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Título: Text Mining Avançado para Anotação de Variantes Genómicas 

A deteção de variantes genómicas associadas à doença tornou-se uma tarefa 

acessível por meio do sequenciamento de nova geração. Esta tecnologia produz 

grandes quantidades de dados que usando ferramentas de bioinformática 

permite entender o impacto funcional das variantes. Contudo, às vezes essas 

informações estão ocultas em textos clínicos não estruturados, sem uma 

classificação do tipo ‘Benigna’ ou ‘Patogénica’. Embora tais textos estejam na 

OMIM, as variantes são frequentemente descritas como 'Variantes de 

Significado Desconhecido' (VUS). Portanto, para interpretar as informações 

destes textos desenvolvemos uma ferramenta baseada em Text-Mining 

(TM)/Machine Learning (ML). E, recolhemos textos clínicos não estruturados 

com uma classificação da ClinVar de ‘Benignas’ ou ‘Patogénicas’. E construímos 

um conjunto de dados com 24.171 textos clínicos não estruturados, onde 174 

são de variantes 'Benignas' e 23.997 de variantes 'Patogénicas'. Os textos de 

cada variante, foram pré-processados para remover informações irrelevantes. 

Em seguida, construímos um dicionário de palavras-chave biológicas, dando um 

valor positivo às palavras-chave com uma conotação positiva e um valor negativo 

às palavras-chave com uma conotação negativa. Assim, aperfeiçoámos uma 

estratégia única de pontuação para uma máxima accuracy na classificação.  

Para testar a nossa estratégia de pontuação, usámos os textos de todas as 

variantes ‘Benignas’ (n=174) e 1000 variantes ‘Patogénicas’ selecionadas 

aleatoriamente. A análise feita pela nossa ferramenta a 235 textos levou a uma 

accuracy de 89,4%. Finalmente, e usando um conjunto de dados de validação 

com 10 ‘Benignas’ e 690 ‘Patogénicas’ (n=700), conseguimos obter uma 

accuracy de 99%, ou seja, apenas 7 variantes incorretamente classificadas. Em 

conclusão, a nossa ferramenta é capaz de interpretar e classificar textos da 

OMIM com uma alta accuracy. No futuro, abordaremos as variantes VUS/não 

classificadas, com o objetivo de fornecer ao utilizador uma probabilidade de que 

tais variantes sejam ‘Benignas’ ou ‘Patogénicas’ num dado contexto de doença. 

Palavras-Chave: Variantes Genómicas, Text Mining, Machine Learning, 

Classificação de Variantes 

Resumo 
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Title: Advanced Text Mining for Annotation of Genomic Variants  

The detection of genomic variants associated with disease has become an 

accessible task through Next Generation Sequencing. This technology produces 

large amounts of data that, using bioinformatics tools, allow to understand the 

functional impact of detected variants. However, in sometimes such information 

is concealed within unstructured texts (UT) rather than in a binary classification, 

i.e. ‘Benign’ vs. ‘Pathogenic’. Although UTs are available in OMIM, in many 

cases, the variants are described as ‘Variants of Unknown Significance’ (VUS). 

Therefore, to interpret the information from UTs, we have designed a Text-Mining 

(TM)/Machine Learning (ML)-based tool. To create our tool, we collected OMIM-

UTs from a set of ClinVar-classified ‘Benign’ and ‘Pathogenic’ genomic variants, 

constructing a dataset of 24,171 variants, 174 classified by ClinVar as ‘Benign’ 

and 23,997 as ‘Pathogenic’ and the corresponding OMIM-UTs were first pre-

processed to remove irrelevant non-clinical information. Next, we constructed a 

dictionary of biological keywords, giving a positive value to keywords with a 

positive connotation and a negative value to keywords with a negative 

connotation a negative or positive connotation to be searched in the OMIM-UTs. 

Therefore, we fine-tuned a unique scoring strategy for maximum variant-

classification accuracy. To train and test we used the corresponding OMIM-UTs 

of all ‘Benign’ variants (n=174) and 1000 randomly selected ‘Pathogenic’ variants 

from our dataset. Classification of OMIM-UTs from the ML-test dataset (n=235) 

by our tool, led to an 89.4% accuracy rate. Finally, and using a validation dataset 

with 10 ‘Benign’ and 690 ‘Pathogenic’ (n=700) we were able to obtain an accuracy 

rate of 99%, i.e. only 7 misclassified variants. In conclusion, our tool is currently 

capable of classifying OMIM-UTs with a high accuracy rate. In the future, we 

expect to address the problem of VUS/unclassified variants, aimed at providing 

the user with a likelihood of whether such variants are more probable to be 

‘Benign’ or ‘Pathogenic’ in a given disease context. 

 

Keywords: Genomic Variants, Text Mining, Machine Learning, Variants 

Classifications 

Abstract 
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NGS is a technology that produces extremely large volumes of data. Sequencing 

of individuals is not only used for scientific studies, but also for the study of 

diseases. The existence of a particular mutation may increase the predisposition 

for a particular type of disease [3]. The use of bioinformatics tools and clinical 

databases allows researchers to understand the functional impact of detected 

variants. However, the magnitude of information aggregated in such clinical 

databases often baffles researchers, making it extremely challenging to perform 

definitive calls on functional impact.  

Text Mining is a new and exciting area of computer science research that tries to 

solve the crisis of information overload by combining techniques from data 

mining, Machine Learning, natural language processing, information retrieval, 

and knowledge management [4]. Text Mining techniques help to reveal patterns 

and relationships in large volumes of textual content that are not visible to the 

naked eye. Using Text Mining techniques, it is possible to save time and 

resources: the process can be automated and the results from a Text Mining 

model can be consistently derived and applied to solve specific problems [5].  

In the past, it was often hard to extract important insight from large volumes of 

text. These tasks required the use of complex modelling and programming tools 

that require computationally expensive resources. Now, with the advent of Text 

Mining techniques, we can save time and resources [4]. These types of 

processes can be automated, and the result of a Text Mining model can be 

applied in solving specific problems.  

Text analysis commonly uses Machine Learning techniques such as clustering, 

classification, association rules and predictive modelling to discern meaning and 

relationships in the underlying content [6]. In this way, the goal of Text Mining is 

to derive implicit knowledge that hides in unstructured text and present it in an 

explicit form [7]. Over the years, there has been an explosion of tools that allow 

the mining of texts in biomedicine as well as other areas.  

Context and Motivation 
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By using a tool for the annotation of genomic variants (previously developed in 

the group) we have been able to aggregate information from several xix  

 

biological/clinical databases in a personalized way. However, the collected 

information from these databases is not always easy to read, as it often requires 

manual curation to understand, for example, whether a variant is disease-related 

or not. With advanced Text Mining applied to clinical unstructured texts retrieved 

from clinical databases, it will be possible to select only the most relevant data 

according to a given disease/phenotype. 

 
 

 
 
 

The annotation of genomic variants associated with diseases has become an 

accessible task through NGS. This technology produces large amounts of data 

that through bioinformatic tools and clinical databases, such as ClinVar, OMIM, 

UniProt and dbSNP/dbVar, allow to understand the functional impact of the 

detected variants. However, the magnitude of the information present in the 

clinical databases does not always allow the researchers an objective view, 

making it difficult to perceive the functional impact of such variants.  

In light of this, the aim of this Thesis was to develop a tool, combining Text Mining 

and Machine Learning approaches that allows the extraction of information from 

the clinical description associated with annotated genomic variants in the widely 

used database Online Mendelian Inheritance in Man (OMIM). By selecting the 

most relevant information, we expect to predict the pathogenicity of a genomic 

variant, with a given certainty. This tool will allow the user to narrow down the 

amount of clinical information collected from public databases and thus enable 

relevant genomic variant data selection.

Objectives 
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General Introduction 
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Since the completion of the human genome project in 2003, sequencing 

technologies have been developing exponentially. The possibility of sequencing 

the entire genome – Whole Genome Sequencing (WGS) [8] or just the coding 

region of the genome – Whole Exome sequencing (WES) [9] in a quick and 

inexpensive way is now possible through Next-Generation Sequencing [10]. 

One of the main concerns of the NGS is the volume of data produced in a single 

run. Storage and bioinformatic analysis have become a constraint as the ability 

to interpret and respond to all biological issues from WGS and WES is not an 

easy task. 

The resulting data from sequencing should be analysed using bioinformatics 

tools, such as programs and biological databases, to identify and annotate 

variants present in the DNA sequence. The interpretation of the genetic variants 

allows to understand the relation between a variant present in an individual and 

a certain disease/phenotype. 

 

1. Sequencing DNA technologies and techniques 

1.1 Sequencing DNA technologies  

In 1977 a method of DNA sequencing was developed by Frederick Sanger, based 

on chain termination or as commonly referred to as Sanger's sequencing [11]. In 

addition to Sanger, Walter Gilbert developed a method of DNA sequencing 

involving the chemical modification of DNA. Due to its efficiency the Sanger’s 

method was considered the gold standard for nucleic acid sequencing [12] and 

was adopted as the primary technology in the “first generation” sequencing [13]. 

With the advent of the Sanger method, DNA sequencing has increased and in 

1987  the company Applied Biosystems launched the first automatic sequencing 

machine (AB370) [13]. This launch marks the beginning of a new era in 

sequencing that allowed the development of technologies that facilitated the 

completion of The Human Genome Project in 2001 [14].  
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The demand for faster, more accessible and labour-intensive technologies has 

led to the emergence of increasingly capable sequencing tools that have 

accelerated the appearance of Next-Generation Sequencing. The Figure 1 

shown a timeline with the years in which a particular NGS platform/instrument 

was introduced in the market.  

 
The completion of the human genome project allowed the emergence of the first 

line of sequencers not based on the Sanger method. This increased the volume 

of data generated, decreased cost-per-base and improved performance in terms 

of efficiency and accuracy, making DNA sequencing faster and massively 

parallel. 

Shortly after the 454 launch, other companies began investing in the development 

of sequencing platforms. In 2007 the company Illumina developed a new method 

of sequencing called SBS (Sequencing by Synthesis). Since then the Illumina 

platform has been adopted as the standard for many applications in the field of 

genomics.  

There are some errors associated with the Illumina platform, such as the 

decrease in the quality of the bases throughout the reads and the substitution of 

bases. The use of fluorescence makes sequencing less stable because the 

fluorescent signal used deteriorates as the reads length increases. 

With technological development, new and more advanced NGS technologies 

have emerged. Ion Torrent created by the company Thermo Fisher  is an NGS 

system that uses semiconductor chips. The differentiating character of this 

Figure 1 – Timeline with NGS platform / instrument developed over the years. 
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system is that, unlike previously developed systems, it does not use fluorescence/ 

luminescence. 

This new technology has been given the name PosLight technology [17] and 

offers greater speed and scalability and lower cost compared to light based 

systems. Ion Torrent has some associated problems, mainly in the sequencing 

of homopolymer regions (repetitive regions, rich in AAs and TTs). Compared to 

the Illumina platform, the Ion Torrent cost per reaction is lower but the error rate 

is much higher [15].  

Platforms like 454, Illumina, SOLiD and Ion Torrent generate reads smaller than 

500 base-pairs (bp), called short-reads. The use of short-reads makes it difficult 

to assemble complex genome. In order to solve this problem, the third generation 

of sequencing appeared, which enabled the sequencing of long reads. 

The development of alternative sequencing technologies has experienced an 

exponential growth in recent years, where the main goal is offering technologies 

which are faster and more economical. Depending on the biological question in 

hand, different technologies can be selected, which in turn leads to choosing the 

most pertinent technique and bioinformatical data analysis method. 

The third generation of sequencing is the most desirable for speed and reduction 

of error rate. Sample preparation is very fast, since a PCR step is not necessary, 

thus reducing the preparation time and the risk of bias and errors caused by the 

PCR technique. The runs associated with the samples can be made in just one 

day and the average reads length is 1300 bp which is higher than any existing 

second-generation technology. 

One of the technologies most used in the third-generation is Nanopore created 

by Oxford Nanopore Technologies. Thus, in 2014  the Nanopore sequencer was 

developed [17], which uses the detection system based on membrane 

immobilized biopores with a diameter in the nanoscale [18]. Detection of 

nucleotides is done by analysing the variation of the electric potential in the 



5 
 

membrane, which is altered according to the passage of the fragmented DNA, as 

shown in Figure 2. 

 
Compared to other technologies Nanopore can reach the longest reads length (> 

5kbp) with a speed of 1 bp/nanosecond. The use of enzymes makes this 

technology less temperature sensitive throughout the sequencing reaction and 

good results can be achieved more easily and efficiently. The development of 

these technologies has led to an increase in the DNA sequencing of many 

organisms, thus increasing the demand for research and development of more 

efficient and faster laboratory NGS techniques. The most commonly used NGS 

techniques are Targeted Sequencing (Panels), Whole-Exome Sequencing 

(WES), Whole-Genome Sequencing (WGS) and de novo sequencing. In the 

following section the NGS techniques mentioned above are described, explained 

and compared [13]. 

 
 
 
 

 
 

Figure 2 - Schematic figure of Nanopore sequencer working. Adapted from [18],[19]. 
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1.2 Sequencing DNA techniques 

1.2.1 Target Sequencing (Panels) 

Target Sequencing allows the isolated sequencing of a panel of genes or a region 

of the genome containing specific regions of interest. This technique allows 

sequencing with high coverage levels and easier identification of genetic variants 

[19].  

The choice of panels is generally made considering prior or suspected knowledge 

that these set of genes/regions contain some association with the disease or 

phenotype under study.  

This technique saves time and money (Table 1) since the investigation and 

analysis of the data is done considering only one or multiple areas of interest in 

the genome. This focused sequencing increases the level of coverage, allowing 

the identification of possible rare genetic variations that would be difficult to 

identify with more comprehensive NGS techniques such as WGS. Target 

sequencing provides a set of accurate and easy-to-interpret results in terms of 

volume than most NGS techniques. 

Table 1 - Differences between NGS techniques. 

 
Sequencing of gene panels is one of the most commonly used NGS techniques 

in clinical terms. Despite the wide use, this technique has some limitations, the 

main one being off-target enrichment, which is caused by the similarity of 

sequences between distinct zones of the genome due to, for example, events of 

genomic duplication during evolution. These particularities of the genome hinder 

the exclusive binding of primers to the target region, and binding of primers to 

regions completely outside the zone of interest may occur. For target sequencing 

it is recommended a high coverage of the region of interest, since sufficient 

coverage is crucial for the identification of genetic variants. 

Techniques Cost Data volume Biological Driven 

Targeted sequencing $ + + + + 

WES $$ + + + 

WGS $$$ + + + - 
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1.2.2 Whole Exome Sequencing (WES) 

WES is the NGS technique that allows the study of the coding regions (exons) in 

the genome [9]. The exome is only 2% of the genome, however, 85% of variants 

related with genetic diseases are found in the exome. As one of the NGS 

techniques used in clinical approaches, WES has quickly become one of the main 

tools for the study of genetic causes of Mendelian diseases [20].  

Being considered a directed NGS technique, WES has limitations also found in 

target sequencing. Enrichment outside the target hinders the isolation and 

sequencing of the exome. Thus, a significant portion of the readings obtained 

come from outside the previously defined target regions, for example, intron 

readings, intergenic regions and mitochondrial DNA [20].  

Uneven coverage of reads on the target exome contributes to low coverage in 

many regions, which may result in missed variant calls. Regions with low 

coverage, high guanine-cytosine (GC) content, repetitive elements and 

segmental duplications are some of the limitations that hamper the downstream 

analysis of WES data [21].  

WES produces a smaller set of data compared to WGS, since the sequencing of 

the entire genome results in an extremely large data volume. Compared to target 

sequencing, WES yields a bigger data set. Inherent to data set size, target 

sequencing and WES are less bioinformatically challenging when compared with 

WGS. Whole Genome Sequencing constitutes the final approach to detect all 

variants present in the genome of a patient in a single experiment, commonly 

used when target and WES have failed to reveal any relevant variants. 

One of the limitations transverse to directed NGS techniques, as mentioned 

previously, is GC content. The amount of GC present in a DNA sequence is 

considered both a benefit and a detriment in molecular biology [22]. The high GC 

content may reduce the chance of mutation of A and T, which are more likely to 

create stop codons (TAA, TGA or TAG), which could modify protein synthesis. 

However, high GC content also has an associated downside because sites with 

high amounts of GC can generate CpG, i.e. regions of DNA where cytosine is 

followed by a guanine [23] which are prone to mutation [22].  
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The guanine-cytosine pair is linked by three hydrogen bonds, which are more 

stable than the two-hydrogen bonded adenine-thymine pair. This gives GC a 

higher molecular stability, to note, however, that hydrogen bonds are not the only 

ones responsible for GC stability [22]. Stacking bases through the hydrophobic 

interactions between two or more consecutive bases that minimize contact with 

water gives stability to the DNA molecule [24]. Thus, the stacking forces stabilize 

the double helix almost as much as the hydrogen bonds. 

The stability of the DNA molecule when GC content is high hinders denaturation 

of the DNA strand during PCR. The melting temperature (temperature at which 

the double strand of DNA unfolds and separates into two single strands) used in 

the PCR depends on both the chain length and the sequence composition. The 

high GC content indicates a higher melting temperature and a more stable chain. 

The possible solution to this problem would be to increase the temperature of 

melting, however this compromises the other components, which with high 

temperatures disintegrate, decreasing the PCR product. 

In conclusion, the low efficiency in the hybridization of the primers with the target 

sequence is due to the rich GC content [25]. The regions with less coverage are 

constituted by a greater amount of GC being these the promoter regions and the 

first exon of many genes [26]. This type of problems leads to a mistrust in the 

results of sequencing, and it is necessary to improve the techniques since the 

results are intended for diagnosis. 

1.2.3 Whole Genome Sequencing (WGS) 

In contrast with directed NGS approaches, WGS allows sequencing of the entire 

genome of an organism, without limiting or focusing on a region or panel of genes. 

It is considered the most comprehensive technique since it provides an overview 

of the whole genome. 

Technological advances and a decrease in the cost of DNA sequencing have 

made WGS a reality. The WGS is a revolutionary option, which allows through 

the sequencing of the integral genome to identify genetic variants. The 

identification of variants facilitates the diagnosis of diseases with a genetic 

component, allows a better understanding of mechanisms behind many diseases 

and leads to the evolution of the concept of "personalized medicine" [8]. 
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Compared to targeted NGS techniques, WGS could analyse different types of 

genetic variants in both coding and non-coding regions. Uniform coverage of 

reads is essential for good sequencing results. Contrary to targeted NGS 

techniques, WGS provides good results, since it is not necessary to develop 

primers to flank the region of interest, there is no possibility of off-target capture. 

The cost of sequencing, storing and analysing a region with high depth is much 

lower in targeted techniques, the volume of data relative to WGS is also much 

lower (Table 1) [27].  The volume of data generated by WGS is enormous and 

there is still no biological answer to all the questions raised by the information 

contained throughout the genome sequence, which is the main disadvantage of 

this technique [27].  

Targeted techniques have a lower cost than WGS, making them often more 

commonly used approaches in projects where financial capacity is lower. For 

some research all the information produced by WGS is not required, making 

targeted sequencing preferential. 

An important consideration is that generating the data is only a fraction of the total 

cost and does not consider the costs associated with storing, analysing and 

interpreting data. As described in Table 1, targeted sequencing, compared to 

WES and WGS, is more economical and produces smaller volumes of data. In 

biological terms, it is more driven because it focuses on a panel of genes that can 

be associated with a certain disease/condition. In WGS, sequencing is applied to 

the entire genome, thus this technique is less biologically driven than target 

sequencing or WES. 

1.2.4 De novo sequencing 

De novo sequencing is an NGS technique with a different approach to previous 

the techniques, since a new genome is sequenced, without having a reference 

genome for alignment. This technique provides useful information for mapping 

genomes of new organisms or for completing genomes of known organisms [28], 

[29]. 

The process of mapping reads is complex, since there is no reference genome 

to which the reads can be aligned, they need to be assembled as contigs. The 
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size and continuity of contigs increases data quality and confidence in the 

sequenced genome. De novo sequencing will not receive great emphasis in this 

thesis, since it is a technique that is based on the discovery of new genomes and 

not in the study of the existing ones. 

To conclude, there are currently several platforms that allow the application of 

different techniques, with their application depending on the biological context of 

the problem (Table 1).  

 

2. NGS Applications 

Throughout the last decade there have been projects related to the sequencing 

and interpretation of the genome of many organisms. The Human Genome 

Project (HGP) [14], [30], concluded in 2003, led to the complete sequencing of 

the human genome and with it came an enormous amount of information hitherto 

unknown. 

After the HGP, many projects followed, such as the 1000 Genomes Project [31], 

[32] which analysed 1000 anonymous individuals from different ethnic groups to 

find most of the genetic variants that have a frequency of at least 1% in the 

populations studied. International collaborations have enabled the creation of a 

catalogue of common genetic variants that are related to human diseases, carried 

out by the HapMap Project (short for ‘haplotype map’) [33]. 

As previously mentioned, with the advent of NGS, sequencing of the entire 

genome or part of it has become one of the main approaches in research and 

diagnosis of genetic diseases. NGS is the most widely used tool for detecting 

variants within the genome of any individual, yet with the amount of variants an 

individual contains in their genome, finding a variant related to a disease is hard 

work [10].  

The use of NGS in the clinical area has been increasing, especially in the study 

of several diseases, one of which cancer. According to the World Health 

Organization, by 2015 cancer accounted for one in six deaths with an estimated 

number of deaths of 8.8 million [34]. Despite all efforts, cancer remains the 

second leading cause of death worldwide [34]. The use of NGS in the clinical 
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area, for identification of genetic variants, especially in the field of cancer, has a 

very extensive potential. This can lead to a diagnosis, guidance, and counselling 

of the patient being the genetic information useful in identifying family members 

who may also be at risk of developing this disease.  

Detection of the variants that exist between the genome under study and the 

reference genome is a so-called variant calling process. The variant is found 

where there is a difference of one or more nucleotides between the genome 

under analysis and reference genome. The types of variants that can be found in 

a genome are described in the following section. 

 

3. Genetic Variations 

Sequencing enriches understanding not only of the genome sequence, but also 

of the genetic variations that occur in it. However, not all genetic variations are 

associated with disease: on average, each person is likely to carry approximately 

250-300 variants of loss of function (LoF) in annotated genes and 50 to 100 

variants previously involved in hereditary disorders [31]. In fact, genetic variations 

occur naturally in the human genome and that is what makes each individual 

unique.  

Regardless of the molecular mechanisms or processes that generate the genetic 

variations, they can be broadly classified as germline or somatic. Germline 

variations occur in the germ cells of an individual and as they are inherited from 

the parents, all cells in the body will have this variant present. Somatic alterations 

are acquired throughout the life of an individual and are passed on to other cells 

by cell division (mitosis). This type of variation is common, most of which do not 

contribute to any relevant change in the individual [35]. However, some may lead 

to a change in phenotype or to increased susceptibility to disease, such as 

cancer, in cases where cells acquire the ability to proliferate and invade other 

tissues [35].  

Genetic variations can span from one base pair to one million base pairs. There 

are variations that only involve changing a single base pair such as single 

nucleotide polymorphisms (SNP), to a few base pairs such as insertions and 
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deletions (indels) and at the other extreme, involving megabases (Mb), copy 

number variations (CNVs), inversions and translocations. 

3.1 Single Nucleotide Polymorphisms 

SNPs are the most abundant type of genetic variation in the human genome and 

occur once in every 1000 nucleotides, in at least 1% of the population [35]. The 

final phase of The 1000 Genomes Project characterized a total of 88 million 

genetic variants, of which 84.7 million are SNPs [31], [32]. These SNPs can be 

located either in coding regions of the genome (in exons) or in non-coding regions 

of the genome, i.e. intronic/intragenic or in intergenic regions.  

SNPs located in the coding region of a gene may alter the encoded protein 

sequence, as these SNPs may lead to the replacement of an amino acid, which 

may affect protein function. If this happens, the variant is considered non-

synonymous. If the protein sequence is unchanged, this means that the variant 

is synonymous and likely does not impact the encoded protein function. 

Studies have shown that an individual contains many variants with functional 

consequences ranging from beneficial to highly deleterious. In fact, Durbin et al. 

have suggested that an individual typically differs from the human reference 

genome between 10,000-11,000 non-synonymous sites and 10,000-12,000 

synonymous sites [31]. SNPs located in non-coding regions account to 

approximately 90% of all known SNPs [36], [37].   

Genome-Wide Association Studies (GWAS) have shown that such non-coding 

SNPs may potentially be associated with human disease. Unlike the variants 

present in the coding region, which may directly impact the encoded protein, there 

is still few information on the impact of non-coding variants. One possible answer 

to this conundrum is that these SNPs cause changes in gene expression levels 

instead of causing changes in protein function [38].  

There are some studies, related to variants present in non-coding regions. This 

field of human genetics studies the expression quantitative trait loci (eQTLs). 

eQTLs are genomic loci that help regulate mRNA expression, which in turn is the 

central key to regulate the expression of multiple genes. The presence of genetic 
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variants, for example, SNPs can be found in eQTLs by altering the gene 

expression of one or more genes, which are regulated by these loci [39]. 

 
 

3.2. Structural Variations  

In ample sense, structural variations (SV) can be defined as all genomic changes 

that are not simple base pair substitutions [40],[41]. This variation includes 

insertions, deletions, inversions, duplications and translocations of DNA 

sequences, and covers copy number differences, also known as copy number 

variants (CNVs). CNVs include duplications, deletions and rearrangements, and 

represent a significant part of our normal genetic variability, and occur in both 

coding and non-coding regions [42]. About 34 million short indels and 60,000 

structural variants were detected at the conclusion of the 1000 Genome Project 

[32]. 

Several structural genetic variables have been shown to be important both in 

phenotypic variability and susceptibility to diseases [43]. For example, the 

increased copy number of the CCL3L1 gene is associated with reduced 

susceptibility to HIV infection and progression to AIDS [44]. Likewise, individuals 

with fewer copies of the DEFB4 gene are at increased risk of developing colonic 

Crohn's disease [45].   

Table 2 - Types of genetic variations. Adapted from [46]. 

Single Nucleotide 
Polymorphism 

(< 1 kb) 

Structural Variations 

(≥ 3 Mb) 

Small Insertion 
Copy number variant (CNV) 

Indels 

Small Inversion 
Translocation 

Duplication 

Small Duplication 
Large-scale CNV (≥ 50Mb) 

Inversion 

 
 

Defining genetic variants that are related to a specific disease can be valuable as 

it can lead to a definitive diagnosis, guidance and counselling of the patient and 
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this genetic information may be useful in identifying family members that may 

also be at risk of developing this disease. Defining genetic variants that are 

related to a specific disease can be valuable as it can lead to a definitive 

diagnosis, guidance and counselling of the patient and this genetic information 

may be useful in identifying family members that may also be at risk of developing 

this disease. 

Sequencing as the main aspect in genomics has undergone major advances over 

the last few years, offering great benefits in several clinical areas, such as 

oncology. With the advent of next-generation sequencing technologies, the ability 

to sequence clinical samples in a massive and parallel fashion has enabled the 

discovery of new variants that may now be related to diseases/phenotypes. 

 
 

4. Databases of Genetic Variants 

While the NGS techniques develop rapidly, the volume of biological data 

accumulates, leading to an increasing number of databases in response to the 

amount of data generated. These advances have facilitated the discovery of 

numerous genetic variants that may or may not be related to certain genetic 

disorders.  

Variations in the genome can range from the alteration of a single nucleotide to 

structural variants, as described in previous chapter (‘Genetic Variation’) in this 

thesis. As reported in the 1000 Genome Project [31], [32] it is estimated that an 

individual has carries between 10,000-11,000 variants that cause changes in the 

protein sequence, which can lead to highly deleterious consequences. In 

addition, it is estimated that an individual has between 10,000-12,000 

synonymous variants that have no functional consequences. 

The ability to interpret the variants present in the genome and what they represent 

in terms of function is an ongoing goal, with particular impact in disease. In fact, 

the clinical interpretation of the variants found in a given patient or family member 

can improve diagnostic efficiency and decision during treatment [47]. Moreover, 

misinterpretation of variants may affect clinical interpretation. Thus, databases 

collecting information on genetic variables found in the genome of a given 
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individual have a key role in clinics. Such biological/clinical databases can be 

cured at different levels. In fact, a good data curation is fundamental for the 

credibility of the data.  

Biological databases can be curated by specialists as is the case of RefSeq [48], 

or can be curated in a community way, where they are curated collectively in 

collaboration with researchers, such as GeneWiki [49]. The range of biological 

data available can also vary from database to database. More comprehensive 

databases include data from several species, such as: GenBank [50] that 

provides nucleotide sequences for a large number of species and European 

Molecular Biology Laboratory (EMBL) [51], where DNA sequences, protein and 

related molecular information are available. These two databases are publicly 

available facilitating the exchange of data.  

In addition to the databases mentioned above, there are databases that contain 

only human genome information. This information may be related to DNA, RNA, 

proteins and include clinical information that relates genetic variants to diseases 

/phenotypes. There are databases for each type of biological data, therefore 

choosing a database depends entirely on the data one is working with (Table 3). 

 
Table 3 – Examples of Human-related biological databases. 

Category Name Brief description References 

DNA 

dbSNP 
Database of Single Nucleotide 
Polymorphisms 

[52] 

dbVar 
Database of Genomic Structural 
Variation 

[52] 

1000 
Genomes 

A deep catalog of human genetic 
variation 

[53] 

RNA DARNED Database of RNa EDiting in humans [54] 

Protein UniProt Universal protein resource [55] 

Disease 

COSMIC 
Catalog Of Somatic Mutations In 
Cancer 

[56] 

OMIM Online Mendelian Inheritance in Man [57] 

Clinical 
Information 

ClinVar 
Provides the relations between variants 
and phenotypes from a clinical point of 
view. 

[58] 
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In this Chapter, the databases UniProt, OMIM, dbSNP, dbVar and ClinVar will be 

further detailed, with particular focus on ClinVar, as it will be the main database 

used during this Thesis. 

 
4.1 UniProt: Universal Protein Resource  

UniProt is produced by the UniProt Consortium, formed by the Swiss Institute of 

Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein 

Information Resource (PIR). UniProt provides detailed information on the function 

of proteins, interactions, pathways, relationships with diseases and other areas 

of biological interest. UniProt Knowledge Base (UniProtKB) is considered the 

central source of UniProt and consists of two main sections, UniProtKB/Swiss-

Prot that is manually annotated and UniProt/TrEMBL automatically annotated. 

Therefore, the UniProt comprises three databases: UniProtKB, UniRef and 

UniParc (Figure 3).  

 
 

Figure 3 - Source and flow of data for UniProt's component Databases. Adapted from [59]. 

 

4.1.1 UniProtKB/Swiss-Prot  

UniProtKB/Swiss-Prot contains the protein sequence information annotated 

manually and non-redundantly [59]. The manual annotation is made by an expert 
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curator and provides a critical review through experimental data for each protein 

and protein sequence. 

In the section Swiss-Prot the curators obtain the information through literature 

and computational analysis [55]. The information extracted from the literature 

includes the name of the proteins, the ID, comments on the function, protein-

protein interactions, pathways, location, among others. 

 
4.1.2 UniProtKB/TrEMBL 

UniProtKB/TrEMBL provides the computer records based on automatic 

annotation (unreviewed). The protein sequences present in this section derive 

from the translation of coding sequences (CDS) directly submitted to public 

databases such as EMBL, GenBank and DNA Data Bank of Japan (DDBJ) or 

other sources such as Ensembl. The entries in TrEMBL are manually annotated 

and then integrated into UniProtKB/Swiss-Prot [55]. 

 
4.1.3 UniProt Reference Clusters (UniRef) 

UniRef consists of three databases, where the sequences are clustered by the 

percentage of identity between them consisting of three levels, UniRef100, 

UniRef90 and UniRef50 [59]. UniRef100 combines sequences and fragments 

that are 100% identical. UniRef90 and UniRef50 cluster the sequences with 

identity percentages of 90% or 50% respectively.  

 
4.1.4 UniProt Archive (UniParc) 

UniProt Archive (UniParc) was created to include all data and sequences of 

proteins accessible in public databases. When a given sequence exists in 

multiple databases it creates redundant information. UniParc memorizes each 

sequence only once and assigns it a unique UniParc identifier. Sequences are 

treated as text characters and only those that are 100% identical are mixed 

without regard to species. All sequences can be traced back to their original 

database because UniParc has cross-references to several source databases 

[55]. There may be proteins with the same sequence but having different 
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functions depending on the species or another variant, so the UniParc records 

are not annotated because the annotation depends on the context [59].  

 

5. OMIM: Central Bioinformatics Resource for Human Disease 

Online Mendelian Inheritance in Man (OMIM) is a database that provides detailed 

and cured information on genes and associated genetic disorders. The focus is 

on hereditary genetic diseases, where genetic traits [60] are transmitted from 

generation to generation in a Mendelian way, i.e. an alteration in the DNA 

sequence occurring in a single gene [61].   

The information present in OMIM arises from biomedical literature and the use of 

aimed research in PubMed allows to extract information on the entry of genes 

and phenotypes (Figure 4).  

Figure 4 - Diagram of OMIM entries and content, adapted from [61]. Dashed lines indicate 

that not all genes have allelic variants, not all phenotypes are part of the genetic map and 

the mapped phenotypes are not all part of a phenotypic series. 

The structure used by OMIM facilitates the search for information and depends 

on the entry. When the entry is a gene, OMIM, in addition to all relevant 

information, returns the allelic variants associated with the gene. It is possible to 

visualize a table with all variants, phenotypes and cross references with 

databases such as dbSNP, ExAC (Exome Aggregation Consortium) and ClinVar. 

If the entry is a phenotype, brief clinical description (clinical synopses) is 
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presented, containing information as inheritance, miscellaneous and molecular 

basis associated with phenotype/disease. 

Recording of similar phenotypes / clinical manifestations may occur. Thus, 

genetic maps that combine cytogenetic localization and phenotype facilitate the 

creation of phenotypic series that demonstrate the genetic diversity of similar 

phenotypes in the genome [60]. 

Entries in OMIM receive an exclusive six-digit number, designated MIM number. 

Each digit or symbol of the MIM number is associated with a certain meaning, 

i.e., where the first one digit indicates how the gene was inherited. Inheritance 

may be linked to the X chromosome, to a recessive, dominant or mitochondrial 

inheritance [61]. Another example, the allelic variants are given a MIM number 

followed by a decimal point and four unique variable digits [60].  

Allelic variants are an important feature of OMIM, since they are at the basis of 

genetic-phenotypic relationships and some of them represent disease-causing 

mutations [61]. Each allelic variant in OMIM has a variant, title, mutation, and 

section number that provides a description of the mutation with data to prove and 

strengthen this information. 

Regarding the information present in OMIM, gene entries, identified with an 

asterisk symbol (*), may include information such as gene structure, isoforms, 

expression and function [60]. Phenotype entries identified by a cardinal symbol 

(#), include description of clinical characteristics, patient and family reports, 

genetic discovers and links to clinical information. Phenotypes in OMIM include 

Mendelian disorders, phenotypic traits, susceptibility to a particular disease, 

among others [60].  

OMIM is a source of essential information for the research areas related to health 

and biology. Being a database reviewed and curated in terms of scientific 

literature, OMIM becomes essential in understanding the relationship between 

variants, genes and diseases. The free text format for search makes it a versatile 

database, easy to query. Another advantage of OMIM is that all information 

presented is based on PubMed publications which is further reviewed by experts 

[62].  
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There are some disadvantages related with OMIM, one of them is the absence 

of clinical specificity [63] that is, inexistence of coherence in clinical terms. This 

problem arises because OMIM allows the text to be written in free and 

unstructured format [60]. Thus, the terms used for the same phenotype or disease 

vary depending on the user. In bioinformatic terms, written text in a free and 

unstructured format is also a complex problem that makes it difficult to extract 

and use the information contained in the database. This type of problem is one 

of the focuses of this thesis and will be discussed later.  

 
 

6. dbSNP and dbVar 

dbSNP is a database developed by the National Centre for Biotechnology 

Information (NCBI) containing all short (<50bp) sequence variations of 

nucleotides, and not just single nucleotide substitutions occurring with sufficient 

frequency in a population to be designated polymorphism. The data deposited in 

dbSNP can be from any organism, from anywhere in the genome, and include 

single-base nucleotide substitutions, small-scale multi-base deletions or 

insertions, and microsatellite repeats [64]. It also provides access to variations in 

the germline or somatic origin that are clinically significant.  

The dbSNP has connection to several other databases, such as dbGaP 

(Database of Genotypes and Phenotypes) PubMed, ClinVar and dbVar. The 

variants submitted in dbSNP come from various sources, such as public research 

laboratories, private organizations and other databases. Each submitted variant 

receives a unique identifier called 'submitted SNP' ('ss #') number. There are 

cases where the same variant is submitted multiple times by different 

organizations, and it is necessary to aggregate this information into a single 

number, called 'reference SNP' (rs #) number. 

dbVar is developed by NCBI and complements dbSNP. This database archives 

the genomic structural variations (≥ 50 bp), such as copy number variants (CNV), 

insertions, deletions, inversions, and translocations [65].  
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Table 4 - Distinguishing features of dbSNP and dbVar. Adapted from  [1]. 

 
 

Structural variants are involved in complex human disorders and information such 

as location and type of variation can be accessed through dbVar. The 

interpretation of clinical relevance for a given variant can also be obtained through 

dbVar, since there is a cross-reference for ClinVar.  

The quality of dbVar depends on the quality of the data provided by users, and it 

is important that all data is of high quality. There are consistency guidelines 

followed by dbVar that facilitate data verification. Data validation is done during 

the submission process, where errors such as inconsistent or invalid data can be 

verified. Errors considered serious interrupt the submission process and if 

necessary dbVar will contact the data submitter. For example, if the submitter’s 

Databases dbSNP dbVar 

Variation 

Type 

Small Variations (< 50bp): 

Single nucleotide variation 

(SNV); 

Short multi-nucleotide changes 

(MNV); 

Small deletions or insertions. 

Large variations (≥ 50bp) 

Copy number Variants (CNV) 

Large deletions and insertions 

Inversions 

Translocations 

Data 

Aggregation 

Data by RS: 

Submitted SNP (ss) information 

Submitter contact and 

publications 

Variation Data – alleles, 

genotype, and frequency 

Experimental methods and 

conditions 

Genomic positions on different 

assembly versions 

ClinVar clinical assertions 

Data by SV and SSV: 

Submitter contact and 

publications 

Method 

Genotype and Frequency 

Genomic positions on different 

assembly versions 

ClinVar clinical assertions 

Linked 

Resource 

ClinVar 

dbGaP 

Gene 

PubMed 

 

Genome 

Nucleotide 

Protein 

Taxonomy 
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variant location is easily detected as incorrect, the submission is returned, and 

the submitter is asked to verify and, if necessary, to correct the error. 

There is a steady stream of information exchange from dbVar and another 

database storing genomic variants, the European Bioinformatics Institute's 

(EBI's) Database of Genomic Variants archive (DGVa). Together, these 

databases represent the largest archive of structural variation in the world. Table 

4 summarizes the distinguishing features of dbSNP and dbVar. 

 

7. ClinVar 

ClinVar is a database that includes clinical interpretation of genetic variants, 

which can be identified in any genomic site, without distinguishing its type, length 

or origin.  Variants can be germline or of somatic source, with its identification 

being done through research or clinical cases. ClinVar available clinical 

interpretations are enriched with several databases, such as OMIM, 

GeneReviews, UniProt and dbSNP.  

Each variant-phenotype interpretation added to ClinVar receives a number of 

accesses with the SCV prefix. The submissions have five data categories, which 

will be described below. 

- Submitter: 

Variants interpretations can be added to ClinVar by organization and 

individuals. 

- Variation: 

This is a fundamental component to represent the relationship variant-

phenotype. The variation is defined as an alteration in a specific site or a 

combination of alterations in various sites of the genome. However, the data 

provided by some submitters is not able to establish a comparison. The free 

text that describes a variant is only accepted if it is connected to another public 

database. 
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Variants submitted in ClinVar are compared by the positions described in 

dbSNP and dbVAR. If the variant is already known, ClinVar assigns a variant 

calling identifier with the registry Reference ClinVar (RCV) or rs#. If the site of 

a variant is new, it is sent to dbSNP or dbVar to be submitted. One of the 

differences between ClinVar and dbSNP/dbVAR is that it does not create its 

own identifiers. 

- Phenotype 

Also designated as “condition”, it is quite similar to the ‘variation’ field. 

However, phenotype is represented as a unique concept or a group of 

concepts, being employed to report combinations of clinical characteristics. 

Authors/submitters are encouraged by ClinVar to send more phenotypical 

information such as identifiers from other databases, like MIM number, MeSH 

term or the identifier of human phenotype ontology (HPO).  The interpretations 

are described in a free text format, however the usage of standardized 

concepts could help in the mapping of concepts. Currently, most submitters 

register diagnosis with a single term that has ample meaning.  

- Interpretation 

ClinVar receives an interpretation with the clinical meaning of a variant. 

Terminology used by ClinVar is recommended by the American College of 

Medical Genetics and Genomics (ACMG) [66], consisting of five terms: 

i. pathogenic 

ii. likely pathogenic 

iii. uncertain significance 

iv. likely benign 

v. benign 

To note that the term ‘likely’ is very broad, ACMG suggests that the term only 

be used when there is a 90% or more certainty that the variant is benign or 

causes a certain disease. Despite the fact that these terms do not cover all 

human phenotypes these five levels of classification remain relevant for 

Mendelian diseases [66].  
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- Evidence 

This section contains the necessary details to support the interpretation of the 

clinical meaning of a variation-phenotype relationship, wherein the information 

is structured or summarized in a free format text, with an experimental or 

observational origin. To note that ClinVar does not allow evidence based 

purely on computational research, it can however be used as a complement 

to the other two information origins. 

The evidence should include a description of the variant called and its 

biological context (genetic testing, tissue comparison cancer/normal, etc). The 

clinical interpretations of variants come from authors/ submitters but there is 

a revision done by external collaborators. Table 5 shows the review status, 

number of gold stars and the description of each review status. 

Table 5 - Classification according to the review status. 

Review Status 
Number of gold 

stars 
Description 

Practice guideline Four Practice guideline 

Reviewed by expert 
panel 

Three 
Reviewed by expert panel (guest 

collaborators) 

Criteria provided, 
multiple submitters, 

no conflicts 
Two 

Provided by two or more submitters 
with assertion criteria (the variants 

are classified according to the 
guidelines of the ACMG) 

Criteria provided, 
conflicting 

interpretations 
One 

Multiply submitter, provided the 
same assertion criteria but with 

conflicts in interpretations 

Criteria provided, 
single submitter 

One 
A submitter provided an 

interpretation with assertion criteria 

No assertion for the 
individual variant 

None 

The allele was not included in any 
interpretation. 

It was only submitted as a 
component of a haplotype or a 

genotype 

No assertion criteria 
provided 

None 
The allele was included in a 

presentation with an interpretation 
but without assertion criteria. 

No assertion 
provided 

None 
The allele was included in a 

presentation but without 
interpretation 
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8. Comparison between databases 

The annotation of genetic variants is essential to comprehend the knowledge 

associated with sequencing results derived from, for example, patient samples. 

Databases such as those previously described, compile annotation information, 

facilitating the flux of knowledge between organizations and individuals. The lack 

of standardized writing and formatting rules, often observed in clinical databases, 

limit the use of this information with bioinformatics tools. In fact, annotation is 

done traditionally in free text format which is easily readable by humans but 

presents obvious disadvantages when reading is done computationally. 

Using the previously described databases as an example, OMIM is considered a 

non-classifying database since information appears in large text blocks, without 

standardized writing and formatting, making data extraction computationally 

complex. Databases such as UniProt and ClinVar are considered classifying 

databases since the information they possess is succinct and usually stored in 

table format, facilitating computational reading. While ClinVar provides structured 

information on genetic variants that are known be potentially pathogenic or 

benign with an associated phenotype/disease, OMIM provides useful clinical 

descriptions in an unstructured format. While ClinVar information allows 

computational parsing, the same is not valid for OMIM texts. Hence, the 

relevance of the work described in this Thesis, that is expected to extract relevant 

clinical information from unstructured texts as those provided by OMIM, using 

corresponding information from ClinVar to create and validate our tool. 

 

9. Text Mining 

The evolution of NGS technologies and technologies has allowed areas such as 

health and disease-related research to increase exponentially. The ability to 

sequence an entire genome (WGS) or regions of the genome (WES and target-

sequencing) allowed the NGS to be integrated as a diagnostic tool for screening 

of variants present in the genome that may be related to a given 

phenotype/disease. 
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The volume of data resulting from NGS techniques is enormous, compared to 

basic techniques such as the Sanger sequencing. The large volume of data, 

despite the underlying disadvantages, such as the need for high capacity and 

computational storage, the complexity in the analysis and interpretation of data, 

allowed the increase of biomedical knowledge. 

Biomedical texts provide a valuable source of knowledge in biomedical research. 

In the case of cancer there are approximately 3,605,848 publications in PubMed, 

where the word cancer appears in the title or abstract. The enormous biomedical 

knowledge available in publications and databases there is a constant interest in 

methods capable of identifying, extracting, managing and exploiting this 

knowledge and discovering new and/or hidden knowledge. The biomedical 

information currently available makes it impossible for analysis and interpretation 

to be done manually. In this way, the concept of Text Mining emerges, which can 

be characterized as the process of analysis of unstructured and ambiguous texts 

to extract useful information of high quality and relevance, thus making the text 

more accessible in research terms.  

Text Mining is similar to data mining, however the tools used in data mining are 

designed to handle with structured data available in databases. Text Mining 

works with unstructured data such as e-mail, text documents, etc The main 

purpose of Text Mining is to transform text (unstructured texts) into text 

(structured) for analysis, using natural language processing (NLP) methods [67]. 

Text Mining is a multidisciplinary field that incorporates many areas such as 

information retrieval, information extraction, the natural language processing and 

data mining [67]. Text Mining encompasses several areas, which interconnect to 

extract useful information from unstructured texts. 

9.1 Text Mining Areas 

- Information Retrieval (IR) 

IR is usually the first step to handle textual data from a large collection of 

important documents. The IR system is used in the biomedical field to 

assist researchers in finding search-related articles, in search engines 

such as PubMed, and Google. IR systems allow restricting the set of 
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documents that are relevant to a specific problem, significantly 

accelerating the analysis [68]. 

- Information Extraction (IE) 

It is the process of automatically extracting structured information from 

unstructured text documents. An IE system involves the identification of 

entities such as names of people, companies and location, attributes and 

relationships between entities [67]. The system does this through pattern 

recognition. 

- Natural Language Processing (NLP) 

Natural language processing is one of the most challenging problems of 

artificial intelligence NLP looks for the ability of the computer to understand 

the natural language as do humans, thus having the ability to perceive the 

meaning of a sentence or document [69]. 

Natural language generation (NLG) ensures that the generated text is 

grammatically correct. Most NLG systems ensure that grammatical rules, 

such as agreement of the subject's verb, are obeyed and it is possible to 

decide how to organize sentences, paragraphs in a coherent way.  

- Data mining (DM) 

Data mining can be described as looking for patterns in text and by 

extracting hidden information, previously unknown and useful data. The 

main goal of the data mining process is to extract information from a 

dataset and transform it into an understandable structure for later use. 

Data must be first converted and next transformed into a format that allows 

easy knowledge extraction [70]. Different steps of data transformation may 

be applied depending on the original text format retrieved from a given 

database [71]. Figure 5 shows the steps in the Text Mining process. These 

steps will be described, exemplifying some of them with information taken 

from ClinVar. 
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Figure 5 - Process of Text Mining. Adapted from [70]. 

 
9.2 Process of Text Mining 

 

9.2.1 Text Pre-Processing 

During processing, the text is pre-processed to allow a superior application of the 

various Text Mining techniques. These will be described below. 

- Case Folding   

One of the first data treatments to be performed is to convert all letters to 

uppercase or lowercase. Case folding is a procedure intends to standardize the 

words so that they can be identified in the text in uppercase or lowercase letters 

in the future, allowing a faster character comparison process. For example: 

Database extracted data: 

 ‘somatic heterozygous G-to-A transition in the NRAS gene, resulting in a 

gly12-to-asp (G12D) substitution’; 
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After Case Folding treatment of extracted data:  

‘somatic heterozygous g-to-a transition in the nras gene, resulting in a 

gly12-to-asp (g12d) substitution’. 

 

- Tokenization and Removal of unwanted characters 

This step removes unnecessary characters such as punctuation that does not 

provide additional information [70]. From this, all words will be separated by 

space. This is a complex process because it is necessary to understand the 

domain of the text and which characters may contain important information. In 

the case of biology, it is important to keep the ‘+’ and ‘-‘ characters, because in 

the DNA strand, ‘+’ refers to the sense strand and ‘-‘ to the antisense strand. For 

example: 

Database extracted data:  

‘somatic heterozygous G-to-A transition in the NRAS gene, resulting in a 

gly12-to-asp (G12D) substitution’; 

After Tokenization: 

 ‘somatic heterozygous G to A transition in the NRAS gene resulting in a gly12 to 

asp  G12D  substitution’. 

 
 
- Stop Words Removal 

In this step, words without meaning / utility, i.e. that do not provide additional 

information are removed [70]. Examples of these words are ‘a’, ‘is’, ‘of’. Usually, 

40 to 50% of the total words in the text are removed in this step. For example: 

Database extracted data: 

 ‘somatic heterozygous G-to-A transition in the NRAS gene, resulting in a 

gly12-to-asp (G12D) substitution’; 
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After Stop Words Removal:  

‘somatic heterozygous G-to-A transition NRAS gene, resulting gly12-to-asp 

(G12D) substitution’. 

 

- Stemming 

Stemming is a process that reduces derived words, i.e. that turns words into their 

root. For example, when stemming is applied to words such as “computer” and 

“computing”, these words will be reduced to "compute" as it is its root [70]. This 

process can reduce verbal plurals and conjugations and, thus, the learning model 

can classify a document correctly, also reducing the number of words evaluated. 

In this way, the high dimensionality of TM applications is reduced, making it 

possible to use less computer space and shorter machine execution time. 

However, stemming has several drawbacks. Sometimes words that have the 

same root may have different meanings: for example, the English terms “desert” 

and “dessert” are words whose root is "des" but have completely different 

meanings. In fact, if it is poorly handled, stemming algorithms can greatly impair 

the result of the analysis. The major risks involved in this process are under-

stemming, over-stemming and mis-stemming. Under-stemming refers to when a 

suffix is not removed, or a smaller suffix was removed than it should. Over-

stemming, unlike the previous one, is when the stemming procedure has 

removed more suffix than it should [70]. Mis-stemming occurs when the stemming 

takes part of the word because it detected a suffix that was not. Nevertheless, 

stemming is a powerful tool for improving the performance of TM, which should 

be used with parsimony and insight into the original text under analysis [72]. For 

example: 

Database extracted data:  

‘somatic heterozygous G-to-A transition in the NRAS gene, resulting in a 

gly12-to-asp (G12D) substitution’; 

After Stemming: 

 ‘somatic heterozygous G-to-A transition NRAS gene, result gly12-to-asp 

(G12D) substitution’. 
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- Named Entity Recognition (NER) 

NER is a process of identifying terms that relate to an entity present in the text. 

Entities generally fall into predefined sets of categories, such as person, location, 

organization. In the case of biology-related texts, these categories can be 

proteins, DNA, RNA and cell lines or cell types. For example, cancer can be 

represented as a disease as well as an astronomical sign [73]. 

 
- Synonyms Handling 

Synonyms handling is the process of replacing words in the text with synonyms 

so that all words having the same meaning are replaced by the same word. This 

step allows you to significantly reduce the number of terms in the dataset without 

changing the meaning of the text. 

 
- Word Validation 

This step aims to validate the words found by the algorithm by comparing them 

to words in a dictionary. There are dictionaries available online with common 

terms, mainly in English, and other dictionaries with more specific terms, for 

example in the field of medicine or biology. 

 
9.2.2 Feature Generation  

After the pre-processing and now, having the texts cleaner and without words 

and characters that can be difficult the computational analysis. The next step is 

transforming the texts in a format that the computer can ‘read’. Therefore, there 

are three best known methods for transforming the dataset.  

- Bag of Words Model 

This model is considered the simplest in the field of Text Mining, since it only 

involves the transformation of unstructured text into numerical vectors, i.e. the 

Bag of Words Model represents the text as a numerical vector, where each 

number represents a specific word in a set of texts/documents (corpus). The 

numbers are the frequency of the word in the text [74]. The model is literally 
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represented as a 'bag' of the words that are present in the corpus, disregarding 

the order of words and grammar. Thus, texts are converted into numerical 

vectors, so that each text is represented by a vector (line) in the features matrix. 

 
Table 6 - Bag of Words Model. 

 polymorphism increased loss 

Text 0 0 1 1 

Text 1 0 0 0 

Text 2 0 0 1 

 
Thus, each column represents a feature and each row a text/document. The 

value of each cell represents the number of times each word (represented by 

column) occurs in a specific text (represented by line). 

 

- Bag of N-Grams Model:  

A word is just considered a token (output from tokenization) and is called in Text 

Mining as a monogram. However, we already know that the Bag of Words model 

does not consider order of words. Therefore, so if we want to consider the order 

of words in the document / text, N-grams may be useful. Hence, an N-gram is 

basically a collection of words/tokens from a text such that these tokens are 

contiguous and occur in a sequence. A Monogram indicate a n-grams of order 1 

(one word), Bi-grams is a n-grams with two words and Tri-grams a n-grams with 

3 words. Of notice, the Bag of N-Grams model is hence just an extension of the 

Bag of Words model and we can use the n-grams as features [75]. Similarly, with 

Bag of Words model an example of an output from the Bag of N-grams model is:  

Table 7 – N-grams using the Bag of N-Grams Model. 

 

 

 
no polymorphism 

n=2, bi-gram 

increased risk 

n=2, bi-gram 

loss of function 

n=3, tri-gram 

Text 0 0 1 1 

Text 1 0 0 0 

Text 2 0 0 1 
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The Bag of N-grams model provides the features for our texts, where each feature 

consists of a monogram, bi-gram and a tri-gram represented as a sequence of 

one, two or three words and values represent how many times the N-Grams were 

present into our texts. 

 
- TF-IDF Model  

There are some problems adjacent to the Bag of Words models (Bag of Words 

Model and Bag of N-Grams Model), since both feature vectors are based on the 

frequency of words/terms, hence, some words/terms that may occur more 

frequently in all texts and may tend to overshadow other words/terms in the 

feature set. Therefore, the TF-IDF model tries to solve this problem by using a 

scaling or normalizing factor. The TF-IDF is widely used in TM and allows to 

measure the importance that a given word has in a document or in a set of 

documents (corpus). The TF-IDF stands for Term Frequency-Inverse Document 

Frequency, which uses a combination of two metrics namely:  

- Term Frequency (TF), which is by definition the frequency in which a 

word occurs in the document or corpus. Therefore 𝑻𝑭(𝒕, 𝒅) is the number of 

times a term 𝒕 occurs in a document 𝒅  [74]. 

- Inverse Document Frequency (IDF), allows to reduce the weight of 

commonly used words and increases the weight of words that are not widely 

used throughout the corpus [74]. IDF can be calculated as follows:  

 

In this formula, 𝑵𝒅 is the total number of documents and 𝑰𝑫𝑭(𝒕, 𝒅) is the number 

of documents 𝒅 that contain the term 𝒕 . The 𝐥𝐨𝐠10 is used to ensure that low 

documents frequencies are not given too much weight [74]. Therefore, the TF-

IDF formula can be defined as the product of the term frequency and the inverse 

document frequency:  

𝑰𝑫𝑭(𝒕, 𝒅) = 𝒍𝒐𝒈𝟏𝟎

𝑵𝒅

𝒅𝒇(𝒅, 𝒕൯
 

𝑻𝑭 − 𝑰𝑫𝑭(𝒕, 𝒅) = 𝑻𝑭(𝒕, 𝒅) × 𝑰𝑫𝑭(𝒕, 𝒅) 
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The TF-IDF calculations were performed with the R package tidytext. This R 

package has powerful functions to deal with specific format of text widely used in 

TM approaches. The tidytext format is a table with one-token-per-row, this means 

that each row in the table is a string from the ‘list of strings’ that was given by the 

tokenization step.  

 
9.2.3 Feature Selection   

Feature selection is also known as variable selection and is the process of 

selecting subsets of relevant characteristics that will be used in the construction 

of the prevision model. The central point of the feature generation is that the terms 

present in the bag-of-words are often redundant and irrelevant and therefore can 

be removed without loss of information [76]. Emphasizing that a relevant term 

may be redundant in the presence of other relevant terms with which it is 

correlated. 

 
 

9.2.4 Machine Learning approaches  

At this point, Text Mining merges with Machine Learning approaches that allow 

the extraction of knowledge from texts. Some of these techniques are described 

below. 

 
- Unsupervised Learning: 

Clustering is a data mining technique that makes a meaningful or useful grouping 

of terms that have similar characteristics automatically. The clustering technique 

defines classes and puts the terms in each class [74]. Clustering involves 

grouping data, using either agglomerative clustering or divisive clustering 

techniques, with the aim of minimizing the distance between objects within the 

same cluster and maximize the distance between objects of different clusters. It 

is primarily concerned with distance measures and clustering algorithms which 

calculate the difference between data and group them accordingly. Clustering is 

most commonly referred to as ‘unsupervised learning technique’, i.e. the 

technique learns the inherent structure of data without using explicitly-provided 

labels. Since no labels are provided, there is no specific way to compare model 
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performance in most unsupervised learning methods. The Unsupervised learning 

can be useful to automatically identify structure in data.  

 

- Supervised Learning: 

The Supervised Learning is performed in the context of classification, when we 

want to map input to output labels and in the context of regression, when we want 

to map input to a contiguous output [74]. Common algorithms in supervised 

learning include Logistic Regression, Naïve Bayes, Support Vector Machine, 

Artificial Neural Networks, Decision Tree and Random Forest. Therefore, in both 

regression and classification, the goal is to find specific relationships or structure 

in the input dataset that allows us to effectively produce correct predictions.  

When constructing a supervised learning, the main considerations are the 

complexity of the model and the variance of bias. The complexity of the model 

refers to the complexity of the function you are trying to learn. The appropriate 

level of complexity of the model is usually determined by the nature of the training 

data. If the training dataset has only a small amount of data or if the data is not 

evenly distributed across different possible scenarios, one should choose a low 

complexity model. This is because a high-complexity model will likely overfit if 

used on a small number of data points. Overfitting refers to learning a function 

that fits your training data very well but does not generalize to other data points —

 in other words, you are strictly learning to produce your training data without 

learning the actual trend or structure in the data that leads to this output. 

Therefore, the classification is a classical technique of data mining based on 

Machine Learning and is used to classify each word in a set of texts. For the 

purpose the most relevant methods were:  

- Decision Tree: The Decision Tree influences a wide area of Machine 

Learning, covering both classification and regression. A Decision Tree can 

be used to visually represent decisions made by the algorithm. A Decision 

Tree is drawn upside down with the root node at the top [74], [77]. 

Therefore, each node represents a feature on which the tree divides into 

branches. The branch where there are no more divisions is called sheet 

and is where the final decision is. 
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The real sets have many features and the importance of the features and 

the relationships between them can be visualized along the tree structure. 

Thus, this methodology is known as learning Decision Tree from date and 

trees where the leaves are numbers or concrete classification as for 

example, 'Benign' and 'Pathogenic' are called Classification trees, 

however if in the sheet the decisions foreseen are continuous values for 

example, the price of a house, are called regression trees. 

Creating a Decision Tree involves deciding which features to choose and 

which decisions to use to split trees and especially know when to stop tree 

growth. Therefore, we must be pruning it so that the tree only considers 

the important features and does not grow indefinitely. There are two 

common techniques used to splitting the data for the several branches in 

the Decision Tree, divide and conquer and cost of a split.  

After, the Decision Tree starts to be divided considering each feature in 

the training data. However, in real problems the number of features is 

large, and this results in an enormous number of divisions in the Decision 

Tree which creates a large tree. These trees are considered too complex 

and can lead to overfitting. Therefore, it is necessary we to know when to 

stop. One technique to do this is to set a minimum number of training 

entries to use on each sheet. For example, we can use a minimum of 10 

samples to reach a certain decision and ignore any leaf that takes less 

than 10 samples. Another technique is to define the maximum depth of our 

model. The maximum depth refers to the length of the longest path of the 

root one of the leaves. The pruning is a method that allows us to increase 

the performance of the Decision Tree, removing branches which using low 

important features [74], [77]. Therefore, reduce the complexity of the tree, 

increase the predictive power of the model by reducing the overfitting. 

There are several pruning methods some more sophisticated than others, 

such as reduced error pruning and cost complexity pruning. The Decision 

Tree method is simple to understand, interpret and visualize, can handle 

both numerical and categorical data and can also handle with multi-output 

problems. However, the Decision Tree method could create over-complex 

trees that do not generalize the data well (overfitting), also create biased 
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trees if some classes dominate, hence it is recommended to balance the 

dataset prior to build the Decision Tree method.  

- Random Forest: Random Forest is a practical Machine Learning 

supervised algorithm, even without hyperparameter tuning, it produces 

great results frequently. It is one of the most commonly used ML 

algorithms because it is simple and can be used for classification and 

regression problems [74], [77]. Basically, the Random Forest algorithm 

create several Decision Trees and merges them together to get a more 

accurate and stable prediction. Therefore, the Random Forest in 

classification is considered the building block of Machine Learning and will 

be explained below.  

Random Forest adds randomness to the model, i.e. unlike Decision Trees, 

instead of searching for the most important feature when dividing a node, 

it searches for the best feature among one of the random subsets of 

features. This method considers also the feature importance, once 

measures the relative importance of each feature in the prediction. 

Therefore, several tools measure the importance of each feature 

considering how much the nodes of the Decision Trees that use this 

feature, reducing the noise in all Decision Trees. Considering the 

importance of features, we can decide which features we want to remove, 

since they do not provide enough for the prediction process. This is one of 

the key points in the Random Forest method, once the Machine Learning 

methods are more likely to be overfitting and vice-versa. Another important 

aspect in the Random Forest method is the hyperparameters that can be 

added to increase the predictive power of the method or to make it faster. 

Therefore, there are numerous advantages to using Random Forest 

method, as the ability to adjust the method to classification and regression 

data, and it is easy to visualize the relative importance of the input 

features. It is also considered a practical algorithm, once the standard 

hyperparameters generally produce a good predictive result, moreover the 

addition of hyperparameters are easy to understand.  

However, a major problem in Machine Learning is the overfitting as 

mentioned earlier. The main limitation of Random Forest is that a large 
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number of trees can make the algorithm slow and inefficient for real-time 

predictions [74]. Moreover, are fast algorithms to train but very slow to 

create forecasts after being trained. In many real-world applications, the 

Random Florets algorithm is fast enough, but there are certainly situations 

where run-time performance is important and other approaches may be 

preferred. 

 

- Decision Tree vs. Random Forest: although Random Forest is 

considered a collection of Decision Trees there are some differences. 

Therefore, if the input of a Decision Tree is a set of training data with 

features and labels for each instance, the method will formulate a set of 

rules that will be used to make predictions. In comparison, the Random 

Forest method randomly selects instances and features to construct 

multiple Decision Trees and then calculates the average of the results. 

Another difference between these two ML methods with supervised is that 

deep Decision Trees can suffer from overfitting. However, Random Forest 

prevents overfitting most of the time by creating random subsets of 

features and constructing smaller Decision Trees using those subsets. 

Then combine these subtrees, yet this type of strategy is not always 

effective and makes computing slower, depending on how many trees our 

Random Forest creates. 

 
As previous mentioned, the supervised Machine Learning methods allows us to 

calculate several performance measures to evaluate the prediction capacity. 

Therefore, we use the values in the confusion matrix that is the output object 

from the ML model (Table 8). Hence, if we had, a binary classification such as 

‘Benign’ (positive class) and ‘Pathogenic’ (negative class), after built a ML 

model, the output object is a confusion matrix similar to Table 8 to have the 

prediction values.  
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9.2.4.1. Performance Evaluation Measures 

Table 8 - Example of a Confusion Matrix. 

 

 

 

 

 

Considering the Confusion Matrix, there are four important terms:  

- True-Positives (TP): the cases in which we predicted ‘Benign’ 

classification and the actual output was also ‘Benign’ classification; 

- True-Negatives (TN): the cases in which we predicted 

‘Pathogenic’ classification and the actual output was also 

‘Pathogenic’ classification; 

- False-Positives (FP): the cases in which we predicted ‘Benign’ 

classification and the actual output was ‘Pathogenic’ classification; 

- False-Negatives (FN): the cases in which we predicted 

‘Pathogenic’ classification and the actual output was ‘Benign’ 

classification. 

The values in confusion matrix (Table 8) allows the calculation of the following 

performance measures:  

 

- Accuracy:  it is the ratio of number of correct predictions to the total number of 

input samples [77]. Therefore, the accuracy is calculated considering the average 

of the values across the ‘main diagonal’, i.e.: 

 Predicted 

Actual Benign Pathogenic 

Benign True-Positive False-Negative 

Pathogenic False-Positives True-Negative 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆𝒔
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- Precision (Positive Predictive Value, PPV), for the ‘Benign’ classification  
(positive class) is defined by [77]:  

 

- ‘Negative’ precision (Negative Predictive Value, NPV), for the ‘Pathogenic’ 

classification (negative class) is defined by:  

 

- Recall, also known as True Positive Rate (TPR) for the ‘Benign’ classification 

is defined by the formula [77]: 

 

- ‘Negative’ recall (True Negative Rate, TNR) for the ‘Pathogenic’ classification 

is defined by the formula: 

 

- F1-Score: 

Another measure to evaluate the performance of the models is the F1-score 

that combines the precision and recall using the harmonic mean. Therefore, the 

F-measure has an intuitive meaning [78]. F1-score measures the accuracy of 

your classifier, i.e. how many instances it sorts correctly. Furthermore, it 
measures the robustness of the model, i.e. it checks if the model does not lose 

a significant number of instances. Therefore, with high accuracy, but low recall, 

the classifier is extremely accurate, but loses a significant number of instances 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 

 

′𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆′𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 

 

′𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆′𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
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that are difficult to classify, however, this is considered to be of little use. F1-

Score is the harmonic mean of precision and recall, so when we optimize a 

rating model by increasing one we disadvantage the other and the harmonic 

average decreases rapidly [74]. However, the harmonic average is higher when 

accuracy and recall are the same. The following is the formula for F1-score: 

 

 

As described above, we have also created an alternative formula focused on 

the ‘negative’ precision and ‘negative’ recall. The following would be the formula 

for the ‘negative’ F1-score: 

 

- ROC curve and AUC: 

Another possible measure for the performance of a given model is the ‘Receiver 

Operating Characteristic’ (ROC) curve and the associated statistic ‘Area Under 

the ROC curve’ (AUC). The ROC curve is a graphical plot representing the FPR 

in the x axis and the TPR in the y axis, thus showing the diagnostic ability of a 

given classifier system. For example, a perfect classifier, with a TPR of 1 and an 

FPR of 0, would fall in the top left corner of the ROC curve [74], [79]. The AUC is 

a directly-related statistical measurement that characterizes the performance of 

the model, with 1 being the maximum value. For example, a given classifier with 

an AUC of 0.95 would be considered very good. However, ROC curves and AUC 

are not ideal measurements when dealing with models built using imbalanced 

datasets [74], [79]. In fact, Precision and Recall measurements are considered to 

be more informative on a given model performance, when the original dataset is 

imbalanced [80].  

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =  
𝟐 ×  𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝒓𝒆𝒄𝒂𝒍𝒍

𝟐 × (𝒓𝒆𝒄𝒂𝒍𝒍 + 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)
 

 

′𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆′ 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =  
𝟐 × ′𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆′ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × ′𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆′ 𝒓𝒆𝒄𝒂𝒍𝒍

𝟐 × (′𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆′ 𝒓𝒆𝒄𝒂𝒍𝒍 + ′𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆′ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)
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9.2.5 Knowledge Discovery 

The knowledge discovery is the result of the whole process of Text Mining. After 

all the steps in the Text Mining process, it is necessary to extract knowledge from 

this information. Knowledge can lead to new discoveries [81] and to the increase 

of previously acquired knowledge. Knowledge is not extracted by any algorithm, 

the computational part only serves to facilitate the extraction of information, not 

the interpretation of information. For the interpretation and understanding of the 

information resulting from the process of Text Mining human intervention is 

necessary. 

Nam and Park [82] used Text Mining and discovered two pathways functionally 

involved in the predictor gene set, indicative of susceptibility to early-onset 

colorectal cancer, overcoming the lack of studies of colorectal cancer expression 

throughout the genome. 

9.2.6 Hypothesis Generation  

The generation of hypotheses is to obtain an unproven conclusion through 

information hidden in the text, while the discovery of knowledge means to extract 

innovative knowledge. Text Mining methods can facilitate the generation of 

biomedical hypotheses, suggesting new associations between diseases and 

genes. 

The biomedical literature is essential to extract potential information to make 

biomedical inferences and generate new hypotheses. The generation of 

hypotheses is an important task in Text Mining and is increasingly used by 

biomedical researchers wishing to infer unfamiliar biomedical facts.  

One of the best-known examples for generating hypotheses came when 

Swanson found a connection between fish oil and Raynaud's syndrome. Thus, it 

has been hypothesized that fish oil may be useful in reducing high blood viscosity 

and high platelet aggregation, attenuating the symptoms of Raynaud's 

Syndrome. 

The creation of protein-protein ratio maps specific to Alzheimer's disease based 

on interaction and mining networks provided Li et al. [83] propose a new 
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hypothesis where diltiazem and quinidine can be investigated as candidate drugs 

for the treatment of Alzheimer's disease. 

 

10. Text Mining software and tools 

The development of software that allows the extraction of knowledge from 

unstructured texts, has had special attention over the years. The emergence of 

several software and tools that allow the execution of the Text Mining process 

are an asset in the areas of biomedical research where it is necessary to read 

and analyse several publications and large amount of texts provided by 

databases. 

In terms of information retrieval (IR) systems, PubMed is one of the most well-

known biomedical databases, as well as MEDLINE and scientific journals that 

provide a wealth of information across the web. 

In the pre-processing domain, software such as Acromine provides a dictionary 

of abbreviations that is built automatically from all MEDLINE. BioLexicon 

represents the set of lexical information terms that improve Text Mining 

performance. This tool gathers terminologies from large data sources such as 

UniProtKb and NCBI.  Since the identification of the entity is a fundamental part 

of the Text Mining process, the connection of tools/software to large bibliographic 

databases is extremely important, for which GENETAG, one of the most used 

tools in the field of Text Mining, compiles about 20,000 sentences from MEDLINE 

for the identification of the term gene/protein.  The recognition of named entities 

(NER), also being a stage of pre-processing, allows the identification of specific 

terms such as genes, proteins, diseases, etc. There are software and entity 

recognition tools that use Machine Learning algorithms that facilitate entity search 

and entity-term relationship. 

A few tools available, such as iHOP that provides quick and accurate summary 

information covering approximately 80,000 biological molecules that are 

automatically extracted from key phrases from millions of PubMed documents 

[84]. Thus, iHOP allows the researcher to explore a network of gene and protein 

interactions by navigating directly in published scientific literature. Instead of 

providing long lists of entire abstracts after searching through keywords, iHOP 
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retrieves and selects specific information about genes and proteins and 

summarizes their interactions and functions. 

BioText- Quest [85] is a biomedical Text Mining or concept discovery system that 

provides services such as biomedical recognition of named entities, association 

of concepts, and generation of hypotheses. It was initially constructed with 1000 

abstracts of MEDLINE randomly selected on the yeast theme, later the dataset 

was annotated manually, now including abbreviated denunciations, protein-

protein interaction data and the relationship between entities related to the 

treatment of diseases.  

 

11. Application of Biomedical Text Mining in cancer research 

As a complex disease, cancer is related to many genes and proteins. Biomedical 

researchers are interested in extracting cancer-related genes and proteins from 

the literature to study cancer diagnosis, treatment and prevention. Chun et al. 

[86] developed a system of recognition of entities and relationships between 

prostate cancer and relevant genes. Deng et al. [87] used a Text Mining approach 

to identify genes related to prostate cancer as candidate genes and using the 

Online Mendelian Inheritance in Man (OMIM) database to verify them. Krallinger 

et al. has implemented two cancer-related Text Mining applications [88]. One was 

used to extract human genetic mutations from predefined types of cancer from 

literature, the other was particularly used for classification of breast cancer and 

classification of breast cancer genes. One of the important areas of the cancer 

research is risk assessment, which determines the probability of developing 

cancer, evaluating the available evidence, through research and studies already 

existent and through Text Mining it is possible to collect and extract information 

that allows a possible early detection, for the prevention and management of 

patients always with the aim of reducing and controlling the causes of cancer.  

Despite these examples, there are currently no tools that can interpret 

unstructured texts from clinical databases to infer pathogenicity in a global 

manner. This gap in knowledge is expected to be filled by the tool 

developed with this Thesis, which has used OMIM unstructured clinical 

texts concerning ClinVar-classified genetic variants as input for a 
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combination of Text Mining and Machine Learning approaches. This tool is 

expected to help the user to narrow down the amount of clinical information 

collected from public databases, such as OMIM, and thus enable relevant 

genomic variant data selection. 
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Methods, Results and Discussion 
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The aim of this Thesis is to develop a Text Mining tool that allows the classification 

of a genomic variant as ‘Benign’ or as ‘Pathogenic’, with a given certainty, using 

the clinical description of such genomic variant present in the OMIM. This tool will 

allow the user to narrow down the amount of clinical information collected from 

public databases and thus enable relevant genomic variant data selection. To 

develop this tool six main steps were performed:  

Step 1: Dataset Construction: information retrieval and type of input: We 

started by constructing a dataset with clinical unstructured texts from 

OMIM on genomic variants with a defined classification in ClinVar. This 

dataset was the original input that allowed for the construction and 

validation of the described tool. This was a step of information retrieval, 

and was performed mostly using a previously developed tool in the 

research group, Annotator; 

Step 2: Clinical Unstructured Text Pre-processing: the collected input 

from step 1, i.e. the information present in our original dataset, was 

adequately pre-processed for the usage of Text Mining tools; 

Step 3: Definition of the dictionary of relevant biological keywords: 

this dictionary was based on the knowledge from the literature, where each 

keyword had different connotations (positive or negative) and biological 

implications (‘Benign’ or ‘Pathogenic’), that were in turn translated into a 

numeric score;  

Step 4: Term Frequency-Inverse Document Frequency (TF-IDF): we 

next calculated the TF-IDF, to understand the importance that each 

keyword has in a document. In particular, we aimed at finding new relevant 

keywords to add to the dictionary of keywords built in the previous step 

(step 3), by calculating the TF-IDF for each word present in the clinical 

unstructured texts collected from OMIM;  

Step 5: Sentiment Analysis: this step consisted of the analysis of the 

sentiment expressed throughout clinical unstructured texts, using the 

technique ‘Sentiment Analysis’, to understand whether the connotation of 

each keyword in the dictionary of keywords was well defined in the 
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previous steps (step 3 and 4), i.e. whether the score of each keyword was 

adequate;  

Step 6: Machine Learning Approaches: finally, we fine-tuned our 

keyword scoring strategy (steps 3-5) using Machine Learning approaches 

(Decision Trees and Random Forest approaches), for maximum accuracy 

of the classification of clinical unstructured texts. This step was constituted 

by eight sub-steps: first, second and third steps were the preparation and 

selection of the number of genomic variants to be part of the input dataset 

in the ML approach and the division into training and test dataset, that 

were used in the ML further steps. Fourth to the seventh steps were 

associated with the construction of the models based on the training 

dataset and the evaluation of each model built. The final step was the 

evaluation of the performance of the final Random Forest model built using 

a novel dataset of genomic variants, that which were not part of the original 

dataset used for model creation.  

Each of these steps will be fully detailed in the next sections of this Thesis. 

 

Step 1. Dataset Construction: information retrieval and type of input 

Information retrieval was the first step of this Thesis and it was done using a tool 

previously developed in the group that performs genomic variants annotation, 

classification and interpretation – Annotator. This tool allows extracting 

information from clinical databases such as OMIM, ClinVar, UniProt, dbSNP, etc. 

This information was used as input for the initial Text Mining steps. For the scope 

of this Thesis, the input collected was a large set of clinical unstructured texts on 

several previously identified genomic variants from the public available database 

OMIM and the corresponding classification performed and available in the 

database ClinVar. 

For the purpose of this Thesis, we have selected a large set of genomic variants 

classified in the database ClinVar with the following clinical interpretation terms: 

‘pathogenic’, ‘likely pathogenic’, ‘likely benign’, ‘benign’, ‘drug response’, ‘risk 

factor’, ‘protective’, ‘sensitivity’, ‘affects’ and ‘association’. These clinical 

interpretations provided by ClinVar are based on the American College of Medical 
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Genetics guidelines [66] or defined by ClinVar itself. Of notice, genomic variants 

classified as ‘Variants of Unknown Significance’ (VUS) by ClinVar were not 

selected to be part of our original dataset, as this classification does not define 

the true clinical relevance of the variant.  

All collected genomic variants (except VUS) were next screened in the database 

OMIM. Only genomic variants with a defined classification in ClinVar and with a 

corresponding clinical unstructured text in OMIM were selected to be part of the 

original dataset. The clinical unstructured texts collected from OMIM contained a 

detailed description derived from research articles or manual curation from OMIM 

curators. This is an example of a text retrieved from OMIM database:  

“In tumor tissue of gastric cancer (see 613659), Horii et al. (1992) 

identified a g-to-t somatic transition in the APC gene, Chen et al. 

(2011) has shown that this variant results in a gly1120-glu 

substitution (g1120e).” 

 

This example of a clinical unstructured text contains information about the 

relationship between a genomic variant that was detected in the gene APC and 

the resulting disease phenotype. Several levels of information can be observed 

in this example: 

- The information within parentheses that refers to a number ‘(see 

613659)’ corresponds to the phenotype MIM number. This number 

corresponds to a given disease/phenotype. For the genomic variant in 

the example, the disease/phenotype associated to the MIM number is 

‘gastric cancer intestinal included’;  

- The information ‘Horii et al. (1992)’ corresponds to a citation of a 

research article from which information was retrieved by OMIM (a 

reference).  

- The information ‘(G1120E)’ corresponds to the amino acid alterations 

caused by this genomic variant. In this case a glycine (G) is replaced 

by a glutamate (E) in the position 1120 of the protein. This information 

is relevant to understand the type of protein variation that may be 

responsible to the observed alterations of disease/phenotype. 
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Not present in this example, however often found in OMIM description, are 

several types of numeric information, such as: 

- Statistic-related numbers (p-value, odds-ratio, allele frequency),  

- RS numbers derived from the 1000 Genomes project and dbSNP 

(public available databases on genomic variants); 

- RCV numbers, which correspond to ClinVar accession identifiers; 

- Cytogenetic locations, such as ‘p12.3’.  

After input collection from ClinVar and OMIM, the original dataset used for this 

Thesis contained 25,266 genomic variants, as described in Table 9. In particular, 

the original dataset was constituted by 10 ‘.txt’ files, one for each ClinVar clinical 

interpretation term, wherein each line entailed the OMIM clinical unstructured text 

for a given genomic variant. 

 
Table 9 - ClinVar clinical interpretation terms and the respective number of genomic variants 

in OMIM. 

Clinical Interpretation 
Terms in ClinVar 

# Variants with Clinical Unstructured Texts 
collected from OMIM 

Pathogenic 23,997 

Benign 174 

Risk Factor 733 

Association 100 

Drug Response 49 

Protective 57 

Affects 152 

Likely Benign 1 

Likely Pathogenic 1 

Sensitivity 2 

#Total Number of Variants 25,266 
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Step 2. Clinical Unstructured Text Pre-processing  

The next step for the development of our tool was the pre-processing of the 

clinical unstructured text collected previously. This was the most time-consuming 

step in entire Text Mining analysis underlying the development of our tool. The 

pre-processing step was highly relevant for this Thesis, given that several types 

of information are known to be present in the collected clinical unstructured texts 

collected that may hamper downstream interpretation. Therefore, the pre-

processing step was aimed at the reduction of the noise and size of data 

collected. In particular, the pre-processing step enabled: 

2.1. Case folding; 

2.2. Removal/Replacement functions, in order to select and remove from 

the information of the collected text known to be present in OMIM texts or 

in any unstructured text; 

2.3. Plural removal; 

2.4. Tokenization.  

Of notice, the pre-processing step was customized to fit the content of OMIM 

clinical unstructured texts using both classical and non-classical Text Mining 

approaches, as described below.  

Step 2.1 Case Folding  

This step consisted on the conversion of all words in the clinical 

unstructured text into lowercase to avoid considering the same word as 

different. For example:   

Original Clinical Unstructured Text: 

“In tumor tissue of gastric cancer (see 613659), Horii et al. 

(1992) identified a g-to-t somatic transition in the APC gene, 

Chen et al. (2011) has shown that this variant results in a 

gly1120-glu substitution (g1120e).” 
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Clinical Unstructured Text after case folding: 

“in tumor tissue of gastric cancer (see 613659), horii et al. 

(1992) identified a g-to-t somatic transition in the apc gene, 

chen et al. (2011) has shown that this variant results in a 

gly1120-glu substitution (g1120e).” 

 

Step 2.2 Removal/Replacement functions 

This step was based on several functions, that allow the removal and/or 

replacement of terms, expressions and punctuation that may complicate 

the extraction of valuable information from the clinical unstructured text. 

Three main strategies were selected:  

- the first strategy was aimed at specific words, such as gene names; 

- the second strategy was aimed at OMIM-derived information, such 

as research article references; 

- the third strategy was aimed at removing punctuation such as, 

commas, semicolon, apostrophes and decimal points. 

For the first strategy, we collected two lists of words/terms which were 

selected for removal from the clinical unstructured texts. In particular, the 

lists were:  

1. Gene List: a list of all OMIM-derived gene names, collected from 

OMIM database;  

2. Stop Words List: a list of words without biological relevance, such 

as ‘in’, ‘the’, ‘with’. This list was compiled using a list from the 

Python module ‘NLTK’ [89] and further curated manually. 

To remove the words within the Gene List and the Stop Words List we 

have used the membership testing method. In this method, we use the 

Python 'in' operator, which checks if an element is in a list. Therefore, the 

'not in' operator tests the opposite, i.e. if an element is not in the list. Of 

notice, this type of method was highly time-consuming. For example:  
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Clinical Unstructured Text after case folding: 

“in tumor tissue of gastric cancer (see 613659), horii et al. 

(1992) identified a g-to-somatic transition in the apc gene, chen 

et al. (2011) has shown that this variant results in a gly1120-

glu substitution (g1120e).” 

Clinical Unstructured Text after case folding and first strategy for 

removal/replacement of specific words/terms: 

“tumor tissue gastric cancer (see 613659), horii et al. (1992) 

identified g-to-somatic transition gene, chen et al. (2011) has 

shown variant results gly1120-glu substitution (g1120e).” 

 

For the second strategy, aimed at OMIM-related information, we have 

used regular expressions built to identify and remove the following 

information: 

- Bibliographical references; 

- Gene names;  

- MIM numbers; 

- Amino acids alterations; 

- Numeric information.  

By definition, regular expressions are a sequence of characters that 

together build a search pattern. When the match between the search 

pattern and the text is true, the searched string is found, and further action 

may be defined. To increase search efficiency, the regular expression 

needs to be generalist enough to be able to detect as many strings as 

possible, but it should not be too generalist in order to find the strings that 

have no interest. The main reasons to use regular expressions were the 

versatility and the efficient search of the pattern in the text. Of notice, for 

this Thesis, all OMIM-related information was removed from the clinical 

unstructured texts and stored in parallel ‘.txt’ files, available for 

downstream analysis.   
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To replace OMIM bibliographical references, we searched for the 

expression ‘et al.’ followed by a parenthesis with four digits inside of it. As 

presented in the text example below, this motif search would be sufficient 

to pinpoint the reference ‘Horii et al. (1992)’. Nevertheless, alterations to 

this motif were also included in our tool as not always is the term “et al.” 

present in the unstructured text. For example, OMIM bibliographical 

references might be inserted within curly brackets, might include more 

than one author or more than one year. When a reference was found it 

was replaced by a numeric code. Both the original reference and the 

numeric code were saved in a parallel ‘.txt’ file available for downstream 

purposes. For example: 

Clinical Unstructured Text after case folding and first strategy for 

removal/replacement of specific words: 

“tumor tissue gastric cancer (see 613659), horii et al. (1992) 

identified g-to-t somatic transition gene, chen et al. (2011) has 

shown variant results gly1120-glu substitution (g1120e).”  

Clinical Unstructured Text after case folding, first strategy for 

removal/replacement of specific words and second strategy for 

removal and replacement of bibliographical references: 

“tumor tissue gastric cancer (see 613659), Ref.1 identified g-

to-t somatic transition gene, Ref.2 has shown variant results 

gly1120-glu substitution (g1120e).” 

 

For the third strategy and following the classical Text Mining (TM) 

approach, we have removed all punctuation elements such as commas, 

semicolons, hyphens, apostrophes and decimal points. For example: 
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Clinical Unstructured Text after case folding, first strategy for 

removal/replacement of specific words and second strategy for 

removal and replacement of bibliographical references: 

“tumor tissue gastric cancer (see 613659), Ref.1 identified g-

to-t somatic transition gene, Ref.2 has shown variant results 

gly1120-glu substitution (g1120e).” 

Clinical Unstructured Text after case folding, first strategy for 

removal/replacement of specific words and second strategy for 

removal and replacement of bibliographical reference, third strategy 

removal unwanted punctuation: 

“tumor tissue gastric cancer (see 613659) Ref.1 identified g-to-

somatic transition gene Ref.2 has shown variant results 

gly1120 glu substitution (g1120e).” 

 

Of notice, classical TM approaches also remove parentheses and 

endpoints. However, in OMIM-derived clinical unstructured texts the 

information between parentheses (as previously described) and the 

endpoints were not removed to avoid loss of context. To handle with the 

parentheses, we separated the clinical unstructured texts into two units. 

The first unit, named ‘larger context unit’ includes all the text that was 

outside the parentheses and the second unit, the ‘smaller context unit’, 

includes the text that was within parentheses.  The previous analyses were 

applied to the context units separately, however, when we made the 

separation, the position of the ‘smaller context unit’ into the text was lost 

as well as the context. Therefore, we decided not to separate the clinical 

unstructured text into the above-mentioned context units. Endpoints lead 

to the same context problem. However, in this case, endpoints were crucial 

to perceive in the OMIM-derived clinical unstructured texts where a 

sentence ends. Unlike classical TM approaches and to avoid this problem, 

it was decided to maintain the endpoint in the further analyses, however 

all other unnecessary punctuation was removed.   
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Step 2.3 Singularization  

Words have different morphological variations, such as suffixes for making 

a plural word [4]. Therefore, the main purpose of the singularization step 

was to simplify the clinical unstructured texts, minimizing the number of 

words. For that, we used the Python inflection module that enables the 

singularization step [90]. This module detects the termination of a word 

and depending if was regular or irregular, the output of the function was 

the singular form of such word, e.g. the word ‘tumours’ (plural) after 

singularization was transformed into the singular form ‘tumor’ because it 

has a regular plural. In the case of the word ‘children’, this entails an 

irregular plural and the corresponding singular form is ‘child’. 

This type of transformation in OMIM texts entails problems mainly because 

of the use of clinical expressions, e.g. clinical expressions that do not have 

the singular form or the singular is not included in Python inflection module.  

Another problem occurs once the Python inflection module [90] considers 

the ‘s’ as a plural termination, so when any word ends in ‘s’, regardless of 

whether it is a plural form or not, the ‘s’ is always removed. For example: 

‘is’ → ‘i’; 

‘homozygous’ → ‘homozygou’.  

Therefore, sometimes the singularization implies a complete alteration in 

the word compromising the efficient search for a word in the text. This was 

the main reason why the singularization step was not used in the pre-

processing step in this Thesis.   

 
Step 2.4 Tokenization 

Tokenization consists, as previous mentioned, the splitting of a text by a 

specific character, and is crucial to convert the data into a format that is 

easier for the computer to interpret [91]. For this Thesis, the character 

chosen to separate the text were whitespaces. The tokenization function 

splits the content of the input text by whitespaces and returns a list where 
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each item in the list was a word or term from the input text that has been 

split and was named token. For example: 

Clinical Unstructured Text after case folding, first strategy for 

removal/replacement of specific words and second strategy for 

removal and replacement of bibliographical reference, third strategy 

removal unwanted punctuation: 

“tumor tissue gastric cancer (see 613659), Ref.1 identified g-

to-t somatic transition gene, Ref.2 has shown variant results 

gly1120-glu substitution (g1120e).” 

Clinical Unstructured Text after case folding, first strategy for 

removal/replacement of specific words and second strategy for 

removal and replacement of bibliographical reference, third strategy 

removal unwanted punctuation, tokenization: 

“ ’tumor’, ‘tissue’,  ‘gastric’, ‘cancer’, ‘(see 613659)’, ‘Ref.1’,  

‘identified’,       ‘g-to-t’, ‘somatic’, ‘transition’,  ‘gene’, ‘Ref.2’, 

‘has’, ‘shown’, ‘variant’, ‘results’,  ‘gly1120’,  ‘glu’,  

‘substitution’,  ‘(g1120e)’, ’.’ ” 

 

Unstructured clinical texts that were previously 'strings', after tokenization 

become a 'list of strings'. Therefore, after tokenization, the 10 ‘.txt’ files 

created as described in Step 1 (‘Dataset Construction: information retrieval 

and type of input’) of this Chapter, in each line was a string (the clinical 

unstructured text derived from OMIM), now become a ‘list of strings’, i.e. a 

list of all the words that were previously separated by whitespaces. This 

type of transformation improves the efficiency of the downstream analysis.  

In summary, for the pre-processing step of our tool, we performed a 

customized clean-up of the clinical unstructured texts from our original 

dataset, using some but now all classical techniques.  
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Step 3: Definition of the dictionary of relevant biological keywords  

To analyse the clinical unstructured texts from OMIM, now constituted by a list of 

words obtained after the pre-processing described in the previous section, we 

decided to implement a strategy that is not classically associated with TM [70]. In 

particular, we opted for a strategy focused in the search for specific words in the 

‘.txt’ files generated for each type of ClinVar classification. This simpler strategy 

derived from our prior knowledge that certain keywords have different 

connotations and biological implications that can directly help in the 

understanding of the meaning of a given clinical unstructured text. For example, 

if within a clinical unstructured text from a given genomic variant the keyword 

‘polymorphism’ occurs, this variant is likely to classified as ‘Benign’ by the 

database ClinVar classification. This classification was given once the keyword 

‘polymorphism’ is known to have a positive connotation, i.e. not associated with 

disease. The opposite is valid for the keyword ‘mutation’: if it occurs within the 

clinical unstructured text from a given genomic variant, it is likely to be classified 

as ‘Pathogenic’ by the database ClinVar classification, as it is likely to be 

associated with a disease.  

Other keywords exist to which it is more complicated to associate a positive or 

negative connotation: for example, the keyword ‘substitution’ cannot be clearly 

associated or not with disease, hence we considered it as entailing a neutral 

connotation. Other examples can be found in Table 10.   

Table 10 – Connotation associated with the keywords. 

 

With this positive/negative/neutral connotation concept, we next decided to 

create a dictionary of relevant biological keywords. This initial dictionary was 

based on knowledge extracted from literature and careful examination of the 

clinical unstructured texts extracted and was constituted by 127 keywords plus 

Connotation Positive Negative Neutral 

Examples 
of 

Keywords 

‘polymorphism ‘ ‘mutation’ ‘homozygotes’ 

‘benign’ ‘autosomal-recessive’ ‘substitution’ 

‘natural-variant’ ‘susceptibilities’ ‘missense’ 
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the plural of some of them, totalling 254 keywords. To understand whether other 

keywords could be relevant for our dictionary of relevant biological keywords, we 

next performed a series of measurements of the frequency of N-grams in the pre-

processed clinical unstructured texts. N-grams are widely used in TM analysis 

[75] and by definition, are combinations of one or more words, with the three most 

common levels being: 

- Monogram = 1 word, e.g. ‘risk’; 

- Bi-gram = 2 words, e.g. ‘increased risk’; 

- Tri-gram = 3 words, e.g. ‘associated increased risk’. 

Pinpointing the monogram word ‘risk’ or the bi-gram words ‘increased risk’ have 

distinct biological meanings, hence the relevance of analysing the existence of 

N-grams. Therefore, we analysed the frequency of N-grams as the main 

measurement that will determine whether a given N-gram will be added or not to 

our dictionary of relevant biological keywords. For example, if a given bi-gram 

was found in very low frequency in the clinical unstructured texts, adding it to the 

dictionary of relevant biological keywords may compromise the efficiency of our 

search for meaning, without adding information that another keyword could 

already reveal. For example, having both the keyword monogram ‘susceptibility’ 

and the bi-gram ‘decreased susceptibility’ in our dictionary was relevant, once 

both N-grams add relevant information. However, the tri-gram ‘very decreased 

susceptibility’ adds complexity to the search without adding biological meaning. 

Moreover, even if a given N-gram was found in high frequency, its addition to the 

dictionary may not bring extra relevant information. Hence, our dictionary of 

relevant biological keywords must be generalist enough to allow a fast 

understanding of the information within the clinical unstructured texts and prevent 

over-analysis of such texts which could compromise its efficiency. In addition, the 

analysis of the frequency of N-grams was also important to understand whether 

a given word/words have a positive or negative connotation. In particular, we 

generally searched for: 

- high frequency N-grams in the clinical unstructured texts from variants 

classified as ‘Benign’, to which a positive connotation could be attributed 

and thus added to our dictionary; 
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- high frequency N-grams in the clinical unstructured texts from variants 

classified as ‘Pathogenic’, to which a negative connotation could be 

attributed and thus added to our dictionary.  

Therefore, the frequency of N-grams was analysed to determine which 

monogram, bi-grams and tri-grams were most frequent in the two ‘.txt’ files of pre-

processed clinical unstructured clinical texts for variants classified as ‘Benign’ 

(Figure 6) or as ‘Pathogenic’ (Figure 7).  

 

Figure 6 - Top 10 of the most frequent monograms (A), bi-grams (B) and tri-grams (C) in 

‘Benign’ ClinVar classification. 

 

In Figure 6A the monograms with the highest frequency in ‘Benign’ variants were 

‘allele’ and ‘polymorphism’. These monograms are directly related, respectively, 

with the bi-grams ‘allele frequency’ and ‘polymorphism gene’, which are on the 

top 10 of the most frequent bi-grams in the pre-processed clinical unstructured 

texts from variants classified as ‘Benign’ (Figure 6B). Furthermore, the word 
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‘polymorphism’ is also indirectly related with the bi-gram ‘allele frequency’: in fact, 

when an OMIM text mentions a high frequency of alleles, this often refers to a 

polymorphism, as this type of genomic variants have a high frequency in the 

population without any malignant effects. Therefore, because of its high 

frequency in the pre-processed clinical unstructured texts of variants classified as 

‘Benign’, the word ‘polymorphism’ was a good candidate to be added to the 

dictionary of relevant biological keywords with a positive connotation. 

Interestingly, this keyword was already part of the dictionary of relevant biological 

keywords, derived from knowledge extracted from literature.  

Other words represented in Figure 6A, such as ‘found’, ‘gene’, ‘variant’, 

‘patients’, ‘frequency’ were not considered as relevant keywords for our dictionary 

with a positive connotation because they are very common in both ‘Benign’ and 

‘Pathogenic’ analysed texts and may lead to loss of search specificity (Figure 

7A). The words ‘mutation’, ‘association’ and ‘substitution’, although with high 

frequency (Figure 6A), as we take into account the knowledge of the literature, 

are terms that were not directly related with a ‘Benign’ classification and thus not 

added to the dictionary with a positive connotation. Likely these words appear in 

the ‘Benign’-classified analysed texts with a negative context, for example ‘not 

found mutation’. 

The most frequent bi-gram in Figure 6B was the ‘odds ratio’. Therefore, 'odds 

ratio', it is a statistical measure that allows calculating the change of a certain 

individual to have or not a disease [92]. Due to this dichotomy, we opted to not 

add this bi-gram to our dictionary. The analysis of tri-grams in Figure 6B did not 

introduce any relevant words to be added to our dictionary of relevant biological 

keywords with a positive connotation.  
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Figure 7 - Top 10 of the most frequent monograms (A), bi-grams (B) and tri-grams (C) in 

‘Pathogenic’ ClinVar classification. 

 

In the pre-processed clinical unstructured texts from genomic variants classified 

as ‘Pathogenic’, the word ‘mutation’ had the highest frequency (Figure 7A). In 

fact, if the word ‘mutation’ is mentioned in an OMIM text for a given genomic 

variant, often it has a malignant effect. Therefore, this word would be a relevant 

keyword to be added to the dictionary with a negative connotation. Nevertheless, 

this keyword was already part of the dictionary of relevant biological keywords, 

derived from knowledge extracted from literature, as well as for the observed 

keyword ‘polymorphism’. The word ‘heterozygous’ was observed in the Figure 

7A as another of the most frequent monograms in the pre-processed clinical 

unstructured texts from genomic variants classified as ‘Pathogenic’. Similarly, to 

the keywords ‘polymorphism’ and ‘mutation’, the monogram ‘heterozygous’ was 

already added to the dictionary of relevant biological keywords. However, as the 
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keyword ‘heterozygous’ could not be associated with either a positive or negative 

connotation, hence we opted to add it with a neutral connotation. Of notice, 

neutral-connotated keywords could become positive/negative throughout the 

optimization of our tool. 

As observed in Figure 7A, (and Figure 6A) there were monograms, such as 

‘gene’, ‘identified’, ‘exon’, ‘found’ among others, that do not have a biological 

meaning and therefore were not added to the dictionary of relevant biological 

keywords. In the Figure 7B, ‘compound heterozygous’ was part of the top 10 of 

the most frequent bi-grams in the pre-processed clinical unstructured texts from 

genomic variants classified as ‘Pathogenic’. This bi-gram is mentioned in the 

OMIM texts when two different genomic variants occur in two different alleles in 

the same gene. These types of genomic variants cause alterations in the protein 

that can lead to a disease in an individual. This bi-gram was a good candidate to 

be added to the dictionary of relevant biological keywords with a negative 

connotation. However, it was already part of the dictionary of relevant biological 

keywords derived from knowledge extracted from literature. The tri-grams in 

Figure 7C did not have relevant keywords for our dictionary with negative 

connotation. 

As a strategy validation, we also performed the previous analysis for the pre-

processed clinical unstructured texts from genomic variants classified as ‘Drug 

Response’ (Figure 8). This was done to understand the biological relevance of 

mono/bi/tri-grams in this particular type of variants that are often related with the 

metabolic response to a drug and therefore entail several metabolism-associated 

words in the corresponding clinical texts.  
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Figure 8 - Top 10 of the most frequent monograms (A), bi-grams (B) and tri-grams (C) in 

‘Drug Response’ ClinVar classification. 

 

In fact, the top-ranking words for the N-gram analysis were ‘metabolizer’, ‘tpmt’, 

‘cytochrome’, ‘poor metabolizer’ or ‘metabolizer phenotype’ which were specific 

to ‘Drug Response’ clinical unstructured texts, i.e. never observed in the ‘Benign’ 

or ‘Pathogenic’ texts. In the case of the monogram ‘metabolizer’ (Figure 8A) and 

the bi-grams ‘poor metabolizer’, ‘poor metabolizers’ and ‘poor metabolism’ 

(Figure 8B) the high frequency is related with the four categories for the 

metabolism capacity: poor metabolizer, intermediate metabolizer, normal 

metabolizer or rapid and ultra-rapid metabolizer. If an individual is a poor 

metabolizer for a certain drug, he/she will need a lower dose compared to an 

ultra-rapid metabolizer [93]. The monogram ‘tpmt’ which also appears as bi-gram 

‘tpmt allele’, is also specific for ‘Drug Response’ genomic variants and is the 

abbreviation for the enzyme thiopurine methyltransferase. This is an enzyme 
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responsible for the inactivation of a class of drugs named thiopurines, commonly 

used in inflammatory diseases. An individual with a genomic variant that lead to 

TPMT deficiency accumulate toxic levels of the drug since the inactive form of 

TPMT is not able to metabolize the drug and can be fatal [94]. The word 

‘cytochrome’ appears in the context of the genetic tests that are performed to 

understand how an individual will respond to a given drug [95]. The ‘cytochrome’ 

has a high frequency in the Figure 8A, because cytochrome P450 is a family of 

enzymes responsible for the metabolism of a wide range of drugs. Furthermore, 

the bi-gram ‘cytochrome cyp’ also appears, as ‘cyp’ is an abbreviation of 

cytochrome P450 [96].  

Also interesting was the monogram ‘african’ and the bi-gram ‘african american’ 

which appeared with a high frequency in the top-ranking of ‘Drug Response’ 

variants. This occurs because of the genetic alterations in the African population 

over thousands of years which may have compromised the ability of the 

cytochrome P450 enzyme to metabolize certain drugs. The fact that most drugs 

are developed based on genetic profiles of Asian and Caucasian populations may 

have made the drugs ineffective or increase the risk of toxicity to the African 

population [93],[97]. Of notice, the monogram ‘allele’ was transversal to all the 

three classifications studied (‘Benign’, ‘Pathogenic’ and ‘Drug Response’) as 

shown in Figures 6, 7 and 8. Altogether, the N-grams analysis allowed: 

- to verify if the keywords that were selected based on the knowledge of 

the literature had a high frequency in the text and thus, validate their 

importance; 

- to find new and relevant keywords that could be added to the 

dictionary. 

Importantly, with the N-grams analysis, no new keywords were 

added, because all relevant keywords were already part of the dictionary 

built based on literature knowledge. 
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Step 4: Term Frequency-Inverse Document Frequency (TF-IDF):  

The TF-IDF was calculated with the bind_tf_idf function from the R package 

tidytext, where the input was the one-token-per-row, per document. Figure 9 

represents the output for this function: 

As an example, Table 11 and Table 12 constitute a representation of the word 

counts from two different documents from our original dataset, i.e. the number of 

times each given word appears in all the pre-processed clinical unstructured texts 

for the genomic variants classified as 'Benign' or as 'Pathogenic'. 

- the first column (ClinVar_class) contains the name of the documents, i.e. 

the ClinVar classification of the selected genomic variants; 

- second column (word) contains the tokens/words, i.e. each of the words 

in the pre-processed unstructured clinical texts; 

- third column (n) contains the number of times a given token/word appears 

in the documents, i.e. the number of times each word appears in the pre-

processed unstructured clinical texts; 

- fourth column (total) contains the number of token/words in a given 

document; 

- the fifth, sixth and seventh columns correspond to the TF, IDF and TF-

IDF measures, respectively. 

 
 

 

 
 

Figure 9 - Example of the output of bind_tf_idf function 
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Table 11 - Word counts in ‘Benign’ document. 

 
 
 
 

 

 

 

Table 12 - Word counts in ‘Pathogenic’ document. 

 

 

 

 

 

For the word 'polymorphism' the TF-IDF calculation was made as follows: 

 

In terms of frequency, TF is the frequency of the word 'polymorphism' in each 

document considering the total number of words in the document. In particular, 

the word 'polymorphism' appears 273 times in the clinical unstructured texts from 

‘Benign’ variants and 402 times in the unstructured texts from ‘Pathogenic’. 

However, the TF in ‘Pathogenic’ unstructured texts was lower than in ‘Benign’ 

unstructured texts, because the total of words in the former was larger. 

Benign # Total words 

‘polymorphism’ 273 

‘consanguineous’ 0 

TOTAL 18,640 

Pathogenic # Total words 

‘polymorphism’ 402 

‘consanguineous’ 3067 

TOTAL 1333,874 

𝑻𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′, 𝑩𝒆𝒏𝒊𝒈𝒏) =
𝟐𝟕𝟑

𝟏𝟖𝟔𝟎
≈ 𝟎. 𝟏𝟓 

𝑻𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′, 𝑷𝒂𝒕𝒉𝒐𝒈𝒆𝒏𝒊𝒄) =
𝟒𝟎𝟐

𝟏𝟑𝟑𝟑𝟖𝟕𝟒
≈ 𝟎. 𝟎𝟎𝟎𝟑 
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For a given word, the IDF is constant for the corpus, i.e. for the unstructured texts 

from ‘Benign’ and from 'Pathogenic' variants. By definition, the IDF is the 

proportion of documents that present (at least once) a given word, such as 

'polymorphism'. In our example, for the word ‘polymorphism’, the corpus was 

equal to two as both the clinical unstructured texts from ‘Benign’ and from 

'Pathogenic' variants display at least once the word ‘polymorphism’. 

 

For the calculation of the TF-IDF for the word ‘polymorphism’, the product of the 

TF and of the IDF values in each document is performed as shown below: 

 

Concerning the word 'polymorphism' it had a TF-IDF of zero for both documents. 

This is because the TF-IDF is a measure of the importance of words in a set of 

documents, i.e. it takes into account the frequency of a given word in two or more 

documents. Words that have a TF-IDF of zero are common and considered not 

informative. Recalling the monogram analysis, the word ‘polymorphism’ was 

considered relevant and with a positive connotation, as it ranked in the top10 of 

frequencies in the clinical unstructured texts from ‘Benign’ variants (Figure 6A) 

and was absent from the top 10 of frequencies in the clinical unstructured texts 

from ‘Pathogenic’ variants (Figure 7A). However, the TF-IDF analysis showed 

that the word ‘polymorphism’ was in fact common in both types of variants (TF-

IDF = 0 for both). This shows the relevance of the TF-IDF strategy overall and 

the limitations of the N-gram analysis. Nevertheless, we opted not to remove this 

word as it could be present in the clinical unstructured texts from ‘Pathogenic’ 

variants with a negative context, for example ‘not a polymorphism’. 

𝑰𝑫𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′, 𝑪𝒐𝒓𝒑𝒖𝒔) = 𝒍𝒐𝒈𝟏𝟎

𝟐

𝟐
= 𝟎 

 

 

 

𝑰𝑫𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′, 𝑪𝒐𝒓𝒑𝒖𝒔) = 𝒍𝒐𝒈𝟏𝟎

𝟐

𝟐
= 𝟎 

 

 

𝑻𝑭 − 𝑰𝑫𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′,′ 𝑩𝒆𝒏𝒊𝒈𝒏′) = 𝟎. 𝟏𝟓 × 𝟎 = 𝟎 

𝑻𝑭 − 𝑰𝑫𝑭(′𝒑𝒐𝒍𝒚𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎′, ′𝑷𝒂𝒕𝒉𝒐𝒈𝒆𝒏𝒊𝒄′) = 𝟎. 𝟎𝟎𝟎𝟑𝟎 × 𝟎 = 𝟎 
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Another example for the TF-IDF analysis was the word 'consanguineous', which 

occurred 3067 times in the ‘Pathogenic’ unstructured texts and was absent from 

the ‘Benign’ unstructured texts. Therefore, the TF calculation was:  

 

As expected, the TF in the ‘Benign’ unstructured texts was zero, because the 

word ‘consanguineous’ was never detected. The calculation of IDF for this word 

took into account that fact, i.e. that the word ‘consanguineous’ only occurred in 

one of the two documents in the corpus.   

 

Therefore, the TF-IDF calculation was: 

 

Hence, the word 'consanguineous' was not a frequent word in the clinical 

unstructured texts of genomic variants classified as 'Pathogenic'. Moreover, this 

word did not appear in the top 10 of the most frequent monograms (Figure 7A). 

Consequently, the TF-IDF of this word showed its particular relevance with the 

clinical unstructured texts of genomic variants classified as 'Pathogenic' and 

important to be added to our dictionary of relevant biological keywords. 

The TF-IDF technique was used to analyse the importance of all words in the 

clinical unstructured texts of genomic variants classified as ‘Benign’ or as 

'Pathogenic' (Figure 10A, B), to try to find new keywords to add to the dictionary 

of relevant biological keywords. As with the N-gram analysis, we also analysed 

the unstructured texts for genomic variants classified as ‘Drug Response’, as a 

𝑻𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑩𝒆𝒏𝒊𝒈𝒏′) =
𝟎

𝟏𝟖𝟔𝟎
= 𝟎 

𝑻𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑷𝒂𝒕𝒉𝒐𝒈𝒆𝒏𝒊𝒄′) =
𝟑𝟎𝟔𝟕

𝟏𝟑𝟑𝟑𝟖𝟕𝟒
≈ 𝟎. 𝟎𝟎𝟐 

 

 

 

 

𝑻𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑩𝒆𝒏𝒊𝒈𝒏′) =
𝟎

𝟏𝟖𝟔𝟎
= 𝟎 

𝑻𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑷𝒂𝒕𝒉𝒐𝒈𝒆𝒏𝒊𝒄′) =
𝟑𝟎𝟔𝟕

𝟏𝟑𝟑𝟑𝟖𝟕𝟒
≈ 𝟎. 𝟎𝟎𝟐 

 

 

 

𝑰𝑫𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, 𝑪𝒐𝒓𝒑𝒖𝒔) = 𝒍𝒐𝒈𝟏𝟎

𝟐

𝟏
= 𝟎. 𝟑𝟎 

 

 

𝑻𝑭 − 𝑰𝑫𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑩𝒆𝒏𝒊𝒈𝒏′) = 𝟎 × 𝟎. 𝟑𝟎 = 𝟎 

𝑻𝑭 − 𝑰𝑫𝑭(′𝒄𝒐𝒏𝒔𝒂𝒏𝒈𝒖𝒊𝒏𝒆𝒐𝒖𝒔′, ′𝑷𝒂𝒕𝒉𝒐𝒈𝒆𝒏𝒊𝒄′) = 𝟎. 𝟎𝟎𝟐 × 𝟎. 𝟑𝟎 = 𝟎. 𝟎𝟎𝟏 
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validation strategy (Figure 10C). Of notice, this type of analysis did not take into 

account the biological context and only focused in numerical statistic. Another 

important observation was that many rounds of text clean-up were performed to 

remove misspelled sets of letters with high TF-IDF that derived from the pre-

processing steps described previously, and without biological meaning for a TM 

strategy, such as '-95delc' and '2240del12'.  

 

 

Figure 10 - Term Frequency-Inverse Document Frequency (TF-IDF) for the ‘Benign’ (A), 

‘Pathogenic’ (B) and ‘Drug Response’ (C) ClinVar classification. 
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As visible in Figure 10, there was no word in the bar plots that could be 

considered relevant: for example, the top word ‘schizophrenia’ (for the ‘Benign’ 

clinical unstructured texts) could not be included in our dictionary as it was too 

specific and did not entail any relevant biological meaning (Figure 10A). A similar 

rationale could be made for all other top-ranking words for both the ‘Benign’ and 

‘Pathogenic’ clinical unstructured texts (Figure 10B). In addition, several 

‘nonsense’ words remained, even after the multiple rounds of text clean-up such 

as ‘lh’ and ‘ter’, which refers to a hormone (Luteinizing hormone, Figure 10A) or 

to a protein (Ter protein, Figure 10B), respectively. Like the word ‘schizophrenia’, 

‘lh’ and ‘ter’ were too specific to belong to our dictionary. Hence, no novel word 

was added to our dictionary with this TF-IDF approach. Nevertheless, the TF-IDF 

analysis for the ‘Drug Response’ unstructured texts reproduced and thus 

validated our observations in the N-gram analysis (Figure 10C) for example, the 

high ranking observed for the enzymes ‘tpmt’, ‘cyp’ and the word ‘metabolizer’, 

recall the observations with the N-gram strategy. 

In summary, the TF-IDF analysis did not allow the addition of any new 

keywords to our dictionary of relevant biological keywords. Therefore, our 

dictionary was constituted by the same 254 (dictionary keywords (n=127) 

plus respective negative form (n=127)) keywords based solely on literature 

knowledge.  

 

Step 5: Sentiment Analysis 

Sentiment analysis is a technique used to extract “emotions” that are expressed 

throughout a text. The words that appear in a given text are classified with positive 

or negative scores depending on the sentiment/emotion [98]. A classic example 

was the comparison of the first and last books from the “Harry Potter” series: the 

text in the first book was associated with more a positive emotion, with a high 

frequency of words such as ‘love’ and ‘friendship’; the text in the last book was 

more associated with negative emotions, with a high frequency of words such as 

‘battle’ and ‘death’ [99].  

Our strategy was to perform the sentiment analysis using the pre-processed 

clinical unstructured texts to measure the overall sentiment for the ‘Benign’ and 
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‘Pathogenic’-classified variants. Therefore, we expected that a genomic variant 

classified as ‘Benign’ would have a positive sentiment and a genomic variant 

classified as ‘Pathogenic’ would have a negative sentiment associated. For this, 

we used the same R package previously mentioned, the tidytext. This R package 

contains three sentiment lexicons, “AFFIN” [100], “bing” [101] and “nrc” [102] 

which are three list of monograms with an associated sentiment. In the case of 

lexicon “AFFIN” each monogram has an associated sentiment score between -5 

to 5 depending on if the word has a positive or a negative sentiment. The “bing” 

lexicon categorized the monograms in a binary system simply into positive and 

negative categories. Finally, the “nrc” lexicon has several categories such as, 

anger, anticipation, disgust, fear, joy, sadness, surprise and trust. However, these 

three lexicons are constituted only by monograms completely unrelated to the 

biological nature of our clinical unstructured texts. Therefore, we have used our 

pre-defined dictionary of relevant biological keywords to constitute our own 

lexicon.  

To define our lexicon, we started by considering the connotation of a keyword by 

assigning a score, i.e. a keyword with a positive connotation has a positive score 

and a keyword with a negative connotation has a negative score. However, there 

are other keywords that cannot be clearly associated with a positive or negative 

connotation, the neutral keywords, therefore, so we assign the score zero. This 

strategy was used to measure the main sentiment in a given genomic variant text. 

Therefore, we expected that a genomic variant classified as ‘Benign’ has an 

overall positive score and a genomic variant classified as ‘Pathogenic’ has an 

overall negative score. The score for each genomic variant text was defined 

across several rounds of fine-tuning. In total seven distinct scoring approaches 

were tested, to understand the one that was more accurate, i.e. the one that 

produced the minimum false-positive/negatives count. We started by defining 

Score v1, as follows: 

- Keywords with negative connotation, such as ‘increased-risk’ and 

‘mutation’ were given a value of -1 and -2, respectively; 

- Keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +1 and +2, respectively; 
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- Keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0; 

Keyword repetition in the same clinical unstructured text was not taken into 

account, e.g. in the example text “(…) it is a polymorphism detected in the normal 

population. Furthermore, this polymorphism was absent from the African 

population (…)”, the keyword ‘polymorphism’, although appearing twice in the 

text, for the scoring strategy the value of +2 was only accounted once. As we 

performed the sentiment analysis with the Score v1, we obtained the results 

presented in Table 13: 

Table 13 - Results from the sentiment analysis with the Score V1. 

 

Considering the sentiment analysis with Score v1, we observed the following 

results (Table 13): 

- For the ‘Benign’ variants: 

- 69 true-positives (TP), i.e. ‘Benign’ variants with positive overall score;  

- 44 false-positives (FP), i.e. ‘Benign’ variants with negative overall 

score;  

- For the ‘Pathogenic’ variants: 

- 19,601 true-negatives (TN), i.e. ‘Pathogenic’ variants with negative 

score;  

- 113 false-negatives (FN), i.e. ‘Pathogenic’ variants with positive overall 

score.  

However, several genomic variants presented with overall score of zero. We 

opted to divide these genomic variants in two categories:  

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

69 

(39.7%) 

44 

(25.3%) 

26 

(14.9%) 

35 

(20.1%) 

Pathogenic 

(n=23,997) 

113 

(0.5%) 

19,601 

(81.7%) 

408 

(1.7%) 

3875 

(16.1%) 
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- ‘No Keywords found’, this category includes the genomic variants where 

the clinical unstructured text does not have dictionary keywords;  

- ‘Score = 0’, this category includes the genomic variants in which the sum 

of values given to the dictionary keywords found in the clinical unstructured 

text was zero.  

Concerning the results of Score v1 for the variants with a ‘Benign’ classification 

a score of zero, we observed 26 genomic variants without any dictionary 

keywords in the corresponding clinical unstructured texts and 35 where the sum 

of values given to the dictionary keywords found in the clinical unstructured text 

was zero (Table 13). For the variants with a ‘Pathogenic’ classification, 408 did 

not have any keyword in the clinical unstructured texts and 3875 had a sum of 

values given to the dictionary keywords found in the clinical unstructured text of 

zero (Table 13).  

To understand the ability of the scoring approach to correctly score a genomic 

variant we performed the percentage of correct scoring, that consisted of the 

number of TP or TN divided by the total number of genomic variants for each 

classification. Therefore, in the case of Score v1, the percentage of correct 

scoring of ‘Benign’ variants were 39.7% and for the ‘Pathogenic’ variants were 

81.7% (Table 13). 

 

To optimize the number of genomic variants correctly classified we next 

developed and tested seven distinct scoring approaches, all deriving from Score 

v1. Score v2 had the following criteria: 

- Keywords with negative connotation, such as ‘increased-risk’ and 

‘mutation’ were given a value of -1 and -2, respectively (equal to Score 

v1); 

- Keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +1 and +2, respectively (equal to Score v1); 

- Keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Score v1); 

- Keyword repetition in the same clinical unstructured text was taken into 

account, e.g. in the example text “(…) it is a polymorphism detected in the 
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normal population. Furthermore, this polymorphism was absent from the 

African population (…)”, the keyword ‘polymorphism’, as it appears twice 

in the text, for this scoring strategy the value of +4 (+2x2) was given for 

this keyword. In summary, the keyword score considered the number of 

times it was repeated in the text (unlike Score v1). 

The sentiment analysis with Score v2 provided better results than Score v1, in 

terms of true positives and variants with a score equal to 0 (Table 14). 

Table 14 - Results from the sentiment analysis with the Score V2. 

 
 

Taking into account the values observed in Table 14, the sentiment analysis with 

Score v2, for variants with a ‘Benign’ classification correctly classified 73 genomic 

variants (true-positives) and incorrectly 42 (false-positives). For the ‘Pathogenic’ 

variants Score v2 classified correctly 19,613 genomic variants (true-negatives) 

and incorrectly 110 (false-negatives). These results with Score v2 represented 

an improvement in classification in comparison with the results from Score v1. 

Another improvement with Score v2 (vs. Score v1) was in the number of genomic 

variants where the sum of the values of each dictionary keyword found in the 

clinical unstructured text was zero: 33 ‘Benign’ classified variants presented a 

sum equal to 0 with Score v2 (vs. 35 for Score v1) and; 3866 ‘Pathogenic’ 

classified variants presented a sum equal to 0 with Score v2 (vs. 3875 for Score 

v1). This showed that Score v2 was able to increase the number of true-

positives/true-negatives and to diminish the number of genomic variants with a 

sum equal to 0 in comparison with Score v1. This improvement was due to the 

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

73 

(41.9%) 

42 

(24.1%) 

26 

(14.9%) 

3 

(19.0%) 

Pathogenic 

(n=23,997) 

110 

(0.5%) 

19,613 

(81.7%) 

408 

(1.7%) 

3866 

(16.1%) 
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fact that several genomic variants presented the same keyword more than once 

which, unlike Score v1, was accounted for in Score v2. 

Considering the classic approaches to TM, we knew a priori that subtasks exist 

that should be taken into account during the sentiment analysis. Therefore, Score 

v3 included an important subtask in classical TM approaches, the ‘Negation 

Handling’. Therefore, we proceeded to a sentiment analysis with Score v3 that 

had the following criteria: 

- Keywords with negative connotation, such as ‘increased-risk’ and 

‘mutation’ were given a value of -1 and -2, respectively (equal to Score v1 

and v2); 

- Keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +1 and +2, respectively (equal to Score v1 and v2); 

- Keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Score v1 and v2); 

- Keyword repetition in the same clinical unstructured text was considered 

(equal to Score v2); 

- The presence of a ‘negation word’ in the immediate vicinity of a keyword 

was considered. For example, if the clinical unstructured text contains an 

expression such as ‘(…) not found mutation (…)’ or ‘(…) it is not 

polymorphic (…)’, the value of the keyword was reversed, i.e. the value of 

-2 for the keyword ‘mutation’ became a value of +2 or the value of +2 for 

the keyword ‘polymorphic’ became a value of -2 (unlike Score v2); 

This last criterium was extremely relevant as the frequency of a keyword in a 

genomic variant text was not the only factor that alters the sentiment analysis. 

The negation was also important as it inverts the sentiment in a text. Negation 

words such as ‘no’, ‘not’, ‘cannot’ and ‘shouldn’t’ were examples used in the 

‘Negation Handling’ to understand each portion of the sentence affected by the 

negation. This portion is named ‘vicinity’ or ‘scope negation’ [2]. Handling the 

negation is challenging because a negation in a simple sentence may invert the 

connotation of all words, however, in a compound sentence a negation usually 

only inverts the connotation of some words [2]. Before handling the negation, it 

was necessary to make alterations in the negative words in the clinical 
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unstructured texts. Abbreviations such as ‘didn’t’, ‘shouldn’t’, ‘aren’t’ and so forth, 

were transformed into the complete form, such as ‘did not’, ‘should not’ and ‘are 

not’. This type of transformation was important to increase the efficiency and 

decrease the effort and the time consumed in the analysis, because with this 

transformation the tool does not need to deal with multiple words with the same 

meaning.  

To handle the impact of the negation, we defined a list of negation words which 

were used as an indicator of a negation in a sentence (Table 15). The list of 

negation words includes the two classes of negation words considered, i.e. 

syntactic and diminisher. The syntactic class includes all negation words that 

invert completely the connotation of other words, while the diminisher class 

includes all words that reduce the connotation rather than invert it. 

Table 15 – List of Negations words [2]. 

Negation Class Negations 

Syntactic 

 

no, not, rather, could not, was not, did not, would 

not, should not, were not, do not, does not, have 

not, has not, wont, had not, never, none, nobody, 

nothing, neither, nor, nowhere, is not, cannot, must 

not, might not, without, need not 

 

Diminisher 

 

hardly, less, little, rarely, scarcely, seldom 

 

 
 

For the purpose of this Thesis, we opted to used only the syntactic negation class, 

in particular the negation words ‘no’ and ‘not’. This selection was performed after 

analysing a series of clinical unstructured texts from our dataset, which showed 

that these were the highest represented negation words. Moreover, the negation 

word was searched both: 

- immediately before a dictionary keyword, for example “(…) it is not 

polymorphic (…)” – Score v3.1; 

- up to two words before a dictionary keyword, for example “(…) not 

found mutation (…)” - Score v3.2; 
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Negation words were also searched farther apart from the dictionary keyword; 

however, no major alterations in the end result were observed. Results with Score 

v3 for the sentiment analysis were better than for Score v2, but still many 

misclassified genomic variants were observed. 

Table 16 - Results from the sentiment analysis with the Score V3. 

 

In Score v3.1 and as shown in Table 16, genomic variants classified as 

‘Pathogenic’ when the position of negation word was only ‘immediately before a 

dictionary keyword’ have an increase in the number of TN compared with the 

Score v2: 19,913 with Score v2 vs. 19,702 with Score v3.1. The increase in the 

number of TN demonstrated that the ‘Negation Handling’ needs to be considered 

in the sentiment analysis and in our scoring strategy. No alterations in the number 

of TP were observed at this point. As we analysed the results for negation words 

found ‘up to two words before the dictionary keyword’, we observed that we still 

obtained better results than with Score v2: 19,913 with Score v2 vs. 19,609 with 

Score v3.2. However, Score v3.2 revealed less genomic variants correctly scored 

than Score v3.1, likely due to parts of clinical unstructured texts such as the one 

shown in Table 17. 

 
 

 
Position of 
Negation 

Word 

Variant ClinVar 
Classification 

Number of Variants 

 Score > 0 Score < 0 
No 

Keywords 
found 

Score = 0 

Score 

v3.1 

immediately 

before a 

dictionary 

keyword 

Benign 

(n=174) 

73 

(41.9%) 

42 

(24.1%) 

26 

(14.9%) 

33 

(18.9%) 

Pathogenic 

(n=23,997) 

104 

(0.4%) 

19,702 

(82.1%) 

408 

(1.7%) 

3783 

(15.7%) 

Score 

v3.2 

up to two 

words 

before the 

dictionary 

keyword 

Benign 

(n=174) 

73 

(41.9%) 

42 

(2.1%) 

26 

(14.9%) 

33 

(18.9%) 

Pathogenic 

(n=23,997) 

133 

(0.5%) 

19,609 

(81.7%) 

408 

(1.7%) 

3847 

(16.0%) 
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Table 17 – Example of part of an unstructured clinical text and the corresponding score for 

v3.1 and v3.2. 

 

Taking this example into account, the score for the keyword ‘mutation’ with Score 

v3.1 was - 2, while for Score v3.2 was +2. This was because the negation word 

‘not’ was found in the second word before the keyword, hence only considered 

for Score v3.2. However, we considered that the ‘up to two words before the 

dictionary’ scoring strategy, i.e. Score v3.2 was likely to be more faithful: Score 

v3.2 was more inclusive, as it counted the occurrence of negation words 

immediately before and before that, unlike Score v3.1, which was blind to 

negation words present two words before the keyword. This was the main reason 

why we opted to continue to use, for the following scoring strategies, the ‘up to 

two words before the dictionary’ strategy.  

Next, we defined Score v4, in which we decided to augment the range of the 

individual keyword scores, i.e. we gave a more negative/positive score to some 

keywords. For example: 

- the keyword ‘polymorphism’, which was individually scored with +20 in the 

previous approaches, became scored with a value of ‘+30’; 

- the keyword ‘benign, which was individually scored with ‘+10’ in the 

previous approaches, became scored with a value of ‘+20’; 

- the keyword ‘mutation’, which was individually scored with ‘-20’ in the 

previous approaches, became scored with a value of ‘-30’; 

- the keyword ‘increased-risk’, which was individually scored with ‘-2’ in the 

previous approaches, became scored with a value of ‘-5’; 

- the keywords ‘autosomal-dominant’ and ‘pathogenic’, which were 

individually scored with ‘-10’ in the previous approaches, became scored 

with a value of ‘-20’. 

Examples of part of 
an unstructured 

clinical text 

Score v3.1 Score v3.2 

immediately before a 
dictionary keyword 

up to two words before the 
dictionary keyword 

Example A: ‘(…) not 

found’ 
‘found mutation’ 1 x (-2) 

‘not found 

mutation’ 
1 x (+2) 
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This enlarged range of our individual scoring of keywords was done to increase 

the positivity and negativity of keywords that, by visual inspection of the scoring 

matrices that underlie the sentiment analysis technique, seemed to be more 

relevant. This range alteration was therefore an attempt to increase the number 

of true-positives and true-negatives and diminish the number of false-positives 

and false-negatives obtained with the previous scoring strategies. Therefore, 

Score v4 had the following criteria: 

- keywords with negative connotation, such as ‘increased-risk’, ‘autosomal-

dominant ‘, ‘pathogenic’, ‘mutation’ were given a value of -5, -10, -20 and 

-30, respectively (unlike Score v3);  

- keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +20 and +30, respectively (unlike Score v3); 

- keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Scores v1, v2 and v3); 

- keyword repetition in the same clinical unstructured text was considered 

(equal to Scores v2 and v3); 

- search for negation words was made only ‘up to two words before the 

dictionary keyword’ (equal to Score v3.2).  

Obtained results with Score v4 can be analysed in Table 18. 

Table 18 - Results from the sentiment analysis with the Score v4. 

 

With Score v4 the number of TP and TN increased in comparison with Score 

v3.2. In particular: 

- the number of TP increased from 73 to 78 correctly classified ‘Benign’ 

variants; 

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

78 

(44.8%) 

40 

(23.0%) 

26 

(14.9%) 

30 

(17.2%) 

Pathogenic 

(n=23,997) 

168 

(0.7%) 

19,629 

(82.0%) 

408 

(1.7%) 

3792 

(15.8%) 
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- the number of TN increased from 19,609 to 19,629 correctly classified 

‘Pathogenic’ variants. 

Furthermore, the number of FP decreased from 42 to 40 incorrectly classified 

‘Benign’ variants. However, the number of FN increased from 133 to 168 

incorrectly classified ‘Pathogenic’ variants. Concerning genomic variants with a 

score of 0, Score v4 also represented an improvement from Score v3.2. In 

particular, both ‘Benign’ and ‘Pathogenic’ classified variants with an overall score 

of 0 decreased: from 33 to 30 ‘Benign’ classified variants and from 3847 to 3792 

‘Pathogenic’ classified variants (Table 16 and Table 18).  

 

The graphics of sentiment analysis allowed visualizing the differences between 

sentiments presented in the unstructured clinical texts. The classical sentiment 

analysis graphic is a 2-dimensional representation, where the x-axis represents 

the number of genomic variants texts classified with a given classification and the 

y-axis represents the overall score for each variant text. Therefore, each bar 

represents a genomic variant text with the overall score associated: bars below 

zero have an overall score negative and above zero have an overall score 

positive. Figure 11 represents the obtained sentiment analysis graphics for 

‘Benign’ and ‘Pathogenic’ classified variants (Figure 11A and 11B, respectively).  

We observed an overall positive sentiment (bars above zero) for the ‘Benign’ 

genomic variants and an overall negative sentiment (bars below zero) for the 

‘Pathogenic’ genomic variants. Also visible in Figure 11 were spaces without bars 

that represented the ‘Benign’/’Pathogenic’ genomic variants with an overall score 

of zero. With Score v4 we obtained the highest number of TP and TN and the 

minimum genomic variants with score equal to zero.  



82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In order to further improve the number of TP and TN, we proceeded to redefine 

our scoring strategy, and created Score v5, which had the following criteria: 

- keywords with negative connotation, such as ‘increased-risk’, ‘autosomal-

dominant ‘, ‘pathogenic’ and ‘mutation’ were given a value of -5, -10, -20 

and -30, respectively (equal to Score v4); 

- keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +20 and +30, respectively (equal to Score v4); 

- keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Score v4); 

- keyword repetition in the same clinical unstructured text was taken into 

account (equal to Score v4); 

- search for negation words was made only up to two words before the 

dictionary keyword (equal to Score v4); 

Figure 11 - Sentiment Analysis for Score v3.2 for 'Benign' (A) and 'Pathogenic' (B) ClinVar 

classification. 

 

 



83 
 

- the presence of a ‘MIM number’ which corresponds to a 

disease/phenotype in the OMIM databases was considered in the Score 

v5, e.g. the example, “(…) in tumor tissue of gastric cancer (see 613659) 

and in a colorectal carcinoma (114500) (…)”, contains two different MIM 

numbers (613659 and 114500). However, in this scoring strategy we only 

considered the presence or absent of MIM numbers. Therefore, if a clinical 

unstructured text has at least one MIM number, the value added to the 

overall score was -20, independently of the number of times it may occur 

(unlike Score v4). 

Obtained results with Score v5 can be analysed in Table 19. 

 
Table 19 - Results from the sentiment analysis with the Score v5. 

  

In Score v5, we added a criterium that searches for the presence of a reference 

to a disease. In particular, a ‘MIM number’, given that most OMIM descriptions 

(our clinical unstructured texts) associated with disease encompass a reference 

to it. Therefore, if a ‘MIM number’ was found within the clinical unstructured texts, 

a value of -20 was added to the overall score. Of notice, the ‘MIM number’ was 

collected from OMIM database. With Score v5, we observed that genomic 

variants classified as ‘Pathogenic’ were those most altered in comparison with 

Score v4 (Table 18 vs. Table 19).  In particular: 

- the number of TN increased from 19,629 to 23,378 genomic variants 

correctly classified as ‘Pathogenic’; 

- the number of FN decreased from 168 to 99 genomic variants incorrectly 

classified as ‘Pathogenic’.  

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

74 

(42.5%) 

47 

(27.0%) 

26 

(14.9%) 

27 

(15.5%) 

Pathogenic 

(n=23,997) 

99 

(0.4%) 

23,378 

(97.4%) 

265 

(1.1%) 

255 

(1.8%) 
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Furthermore, for the ‘Pathogenic’ variants, the number of variants with no 

keywords found, decreased from 408 to 265 and for the ‘Pathogenic’ variants with 

the score equal to zero, the number decreased from 3792 to 255 in comparison 

to Score v4. The alterations between results occurred because of the addition of 

the ‘MIM number’ criterium in Score v5. 

For the variants classified as ‘Benign’ and considering the last criterium of Score 

v5, the number of TP decreased from 78 to 74 and the number of FP increased 

from 40 to 47 in comparison with Score v4. The ‘Benign’ genomic variants with 

score equal zero decreased from 30 to 27 and the ‘Benign’ variants with no 

keywords found did not show alterations (Table 18 vs. Table 19). This showed 

that the ‘MIM Number’ criterium shifted the overall score for more negative 

values, i.e. towards pathogenicity. 

 

In order to increase the number of genomic variants correctly classified, we 

designed Score v6, which had the following criteria: 

- keywords with negative connotation, such as ‘increased-risk’, ‘autosomal-

dominant ‘, ‘pathogenic’ and ‘mutation’ were given a value of -5, -10, -20 

and -30, respectively (equal to Score v5); 

- keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +20 and +30, respectively (equal to Score v5); 

- keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Score v5); 

- keyword repetition in the same clinical unstructured text was taken into 

account (equal to Score v5); 

- search for negation words was made only up to two words before the 

dictionary keyword (equal to Score v5); 

- search for ‘MIM number’, however in this score (Score v6) we considered 

the number of times a different ‘MIM number’ occurred in a clinical 

unstructured text. Therefore, the value added to the overall score of a 

genomic variant, for example, with three different ‘MIM numbers’ was -60, 

because we multiplied the number of times a different ‘MIM number’ 

occurred in a clinical unstructured text by -20 (3 x -20) (unlike Score v5).  
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Obtained results with Score v6 can be analysed in Table 20. 

Table 20 - Results from the sentiment analysis with the Score v6. 

 

With Score v6 we improved the results for the genomic variants classified as 

‘Pathogenic’ in comparison with Score v5. In particular:  

- the number of variants correctly classified as ‘Pathogenic’ increased from 

23,378 to 23,383;  

- the number of variants incorrectly classified as ‘Pathogenic’ decreased 

from 99 to 97.  

 Moreover, the results for the ‘Pathogenic’ variants with score equal to zero 

decreased from 255 to 252 and in the end the variants with no keywords found 

did not show an alteration, when compared with Score v5 (Table 19 vs. Table 

20). These results showed that the search for different ‘MIM numbers’ in clinical 

unstructured texts, improved the results of Score v6. For the ‘Benign’ genomic 

variants, the number of TP decreased from 74 to 73 and the number of FP 

increased from 47 to 48 genomic variants in comparison with Score v5. The 

number of ‘Benign’ variants with no keywords found and with a score equal to 

zero did not show alterations (Table 19 vs. Table 20). Similarly, to Score v5 and 

Score v6 was also designed towards pathogenicity, favouring the classification of 

‘Pathogenic’ genomic variants and disfavouring the classification of ‘Benign’ 

genomic variants. To address this, we designed Score v7, which had the following 

criteria:  

- keywords with negative connotation, such as ‘increased-risk’, ‘autosomal-

dominant ‘, ‘pathogenic’ and ‘mutation’ were given a value of -5, -10, -20 

and -30, respectively (equal to Score v6); 

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

73 

(42.0%) 

48 

(27.6%) 

26 

(14.9%) 

27 

(15.5%) 

Pathogenic 

(n=23,997) 

97 

(0.4%) 

23,383 

(97.4%) 

265 

(1.1%) 

252 

(1.1%) 
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- keywords with positive connotation, such as ‘benign’ and ‘polymorphism’ 

were given a value of +20 and +30, respectively (equal to Score v6); 

- keywords with a neutral connotation, such as ‘heterozygous’, were given 

a value of 0 (equal to Score v6); 

- keyword repetition in the same clinical unstructured text was taken into 

account (equal to Score v6); 

- search for negation words was made only up to two words before the 

dictionary keyword (equal to Score v6); 

- search for ‘MIM number’, however, in this score (Score v6) we considered 

all the times that any ‘MIM number’ occurred in a clinical unstructured text.  

Therefore, we did not distinguish between repeated ‘MIM numbers’ and 

those that appeared only once, e.g. in a clinical unstructured text with four 

‘MIM numbers’ where two of them were repeated the value added to the 

overall score was -80 (4 x -20) (unlike Score v6). 

Obtained results with Score v7 can be analysed in Table 21. 

 
Table 21 - Results from the sentiment analysis with the Score v7. 

 

By comparing Table 20 (Score v6) and Table 21 (Score v7), we observed that 

results for ‘Benign’ and ‘Pathogenic ‘genomic variants were equal to both Score 

v7 and v6. Figure 12 represents the sentiment analysis graphics for ‘Benign’ and 

‘Pathogenic’ classified variants for Score v7 (Figure 12A and 12B, respectively). 

We observed in Figure 12A an overall positive sentiment (bars above 0) for the 

genomic variants classified as ‘Benign’ and in Figure 12B an overall negative 

sentiment (bars below 0) for the genomic variants classified as ‘Pathogenic’.  

 

Variant ClinVar 
Classification 

Number of Variants 

Score > 0 Score < 0 
No Keywords 

found 
Score = 0 

Benign 

(n=174) 

73 

(42.0%) 

48 

(27.6%) 

26 

(14.9%) 

27 

(15.5%) 

Pathogenic 

(n=23,997) 

97 

(0.4%) 

23,383 

(97.4%) 

265 

(1.1%) 

252 

(1.1%) 
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Figure 12 - Sentiment Analysis for Score v7 to 'Benign' (A) and 'Pathogenic' (B) ClinVar 

classification. 

 

We expected that with the alterations in the criteria from Score v6 to Score v7, 

we would have a significant increase of correctly classified genomic variants. 

However, as observed in Table 20 (Score v6) and Table 21 (Score v7), there 

was no increase in the number of genomic variants correctly classified.  

Table 22 summarizes all the results of the sentiment analysis performed for each 

scoring approach (Score v1-v7). For simplicity, in Table 22 the ‘Correctly 

Classified’ column refers to the number of true positive genomic variants (‘Benign’ 

variants correctly classified, i.e. with a Score > 0) added to the number of true 

negative genomic variants (‘Pathogenic’ variants correctly classified, i.e. with a 

Score < 0). Furthermore, also in Table 22, the ‘Misclassified’ column refers to the 
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number of false positive genomic variants (‘Pathogenic’ variants incorrectly 

classified as ‘Benign’, i.e. with a Score > 0) added to the number of false negative 

genomic variants (‘Benign’ variants incorrectly classified as ‘Pathogenic’, i.e. with 

a Score < 0). In Table 22, the ‘No Keyword found/Score = 0’ column refers to the 

number of genomic variants with no keywords found in the corresponding clinical 

unstructured texts added to the number of genomic variants with a score equal 

to 0.  

Table 22 – Results of the sentiment analysis performed for each scoring approach (Score 

v1-v7). 

Scoring Approaches 
Correctly 
classified 
(TP +TN) 

Misclassified 
(FP + FN) 

No Keyword / Score = 0 

Score v1 19,670 157 4344 

Score v2 19,686 152 4333 

Score v3.1 19,775 146 4250 

Score v3.2 19,682 175 4314 

Score v4 19,707 208 4256 

Score v5 23,452 146 573 

Score v6 23,456 145 570 

Score v7 23,456 145 570 

 

As we can observe in Table 22, with Score v1 and v2 the number of genomic 

variants correctly classified and misclassified was identical. When Score v3.1 was 

performed, the number of genomic variants correctly classified increased, 

because we considered the position of the negation word ‘up to two words before 

the dictionary keyword’. The significant differences between the number of 

genomic variants correctly classified occurred from Score v4 to v5, i.e. from 

19,707 to 23,452 correctly classified variants. This difference showed us that the 

search for ‘MIM numbers’ in clinical unstructured texts, was an important step to 

increase the number of genomic variants correctly classified. Considering the 

results for Score v6 the number of genomic variants correctly classified increased 

only by four in comparison with Score v5. Finally, the results from Score v6 were 
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the same for Score v7 (Table 22). Nevertheless, we believe that Score v7 is more 

suited for downstream approaches as it accounts for all occurrences of the ‘MIM 

number’. This fact did not alter the results observed for our dataset, however 

could be of relevance for novel datasets used later on. 

At this point, we decided to stop the manually fine-tuning underlying the 

previously described scores and use Machine Learning tools to refine our scoring 

approach. We expected that Machine Learning tools could work in an unbiased 

way and, by taking into account individually our dictionary keywords, could 

perceive which keywords were most relevant to classify a genomic variant as 

‘Benign’ or ‘Pathogenic’. After such perception, we planned to alter the individual 

scores of the most relevant keywords, generating a novel overall score approach 

and therefore increase the number of genomic variants correctly classified and 

decrease the number of genomic variants with an overall score of zero. 

In summary, the sentiment analysis performed for each of the seven 

scoring strategies allowed us to understand which score was able to 

increase the number of genomic variants correctly classified. Therefore, we 

opted to use Score v7 as the starting point for the next analysis using 

Machine Learning tools. 

 

Step 6: Machine Learning Approaches 

The sentiment analysis was an important step to understand if the keywords in 

our dictionary and the corresponding overall scores could predict the 

classification of a genomic variant. Therefore, a genomic variant with a positive 

overall score would be predicted as ‘Benign’ while a genomic variant with a 

negative overall score would be predicted as ‘Pathogenic’. However, the 

sentiment analysis was biased, with individual scores given without looking at the 

relevance of the keyword itself. Consequently, we opted to continue the analysis 

with a Machine Learning approach that is less unbiased and that could pinpoint 

which keywords were most relevant to classify a genomic variant as ‘Benign’ or 

‘Pathogenic’.  
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We decided to use supervised Machine Learning algorithms (ML), because our 

dataset was labelled, i.e. each genomic variant already contains a classification 

(‘Benign’ or ‘Pathogenic’). Therefore, ML algorithms with the correct classification 

for each genomic variant are able to ‘learn’ the patterns and relationships 

between the keywords that best relate to the classification. Therefore, after ‘learn’ 

how to classify a genomic variant, the ML algorithms are enabled to make 

predictions about future genomic variants. To perform the ML approach, we 

followed eight steps:  

- Step 6.1 Exploring and preparing the input data; 

- Step 6.2 Sampling-based approaches; 

- Step 6.3. Data preparation – creating random training and test datasets; 

- Step 6.4 Training a model on the dataset; 

- Step 6.5 Evaluating model performance; 

- Step 6.6 Analysis of model overfitting; 

- Step 6.7 Comparing model performance using the three distinct matrices; 

- Step 6.8 Improving model performance with Random Forest method. 

 
 

Step 6.1 Exploring and preparing the input data:  

The classical input data for the ML approach in a context of text analysis is the 

‘document-term matrix’. We created three document-term matrices:  

- Frequency Matrix with Disease Frequency: where the values into the 

matrix correspond to the number of times each dictionary keyword appears 

in the clinical unstructured text. Furthermore, we added a ‘Disease’ column 

to the matrix with the number of times any given ‘MIM number’ occurs in 

the clinical unstructured text; 

- Frequency Matrix with Disease Score: equal to the first matrix 

(Frequency Matrix with Disease Frequency), however, in the ‘Disease’ 

column we added the number of times any given ‘MIM number’ occurs in 

the clinical unstructured text multiplied by -20 (a scoring approach 

resembling Score v7); 

- Scoring Matrix with Disease Score: where the values into the matrix are 

the number of times each dictionary keyword appears in a clinical 
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unstructured text multiplied by the value of Score v7 calculated individually 

for each dictionary keyword. The ‘Disease’ column was equal to the 

Frequency Matrix with Disease Score.   

In the three matrices, the rows correspond to each genomic variant (instances), 

the columns correspond to each dictionary keyword (features) and the respective 

negation form and the last column ‘Type’ have the two-possible classifications, 

‘Benign’ or ‘Pathogenic’, for each genomic variant. For example, taking into 

account the following clinical unstructured text for a putative benign variant: 

 
“This variant is considered a polymorphism in the Caucasian 

population and also a polymorphism in the East African population. 

Furthermore, due to its frequency this variant is not a mutation in 

both populations although studies have referred to it in the context 

of gastric cancer (613659) and colorectal cancer (114500).” 

 

For this example, Tables 23, 24 and 25 represent the corresponding document-

term matrices. 

Table 23 – A representative example of the columns (features) and the ‘Type’, associated 

with a hypothetical ‘Benign’ variant in the Frequency Matrix with Disease Frequency. 

 

Table 24 - A representative example of the columns (features) and the ‘Type’, associated 

with a hypothetical ‘Benign’ variant in the Frequency Matrix with Disease Score. 

 Frequency of Keywords Found 
Disease 

Frequency 
Type 

#Variants polymorphism mutation 
autosomal-

recessive 

negative- 

mutation 

Variant 1 2 0 0 1 2 Benign 

 Frequency of Keywords Found 
Disease 

Score 
Type 

#Variants polymorphism mutation 
autosomal-

recessive 

negative- 

mutation 

Variant 1 2 0 0 1 -40 Benign 
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Table 25 - A representative example of the columns (features) and the ‘Type’, associated 

with a hypothetical ‘Benign’ variant in the Scoring Matrix with Disease Score. 

 
 

The three matrices were constructed to be used separately as input in ML 

models. The main reason to build the three matrices was to compare the results 

in the ML models and understand which matrix will present the best result. The 

‘Scoring Matrix with Disease Score’ took into account the values given by the 

Score v7. This matrix was very important, because it added value to the sentiment 

analysis. ‘Benign’ and ‘Pathogenic’ variants were kept separate for the ML 

approach at this stage, therefore we created three document-term matrices for 

each classification. For the ‘Benign’ classified variants, each matrix had 174 

instances (i.e. genomic variants), 248 features (i.e. keywords) and one last 

column with the classification (target feature, i.e. Benign). For the ‘Pathogenic’ 

classified variants, each matrix had 23,997 instances, 248 features and one last 

column with the target feature, i.e. Pathogenic. 

 

Step 6.2 Sampling-based approaches 

The input datasets for the ML approach were the three types of document-term 

matrices created for the ‘Benign’ and ‘Pathogenic’ classification in the previous 

step (6.1). Of notice, we concatenated vertically both the ‘Benign’ and 

‘Pathogenic’ document-term matrices, generating three master document-term 

matrices. Each of these master document-term matrices entailed the 24,171 

instances (174 ‘Benign’ genomic variants and 23,997 ‘Pathogenic’ genomic 

variants), 255 features (dictionary keywords plus the column ‘Disease’ based on 

the presence or absent of MIM number) and the column ‘Type’ with the 

corresponding classification for each genomic variant.  

 Score for Keywords Found 
Disease 

Score 
Type 

#Variants polymorphism mutation 
autosomal-

recessive 

negative- 

mutation 

Variant 1 60 0 0 30 -40 Benign 
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These input datasets were highly imbalanced, i.e. each classification did not have 

an equal proportion of instances. To mitigate this imbalance, we used two 

sampling techniques: 1) the undersampling and; 2) the oversampling. With the 

undersampling technique, we reduced the number of instances in the majority 

classification, i.e. the classification with the highest number of instances 

(‘Pathogenic’), until both classifications had the same number of instances. The 

main disadvantage for the undersampling was that this technique discards 

potentially useful data. With the oversampling technique we have 

duplicated/generated randomly the instances from the minority classification 

(‘Benign’), until the dataset had the same number of instances for each 

classification. With the oversampling we avoid losing information, however we 

have the risk of overloading our model because we are more likely to get the 

same samples in training and test data, i.e. test dataset is no longer independent 

of training data. A second disadvantage of oversampling was that it increases the 

number of training examples, thus increasing the learning time.  

To alleviate class imbalance, we used the two sampling techniques described 

and performed four major sampling-based approaches: 

- No action: working with the Imbalanced Input Dataset 

For this first approach, we used the master document-term matrices as they 

were generated, i.e. without any correction of the known imbalance. It was 

expected that any ML model built with these highly imbalanced matrices would 

be biased towards the ‘Pathogenic’ variants, as they encompassed most 

instances in the document-term matrices.  

 
- Oversampling: Synthetic Minority Over-sampling TEchnique 

(SMOTE) 

SMOTE is an over-sampling method widely used to solve ML algorithms 

problems involving imbalanced datasets, when the classification is binary, and 

one class dominates the other class in the dataset. This technique solves the 

class imbalance, by creating synthetic new minority instances between the 

existing (real) minority instances. The SMOTE is a good method to avoid the 

overfitting and achieves a good performance in the imbalanced data 
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classification problems [103]. However, the majority and minority classes can 

be divided into clusters and frequently, this separation is not clean and noisy 

samples can be generated [104]. The main reason why we did not use the 

SMOTE was that with this technique it is not possible to understand which 

instances failed the classification. The SMOTE does not provide this type of 

verification, because it generated new synthetic genomic variants which are 

not real data, i.e. real instances. In particular, for this Thesis, it was important 

to know which genomic variants were not correctly classified with the ML 

model, so that we could perceive and solve the problem that led to the 

incorrect classification.  

 
- Undersampling techniques:  

Two major techniques for undersampling were used: ‘balanced dataset’ and 

‘semi-balanced dataset’. With the first approach, we created ‘balanced 

datasets’ with an equal proportion of instances. Therefore, the ‘balanced 

dataset’ derived from the master document-term matrices and had 255 

features (keywords) and 348 instances, i.e. 174 instances with ‘Benign’ 

classification (the total number of genomic variants classified as ‘Benign’) and 

174 instances selected from the 23,997 genomic variants with ‘Pathogenic’ 

classification. This ‘balanced dataset’ was created considering the 

undersampling technique where we removed instances from the majority 

class (‘Pathogenic’). Consequently, this sampling technique may have 

removed significant instances/genomic variants that could have useful 

information. Because of this major disadvantage, we opted not to use the 

‘balanced dataset’ to prevent the loss of so many ‘Pathogenic’ variants that 

could be important for the ML model.  

With the second undersampling technique, the ‘semi-balanced datasets’, we 

decided to create three ‘semi-balanced datasets’, one for each master 

document-term matrix. Therefore, each input dataset for the ML approach 

was composed by 174 instances with ‘Benign’ classification (the total number 

of genomic variants classified as ‘Benign’) and 1000 instances randomly 

selected from the total 23,997 with ‘Pathogenic’ classification. Therefore, the 

main difference between the balanced and ‘semi-balanced datasets’, was that 
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we decided to increase the number of instances selected from the majority 

class (‘Pathogenic’) from 174 to 1000, to diminish the amount of useful 

information that was removed.  

  

After testing all these sampling techniques, we opted to use the sampling-based 

approach ‘semi-balanced datasets’, to create the three input matrices for the ML 

approach. Therefore, the Frequency Matrix with Disease Frequency, the 

Frequency Matrix with Disease Score and the Scoring Matrix with Disease Score 

were constituted by 174 instances with a ‘Benign’ classification, 1000 instances 

with a ‘Pathogenic’ classification (1174 lines), 255 features/keywords (255 

columns) and one column with the corresponding classification (column ‘Type’).  

 

Step 6.3. Data preparation – creating random training and test datasets: 

To perform the ML approach, the three master document-term matrices were 

split, i.e. each matrix was divided into two portions: the training dataset to build 

the Machine Learning (ML) model and the testing dataset to evaluate the 

performance of the ML model. In order to avoid that the training and testing 

dataset had only genomic variants of one classification, before splitting the 

matrices, we mixed the vertical order of the ‘Benign’ and ‘Pathogenic’ genomic 

variants. The splitting was then performed, and we created the training dataset 

using 80% of each matrix (i.e. 939 genomic variants) and the testing dataset 

using the remaining 20% (i.e. 235 genomic variants). In the end, we obtained a 

training and a testing dataset for each of the document-term matrices.  

 

Step 6.4 Training a model on the dataset: 

In this step we decided to implement a ML method with supervised algorithm to 

solve our classification problem. The ML supervised algorithm selected were 

chosen mainly because each genomic variant in the matrices has a 

corresponding classification (‘Benign’ or ‘Pathogenic’), i.e. all the instances in the 

matrices were labelled. The label was used by the ML algorithm to ‘learn’ which 

keywords (features) were relevant to classify a genomic variant as ‘Benign’ or 
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‘Pathogenic’ and performed a prediction. We opted to use the Decision Tree 

method due to the way the knowledge acquired is displayed: with the Decision 

Tree method, the predictions are presented in a tree structure form, such as a 

flowchart, enabling an easy perception of the predictions performed without the 

need of any statistical measure.  In the tree structure form, a genomic variant 

begins to be classified from the root node, i.e. the most important keyword, 

passing through several decision nodes (i.e. less important keywords than the 

root node) that are divided into branches that indicate the following decisions that 

can be made. In the end the final classification, i.e. ‘Benign’ or ‘Pathogenic’ 

appears in the terminal nodes. Also, important to analyse in a given Decision Tree 

is: 1) the depth, which is the length of the longest path from a root to a terminal 

node and; 2) the size, which is the number of nodes in the tree. This visual 

representation enables understanding exactly the set of keywords/features that 

were important enough to define the final classification. In particular, we have 

used the ‘C5.0 algorithm’ to construct our Decision Tree models that aimed to 

find the combination of features that best predicts the classification into ‘Benign’ 

or ‘Pathogenic’. We selected the ‘C5.0 algorithm’ because it is one of the most 

well-known algorithms as it: 1) is more efficient than other more complex models; 

2) is fast to train and; 3) can be used on data with relatively few training instances 

resulting in a model that can be easily interpreted without mathematical 

background. To train our Decision Tree model we used the C5.0 and rpart R 

packages to ascertain if with the same input the R packages generated the same 

results.  

Of notice, the ML approach was made for all three matrices (Frequency Matrix 

with Disease Frequency, Frequency Matrix with Disease Score and Scoring 

Matrix with Disease Score), however for this part of the work, we have focused 

our observations on the results obtained for the Scoring Matrix with Disease 

Score. Results for the remaining matrices will be addressed in subsequent 

sections. 

We have started by using the C5.0 and rpart functions within the C5.0 and rpart 

R packages to construct our Decision Tree model. Both functions require the 

features (all dictionary keywords) and the classification (column ‘Type’, i.e. the 

classification of each instance/ genomic variant) from the training dataset portion 
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of our matrices. This step was essential for the classifier model to ‘learn’ which 

features were important to distinguish between the classification, i.e. the 'Benign' 

from the 'Pathogenic' genomic variants.  After the creation of the classifier model 

with the training dataset, a Decision Tree object was created, and a tree structure 

was visualized (Figure 12A and 12B). In order to appease the problems that 

arise from the use of imbalanced datasets, as ours were, we decided to create 

ten distinct Decision Tree models for each training and test datasets for each 

matrix.  

Focusing on the Decision Tree models obtained with the Scoring Matrix with 

Disease Score, where the individual score of each keyword was taken into 

account, we observed that with the C5.0 function (Figure 12A), the Decision Tree 

model revealed only three decision nodes. These three nodes were enough to 

classify all the genomic variants in the corresponding training set. In particular, 

we observed:  

1. If a clinical unstructured text had the keyword ‘polymorphism’ (> 0) the 

genomic variant was immediately classified as ‘Benign’;  

2. Otherwise, if a clinical unstructured text did not have the keyword 

‘polymorphism’ (≤ 0), the algorithm checked the value associated with the 

‘MIM number’: 

• if the clinical unstructured text had one or more ‘MIM number’ (≤ -20), 

the genomic variant was classified as ‘Pathogenic’;  

• if a clinical unstructured text did not have a ‘MIM number’ (> -20) the 

algorithm next checked whether the clinical unstructured text had the 

keyword ‘mutation’: 

o if the keyword ‘mutation’ appeared at least once (≤ -30) the 

genomic variant was classified as ‘Pathogenic’;  

o otherwise, if the keyword ‘mutation’ did not appear (>-30) the 

genomic variant was classified as ‘Benign’. 
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Figure 13 - Comparison between results for the training dataset for C5.0 and rpart R 

functions. Decision Tree object for C5.0 function (A) and Decision Tree object for rpart 

function (B). For the Confusion Matrix for the training dataset performed by the C5.0 function 

(C) and the Confusion Matrix for the training dataset performed by rpart function (D), the 

abbreviation TP correspond to True-Positive, TN to the True-Negative, FP to the False-

Positive and FN to the False-Negative.  

 

Of notice, not all genomic variants were correctly classified. The numbers in 

parentheses in the terminal node indicate the number of correctly classified and 

incorrectly classified variants. For example, the value ‘70/9’ associated with the 

classification ‘Benign’ (Figure 13A) indicated that: 70 instances/genomic variants 

were correctly classified as Benign and 9 were incorrectly classified, i.e. these 9 
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instances were true ‘Pathogenic’ variants however, the Decision Tree model 

classified them as ‘Benign’.  Considering the results in the confusion matrix for 

the C5.0 function (Figure 13C), i.e. a cross-tabulation that indicates the 

(in)correctly classified records from the model with the training data, we observed 

that: 

- for the genomic variants classified as ‘Benign’:  

1) 126 were true-positives, i.e. genomic variants correctly classified 

as ‘Benign’;  

2) 25 were false-positives, i.e. genomic variants classified as 

‘Benign’, however the true classification was ‘Pathogenic’. 

- for the genomic variants classified as ‘Pathogenic’: 

1) 769 true-negatives, i.e. genomic variants correctly classified as 

‘Pathogenic’; 

2) 19 false-negatives, i.e. genomic variants classified as 

‘Pathogenic’, however the true classification was ‘Benign’.   

 

With the rpart function (Figure 13B), the Decision Tree model revealed 4 decision 

nodes, i.e. one more than with the C5.0 function. Although the Decision Tree built 

with the rpart function involves the same dictionary keywords than the C5.0 

Decision Tree model, the order in which dictionary keywords appeared in the rpart 

Decision Tree was different. In particular, the root for the rpart Decision Tree was 

the ‘MIM number’, unlike the C5.0 Decision Tree (‘polymorphism’). The dictionary 

keywords in the nodes of the Decision Tree built with the rpart function were the 

same as those in the nodes with the C5.0 Decision Tree, however in a different 

order. Therefore, the decision made by the rpart function can be summarized in 

the following points:  

 
1. If a clinical unstructured text had a ‘MIM number’ and: 

• If the dictionary keyword ‘polymorphism’ was found, then the genomic 

variant was classified as ‘Benign’;  
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• Otherwise, if the dictionary keyword ‘polymorphism’ was not found then 

the genomic variant was classified as ‘Pathogenic;  

2. Otherwise, if the clinical unstructured text did not have a ‘MIM number’ 

and: 

• If the dictionary keyword ‘mutation’ was not found, then the genomic 

variant was classified as ‘Benign’: 

• Otherwise, if the dictionary keyword ‘mutation’ was found and: 

o The dictionary keyword ‘polymorphism’ was present, then the 

genomic variant was classified as ‘Benign’;  

o The dictionary keyword ‘polymorphism’ was not present, then 

the genomic variant was classified as ‘Pathogenic’. 

Again, not all genomic variants were correctly classified. The numbers in 

parentheses, for example ‘93/17’ indicated that 93 instances/genomic variants 

were correctly classified as ‘Benign’ while 17 were incorrectly classified as 

‘Benign’, i.e. these genomic variants were in fact ‘Pathogenic’, and the model 

failed.  After viewing and interpreting the Decision Tree model output, we 

calculated the confusion matrix. As visible in Figure 13C, D both C5.0 and rpart 

R functions revealed the same values in the corresponding confusion matrices 

for the training dataset. Therefore, both Decision Tree models correctly classified 

895 of the 939 training instances/genomic variants for an error rate of 4.7%. This 

error rate may be overly optimistic, since Decision Tree models are known for 

tending to overfit, i.e. the model is so adjusted to the training dataset that it is not 

able to generalize and reliably predict new data [105]. Therefore, our next step 

was to evaluate our Decision Trees models using the test dataset, i.e. the 

remaining 20% of the original master matrices.  

Step 6.5 Evaluating model performance 

1) Accuracy 

Evaluating the performance of the Decision Tree models involves applying the 

predict function available in the R packages. This function use the Decision Tree 

model and the test dataset. The confusion matrix shown in Table 26, considered 

the models built in the previous step using the test dataset previous established. 
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The obtained values in the confusion matrix (Table 26) were used to evaluate the 

classifier model (Decision Tree model) performance. 

 
Table 26 - Confusion Matrix for Scoring Matrix with Disease Score for test dataset. 

Test dataset Predicted 

Observed Benign Pathogenic 

Benign 
24 

(TP) 

5 

(FN) 

Pathogenic 
9 

(FP) 

197 

(TN) 

Accuracy 94.0% 

 

To evaluate the classifier model performance of a ML model, the measure of 

accuracy is widely used. This measure divides the proportion of correct prediction 

by the total number of predictions. This measure indicates the percentage of 

instances/genomic variants correctly or incorrectly classified by the model. The 

confusion matrix for the test dataset had an accuracy of 94% (Table 26). Although 

this would appear to indicate a good accurate classifier, we need to consider that 

the original dataset was imbalanced, i.e. the percentage of genomic variants 

classified as ‘Pathogenic’ in original dataset was 85% with only 15% for the 

‘Benign’ genomic variants. Therefore, the high accuracy was related to the high 

number of ‘Pathogenic’ genomic variants in the original dataset and not because 

the number of genomic variants correctly classified was high for both 

classifications.  

The imbalance between the number of instances in each classification also 

originated a problem in the model. The high number of genomic variants 

classified as ‘Pathogenic’ made the model ‘learn’ better to classify a ‘Pathogenic’ 

genomic variant than a ‘Benign’.  The confusion matrix proved this, since the 

number of misclassified true ‘Benign’ variants (n= 9, FN, Table 26) was higher 

than the number of misclassified true Pathogenic variants (n=5, FP, Table 26). 
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2) Precision, Recall and F1-Score 

Beyond accuracy, the best measure to evaluate the performance of classifier 

model is whether the classifier is successful at its intended purpose. For this 

reason, it is important to measure the performance of a model taking into account 

the measure utility rather than raw accuracy. We measured the performance of 

the model using again the values in confusion matrix (Table 27). Therefore, we 

calculated the performance measures, precision, recall and F1-Score for the 

‘Benign’ variants and ‘negative’ precision, ‘negative’ recall and ‘negative’ F1-

Score for the ‘Pathogenic’ variants (Table 27).  

 
Table 27 – Performance measures for the Scoring Matrix with Disease Score. 

Performance measures related for ‘Benign’ variants 

Test dataset 

Precision Recall F1-Score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring Matrix 

with Disease 

Score  

0.83 0.83 0.67 0.67 0.37 0.37 

Performance measures related for ‘Pathogenic’ variants 

Test dataset 

‘Negative’ Precision ‘Negative’ Recall ‘Negative’ F1-score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring Matrix 

with Disease 

Score  

0.94 0.94 0.98 0.98 0.48 0.48 

 
 
The precision for the ‘Benign’ variants was calculated considered the number of 

‘Benign’ variants correctly predicted (true-positive) divided by the total number of 

true ‘Benign’ variants in the dataset (true-positive plus false-positive). The recall 

also for the ‘Benign’ variants was calculated considered the number of ‘Benign’ 

variants correctly predicted (true-positive) divided by the total number of 

predicted ‘Benign’ variants (true-positive plus false-negatives). For the C5.0 or 

rpart functions, the Decision Trees had a precision of 0.83 and a recall of 0.67 

(Table 27). Both these measures are focused exclusively on true positive 

instances, which, in our study, were only the ‘Benign’ variants correctly classified. 
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If we calculate the same measures focusing on the true negative, i.e. the 

‘Pathogenic’ variants correctly classified, we performed the ‘negative’ that was 

calculated considering the number of ‘Pathogenic’ variants correctly predicted 

(true-negative) divided by the total number of true ‘Pathogenic’ variants in the 

dataset (true-negative plus false-negative). The ‘negative’ recall also for the 

‘Pathogenic’ variants was calculated considered the number of ‘Pathogenic’ 

variants correctly predicted (true-negative) divided by the total number of 

predicted ‘Pathogenic’ variants (true-negatives plus false-positives). Therefore, 

for the performance measures for the ‘Pathogenic’ variants we had from the 

‘negative’ precision would be of 0.94 and the ‘negative’ recall of 0.98. By 

comparing these values with the previously mentioned values, this again showed 

that the model ‘learned’ better to classify a ‘Pathogenic’ genomic variant than a 

‘Benign’, likely due to the imbalance of the dataset. 

Another measure to evaluate the performance of the models is the F1-score that 

combines the precision and recall using the harmonic mean, we calculated also 

the ‘negative’ F1-score that combine the ‘negative’ precision and ‘negative’ recall. 

Therefore, the F1-score value obtained was 0.37 and for the ‘negative’ F1-score, 

the value was 0.45. Again, this showed that the model ‘learned’ better how to 

classify a ‘Pathogenic’ genomic variant than a ‘Benign’.  

 

Step 6.6 Analysis of model overfitting 

Another way to evaluate the performance of the model, beyond accuracy, 

precision, recall and the F1-score, is the comparison between confusion matrices 

for the training and test dataset. This was important to perceive if there was an 

overfitting of the model. If the results in the confusion matrix for the training 

dataset were better than for the testing dataset, we can conclude that the model 

was so adjusted to the instances/genomic variants in the training dataset that it 

may not be able to generalize to new cases, i.e. the test dataset. Therefore, it 

was crucial to compare the confusion matrices for training and test datasets 

(Figure 14).  
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Figure 14 - Confusion Matrix of the training (A) and test dataset (B) to evaluate the presence 

of overfit in the model constructed with the Scoring Matrix with Disease Score. 

 

To evaluate whether there was model overfitting, we calculated the percentage 

of true-positives (TP), true-negatives (TN), false-positives (FP) and false-

negatives (FN) in the confusion matrices and the accuracy for each dataset 

(Figure 14). The decrease in the percentage of true-positives from 13% in 

training dataset to 10% in test dataset and the differences between the accuracy 

could be an indicator of overfitting particularly for the ‘Benign’ variants. These 

results were expected, because our master document-term matrices were 

imbalanced, i.e. only 174 ‘Benign’ variants for 1000 ‘Pathogenic’ variants. 

Nevertheless, the percentage of false-negatives did not change in both datasets 

(2%), showing that the model is more accurate in the classification of ‘Pathogenic’ 

variants. Altogether, these results suggest some overfitting of the model, 

particularly affecting ‘Benign’ variants. 

Step 6.7 Comparing model performance using the three distinct matrices 

To properly compare the three previously described matrices (Frequency Matrix 

with Disease Frequency, Frequency Matrix with Disease Score and Scoring 

Matrix with Disease Score), we next created 10 distinct Decision Tree models for 

each one. The main difference between the Decision Tree models were the 1000 

‘Pathogenic’ variants used for each Decision Tree model. We randomly selected 

the set of 1000 ‘Pathogenic’ variants, in the hope of decreasing the likelihood of 
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selecting the same sets of ‘Pathogenic’ variants for each model. With this, we 

expected to generate a more truthful model bypassing the problem of selecting 

only one set of 1000 ‘Pathogenic’ variants. To better compare the results 

obtained, we decided to calculate the mean value for TP, TN, FP and FN obtained 

for each of the ten ML models developed with both the C5.0 and rpart functions 

for each matrix. Table 28 shows the calculated mean values for the confusion 

matrices obtained for the test datasets (n = 235 variants) created with the two R 

functions.  

Table 28 – Comparison between the performance of the three matrices with the C5.0 function 

and rpart function, considering the confusion matrices and accuracy for each matrix. The 

colours in the confusion matrices are representative of true-positive stand as green; true-

negative stand as red; false-negative stand as orange; false-positive stand as blue. 

Test dataset C5.0 function rpart function 

Accuracy 

C5.0  

function 

rpart  

function 

Frequency Matrix 

with Disease 

Frequency 

26 

6 

8 

195 

24 

8 

6 

197 
94.0% 94.0% 

Frequency Matrix 

with Disease 

Score 

25 

12 

4 

194 

24 

8 

5 

198 
93.2% 94.5% 

Scoring Matrix 

with Disease 

Score  

25 

12 

4 

194 

24 

9 

5 

197 
93.2% 94.0% 

 
 

Considering the results in Table 28, we observed that the results for the two R 

functions were very similar, as observed previously. Nevertheless, we observed 

that the rpart function had a higher mean value of true-negatives (19 for the C5.0 

function vs. 197 for the rpart function), which is also reflected in the accuracy 

results obtained. Concerning the different matrices used, the best results were 

obtained for the Frequency Matrix with Disease Score with the rpart function. 

Nevertheless, across matrices very similar results were observed. 

Next, we calculated for all matrices the same performance measures previously 

described: precision, ‘negative’ precision, recall, ‘negative’ recall, F1-score and 

‘negative’ F1-score (Table 29). 
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Table 29 – Comparison between the performance measures for the three matrices. 

Performance measures related for ‘Benign’ variants 

Test dataset 
Precision Recall F1-Score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring Matrix 

with Disease 

Score  

0.68 0.72 0.86 0.83 0.38 0.39 

Frequency 

Matrix with 

Disease 

Frequency 

0.81 0.75 0.77 0.80 0.39 0.39 

Frequency 

Matrix with 

Disease Score 

0.68 0.75 0.86 0.83 0.38 0.38 

Performance measures for ‘Pathogenic’ variants  

Test dataset 
‘Negative’ Precision ‘Negative’ Recall ‘Negative’ F1-score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring Matrix 

with Disease 

Score  

0.98 0.98 0.94 0.96 0.44 0.48 

Frequency 

Matrix with 

Disease 

Frequency 

0.96 0.97 0.97 0.96 0.56 0.48 

Frequency 

Matrix with 

Disease Score 

0.98 0.98 0.94 0.96 0.48 0.48 

 

We observed that performance measures were very similar regardless of the 

matrix used. However, a more detailed analysis revealed that the Frequency 

Matrix with Disease Score had the best global performance (four best measures 

in a total of six measures, Table 29). However, this matrix cannot be further 

enhanced, as it recalls only keyword frequencies, unlike the Scoring Matrix with 

Disease Score which can be improved by altering the individual value for each 

keyword. To understand which the most relevant keywords were, we next 

analysed the tree structure built by one of the Decision Tree models for the 

Frequency Matrix with Disease Score (Figure 15).  
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Figure 15 - Tree structure built by the Decision Tree model for the Frequency Matrix with 

Disease Score. The green colour is representative of ‘Benign’ classification and red colour 

for ‘Pathogenic’’ classification. 

 
 

The tree structure built by the Decision Tree model for the Frequency Matrix with 

Disease Score (Figure 15) can be summarized in the following points:  

1. If a clinical unstructured text had the dictionary keyword ‘polymorphism’ 

and: 

• If the dictionary keyword ‘transversion’ was not found or was found only 

once, the genomic variant was classified as ‘Benign’;  

• Otherwise, if the dictionary keyword ‘transversion’ was found more 

than once, then the genomic variant was classified as ‘Pathogenic;  

2. If the clinical unstructured text did not have the dictionary keyword 

‘polymorphism’ and: 

• If a ‘MIM number’ was found, the genomic variant was ‘Pathogenic’; 

• Otherwise, if the ‘MIM number’ was not found and: 

o If the dictionary keyword ‘heterozygosity’ was found, the 

genomic variant was ‘Pathogenic’; 

o However, if the dictionary keyword ‘heterozygosity’ was not 

found and: 
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▪ If the dictionary keyword ‘heterozygous’ was found, the 

genomic variant was ‘Pathogenic’; 

▪ Otherwise, if the dictionary keyword ‘heterozygous’ was 

not found and: 

• If the dictionary keyword ‘compound-

heterozygous’ was found, the genomic variant 

was classified as ‘Pathogenic’;  

• However, if the dictionary keyword ‘compound-

heterozygous’ was not found and: 

o If the dictionary keyword ‘mutation’ was 

found, the genomic variant was classified 

as ‘Pathogenic’;  

o Otherwise, if the dictionary keyword 

‘mutation’ was not found the genomic 

variant was classified as ‘Pathogenic’.  

 

From this analysis, it was possible to understand the most relevant dictionary 

keywords (features) in the Frequency Matrix with Disease Score which allowed 

the Decision Tree model to classify the genomic variants. Therefore, 

‘polymorphism’ was considered relevant to classified ‘Benign’ variants and; 

‘heterozygosity’, ‘heterozygous’, ‘compound-heterozygous’ and ‘mutation’ to 

classified ‘Pathogenic’ variants. The keyword ‘transversion’ in Figure 15 was 

related with both classifications, however, we knew from the knowledge of 

literature that this keyword was more related with ‘Pathogenic’ variants. Taken 

into account the most relevant dictionary keywords observed in the tree 

structured, we realized that some of these dictionary keywords, such as 

‘transversion’, ‘heterozygosity’ and ‘heterozygous’ had an individual score of 

zero, i.e. the individual score established in step 3 for the dictionary of biological 

relevant keywords was zero. Therefore, we created a next matrix, named ‘New 

Scoring Matrix with Disease Score’, where we altered the individual score for that 

keywords. For the ‘transversion’, ‘heterozygosity’ and ‘heterozygous’ that 

previous had an individual score of zero, in the ‘New Scoring Matrix with Disease 

Score’ the individual score was altered to -10, given a negative connotation for 
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these keywords that were decisive to classified ‘Pathogenic’ variants in the 

Decision Tree model. For the keywords ‘compound-heterozygous’, ‘segregated’, 

‘frameshift’ and ‘truncated’ we increase the negativity altering the individual score 

from -10 to -15. This alteration was made because these keywords were directly 

related to ‘Pathogenic’ classification. 

The creation of the ‘New Scoring Matrix with Disease Score’ allowed us to 

understand if an alteration in the individual score of specific keywords could 

increase the number of genomic variants correctly classified. Therefore, we built 

the ten distinct Decision Tree models with both the C5.0 and rpart function for the 

‘New Scoring Matrix with Disease Score’. To better compare the results obtained, 

we decided to calculate the mean value for TP, TN, FP and FN obtained for each 

of the ten Decision Tree models developed with both the C5.0 and rpart functions 

for each matrix. Table 30 shows the calculated mean values for the confusion 

matrices obtained for the test datasets (n= 235 variants) created with the two R 

functions. 

 
Table 30 - Comparison between the confusion matrices for the Scoring Matrix with Disease 

Score and New Scoring Matrix with Disease Score and the accuracy calculate considered 

the R functions C5.0 and rpart. 

 
Considering the confusion matrices (Table 30) we next calculated the previously 

described performance measures for both the Scoring Matrix with Disease Score 

and New Scoring Matrix with Disease Score (Table 30). 

 
 
 

Test dataset C5.0 function rpart function 

Accuracy 

C5.0  
function 

rpart  
function 

Scoring Matrix 

with Disease 

Score  

24 

5 

9 

197 

24 

5 

9 

197 
94.0% 94.0% 

New Scoring 

Matrix with 

Disease Score  

24 

5 

6 

200 

24 

5 

7 

199 
94.9% 94.8% 
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Table 31 – Performance measures for the Scoring Matrix with Disease Score and New 

Scoring Matrix with Disease Score, calculated for the bot R function C5.0 and rpart. 

Performance measures related for ‘Benign’ variants 

Test dataset 
Precision Recall F1-Score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring 

Matrix with 

Disease 

Score 

0.86 0.83 0.73 0.73 0.40 0.39 

New Scoring 

Matrix with 

Disease 

Score 

0.83 0.83 0.80 0.77 0.41 0.40 

Performance measures for ‘Pathogenic’ variants 

Test dataset 
‘Negative’ Precision ‘Negative’ Recall ‘Negative’ F1-score 

C5.0 rpart C5.0 rpart C5.0 rpart 

Scoring 

Matrix with 

Disease 

Score 

0.96 0.96 0.98 0.98 0.49 0.49 

New Scoring 

Matrix with 

Disease 

Score 

0.97 0.97 0.98 0.98 0.49 0.49 

 

We observed that the New Scoring Matrix with Disease Score had, higher values 

in the performance measures (highlighted in Table 31). Furthermore, by 

comparing the confusion matrices (Table 30), we observed that the New Scoring 

Matrix with Disease Score had both a higher value of TP and TN. 

 

Concerning the existence of overfit, as we compare the accuracy values for the 

New Scoring Matrix with Disease Score (95.1% for training and 95.3% for test 

datasets, Figure 16A and 16B, respectively), we can conclude that no overfit was 

present. To support this, the percentage of false-negatives decreased from 3.4% 

(training dataset, Figure 16B) to 2.6% (test dataset, Figure 16A). Importantly, 

this lack of overfit observed for the Decision Tree model built using New Scoring 

matrix with Disease Score constituted an improvement in comparison with the 
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model built with the previously discussed Scoring Matrix with Disease Score 

(Figure 16).  

 
Figure 16 - Confusion Matrix of the training (A) and test dataset (B) to evaluate the presence 

of overfit in the model constructed with the New Scoring Matrix with Disease Score. 

 
Step 6.8 Improving model performance with Random Forest method 

In the previous sections, we only used the Decision Tree as a Machine Learning 

method, as it was a more informative. However, we observed that the Decision 

Tree model was prone to overfitting, especially when a tree is particularly deep, 

even though the last Decision Tree model built with the New Scoring matrix with 

Disease Score revealed no overfit.  To try to increase even more its performance, 

we opted to use the ensemble classifier Random Forest. A Random Forest is a 

collection of Decision Trees that are aggregated into a final model. Identical to 

the Decision Tree model, the Random Forest model ‘learns’ from the training 

dataset and makes predictions with the test dataset. The Random Forest method 

is considered a more robust model and is a modelling technique stronger than a 

single Decision Tree model.  

In the Random Forest method, we used two approaches to minimize even more 

the overfitting of the model and increase its performance. First, the dataset used 

to train each Decision Tree model into the Random Forest method was unique, 

i.e. each Decision Tree was trained using a distinct set of instances. Second, not 

all features in the matrices were used for all Decision Trees, i.e. the Random 

Forest method only selected and used a reduced number of all available features 
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in each Decision Tree model. For example, if given 20 dictionary keywords, the 

Random Forest method may be trained using only 5 of these features. However, 

this could be problematic as it omits 15 features, which may be highly relevant. 

Nevertheless, as multiple Decision Trees are built with the Random Forest 

method, eventually all our original features will have been included. In the end, 

the classification is obtained by the voting of the classification reported by each 

of the different Decision Trees.  

As input for the Random Forest method, we used the New Scoring Matrix with 

Disease Score (described in the previous section). Through the several packages 

available to create Random Forest method in R, the randomForest is one of the 

most widely used. We also used the R package caret that enables the automated 

fine-tuning of constructed models.  

To run the randomForest function (within the randomForest package) it was 

required: 1) the training dataset (80% of the instances in the New Scoring Matrix 

with Disease Score, i.e. 939 genomic variants) and; 2) the classification (‘Benign’ 

or ‘Pathogenic’) for each instance in the training dataset. The randomForest and 

the expand.grid functions have parameters that can be combined to improve the 

model performance. In particular, the parameters considered were:  

- mtry: Number of features randomly sampled as candidates at each 

Decision Tree model. For classification models, the default is the square 

root of the number of features. In New Scoring Matrix with Disease Score, 

the number of features was 255, therefore, the ideal mtry was 16. 

Nevertheless, we have also tested an mtry value of 128; 

- ntree: Number of trees to grow. By default, the randomForest function 

creates an ensemble of 500 trees that consider mtry parameter. In general, 

more complex learning problems and larger datasets work better with 

larger number of trees. The goal of using a large number of trees is to train 

enough so that each feature has a chance to appear in several models. 

However, larger number of trees produce more stable models, but require 

more memory and longer run time. We have used ntree values of 1000 

and 10,000. 
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While with the single Decision Tree model (as described in the previous sections), 

we can visualize the decisions underlying the tree structures, with the Random 

Forest method the same does not occur, as it represents a collection of several 

Decision Tree models. Therefore, the output object from the Random Forest 

method cannot be visualized. Hence, the main outputs of the Random Forest 

method are the confusion matrices and performance metrics. After the training 

stage, the Random Forest method returns an output object that was used to make 

predictions with the test dataset (20% of all instances, i.e. 235 genomic variants). 

To perceive which values of the parameters mtry and ntree achieve the best value 

of correctly classified genomic variants, we performed several rounds of Random 

Forest methods using different values of mtry and ntree, as shown in Table 32. 

 
Table 32 – Confusion matrix and accuracy from the Random Forest methods with mtry 16 

and ntree of 1000; mtry of 128 and ntree of 1000; mtry of 16 and of ntree of 10,000; mtry of 

128 and ntree of 10,000.  

Test Dataset ntree mtry randomForest function Accuracy 

New Scoring 

Matrix with 

Disease Score 

1000 

16 

16 

(6.8%) 

0 

(0%) 

13 

(5.5%) 

206 

(87.7%) 

94.5% 

128 

23 

(9.8%) 

15 

(6.4%) 

6 

(2.6%) 

191 

(81.3%) 

91.1% 

10,000 

16 

13 

(5.5%) 

0 

(0%) 

16 

(6.8%) 

206 

(87.7%) 

93.2% 

128 

21 

(8.9%) 

18 

(7.7%) 

4 

(1.7%) 

192 

(81.7%) 

90.6% 

 

Considering the confusion matrices (Table 32), we observed that the Random 

Forest method with mtry of 16 and ntree of 1000, was the method with the highest 

accuracy (94.5%) and with the lowest values of false-positives (0) and false-

negatives (13). Therefore, it appeared that a mtry of 16 and a ntree of 1000 were 

the parameters that best fit our dataset, as they led to the best predictions. In 
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particular, the best combination of correctly classified variants (16 true-positives 

and 206 true-negatives) and low misclassified variants (0 false-positives and 13 

false-negatives). However, some considerations should be made on the different 

importance of false negatives and false positives. In the clinical field, it is 

preferable to wrongly predict a ‘Benign’ variant as ‘Pathogenic’ (false-negative) 

than to predict a ‘Pathogenic’ variant as ‘Benign’ (false-positive). However, 

Machine Learning methods do not consider this premise. In fact, we observed 

that the Random Forest method with mtry of 128 and ntree of 1000, had the 

lowest number of false-negatives (n=6) in comparison with the Random Forest 

method with mtry of 16 and ntree of 1000 (n=13).  To understand more clearly 

the results with the Random Forest methods, we decided to calculate other 

performance measures (Table 33), beyond the accuracy.  

Table 33 – Performance measures for the Random Forest methods with mtry 16 and ntree 

of 1000; mtry of 128 and ntree of 1000; mtry of 16 and ntree of 10,000; mtry of 128 and ntree 

of 10,000. 

Performance measures related for ‘Benign’ variants 

Test 

Dataset 
ntree mtry 

Precision 

(PPV) 

Recall 

(TPR) 
F1-Score 

New 

Scoring 

Matrix with 

Disease 

Score 

1000 
16 1 0.55 0.35 

128 0.61 0.79 0.34 

10,000 
16 1 0.44 0.31 

128 0.55 0.84 0.33 

Performance measures for ‘Pathogenic’ variants 

Test 

Dataset 
ntree mtry 

 ‘Negative’ 

Precision 

(NPV) 

‘Negative’ 

Recall 

(TNR) 

‘Negative’  

F1-Score’ 

New 

Scoring 

Matrix with 

Disease 

Score 

1000 
16 0.94 1 0.48 

128 0.99 0.93 0.46 

10,000 
16 0.93 1 0.48 

128 0.97 0.91 0.47 

 

With the performance measures in Table 33 we could select which Random 

Forest method truly best fit our dataset. For the Random Forest method with mtry 

of 16 and ntree of 1000 the precision value for the ‘Benign’ variants was 1, i.e. 
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the method correctly classifies all the ‘Benign’ variants (16 true-positives and 0 

false-positives). Therefore, this model was considered very precise for the 

‘Benign’ classification. However, the recall value was 0.55. This value was low in 

comparison with the precision value, once the method misclassified a significant 

number of ‘Benign’ variants (13 false-negatives). Moreover, once the precision 

and recall should not be analysed isolated, we further calculated the F1-Score 

that combines the two performance measures into a single measure. The F1-

Score is the harmonic average of precision and recall and expresses how precise 

our model was, i.e. how many instances the model classified correctly and how 

robust it is. Therefore, with a F1-Score value of 0.35 we concluded that this 

Random Forest method for the ‘Benign’ variants was precise, however in terms 

of robustness the method was weak, once the number of ‘Benign’ variants 

misclassified was high. For the ‘Pathogenic’ variants in this Random Forest 

method (mtry of 16 and ntree of 1000), the ‘negative’ precision was 0.94, i.e. the 

method correctly classified a high number of ‘Pathogenic’ variants in the dataset 

(206 true-negative and 13 false-negatives). The ‘negative’ recall value was 1, 

once the method did not misclassify any ‘Pathogenic’ variants (0 false-positives). 

The ‘negative’ F1-Score was 0.48 and therefore, this method was considered as 

both precise and robust.  

The Random Forest method with mtry of 128 and ntree of 1000 had a precision 

value of 0.61 for the ‘Benign’ variants, once the method had a high number of 

misclassified as ‘Benign’ variants (15 false-positives). The recall value was 0.79 

and consequently the method was considered robust, once the number of 

‘Benign’ variants misclassified as ‘Pathogenic’ (6 false-negatives) was low. The 

combined measure F1-Score was 0.34, hence we can conclude that the model 

was less precise than robust. For the ‘Pathogenic’ variants the ‘negative’ 

precision value was 0.99, i.e. the method correctly classified almost all 

‘Pathogenic’ variants (191 true-negatives and 6 false-negatives). The ‘negative’ 

recall value was 0.93, because the method had a small number of misclassified 

‘Pathogenic’ variants (15 false-positives). The ‘negative’ F1-Score’ was 0.46 and 

therefore this method was considered both as precise and robust.  

We also built two Random Forest methods with a ntree parameter of 10,000 and 

tested two values for mtry: 16 and 128. For the Random Forest method with mtry 



116 
 

of 16 and a ntree of 10,000, the precision value for the ‘Benign’ variants was 1, 

once the method correctly classified all the ‘Benign’ variants (13 true-positive and 

0 false-positives).  The recall value was 0.44, a value considered low, since the 

method misclassified a significant number of ‘Benign’ variants (16 false-

negatives). The F1-Score was 0.31 and therefore this method can be considered 

as precise, once it classified all correctly all the ‘Benign’ variants, however not 

truly robust. For the ‘Pathogenic’ variants the ‘negative’ precision value was 0.93, 

i.e. the method correctly classified almost all the ‘Pathogenic’ variants in the 

dataset (206 true-negatives and 16 false-negatives). The ‘negative’ recall value 

for the ‘Pathogenic’ variants was one given that the method did not misclassify 

any ‘Pathogenic’ variant (zero false-positives). The ‘negative’ F1-Score was 0.48 

and therefore this method was considered both as precise and robust. 

For the Random Forest method with mtry of 128 and ntree of 10,000, the 

precision value for ‘Benign’ variants was 0.55, once the method had a high 

number of misclassified ‘Benign’ variants (18 false-positives). The recall value 

was 0.84, once the method misclassified a low number of ‘Benign’ variants (4 

false-negatives). The F1-Score was 0.33 and consequently the method was 

robust, however not very precise. For the ‘Pathogenic’ variants the ‘negative’ 

precision value was 0.97, as the method correctly classified almost all 

‘Pathogenic’ variants (192 true-negatives and 4 false-negatives). The ‘negative’ 

recall value was 0.91, as the number of ‘Pathogenic’ variants misclassified was 

low (18 false-positives). Moreover, the ‘negative’ F1-Score was 0.31 and 

therefore this method was considered both precise and robust.  

Considering all these four Random Forest methods (Table 33) and knowing that 

our dataset is imbalanced and that both classifications are important, we opted 

to choose the Random Forest method that had the highest F1-Score and 

’negative’ F1-score, as well as with the lowest misclassification rate. This was the 

case of the Random Forest method with mtry of 16 and ntree of 1000 (highlighted 

in Table 33).  

After this selection, we analysed the resulting confusion matrices for both the 

training and the test datasets from New Scoring Matrix with Disease Score, to 

understand whether there was overfitting of the model. With the selected Random 
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Forest method (mtry of 16 and ntree of 1000), the percentage of true-positives in 

the training and test datasets was the same (7%), while the true-negatives went 

from 84.3% to 87.7% (Figure 17A, B). Concerning the false-positives, it improved 

from 8.1% in training dataset to 0% in the test dataset. This could be an indicator 

of no overfit in the method. However, for the false-negatives, it increased from 

0.3% in the training dataset to 6% in the test dataset. Finally, we observed an 

increase in accuracy from 91.6% to 94.5% in the training to the test datasets. 

Altogether, despite the increase in false-negatives, this Random Forest model 

appears not to show evidences of overfitting. These results support the idea that 

the method was able to predict new data and therefore, our method was able to 

‘learn’ how to distinguish between ‘Pathogenic’ and ‘Benign’ variants.  

 

Figure 17 – Confusion matrices for training (A) and test dataset (B) from New Scoring Matrix 

Disease Score. 

 

Although the performance of the Random Forest method was already 

satisfactory, we still attempted to increase its performance, by adding a 

resampling technique to obtain additional information on the model and thus 

further test it. 

As previously mentioned, the randomForest function is also supported by the 

caret package in R. This package provides an excellent capability to tune 

Machine Learning parameters. In the previous section (‘Improving Model 

Performance’) we used the ntree and mtry parameters to find the Random Forest 
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method that best predicted our classification. However, the caret package 

provides other functions: in particular, we used the trainControl function to 

prepare and divide the dataset into the training and test sets using a repeated k-

fold cross validation, i.e. 10 times 10-fold cross-validation. Therefore, with this 

resampling technique, the training dataset was divided into 10 subgroups (100 

instances each), with nine of them used for training the model and one as a test 

dataset to evaluate the model performance.  

We selected the same parameters for ntree=1000 and mtry=16 as described 

previously and choose k=10 for the cross-validation resampling technique. Next, 

we again used the train function to train the model, using the training dataset from 

New Scoring Matrix with Disease Score. The output of the train function was, in 

our case, a train Random Forest model and a table with the parameters and the 

performance measures. Obtained results are detailed in Figure 18. 

To understand if the obtained Random Forest model built considering the 

resampling technique was able to generalize to the test dataset, we compared 

the accuracy and the percentage of false-positive and false-negative in both 

datasets. We observed that the accuracy was higher in the training dataset than 

in the test dataset (91.8% vs. 89.4%, Figure 18A, B) indicating little overfitting of 

the model. Concerning the percentage of false-positives and false-negatives in 

the training dataset (0.4% and 7.7%, Figure 18A), they all increased in the test 

dataset (1.7% and 8.9%, Figure 18B). This again indicated that the model had 

little overfit, losing some quality in the validation. Nevertheless, it can be 

considered a reasonably good model.  
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Figure 18 - Confusion matrices for training (A) and test dataset (B) from the Random Forest 

method with mtry of 16, ntree of 1000 and cross-validation from New Scoring Matrix Disease 

Score. 

 

In comparison with the Random Forest method without cross-validation, we 

observed that the accuracy level with cross-validation was worse (94.5% vs. 

89.4%, Figure 17B, Figure 18B). Therefore, applying the cross-validation 

resampling technique did not prove to be an advantage for our Random Forest 

model. 

 

Step 6.9 Evaluating Random Forest methods performance in new data 

To perform a final evaluation of the performance of the Random Forest methods 

built, we decided to test them with a novel dataset of clinical variants, i.e. 

‘validation dataset’. To create this validation dataset, we collected from the OMIM 

database 700 new clinical unstructured texts from genomic variants: 690 from 

‘Pathogenic’ variants and 10 from ‘Benign’ variants. With these novel genomic 

variants, we created a matrix using the same scoring strategy described for the 

New Scoring Matrix with Disease Score, searching and scoring the same 255 

dictionary keywords (features). This new matrix was used as validation dataset, 

to evaluate the capacity of our Random Forest method to classify variants that 

were never ‘seen’ by the method. Moreover, we built two Random Forest 
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methods: one without using the cross-validation technique (Figure 19A,B) and; 

another using the repeated cross-validation technique (Figure 19C,D). Both 

methods were ran with the parameters mtry of 16 and ntree of 1000.  

 
 

Figure 19 - Confusion matrix for the validation-training dataset built with Random Forest with 

mtry of 16, ntree of 1000 and without cross-validation (A) and the confusion matrix for 

validation-test dataset created the 700 novel genomic variants (B).  Confusion matrix 

performed with the Random Forest method with mtry of 16, ntree of 1000 and with cross-

validation (C) and the confusion matrix to evaluate the performance of the method 

considering the 700 novel genomic variants of the validation dataset (D). 
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With the Random Forest method without cross-validation technique, the accuracy 

value increased from 90.3% in the training dataset to 99.2% in the test dataset 

(Figure 19A, B). We observed also that the percentage of false-positives did not 

vary much: 0.2% in the training dataset and 0.3% in the test dataset. The 

percentage of false-negatives was vastly improved, from 9.5% in the training 

dataset to 0.6% in the test dataset (Figure 19A, B). These results demonstrate 

that overfit did not occur when the Random Forest method without cross-

validation was applied to a completely new set of genomic variants.  

The Random Forest method with cross-validation technique, had an accuracy 

value of 90.6% in the training dataset (Figure 19C) and 99.0% for the test dataset 

(Figure 19C, D). The percentage of false-positives was similar in both datasets 

(0.2% in training dataset and 0.4% in test dataset) and the percentage of false-

negatives decreased from 9.2% in training dataset to 0.6% in the test dataset 

(Figure 19C, D). Therefore, considering these results we concluded that overfit 

did not occur when this Random Forest method.  

Next, we calculated the performance measures for the test datasets of both 

methods, to evaluate their performance with and without the cross-validation 

technique (Table 34). The Random Forest method without cross-validation, for 

the ‘Benign’ variants had the precision value of 0.78, i.e. the method correctly 

classified a significant number of ‘Benign’ variants (7 true-positives and 2 false-

positives). The recall value for the ‘Benign’ variants was 0.64, therefore the 

method misclassified few ‘Benign’ variants (4 false-negatives). The F1-Score was 

0.35 and the method was considered more precise than robust. For the 

‘Pathogenic’ variants the value of ‘negative’ precision and ‘negative’ recall was 

0.99 both, once the method correctly predicted almost all ‘Pathogenic’ variants 

(687 true-negative, 4 false-negatives and 2 false-positives). The F1-Score was 

0.50. Therefore, this method was considered precise and robust (Table 34). 

Considering the performance measures for the Random Forest method with 

cross-validation (Table 34), the precision value for the ‘Benign’ variants was 0.64, 

i.e. the method correctly classified 7 ‘Benign’ variants in a total of 10 ‘Benign’ 

variants in the test dataset (7 true-positives). The recall value was 0.70, the 

method misclassified only 4 ‘Benign’ variants (4 false-negatives). The F1-Score 
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was 0.33. Therefore, the model was considered more robust than precise. For 

the ‘Pathogenic’ variants, the ‘negative’ precision was 0.99, once the method 

almost correctly predicted all the ‘Pathogenic’ variants (686 true-negatives). The 

‘negative’ recall was 1, i.e. the method had few misclassified ‘Pathogenic’ variants 

(3 false-positives, Table 34). The F1-Score was 0.50 and the method was 

considered as precise than robust.   

 
Table 34 – Performance measures for the Random Forest methods with mtry of 16 and ntree 

of 1000 and with/without cross-validation technique. 

Performance measures related for ‘Benign’ variants 

Validation-Test 

Dataset 
ntree mtry 

Resampling 

Tecnhique 

Precision 

(PPV) 

Recall 

(TPR) 
F1-Score 

Novel genomic 

variants 

 (n= 700) 

1000 16 

Without 

Cross-

Validation 

0.78 0.64 0.35 

With Cross-

Validation 
0.64 0.70 0.33 

Performance measures for ‘Pathogenic’ variants 

Validation-Test 

Dataset 
ntree mtry 

Resampling 

Tecnhique 

‘Negative’ 

Precision 

(NPV) 

‘Negative’ 

Recall 

(TNR) 

‘Negative’  

F1-Score’ 

Novel genomic 

variants 

 (n= 700) 

1000 16 

Without 

Cross-

Validation 

0.99 0.99 0.50 

With Cross-

Validation 
0.99 1 0.50 

 

Comparing the confusion matrices, the accuracies and the performance 

measures for both Random Forest methods, we concluded, for our case, despite 

the imbalance of the dataset, the cross-validation technique did not improve the 

good results already obtain without cross-validation.  

In conclusion, our Random Forest model (with or without cross-validation) 

was able to learn from the new dataset of genomic variants and predict the 

classification of the test dataset with high precision and recall. 
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Conclusion and Future Perspectives 
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Next Generation Sequencing has allowed the detection of a large number of 

genomic variants associated with disease. Therefore, with this technology and 

the appropriated bioinformatics tools and clinical databases, the amount of data 

related to the functional impact of detected variants has increased in an 

exponential way in the last years. However, the clinical information related with 

the genomic variants are often stored in databases where such information is 

concealed within unstructured texts. The Online Mendelian Inheritance in Man 

database, OMIM, is one of the largest databases where clinical information of 

genomic variants is stored in unstructured texts. However, unlike other databases 

such as ClinVar, OMIM does not provide a clear classification, such as 

‘Pathogenic’ or ‘Benign’ of the deposited genomic variants. Although 

correspondences between OMIM and ClinVar can be established, as many 

genomic variants are present in both databases, many other genomic variants 

described in OMIM are either unclassified in ClinVar or classified as ‘variants of 

unknown significance’ (VUS), a classification without clinical certainty. In light of 

this, the aim of this Thesis was to develop a tool, combining Text Mining and 

Machine Learning approaches, that allows the extraction of information from 

OMIM clinical description towards the classification of a genomic variant as 

‘Benign’ or as ‘Pathogenic’, with a given certainty.  

To develop this tool, we have used the unstructured clinical texts from OMIM as 

input and performed several pre-processing steps for removal of unnecessary 

information such as punctuation. Afterwards, we created a dictionary of clinically 

relevant keywords with different connotations and biological implications, 

selected based on the knowledge from the literature. Using Text Mining and the 

Machine Learning methods Decision Tree and Random Forest, we were able to 

build a prediction method with a high value of confidence that can predict the 

classification 'Benign' or 'Pathogenic' for novel genomic variants. Using a dataset 

of genomic variants distinct from that used for the development of the tool, we 

were able to obtain an accuracy rate of 99% in the prediction of pathogenicity.  

 

Considering these very good results, our future perspectives are to test and apply 

our tool for the classification with a given certainty of genomic variants that are 
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currently classified as Variants of Unknown Significance (VUS) in ClinVar. 

Moreover, our tool could also be adapted, by adding novel keywords to our 

dictionary, for the analysis of clinical unstructured texts of genomic variants 

classified as, for example, ‘Likely Pathogenic’, ‘Likely Benign’ and ‘Drug 

Response’. Finally, we also aim to adapt our tool to the interpretation and 

classification of unstructured texts from other databases where relevant 

information concerning genomic variants is also concealed, such as UniProt.  

 

In conclusion, using a combination of Text Mining and Machine Learning 

approaches, we were able to create an accurate, robust and precise tool 

that is capable of interpreting clinical unstructured texts and to confidently 

assess the pathogenicity of genomic variants. 
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