents the relevant neural network libraries
for the project (cuDNN and TensorRT) and the frameworks that will be used for a compar-
ative evaluation, namely Darknet, Tensorflow and PyTorch.
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Chapter 5, The Deeploy tool, presents the current state of the developed tool. It starts by
explaining it, how it fits in the neural network development cycle and then describes its
inner workings by presenting some of its most important classes.

Chapter 6, Validation and performance analysis, shows the profiling and fine-tuning steps
taken in the development of this tool. At the end of the chapter, a section is dedicated to
the validation method employed to attest the correct implementation of the framework.

Chapter 7, Framework comparison and testing, starts by explaining the testing environment
used, followed by a summary of all the comparisons performed between frameworks.

Chapter 8, Conclusion, provides an overview of the process of developing the tool, sum-
marises the most interesting findings and proposes possible tracks for future work on the
project.



2

T H E TA R G E T S Y S T E M

This project is being developed specifically with vehicles in mind. When building a new
system that has to physically fit in such a crowded space as the interior of a vehicle, it
is important to take its size, shape and power consumption under consideration. These
constrains heavily influence the components selection when developing a new product.
Another aspect to consider is that the project is heavily dependent on image processing and
object detection which are synonymous with heavy computations. Due to these constrains,
the NVidia Jetson TX2 was chosen as being the main computational device coordinating
the system.

This device is a System-on-Module (SOM) that incorporates a combination of perfor-
mance and power efficiency in a small form factor making it ideal for many situations. This
system was mainly developed with machine learning, augmented reality and video process-
ing in mind, justifying its vast Input/Output (I/O) and processing power. One of the most
important features of the device in this context is its ability to adapt to the project. As seen
in figure 1, the device itself does not contain any I/O or cooling system. It is expected for
the system integrator to develop and manufacture its own custom board containing only
the necessary I/O and the best form factor for the project. Another very important aspect
that is not common in embedded devices is the inclusion of an integrated Pascal GPU, fur-
ther expanding its computational capabilities. Table 1 and figure 2 shed some light into the
particular inner working of the device.

Figure 1: NVidia Jetson TX2
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CPU
ARM Cortex-A57 (quad-core) @ 2GHz +

NVidia Denver2 (dual-core) @ 2GHz
GPU 256-core Pascal

Memory 8GiB 128-bit LPDDR4 @ 1866Mhz
Storage 32GiB eMMC 5.1

I/O
2x HDMI 2.0 / DP 1.2 / eDP 1.2 / 2x MIPI DSI
USB 3.0 + USB 2.0 / UART, SPI, I2C, I2S, GPIOs

Wireless Connectivity 802.11a/b/g/n/ac 2x2 867Mbps / Bluetooth 4.1
Ethernet 10/100/1000 BASE-T Ethernet

Power Consumption 7.5W (Typical power consumption)

Table 1: NVidia Jetson TX2 hardware specifications

# Mode Name Denver2 ARM Cortex-A57 GPU Freq.
0 Max-N 2.0 GHz 2.0 GHz 1.30 GHz
1 Max-Q 0 GHz 1.2 GHz 0.85 GHz
2 Max-P Core All 1.4 GHz 1.4 GHz 1.12 GHz
3 Max-P ARM 0 GHz 2.0GHz 1.12 GHz
4 Max-P Denver 2.0 GHz 0 GHz 1.12 GHz

Table 2: Jetson TX2 power modes

The most peculiar aspect of the specification sheet is the fact that the board contains
two CPU clusters. These CPU clusters have different characteristics and use cases. The
Denver 2 cluster has a higher single threaded performance but a lower multi-threaded
performance when compared with the Cortex-A57 complex Franklin (2017a). Both of these
complexes have vectorial capabilities (NEON, 128-bit wide) which should be utilised for
maximum efficiency. These two CPU complexes are completely abstracted away from the
programmer. In fact, it is possible to turn on and off any of the CPU complexes without
effecting execution of any process, at run time. NVidia also developed custom silicon to
maintain cache coherency between the CPU complexes (CPU switch fabric in figure 2).

The next interesting specification is the GPU. It has all the capabilities of a conventional
desktop GPU like extensive compute Application programming interfaces (APIs) and li-
braries like CUDA. The graphical memory is shared with the main system memory (as
seen in figure 2) which may improve transfer times between GPU and CPU via NVidia’s
Unified Memory technology. It is also important to mention the vast I/O supported by the
device (as depicted in table 1) and its power consumption of just 7.5W on a typical load.

Finally, the target system also comes equipped with 5 different power modes (table 2), to
suite possible power consumption or heat dissipation constraints. At run time, by execut-
ing the command sudo nvpmodel -m <# desired mode> the power mode can be changed,
further adapting the board to the needs of the system. The power mode essentially works
by throttling or even disabling certain components of the board (as summarised in table 2).
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Figure 2: NVidia Jetson TX2 block diagram (from Jetson TX2 specification)

2.1 key performance characteristics

To create a more testable and systemic working environment, it is important to focus on
key features. For a performance critical deployment, the hardware characteristics worthy
of highlight are:

• Shared Memory between CPU and GPU

As seen in figure 2, the CPU and the Pascal GPU share memory and access it via the
memory controller. In a traditional High Performance Computing (HPC) device, the
CPU and the GPU have each their dedicated memory, forcing any communication
between them to occur via the Peripheral Component Interconnect Express (PCI-e)
bus.

Here, both computing devices share the same memory, possibly rendering some mem-
ory management operations redundant. This idea becomes even more apparently fea-
sible due to the Unified Memory technology implemented by NVidia Harris (2017).
This allows the developer to neglect memory management between the CPU and the
GPU, making any memory allocation to be accessible, seamlessly, by both devices.

On a conventional system, this technology is not expected to create any performance
enhancements since data migrations between CPU and GPU, although automatically



2.1. Key performance characteristics 8

Chip FP16/FP32 FP64/FP32
GP100 (Tesla P100) 2:1 1:2
GP10B (Jetson TX2) 2:1 1:32

GP102 (GTX 1080ti) 1:64 1:32

Table 3: Pascal floating point relative performance

managed, are still happening. But on a device with shared memory, depending on
how this technology is implemented, it can eliminate unnecessary data movements.

• Half-precision floating point computation

With the introduction of the Pascal architecture came full support for half-precision
floating point operations (fully compliant with IEEE 754 Zuras et al. (2008)), but with
some performance related caveats. Maxwell, the preceding GPU architecture, also sup-
ported Half-precision floating-point (FP16) operations but only on one chip: GM20B,
the chip that equipped Jetson TX1, the Jetson TX2 ancestor Ho and Wong (2017).

When it comes to performance, the Pascal implementation of FP16 is heavily depen-
dent on the chip in question. GP100, the fastest iteration of Pascal and the chip that
equips the Tesla P100 GPU, has an exceptional FP16 support, with twice the theoret-
ical throughput when compared to single precision operations. This is achieved by
making the CUDA cores capable of concurrently process two FP16 operations Har-
ris (2016). This technique is also applied in GP10B, the chip that equips Jetson TX2

Larabel (2017); Franklin (2017b). On the other hand, GP102, the chip used in the high
end Pascal consumer Geforce GPU does not handle half precision as efficiently. In
fact, using half precision yields less performance since only one CUDA core per SM
is capable of processing two FP16 operations concurrently Smith (2016).

Table 3 summarises these implementation caveats. Even though all these chips are
Pascal, they have extremely different behaviour depending on the floating point pre-
cision, highlighting the importance of knowing the hardware for performance critical
implementations. The theory behind lower precision floating point operations on
neural networks is explained in more detail in latter sections.

• Power modes

It is also very important to determine how the power modes will impact performance,
especially the ones that throttle the GPU frequency. These are particularly important if
the project gets constraints when it comes to power consumption or heat dissipation.
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2.2 experimental performance evaluation

A practical performance evaluation is important to determine where the device is situated
when compared with common hardware. This helps to level expectations and validates the
actual achievable peak performance.

Matrix multiplication is the standard operation used to determine peak achievable per-
formance. Tensorflow was initially considered to execute this test since this framework is
capable of performing these operations at varying floating precisions and is also capable of
using NVidia GPUs. However, this frameworks, probably to overcome poor half precision
support of consumer cards, performs these computations at single precision, even when
specifically programmed not to.

For this reason, a simple C++ code snippet was developed to accomplish the desired
operation: measure peak floating point operations per second when performing matrix
multiplication at varying floating point precisions. The code is based in cuBLAS, a library
that implements the standard basic linear algebra subroutines developed by NVidia for
their GPUs Nvidia (2008).

Figure 3 shows the measured throughput of Jetson TX2 and a GTX 1080ti while operating
on two square matrices with 40962 elements each. The results were taken after a warmup
multiplication call and are the average of 10 executions.

Since both these devices can execute, on single precision floating points, a Fused Multi-
ply–Add (FMA) instruction Whitehead and Fit-Florea (2011) per cycle per CUDA core, their
theoretical peak throughput can be calculated by (#CUDA cores) ∗ Frequency ∗ 2. This puts
the Jetson TX2 (Max-N) at a theoretically peak throughput of 665.6 GFLOPS (256 ∗ 1.3 ∗ 2)
and the GTX 1080ti at 11339 GFLOPS (3584 ∗ 1.582 ∗ 2). Multiplying by the factors in table
3 calculates the throughput with other floating precisions. These theoretical results were
corroborated by the measured performance summarised in figure 3, meaning that the the-
oretical peak throughput is achievable in practice during matrix multiplication operations,
ruling out any possible memory bottleneck. This is important since the most common and
computationally demanding layer types (convolutional and fully-connected) can be imple-
mented via these matrix operations.

Only the power modes that interfere with the GPU frequency were tested, and the results,
as expected, scaled linearly with its change. The most important takeaway from the mea-
surements is the fact that the embedded device beats the top of the line Pascal consumer
GPU on half-precision floating point operations (1180 GFLOPS vs 198,44 GFLOPS). This
emphasises the importance of favouring these types of operations in this device and avoid-
ing them in the dedicated GPU. This is important to note since neural network training is
normally performed in the later. This way, to fully take advantage of both architectures,
training should be performed in single precision and the resulting weights should be con-
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Half-precision Single-precision Double-precision

Jetson TX2 (Max-N) 1180.30 619.53 19.68

Jetson TX2 (Max-Q) 804.68 419.26 12.93

Jetson TX2 (Max-P Core All) 946.55 547.85 16.95

GTX 1080ti 198.55 11406.10 370.05
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Figure 3: NVidia Jetson TX2 GPU floating point throughput with varying precision and power
modes (compared with GTX 1080ti)

verted to half precision for final deployment. This may result in problem at inference time
due to the change in precision between training and inference. This topic will be studied
with more detail along the work.

The same series of tests were also performed on the CPU side. To this effect, a small C++
application was also developed, this time based on OpenBLAS, an optimised Basic Linear
Algebra Subprograms (BLAS) library Xianyi et al. (2014). Here, all the available power
modes were relevant, since all of them generate unique combinations of core frequencies.

The results, shown in figure 4, reveal a very uninteresting Denver core cluster when
compared with its ARM counterpart. Even accounting for the core count difference (4 vs
2) the Denver cluster turned out to be extremely inefficient (44,28 GFLOPS vs 4,62 GFLOPS
in single-precision), to the point where it seems more suitable to have it turned off. As for
the general performance when compared with a high performance consumer CPU (with
the same core count), the embedded device revealed, as expected, much inferior (up to
9x slower in MAX-N mode). This highlights the importance to explore the GPU for the
neural networks inference tasks, leaving the CPU for other less computationally demanding
workloads.

For reference, table 4 displays the specifications of the workstation used in the compar-
ison. This system will also be used for testing in later chapters and is the system used,
currently, to perform model development/training at Bosch.
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Single-precision Double-precision

Jetson TX2 (Max-N) 64.60 17.50

Jetson TX2 (Max-Q) 27.56 7.81

Jetson TX2 - (Max-P Core All) 45.73 12.25

Jetson TX2 - (Max-P ARM) 44.28 12.13

Jetson TX2 - (Max-P Denverl) 4.62 1.21

Intel  Core i7-7800X 305.15 150.44
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Figure 4: NVidia Jetson TX2 CPU floating point throughput with varying precision and power
modes (compared with an Intel Core i7-7800X CPU)

CPU
Model Intel® Core™ i7-7800X

Architecture Skylake
Cores 6

Cache L1 12x 32KiB (6x inst. + 6x data)
Cache L2 6x 1MiB
Cache L3 8,25MiB Shared

Frequency 3,5 Ghz
SMT Yes (2 way)

ISA Extensions SSE4.1/4.2, AVX2, AVX-512

RAM 4x 8GiB DDR4 @ 2133 MHz

GPU
Model GTX 1080ti

Architecture Pascal
#CUDA Cores 3584

Frequency 1,480 Ghz
Memory 11GiB GDDR5X

Table 4: Workstation system specifications



3

C O M P U T E R V I S I O N W I T H N E U R A L N E T W O R K S

Computer Vision is the computer science field that is responsible for the transformation of
data from video or still images into a decision or a new representation Kaehler and Bradski
(2017). This may seem like a trivial task. Humans can very easily interpret visual data and
extract high level knowledge from it. For a computer however, this is not as straightforward
since it must be able to interpret a set of bytes that represent, pixel by pixel, the image as a
whole. 1 For this reason, until now, there is no definitive solution for problems like object
detection.

Neural network based approaches have proven to perform better than traditional com-
puter vision techniques (e.g.: SIFT) in object detection tasks Krizhevsky et al. (2012); Si-
monyan et al. (2013). In fact, neural networks have proven to be fundamental for a variety of
different tasks that will be useful for the project (e.g.: Pose estimation Cao et al. (2016); Wei
et al. (2016), Object Detection Redmon et al. (2016); Redmon and Farhadi (2018); Howard
et al. (2017); Krizhevsky et al. (2012) and Natural language processing Gillick et al. (2015);
Józefowicz et al. (2016)). For these reasons, Deep Neural Networks deployment on Jetson
TX2, the main focus of the dissertation, is critical for the main project.

3.1 deep neural networks

There is no Machine Learning related topic more popular than Deep Neural Network
(DNN). This research field has inspired plentiful publications and witnessed numerous ad-
vances over the last decade Schmidhuber (2015). Like most ML approaches, Deep Neural
Network are capable of learning a new task without being explicitly programmed to.

In particular, this dissertation is going to focus on neural networks that have to be trained
with big amounts of labelled data before they can be used for inference (supervised learning
Mohri et al. (2012)). This step can not be ignored when deploying a neural network but
it is not going to be addressed here since the training will be performed in dedicated

1 This is a simplified view of the matter. There are factors like image format, resolution and number of channels
that come into play.

12
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workstations. The trained model will then be transferred to the embedded device, ready to
infer on new data.

Though not a recent topic by any means (with some literature dating back to the 40’s),
Deep Neural Networks have increasingly become a very hot research field. This increase in
popularity can be attributed to the increase in availability of both software and hardware
that facilitate the development, testing and training of DNNs.

On the software side, frameworks like Tensorflow Abadi et al. (2016), Caffe Jia et al. (2014)
and MXNet Chen et al. (2015) coupled with accessible and forgiving programming lan-
guages like Python or R lower the barrier of entry. And if software aids with the concep-
tion and development of new architectures, recent hardware (particularly GPUs) lower the
training time allowing for more architectures to be tested or further tuning of existing ones
Markidis et al. (2018); Wu et al. (2016); Deng et al. (2014).

Figure 5: Example of a Fully Connected Neural Network

Artificial Neural Networks (ANNs) were initially developed to model biological neural
systems. They can be described as biologically inspired computing models that are com-
posed of collections of interconnected neurons Li and Karpathy (2015). Figure 5 shows a
very basic fully connect deep neural network.

Like illustrated, a neural network is typically organised in layers Li and Karpathy (2015).
Here, only fully-connected layers are used, hence the name. The deep terminology is not
applied here since the network is relatively shallow, containing only two hidden layers. In
the next chapter, other layer types that typically compose a DNN will be explained. Another
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aspect clearly depicted in the figure is the concept of a neuron. A neuron can have multiple
inputs and a single output (that can serve as input to one or more neurons). When training,
all the neurons that compose the network ”learn” or readjust their weights and bias in
an attempt to get closer to the correct known output for a given input. When making an
inference, a neuron sums all of its inputs (multiplying each by its respective, previously
learnt, weight), adds its (also learnt) bias and feeds this result to its predefined activation
function.

3.1.1 Neural network layers

This section presents the most common types of layers that typically form a Neural Net-
work. But, to fully understand layers, their different types and what they do precisely, it is
important to understand the concept of a tensor as presented in Abadi et al. (2016). Essen-
tially, a tensor is a typed multidimensional array that represents the input and output of a
layer. Figure 6 illustrates how a tensor with dimensions 3x5x5 can fully represent the image
depicted (with a resolution of 5x5). Keeping the analogy between images and tensors, their
dimensions can sometimes be named Height, Width and Channel accordingly.

Figure 6: Tensor example

The next section will briefly present some of the most common layer types.

Activation layer

The activation layer if one of the most basic types of layer. It simply applies a predefined
function to all elements of the tensor, maintaining its shape and type. They are rarely seen
in the specification of a neural network since they are normally applied implicitly after a
fully connected or a convolution layer, becoming part of the specification of these layers.

The most important part of the an activation layer is the activation function. It is im-
portant for this function to be non-linear since otherwise the computation performed by
interconnected neurons could be reduced to a simple linear algebra operation Sze et al.
(2017).

Here are some of the most common activation functions:
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1. Sigmoid
Sigmoid was one the most common activation function used in the beginning of ANNs.
It mimics the firing rate of a biologic neuron by firing (1) or not firing (0). It essentially
reduces any input to a value between 0 and 1. Its mathematical formula is σ(x) =

1
(1+e−x)

Li and Karpathy (2015).

2. Tanh
The formula for tanh is very close to the formula of sigmoid: tanh(x) = 2

1+e−2x − 1.
Here, the input gets reduced to a value between -1 and 1. Since it is zero centered, it
is always preferred over sigmoid since this facilitates backpropagation during training
Li and Karpathy (2015).

3. ReLU
The Rectified Linear Unit has become one of the most used activation functions. It
simply is f (x) = max(0, x) which effectively thresholds any input to a minimum of
0. Its main advantages over Sigmoid and Tanh are greatly simplified computation (no
exponential or fractions) and a faster converging rate when training Krizhevsky et al.
(2012).

4. Leaky ReLU
Though inconsistently, many have reported success by replacing ReLU with Leaky
ReLU. Here, negative inputs are multiplied by a (predefined or trainable) α: f (x) =

max(αx, x) Li and Karpathy (2015).

Figure 7: Common activation functions; from left: Sigmoid, Tanh, ReLU, Leaky ReLU

Fully connected layer

A fully connected layer is a layer where each of its neurons is fully connected to all the
outputs of the preceding layer. Currently, this layer is typically used as the final layer on
convolutional networks (Howard et al. (2017); Simonyan and Zisserman (2014)). The goal
is for these layers to learn meaningful information from the high level features extracted by
the preceding layers.
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Another important aspect of this layer type is the very high number of trainable weights.
This makes it a very computationally heavy layer type in terms of number of operations
and in number of weights to be stored. Fortunately, this operation can be implemented as
a matrix multiplication, a highly studied and optimised algorithm in almost any computer
system Sze et al. (2017). Looking at a practical example, VGG-16’s first fully-connected
layer is connected to a layer that outputs a 512 x 7 x 7 tensor and converts it to a 4096 x 1

x 1 one. This means that it has (512 ∗ 7 ∗ 7) ∗ 4096 + 4096 = 102, 764, 544 trainable weights
Simonyan and Zisserman (2014).

It is apparent that this layer is not ideal for visual recognition tasks since the input tensors
are expected to be big (depending on resolution of the input image). Besides the weight
problem, fully-connected layers do not take any advantage of the spatial properties of an
image. For instance, if the goal is to develop an object detector, the features that help to
detect it are relevant in every part of the image, thus, many redundant weights will be
unnecessarily learnt. Next section presents a layer type more suited for theses tasks.

Convolutional layer

Convolution layers are the fundamental building blocks of convolutional neural networks.
These layers have proven to be extremely competent in object classification and localisation
tasks when compared to more traditional techniques. Like described by LeCun et al. (1989),
their goal is to extract local features and to combine them into higher level features. They
also assumed that the object can appear in any location of the input image and that this
location should not affect the final object classification.

These goals are built into convolutional networks by chaining multiple convolutions.
Each convolution is responsible for extracting features from its inputs, hence, the concate-
nation of multiple layers like these results in the desired hierarchical and location agnostic
feature extraction system.

The inner workings of a convolutional layer are relatively simple. The convolution type
presented in this dissertation is the one used throughout all the networks implemented but
other types of convolution exist. A convolution can be thought of as a set of filters. Each
filter will interact with every channel with different weights and generate a new channel in
the output tensor. Every filter will convolve each input channel with its respective weights
by multiplying, scalar by scalar, the weights and a subsection of the input channel. The
multiplied number are later summed and a bias is finally added to generate the final result.
This process is repeated for every filter Li and Karpathy (2015). This is depicted in figure 8.
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Figure 8: Convolutional operation

Finally, it is important to understand all the specifications required to define a convolu-
tional layer. The convolution in figure 8 defines a convolution that only has a filter (K), is
applied with a stride (S) of one, has a size (F) of 2 and a padding (P) of 1. Considering
the input tensor dimensions Width, Height and Channels as Wi, Hi, Ci respectively, the
output tensor dimensions (Wo, Ho and Ci) will depend on the convolution specification the
following way:

• Wo = (Wi − F + 2P)/S + 1

• Ho = (Hi − F + 2P)/S + 1

• Co = K

Pooling layer

The purpose of a pooling layer is to reduce the spacial size of the representation without
loosing too much important information. A very common type of pooling layer is a Max
Pooling Layer. This type of layer operates independently between each slice of the input
volume, dividing then in subregions and choosing the biggest value in each region for the
output volume. This reduces the width and the height of the input but it does not change
its depth. Figure 9 illustrates a 2 by 2 max pooling layer applied to one slice of the input
volume.
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Figure 9: Pooling layer with (stride 2 and size 2)

Batch normalisation

As training progresses, the weights of each layer change which leads to a distribution shift
of their outputs. A change in a single weight is amplified by all the subsequent layers,
forcing them to continuously adapt to a new distribution during training Ioffe and Szegedy
(2015). This forces the use of lower learning rates to minimise this effect, increasing training
time.

Batch normalisation alleviates this problem by fixing the distribution of the tensors to a
zero mean and unit variance. This is just the first step of the normalisation layer. It also
introduces a pair of trainable parameters that scale and shift the normalised values. If these
parameters were not introduced, the sigmoid activation function, for example, would be
reduced to the linear part of its activation range. Note that these parameters can, in theory,
revert the first normalisation step performed. In practice, this does not happen very often.
Typically, this layer is used just before the activation function.

This layer type is normally applied to the 3D tensors outputted by convolutions. These
tensors are composed by a channel dimension (C), width (W) and height (H). Since con-
volution layers apply independent filters for each channel, batch normalisation is normally
applied along this dimension. To apply batch normalisation, during training, the mean (µ),
variance (σ2), scale (γ) and shift (β) have to be determined. Since, in this example, batch
normalisation will be applied along the channel axis, all of these variables have to be vector
of length C. To calculate the output tensor Y, two steps have to be performed: the nor-
malisation step followed by the affine transform step. Considering X and T as input and
intermediate tensors respectively, the batch normalisation is performed as followed:

Tcwh =
Xcwh − µc√

σ2
c + ε

for c = 1, ..., C, w = 1, ..., W, h = 1, ..., H

Ycwh = γcTcwh + βc for c = 1, ..., C, w = 1, ..., W, h = 1, ..., H

Figure 10: Batch normalisation formula

with ε being a very small value to avoid division by 0.
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Softmax

When trying to develop a network to classify if a certain image contains a person, it is
intuitive to think of the output as a probability. For instance, if the network outputs 0.75,
there is a 75% change of the object being present a 25% change of it not being present.
Softmax applies this concept to multi-class classification systems. It assigns probabilities to
the raw outputs of the network, making the sum of all the outputs equal 1 Bishop (2006).

Given an input vector V with n elements, the resulting n elements of the output vector R
are calculated as:

Ri =
eVi

∑n
k=1 eVk

for i = 1, ..., n

3.1.2 Batch size

Batch size dictates the number of input tensors the network processes at a time. It has a
very different meaning depending on the direction of the propagation: backwards (training
phase) or forwards (inference phase).

During the training phase, batch size specifies the number of input elements (e.g.: im-
ages) that contribute to every weight adjustment during back-propagation. A big batch
size normally equates to a more efficient training since each weight update takes a bigger
number of input elements into consideration, leading to more precise adjustments. The
disadvantage of big batch sizes is that memory consumption raises accordingly.

At inference time, the focus of this work, batch size is less important. Analogous to the
training phase, here this setting dictates the number of elements that are processed per
forward pass. This does not have any impact in the results generated by the network but
can have some effect in the time it takes to perform inference. Typically, making a single
inference with a big batch size is more efficient than making multiple inferences with small
batch sizes. This can be explained since a big batch sizes give more alternatives for the
engine to explore memory optimisations like selecting cache friendly algorithms or latency
masking. This work will test this effect in the embedded device by making measuring
inference times at different batch sizes.

3.1.3 Lower precision floating point arithmetic

Half-precision floating point is a binary floating point format that is able to represent
floating-point values in just 2 bytes. This format is part of the IEEE-754 Zuras et al. (2008)
standard and is named Binary16. This smaller memory footprint comes, at the cost of
precision when compared to the more usual single-precision representation.
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To fully understand how a lower size influences precision, it is important to understand
how floating point representation works. The following formula, along with figure 11,
depict how normalised values are calculated:

V = (−1)sign ∗ (1.mantissa) ∗ 2exponent−127

This formula indicates that it is the mantissa that dictates the number of significant digits
that the format is able to represent. With a mantissa with 10 bits (plus the hidden bit), FP16

is able to store numbers with 3 significant digits (log10(211) = 3, 31), while Single-precision
floating-point (FP32) can represent between 7 and 8 significant digits (log10(224) = 7, 22).
Table 5 contains the absolute precision of both floating point representations are various
ranges, giving a more clear understanding of the subject.

- Sign
- Exponent
- Fraction

 
1 10 1 8 235

half-precision single-precision

Figure 11: Half-precision vs single-precision size and bit allocation

Exponent Range Half-Precision Single-Precision
0 [1, 2) 0,0009765625 0,0000001192092

1 [2, 4) 0,001953125 0,0000002384185

2 [4, 8) 0,00390625 0,0000004768371

3 [8, 16) 0,0078125 0,0000009536743

4 [16, 32) 0,015625 0,000001907348

8 [256, 512) 0,25 0,00003051757

15 [32768, 65536) 32 0,00390625

16 [65536, 131072) — 0,0078125

Table 5: Smallest detail expressible by half-precision and single-precision at varying ranges

This representation is not only highly efficient in the embedded device in question (as
previously stated), but it is also widely used in the neural network field. Due to their
computationally expensive nature, neural networks are typical the target of very aggressive
optimisations. One of the most common one is to perform the training and inference stages
in half-precision. This typically comes at the cost of slightly lower inference quality but a
much higher efficiency (only if the hardware fully support this representation).

Even though these formats have very different precisions, half-precision has revealed
to be extremely adequate for neural networks Gupta et al. (2015). The values that need
to be represented inside a neural network are typically small numbers, between -1 and
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1. This is due to the activation functions that are normally used and to layers like batch
normalisation that limit the absolute size of the tensor values. It is in this range, similarly
to single-precision, that half-precision has its highest absolute precision, making it ideal for
this use case.

This work will also explore the viability of performing training and inference at different
precision. This is relevant for situation where the hardware that is used for training does
not benefit from the lower precision floating point arithmetic, while the deployment device
does (or vice versa).

3.2 deep neural network models for computer vision tasks

The most important networks for the project are the ones related to object detection/classi-
fication with parts of VGG-16 even being used as the basis of OpenPose (a pose estimation
network Cao et al. (2016)). The following sections presents in more depth this topic and the
most relevant network architectures.

3.2.1 Object classification

Object classification differs from object detection in that it only classifies the main object
in the centre of the input image Everingham et al. (2010). This way, the output of the
networks can be a simple one dimensional tensor with a length equal to the number of
classes to classify.

Typically, these networks are composed of a set of convolution layers (for feature extrac-
tion) connected to a final fully connected layer to make the actual object classification (like
in LeCun et al. (1998)). This meta architecture will be more clear after presenting VGG-16

and ResNet-50 in the next sections.

VGG-16

VGG-16 implements a very typical neural network architecture for object classification. As
stated before, this network can be though as having two parts: feature extractor module and
a classifier module Simonyan and Zisserman (2014); LeCun et al. (1998). In this case, feature
extraction is performed by a combination of convolution layers and max pooling layers just
like depicted in figure 12. After feature extraction, classification itself is executed by two
fully-connected layers followed by a softmax layer to produce the final class probability
distribution.

Although very influential for the time, this network is not particularly useful for the
project since it can only perform image classification. However, its efficient implementation
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is very important since its first 10 layers are utilised by OpenPose for feature extraction
purposes Cao et al. (2016)

Figure 12: VGG-16 architecture (from leonardblier (2016))

ResNet-50

ResNet is the abbreviation of Residual Network, where some output layers skip the subse-
quent layer, connecting to some other, deeper, layer (shown in figure 13).

As networks get deeper, training becomes more difficult due to the accumulation of
multiplications leading to values close to zero and the tendency for the deeper models to
overfeat. These residual connections create shorter paths withing the network, eliminating
both of these issues.

The variant in question, ResNet-50, employs the same basic principals that VGG-16 imple-
ments, with a sequence of convolution layers followed by a fully connected layer at the end.
Being ResNet, obviously, has the difference of using residual connections. This network
model was chosen due to its popularity and availability in the frameworks tested.
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Figure 13: Simplified ResNet-50 architecture overview

3.2.2 Object detection

Object detection enables some functionalities, like alerting for left behind objects by the
occupants or for garbage left inside the vehicle.

Object detection goes beyond object classification since it can detect, identify and locate
multiple objects in an input image Girshick et al. (2014b). Although still an open com-
puter vision problem, working solutions have been proposed and are presented in the next
section.
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R-CNN

As shown in figure 14 this first approach to object detection tries to solve this problem in two
stages: a region proposal stage and an image classification one Girshick et al. (2014a). This
method essentially reuses the image classification techniques to perform object detection.

Figure 14: R-CNN overview (from Girshick et al. (2014a))

The first stage (region proposal) applies selective search Uijlings et al. (2013) to generate
approximately 2000 regions per image. These regions may not have a shape compatible
with the classification network and, for this reason, need to be warped to be classified. This
process is explained in figure 14.

This method has obvious disadvantages like the high computational cost and the fact
that the classifier and the region proposal have to be trained separately.

Fast R-CNN

Fast R-CNN improves on the previous method by applying the region proposal algorithm
to the result of the first convolution layers Girshick (2015). This way, the classification
stage does not need to repeatedly execute the first convolution layers, greatly improving
performance. This method is depicted in figure 15.

Figure 15: Fast R-CNN overview (from Girshick (2015))
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Faster R-CNN

Faster R-CNN goes a step further and abandons the region proposal algorithms, leaving this
task to a neural network. This network generates regions and gives them an objectiveness
score, essentially predicting the probability of the regions containing an object. Then, the
regions with the highest probability of containing an object, are fed to a classifier network.

This technique, depicted in figure 16, largely improves performance over the previous
methodologies.

Figure 16: Faster R-CNN overview (from Ren et al. (2015))

YoloV3

Due to its importance for the main project, this network architecture was, initially, the only
focus of the work in this dissertation. YoloV3 is a very lightweight neural network for object
detection, that distinguishes from the previous architectures due to only being composed
of a single network Redmon and Farhadi (2018). As the full name implies (You Only Look
Once), this network is able to perform detection on a given image without having to resort
to classify multiple areas. In fact, this network does not even contain fully connected layers,
typical of classification networks.
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Figure 17: YoloV3 overview (from Kathuria (2018))

At a high level, this network can be decomposed in two parts: the feature extractor and
the detection kernels. The feature extractor used in YoloV3 is the one found on Darknet-53,
a classification network designed by the same author. This is considered the backed-end of
the YoloV3 architecture but can be interchanged in other feature extractors. Its job is to ease
the subsequent classification (or detection) stage by detecting and highlighting features in
the image that help to distinguish between objects.

Similarly to VGG-16, this feature extractor is mainly composed of convolution layers and
accepts input images of size 416 by 416. The training process of this feature extractor can
be performed independently from the rest of the network, in which case, it is trained as a
classification network, with fully connected layers in the final stages. The feature extractor
creates a feature map of 13 by 13 by 255. This is the input to the final detection stage.

At the detection stage, every section of the 13 by 13 feature map gets independently
classified and scored. This can be seen as the initial input image being divided into a 13

by 13 grid and independently classified. This stage leverages the way convolution layer
operate to perform this classification task across all of the ”cells”. Lastly, as depicted in
figure 17, this network performs this detection step at three different scales, improving
detection rates of objects with different sizes.
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3.2.3 Computer vision metrics

Like any scientific work, computer vision also relies on metrics to measure and compare
the performance of its solutions. Here these metrics are particularly important since they
will ensure the correct implementation of the models.

In an object classification scenario, the network usually attributes a label to an image by
assigning probabilities to each of its known labels of being the correct one. So, by sorting
the output in descending order, it is possible to determine what the network thinks are the
most correct guesses. Top-5 and top-1 error rates, just like the name implies, assesses the
fraction of test images that did not see their labels among the top 5 or the top 1 guesses
Krizhevsky et al. (2012), respectively. For reference, table 6 contains some top-1 and top-5
error rates for common classification networks on the ImageNet Deng et al. (2009) dataset.

Network Year Top-1 Error (%) Top-5 Error (%)
ResNet - 50 2015 24,1 7,1
VGG - 16 2014 28,5 9,9
VGG - 19 2014 27,3 7,1

Table 6: Top-1 and top-5 Error rates on ImageNet validation dataset. (Adapted from https://keras.

io/applications/.)

When the subject is object detection, it is important to, not only determine if the model
correctly identifies the objects, but it is also important to determine if it is capable of locating
them correctly as well. This is usually accomplished via a metric called mAP. To understand
mAP it is important to understand the concept of Intercept over Union (IoU). IoU is used
when there is a need to calculate by how much two regions overlap and, like the name
implies, it can be calculated by dividing the interception area by the union area of these
regions. This is illustrated in figure 18: mAP is the average of mAP50, mAP55, mAP60, ...,
mAP95, with mAPX being the percentage of predictions that have an IoU larger than or
equal to X with the ground truth Lin et al. (2014a).

Figure 18: Intersect Over Union (IoU)

https://keras.io/applications/
https://keras.io/applications/
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For reference, table 7, taken from Redmon and Farhadi (2018), contains the mAP values
for common network architectures on COCO dataset Lin et al. (2014b).

Network AP (%) AP50 (%) AP75 (%)
YOLOv2 Redmon and Farhadi (2017) 21,6 44,0 19,2
YOLOv3 Redmon and Farhadi (2018) 33,0 57,9 34,4

SSD513 Liu et al. (2016) 31,2 50,4 33,3
RetinaNet Lin et al. (2018) 40,8 61,1 44,1

Table 7: mAP results for common object detection networks on COCO dataset

For object detection purposes, it is also important to take into consideration the amount
of wrong detections performed by the network (called ”false positives”). For that reason
F1-score will also be used to measure the correctness of the implementation.

F1-score is calculated as follows:

F1 = 2 ∗ precision ∗ recall
precision + recall

with recall and precision being calculated as:

precision =
truepositives

truepositives + f alsepositives

recall =
truepositives

truepositives + f alsenegatives

A true positive was considered when the network make a detection with the IoU bigger
than 50% when compared with ground truth. A false positive is any other detection per-
formed by the network. Finally, a false negative is represented by all the objects that were
not detected by the network and were labelled. The best value for the F1-score is 1, with 0

being the worst score possible.
Considering that this metric takes into account all of these measurements, it eliminates

the possibility of an horrendous implementation that, for instance, makes a lot of wrong
detections, something that is not considered by the mAP metric. For this reason, both
of these metrics will be used to attest the correct implementation of the object detection
networks.
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N E U R A L N E T W O R K I N F E R E N C E S Y S T E M S

Since one of the main goals of this work was to determine the most efficient inference
strategy for the embedded device, the first step was to test the already available frame-
works. Interestingly, all of them use the same library to interface with the GPU (cuDNN)
but deliver very different performance results. It became apparent that this library was
implemented differently between frameworks. For this reason, it became imperative to
develop and test a deployment framework that used the same back-end but fine-tuned to
better fit the embedded device’s characteristics. These preexisting tools were also useful to
establish a baseline to determine how the developed framework fairs in comparison with
already developed methods, providing relevant insight to determine if its development is
justifiable.

These next sections introduces the studied neural network libraries and frameworks, the
reason they were considered and their pros and cons. It is also pertinent to mention that
the absence of an OpenCL based library is related to the fact that NVidia does not support it
in the embedded device under testing. This is a major disadvantage of this system since it
forces the use of CUDA to take advantage of the GPU, making a possible platform change
in the future dependent on NVidia solutions.

4.1 neural network libraries

The primary focus of a low level neural network library is, obviously, performance. The
most common GPU oriented libraries are cuDNN and TensorRT, even though these are
closed source and support NVidia hardware only. In particular, cuDNN is the backbone
of many neural network frameworks due to its ease of use, the proliferation of NVidia
hardware with great performance and its efficiency. TensorRT is less well known simply
because it is much more focused in deployment, leaving out training routines. It is also
advised to use it alone, instead of integrating it with a neural network framework, since it
already implements automated ways of translating models from other libraries (like caffe
and Tensorflow). Unfortunately, this automated process does not play well when the net-
work contains uncommon layers.

29
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4.1.1 cuDNN

cuDNN is a library that implements neural network primitives efficiently for NVidia GPUs
Chetlur et al. (2014). It is one of the most used neural network libraries for GPU support
(even though it is only compatible with NVidia hardware), providing the GPU backend
for Tensorflow, Theano, Caffe, PyTorch, among others. It is sometimes described as the
BLAS library for neural networks on GPU since in enables the same level of performance,
maintainability and versatility that BLAS enables for General matrix multiply (GEMM)
operations. Being developed by NVidia, it is expected that the primitives implemented take
full advantage of the exceptional parallel capabilities of their GPUs, outperforming any
third party OpenCL or CUDA implementations.

This library contains not only primitives for inference but also for training, making it a
very complete solution if there is a need to add GPU support to a neural network frame-
work. It is also ready to take advantage of the new tensor cores that equip the Volta ar-
chitecture Markidis et al. (2018) and supports FP16 and INT8 operations (for the hardware
that supports it).

Programming model

cuDNN programming model adopts a very typical programming model for a high per-
formance library. A handle has to be initialised and passed to every subsequent library
function call. This handle specifies the GPU and CUDA streams to use with the respective
calls.

Being a neural network library, there is obviously a need to manage large quantities of
memory. Unfortunately, this task is not eased by the library since it is completely detached
from it. Memory allocation/deallocation has to be performed manually by the memory
management functions available in the CUDA toolkit. This has the advantage of allowing
the developer to decide how to allocate memory, which, for this work, proved to be es-
sential to experiment with cudaMallocManaged(), a function that allocates memory that is
accessible by the CPU and the GPU with no explicit memory copies.

A typical neural network layer function call has to be preceded by:

• cuDNN handle creation;

• Input/output tensors specification (shape, data type, memory organisation);

• Tensor memory allocation and filling.

After all these steps, some functions have a few implementation algorithms that the
developer can choose from. Some of these algorithms need additional workspace memory,
which creates the need to call an additional function to determine the size of the respective
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Figure 19: TensorRT workflow (Adapted from NVidia (2016))

workspace memory for the respective algorithm. These multiples implementations proved
vital since great performance gains were achieved by changing the default algorithms.

4.1.2 TensorRT

TensorRT is a neural network framework specifically designed for deployment purposes
by NVidia. It distinguishes from cuDNN since it is only capable of inference and performs
model optimisation, something that cuDNN is not capable of. Among the optimisations are
layer and tensor fusion, precision calibration and kernel auto-tuning 1. These optimisations
may result in very minute discrepancies at the end result when compared with a cuDNN
implementation, but these should not impact the overall network performance metrics. Like
cuDNN, TensorRT is fully capable of taking advantage of the newly available tensor cores
and can perform most common neural network operations in half precision.

Programming model

The programming model implemented by TensorRT is much more automated and intuitive
than cuDNN. Since the goal here was to develop a high performance inference only library,
all the memory management and optimisations are automatically performed.

Figure 19 perfectly portrays the workflow of a TensorRT based application. The library
receives a pre-trained neural network model from other frameworks. This step can be
performed automatically if the model comes serialised with certain specific formats (e.g.:

1 As stated by NVidia in https://developer.nvidia.com/TensorRT

https://developer.nvidia.com/TensorRT
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Caffe2). When the serialisation format is not supported, the library has the option to create
the model, layer by layer, programmatically.

After the model is transmitted to the library, it starts an automatic optimisation process.
Being a closed source library, the specifics of what it does are unknown. After this step, the
inference engine is created and is ready to infer on a given input.

This optimisation step is relatively long and is not suitable to be performed on a live
system. For this reason, the optimised inference engine can be serialised to a PLAN file,
making this lengthy optimisation step unnecessary.

4.2 neural network frameworks

Neural network frameworks are the interface that the developer uses to implement, test and
fine-tune ML models. They create an easy to use development environment that is normally
agnostic to system and sometimes is even agnostic to its back-end, making it possible to
run them, efficiently, on CPUs and GPUs of multiple vendors.

The next few sections presents the neural network frameworks that were tested on the
platform. They were chosen based on relevance for the main project (Darknet), popularity
(Tensorflow) and claimed ease of deployment (PyTorch).

For each framework, easy of installation and use, flexibility and overview of the imple-
mentation is also included in the presentation.

4.2.1 Darknet

Darknet is an open source neural network framework developed by Joseph Redmon in C
and CUDA Redmon (2013–2016). It is one of the most easy to use and install frameworks
due to its simplicity. It implements the most common neural network layers in both the
CPU and the GPU (NVidia only) in a very linear and easy to understand way.

This framework was especially relevant for the project for three main reasons:

• it is the framework in which YoloV3 was initially developed;

• the implementation is easy to understand, although poorly documented;

• it is very easy to compile and execute on Jetson TX2 with GPU support;

• it is one of the frameworks used in the main project.

Due to its simplicity and the fact that is was already being used during the main project
development, this framework will be studied in more detail since it provided the model
specification and weights formats for the deployment framework developed. Adopting this
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serialisation format turns Deeploy into a drop-in replacement for Darknet, enabling devel-
opment work to be quickly and efficiently deployed. It also simplified and quickened the
development process, since another neural network serialisation format was not developed.

The Darknet model serialisation format clearly separates the model specification from
its weights by storing them in different files with different formats: CFG format for model
specification and Weight files the layers weights. The next section presents each format
individually.

CFG file format

The CFG file is very similar to an INI file since it is also composed of sections, properties
and values. The file format starts with a [NET] section that specifies the input shape of the
network, batch size and other training parameters. Most of this information can be safely
ignored for inference purposes.

The next sections on the file define, one by one, the layers that define the network. The
section name defines the layer type and the property/value pairs define the layers specifi-
cation. Here are three examples of sections that compose a CFG file:

[net]

batch=1

subdivisions=4

height=256

width=256

channels=3

learning_rate=0.00001

momentum=0.9

decay=0.0005

[convolutional]

filters=64

size=3

stride=1

pad=1

activation=relu

[route]

layers = -1, 61

Figure 20: Example sections from CFG format.

It is also important to note that the input of every layer is the preceding layer, except for
the route and shortcut layer in which the specific input layers have to be specified.

This format produces a very easy to read and manipulate configuration file for model
specification. With this file alone the framework is capable of allocating the necessary
memory for the model and, when provided with a dataset, train it.

Weights file format

The weight file format is extremely basic and limited. It is composed of a small 20 byte
header that specifies the Darknet version followed by a binary dump of all the weights by
the order their respective layers appear in the CFG file. It does not contain the layer type,
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the weights size or even the number of layer, rendering the weights file useless when not
combined with the correct CFG file.

Darknet implementation overview

Darknet has three distinct implementations of each supported layer type.

• CPU: A complete but inefficient CPU implementation that is only viable as a debug
mechanism. This implementation does not use any third party libraries (except for
openMP for multicore support) resulting in a very slow implementation. The imple-
mentation even uses its own methods for GEMM operations.

• GPU (CUDA): Although inefficient, this implementation is much faster than the CPU
implementation (for a balanced system) since it makes use of the GPU. Here, every
layer was written directly in CUDA, making use of the an NVidia GPU but in an
inefficient way. There was not a big focus in writing efficient implementation, the
focus was more gear towards code legibility and maintainability.

• GPU (cuDNN): This is the fastest implementation. It makes use of the function pro-
vided by NVidia’s cuDNN library. This library is a very efficient neural network
library that implements most of the common layers types and support forward and
backward propagation (inference and training respectively). Being a library written
by NVidia for its own hardware, it is extremely fast and takes full advantage of the
GPU computational power.

Lastly, contrasting with the other frameworks of this chapter, it is only possible to in-
teract with Darknet via command line arguments and input files (CFG and weights). This
obviously leads to a less flexible framework but simplifies development and testing of new
neural networks.

4.2.2 Tensorflow

Tensorflow Abadi et al. (2016) is the most popular neural network framework by most
metrics: web searches, repository activity or references. This makes it extremely relevant
to compare against, since it provides a strong reference point for performance comparisons.
It is currently open source and actively developed and used by Google.

One of the main features of Tensorflow is the promise of a very flexible and portable
numerical computation framework based on flow graphs. These graphs are the most fun-
damental design principal behind this tool. The framework works by initially defining the
set of operations in a static flow graph (with vertices being the operations and edges the



4.2. Neural network frameworks 35

tensors) and passing this graph to the engine. This turns the framework particularly effi-
cient since it can analyse and optimise the graph before execution. This also negates all the
impact an interpreted language like Python might have in its performance.

The scripting language is essentially only used to describe the computational graph, with
the execution itself happening on a more efficient environment (namely high performance
C++ libraries in the case of Tensorflow). Figure 21 illustrates the computation graph (gen-
erated with Tensorboard) resulting from the example code.

import tensorflow as tf

with tf.Session () as sess:
m1 = tf.constant ([[1, 2], [3, 4]], name = 'm1')
m2 = tf.constant ([[3, 4], [5, 6]], name = 'm2')
m3 = tf.constant ([[5, 6], [7, 8]], name = 'm3')

a1 = tf.add(m3 , m2 , name = 'Add')
p1 = tf.matmul(m1, a1, name = 'Mult')

result = sess.run(p1)

Figure 21: Example Tensorflow code and its resulting computation graph

The depicted code is a valid Python program that uses Tensorflow to perform 2 matrix
operations: an addition and a multiplication. The standard mechanism for data movement
in this framework is the tensor which can be described as multi-dimensional arrays. An-
other important characteristics of the tensor is that it can be stored on the CPU or the GPU
memory. In fact, in the same graph, multiple tensors can be stored in different devices,
with the necessary data movements being managed, automatically, by the framework. This
simple design principal allows Tensorflow to more efficiently take advantage of all the hard-
ware available in the system. GPU support is implemented via the CUDA toolkit, limiting
it to NVidia hardware. Excluding GPU support, Tensorflow is extremely flexible since it is
open source, allowing it to be compiled in most devices.

4.2.3 PyTorch

PyTorch Collobert et al. (2011) is an open-source Python library developed by Facebook’s
AI Research Group (FAIR) for Machine Learning. It is based on Torch Collobert et al. (2002)
and distinguishes from Tensorflow since it is imperative. In this context, being imperative
means that the user does not describe a static computational graph that gets passed to
an execution engine. Here, the operations described are immediately performed, greatly
simplifying debug and allowing for dynamic neural networks Lorica (2017).
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Most of the vocabulary used in torch is common among neural network libraries, with
the main components being Tensor, Function and Module. The first, like previously, can be
interpreted as a multi-dimensional array. These data structures are the main data moving
method in most neural network libraries. Functions are operations that can be performed
on a given input, e.g.: the log() function. These operation are completely predictable and
cannot have internal state like weights. An operation of that nature, in torch, is called a
module. Examples of modules are convolutions or fully-connected layers. Figure 22 exem-
plifies the PyTorch version of the matrix operations previously implemented in Tensorflow
(in figure 21).

import torch

m1 = torch.Tensor ([[1, 2], [3, 4]])
m2 = torch.Tensor ([[3, 4], [5, 6]])
m3 = torch.Tensor ([[5, 6], [7, 8]])

a1 = m3 + m2
p1 = torch.mm(m1, a1)

Figure 22: Example pytorch code

With this example the differences between the frameworks become clearer. Due to its
imperative architecture, PyTorch does not need a two stage implementation where a de-
scription of the desired computation is done followed by the computation itself. Here,
every operation happens at the moment of its function call.

Like most neural network libraries, PyTorch is also capable of taking advantage of both
the CPU and the GPU, being completely dependant on cuDNN to support the latter.



5

T H E D E E P L O Y T O O L

The Deeploy tool is the main implementation effort of this dissertation. It served a dual
purpose: a high performance and flexible test environment for TensorRT and cuDNN and
a prototype inference tool for Darknet developed models for Jetson TX2. The goal for this
deployment/test environment was to determine the most efficient way to deploy a DNN
model on the embedded device with no changes to the network architecture (other than the
ones performed by TensorRT or changes in precision of floating point operations). It was
also important to not interfere with the already established development environment and
methodologies.

It was imperative to understand the already established development methodologies and
acquired hardware to develop a robust and useful deployment strategy. The adopted pro-
cess resembles CRISP-DM Chapman et al. (2000), depicted in figure 23, with all the model
development stages, from Data Understanding to Evaluation, being performed in dedicated
workstations, composed of consumer grade Pascal GPUs.

Figure 23: Employed development workflow
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Figure 24: Deeploy Architecture

As stated in previous chapters, these devices have a very appealing single precision
floating point operation throughput, but very limited half precision capabilities, contrary
to the embedded device used in deployment. To solve this issue, Deeploy only intervenes
in the deployment stage and enables the possibility of inference occurring at half precision
while training is performed in single precision. This has the potential to greatly decrease
inference times, but it also opens the door to model performance degradation since small
rounding error get propagated along the network. Deeploy addresses this by allowing
testing of the model against a ground-truth dataset to compare metrics between floating
precisions.

Since the main project is not yet in the deployment stage, it was necessary to also develop
a test environment to validate the tool. The test environment depicted in figure 24 uses
Deeploy to perform inference on a given input image, with various network models and
respective weights. It can also use both Deeploy inference engines (cuDNN and TensorRT)
with both floating point precisions (depending on the input arguments).

This environment enables testing against reference results on realistic workloads. The
programming language chosen for the project was C++ due to its higher performance,
compatibility with the TensorRT API (also written in C++) and its higher versatility when
dealing with objects and memory management (compared to C).
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The same diagram also portraits the intended use for the tool: to create an inference
engine. Deeploy is able to perform this task when provided with the paths for the network
configuration and its weights, the intended back-end to use (cuDNN or TensorRT) and the
desired floating point precision. Another setting that can be tuned is the batch size, not
depicted in the diagram.

Analysing now the graph with the Deeploy in figure 25, it is possible to see that Deeploy
in figure starts by parsing the network input files in a class named DarknetParser. As
the name implies, this class is responsible for parsing, layer by layer, the network and its
weights. This generates a data object of type NetworkSpecification that holds all the
necessary information for the engine creation. This object is passed to the correct engine
class with the necessary arguments (batch size and floating point precision).

After the desired engine is loaded and successfully created, inference can be performed.
In the case of this environment, inference happens over the input image that was previ-
ously loaded into a Tensor. Similarly to other frameworks, a Tensor class was developed
to facilitate data movements and, in the case of this framework, floating point precision
conversion.

All of these components are presented in more detail in the following sections.

5.1 tensor

The Tensor class is the first component to be presented since it is the only that has no
dependencies. Similarly to other framework, this class is responsible for managing multi-
dimensional arrays. It is used for every memory management operation related to the
inference engines, like memory allocation for weight loading, input and output during
inference operations and memory freeing when it is no longer needed.

Encapsulating the complexity of memory management in a class was necessary for this
project since memory movement operations happen throughout every stage of the inference
process (from loading to actual inference) in multiple classes. This way, the complexity of
memory management operations is hidden and code duplication is avoided.

Its actual implementation is performed using only 4 internal variables (as described in fig-
ure 25). These variable help the class to keep track of location of the current tensor (CPU or
GPU), its current type (half or single precision), shape and its pointer. The most important
function to interface with this class (apart from its constructors) are setCPU()/setGPU()

and setType<float>()/setType< fp16>(). These functions, as their names suggest, force
the Tensor to change memory location or floating point precision, respectively. Their re-
turn type (&Tensor) allows method chaining, resulting in very intuitive manipulation (e.g.:
Tensor.setGPU().setType< fp16>() will, if necessary, move the tensor to the GPU and
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BaseLayerData

- layerType: LayerType
- indexInputLayer: vector<int>
- outputShape: Shape
- isOutput: bool

+ loadWeights(char *inWeights): int 
+ getOutputShape(): Shape 
+ getLayerType(): LayerType 
+ getIsOutput(): bool 
+ otimize(): int 

<<Interface>> 
IEngine

ConvolutionLayerData

- inputShape: Shape
- size: int
- filters: int
- padding: int
- pad: int
- activation: ACTIVATION
- stride: int
- batchNormalize: int 
- groups: int 
- weights: Tensor 
- biases: Tensor 
- scales: Tensor 
- rollingMean: Tensor 
- rollingVariance: Tensor 

- mergeBatchNorm(): void 

ConvolutionLayerData

- inputs: int
- outputs: int
- activation: ACTIVATION
- inputShape: Shape
- weights: Tensor
- biases: Tensor 

SoftmaxLayerData

- groups: int

NetworkSpecification

- layers: vector<BaseLayerData>
- input: Shape
- params: map <string, string>

+ addLayer(BaseLayerData l): void 
+ getLayerData(int index): BaseLayerData 
+ getIndexOutputShapeType(int index): Shape 

Contains a list of

1

1..n

Engine cuDNN

- batchSize: int
- inputShape: Shape
- outputIndexes: vector<int>
- layers: BaseLayerCUDNN
- outputVector: vector<Tensor>

Engine tensorRT

- batchSize: int
- inputShape: Shape
- network: INetworkDefinition
- layers: BaseLayerCUDNN
- context: IExecutionContext
- ITensorGraphIndex: vector<int> 

- AddConvolutionLayer(ConvolutionLayerData cld, bool fp16): int 
- AddConnectedLayer(ConnectedLayerData cld, bool fp16): int 
- AddSoftmaxLayer(SoftmaxLayerData sld, bool fp16): int 

Feeds

Feeds

<<Interface>> 
BaseLayerCUDNN

+ forward(vector<Tensor> input, vector <Tensor> output): void 

Contains a list of

1

1..n

ConvolutionLayerCUDNN

- cudnn_handle: cudnnHandle_t
- convSrcDesc: cudnnTensorDescriptor_t
- convDstDesc: cudnnTensorDescriptor_t
- convWeightDesc: cudnnFilterDescriptor_t
- fw_algo: cudnnConvolutionFwdAlgo_t
- convDesc: cudnnConvolutionDescriptor_t
- workpace: float[] 
- workspace_size: size_t
- bnInDesc: cudnnTensorDescriptor_t
- bnOutDesc: cudnnTensorDescriptor_t
- bnScaleBiasMeanVarDesc: cudnnTensorDescriptor_t

Template:
<Infertype>

ConnectedLayerCUDNN

- cublas_handle: cublasHandle_t 

Template:
<Infertype>

SoftmaxLayerCUDNN

- cudnn_handle: cudnnHandle_t
- softmaxSrcDesc: cudnnTensorDescriptor_t
- softmaxDstDesc: cudnnTensorDescriptor_t

Template:
<Infertype>

Tensor

- location: Device
- type: DataType
- ptr: void*
- shape: Shape

+ size() : int 
+ sizeInBytes() : int 
+ setGPU(): &Tensor 
+ setCPU(): &Tensor 
+ setType<Type>(): &Tensor 
+ log(): void 

Creates

DarknetParser

- parse(string CFGPath, NetworkSpecification &ns): int 
- loadWeights(strig weightPath, NetworkSpecification &ns): int

+ forward(vector<Tensor> in, vector<Tensor> out): int
+ getOutputIndex(): vector<int>
+ getIndexOutputShape(int index): Shape

Figure 25: Simplified Deeploy class diagram
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convert each of its elements to half precision). It is also worth noting that all the combina-
tions of data movements and type casting are supported.

Finally, this class implements all the necessary constructors and destructors, leaving the
burden of memory management to the compiler, even when dealing with allocations on the
GPU.

5.2 darknetparser

This class is responsible for loading the CFG and the Weights file to memory, creating the
NetworkSpecification object. This design decision makes the project more versatile, al-
lowing for a possible addition of new parsers for other network serialisation formats.

The parser itself makes use of regex to detect all of the sections of the CFG file (figure 20)
and its respective property-value pairs. The pairs are stored in a map<string, string> that
gets passed to the constructor of the respective layer type. This map contains the settings
for the layer and is consumed by its constructor with the help of an auxiliary parsing
class (not depicted in the class diagram). After layer parsing, the layer is inserted into the
NetworkSpecification object via the addLayer() method.

For weight loading, the parent class function loadWeights is called for each layer after
loading the whole file into memory. Due to the very simplistic nature of the file format
(sequential binary dump of weights of all layers), this function needs to return the amount
of data read from the input pointer so that the next layer knows from which memory
address to start to read weights from, hence the int return type.

5.3 networkspecification

This class is responsible for representing the network and its weights in memory, layer by
layer. It essentially stores, sequentially, a list of BaseLayerData derived objects.

Here the first set of optimisations happen with the optimize function call. This function
should, as the name implies, optimise the network in a way that does not alter its output,
but enhances its inference performance. Currently, the only optimisation performed at
this stage is the fusion between batch normalisation and convolutional operation, on the
convolutional layer. This is performed by calling, for every layer, the optimize() method
that is implemented by every layer type, even though only convolutional layers benefit from
it. This optimisation stage can, in the future, perform more advanced optimisations like the
removal of redundant layer or the fusion of other layer types.
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5.3.1 Batch normalisation and convolution fusion

Referring back to the batch normalisation formula in figure 10 and to the convolution layer
explanation in figure 8, it is possible to prove, with some mathematical manipulation that
these layers can be merged by applying the following bias/weight transformation:

B f =
γ f ∗ (B f + µ f )√

σ2
f + ε

for f = 1, ..., F

W f chw = W f chw ∗
γ f√

σ2
f + ε

for f = 1, ..., F, c = 1, ..., C, h = 1, ..., H, w = 1, ..., W

For a convolution with F filters, an input tensor with C channels and a convolution size
of H by W.

This optimisation not only reduces the amount of computation performed at inference
time, but also reduces the number of kernel calls. It is also important for TensorRT testing
since this framework does not support this type of layer.

5.4 cudnn based engine

For both engines, there are two important phases to describe: engine creation and infer-
ence. cuDNN follows a very typical pattern for a high performance numerical computation
library. It provides a set of high performance, asynchronous functions that accomplish a
typical Deep Neural Network operation like convolution, activation or batch normalisa-
tion. This programming model creates a very demanding development environment with
memory management, function call, device synchronisation and weight loading being co-
ordinated by the developer.

In the class diagram of figure 25, it is possible to attest the amount of necessary variables
needed perform a convolution operation with cuDNN, along with 2 additional simpler ex-
amples. Worth noting that the class diagram does not contain all the implemented layer
for space constraint reasons. The cudnnTensorDescriptor data-type variables, like the
name implies, describe a tensor, from its shape to its element type. The other variables
describe the algorithm to be used during forward propagation (fw algo), the overall set-
tings for the convolution (convDesc) and the worskpace allocated and its size (workspace
and workspace size, respectively). These latter two variable were only necessary on the
convolution operation, since it is the only operation that benefits from a workspace during
computation. All these variables are then passed to the respective cuDNN forward function,
at inference time.
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Figure 26 displays the construction phase and the forward phase graphically. During
the first phase, the engine creates the necessary cuDNN handle, then, for each layer in the
inputted NetworkSpecification object, the respective layer constructor is called. All of the
CUDNN layer objects inherent from the BaseLayerCUDNN class, forcing the existence of the
forward() method, that is called during inference for each layer, simplifying the inference
execution. The first three steps inside the loop happen inside the layer’s constructor and
are generally applicable to all layers. At the end of each iteration, it is necessary to store the
created layer in a array of BaseLayerCUDNN. Finally, with all the layers created, allocation of
the necessary space for the output of each layer is performed.

cuDNNEngine

Create cuDNN handle

Allocate necessary workspace
and output space

Forward()

For each layer

Layer Constructor

Create necessary tensor
descriptors

Store created layer in array for
inference

Convert weights to correct
floating point precision

Calculate necessary workspace
size

For each stored layer

Run respective forward
function

Store result for next layer

Figure 26: Simplified cuDNN engine construction and forward phases

The forward() procedure is less complex. Essentially, for each previously initialised and
stored layer, is it necessary to call its forward() method. It is important to mention that, as
expected, the forward method of a layer can only be executed after the forward() of all of
its preceding layers.

5.5 tensorrt based engine

TensorRT, as stated by NVidia, is an inference only deployment focused library for ML
models. It is much less flexible than cuDNN, handling all of the memory management,
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tensoRTEngine

For each layer

Convert weights to
correct floating point

precision

Add to layer to network

Create Network

Create engine based
on network created

Forward()

Call forward function

Figure 27: Simplified TensorRT engine construction and forward phases

weight loading and kernel launching on its own. The way to use TensorRT, is to describe
the network and then wait for the library to perform its optimisations. This approach
creates much easier to maintain and read code, but actually greatly complicates debug
operations.

Figure 27 clearly illustrates the simplicity of creating a TensoRT based engine. In the con-
structor, there is only a need to create a network object (nvinfer1::INetworkDefinition)
and, for each layer in the input NetworkSpecification object, call the corresponding adder
method, after the necessary floating point precision conversion of the weights, if necessary.
This is then followed by a function call that automatically optimises the network and gener-
ates the inference engine. It is important to note that, this function call takes a few minutes
to execute and, for this reason, should be avoided. For the forward phase, like depicted, it
is simply necessary to call the forward function provided by the library.

The problem with this completely integrated approach comes when there is a need to use
exotic or less common layers. NVidia answers this problem by creating a plugin interface
that essentially allows the developer to temporally exit TensorRT’s optimised run-time and
execute custom code. This completely mitigates the previous issue from a practical view
point, but might create performance issues.
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VA L I D AT I O N A N D P E R F O R M A N C E A N A LY S I S

After the initial implementation, a profiling and fine-tuning step is mandatory as well as
a validation stage. This enables the detection (and possible elimination) of bottlenecks
in the execution environment. Here the main focus will the cuDNN and TensorRT based
engines, but testing will also be performed on the Unified Memory programming paradigm
provided by NVidia. Finally, a validation step is performed to ensure the end results are
correct.

6.1 profiling and fine-tuning

Profiling was performed remotely via NVidia Visual Profiler (NVVP) with embedded de-
vice in its highest performance mode. The version of JetPack (Jetson’s OS) was 3.3, the
latest version at the time of writing. This version comes with CUDA 9.0 pre-installed as
well as cuDNN (version 7.1.5) and TensorRT (version 4.0). The model chosen to be analysed
during profiling was YoloV3 mainly due to its importance to the project but also due to its
more demanding characteristics (when compared to the other network architectures).

6.1.1 cuDNN based engine

The profiling information (depicted in figure 28) clearly accentuates the need to focus on the
convolutional layer. This is corroborated by the time spent on the maxwell cudnn 128x128

kernel, used during forward pass of the this layer type. The inference times, for one single
image, were 139 and 221 milliseconds for half and single precision, respectively. These
inference times also emphasise the much higher efficiency of this embedded device when
dealing with half-precision floating point computations.

Convolution layer

The convolution forward function defined by cuDNN, allows the specification of the for-
ward algorithm to use. This argument (of type cudnnConvolutionFwdAlgo t) can specify

45
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Figure 28: Relative time spent per kernel in half-precision (left) and single-precision (right) infer-
ences on cuDNN based engine

Algorithm Half-Precision (ms) Single-Precision (ms)
Automatic Algorithm Selection 139,44 221,23

ALGO IMPLICIT GEMM 197,17 335,54

ALGO IMPLICIT PRECOMP GEMM 140,06 193,25
ALGO GEMM ERR 273,06

ALGO DIRECT ERR ERR
ALGO FFT OOM ERR
ALGO FFT TILING OOM ERR
ALGO WINOGRAD ERR ERR
ALGO WINOGRAD NONFUSED ERR ERR

Table 8: Inference times for each convolution forward algorithm

up to 7 distinct convolution forward algorithms. The current algorithm choice was made by
a function (cudnnGetConvolutionForwardAlgorithm()) also available in the cuDNN toolkit
that serves as a heuristic for obtaining the best suited algorithm for forward convolution,
given some conditions. Testing each forward algorithm individually yielded the following
results:

Interestingly, even when specifying that the main criteria was speed, the automatic func-
tion kept choosing sub-optimal algorithms for single precision inference, resulting in ineffi-
cient results. Clearly, automatic selection is not well implemented for this specific hardware,
with a fixed choice in the ALGO IMPLICIT PRECOMP GEM algorithm producing better results.
The ”ERR” and ”OOM” keywords were used to specify when a algorithm produced wrong
results or when it used more memory then the available, respectively.

6.1.2 TensorRT based engine

Being a library more focused in deployment, a higher efficiency is to be expected when
compared with cuDNN. These expectations were match as the this initial TensorRT im-
plementation managed to make an inference in a single image in just 96ms and 127ms,
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depending on floating precision. These results are much better than the ones achieved by
cuDNN.

Figure 29: Relative time spent per kernel in half-precision (left) and single-precision (right) infer-
ences on TensorRT based engine

Analysing the profiling results (figure 29), namely the time spent in each kernel, it is
possible to detect that, in the half-precision run, a big portion of the time was invested in
type conversion. This is due to fact that TensorRT communicates with plugin layers always
by single precision, even when in half precision mode. This creates the need to convert
floating values twice per plugin layer. This is particularly damaging in this network model
case since one of most used activation functions used throughout the model (leaky ReLU) is
implemented via the plugin system. The next sections address an way to avoid this problem,
by fully implementing these layers with equivalent ones implemented by TensorRT.

Leaky ReLU

Referring back to the leaky ReLU function ( f (x) = max(αx, x)), it is possible to conclude
that this operation can be divided in two phases: multiplication of every element in the
tensor by a scalar (α) and the application of the max operand between the initial tensor
and the scaled one. Even though TensorRT does not directly support the leaky ReLU
activation function, it does support a scale and a elementwise operator. The first is able
to multiply an input tensor, element by element, by a factor, while the second can perform
basic operations between each element of tensors with the same shape (e.g.: the sum or the
max operation).

Re-implementing leaky ReLU using this method, greatly increases half precision perfor-
mance due to avoiding unnecessary type conversions.

YoloV3 - Half-Precision YoloV3 - Single-Precision
Plugin 96,24ms 127,55ms
ElementWise/Scale 78,71ms 139,25ms

Table 9: Inference times comparison between implementations of leaky ReLU
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Analysing table 9, it is possible to notice that this implementation technique further
improves the inference times registered under half-precision. In contrast, single precision
inference times are hindered. Since there is no need for type conversions on this floating
precision, a simple implementation of the activation function via the plugin layer is more
efficient then the one using two layers. To achieve the highest possible performance, the
best implementation is used depending on the floating precision.

Upsample

The upsample layer was also implemented using the plugin system. To avoid this same
type conversion behaviour, this layer was also translated to an TensorRT operation: the
deconvolution. This operation, when correclty configured, can scale the dimensions of a
tensor, creating the same effect as the original upsample layer. Table 10

YoloV3 - Half-Precision YoloV3 - Single-Precision
Plugin 78,74ms 127,67ms
Upsample 78,55ms 128,43ms

Table 10: Inference times comparison between implementations of the upsample layer

In this case, the gains were much more modest. This is simply due to the fact that this
layer is only used twice in this model, saving only 4 floating type conversions operations.

6.1.3 Unified Memory

Unified memory is a new programming model developed by NVidia that defines a new
memory space that all processors see coherently with a common address space. Even
though no information is provided on the subject, it is worth exploring the possibility of
Jetson, due to its memory configuration, benefiting from this programming model, avoiding
unnecessary memory copies.

To perform this test, due to the proliferation of the Tensor class in most memory man-
agement operations throughout the project, only this class needed to be changed. The
memory allocations were performed by cudaMemoryMallocManaged() instead of the usual
cudaMalloc(), along with other needed adaptations. After these changes, most memory
copies were deemed unnecessary and the Tensor class code was much more simplified since
there was no need to explicitly handle data movements by calling cudaMemcpy().

It is also important to note that the TensorRT based engine did not work under this new
memory management model. Due to the closed source nature of this implementation, it
was impossible to determine the cause of the incompatibility.
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YoloV3 - Half-Precision YoloV3 - Single-Precision
Manual Memory Management 140,10ms 193,70ms
Unified Memory 167,19ms 221,71ms

Table 11: Manual memory management vs unified memory

The results displayed in table 11 are not positive, show an overall hit in performance
when when this technology is used. Although much easier to use, this technology is not
particularly efficient and does not take advantage of the physical memory configuration
present on the embedded device.

6.2 validation

With the tool fully tuned and implemented, it is now important to validate its outputs
to assuring its correctness. Darknet is going to be used as the reference implementation
since it and Deeploy share network serialisation formats. This way the same network and
weights can be used to compare outputs. This stage also serves to verify the hypotheses
that different floating point precisions during the training and testing phases generate a
valid inference model.

For the validation stage, the three previously presented network architectures will be
used: YoloV3, VGG-16 and ResNet-50. Due to the different types of networks, different
metrics have to be used. YoloV3, being an object detection network, is going to be compared
across implementations via the achieved mAP. The weights used were the result of training
performed by Bosch on a custom vehicle interior dataset with random left behind objects.
The validation was performed on a subset of this dataset containing 542 labelled images
(figure 30 is a sample image of the dataset).

For the image classification networks (VGG-16 and ResNet-50), 5000 images of the 2012

Imagenet Deng et al. (2009) validation dataset were used. Here, the metrics used were top-1
and top5 error

Table 12 summarises the performance of the YoloV3 model with varying precision and
across the three implementations. At single-precision, both Deeploy engines achieve the
same results as Darknet. As expected, there was a drop, although small, in both metrics
when a lower precision was used. Depending on the needs of the project, the gains in
inference time may offset the minimal loss in the detection performance of the model.
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Figure 30: Sample image of the Bosch dataset

mAP F1 score
FP16 FP32 FP16 FP32

Deeploy (cuDNN) 62,37% 62,56% 0,80 0,81

Deeploy (TensorRT) 62,37% 62,56% 0,80 0,81

Darknet – 62,56% – 0,81

Table 12: mAP and F1 of both engines with varying floating point precisions on an internal dataset

Tables 13 and 14 contain the results obtained on the classification networks. All of the
results obtained in the VGG-16 network were expected. At single-precision, the error rates
achieved by all implementations are exactly the same (29,36% and 10,24% for top-1 and
top-5 error, respectively), further proving the correct implementation of both engines. At
half-precision there was a slight variation in the final results with a small decrease of top-1
and top-5 error rates.

The same conclusions can be drawn for ResNet-50 apart from a slight deviation in
the single-precision top-1 result. Here, the reference framework performed slightly bet-
ter (25,06% vs 25,08%), a discrepancy that can be attributed to different rounding errors
produced by the distinct implementations.

Top-1 error Top-5 error
FP16 FP32 FP16 FP32

Deeploy (cuDNN) 29,30% 29,36% 10,22% 10,24%
Deeploy (TensorRT) 29,32% 29,36% 10,22% 10,24%
Darknet – 29,36% – 10,24%

Table 13: Top-1 and top-5 error of both engines with varying floating point precisions on VGG-16
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Top-1 error Top-5 error
FP16 FP32 FP16 FP32

Deeploy (cuDNN) 25,18% 25,08% 7,20% 7,16%
Deeploy (TensorRT) 25,06% 25,08% 7,22% 7,16%
Darknet – 25,06% – 7,16%

Table 14: Top-1 and top-5 error of both engines with varying floating point precisions on ResNet-50

Overall, apart from very minute rounding errors, both of the engine created are fully
compliant with the Darknet framework. It is also possible to conclude that a reduction in
inference precision does not result in a significant model degradation, further approving
the strategy of training and deploying at different precisions.
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F R A M E W O R K C O M PA R I S O N A N D T E S T I N G

With the tool implemented, fully tuned and validated, it is now necessary to test and re-
view the work. This chapter compares the developed prototype against well established
neural network frameworks. It starts this comparison by measuring inference times against
different tools, followed by a general overview. PyTorch, Tensorflow and Darknet were
the chosen frameworks to be used in this comparison, as explained in a previous chapters.
Three models were selected to be used: VGG-16, ResNet-50 and finally YoloV3. The first
two due to their popularity and the latter due to its role in the main project.

Another performance analysis is also performed, this time, using the various power
modes available in the device, making possible to determine how the tool reacts to dif-
ferent clock frequencies and core counts. Here, the tool is also tested in another system,
even though it is not one of its use cases. This proves its flexibility and also compares the
embedded device to more traditional hardware on deep learning workloads.

7.1 test environment

All tests were performed with the embedded device on the highest power mode (Max-N),
except when indicated otherwise. To minimise the normal variation between runs, every
test was executed 10 times, after a warm-up execution, and the values shown are the average
of these runs. This methodology was chosen since it provides valuable information about
the average time the end user will experience while using the final product. Standard
deviation was also calculated across the 10 runs and on all tests resulted in values close
to 0, highlighting the stability of all implementations. All tests were performed with the
Graphical user interface (GUI) on the embedded device turned off to better emulate real
world conditions. The software configuration is depicted in table 15.

The workstation mentioned in the table is the same as described in table 4. Like previ-
ously, this system will be used to compare the embedded device against common hardware,
providing a more intuitive sense of the performance of the device. As standard, only the
essential processes were running at the time of the execution of the tests to guarantee re-
producible results.

52
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Jetson TX2 Workstation
Software Version Notes Version Notes

JetPack 3.3 –
Ubuntu – 16.04

Python 3.5.2 3.5.2
CUDA 9.0 Latest compatible version 9.0
GCC 5.5.0 5.5.0

Clang – 3.5
Needed to compile

Deeploy
cuDNN 7.1.5 7.1.5
TensorRT 4.0 4.0

Tensorflow 1.9.0
Installed via wheel file

provided by NVidia
1.9.0 Installed with pip3

PyTorch 0.4.1 Compiled from source 0.4.1 Compiled from source

Darknet 508381b
Commit ID

no version system
508381b

Commit ID
no version system

Table 15: Testing environment

On the embedded device, Tensorflow was installed via a wheel package provided by
NVidia specifically for the system. On the workstation, this framework was installed via
pip3 utility.

PyTorch was compiled from source directly in both systems. To ensure maximum GPU
performance, some source code changes were performed to guarantee that the code was
compiled with the correct CUDA compute capabilities version (v6.2) in the Jetson TX2.

Darknet was also compiled from source with the highest performance settings. This
means that the project was compiled with the optional cuDNN library and the correct
compute capabilities were also specified.

These settings were also used for Deeploy to ensure maximum performance. Due to the
proliferation of the half-precision data type ( fp16) throughout the project, clang had to be
used since it can emulate, through software, the needed instructions to handle these types.
GCC, in a platform that does not support this format natively, like x86, does no compile
successfully.

Lastly, it is extremely important to disclose the test methodology for Tensorflow and
PyTorch. These frameworks, due to their programmable architecture, are very dependent
on the actual implementation used. A framework like Darknet is not as prone to bad results
since it is not programmable, having only a command line based interface. To solve this
issue, for the most common networks (VGG-16 and ResNet-50), the reference, pre-trained,
model provided by the frameworks was used. This way, it is guaranteed that these networks
are efficiently implemented and provide a good workload to compare the frameworks. On
Tensorflow, package tensorflow.contrib.slim.nets was used to test these architectures
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while on PyTorch the equivalent package is torchvision.models. The most problematic
network to implement was YoloV3, as expected. Due to the fact that it is not as popular
as the previous architectures, this network does not have a reference implementation on
Tensorflow or PyTorch, forcing the use of a custom implementation 1 2.

Time measurements were dependent on the programming language used. For Python
tests, the package time was chosen while in C and C++ run time measurements were pro-
vided by sys/time.h and std::chrono respectively. These libraries allow a time resolution
of at least 10 microseconds, making them a valid time measurement system for the task.

7.2 framework comparison

This section will provide a comparison between these frameworks from a performance
stand point and will also provide a general overview of the ease of use, support and main-
tainability of each.

7.2.1 Performance analysis

The first network in this comparison is VGG-16 (figure 31). Here, as expected, the highest
performance framework was TensorRT (with 25,04ms per inference per image vs 42,08ms
from cuDNN, the closest framework, with a batch size of 8). This a substantial difference,
especially considering that multiple cameras capturing multiple frames is a very likely
possibility in the final version of the project. Tensorflow, on the other hand, became much
more efficient as the batch size increased (from 1168,68ms per image at batch size 1 to
197,64ms at batch size 8). This shows that this framework was not designed for short,
inference only, workloads and is tuned for more demanding workloads on much higher
performing devices. The cuDNN based engine (SP), PyTorch and Darknet produced almost
the same behaviour which can be explained due to their common back-end.

The relative performance of some frameworks changed when tested with ResNet-50 (fig-
ure 32). With this network, Tensorflow behaved better as the batch size increased (from
57,53ms at batch size 1 to 25,26ms at batch size 8). This again is an indicator that this
framework is more tuned to bigger, sustained workloads. PyTorch performed exceptionally
well considering that its performance rivals the performance of the cuDNN based engine in
half-precision (making it about 25% faster when compared with the cuDNN engine at the
same precision, at all batch sizes). This is a very unexpected result considering that both
engines use cuDNN to perform computations at the GPU. It also indicates that the Deeploy
cuDNN implementation has potential to be improved. The rest of the frameworks behaved

1 https://github.com/eriklindernoren/PyTorch-YOLOv3

2 https://github.com/mystic123/tensorflow-yolo-v3

https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/mystic123/tensorflow-yolo-v3
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1 2 4 8

Deeploy (TensorRT - HP) 32.44 27.61 25.53 25.04

Deeploy (TensorRT - SP) 55.83 54.05 47.49 43.56

Deeploy (cuDNN - HP) 65.00 55.89 51.68 42.08

Deeploy (cuDNN - SP) 88.65 92.25 79.91 69.72

Darknet - Single-Precision 92.72 96.29 84.19 75.33

Tensorflow - Single-Precision 1168.58 613.80 338.51 197.64

PyTorch - Single-Precision 88.44 90.37 79.25 70.23
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Inference time with varying batch sizes (VGG-16)

Figure 31: Inference time per image with varying batch sizes (VGG-16)

as expected, with TensorRT beating every other implementation (by a substantial margin)
and Darknet resulting in the most inefficient inference strategy.

YoloV3, the most computationally expensive network architecture tested and one of the
key focus of the main project. Being less popular than the other two network architec-
tures, Tensorflow and PyTorch do not provide a reference implementation. For this reason,
these results can be biased depending on the chosen implementation. Nevertheless, the
achieved results align with the expectations, with TensorRT performing the best (74,66ms
at batch size 8 vs 110,34ms from cuDNN, the closest framework). Probably due to the higher
computational cost of this network, Tensorflow managed to perform well when compared
with PyTorch at lower batch sizes and practically matches its performance at higher ones
(168,96ms vs 173,47ms at batch size 8). Although Darknet is the reference implementation
of this network architecture, it was not particularly efficient with inference times neighbour-
ing the 250ms, while every other framework could produce a result in less than 180ms (at
higher batch sizes).

7.2.2 General overview

Performance is obviously a very important aspect of the deployment stage but it is not the
only one. It is also important to evaluate the suitability of these frameworks on aspects like
hardware dependency, model adaptability and ease of use.

Excluding Deeploy, which is still in the prototype stage, Darknet is the most limited tool.
Due to its command line interface, it does not support advanced tasks like multi-GPU envi-
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1 2 4 8

Deeploy (TensorRT - HP) 18.35 16.39 15.97 15.80

Deeploy (TensorRT - SP) 24.29 21.47 21.07 20.97

Deeploy (cuDNN - HP) 37.14 31.13 30.12 26.79

Deeploy (cuDNN - SP) 44.91 39.35 38.31 37.91

Darknet - Single-Precision 57.85 52.36 52.34 52.15

Tensorflow - Single-Precision 57.53 38.26 29.60 25.26

PyTorch - Single-Precision 34.64 30.32 26.94 26.41
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Figure 32: Inference time per image with varying batch sizes (Resnet-50)

1 2 4 8

Deeploy (TensorRT - HP) 78.47 76.21 75.66 74.66

Deeploy (TensorRT - SP) 128.01 125.19 124.55 123.85

Deeploy (cuDNN - HP) 139.88 130.11 128.54 110.34

Deeploy (cuDNN - SP) 193.65 178.42 176.48 172.42

Darknet - Single-Precision 259.96 247.63 242.81 240.59

Tensorflow - Single-Precision 265.52 211.64 185.34 168.96

PyTorch - Single-Precision 202.38 188.95 177.84 173.47
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Figure 33: Inference time per image with varying batch sizes (YoloV3)
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ronments, custom layers or easy integration with other projects. It is clearly a light-weight
framework for model tuning and training. On the other hand, it is an extremely simple
framework with very little dependencies, making it extremely portable (at least, when com-
piled with CPU only support). Its GPU support, like every other studied framework, comes
from NVidia libraries, limiting it to NVidia hardware. One of the main disadvantages of
Darknet is its lack of support and relatively stagnant development, making its adaptability
to novel architectures (with new layer types), extremely limited.

Tensorflow and PyTorch can be seen as much more advanced frameworks with better
support for exotic layers, distributed systems and can easily integrate with other projects
due to their architecture and proliferation. Since most research projects are developed in
these tool, their compatibility for novel network architectures are excellent. Like Darknet,
both frameworks are dependent on NVidia for GPU support but can be compiled with
CPU only support. In terms of performance, PyTorch seems to perform much better than
Tensorflow on the embedded device, giving it the advantage. Overall, these frameworks
grant the most flexibility when it comes to neural network architectures implementation,
but lack in terms of efficiency and hardware support.

Being a tool developed for this specific use case, Deeploy has numerous advantages.
The first is its performance with both inference engines. Since these were developed for
the given embedded device and for a specific use case, the libraries were more efficiently
tuned. Another big advantage is its easy integration with the rest of the main project due to
its simplicity and modular architecture. It is also completely compatible with the Darknet
serialisation format, making it a drop-in replacement for this framework. Its ability to
convert single-precision models into half-precision models should also be mentioned since
this greatly increases the efficiency of the inference. The disadvantage of this approach is
that, at its current stage, the framework is dependent on the Darknet framework for creating
and training new models.

Between both engines, TensorRT is clearly the most appropriate to use in the deployment
stage. It is more efficient in every model and, via the Plugin interface, can essentially
implement any kind of layer, making it extremely versatile. cuDNN should only be con-
sidered if the project ever demands training in the embedded device. Here this library can
be relevant not only to perform the actual training (since TensorRT does not contain train-
ing methods), but also to perform inference while TensorRT engine finishes optimising the
model (a process that can take up to 10 minutes, depending on the network size).

7.3 power modes

This last batch of tests aimed to establish a baseline performance for the embedded device
at varying power modes, comparing results with the dedicated GPU at the workstation.
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The tests were performed at a batch size of 8 with the three selected network architectures
on TensorRT and cuDNN at single and half-precision. This batch size better simulates the
expected conditions the system will work with at the final project version.

From the TensorRT results, it is possible to conclude that, being performance focused, this
tools ignores the hint to perform computations at half-precision in an environment where
this would yield poor performance. This is possible to determine due to the very similar
results obtained by the tool at different precisions on the consumer GPU. On the embedded
device, this tool performs the computation at half-precision, yielding better inference times.

The embedded device in the TensorRT engine is approximately 11x slower than the ded-
icated GPU on VGG-16 and approximately 8x times slower on both ResNet-50 and YoloV3.
These results are mainly due to TensorRT ignoring the instruction to perform all computa-
tions in half-precision. At higher precisions, these performance differences increase since
the embedded device is approximately half as efficient when performing single-precision
floating point computations. This results in it being between 12x and 17x slower when
compared with the dedicated GPU, depending on the network.

VGG 16 Resnet 50 YoloV3
Jetson TX2 (Max-N) 25.04 15.80 74.66
Jetson TX2 (Max-Q) 35.51 23.52 104.91
Jetson TX2 (Max-P Core All) 28.13 19.46 86.90
GTX 1080ti 2.36 2.07 9.01
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Figure 34: TensorRT inference times with varying power modes in half-precision
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VGG 16 Resnet 50 YoloV3
Jetson TX2 (Max-N) 43.56 20.97 123.85
Jetson TX2 (Max-Q) 58.40 30.31 170.62
Jetson TX2 (Max-P Core All) 47.32 23.75 139.54
GTX 1080ti 2.48 1.76 7.90
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Figure 35: TensorRT inference times with varying power modes in single-precision

The results achieved in the cuDNN engine were similar to the ones achieved in the matrix
multiplication test. Here, the dedicated GPU achieved very poor results when used to per-
form inference at half-precision, being approximately 3x slower than the embedded device
on every network architecture. At single-precision, the dedicated GPU yields roughly the
same advantage as the one registered in the TensorRT based engine at the same precision
(between 13x and 16x faster).

For both engines, the results obtained in different power modes are to be expected con-
sidering that most deep learning inference algorithms are compute bound, making the
inference times inversely proportional to GPU core clock speed variations.
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VGG 16 Resnet 50 YoloV3
Jetson TX2 (Max-N) 42.08 26.79 110.34
Jetson TX2 (Max-Q) 60.32 37.83 157.89
Jetson TX2 (Max-P Core All) 47.82 30.39 125.34
GTX 1080ti 164.90 87.95 403.58
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Figure 36: cuDNN inference times with varying power modes in half-precision

VGG 16 Resnet 50 YoloV3
Jetson TX2 (Max-N) 69.72 37.91 172.42
Jetson TX2 (Max-Q) 100.42 52.65 245.45
Jetson TX2 (Max-P Core All) 79.26 42.85 194.66
GTX 1080ti 4.45 2.98 11.67

1

2

4

8

16

32

64

128

256

M
ill

ise
co

nd
s

Inference time per image with Deeploy (cuDNN, single-precision) 

Figure 37: cuDNN inference times with varying power modes with single-precision
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C O N C L U S I O N

This dissertation aimed at determining the suitability of the NVidia Jetson TX2 to be the
main computing device behind the vehicle cabin sensing system currently in development
at Bosch. It also intended to explore its most relevant performance features and determine
the most efficient strategy to deploy a neural network based image analysis system on the
device.

The embedded device was thoroughly tested and compared against traditional comput-
ing hardware to determine its relative performance. For an embedded device of its size, the
NVidia Jetson TX2 revealed to be very computationally capable, especially in half-precision
floating point operations, making it ideal for deep learning based deployment environ-
ments. Another important characteristic is its form factor. The device itself does not con-
tain any I/O, cooling or power delivery system, allowing the system integrator to adapt it
to different environments with unique constraints. It can also run in different power con-
sumption modes, further increasing its adaptability to possible heat dissipation of power
delivery restrictions. Its main disadvantages is the fact that it does no support OpenCL,
forcing any software developed that takes advantage of the GPU to be NVidia dependent,
complicating possible hardware platform switches in the future. Another weak point of the
device is its very incapable CPU, making it more suited to administrative tasks. Overall,
the device suits the needs of the main project as it enables the possibility of using deep
learning models to analyse images in real time (as low as 74,66ms per image on YoloV3

model).
This work also tested multiple neural network inference systems to determine the best

deployment strategy to be used in the final product. Among the tested strategies is Deeploy,
the main implementation effort of this dissertation. This prototype is a neural network in-
ference only system that was specifically designed for this project. It served the purpose of
testing two deep neural network libraries developed by NVidia (cuDNN and TensorRT) and,
in its current state, can be considered a prototype of a possible deployment solution. This
tool development phase accounted for fine-tuning, profiling and validation stages which
resulted in an efficient, stable and tested prototype.

61



8.1. Future work 62

After extensive testing, it was possible to conclude that TensorRT is the fastest inference
library, by a great margin. This is possible due to the work NVidia employed in making
TensorRT efficient and also due to its focus in inference only. It was also concluded that it
is possible to fully take advantage of consumer grade hardware to perform neural network
training tasks in single floating point precision, with final deployment occurring at a lower
precision. The performed tests showed that the reduction in the detection capacity was
negligible, with great inference performance gains.

The possibility of exploring the shared memory architecture between the GPU and CPU
of the embedded device was also tested. This alternative yielded poor performance, with
explicitly memory management still being the fastest alternative.

This work also displayed the importance of fine-tuning and profiling. In the case of the
cuDNN based engine, great performance gains were achieved by manually picking the
convolution forward algorithm, disregarding the one automatically chosen. In the case of
TensorRT, performance gains were achieved by avoiding the use of the plugin layer, since
a very large amount of floating point conversions was performed during half-precision
inference.

Finally, it it important to mention that, due to its modular approach, Deeploy can easily
be extended to test new inference libraries, parse other neural network serialisation formats
or implement new neural network layers.

8.1 future work

The deployment of neural network architectures in embedded systems is a very diverse
and competitive space in both software and hardware. Over the course of this dissertation,
a prototype inference engine based on two deep neural network libraries was developed.
This starting point can be extended to test other libraries, network architectures or hardware
systems.

Restricting the project to the same embedded device and libraries, some of the improve-
ments/tests that this dissertation motivates are:

• to explore, in more detail, the embedded device power modes (namely by measuring
actual power consumption);

• to implement new neural network architectures to expand on the testing already per-
formed and improve the prototype capabilities;

• to explore the caffe2 framework, due to its claimed high performance in embedded
devices;

• to explore the automated caffe2 model import mechanism that TensorRT implements;



8.1. Future work 63

• to create a Python library that integrates with the Deeploy to facilitate its use;

• to develop unit tests to automatically validate the project after tuning or other adjust-
ments;

• to assess the possibility of neural network training on the device (e.g.: for automated
continuous improvements);

• to assess the inference capabilities of the embedded device CPU;

• to incorporate dynamic power mode selection into the developed tool.
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software library. Technical report, Idiap, 2002.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like envi-
ronment for machine learning. In BigLearn, NIPS workshop, number EPFL-CONF-192376,
2011.

64

https://slate.com/technology/2018/05/who-will-clean-self-driving-cars.html
https://slate.com/technology/2018/05/who-will-clean-self-driving-cars.html
https://www.uber.com/newsroom/2018-uber-lost-found-index/
https://www.uber.com/newsroom/2018-uber-lost-found-index/


Bibliography 65

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In The IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255. Ieee, 2009.

Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and Trends®
in Signal Processing, 7(3–4):197–387, 2014.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

Dustin Franklin. NVIDIA Jetson TX2 Delivers Twice the Intelligence
to the Edge, March 2017a. URL https://devblogs.nvidia.com/

jetson-tx2-delivers-twice-intelligence-edge/.

Dustin Franklin. Nvidia jetson tx2 delivers twice the intelligence
to the edge, March 2017b. URL https://devblogs.nvidia.com/

jetson-tx2-delivers-twice-intelligence-edge/.

Paul Gao, Russel Hensley, and Andreas Zielke. A road map to the future for the auto
industry. McKinsey Quarterly, Oct, 2014.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual language
processing from bytes. CoRR, abs/1512.00103, 2015. URL http://arxiv.org/abs/1512.

00103.

Ross Girshick. Fast r-cnn. In The IEEE International Conference on Computer Vision, pages
1440–1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition, June 2014a.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In The IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014b.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. In International Conference on Machine Learning,
pages 1737–1746, 2015.

Mark Harris. Inside Pascal: NVIDIA’s Newest Computing Platform, April 2016. URL
https://devblogs.nvidia.com/inside-pascal/.

https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
http://arxiv.org/abs/1512.00103
http://arxiv.org/abs/1512.00103
https://devblogs.nvidia.com/inside-pascal/


Bibliography 66

Mark Harris. Unified Memory for CUDA Beginners, June 2017. URL https://devblogs.

nvidia.com/unified-memory-cuda-beginners/.

Nhut-Minh Ho and Weng-Fai Wong. Exploiting half precision arithmetic in nvidia gpus. In
High Performance Extreme Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.
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