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A B S T R A C T

Variant calling pipelines have been developed to help identify where and how the nu-
cleotide bases of a genome sequence differ from its respective reference sequence. Broadly,
variant calling pipelines comprise short read aligners, which align reads against a reference
genome, and variant callers, which search for variants on the aligned sequences. Differ-
ent read aligner and variant calling combinations have varying degrees of capability for
capturing variants (recall) while reducing the amount of noise they produce (precision).
Therefore, in recent years there has been an effort in comparing the performance of variant
calling pipelines, although findings are far from concordant. Furthermore, some studies
have postulated that the choice of sequencing technology may play a role even when all
other conditions—sample, short read aligner, variant caller—remain the same.

This study aims to benchmark the performance of several variant calling pipelines on ex-
ome data sets obtained from two sequencing technologies, Illumina and Ion Torrent. To that
end, variants detected in sequences obtained from a well-characterized sample, NA12878,
were compared against a set of high-confidence variant calls developed for this sample
using recently proposed benchmarking best practices as a basis.

This standardized framework for variant calling benchmarking replaces direct variant
comparisons and Venn diagrams with more sophisticated methods. We report several in-
formative and well-defined performance measures (precision, recall, F1 score) and present
Precision-Recall curves, which are helpful for assessing pipeline performance in a visual
way. Following best practices we evaluate results at the genotype match level, reporting
matches only when variants are observed in the same number of alleles. The combined
performance of 13 pipelines comprising three short read aligners (Bowtie 2, BWA-MEM,
and TMap) and four variant callers (BCFtools, Freebayes, HaplotypeCaller, VarScan 2, and
Torrent Variant Caller), was assessed on four sequencing data sets.

Our results suggest that globally variant detection appears to be independent of choice of
read aligner. Overall, SNP detection performance is good for both technologies, its F1 scores
averaging between 87.4% for Illumina and 84.4% for Ion Torrent. BCFtools pipelines offer
the best or runner-up results for the two technologies. VarScan 2 also performs similarly
well on Illumina data sets. In contrast, for indel detection, performance is very poor for Ion
Torrent, with an average of 5.6% F1 score as compared to 63.1% F1 score on Illumina. The
low precision levels reflected on the F1 scores reveal that there is still a long way towards
improvement of indel detection, a type of variant with high impact in gene inactivation.



R E S U M O

Pipelines para deteção de variantes têm sido desenvolvidas para identificar diferenças entre
sequência genómicas e sequências de referência. Genericamente, as pipelines para deteção
de variantes são constituı́das por mapeadores, que localizam short reads num genoma de
referência, e detetores de variantes, que procuram encontrar variantes nas sequências pre-
viamente mapeadas. Diferentes combinações de mapeadores e detetores de variantes pos-
suem diferente capacidade na deteção de variantes (recall) e redução de ruı́do nos resultados
(precision). Consequentemente, nos últimos anos tem-se comparado o desempenho destas
pipelines, apesar destes achados ainda não serem concordantes. Ademais, alguns estudos
postularam que a escolha de tecnologia de sequenciação poderá influenciar os resultados
mesmo quando as demais condições—amostra, mapeador, detetor de variantes—são iguais.

Este estudo tem como objetivo avaliar o desempenho de pipelines para deteção de vari-
antes quando aplicadas a conjuntos de dados exómicos sequenciados por duas tecnologias,
Illumina e Ion Torrent. Deste modo, as variantes detetadas em sequências obtidas a partir
de uma amostra altamente caracterizada (NA12878) foram comparadas com as presentes
num conjunto de variantes de elevada confiança desenvolvido especificamente para esta
amostra com base numa série de recomendações recentemente propostas.

A avaliação padronizada de desempenho substitui a comparação direta de variantes e
diagramas de Venn por métodos mais sofisticados. Neste trabalho descrevemos medidas
estatı́sticas informativas (precision, recall, e F1 score) e apresentamos curvas Precision-Recall
que permitem visualizar o desemepenho das pipelines. Seguindo as recomendações, os re-
sultados são avaliados ao nı́vel do emparelhamento genómico, no qual duas variantes são
consideradas iguais apenas se forem observadas no mesmo número de alelos. O desem-
penho combinado de 13 pipelines constituı́das por três mapeadores (Bowtie 2, BWA-MEM,
e TMap) e quatro detetores de variantes (BCFtools, Freebayes, HaplotypeCaller, VarScan 2,
e Torrent Variant Caller) foi então avaliado em quatro conjuntos de dados de sequenciação.

Os nossos resultados sugerem que, no geral, a deteção de variantes é independente da
escolha de mapeador. Globalmente, o desempenho na deteção de SNPs é satisfatório para
ambas as tecnologias, com F1 scores méddios de 87.4% para Illumina e 84.4% para Ion Tor-
rent. A ferramenta BCFTools apresenta dos melhores resultados para ambas as tecnologia,
e a ferramenta VarScan 2 tem bom desempenho em dados Illumina. Por outro lado, na
deteção de indels, o desempenho é muito fraco para Ion Torrent, com F1 score médio de
5.6% em oposição a um F1 score médio de 63.1% para Illumina. Os baixos nı́veis de precision
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refletidos nos F1 scores revelam que os resultados de deteção de indels, um tipo de variante
com elevado impacto na inativação de genes, carecem de grandes melhorias.
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I N T R O D U C T I O N

1.1 context

In 2001, roughly a decade after its inception, the Human Genome Project released the first
draft of the human genome (International Human Genome Sequencing Consortium, 2001).
Having pushed Sanger sequencing to its limit, this project demonstrated the potential of
genome sequencing, paving the way for the development of Next-Generation Sequencing
(NGS) technologies that could surpass the limitations imposed by their predecessors. The
NGS era brought about a great increase in data output, alongside a steep decrease in the
costs associated with sequencing at a population scale, allowing researchers to gain further
insight into the structure and inner workings of the human genome, as well as its protein-
encoding portion, the exome, at a remarkable rate (Mardis, 2008; Metzker, 2010; Goodwin
et al., 2016).

The NGS era poses new challenges, however, owning to its incessant demand for in-
creasingly sophisticated computational pipelines capable of handling inordinate amounts
of raw data while simultaneously minimizing systematic errors. One of the types of anal-
ysis birthed by NGS is variant calling, which attempts to identify differences between a
genome sequence and a given reference sequence.

Although many methods have been developed for the purpose of variant calling, the
results they produce are lacking in concordance (O’Rawe et al., 2013), meaning that it is
important to not create new tools indiscriminately. Instead, there ought to exist a focus on
refinement, with researchers measuring variant calling results against truth data sets so as
to benchmark the tools’ performances, as well as their aptitude to suit the needs of each
type of study.

Past studies have attempted to assess the performance of variant calling tools (Liu et al.,
2013; Pabinger et al., 2014; Pirooznia et al., 2014). Results produced by these benchmarking
methodologies could not be compared, however, because each created its own approach in
lieu of relying on a standardized framework. Therefore, in an attempt to drive the devel-
opment of benchmarking standardization in the context of variant calling, the Genome in a
Bottle (GIAB) Consortium (Zook et al., 2014, 2016) has published a set of well-characterized
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genome and exome sequencing reference materials. Although still far from being a ground
”truth”, these high-confidence variant and reference calls have nonetheless facilitated the
assessment of variant caller performance (Hwang et al., 2015; Cornish and Guda, 2015). Be-
cause of GIAB’s high-confidence calls, devising pipelines for variant calling benchmarking
is easier than ever before, setting the stage for the establishment of standardized compari-
son methods.

1.2 motivation

There is still no consensus on which variant calling pipeline provides the best results, as
their performance depends not only on the choice of variant caller, but also on the type
of sample (species, tissue, coverage, etc.), sequencing platform, read aligner, and so forth.
Additionally, no standardized framework for benchmarking variant calling results exists,
leading to studies drawing conclusions which are not only different, but also difficult, if
not impossible, to compare against one another.

Previous studies have investigated what influence the choice of sequencing technology
has on variant calling, but to our knowledge none has investigated the differences in results
between technologies. The main reason why we think that it would be worthwhile to ana-
lyze these differences is the fact that not all technologies have the same level of community
support. The sheer popularity of Illumina platforms overshadows all others, namely that of
the Ion Torrent line of sequencers. Despite Ion Torrent technology being the most affected
by certain types of errors and having no global error rate—which forms the basis for cer-
tain bioinformatics analyses (e.g. indel detection)—it is believed that its performance could
be improved through the development of platform-specific approaches able to deal with
known issues (Bragg et al., 2013). Furthermore, at the ”Instituto de Investigação e Inovação
em Saúde” (i3S), the institute where this research is being conducted, the genomic services
have adopted Ion Torrent sequencing. Better understanding the use of this technology could
lead to an optimized and streamlined variant calling pipeline suited to that technology.

The goal of this study is the implementation and comparison of different pipelines com-
bining several short read aligners and variant callers. The results will then be compared
against a high-confidence call set developed by the GIAB Consortium for that sample us-
ing a recently proposed variant calling benchmarking framework (Krusche et al., 2018). To
that end, pipelines featuring several short read aligners and variant callers will be used to
call variants on NA12878 Whole-Exome Sequencing (WES) sequences obtained from different
platforms. To measure matches found in the data, a series of performance metrics will be
applied. Through these metrics, we hope to be able to analyze not only the performance
of the different variant callers relative to each sequencing technology, but also how results
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differ between those technologies. Ultimately, these results will help inform the creation of
a pipeline to be used in the analysis of clinical samples.

1.3 objectives

Taking into account the importance of benchmarking for the optimization of variant calling
pipelines, together with the influence that these pipelines exert on the analysis and interpre-
tation of clinical results, the main objective of this work is the implementation of variant
calling pipelines to assess and compare their performance in the analysis of exome sam-
ples from multiple sequencing technologies. To that end, a set of more specific aims will
be addressed:

1. Install, try, and evaluate different short read aligners and variant callers;

2. Devise pipelines combining multiple short read aligners and variant callers;

3. Benchmark pipeline performance against a set of high-confidence variant calls;

4. Determine the strengths and weaknesses of each tool in Single Nucleotide Polymorphism
(SNP) and indel detection;

5. Develop variant calling pipelines to analyze clinical samples.

1.4 thesis organization

After this introduction, the state of the art introduces key concepts associated with genetic
variation, as well as the analysis of variants in both the genome and exome. What follows
is a discussion of personalized medicine, which first compares the merits and limitations
of Whole-Genome Sequencing (WGS) and WES, and then presents statistical concepts that
illustrate the need to optimize variant calling pipelines for clinical use.

Subsequent sections focus on variant calling pipelines. Section 2.3 opens with a brief look
into sequencing. Section 2.4 and 2.5 introduce two fundamental components of variant
calling pipelines, short read aligners and variant callers, respectively, culminating into a
section which combines the two to form a general variant calling pipeline. The state of the
art finishes with an introduction to variant calling benchmarking, wherein the concepts of
benchmark call set and standardized benchmarking framework are explored in detail.

The methodology chapter elaborates on the various constituents of the variant calling
benchmarking pipelines to be used in this work. In the interest of facilitating result repro-
duction, all primary inputs, methods, and tools used to build and run this work’s variant
calling pipelines are specified. Afterwards, we introduce Vcaller, a command line interface
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tool that wraps around preexisting bioinformatics tools to condense the amount of lines
required to run each variant calling step, and further combine those steps into automated
pipelines. Lastly, we describe previous studies’ findings in the field of variant calling bench-
marking, and how our contribution complements and expands upon the existing literature.

In the results and discussion chapter, prediction counts and performance metrics ob-
tained from comparing each pipeline’s results against the high-confidence call set are pre-
sented in table form. Additionally, performance metrics are used to plot precision-recall
curves which help visualize pipeline performance. Subsequently, these results are exam-
ined in more detail to inform the conclusions drawn in the final chapter, followed by this
work’s limitations and prospects for future studies in the field.



2

S TAT E O F T H E A RT

2.1 genetic variation

Variants are genetic alterations in which one or more nucleotides differ from the reference
genome at a given position or region. There are three primary types of variants (Fig. 1):

• SNPs, point mutations where one nucleotide is substituted for another (Fig. 1, top);

• Insertions and deletions (indels) occur when one or more nucleotides are added or
excised between two adjacent nucleotides (Fig. 1, middle and bottom, respectively);

• Structural variants.

Figure 1: Example of simple genetic variants affecting a single nucleotide position.

Structural variants affect a large number of bases, meaning that, although they are abun-
dant and biologically relevant, it is much more difficult to correctly identify them in WES
data (Tattini et al., 2015). More importantly, structural variants are notably complex, and
their identification requires a set of specific strategies unlike those employed for the other
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types of variants. For these reasons, this work will focus on simple genetic variants: SNPs
and short indels.

All individuals have variation in their genome that makes them unique. In the past, it was
thought that humans shared, on average, roughly 99.9% of their genome sequence (Feuk
et al., 2006), meaning that, out of the three billion nucleotides which comprise the human
genome, at least three million nucleotides—one out of every 1000—would differ between
individuals. Recent studies (Redon et al., 2006) have found that human variation is higher
than expected—on average, in a typical human genome, 4.1 to 5 million sites differ from the
reference. Of those sites, over 99.9% are SNP and indels. It is worth noting that, although
fewer in number, structural variants are much more far-reaching, affecting upwards to 20

million nucleotides.
The exome may be defined as the protein-coding fraction of the genome, corresponding

to roughly 1 to 2% of its total size (Warr et al., 2015). Theoretically, then, one would
expect to find as few as 41 thousand and as many as 100 thousand variants in the typical
human exome; however, a study which sought to determine the number of coding variants
in two populations identified, on average, 20 thousand variants in European American
populations, and 24 thousand variants in African American populations (Bamshad et al.,
2011). This difference might be explained by the fact that regions outside the exome are
less well-conserved, and thus more likely to harbor variants—or, perhaps, the continued
development of bioinformatic tools will bring the number of discovered variants closer to
the estimated ceiling.

2.2 the rise of personalized medicine

Unlike WES, WGS can sequence entire genomes without having to limit itself to specific
regions. Nevertheless, while WGS is a comprehensive approach, capable of capturing vari-
ants across exons, introns, and intergenic regions, at present little is known about the last
two, meaning that exons are still more useful from a functional standpoint. More practical
(albeit mostly monetary) concerns make WES an attractive option as well (Warr et al., 2015).
Despite drops in the costs associated with WGS, WES remains much more affordable, mak-
ing it possible to sequence exomes with higher read depth (number of reads that align to
the reference genome) at a fraction of the cost. Furthermore, it may be more desirable to
sequence a larger number of samples, so as to provide studies with higher statistical power.
Last but not least, handling WGS data demands great amounts of computational power
and storage space, which may not always be available.

These considerations become even more relevant in the clinical setting, as personalized
medicine becomes commonplace (Ginsburg and Willard, 2009). For instance, exome se-
quencing has already been used successfully in patient diagnosis (Worthey et al., 2011).
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Because of the amount of tools available—as well as the multitudes of commands, config-
urations, and parameters found within each one—pipelines must be optimized for a given
application if they are to generate the best possible results. Therefore, it is important to
build pipelines with an end goal in mind, be it clinical applications or otherwise.

To better understand the infrastructure supporting pipeline optimization, it is impera-
tive to first explore some key statistical concepts (Parikh et al., 2008). In variant calling,
when directly comparing putative variants in a query call set to a set of known variants
in a benchmark call set, there are, as with any binary classification problem, four possible
outcomes, often represented as a confusion matrix (Table 1):

• True Positive (TP): A variant is called in the query call set and is also present in the
benchmark call set.

• False Positive (FP): A variant is called in the query call set but is absent from the
benchmark call set.

• False Negative (FN): No variant is called in the query call set but one is present in the
benchmark call set.

• True Negative (TN): No variant is called in the query call set and is also absent from
the benchmark call set.

Table 1: Confusion matrix arising from the comparison of query calls against a benchmark set.

Benchmark Variant Benchmark Reference

Query Variant TP FP
Query Reference FN TN

TP True Positive FP False Positive FN False Negative TN True Negative

Performance metrics which are helpful for describing call set data can be derived from
these prediction counts (Parikh et al., 2008).

• Precision, also known as Positive Predictive Value (PPV). Measures the proportion of
positive variants that are true positives. In variant calling, this metric represents the
ratio of called variants also present in the benchmark call set.

TruePositives
TruePositives + FalsePositives

(1)

• Recall, also known as sensitivity. Measures the proportion of true positive variants
from among all variants present in the benchmark call set. In other words, it measures
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a call set’s ability to include as many putative variants as possible, so as to avoid
missing any.

TruePositives
TruePositives + FalseNegatives

(2)

For example, a general population study aiming to characterize human variation will
want high recall because it seeks to capture as many variants as possible. In the clinic, the
foremost priority is limiting the number of missed variants (high recall), while ensuring that
the number of FPs is sufficiently low to avoid misdiagnosing patients (high precision). FNs
are particularly dangerous in this context: while FPs can be validated through additional
testing (e.g. Sanger sequencing), a missed variant will completely fly under the radar, which
might be disastrous if the variant happened to shed light on the patient’s phenotype.

2.3 the search for variants

The first step in the search for variants is the sequencing of the genome or exome under
study (Heather and Chain, 2016; Reinert et al., 2015). There are several platforms available,
each bringing to the table its own strategy for solving the sequencing problem. Sequencing
can be cycled, when molecules are incorporated one at a time, as is the case with the
technologies explored in this work, or carried out in real time.

In both molecule incorporation processes, DNA is first sheared into smaller, double-
stranded fragments, which can then undergo Polymerase Chain Reaction (PCR) amplifica-
tion. Following adapter ligation, the fragments are sequenced in parallel, with strings of
nucleotides being read from one or both ends of the sequence to produce single- or paired-
ended reads, respectively.

In the context of Illumina sequencing, PCR amplification is mandatory, and happens
within small clusters where thousands of identical molecules are being sequenced simulta-
neously. These molecules produce a distinct colored signal during each cycle, identifying
the integrated nucleotides. Those signals are converted into arrays of nucleotides, known
as reads, and stored in silico. For its part, Ion Torrent sequencing detects changes in pH
caused by negatively or positively charged hydrogen ions released when nucleotides are in-
corporated into amplified fragments, meaning that changes in pH are observed only when
a nucleotide matches a piece of the sheared sequence. Because the sequencer sequentially
floods the chip one nucleotide type at a time, it is thus possible to measure the both the
type and the quantity of incorporated nucleotides.

To limit the aforementioned process to protein-coding regions, the exome must be cap-
tured prior to sequencing (Warr et al., 2015).
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In an attempt to find meaning in the haystack of reads generated by sequencing, re-
searchers have devised heaps of algorithms capable of processing and interpreting NGS
data. These algorithms can be combined into pipelines, which convey the loaded informa-
tion until it has crystallized into an answer to a given biological question. At a fundamental
level, the purpose of variant calling pipelines is crystal clear: uncover deviations from a ref-
erence genome in a set of NGS reads. To accomplish this goal, variant calling pipelines
combine short read aligners with variant callers.

2.4 short read aligners

The genomic location of freshly sequenced reads is unknown; therefore, they must first be
mapped against a reference genome. Once the bottleneck of variant calling pipelines, short
read alignment, also known as read mapping, has had its efficiency pushed by develop-
ments that exploit characteristics specific to each sequencing platform, allowing it to keep
up with inordinate amounts of short reads with both speed and accuracy (Li and Homer,
2010). Because incorrect alignments may confound downstream variant detection, short
read aligners play a vital role in variant calling.

In broad strokes, the alignment of reads to a reference genome comprises two main steps:
indexing of the reference genome (or reads), and the alignment process proper.

The indexing of the reference is usually accomplished through FM Indexing, which com-
bines Burrows-Wheeler Transform compression (Burrows and Wheeler, 1994) with the suf-
fix array data structure into a compressed suffix array (Ferragina and Manzini, 2000), or,
alternatively, hash tables. A few examples of short read aligners comprising both algo-
rithms for the indexing of the genome can be found in Table 2. Note that MOSAIK has not
been used in this work, and is included for illustrative purposes only.

Name Indexing Algorithm Operating System Citation
Bowtie 2 BWT-based FM Index Windows, MacOSX, Linux Langmead and Salzberg (2012)

BWA-MEM BWT-based FM Index Linux Li and Durbin (2009)
MOSAIK Hash Tables Windows, MacOSX, FreeBSD, Linux Lee et al. (2014)

TMap BWT-based FM Index Linux N/A

Table 2: Example short read aligner tools. All tools index the genome, are able to handle paired-end
reads, allow gapped alignments, and can be multi-threaded.

Notably, TMap does not implement its own mapping algorithm, but rather integrates
re-implementations of various BWA algorithms optimized to run on Ion Torrent samples.

The alignment itself, which necessitates an approximate string matching paradigm, is
accomplished using algorithms based on dynamic programming, namely Smith-Waterman
(Smith and Waterman, 1981) for local alignments and Needleman-Wunsch (Needleman and
Wunsch, 1970) for global alignments. Alignments can be gapped or ungapped; however, be-
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cause re-arrangements such as indels may create gaps in the genome, gapped alignments
are preferred for variant calling. Moreover, indel detection benefits from paired-end se-
quencing. In paired-end sequencing, fragments have adapters on the 5’ end of both strands,
resulting in pairs of reads that point towards each other while leaving a gap (inner mate dis-
tance) of known size between them (Emde et al., 2012). Because the approximate length of
each read is also known, paired-end sequencing can also be helpful in resolving ambiguities
when one of the reads matches a repeated sequence (Reinert et al., 2015).

2.5 variant callers

As the name implies, variant calling plays a central role in variant detection. Therefore,
a comprehensive grasp on variant calling is fundamental, and so, in addition to under-
standing the different types of variants (refer to Section 2.1), one should also analyze what
constitutes a variant in the context of NGS (Muzzey et al., 2015).

As previously explained, reads must first be aligned to a reference genome using a short
read aligner. The number of reads aligned to a specific region represents that region’s
read depth, and deviations from the reference genome by these reads constitute variants.
Because of this concept of read depth, simple variants (SNPs and short indels) can be further
divided into heterozygous and homozygous alternate.

Diploid organisms such as humans have two sets of chromosomes, meaning that each
gene consists of two alleles located at the same position (locus). When most reads aligned
to a given site fail to match the reference genome in the same way, alleles are said to share
a homozygous alternate variant. On the other hand, heterozygous variants happen when a
variant is present in only one of the alleles at that position, or, in other words, when half
the reads for that position match the reference genome, while the other half differs from
it. Lastly, if no variation is observed at a given position, it is referred to as homozygous
reference. Therefore, variants can only be called with confidence when there are multiple
reads aligned to their corresponding locus, that is, when the read depth is above a certain
threshold.

Variant callers can be divided into two classes of methods: heuristic and probabilistic
(Nielsen et al., 2011). Heuristic methods constitute a pragmatic strategy for problem solving,
mostly based on fixed cutoffs. In the case of NGS variant calling, these methods look into
heuristic factors such as minimum base quality, minimum mapping quality, and minimum
coverage threshold. While heuristic variant calling methods generate adequate results, they
possess severe disadvantages: the rigidity of their cutoffs can lead to the under-calling of
heterozygous genotypes, and they provide no measure of confidence in and of themselves.

Probabilistic methods, on the other hand, establish frameworks based on likelihood func-
tions which express the probability of observing a parameter given the data. Probabilistic
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methods are the most widespread across all kinds of variant callers, and their most com-
mon implementation is Bayesian inference. Bayesian inference leverages Bayes’ theorem,
taking it as a prior model that is updated as new information becomes available.

In its simplest form, Bayes’ theorem can compute the posterior probability of a genotype
(G) at a certain locus with a given read count coverage (R) as follows:

P(G|R) = P(R|G)P(G)

P(R)
(3)

where P(G) represents the prior probability of a given genotype—which can be assumed
to be the same for all genotypes, or obtained from external sources such as the reference
sequence, variant databases, and population samples—, P(R) the likelihood of observing
the read data at a particular site for that genotype, P(R|G) the genotype likelihood, and
P(G|R) the posterior probability of genotype G.

Once the theorem has been used to infer the posterior probabilities for all genotypes
at that locus, the genotype with the highest posterior probability is chosen and displayed
alongside its degree of statistical confidence.

Below is a list of the variant callers to be explored in this work.

• BCFTools

Part of the Samtools suite, BCFTools computes genotype likelihoods for each sample,
one site at a time. Genotype likelihoods are determined based on the number of reads
in the sample that support that site, the fraction of reference and variant bases in those
reads, the error probability for each of those bases, and the reference’s genotype for
that site.

For each site, the algorithm multiplies the per-sample genotype likelihoods by the
binomial probability of the sample having the exact same genotype as the reference,
i.e., the probability that the sample has variation at that locus. The sum of these
frequencies across all samples gives an estimate for the reference allele frequency
associated with a given site. An Expectation-Maximization (EM) optimization algorithm
computes the max-likelihood estimate of the aforementioned per-site allele frequency,
which is eventually converted into discrete reference allele counts. Additionally, EM
optimization is used to estimate genotype frequencies at every site across all samples.

In variant calling, it is expected that most sites are homozygous reference, meaning
that they can be leveraged as priors in Bayesian inference. Thus, for each site, given
the sequencing data, the distribution of allele frequencies, and the the number of
reference alleles in the samples, it is possible to compute a posterior probability that is
transformed into a variant’s quality. If the variant quality is above a certain threshold,
the site is called as variant. (Li, 2011).
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• HaplotypeCaller

The Genome Analysis Toolkit (GATK) includes HaplotypeCaller, a variant calling algo-
rithm that searches for genome regions exhibiting peaks of activity where observed
variation is expected to be above the threshold attributed to background noise. Then,
HaplotypeCaller attempts to reconstruct the real sequence of each active region—in
other words, its haplotype—using as input the reads that mapped to that region.

Usually, there is more than one possible haplotype due to the diversity found in multi-
sample data or eventual mapping errors, for instance. Therefore, each input read is
aligned to each one of these candidate haplotypes, plus the reference sequence for
that region. The resulting read-haplotype pairs are associated to a likelihood score,
expressing the probability of observing the read if its companion haplotype is true.

Next, candidate sites are examined one at a time, so that all alleles observed in the
data for that position can be listed. For each read, HaplotypeCaller determines which
of its associated haplotypes supports each allele; the supporting haplotype with the
highest likelihood score is chosen to ”represent” the read for that allele, being listed
in a table with per-read likelihoods of alleles. Consequently, the likelihood of an allele
being true is the product of the per-read likelihoods obtained in this way. Sites where
there is sufficient evidence for at least one of the variant alleles considered will be
called variant.

Lastly, what remains is to determine the most likely genotype at each variant site.
The likelihood scores of each read for each allele are leveraged as priors in Bayes’
theorem to compute the probability of each possible genotype at that site; the largest
probability corresponds to the most likely genotype for that site, which is thus picked
(Poplin et al., 2018).

• Freebayes

Unlike the two previous tools, Freebayes uses the reference genome only to obtain
haplotypes, opting to call variants on literal sequences of aligned reads instead.

For each position, Freebayes first determines potentially polymorphic regions to limit
search space. Variants that are close together within these regions are grouped into
haplotype allele observations. Haplotype alleles that do not meet minimum variant
observations and base quality thresholds are filtered out.

Haplotypes help determine window lengths that define the regions to genotype. Each
window length is determined through an iterative process, which initially defines the
window as the longest haplotype allele at that position. Observations that fully over-
lap this initial window are ignored; instead, the rightmost end of the longest remain-
ing haplotype allele is used as the new starting point for the window, expanding it.
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This process is repeated until none of the alleles that passed the filtering step partially
overlap the current window.

After this iterative process is completed, the algorithm considers only reads found
within the final window. These fully-overlapping reads are used to determine new
haplotype allele observations within the window. In the end, the a priori genotype like-
lihoods of the final haplotype allele observations are passed to an expanded Bayesian
model, which iterates until it converges towards the maximum a posteriori genotype
estimate for each locus (Garrison and Marth, 2012).

• VarScan 2

VarScan 2 combines heuristics with statistical testing, and takes as input mpileup for-
mat files, generated with Samtools (Li et al., 2009a). The mpileup format represents
the stacking information of the reads for each nucleotide. Read base information en-
codes, in turn, matching status for that read if there is a SNP, insertion and deletion
representation for indels, the strand the read is on, the read’s mapping quality, and
whether the base was found at the start of the read, end of the read, or somewhere
else.

VarScan 2 heuristically parses these files one position a time to determine how many
bases from reads meeting minimum mapping quality and minimum base quality
thresholds support each observed allele. The total number of such qualifying bases
constitutes the coverage for that allele. From among those alleles, only those that meet
a minimum coverage threshold will be considered for further analysis.

Alleles that passed the aforementioned heuristics will then be tested in regards to
whether or not they meet a minimum variant allele frequency threshold, and possess
sufficient statistical significance—i.e., if their Fisher’s Exact test’s p-value is below
a given threshold. The most frequent from among the qualifying variant alleles is
reported for that position; else, if there is no such allele, the reference base is reported
instead. It is important to note that variants are reported as heterozygous unless their
variant allele frequency happens to be above a certain restrictive threshold (Koboldt
et al., 2012).

• Torrent Variant Caller

Torrent Variant Caller (TVC) is a variant caller optimized for use with data generated
by Ion Torrent sequencing machines. In short, TVC attempts to find all positions with
evidence for a variant, wherein it evaluates evidence for the presence of putative SNPs
or indels, and then filters those candidates based on heuristic cutoffs (for base quality,
coverage, and so forth), calculated through flow space evaluation.
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Putative variants result from a combination of output from two sources: variants dis-
covered using Freebayes, and long indel candidates generated by a long indel assem-
bly module. Flow space evaluation consists in calculating the Phred-scaled posterior
probability that a variant’s allele frequency is above the minimum allele frequency for
that variant type, which varies according to observed changes in the flow value.

In short, Varscan 2 is an example of a heuristic approach combined with statistical testing,
while BCFTools, Genome Analysis Toolkit HaplotypeCaller (GATK-HC), and Freebayes (and by
extension TVC) are based on Bayesian statistical frameworks (Table 3).

Table 3: List of variant calling tools used in this work.

Name Algorithmic Approach Operating System Citation
BCFtools Bayesian Statistical Framework Linux, MacOSX Li (2011)

GATK-HC Bayesian Statistical Framework Linux, MacOSX McKenna et al. (2010); DePristo et al. (2011)
Freebayes Bayesian Statistical Framework Linux Garrison and Marth (2012)
Varscan 2 Heuristics combined with Fisher’s Exact Test Linux, MacOSX, Windows Koboldt et al. (2012)

TVC Bayesian Statistical Framework Linux N/A

Because this work benchmarks the performance of SNP and short indel detection in
normal tissue, it considers only variant callers capable of detecting germline variants.

2.6 variant calling pipelines

As explained in previous sections, short read aligners map reads to a reference genome,
while variant callers compare those aligned reads to that same reference genome at ev-
ery position, calling and characterizing regions where differences are detected. There are,
however, complications to this simple principle: amplification biases, machine sequencing
errors, software errors, mapping artifacts, and so forth. Thus, to deal with the complex-
ity behind variant calling, the typical pipeline also encompasses quality control of the raw
reads to be aligned, post-alignment processing, and, following variant calling, filtering of
putative variants to be subsequently annotated (Figure 2). After exploring fundamental
aspects of variant calling benchmarking, the foundations laid by this generic variant calling
pipeline will be built on in the Methodology chapter.

2.7 the basis for variant calling benchmarking

2.7.1 Benchmark call set

In an attempt to combat the discordance found in the calls generated by different variant
calling pipelines, the GIAB Consortium is continually developing sets of high-confidence
SNP, indel and reference calls obtained in silico through the integration of multiple methods
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Figure 2: Example of a typical variant calling pipeline. Grayscale rectangles represent data, whereas
colored rectangles with rounded corners stand for computational processes. While indis-
pensable in a complete variant calling analysis, the quality control, filtering, and annotation
steps are beyond the scope of this work, and therefore will not be explored.

and sequencing technologies (Zook et al., 2014, 2016). Although commonly referred to as
”gold” standard or ”truth” call set, because they are not without their uncertainties, errors,
and limitations, these data sets will be interchangeably referred to as benchmark or high-
confidence call sets for the remainder of this work. It is also important to note there are
other high-confidence call sets available, such as Illumina’s Platinum Genomes (Eberle et al.,
2017).
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GIAB’s benchmark call sets were built on a per-sample basis using an arbitration method.
For each sequencing technology, sensitive variant calls were obtained after running a se-
ries of variant calling tools with high-sensitivity settings, and callable regions determined
following the selection of sites supported by a minimum number of reads above a given
quality threshold, with subsequent exclusion of challenging regions. From among all pre-
liminary sensitive variant calls, those supported by at least two technologies while not being
contradicted by any of the other technologies were used to train a machine learning model
whose goal was to find ”outliers”, i.e., uncertain variants associated with bias for each call
set. To determine high-confidence variant calls, a new search for variants was conducted
within the callable regions, with disagreements being arbitrated by the aforementioned out-
liers. Finally, positions containing outliers were subtracted from the union of all callable
regions to form a set of high-confidence regions.

The first and most well-studied of these benchmark call sets is the one pertaining to
sample NA12878, which was originally extracted from a caucasian woman from Utah to be
sequenced and characterized in the context of the first phase of the 1000 Genomes Project
(Auton et al., 2015). Following its adoption by GIAB, NA12878 was validated against pedi-
gree information from her 11 offspring and their father in order to assess its accuracy.

Due to its comprehensive characterization and abundance of related materials, NA12878

was selected as the sample to be studied in this work, its high-confidence calls serving as
a benchmark against which to measure the precision and recall of all calls detected in the
query sequences.

Considering the workings of the call set integration, there are a series of strengths and
weaknesses associated with high-confidence calls:

Strengths of high-confidence calls

• The methods used to build the benchmark call set are fully reproducible, as well as
sufficiently robust to produce high-confidence calls for multiple genomes;

• Comparison against these calls is cheaper and more comprehensive than Sanger vali-
dation;

• Error-prone regions around putative structural variants are excluded from analysis;

• The usage of pedigree-based phasing provides additional evidence of whether the
calls were inherited as expected in the pedigree or not.

Weaknesses of high-confidence calls

• Challenging regions are excluded, leading to underrepresentation of certain regions,
such as those difficult to map with short reads, long homopolymers, tandem repeats,
larger indels, and structural variants;
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• Consequently, calls are biased towards both easier variants and easier genome con-
texts, so that precision and recall estimates may appear better than they should in
some cases, and worse in others;

• For each technology, reads are passed through a single “optimal” variant calling
pipeline.

• In spite of its narrower scope, Sanger sequencing still constitutes the most reliable
form of variant validation.

2.7.2 A standardized framework for benchmarking

The existence of benchmark call sets raises the question of how to best leverage their high-
confidence calls for the purposes of variant calling benchmarking. For a few years, there
was no consensual answer to this question, and so most studies would take on their own
novel approaches. In recent times, however, the Global Alliance for Genomics and Health
(GA4GH) has created a Benchmarking Team whose goal is to drive the standardization of
variant calling benchmarking. As a result of this team’s efforts, the GA4GH has proposed
a set of best practices, or standardized framework, for utilizing existing reference materials
and tools for benchmarking, as well as details on how to best interpret benchmarking
results.

The gist of their standardized framework goes as follows: for each comparison, a bench-
mark call set and a query call set are passed as input to a comparison engine, which will
produce an intermediate call set containing matches to be quantified. With this standard-
ized framework, the GA4GH aims to overcome the following challenges:

1. Variants cannot be compared directly due to representation differences in benchmark
versus query data sets.

2. Comparison metrics must be standardized and well-defined if they are to support
robust conclusions.

3. Performance is dependent on variant type (e.g. SNPs vs indels) and genome context,
creating a need for stratification.

Variant Representation

Different variant calling methods may produce different variant representations for calls
in the Variant Call Format (VCF). For example, variant callers may opt to either group a
Multi-Nucleotide Polymorphism (MNP) into a single call or break it into individual SNPs,
which would be perceived as distinct variants when performing direct comparison at each
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position. Therefore, benchmarking VCF files by comparing alternate allele records directly
can lead to erroneous results (Table 4).

Chr Pos Ref Alt

BCFtools 1 1301807 AGTGTGATTGAATGAGT A
HaplotypeCaller 1 130807 AGTGTGATTGAATGAGTGTG AGTG

Table 4: Example of how representation differences between two variant callers for reads from the
same sequence aligned by the same read aligner can lead to “different” variants in the case
of a homopolymer deletion.

Chr Chromosome Pos Position Ref Reference Allele Alt Alternate Allele

To address the issue of variant representation, it is imperative that the comparison be-
tween benchmark and query call sets is independent of how each variant appears in the
VCF, which requires normalization. There are various methods and tools for dealing with
this problem; in this work, the chosen solution was Real Time Genomics’ comparison tool
vcfeval (Cleary et al., 2015).

Briefly, to normalize representation, vcfeval “replays” variants from the benchmark and
query call sets back to the reference genome. At any given locus there might exist more
than one possible normalized representation, however, and for this reason vcfeval leverages
global optimization to select the most parsimonious of those representations.

First, vcfeval replays variants against the reference genome, one at a a time. During this
replay, nucleotides are taken from either the reference genome or the variant, and used to
build sets of subsequences associated with either the benchmark call set or the query call
set, meaning that each variant may be represented by more than one subsequence. The pair
of subsequences which maximizes the similarity between the benchmark and query call
sets is chosen to represent that variant.

Armed with this set of variant subsequence pairs, vcfeval can proceed to create benchmark
and query paths, each comprising a distinct subset of variants. After the paths have been
built, benchmark and query path pairs are selected with the goal of maximizing the number
of variants they share (TPs). In order to increase path similarity, calls may have to be
excluded from the benchmark path (FNs) or from the query path (FPs). Multiple path pairs
are created for each variant subset, but only the pair which maximizes TPs and minimizes
FNs and FPs is chosen in the end.

Like all methods described in this section, vcfeval comes with its share of strengths and
weaknessess:

Strengths of vcfeval

• Solves the issue of inconsistent variant representation.
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• More informative than the metrics and Venn Diagrams obtained from direct compari-
son.

• Analysis of Precision-Recall (PR) curves allows the user to reach a desired precision/re-
call balance.

Weaknessess of vcfeval

• Does not follow the standardized comparison metric definitions proposed by the
GA4GH.

• Result metrics cannot be stratified.

Nevertheless, it is possible to compensate for vcfeval’s weaknessess by leveraging one
of its output modes, -m ga4gh, which produces a GA4GH-intermediate VCF file. As will
be discussed below, this file serves as input for a quantification tool developed by the
GA4GH Benchmarking Team, qfy.py, which is a part of the Haplotype Comparison Tools
suite (https://github.com/Illumina/hap.py).

Performance Metrics and Quantification

Because of the inherent complexity of the human genome, TP, FP, and FN matches can
be defined in different ways, depending on matching stringency between benchmark and
query call set—in other words, the high-confidence call set from GIAB and the call set
whose performance is to be measured.

• Local Match: A variant discovered in the query call set is within a given local match-
ing distance to where another variant was present in the benchmark call set.

• Allele Match: Both query and benchmark call sets have detected the same variant
allele; in other words, their ALT nucleotides match after variant representation is
normalized.

• Genotype Match: The query call set and the benchmark call set not only share a
variant allele, but also a variant genotype, meaning that the variant is present in the
same number of alleles in both sets, although the variant’s location on those alleles
(phasing) is unknown.

• Phased Genotype Match: Similar to the genotype match, but now information con-
cerning the phasing is considered; therefore, the exact alleles where each variant is
located at are known. Phased genotype matches only occur when both benchmark
and query variant alleles are in the same strand(s).

https://github.com/Illumina/hap.py
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Table 5: Matching example for the allele, genotype, and phased genotype match types. Variation
(ALT) relative to the reference genome (REF) has different possible genotypes for each of
two data sets (GT Benchmark and GT Query), which can be phased (|) or unphased (/). A
graphical representation of these possibilities can be found in Figure 3.

REF ALT GT Benchmark GT Query

Allele Match G T 0/1 0/1, 1/0 or 1/1

Genotype Match G T 0/1 0/1 or 1/0

Phased Match G T 0|1 0|1

Allele Match

Phased Genotype Match

TG

Genotype Match

GT

GT

TT

G T

TG

Benchmark  
Call Set

TG

Matching Possibilities 

G T

0 1 0 1 1 0

0 1 1 0 1 1

0 1

Figure 3: Example of matching possibilities for the allele, genotype, and phased genotype match
types, provided that the benchmark exhibits a G→T transversion and a 0/1 genotype;
refer to Table 5 for details.
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An example of how matching works in the three more stringent cases should the bench-
mark set exhibit a G→T transversion and a 0/1 genotype is shown using VCF representa-
tion in Table 5, and graphically in Figure 3.

This work will focus on genotype matching, the default stringency used by GA4GH-
compliant tools. Therefore, performance metrics used to describe how putative variants in
the query call set match against those in the benchmark call set will differ from the more
general ones discussed in Section 2.2:

• True Positive (TP): A variant genotype is called in the query and that same genotype
is present in the benchmark call set.

• False Positive (FP): A variant genotype is called in the query but that same genotype
is absent from the benchmark call set.

• False Negative (FN): No variant genotype is detected in the query but one is present
in the benchmark call set.

One might notice that a commonly used performance metric, TN, is missing from the
above list. This happens because it is difficult to define TNs in the context of the genome:
because a very large number of reference alleles exists in the genome, there is likewise a
very large number of TNs. For this reason, going forward performance metrics dependent
on TNs will be absent from this study.

Statistical measures derived from these key performance metrics also vary in accordance
with matching stringency. In the context of genotype matching, they are defined as follows:

• Precision: Fraction of query calls present in the benchmark call set, translating into
the query set’s ability to limit calls to only those present in the benchmark calls. Be-
cause they are absent from the benchmark call set, FPs are determined relative to the
query call set; therefore, they are compared against query TPs, which have the same
variant representation.

Query.TP
Query.TP + Query.FP

(4)

• Recall: Fraction of benchmark calls present in the query call set, translating into the
query set’s ability to detect variants known to be present in the benchmark call set.
Because they are absent from the query call set, FNs are determined relative to the
benchmark call set; therefore, they are compared against benchmark TPs, which have
the same variant representation.

Benchmark.TP
Benchmark.TP + Benchmark.FN

(5)
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• F-Score: The harmonic mean between precision and recall.

2
1

Recall +
1

Precision

⇔ 2× Recall × Precision
Recall + Precision

(6)

For the quantification step, the aforementioned qfy.py script can be used to tally predic-
tion counts for variant matches in a GA4GH-intermediate file, as well as compute perfor-
mance metrics such as those described above. Like equations 4 and 5 suggest, qfy.py counts
TPs for both query and benchmark call sets, FPs for the query call set, and FNs for the
benchmark call set. Moreover, this tool is capable of transforming prediction counts and
related prediction metrics into points that can be plotted as a PR curve. It also has the
ability to stratify matches beyond separating SNPs from indels and other complex vari-
ants through options such as --stratification, which takes a stratification file list in the
Tab-separated Values (TSV) format.

Armed with the means to solve the issues of 1) variant representation, 2) standardiza-
tion of prediction counts and performance metrics, and 3) variant stratification, it is time
to search for reads sequenced from the same sample as the benchmark call set, so as to
pass them through variant calling pipelines, and move on to variant calling benchmarking
proper.

2.8 previous work

In order to assess the relevance and novelty of the approaches explored in this work, its
main features were compared to those of previous studies in the field of germline variant
calling benchmarking, as summarized in Table 6.

Table 6: Comparison of features studied across germline variant calling benchmarking works.

Compares
Aligners and

Variant Callers

Stratifies SNPs
and indels

Compares
Sequencing

Technologies

Normalizes
Representation

High-confidence
Call Set

Pabinger et al. (2014) × × × × ×
O’Rawe et al. (2013) ×

√ √
× ×

Liu et al. (2013) × × × × ×
Yu and Sun (2013) × × × × ×
Bao et al. (2014)

√ √
×

√ √

Cornish and Guda (2015)
√ √

×
√ √

Hwang et al. (2015) ×
√

×
√ √

Laurie et al. (2016)
√ √

×
√ √

Moreno et. al 2018

√ √ √ √ √
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In spite of having a later publishing date, the work of Pabinger et al. (2014) was first made
available online in January of 2013. Its primary focus was to survey various bioinformatics
tools to help researchers build their own workflows for NGS variant detection. With that
goal in mind, Pabinger et al. (2014) also evaluated the results of the suggested primary
steps, including variant calling. Their comparison was limited to a simple Venn diagram
showcasing variant concordance among the five tested variant callers, with no segregation
between SNPs and indels.

Venn diagrams would go on to become a staple of early variant calling benchmarking
studies. Later works by O’Rawe et al. (2013), Liu et al. (2013), and Yu and Sun (2013) contin-
ued the trend of only measuring variant caller performance, pairing them with their respec-
tive state-of-the-art short read aligners. While the work of Yu and Sun (2013) analyzed only
SNPs and that of Liu et al. (2013) paired SNPs and indels under the ”variants” denomina-
tion, O’Rawe et al. (2013) embraced stratification, comparing the two simple variant types
separately. In all cases, benchmarking was limited to representing the number of shared
variants in Venn diagrams. Additionally, O’Rawe et al. (2013) measured the concordance of
SNP and indel calling between two technologies (Illumina and Complete Genomics), also
through Venn diagrams.

SMASH (Talwalkar et al., 2014) is a variant calling benchmarking toolkit first released
following these initial strides in the development of germline variant calling benchmarking,
providing researchers with well-defined methodologies (such as variant normalization) and
evaluation metrics to standardize comparison results. Leveraging this toolkit, Bao et al.
(2014) surveyed multiple bioinformatics tools used in the context of WES variant analysis,
and evaluated their performance. More importantly, this study’s comparisons comprised
not only variant callers, but short read aligners as well. Although it still presented Venn
diagrams for call concordance, this study also used SMASH to compare its results against
the benchmark call sets provided by the GIAB Consortium so as to measure variant calling
performance.

More recent studies include those of Cornish and Guda (2015) and Hwang et al. (2015),
which combined multiple short read aligners and variant callers to generate their calls.
Note, however, that Hwang et al. (2015) did not measure read aligner performance, but
rather integrated calls from different variant callers on a per read aligner basis, meaning
that only the former were truly evaluated. As was the case with the work discussed above,
these studies also compared their results against the GIAB high-confidence call set for
sample NA12878.

Cornish and Guda (2015) used only one exome data set, while Hwang et al. (2015) used
a large number of data sets from two sequencing technologies (Illumina and Ion Torrent) to
avoid data-related biases in their results. Both works took the time to define the prediction
counts and performance metrics applied to their results, although there was no consensus
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on nomenclature. To solve the variant representation issue, these works performed variant
normalization through vcflib’s vcfallelicprimitives (https://github.com/vcflib/vcflib).

These two studies still included Venn diagrams as a way to measure variant calling con-
cordance, but it became apparent that this methodology had reached a bottleneck: because
drawing information from Venn diagrams becomes too complicated when the number of
classes of objects (circles) is too large, Cornish and Guda (2015) could only represent five
out of their 30 pipelines. Therefore, for the first time in the context of this field of study,
Hwang et al. (2015) leveraged PR curves as a benchmarking metric.

Lastly, Laurie et al. (2016) continued treading the same path as the studies of Cornish
and Guda (2015) and Hwang et al. (2015), but with an additional focus on comparing WGS
and WES, and the differences in the computational costs of each tool.

To further progress research done in the field, we have integrated features from previous
works, solutions to some of the issues and limitations they have encountered, and novel
approaches proposed in the best practices developed by pioneers in the field (Krusche
et al., 2018) which seek to increase the robustness and reproducibility of variant calling
benchmarking (Table 6).

Our study continues the trend of comparing the performance of both short read aligners
and variant callers, while distinguishing between results for SNPs and indels, given that
the performance of variant detection methods for each type of variant has been proven to
be significantly different. Furthermore, similarly to other recent studies, we compare calls
against a high-confidence call set after normalizing their variant representation.

To our knowledge, our study is the first to compare Illumina and Ion Torrent sequencing
technologies and to adopt the variant calling benchmarking best practices proposed by
the GA4GH. In addition, we use PR curves instead of Venn diagrams to represent variant
calling benchmarking results, because the latter provide a limited amount of information
and become difficult to interpret when there is a large number of comparisons (circles).

https://github.com/vcflib/vcflib
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M E T H O D S

The variant calling benchmarking pipelines presented in Fig. 4 are the culmination of all
the tools and techniques surveyed thus far. The post-alignment processing step shared by
those pipelines is detailed in Fig. 5. For the remainder of this section, the pipelines’ inputs,
methods, and outputs will be discussed in length.

3.1 primary inputs

What follows is a list of the primary inputs passed to the variant calling benchmarking
pipelines at various points, their characteristics, the reasoning behind their choice, and any
preprocessing steps that needed to be performed.

3.1.1 Reference genome

The main reference genome used in this work was the 1000 Genomes Project’s version of
the GRCh37 human genome assembly, build b37. This build was chosen partially because
it is included in a resource bundle available on the Broad Institute’s FTP server (ftp://
gsapubftp-anonymous@ftp.broadinstitute.org/bundle/b37/), which contains not only
the FASTA file pertaining to build b37, human g1k v37.fasta, but also other useful files
such as lists of known SNPs and indels. More importantly, the Broad Institute recommends
build b37 for WES variant calling, and the GrCH37 GIAB high-confidence call set (com-
patible with b37) still covers a higher percentage of non-N bases than the corresponding
GrCH38 call set as of version 3.3.2 (Zook et al., 2018).

It was also necessary to obtain the human genome build used in the alignment of the
prealigned Ion Proton GIAB data set, hg19 (UCSC’s version of GRCh37 reference assem-
bly), so as to leverage its Binary Alignment/Map (BAM) file in TVC variant calling. Be-
cause the reference FASTA file contained within the Broad Institute’s hg19 bundle was
not fully compatible with Ion Proton GIAB’s BAM file, likely due to patching differences,
the independent chromosome sequences were instead directly obtained from the UCSC

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/b37/
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/b37/
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Figure 4: Pipelines for variant calling benchmarking to be used in this work. Refer to Fig. 5 for more
details on the post-alignment processing (p. process) step.
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dictionary
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recalibration

Figure 5: Details of the post-alignment processing pipeline used in Fig. 4.

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/). In addition, the hg19

build against which this Ion Proton data set had been aligned used a revised mitochon-
dria sequence; for this reason, the UCSC mitochondria sequence file chrM.fa was replaced
with a newer version found under GenBank record NC 012920. Lastly, all chromosome
sequences were merged into a single FASTA file, hg19.fa.

3.1.2 Query reads

As previously established, variant calling requires BAM files (data sets) containing query
reads which have been aligned against a reference genome. Reads cannot be chosen care-
lessly, especially if one is to benchmark sequencing technology performance; therefore,
certain criteria had to be met by query reads and prealigned query reads for them to be
explored in this work:

• The reads must have been sequenced from sample NA12878, so that they may be
compared to the NA12878 benchmark call set;

• Further, reads must have been sequenced using WES;

• Reads had to be sequenced using either Ion Torrent or Illumina technologies.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
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Table 7 summarizes the characteristics of the data sets chosen for this study, while table
8 lists the repositories from which these data sets were obtained.

Table 7: Characterization of the data sets used in this work.

Data Set Technology Sequencer Exome Kit # Runs

Ion Proton GIAB Ion Torrent Ion Proton AmpliSeq Exome 1

Ion Proton Brescia Ion Torrent Ion Proton AmpliSeq Exome 4

Illumina TruSeq Illumina Genome Analyzer IIx TruSeq Exome 1

Illumina HiSeq2500 Illumina HiSeq2500 Nextera Rapid Capture Exomes 4

Table 8: Repositories containing the data sets used in this work.

Data Set Repository URL

Ion Proton GIAB ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/ion_exome/

Ion Proton Brescia https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP109084

Illumina TruSeq ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Nebraska_NA12878_HG001_TruSeq_Exome/

Illumina HiSeq2500 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/

Both Ion Proton GIAB and Illumina TruSeq were sequenced in a single run (lane), whereas
Ion Proton Brescia and Illumina HiSeq2500 were sequenced in four runs. Moreover, Ion Pro-
ton Brescia and HiSeq2500 were obtained as unaligned query reads, i.e. FASTQ files. On
the other hand, Ion Proton GIAB and Illumina TruSeq were made available as prealigned
BAM files. These BAM files were converted into FASTQ files using the command bedtools

bamtofastq so that they too could serve as query reads. It is important to note that Ion
Proton GIAB’s pre-aligned query reads were also used in this work, because they contain
the flow signal information required by Ion Torrent’s variant caller, TVC, which is lost in
FASTQ conversion.

The Browser Extensible Data (BED) files corresponding to the regions captured by the
AmpliSeq Exome and TruSeq Exome kits were originally built for the hg19 build of the
human reference genome, meaning that they had to be edited in order to comply with
the chromosomal nomenclature found in build b37. This was accomplished through the
following command:

$ sed ’s/chr//g’ hg19 exome kit . bed > b37 compliant exome kit . bed

One important caveat of this analysis is that we could only find one prealigned Ion
Torrent BAM file with flow signal information freely available online. Furthermore, this
data set was among those used to build the GIAB high-confidence call set, analyzed using
the same short read aligner (TMap) and variant caller (TVC) combination as this work.
Because of the strong potential for bias, it was imperative to search for additional Ion
Torrent query reads, but the only other data set concerning sample NA12878 that we could

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/ion_exome/
https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP109084
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Nebraska_NA12878_HG001_TruSeq_Exome/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/
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find, Ion Proton Brescia, contained no flow information; therefore, the TMap + TVC pipeline
was limited to Ion Proton GIAB.

3.1.3 Benchmark call set

What are benchmark call sets, how are they built, and what are their strengths and lim-
itations are questions that have been answered in Section 2.7.1. The focus of this work
lies on the benchmark call set pertaining to sample NA12878. Its latest version can be
found in GIAB’s FTP (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_
HG001/latest/GRCh37/). When this study was underway, the latest version available was
v3.3.2. GIAB provides not only the benchmark call set and its index, but also a BED file
describing the high-confidence regions in which the query and benchmark call sets are to
be compared.

3.1.4 Lists of known variants

The b37 bundle obtained from the Broad Institute’s FTP server contained a few lists of
known variants, described in Table 9, that were used in certain variant calling steps.

Table 9: Lists of known variants and their role in this work.

Know Variants File Used For

1000G phase1.indels.b37.vcf.gz indel realignment and base score recalibration
Mills and 1000G gold standard.indels.b37.vcf.gz indel realignment and base score recalibration
dbsnp 138.b37.vcf.gz base score recalibration and HaplotypeCaller

3.2 variant calling pipelines : tools and methods

Section 2.7.2 laid out the foundations for a typical variant calling pipeline, which was built
on to establish the variant calling pipelines used in this work (Fig. 4). All commands used
to run the operations described in this section are detailed in supporting material A.1.

Similar to the more general variant calling pipeline in Fig. 2, the variant calling pipelines
crafted for this work were based on the guidelines laid out by the Genome Analysis Toolkit’s
Best Practices (Van der Auwera et al., 2013). The pipelines comprise seven main steps: read
alignment, post-alignment processing of the aligned reads, variant calling, post-processing
of the resulting call set, call set benchmarking against a high-confidence call set, quantifica-
tion of the observed matches, and analysis of the final results.

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/
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In the interest of facilitating reproducibility, Table 10 contains a list of all software sup-
porting this study’s variant calling pipelines. Note that, when possible, tools were run with
default settings.

Table 10: List of software used in this work.

Tool Version

BCFTools 1.4.1+htslib-1.4.1
bedtools v2.25.0
Bowtie 2 2.3.4.1
BWA-MEM 0.7.15-r1140

Freebayes 1.2.0
GATK 3 3.8-0-ge9d806836

GATK 4 4.0.2.1
Samtools 1.2+htslib 1.2.1
VarScan 2 2.4.3

GATK 3: Required for a post-processing step, indel realignment.
GATK 4: Used for general post-processing and variant calling with HaplotypeCaller.

3.2.1 Read alignment

Read alignment requires two inputs: a reference genome, and reads to align against it. A
list of all read aligners used in this work, as well as details on their inner workings, can be
found in Section 2.4.

Most reads were aligned separately, including those sequenced in more than one lane,
namely the single-ended runs of Ion Proton Brescia. Illumina HiSeq2500 was the only data
set in this work with paired-end reads, which were aligned simultaneously.

3.2.2 Post-alignment processing

Post-alignment processing steps are summarized in Fig. 5.
Read group information, which consists of tab-separated metadata concerning the query

reads, was added to the aligned sequences to facilitate further downstream analysis: a
unique ID, the sample name, library identifier, sequencing platform, and sequencing plat-
form unit (e.g. run barcode).

PCR amplification ensures the existence of a sufficient amount of DNA in downstream
steps, and is therefore required for library preparation. Duplicate reads originating from
the PCR amplification step artificially increase the number of reads supporting certain vari-
ants, which could influence their detection (Li et al., 2009b). Furthermore, these duplicate
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reads needlessly increase the number of reads that need to be processed, increasing the
computational cost of all downstream steps. Therefore, duplicated reads were marked and
subsequently removed from all data sets.

Moreover, short read aligners might place reads on the edges of indels, creating mis-
matches between bases, and thus leading to the incorrect calling of SNPs. Realignment
around known indels is a two-step process that aims to combat this issue. First, a list of in-
tervals in need of intervention was generated, and that list was then passed to a command
able to perform the realignment proper.

NGS platforms produce reads in the FASTQ format, which combines FASTA sequences
with their associated per-base Phred-scaled base quality scores. Base quality scores express
a sequencer’s confidence in its calling the correct base at each position, consequently mak-
ing it possible to evaluate sequencing machine errors. The emission of base quality scores
can be subject to systematic errors, however, negatively impacting their usefulness. Thus,
a machine learning approach capable of detecting systematic errors so as to model them
and readjust base quality scores, Base Quality Score Recalibration (BQSR), was run on all data
sets.

3.2.3 Variant calling

Variant calling requires two inputs: a reference genome, and a set of aligned (and, prefer-
ably, processed) reads. A list of all variant callers used in this work, as well as details on
their inner workings, can be found in Section 2.5.

3.2.4 Variant calling benchmarking

Table 11: Read aligner and variant caller combinations which constitute the pipelines used in this
work.

BCFTools Freebayes HaplotypeCaller VarScan 2 TVC

Bowtie 2 Bowtie 2 + BCFTools Bowtie 2 + Freebayes Bowtie 2 + HaplotypeCaller Bowtie 2 + VarScan 2 N/A
bwa BWA-MEM + BCFTools BWA-MEM + Freebayes BWA-MEM + HaplotypeCaller BWA-MEM + VarScan 2 N/A
TMap TMap + BCFTools TMap + Freebayes TMap + HaplotypeCaller TMap + VarScan 2 TMap + TVC

Each of the four samples went through three read aligners× four variant callers pipelines,
plus the TMap + TVC pipeline which was run exclusively on the Ion Proton GIAB data set,
for a total of 13 distinct pipelines (described in Table 11). In total, therefore, 49 query call
sets were compared against the chosen benchmark call set using vcfeval, resulting in 49

comparisons and their respective metrics.
The Linux version of vcfeval was obtained from the Real Time Genomics (RTG) website

(https://www.realtimegenomics.com/products/rtg-tools). For the quantification step,

https://www.realtimegenomics.com/products/rtg-tools
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qfy.py, a part of the Haplotype Comparison Tools suite (https://github.com/Illumina/
hap.py), was run on the raw benchmarking metrics.

3.3 vcaller

Variant calling, while simple in principle, can quickly become a daunting task to the av-
erage user, given that, as previously shown, the typical pipeline requires back-and-forth
usage and configuration of multiple command line tools. To simplify this task in the con-
text of variant calling benchmarking, we have developed Vcaller (https://github.com/
martaccmoreno/vcaller), a Command Line Interface (CLI) capable of invoking multiple pre-
existing bioinformatics tools, eclectically grouping them into commands that will perform
each of the main steps described above (refer to Fig. 6). Therefore, because Vcaller is com-
posed by these intuitive building-block commands, it retains enough flexibility to allow the
user to build their own variant calling pipelines without having to worry about the minutia
inherent to the usual ”mix-and-match” approach commonly observed in the field.

To illustrate Vcaller’s reduction abilities, below are the commands used to run the BWA-MEM
+ BCFtools benchmarking pipeline on the Ion Proton GIAB data set through Vcaller.

1 $ v c a l l e r a l i g n bwa −o ion bwa . bam b37/human g1k v37 . f a s t a
IonXpress 020 rawl ib . b37 . f a s t q . gz

2 $ v c a l l e r process −o ion bwa processed . bam −−readgroup−i n f o ID : 0 2 0 ,
PU:PGM/P1 . 1 . 1 7 / IonXpress 020 , PL : IONTORRENT,SM: NA12878 , LB : l i b 1 −−
add− known−i n d e l s b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz b37/
Mil ls and 1000G gold standard . i n d e l s . b37 . vc f . gz b37/dbsnp 138 .
b37 . vc f . gz human g1k v37 . f a s t a ion bwa . bam

3 $ v c a l l e r c a l l b c f t o o l s −o ion bwa bcf too l s . vcf −−exome−regions
AmpliseqExome .20141120 e f f e c t i v e r e g i o n s . b37 . bed b37/
human g1k v37 . f a s t a ion bwa processed . bam

4 $ v c a l l e r compare −−output−d ir ion−bwa−b c f t o o l s −−bed−f i l e data/
exome−regions/AmpliseqExome nochr . bed −−evaluat ion−regions giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . bed b37/human g1k v37 . f a s t a giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . vcf . gz ion exome bwa bcftools . vcf

Listing 3.1: Vcaller commands used to run the BWA-MEM + BCFTools pipeline according to the
steps delineated thorough this section.

https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
https://github.com/martaccmoreno/vcaller
https://github.com/martaccmoreno/vcaller
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Figure 6: All main Vcaller commands and subcommands. The align, process, call (and, option-
ally, compare) commands can be sequentially run to obtain a result similar to that of the
pipeline subcommand. When running vcaller pipeline, the user must define argu-
ments to choose what read aligner and variant caller combination to use. The pipeline
can either be a variant calling pipeline, or, if an option is toggled, a variant calling bench-
marking pipeline similar to those described in this work. Most of the intermediary files
(e.g., VCFs containing benchmarking match information) are removed by default, but can
optionally be kept.
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Or, more simply:

1 $ v c a l l e r p i p e l i n e bwa b c f t o o l s b37/Mil ls and 1000G gold standard .
i n d e l s . b37 . vc f . gz b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz b37/
human g1k v37 . f a s t a IonXpress 020 rawl ib . b37 . f a s t q . gz −o
ion bwa bcf too l s . vcf −−exome−regions AmpliseqExome .20141120

e f f e c t i v e r e g i o n s . b37 . bed −−add− known−i n d e l s b37 /1000 G phase1 .
i n d e l s . b37 . vc f . gz −−readgroup−i n f o ID : 0 2 0 ,PU:PGM/P1 . 1 . 1 7 /
IonXpress 020 , PL : IONTORRENT,SM: NA12878 , LB : l i b 1

Compared to the commands shown in supporting material A.1, it takes considerably less
lines to build a variant calling benchmarking pipeline with Vcaller. To fully appreciate the
amount of lines saved, refer to the listing in section A.2.

3.4 summary

All required inputs were collected following a set of criteria that would meet the needs
of this study. These input files were passed to pipelines consisting of multiple short read
aligner × variant caller combinations, as well as a common group of supporting software,
built according to the guidelines proposed by Van der Auwera et al. (2013). These pipelines
were implemented into Vcaller, a CLI that automates the variant calling process, allowing
the user to easily build their own pipelines. Finally, the Vcaller subcommands used to pass
the Ion Proton GIAB sample through a BWA-MEM + BCFTools pipeline were shown (Listing
3.1) to illustrate Vcaller’s ability to reduce the number of lines required to perform variant
calling.
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R E S U LT S A N D D I S C U S S I O N

Previously, variant calling pipelines featuring several read aligner and variant caller combi-
nations were implemented and run on exome reads pertaining to the same well-characterized
sample and sequenced from multiple platforms belonging to two technologies, Ion Torrent
and Illumina. Subsequently, the resulting variant calls were compared against a high-
confidence call set to evaluate their performance. In the present chapter, results derived
from this variant calling benchmarking process will be examined to determine the strengths
and weaknesses of each tool.

The final results for this work include prediction counts (TPs, FPs, and FNs) and perfor-
mance metrics (precision, recall, and F1 scores) output by qfy.py, which have been stratified
by variant type (Tables 12 and 13). Through these tables, tools were assessed based on their
F1 scores, which, as seen in Section 2.7.2, incorporate both precision and recall, thus serving
as a quick way to evaluate individual tool performance.

Precision and recall values for different thresholds of the chosen scoring field (QUAL)
were passed to a modified version of the script rocplot.Rscript (https://github.com/Illumina/
hap.py/blob/master/src/R/rocplot.Rscript). The resulting PR curves, also stratified by
variant type, are shown in Fig. 7 and Fig. 8, and offer a visual way of comparing perfor-
mance across different tools.

4.1 variant representation differences matter in call comparison

Because vcfeval normalizes variant representation to ensure that matching variants are con-
sidered the same irrespective of differences in their VCF representation, the choice of either
benchmark or query representation for tallying TPs will influence their counts. For exam-
ple, in the case of a MNP affecting three neighboring nucleotides, the benchmark may opt
to break it into three SNP calls (three TPs) while the query may consider the MNP as a
unit (one TP). Therefore, vcfeval opts to write two VCF files containing the matching vari-
ants, one using the benchmark call set’s representation, and the other that of the query
call set. The hap.py script accounts for this scenario, and thus produces counts for both
representations, which can sometimes be quite different. Furthermore, as previously dis-

https://github.com/Illumina/hap.py/blob/master/src/R/rocplot.Rscript
https://github.com/Illumina/hap.py/blob/master/src/R/rocplot.Rscript


4.2. F1 Scores help evaluate the strengths and weaknesses of each tool 36

cussed, FPs are variants present in the query call set but absent from the benchmark call
set, and therefore can only be counted relative to the query set’s representation. Likewise,
FNs are variants found in the benchmark call set but not the in query call set, and so have
to be counted from the benchmark set’s VCF. Consequently, precision is calculated through
query TPs and FPs, and recall using benchmark TPs and FNs (refer to equations 4 and 5)
to preserve consistency.

4.2 f1 scores help evaluate the strengths and weaknesses of each tool

Tables 12 and 13 contain all counts and prediction metrics output by qfy.py for each pipeline,
stratified by variant type. In the two following subsections, tools will be evaluated based
on their F1 scores for SNP and indel detection.

4.2.1 SNP subset

The results in Table 12 appear to be independent of read aligner, since most of the time
the best variant caller is the same irrespective of the choice of aligner. If the TMap + TVC
pipeline is ignored (because it is optimized for Ion Torrent data sets), BCFTools consistently
offers the best F1 scores for Ion Torrent data sets. As for Illumina data sets, both BCFTools
and Varscan 2 provide good results. In the specific case of the Illumina HiSeq2500 data
set, performance is similar for most pipelines, with the exception of non-BCFTools variant
callers paired with TMap, which perform much worse. Notably, VarScan 2 pipelines show
very good results when calling variants on the Illumina TruSeq data set, with F1 values
very close to those of BCFTools.

4.2.2 Indel subset

According to the results in Table 13, the F1 scores for indel detection in Ion Torrent data sets
were very low across the board. Further, as previously seen, read aligners barely exerted an
influence on variant calling, although it is noticeable that TMap did not perform well when
integrating pipelines for the Illumina HiSeq250 data set, unless its variants were called with
BCFTools.

Again, the best result for Ion Torrent was Ion Proton GIAB’s TMap + TVC pipeline; other
than that, VarScan 2 consistently provided the best indel detection results for Ion Torrent
data sets. Illumina data sets, on the other hand, are generally capable of reaching F1

scores much closer to those obtained in SNP detection, with BCFtools and HaplotypeCaller
having the overall best performances. Similarly to the SNP subset, calling variants on
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Table 12: Confusion matrix counts and related performance measures for the SNP variant type.

B.TP B.FN Q.TP Q.FP Recall Precision F1 Score

Ion Proton
GIAB

Bowtie 2 BCFTools 24259 8187 24355 1804 0.748 0.931 0.829

Freebayes 26117 6329 25935 10833 0.805 0.705 0.752

HaplotypeCaller 22028 10418 22086 2315 0.679 0.905 0.776

VarScan 2 18856 13590 18930 2964 0.581 0.865 0.695

bwa BCFTools 26311 6135 26419 2155 0.811 0.925 0.864

Freebayes 26709 5737 26509 6226 0.823 0.810 0.816

HaplotypeCaller 23643 8803 23714 2423 0.729 0.907 0.808

VarScan 2 19599 12847 19676 2736 0.604 0.878 0.716

TMap BCFTools 23880 8566 23976 1989 0.736 0.923 0.819

Freebayes 25043 7403 24878 3747 0.772 0.869 0.818

HaplotypeCaller 22358 10088 22423 2378 0.689 0.904 0.782

VarScan 2 16938 15508 17003 2943 0.522 0.852 0.648

Torrent Variant Caller 31169 1277 31110 262 0.961 0.992 0.976

Ion Proton
Brescia

Bowtie 2 BCFTools 31034 1412 31168 1160 0.956 0.964 0.960

Freebayes 31716 730 31445 9324 0.978 0.771 0.862

HaplotypeCaller 30080 2366 30193 5314 0.927 0.850 0.887

VarScan 2 30206 2240 30339 2097 0.931 0.935 0.933

bwa BCFTools 32058 388 32205 1581 0.988 0.953 0.970
Freebayes 32082 364 31798 7981 0.989 0.799 0.884

HaplotypeCaller 31196 1250 31314 7262 0.961 0.812 0.880

VarScan 2 31584 862 31716 1591 0.973 0.952 0.963

TMap BCFTools 31916 530 32058 1611 0.984 0.952 0.968

Freebayes 32023 423 31748 8637 0.987 0.786 0.875

HaplotypeCaller 19989 12457 20063 7878 0.616 0.718 0.663

VarScan 2 31296 1150 31433 1945 0.965 0.942 0.953

Illumina
TruSeq

Bowtie 2 BCFTools 26249 1611 26404 2610 0.942 0.910 0.926

Freebayes 26432 1428 26232 14331 0.949 0.647 0.769

HaplotypeCaller 26120 1740 26267 4126 0.938 0.864 0.899

VarScan 2 25257 2603 25407 804 0.907 0.969 0.937

bwa BCFTools 26304 1556 26460 2911 0.944 0.901 0.922

Freebayes 26458 1402 26252 15098 0.950 0.635 0.761

HaplotypeCaller 26273 1587 26423 4508 0.943 0.854 0.896

VarScan 2 25242 2618 25392 826 0.906 0.968 0.936

TMap BCFTools 26094 1766 26246 1752 0.937 0.937 0.937
Freebayes 26388 1472 26189 8894 0.947 0.746 0.835

HaplotypeCaller 26194 1666 26344 2628 0.940 0.909 0.924

VarScan 2 25208 2652 25357 734 0.905 0.972 0.937

Illumina
HiSeq2500

Bowtie 2 BCFTools 40304 2069 40618 843 0.951 0.980 0.965
Freebayes 40307 2066 40010 2542 0.951 0.940 0.946

HaplotypeCaller 40123 2250 40430 826 0.947 0.980 0.963

VarScan 2 32846 9527 33075 911 0.775 0.973 0.863

bwa BCFTools 40028 2345 40331 1382 0.945 0.967 0.956

Freebayes 40276 2097 39986 5244 0.951 0.884 0.916

HaplotypeCaller 40140 2233 40458 1138 0.947 0.973 0.960

VarScan 2 31584 862 31716 1591 0.973 0.952 0.963

TMap BCFTools 40015 2358 40313 914 0.944 0.978 0.961

Freebayes 18345 24028 18186 750 0.433 0.960 0.597

HaplotypeCaller 18736 23637 18816 346 0.442 0.982 0.610

VarScan 2 17647 24726 17714 293 0.416 0.984 0.585

B.TP Benchmark TPs B.FN Benchmark FNs Q.TP Query TPs Q.FP Query FPs
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Table 13: Prediction counts and related performance metrics for the INDEL variant type.

B.TP B.FN Q.TP Q.FP Recall Precision F1 Score

Ion Proton
GIAB

Bowtie 2 BCFTools 603 946 613 15866 0.389 0.037 0.068

Freebayes 894 655 916 82637 0.577 0.011 0.022

HaplotypeCaller 704 845 729 23467 0.454 0.030 0.057

VarScan 2 622 927 633 11530 0.402 0.052 0.092

bwa BCFTools 628 921 642 30485 0.405 0.021 0.039

Freebayes 920 629 942 128482 0.594 0.007 0.014

HaplotypeCaller 753 796 777 32603 0.486 0.023 0.044

VarScan 2 654 895 667 13497 0.422 0.047 0.085

TMap BCFTools 709 840 723 12369 0.458 0.055 0.099

Freebayes 810 739 828 72782 0.523 0.011 0.022

HaplotypeCaller 682 867 702 25286 0.440 0.027 0.051

VarScan 2 521 1028 531 8146 0.336 0.061 0.104

TVC 1049 500 1072 4988 0.677 0.177 0.281

Ion Proton
Brescia

Bowtie 2 BCFTools 1175 374 1203 47794 0.759 0.025 0.048

Freebayes 1235 314 1266 134854 0.797 0.009 0.018

HaplotypeCaller 1094 455 1139 91738 0.706 0.012 0.024

VarScan 2 1065 484 1086 43011 0.688 0.025 0.048

bwa BCFTools 1240 309 1267 50447 0.801 0.025 0.048

Freebayes 1276 273 1306 176456 0.824 0.007 0.015

HaplotypeCaller 1162 387 1210 126775 0.750 0.009 0.019

VarScan 2 1130 419 1157 42472 0.730 0.027 0.051

TMap BCFTools 1185 364 1212 27533 0.765 0.042 0.080
Freebayes 1233 316 1259 137174 0.796 0.009 0.018

HaplotypeCaller 509 1040 528 103252 0.329 0.005 0.010

VarScan 2 1086 463 1106 41312 0.701 0.026 0.050

Illumina
TruSeq

Bowtie 2 BCFTools 1070 487 1094 446 0.687 0.710 0.699

Freebayes 1279 278 1316 2179 0.821 0.377 0.516

HaplotypeCaller 1253 304 1307 695 0.805 0.653 0.721

VarScan 2 1164 393 1188 419 0.748 0.739 0.743

bwa BCFTools 1057 500 1083 619 0.679 0.636 0.657

Freebayes 1292 265 1327 2217 0.830 0.374 0.516

HaplotypeCaller 1288 269 1349 688 0.827 0.662 0.736

VarScan 2 1133 424 1160 415 0.728 0.737 0.732

TMap BCFTools 1153 404 1178 294 0.741 0.800 0.769
Freebayes 1268 289 1302 1574 0.814 0.453 0.582

HaplotypeCaller 1264 293 1324 647 0.812 0.672 0.735

VarScan 2 1098 459 1123 399 0.705 0.738 0.721

Illumina
HiSeq2500

Bowtie 2 BCFTools 2789 1157 2859 796 0.707 0.782 0.743

Freebayes 3242 704 3304 2465 0.822 0.573 0.675

HaplotypeCaller 3285 661 3405 1470 0.832 0.698 0.760
VarScan 2 2290 1656 2330 522 0.580 0.817 0.679

bwa BCFTools 2833 1113 2897 811 0.718 0.781 0.748

Freebayes 3183 763 3245 2807 0.807 0.536 0.644

HaplotypeCaller 3286 660 3412 1544 0.833 0.688 0.754

VarScan 2 2460 1486 2510 582 0.623 0.812 0.705

TMap BCFTools 2653 1293 2709 415 0.672 0.867 0.757

Freebayes 457 3489 465 213 0.116 0.686 0.198

HaplotypeCaller 441 3505 457 82 0.112 0.848 0.197

VarScan 2 368 3578 374 61 0.093 0.860 0.168

B.TP Benchmark TPs B.FN Benchmark FNs Q.TP Query TPs Q.FP Query FPs
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Illumina HiSeq2500 aligned with TMap leads to very poor F1 scores, unless it is paired
with BCFTools.

4.3 precision-recall curves provide a visual way to compare variant call-
ing performance

By themselves, performance metrics cannot provide an overview of performance for vary-
ing scoring field thresholds; rather, one must resort to threshold-free measures such as
Receiver Operating Characteristic (ROC) or PR curves. But which to choose?

In most biological problems, the negative subset far outweighs the positive subset (Berrar
and Flach, 2012). Data sets derived from variant analysis suffer from this imbalance issue,
given that there is an overwhelming number of TNs, i.e. loci where no deviation from the
reference is observed. For such binary classifiers—either the locus has a variant or it does
not—ROC curves fail to illustrate the true face of the data, since they are built using True
Positive Rate (TPR) (the same as recall, see Equation 5) and False Positive Rate (FPR) (also
known as specificity), which is defined as:

FalsePositives
TrueNegatives + FalsePositives

(7)

Because the number of TNs is so high, the number of FPs in Equation 7 becomes irrel-
evant; thus, FPR is practically a constant in the context of variant detection, and therefore
useless as an illustration of variation in threshold-free measures.

On the other hand, as their name implies, PR curves leverage precision and recall (Equa-
tions 4 and 5). Because TNs are not a part of precision and recall definitions, PR curves
make it easier to visually appreciate changes in the case of imbalanced sets in which neg-
ative counts far outweigh positive ones (Davis and Goadrich, 2006; Saito and Rehmsmeier,
2015). For this reason, this work will forgo the use of ROC curves, and instead focus on
exploring PR curves.

The plots in Fig. 7 and Fig. 8 show how precision and recall vary with the scoring
threshold for each pipeline; the closer a PR curve gets to the upper-right-hand corner, the
better.

Because pipelines featuring VarScan 2 had a constant value of zero for the QUAL field,
their PR curves could not be plotted.
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(a) Ion Proton GIAB SNPs (b) Ion Proton Brescia SNPs

(c) Illumina TruSeqSNPs (d) Illumina HiSeq2500 SNPs

Figure 7: PR curves for the SNP subset in the four data sets under study. Independently of sequenc-
ing platform, pipelines featuring Freebayes have low precision, especially when paired
with Bowtie 2. For Ion Torrent, BCFTools and HaplotypeCaller (GATK-HC) cluster to-
gether at good levels of recall and precision, with the notable exception of the TMap +
HaplotypeCaller pipeline on the Ion Proton Brescia data set. Another notable outlier,
TMap + TVC, is found in the Ion Proton GIAB data set, with undoubtedly the best result
for this technology. Illumina data sets have overall solid performance; the only other no-
table underperformers are most pipelines featuring TMap in the Illumina HiSeq2500 data
sets.
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(a) Ion Proton GIAB Indels (b) Ion Proton Brescia Indels

(c) Illumina TruSeq Indels (d) Illumina HiSeq2500 Indels

Figure 8: PR curves for the INDEL subset in the four data sets under study. Similarly to SNP
analysis, pipelines featuring Freebayes have low precision, especially in the case of Ion
Torrent data sets; this might be due to the fact that indel detection precision is overall
very low for those data sets. The TMap + TVC and TMap + HaplotypeCaller (GATK-
HC) pipelines are conspicuous outliers for the Ion Proton GIAB and Ion Proton Brescia
data sets, respectively. Lastly, the combination of TMap with any variant caller that is not
BCFTools results in very low levels of recall in the Illumina HiSeq2500 data set.
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4.3.1 Ion Proton GIAB

SNPs

The PR curves for pipelines featuring Freebayes reach good levels of recall for SNP detec-
tion, but only at the cost of a high degree of precision, especially in the case of the Bowtie

2 + HaplotypeCaller pipeline (Fig. 7a). On the other hand, VarScan 2’s results have solid
levels of precision, but its levels of recall are the lowest among all results for this data set.

Irrespective of read aligner, the pipelines featuring HaplotypeCaller and BCFTools appear
clustered together, with good precision (>0.90), although they are only able to reach average
levels of recall. As expected, the TMap + TVC pipeline produces the best curve, capable of
reaching the optimal upper-right-hand corner.

From these results, short read aligners appear to make a modest contribution to variant
calling performance, with curves clustering mostly based on variant calling method.

Indels

From the range of precision it is noticeable that, no matter how optimal a curve may be,
indel detection precision will always be very poor (Fig. 8a).

The best result for this data set belongs, as expected, to the TMap + TVC pipeline. The
remaining pipelines show even lower levels of precision—less than 0.10—with only the
pipelines featuring Freebayes being able to find more than half the indels present in the
benchmark call set, albeit at the cost of having a very high fraction of FPs—over 98% of all
of its indel calls.

4.3.2 Ion Proton Brescia

SNPs

For SNPs, there are three well-defined clusters (Fig. 7b). The first is made up only of
the TMap + HaplotypeCaller pipeline, and offers the worst performance from among all
SNP detection results for this data set. Then, there is a cluster of high-recall low-precision
results encompassing all pipelines featuring Freebayes, alongside the BWA-MEM + Hap-
lotypeCaller and Bowtie 2 + HaplotypeCaller pipelines. Lastly, there is a cluster with
high levels of both precision and recall, where all pipelines featuring BCFTools and VarScan
2 are found.

Again, short read aligners appear to have little to no influence on variant calling perfor-
mance.
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Indels

As with Ion Proton GIAB, the range of precision for Ion Proton Brescia’s indels is limited to
very low precision values, in this case at or below 0.05 (Fig. 8b). Conversely, all pipelines,
with the exception of TMap + HaplotypeCaller, exhibit above average recall (>0.70).

Freebayes-based pipelines have the worst precision, as do the two remaining Haplotype-
Caller PR curves, Bowtie 2 + HaplotypeCaller and BWA-MEM + HaplotypeCaller.
Pipelines that use BCFTools or VarScan 2 stand at a slightly better precision for similar
levels of recall, with the TMap + BCFTools pipeline distinguishing itself as the best curve
in this plot.

4.3.3 Illumina TruSeq

SNPs

In this data set, all pipelines featuring VarScan 2 are closely clustered, with very high
precision and recall for SNPs (Fig. 7c). Although no pipeline is present at the upper-
right-hand corner of the plot, it is important to note that the range of recall varies only
from a little under 0.90 to just below 1. For their part, pipelines using Freebayes continue
displaying high recall but low precision.

Pipelines featuring BCFTools and HaplotypeCaller are clustered together, and offer the
best balance of precision and recall for this data set’s SNPs.

Indels

Unlike Ion Torrent data sets, Illumina data sets proved capable of reaching indel detection
precision of upwards to 0.90 at best, or close to 0.30 at worst (Fig. 8c).

Freebayes-based pipelines again exhibit high levels of recall but low precision. On the
other end of the spectrum are the BCFTools and VarScan 2 pipelines, which show higher
levels of precision but lower recall—although the trade-off is never as steep. The TMap +
BCFTools pipeline stands out for offering the highest precision (∼0.80), while still possess-
ing close to 0.75 recall.

Pipelines featuring HaplotypeCaller are clustered together, and offer a balance of decent
precision (>0.65) and good recall (>0.80).
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4.3.4 Illumina HiSeq2500

SNPs

For the first time in this study, a cluster was formed around the curves of pipelines featuring
the same read aligner, TMap, rather than the same variant caller (Fig. 7d). These pipelines
exhibit high SNP detection precision, but also very poor recall.

Once again, pipelines using Freebayes possess lower levels of precision, although, since
the range of precision only varies between 0.875 and 1, the difference is not as glaring
as in previous plots, meaning that, with the exception of the TMap + Freebayes pipeline,
Freebayes pipelines offer decent results.

BCFTools, HaplotypeCaller, and VarScan 2—with the exception of TMap-based pipelines
in the case of the latter two—all show good results, as their curves draw close to the upper-
right-hand corner of the plot.

Indels

Similarly to what was observed in the SNP subset for this data set, there is clustering
around one of the read aligners, TMap (Fig. 8d). The PR curves for this cluster range from
average to high precision, but suffer from low recall (<0.20). The exception to this tendency
is the TMap + BCFTools pipeline, which does in fact offer the highest level of precision for
this data set (>0.85), while maintaining acceptable levels of recall (∼0.70).

Pipelines featuring VarScan 2 and BCFTools that were not aligned using TMap offer a
decent balance of precision (>0.75) and recall (>0.50), with slightly superior results in the
case of the latter variant caller.
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C O N C L U S I O N

5.1 conclusions

Variant calling results appear to be independent of the choice of short read aligner. The ex-
ception to the rule is TMap, which performs particularly poorly on the data sets sequenced
on more than one lane, Illumina HiSeq2500 and Ion Proton Brescia. Nevertheless, there is
one TMap pipeline, TMap + BCFTools, which performs similarly to, or at times even better
than, most other pipelines, across all data sets.

As for variant callers, both BCFTools and HaplotypeCaller perform well overall, although
the latter has some issues, such as poor performance when operating on reads aligned by
TMap. Freebayes’s results were lackluster, with its only saving grace being its high recall
values, which were nonetheless comparable to those of other pipelines with much better
precision. Conversely, VarScan 2 tended to have high precision but lower recall, especially
in the case of indels, and performed particularly poorly on the Ion Proton GIAB data set.

The TMap + TVC pipeline performs much better than any other for Ion Proton GIAB,
which might stem from the fact that these two tools were developed for joint use on Ion
Torrent sequences. Moreover, the GIAB Consortium ran this pipeline on this exact same
data set to integrate the resulting calls into their high-confidence data set, leading to a
potential bias in the benchmark call set when comparing it against this specific pipeline
and data set combination.

From these results, we conclude that, with regard to Ion Torrent data sets, the TMap

+ TVC pipeline should be used if flow information is available; else, BCFTools together
with any read aligner is a solid option as well. For this latter variant caller, performance
is slightly improved for SNP detection if BWA-MEM is used to align the reads, and indel
detection is enhanced by aligning reads with TMap.

Concerning Illumina data sets, the best results were observed when BCFTools was com-
bined with any short read aligner, or VarScan 2 combined with any aligner excluding TMap
(due to the very low recall obtained in the Illumina HiSeq2500 data set). Overall, BCFTools
offers a solid variant calling performance for all Illumina data sets irrespective of the choice
of read aligner, with TMap offering a potential for slightly higher indel detection.



5.2. Limitations 46

When stratifying result comparison by technology, we find that, as far as Ion Torrent
platforms are concerned, Ion Proton GIAB is at an advantage due to being able to leverage
the TMap + TVC pipeline, which has the best results for either of the two Ion Proton data
sets; as previously discussed that pipeline is, however, very likely prone to bias. As far
as other pipelines are concerned, performance was very similar for SNP and indel calling
across the two data sets.

In the case of Illumina platforms, Illumina TruSeq exhibits a significantly narrower and
higher range of recall for both SNPs and indels. On the other hand, Illumina HiSeq250

has a narrower and higher range of precision. As far as the range of recall is concerned,
however, the brunt of Illumina HiSeq2500’s issues stem from the result of the TMap cluster.
Considering the range of precision, TruSeq’s precision problems appear to arise because of
the results for Freebayes, although this issue is observed across all data sets to some extent.

Overall, SNP detection performance is good for both technologies averaging between
87.4% for Illumina and 84.4% for Ion Torrent. BCFtools pipelines offer the best, or runner-
up results for both technologies, with VarScan 2 also performing similarly well on Illumina
data sets. On the other hand, Ion Torrent indel detection performance is very poor, with an
average F1 score of 5.6% on Ion and a much better F1 score of 63.1% on Illumina. The low
precision levels reflected on the F1 scores reveals that there is still much work to be done
in terms of improving detection of indels, a type of variant largely disregard in the clinical
practice.

5.2 limitations

As is always the case with this type of study, the results and any conclusions drawn from
them cannot be taken at face value. When speaking of a ”best” pipeline, it might simply be
a tendency observed in the benchmarked data sets, because results require a large amount
of data points if they are to be robust. Even then, if only sequences obtained from one
sample are analyzed, results might be prone to be more descriptive of the sample itself
rather than, for instance, the level of variant calling (WGS, WES, gene panels, etc.) under
study. For these reasons, there are likewise several aspects of this work that may have
contributed to the presence of bias in the results.

First, all benchmarking was conducted on sequences obtained from a single sample,
NA12878. More importantly, only data sets sequenced from that sample were analyzed,
making the results prone to sample-specific biases. This issue was further compounded
when comparing technologies, an important component of this study, because each tech-
nology (Ion Torrent and Illumina) was limited to two data sets. Moreover, as previously
discussed, only one of the two Ion Torrent data sets possessed the read information re-
quired to run the TMap + TVC pipeline, and this data set integrated the high-confidence call
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set used in benchmarking, leading to a very high potential for bias for that pipeline. Lastly,
tests were performed on human genome build b37, which is not based on the most recent
human genome assembly—GRCh38.

Moreover, it is important to note that VarScan 2 deviated from its default settings by
having a few parameters set to custom values in order to approximate its results to those of
HaplotypeCaller and BCFTools (refer to the commands in supporting material A.1). Free-
bayes could likely benefit from such tweaking as well, although the optimization of tool
parameters is beyond the scope of this work.

5.3 prospect for future work

The primary objective of this work has been fulfilled. Nonetheless, there could have been
more emphasis on the clinical applications, which would benefit from analyzing what im-
pact different tool parameters have on variant calling performance. Although variant call-
ing parameter optimization is an exciting prospect, it would be very complex to explore in
practice, however, because different methods have distinct sets of parameters that cannot
be directly compared. Regardless, this type of analysis could lead to large improvements
in the field, and is therefore a topic worth considering for future research.

To overcome the limitations inherent to the present work, it would be beneficial to bench-
mark more samples, and, more importantly, a larger number of data sets sequenced from
those samples using each technology, making it possible to draw more robust and infor-
mative conclusions. Particularly, a greater number of Ion Torrent data sets containing flow
information would greatly aid in the assessment of the performance of the Ion Torrent-
specific TMap + TVC pipeline.

To expand on this work, it would be interesting for future studies to be performed on
human genome assembly GRCh38, especially as GIAB works on improving its GRCh38

benchmark call sets, further leading to more supporting materials for that assembly becom-
ing available. Moreover, the analysis could be extended to WGS as the latter becomes more
affordable and timely, or even restricted to gene sequencing panels, for example; ultimately
the goal of variant calling benchmarking is to determine what pipelines are better suited to
a given variant detection task, and therefore the scope of the analysis ought to be chosen
primarily to suit the needs of researchers.

As for technologies, results for indel detection are very unsatisfactory for Ion Torrent
platforms. This could be due to two important characteristics of the data generated by
these platforms: reads are of variable length, and, unlike Illumina, its principal error mode
is associated with miscalling of homopolymer lengths, which undoubtedly has a negative
impact on indel detection. Therefore, one can postulate that algorithms still have room for
improvement when it comes to proper treatment of Ion Torrent data. To expand on this
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point, in the future more technologies and/or sequencing platforms could be benchmarked
to help drive algorithm development and improve performance of both new and existing
tools when dealing with non-Illumina data.
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A
S U P P O RT I N G M AT E R I A L

a.1 variant calling pipelines : detailed list of commands

All commands were executed on an environment running Linux Ubuntu 16.04.

a.1.1 Read alignment

Because not all tools in this pipeline support zipped FASTA files (e.g. GATK), it was neces-
sary to run the command gunzip on the reference genome and associated files:

1 $ gunzip b37/human g1k v37 . ∗ . gz

Listing A.1: Uncompressing all zipped files relative to the reference genome.

Due to computational speed concerns, all three read aligners have the indexing of the
reference genome FASTA file as a mandatory step, performed as follows:

Bowtie 2

1 $ bowtie2−d i r/bowtie2−bui ld b37/human g1k v37 . f a s t a b37/
human g1k v37

BWA-MEM

1 $ bwa index b37/human g1k v37 . f a s t a

TMap

1 $ tmap−d ir/tmap index −f b37/human g1k v37 . f a s t a
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Afterwards, the commands for read alignment proper were run:

Bowtie 2

1 $ bowtie2−d i r/bowtie2 −x b37/human g1k v37 −S bt2 output . sam
query read [ query read2 ]

BWA-MEM

1 $ bwa mem −M b37/human g1k v37 . f a s t a query read [ query read2 ] >

bwa output . sam

TMap

1 $ tmap−d ir/tmap map1 −o 2 −f human g1k v37 . f a s t a −r query read [
query read2 ] > tmap output . bam

The optional parameter in BWA-MEM’s command, -M, ensures that its output is compat-
ible with Picard, a tool integrated into GATK for data processing. The one in TMap’s, -o
2, simply redefines the output type as BAM instead of Sequence Alignment/Map (SAM), thus
saving the need for running samtools sort to convert it to BAM like in the case of the two
other tools, although in certain cases it might be better to run it anyway as it is often de-
sirable for the reads to be sorted by coordinate, which is necessary for certain downstream
steps.

Most reads were aligned separately, including the independently sequenced runs pertain-
ing to the same sample, like the single-end runs of Ion Proton Brescia. The only exception
was the only sample in this work with paired-end reads, HiSeq2500 Exome, wherein the
query read2 positional parameter was defined.

a.1.2 Post-alignment processing

Although the b37 resource bundle already contains the fasta file index (faidx) and sequence
dictionary for reference genome human g1k v37.fasta, it is important to note that these
two files are fundamental to run tools in certain downstream steps (e.g. GATK). One can
generate them using the two following commands:

1 $ samtools fa idx human g1k v37 . f a s t a
2 $ gatk4−d i r/gatk CreateSequenceDict ionary −R b37/human g1k v37 .

f a s t a

Listing A.2: How to index and create a sequence dictionary for the reference genome’s FASTA
sequence.
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The aligned reads were converted to the BAM format, and their contents sorted by their
coordinate, with subsequent indexing of the resulting BAM file:

1 $ samtools s o r t −O bam −o a l igned reads . sor ted . bam −T /tmp/
sorted output . tmp al igned reads . sam

2 $ samtools index a l igned reads . sor ted . bam

Listing A.3: Sorting aligned reads by coordinate, and indexing the resulting BAM file.

The -T parameter sets the prefix for any temporary files generated during the sorting
process, and, optionally, a target directory wherein to store them.

Another processing step that was necessary for downstream steps was the addition of
read group information, which consists of tab-separated metadata concerning the sample
under analysis. A unique ID, sample name, library identifier, sequencing platform, and
sequencing platform unit (e.g. run barcode) were thus provided:

1 $ gatk4−d i r/gatk AddOrReplaceReadGroups \
2 −I a l igned reads . sor ted . bam \
3 −O al igned reads . sor ted .RG. bam \
4 −RGID 42 \
5 −RGSM NA1278 \
6 −RGPL l i b 1

7 −RGPL IONPROTON \
8 −RGPU unit1

Listing A.4: An example of how to add read group information to a set of aligned reads.

PCR amplification ensures that there will be a sufficient amount of DNA to work with in
downstream steps, and is therefore required in library preparation. In spite of its usefulness,
PCR has the issue of generating duplicate reads that should not be used as evidence for or
against potential variants. Likewise, the optical sensors of sequencing machines can create
optical duplicates. It is therefore advisable to mark and remove these duplicate reads (also
known as ”dedupping”), which was accomplished with the following command:

1 $ gatk4−d i r/gatk MarkDuplicates \
2 −I a l igned reads . sor ted .RG. bam \
3 −O al igned reads . sor ted .RG. dedupped . bam \
4 −−REMOVE DUPLICATES True \
5 −M al igned reads . sor ted . metr i cs

Listing A.5: Marking and removing duplicate reads from the sorted BAM.
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The -M parameter, while not required for the purposes of this work, is required by the
above command; it defines the name of the file in which to write duplication metrics for
analysis. Meanwhile, the optional flag --REMOVE DUPLICATES ensures that, instead of being
written again with the appropriated flags set, i.e., merely marked, the duplicates are truly
removed.

Short read aligners might align reads on the edges of indels, creating mismatches between
bases, which can lead to the incorrect calling of SNPs. Realignment around known indels
is a two-step process that aims to address this issue. First, a list of intervals in need of
intervention is generated, and that list is then passed to a command able to perform the
realignment proper:

1 $ java − j a r gatk3−d i r/GenomeAnalysisTK . j a r \
2 −T Real ignerTargetCreator \
3 −I a l igned reads . sor ted . dedupped . bam \
4 −R b37/human g1k v37 . f a s t a \
5 −o a l igned reads . sor ted . dedupped . i n t e r v a l s \
6 −known b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz \
7 −known b37/Mil ls and 1000G gold standard . i n d e l s . b37 . vc f . gz

Listing A.6: Generation of the intervals to undergo realignment.

1 $ java − j a r gatk3−d i r/GenomeAnalysisTK . j a r \
2 −T Inde lRea l igner \
3 −I a l igned reads . sor ted . dedupped . bam \
4 −R b37/human g1k v37 . f a s t a \
5 −t a r g e t I n t e r v a l s a l igned reads . sor ted . dedupped . i n t e r v a l s \
6 −o a l igned reads . sor ted . dedupped . rea l igned . bam \
7 −known b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz \
8 −known b37/Mil ls and 1000G gold standard . i n d e l s . b37 . vc f . gz

Listing A.7: Realigning around indels within the generated intervals.

The -known (one dash) parameter takes as input a VCF file containing a list of known
indel sites. Although it can only take one input file, the option can be repeated as many
times as necessary, as shown in the above example commands. This is yet another way in
which the GATK Resource Bundle proves useful, since it contains two sets of known indel
sites suited for the chosen reference human genome build: Mills indels and 1000 Genomes
indels.

NGS platforms produce reads in the FASTQ format, which combines FASTA sequences
with their associated per-base Phred-scaled base quality scores. Base quality scores express
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a sequencer’s confidence in its calling the correct base at each position, consequently mak-
ing it possible to evaluate associated sequencing machine errors. The emission of base
quality scores can be subject to systematic errors, however, which can negatively impact
their usefulness. Thus, a machine learning approach capable of detecting systematic errors
so as to model them and readjust base quality scores, BQSR, was run on the data. Note that
the machine learning algorithm requires at least one database of known polymorphic sites,
such as dbSNP (Sherry et al., 2001), to build its model.

1 $ gatk4−d i r/gatk B a s e R e c a l i b r a t o r \
2 −I a l igned reads . sor ted . dedupped . rea l igned . bam \
3 −R b37/human g1k v37 . f a s t a \
4 −o a l igned reads . sor ted . dedupped . rea l igned . t a b l e \
5 −knownSites b37/dbsnp 138 . b37 . vc f . gz

Listing A.8: Creating a covariance table for a sample using a list of known sites.

1 $ gatk4−d i r/gatk ApplyBQSR \
2 −I a l igned reads . sor ted . dedupped . rea l igned . bam \
3 −R b37/human g1k v37 . f a s t a \
4 −o a l igned reads . sor ted . dedupped . rea l igned . bqsr . bam \
5 −bqsr a l igned reads . sor ted . dedupped . rea l igned . t a b l e

Listing A.9: Applying base score recalibration based on the covariance table.

a.1.3 Variant calling

BCFtools
A component of the Samtools suite, BCFtools calls variants after calculating the genotype

likelihoods for the provided aligned reads:

1 $ b c f t o o l s mpileup −Ob −o bcf output . bc f −f b37/human g1k v37 .
f a s t a a l igned reads . sor ted . dedupped . rea l igned . bqsr . bam

2 $ b c f t o o l s c a l l −vm −O v −o r a w c a l l s . vcf a l igned reads . sor ted .
dedupped . rea l igned . bqsr . bam

In the bcftools mpileup command, -Ob sets the output as being in the Binary Call Format
(bcf) format. As for the bcftools call command, -O v sets the final call set output as being
in the VCF format, while -vm ensures that only variant sites are written to the resulting
VCF, and that the multiallelic caller is used in place of the default consensus caller, which is
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fundamental for accounting for instances where more than two alleles are being compared—
for example, when more than one sample is called at a time.

HaplotypeCaller
GATK’s HaplotypeCaller performs reassembly of the aligned reads to build sequences

(haplotypes) at variant sites before calculating their respective genotype likelihoods and
assigning genotype calls at that site.

1 $ gatk4−d i r HaplotypeCaller −−dbsnp b37/dbsnp 138 . b37 . vc f . gz −R b37

/human g1k v37 . f a s t a −I a l igned reads . sor ted . dedupped . rea l igned .
bam −O r a w c a l l s . vcf

The optional --dbsnp parameter has no bearing on the calculations; rather, it serves to
populate the resulting VCF’s ID column.

Freebayes
With the support of Bayesian statistics, Freebayes strings short sequences (haplotypes)

on which it calls variants, forsaking any additional information provided by the reference
genome used in reassembly.

1 $ freebayes−d i r/freebayes −f b37/human g1k v37 . f a s t a a l igned reads .
sor ted . dedupped . rea l igned . bam > r a w c a l l s . vcf

Varscan 2
Entries in a mpileup file are parsed to ensure that they meet certain thresholds, and

variants called at positions where Fisher’s Exact Test p-value is over a minimum value.

1 $ samtools mpileup −f b37/human g1k v37 . f a s t a a l igned reads . sor ted .
dedupped . rea l igned . bam > p i l e u p f i l e . mpileup

2 $ java − j a r varscan2−d ir/VarScan . j a r mpileup2cns p i l e u p f i l e .
mpileup −−output−vcf 1 −−v a r i a n t s 1 −−p−value 0 . 1 0 −−min−
coverage 2 > r a w c a l l s . vcf

Setting the parameter --output-vcf ensures that the final output is written to a VCF
file, and likewise --variants 1 makes it so that only variant positions will be reported;
--p-value and --min-coverage set a minimum threshold for p-value and number of reads
at each position (coverage) for variants to be called.

Torrent Variant Caller
Rather than being restricted own variant calling algorithm, TVC puts together preexisting

tools with their own original modules: in general, putative variants are discovered on sites
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determined heuristically using flow space information—exclusively emitted by Ion Torrent
sequencers—through a combination of results from Freebayes and an indel assembly mod-
ule.

1 $ tvc−d i r/tvc −r b37/human g1k v37 . f a s t a − i a l igned reads . sor ted .
dedupped . rea l igned . bam −o r a w c a l l s . vcf

a.1.4 Variant calling benchmarking

In preparation for call set comparison with vcfeval, the raw variant calls obtained above
were intersected with BED files defining the regions captured by their respective exome
kits, and indexed by tabix, which takes as input tab-delimited genome position files sorted
and compressed by the bgzip utility. Before that, however, the BED files had to undergo a
minor chromosome notation conversion to comply with the b37 build.

1 $ sed ’s/chr//g’ truseq−exome−targeted−regions−manifest−v1−2.bed >

truseq−exome−targeted−regions−manifest−v1−2.b37 . bed
2 $ sed ’s/chr//g’ nexterarapidcapture expandedexome targetedregions .

bed > nexterarapidcapture expandedexome targetedregions . b37 . bed
3 $ sed ’s/chr//g’ AmpliseqExome .20141120 e f f e c t i v e r e g i o n s . bed >

AmpliseqExome .20141120 e f f e c t i v e r e g i o n s . b37 . bed

Listing A.10: Converting the exome kit region BED files to the b37 chromosome notation.

1 $ bedtools i n t e r s e c t −header −a ion bwa bcf too l s . vcf −b
AmpliseqExome .20141120 e f f e c t i v e r e g i o n s . b37 . bed >

ion exome bwa bcftools . vcf

Listing A.11: Example of exome intersection using raw variants called by BCFtools on Ion Proton
GIAB reads aligned using BWA-MEM.

1 $ bgzip ion exome bwa bcftools . vcf
2 $ t a b i x −p vcf ion exome bwa bcftools . vcf . gz

Listing A.12: Sorting and compression of the BWA-MEM + BCFtools Ion Proton GIAB exome-only
call set, with subsequent indexing of the resulting file.

The Linux version of vcfeval was obtained from the RTG website (https://www.realtimegenomics.
com/products/rtg-tools). Each of the four samples went through three read aligners ×

https://www.realtimegenomics.com/products/rtg-tools
https://www.realtimegenomics.com/products/rtg-tools
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four variant callers pipelines, plus the TMap + TVC pipeline which was run exclusively on
sample Ion Proton GIAB, for a total of 13 distinct pipelines.

RTG’s Sequence Data File (SDF) format organizes sequence data into multiple binary files
within a directory, increasing the processing efficiency of large data sets. Therefore, for the
sake of computational gains, vcfeval requires that the reference genome be converted into
the SDF format before taking it as input.

1 $ rtg−d i r/ r t g format −o b37/human g1k v37 . sdf b37/human g1k v37 .
f a s t a

Listing A.13: Converting the FASTA reference genome into the SDF format.

In all cases, the comparison inputs consisted of a query call set, its associated exome
regions, the benchmark call set, and the benchmark call set’s high-confidence regions.

1 $ rtg−d i r/ r t g v c f e v a l −o ion−bwa−b c f t o o l s −−vcf−score−f i e l d QUAL,
−−output−mode ga4gh , −−template b37/human g1k v37 . sdf −−c a l l s
ion exome bwa bcftools . vcf . gz −−bed−regions AmpliseqExome
.20141120 e f f e c t i v e r e g i o n s . b37 . bed −−b a s e l i n e giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . vcf . gz −−evaluat ion−regions giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . bed

Listing A.14: Comparing an example query set against the NA12878 benchmark set using vcfeval.

Two optional parameters beget explanation: --vcf-score-field sets what VCF field to
use as the ROC score, and --output-mode ga4gh defines the output report mode to be
GA4GH-compliant, so that the comparison results may be used as input in the quantifica-
tion step.

A part of the Haplotype Comparison Tools suite (https://github.com/Illumina/hap.
py), qfy.py is responsible for executing the quantification step of variant benchmarking.

1 $ hap . py−d ir/qfy . py −−write−vcf −−write−counts −−type ga4gh −−
r e f e r e n c e b37/human g1k v37 . f a s t a −−adjust−conf−regions giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . bed −o ion−bwa−b c f t o o l s−counts ion−bwa−b c f t o o l s /
output . vcf . gz

Listing A.15: Counting matches and mismatches, and computing statistical metrics in a query
GA4GH-intermediate VCF using qfy.py.

https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
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As with vcfeval, the output is a directory. To increase the amount of available informa-
tion, two flags were switched on: --write-vcf, which writes an annotated VCF containing
all benchmark matches and mismatches, and --write-counts, so that qfy.py will write ad-
vanced counts and metrics. Moreover, --type sets the expected input type—in this case, a
GA4GH-intermediate file—and --adjust-conf-regions restricts the count space to remain
within the GIAB high-confidence regions.

a.2 list of commands to call variants with bwa-mem + bcftools

Below are all the commands required to run a variant calling workflow similar to the one
found in Listing 3.1 without resorting to Vcaller.

1 $ bwa index b37/human g1k v37 . f a s t a
2 $ bwa mem −M b37/human g1k v37 . f a s t a query read [ query read2 ] >

bwa output . sam
3 $ samtools fa idx b37/human g1k v37 . f a s t a
4 $ gatk4−d i r/gatk CreateSequenceDict ionary −R b37/human g1k v37 .

f a s t a
5 $ samtools s o r t −O bam −o a l igned reads . sor ted . bam −T /tmp/

sorted output . tmp al igned reads . sam
6 $ samtools index a l igned reads . sor ted . bam
7 $ gatk4−d i r/gatk AddOrReplaceReadGroups \
8 −I a l igned reads . sor ted . bam \
9 −O al igned reads . sor ted .RG. bam \

10 −RGID 42 \
11 −RGSM NA1278 \
12 −RGPL l i b 1

13 −RGPL IONPROTON \
14 −RGPU unit1

15 $ gatk4−d i r/gatk MarkDuplicates \
16 −I a l igned reads . sor ted .RG. bam \
17 −O al igned reads . sor ted .RG. dedupped . bam \
18 −−REMOVE DUPLICATES True \
19 −M al igned reads . sor ted . metr i cs
20 $ java − j a r gatk3−d i r/GenomeAnalysisTK . j a r \
21 −T Real ignerTargetCreator \
22 −I a l igned reads . sor ted . dedupped . bam \
23 −R b37/human g1k v37 . f a s t a \
24 −o a l igned reads . sor ted . dedupped . i n t e r v a l s \



A.2. List of commands to call variants with BWA-MEM + BCFTools 64

25 −known b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz \
26 −known b37/Mil ls and 1000G gold standard . i n d e l s . b37 . vc f . gz
27 $ java − j a r gatk3−d i r/GenomeAnalysisTK . j a r \
28 −T Inde lRea l igner \
29 −I a l igned reads . sor ted . dedupped . bam \
30 −R b37/human g1k v37 . f a s t a \
31 −t a r g e t I n t e r v a l s a l igned reads . sor ted . dedupped . i n t e r v a l s \
32 −o a l igned reads . sor ted . dedupped . rea l igned . bam \
33 −known b37 /1000 G phase1 . i n d e l s . b37 . vc f . gz \
34 −known b37/Mil ls and 1000G gold standard . i n d e l s . b37 . vc f . gz
35 $ gatk4−d i r/gatk B a s e R e c a l i b r a t o r \
36 −I a l igned reads . sor ted . dedupped . rea l igned . bam \
37 −R b37/human g1k v37 . f a s t a \
38 −o a l igned reads . sor ted . dedupped . rea l igned . t a b l e \
39 −knownSites b37/dbsnp 138 . b37 . vc f . gz
40 $ gatk4−d i r/gatk ApplyBQSR \
41 −I a l igned reads . sor ted . dedupped . rea l igned . bam \
42 −R b37/human g1k v37 . f a s t a \
43 −o a l igned reads . sor ted . dedupped . rea l igned . bqsr . bam \
44 −bqsr a l igned reads . sor ted . dedupped . rea l igned . t a b l e
45 $ b c f t o o l s mpileup −Ob −o bcf output . bc f −f b37/human g1k v37 .

f a s t a a l igned reads . sor ted . dedupped . rea l igned . bqsr . bam
46 $ b c f t o o l s c a l l −vm −O v −o r a w c a l l s . vcf a l igned reads . sor ted .

dedupped . rea l igned . bqsr . bam
47 $ bedtools i n t e r s e c t −header −a ion bwa bcf too l s . vcf −b

AmpliseqExome .20141120 e f f e c t i v e r e g i o n s . b37 . bed >

ion exome bwa bcftools . vcf
48 $ bgzip ion exome bwa bcftools . vcf
49 $ t a b i x −p vcf ion exome bwa bcftools . vcf . gz
50 $ rtg−d i r/ r t g format −o b37/human g1k v37 . sdf b37/human g1k v37 .

f a s t a
51 $ rtg−d i r/ r t g v c f e v a l −o ion−bwa−b c f t o o l s −−vcf−score−f i e l d QUAL,

−−output−mode ga4gh , −−template b37/human g1k v37 . sdf −−c a l l s
ion exome bwa bcftools . vcf . gz −−bed−regions AmpliseqExome
.20141120 e f f e c t i v e r e g i o n s . b37 . bed −−b a s e l i n e giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . vcf . gz −−evaluat ion−regions giab/



A.2. List of commands to call variants with BWA-MEM + BCFTools 65

NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . bed

52 $ hap . py−d ir/qfy . py −−write−vcf −−write−counts −−type ga4gh −−
r e f e r e n c e b37/human g1k v37 . f a s t a −−adjust−conf−regions giab/
NA12878 GIAB highconf CG−I l l F B−IllGATKHC−Ion−Solid−10X CHROM1−
X v3 . 3 highconf . bed −o ion−bwa−b c f t o o l s−counts ion−bwa−b c f t o o l s /
output . vcf . gz

Listing A.16: A generic bwa + BCFTools pipeline for variant calling benchmarking.
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