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R U S T F O R C R I T I C A L S Y S T E M S - A B S T R A C T

The C programming language is perhaps the most widespread in the design of safety-

critical systems. However, its adoption suffers from disadvantages because it lacks in safety,

entailing extensive and expensive verification processes.

There are other programming languages, such as Ada and SPARK, that offer safety fea-

tures that automatically comply with the current safety standards. Nevertheless, the soft-

ware industry continues to use C after all and its associated verification process to build

safety-critical software.

Rust is a modern programming language that promises to soften such insecurities by de-

sign, thus improving on the development of safety-critical software. Due to its ownership

model, Rust can ensure memory safety at compile time. Because it is a systems program-

ming language, it is also a promising language for embedded systems.

The main aim of the project reported in this dissertation is to understand how Rust can

alleviate the certification process of safety-critical software, while evaluating its maturity

for embedded systems. We analyse in which platforms Rust is available and compare

embedded Rust to other languages used in the safety-critical domain. This analysis consists

in comparing Rust safety features with coding guidelines commonly used in the software

industry.

Some case studies are carried out, such as preemptive and cooperative scheduling (both

in C and Rust to better understand the programming differences in these languages), a

driver for an accelerometer and finally a program that uses the scheduler, the accelerometer

and the leds of a micro-controller, where one thread reads acceleration values and another

thread turns leds on/off according to such readings.

The dissertation ends with an overview of the results obtained. Not only a compari-

son is given with coding guidelines used in industry, but also concerning the case studies

developed. It also anticipates some important work that could be added, as well as some

details where Rust could be improved to become prominent in the industry of safety critical

software.

Keywords: Critical Systems, Embedded Systems, Rust.
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R U S T PA R A S I S T E M A S C R Í T I C O S - R E S U M O

A linguagem de programação C é talvez a que tem mais representação no design de

sistemas crı́ticos. Contudo, a sua utilização tem algumas desvantagens pois falha em

segurança, o que resulta em processos de verificação extensos e dispendiosos.

Existem outras linguagens de programação, como Ada e SPARK, que possuem funciona-

lidades de segurança que automaticamente correspondem aos standards de segurança.

Apesar disso, o que se verifica é que a indústria continua a usar C e o consequente pro-

cesso de verificação para desenvolver software crı́tico.

Rust é uma linguagem moderna que promete atenuar tais inseguranças pelo design, mel-

horando assim o desenvolvimento de software crı́tico. Graças ao seu modelo de ownership,

a linguagem consegue assegurar uma utilização da memória de forma segura no momento

da compilação do código. Como Rust é uma linguagem de programação de sistemas, esta

é promissora para ser usada nos sistemas embebidos.

O objectivo principal desta dissertação é investigar como é que Rust pode suavizar o

processo de certificação de software crı́tico, e avaliar a maturidade de Rust para sistemas

embebidos. Assim, analisamos em que plataformas Rust está disponı́vel e comparamos

Rust embebido com outras linguagens utilizadas neste domı́nio. Esta análise consiste em

comparar as caracterı́sticas de segurança de Rust com as normas de codificação utilizadas

na indústria.

Alguns casos de estudo foram desenvolvidos, tais como schedulers preemptivos e cooper-

ativos (tanto em C como em Rust para perceber melhor quais as diferenças em programar

nestas linguagens), um driver para usar um acelerómetro e, por fim, um programa que faz

uso do scheduler, acelerómetro e leds presentes no microcontrolador, tendo uma thread a ler

valores de aceleração e outra thread a ligar ou desligar os leds de acordo com essas leituras.

A dissertação acaba com uma visão global dos resultados obtidos. Não é feito apenas

uma comparação com as normas de codificação usadas na indústria, como também uma

comparação dos casos de estudo desenvolvidos. Também exploramos algum trabalho im-

portante que pode ser desenvolvido no futuro, bem como alguns detalhes onde a linguagem

pode ser melhorada para poder fazer parte da indústria crı́tica.

Palavras-chave: Rust, Sistemas Crı́ticos, Sistemas Embebidos.
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1
I N T R O D U C T I O N

1.1 context

Software plays a major role in human life nowadays, as it is present in areas of activity as

diverse as entertainment, finance, health, military and transportation. The process of devel-

oping software varies across these fields: software produced for the entertainment industry

does not require the same precautions as the software produced for the transportation or

military industry. When software failures occur in health or transportation, they can lead to

loss of human life and loss of large amounts of money. In order to safeguard software users

from such unfortunate and severe outcomes, there must be a way to ensure that software is

fault-free.

safety critical software There are various definitions of safety-critical software.

The Institute of Electrical and Electronic Engineers (IEEE) defines it as follows:

”(...) software whose use in a system can result in unacceptable risk. Safety-critical soft-

ware includes software whose operation or failure to operate can lead to a hazardous state,

software intended to recover from hazardous states, and software intended to mitigate

the severity of an accident” [18].

In its Software Safety Standard [39], the National Aeronautics and Space Administration (NASA)

identifies safety critical software wherever one of the following criteria is met:

1. It resides in a safety-critical system (as determined by a hazard analysis) AND at least

one of the following apply:

• Causes or contributes to a hazard.

• Provides control or mitigation for hazards.

• Controls safety-critical functions.

• Processes safety-critical commands or data.

• Detects and reports, or takes corrective action, if the system reaches a specific

hazardous state.

1
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• Mitigates damage if a hazard occurs.

• Resides on the same system (processor) as safety-critical software.

2. It processes data or analyses trends that lead directly to safety decisions.

3. It provides full or partial verification or validation of safety-critical systems, including

hardware or software systems.

Safety-critical software must typically undergo some sort of certification before it can be

out into production. This typically requires a significant amount of testing and/or formal

validation.

Testing consists in executing the software with various input data and analysing the

results [38]. There are various approaches to testing, such as WhiteBox Testing where

the implementation/structure of the software is known to the tester, or BlackBox Testing

where testers do not know how the software is implemented, just its functionality. These

approaches are applied in Unit Testing, Integration Testing and System Testing. Testing

is an important part of software development, but cannot guarantee program correctness,

since it can only prove the occurrence of errors (vulg. bugs), never their absence. By contrast,

provable correctness can be achieved by use of so-called formal methods [6].

Formal Methods are mathematical approaches to software and system development which

support the rigorous specification, design and verification of computer systems [9]. These

can be applied to any part of the development cycle. When modelling an automated sys-

tem, a formal language such as e.g. Alloy [2] can be used to express and verify assumptions

and desired properties, to explore alternative designs, to clarify and validate the require-

ments, and so on. On the other hand, tools such as e.g. Frama-C [15] perform static analysis

of code. This analysis provides warnings of possible bugs, for example divisions by zero,

out-of-bounds array indexing and others dangerous constructs.

industrial context This dissertation is proposed by United Technologies Research Cen-

tre (UTRC) Ireland. It was founded in Cork in 2010, and it focuses on building energy,

security and aerospace systems. UTRC Ireland, the European hub of UTRC, is the central

research unit of United Technologies Corporation, the world’s largest supplier of aerospace

products.

The Cork office has approximately 80 employees, 63% of whom hold a Doctor of Philosophy

(PhD) degree from more than 20 countries worldwide [20]. The staff is divided in several

working groups, such as:

• Network and Embedded Systems.

• Formal Methods.

• Control and Decisions Support.
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• System Modelling and Optimisation.

• Power Electronics.

1.2 motivation and aims

As stated before, critical software must be fail-safe. Unfortunately, there are several obsta-

cles to achieve this. The formal methods approach has a steep learning curve for those

not having the required background in maths and logics. Moreover, there are also prob-

lems with the current state of critical software development such as the increase in lines

of code [44]. The Airbus A380 is estimated to rely on around 100 million lines of code,

compared to 20 million for the A330 [55]; the Boeing 787 has an eight to tenfold increase

in lines of code, and the trend is for this number to keep increasing [40]. In addition, these

systems are becoming more complex: while flight control surface interfaces were mostly

mechanic in 2003, in 2013 fly-by-wire software dominates, improving aircraft performance

and stability [40].

The majority of critical systems are of an embedded nature because of real time con-

straints, typical in aerospace industry. In this domain software is usually written in low-

level system languages such as C and Ada, which are efficient languages that can meet the

requirements of embedded systems. The C programming language [25] is the first choice

for real-time embedded systems applications, because it offers flexibility and portability

across a wide range of hardware. C is used for some specific reasons such as [3]:

• Available on most microprocessors.

• Good support for high-speed, low-level, input/output operations, essential in embed-

ded systems.

• Unlike many other high-level languages, it compiles to smaller and less RAM-intensive

assembly code.

Ada is frequently said to be a fail proof language but it is far from popular, being often

regarded as a difficult language with a slow learning curve. Meanwhile C is one of the

most used languages, being constantly on top of charts every year [33].

When C was designed, its creators intention was that C developers could do anything

they wanted. However, this resulted in a language without fail-safes, which can lead to

disastrous consequences. Some examples of unsafe behaviour are described below.

programming mistakes Programmers are human beings, so it is expected that they

will make mistakes, such as writing beyond the boundaries of an array or failing to catch

integer overflows. Unfortunately, C allows for typing mistakes that result in valid code,
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like typing an assignment instead of a logical comparison or a semi-colon typed on the

end of an if statement. Also, as C lacks automated memory management, the programmer

must know how to use malloc and free functions correctly, otherwise memory leaks and/or

corruption are likely to happen.

run-time errors C does not provide a good run-time error protection, since compil-

ers do not provide the detection of arithmetic exceptions, overflows, validity of pointers or

array bound errors.

lack of type safety C is a weakly typed language. The compiler tries to ensure

type correctness, but programmers can override it with explicit casts, converting a value or

pointer from one type to another.

compiler optimizations Although compiler optimizations can be turned off, they

can cause issues. Compilers are not obliged to generate code for undefined behaviours,

generating code with better performance, but assuming these behaviours won’t occur in-

creases the risk of software defects and vulnerabilities.

The Rust programming language [43] promises reliability and high performance. High

performance concerns not only the programs created, but also the speed of writing them.

It offers good reliability: a rich type system, an ownership model that guarantees memory

and thread safety, and a compiler capable of detecting many kinds of bugs. There is also a

rich, open documentation in the form of books, namely Rust By Example [41] and videos.

The option for Rust in this dissertation is motivated not only by the ambition to increase

safety and productivity, speed and ergonomics, but also due to the investment of Rust in

embedded systems, promising benefits such as:

• Powerful static analysis, preventing data races at compile time.

• Flexible memory management, with dynamic memory allocation being optional.

• Fearless concurrency, with the help of a number of abstractions and safety guarantees.

• Interoperability, to provide integration of Rust with C.

• Portability, with the help of embedded-Hardware Abstraction layer (HAL).

• Community Driven, i.e. supported by an open source community.

Rust offers the benefits of C and Ada, without the drawbacks of such languages. As

shown before, C requires extensive verification due to lack of safety of the language, and
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other languages such as Ada are more difficult to use but offer more safety (due to compile-

checks and the structure of the language itself). Rust on the other hand has the potential

to address these issues, by having a compiler capable of checking safety features that C

compilers do not, and at the same time being user friendly (when compared to Ada). In

short, Rust promises various safety features while also offering most capabilities of the

current trending and used programming languages.

dissertation aims The main objective of this dissertation is to investigate the safety

capabilities that Rust offers, to see if they comply with current industry standards for critical

software, and to check the possibility of running Rust on embedded systems. In the end,

we intend to understand if Rust is ready to be used in critical systems, and if not, to identify

what is missing.

1.3 dissertation structure

The remainder of this dissertation is organised as follows:

• Chapter 2 addresses the safety standards currently followed to guarantee that soft-

ware is safe, the languages used in critical systems, and provides an overview of the

Rust language and its current use in embedded systems.

• Chapter 3 covers the main objectives of the dissertation: to investigate potential ben-

efits of Rust for critical software by comparing Rust with coding guidelines used in

aerospace, and assessing the maturity of embedded Rust.

• Chapter 4 presents some case studies. These include scheduling algorithms developed

both in C and Rust, an accelerometer driver, and a program that makes use of a micro-

controller’s leds and accelerometer.

• Chapter 5 ends the dissertation by evaluating our response to the objectives proposed

in the third chapter, and also identifying possible tracks for future work.



2
S TAT E O F T H E A RT

2.1 do178-c and other safety standards

Software developed for safety-critical applications must be compliant with safety standards

to ensure it is indeed safe. DO178-C Software Considerations in Airborne Systems and Equip-

ment Certification [36] is the primary standard for airborne systems. Published on December

13th of 2011, it is approved by authorities such as the Federal Aviation Administration (FAA)

and European Aviation Safety Agency (EASA), and was recognised by the FAA on July 19th

of 2013 through the document AC 20-115-C [14]. It was preceded by DO178-B, which was

replaced to add guidance for parameter data items, clarify some definitions on key concepts

of requirements and other criteria. This standard provides recommendations for develop-

ing critical embedded software, describing ”what” shall be done and not ”how” it shall be

done [56].

DO178-C has five levels of criticality, Design Assurance Level (DAL), from A to E (level A

being the most rigorous). These levels are based on the contribution of software to potential

failure conditions, and for each level, there is a number of objectives to be accomplished.

DAL Failure Condition Number of Objectives

A Catastrophic 71

B Hazardous 69

C Major 62

D Minor 26

E No Effects 0

Table 2.1.: Number of objectives for each DAL

DO178-C Annex A table provides guidelines for applying these objectives by software

level. Table 2.2 contains the number of objectives per process.

6
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Table # Table Title Number of Objectives

A-1 Software planning process 7

A-2 Software development processes 7

A-3
Verification of outputs of

software requirements process
7

A-4
Verification of outputs of
software design process

13

A-5
Verification of outputs of

software coding and integration process
9

A-6
Testing of outputs

of integration process
5

A-7
Verification of verification

process results
9

A-8
Software configuration
management process

6

A-9 Software quality assurance process 5

A-10 Certification liaison process 3

Table 2.2.: Summary of DO178-C Annex A Tables

Alongside DO178-C, there were 4 other standards published to supplement it:

• DO-330 Software Tool Qualification Considerations.

• DO-331 Model-Based Development and Verification Supplement to DO-178C and DO-

278A.

• DO-332 Object-Oriented Technology and Related Techniques Supplement to DO-178C

and DO-278A.

• DO-333 Formal Methods Supplement to DO-178C and DO-278A.

DO-330 provides software tool qualification guidance. Tool qualification is the process used

to gain certification credit for a software tool whose output is not verified, when the tool

eliminates, reduces, or automates processes required by DO-178C [40]. The other three doc-

uments contain modifications to DO178-C if Model-Based Development and Verification,

Object-Oriented Technology or Formal Methods are used as part of software life cycle.

Alongside the safety standards, companies often use software coding guidelines for writ-

ing safety critical software. MISRA-C is a set of software development guidelines first

published in 1998 by Motor Industry Software Reliability Association (MISRA). The intention

is to provide a subset of a standardised structured language to promote the safest use pos-

sible of the language. While originally written for the automotive industry, it has now been
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adopted in a wide range industries and applications, including aerospace. It consists of

122 mandatory rules and 20 advisory [3], so we can understand that it implies an extensive

verification process.

There are other guidelines which comply with MISRA-C, for instance the guidelines

used by the Jet Propulsion Laboratory (JPL) [26]. These guidelines are aimed for critical flight

software, focused on embedded software. As an example, rule number 5 (equivalent to rule

20.4 of MISRA-C) states ”There shall be no use of dynamic memory allocation after task

initialisation”. Memory allocators often have unpredictable behaviour that can significantly

impact performance, and errors such as forgetting to free memory or using memory after

it has been freed can lead to problems. Another example rule is 6.3 ”Typedefs that indicate

the size and the signedness should be used in place of basic type.” [1]. This rule exists

because C compilers use different underlying types for basic types, resulting in different

programs with the same source code. As we will see in the next chapter, Rust can provide

some promising features to develop safety-critical software and potentially eliminate some

of the current standard rules for safety critical software development.

2.2 languages used in critical systems

There are few programming languages used in critical systems, C and Ada being the most

used nowadays [40]. FORTRAN and Pascal were used in the past, but today are mostly in

legacy code, or being ported to C [19]. We shall focus more on C and Ada because they

represent two different styles of programming in safety-critical, one being very permissive,

while the other too restrictive.

2.2.1 C

C, as stated before, is a programming language developed in 1972 by Dennis Ritchie. It

became on of the most popular programming languages after the UNIX operating system

kernel being written in C. Seeing that C is normally the most common language on critical-

safe systems, and because of the unsafe properties mentioned in the previous chapter, one

option is to use coding guidelines in order to meet the safety requirements of safety critical

software.

Since C has poor language support for safety, there is a need of using tools to support

its use in critical software, such as source code analysers, logic model extractors, metrics

tools, debuggers, test support tools, and a choice of mature, stable compilers [17]. There are

several tools for safety-critical C, such as Frama-C, Astrée and Polyspace, that are capable of

detecting divisions by zero, out-of-bounds array indexing, erroneous pointer manipulation.

In 2003, Astrée proved the absence of any runtime errors in 132000 lines of C code used
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on an Airbus model [52]. Unfortunately, these tools require knowledge on how to operate

them, and so the verification process can be a tedious one. Fortunately, some of these tools

are already compliant with DO178-C and MISRA-C.

2.2.2 Ada

Another software language present in critical-safe software is Ada. It was developed at

request of United States Department of Defense (DoD) and mandated by the DoD for several

years. As there were so many languages used in DoD projects, their ambition was to stan-

dardise one language to support embedded, real-time, and mission-critical applications. It

has been standardised through the International Standards Organization (ISO), American Na-

tional Standards Institute (ANSI), and International Electrical Commission (IEC). In 1997, as the

number of programming languages had declined, the DoD removed its mandate to use Ada

because the remaining languages were mature enough to be used in critical software [40].

Ada is acclaimed as a very safe programming language, with features like strong typing,

built-in support for design-by-contract, run-time checking, exception handling, packages,

scalar ranges, generic templates and high-level concurrency – features that were not used

in mainstream languages when Ada appeared. Outside of the safety-critical environment,

Ada is not used which caused its decline in popularity [32].

2.2.3 SPARK

SPARK is a formally defined software language based on Ada. It consists of a defined subset

of Ada, but an integral part of SPARK is its annotation language, forming an essential part

of the ”contractual” specifications of programs. Besides signatures, SPARK has additional

contractual elements like core annotations that allow a fast, polynomial time analysis of

SPARK source code to check for errors [8]. There are also proof annotations, which support

mathematical proof of properties of the source code. Image 2.1 presents the ”relationship”

of Ada and SPARK.
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Figure 2.1.: Relationship between Ada and SPARK [8]

SPARK programs are meant to be unambiguous, and the choice of Ada compiler must

not affect the behaviour of the program. SPARK also excludes some Ada constructs such as

pointers, dynamic memory allocation or recursion to make static analysis viable [45]. Some

major objectives on defining the language identified in its Language Reference Manual [8]

were:

• Logical soundness.

• Simplicity of formal language definition.

• Expressive power.

• Security.

• Verifiability.

• Bounded space and time requirements.

To verify SPARK code, there is GNATprove, a static analyser that aims to prove subpro-

grams by analysing each individually. It is based on Why3, a platform for deductive pro-

gram verification that relies on external theorem provers like cvc4, alt-ergo or z3 [7].

Although SPARK does not allow pointers, there is a subset of SPARK called µSPARK

which features pointers, records, loops and procedure calls. It uses a permission-based

static alias analysis method inspired by Rust’s borrow-checker [22]. SPARK has been used

in various safety-critical systems, most notably on the Vermont Technical College CubeSat

Laboratory [53].

While being regarded as safe, and alleviating verification processes, it is often said that

Ada is an unpopular language mainly due to the difficulty of writing Ada programs, with
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programmers often preferring to code in C and have an extensive verification process, than

coding in Ada with a small verification process.

Therefore, on one hand, we have C which gives freedom to the programmer, even with

the guidelines mentioned, but results in extensive verification processes. On the other, Ada

is a lot more restrict, which leads to less errors and less verification, but it is not a popular

language, neither outside or inside safety-critical software contexts.

2.3 rust

Rust shares some objectives with DoD requirements, with emphasis on safety and target-

ing embedded environments, with efficiency and real-time responsiveness [35]. That is a

good indicator for being used in safety-critical software. As noted before, standards and

guidelines have numerous objectives for safety-critical software languages to comply with,

such as memory management. The memory management of Rust, unlike C, is made with

a system of ownership and is verified by the compiler at compile time. This allows for less

verification, since the risk of memory errors such as freeing memory already freed (and

other cases of misuse of C) are protected against.

We will proceed to explain some of key features of the language responsible for safety.

2.3.1 Ownership

In order to achieve memory and thread safety without garbage collection, Rust uses an

ownership system that has three rules [49]:

• Every value has a variable called its owner;

• There can only be one owner at a time;

• When the owner goes out of scope, the value will be dropped.

In listing 2.1, every rule is presented while also showing invalid uses of the ownership

system. When a variable is assigned to another or when a function receives a variable as

a parameter, the ownership is transferred, and when the variable owner goes out of scope,

memory is automatically returned. One important thing to note is that types with a known

size at compile time, like integers or booleans, are copied (not moved), because they are

stored on the stack.
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{

let s1 = String::from("hello");

let s2 = s1; //s1 value is dropped here, s2 becomes the owner

let s3 = String::from("world");

println!("{}, world!", s1); //error

func(s2); //ownership is transferred to function func

println!("{}, world!", s2); //error again!

} //scope is over, s3 is no longer valid

Listing 2.1: Example of ownership

2.3.2 Borrowing

In order to share a variable without transferring ownership, Rust provides a mechanism

which allow us to use references called borrowing.

fn main() {

let s1 = String::from("hello");

let len = calculate_length(&s1); // immutable borrow of s1

println!("The length of '{}' is {}.", s1, len);

}

fn calculate_length(s: &String) -> usize { // s is a reference to a String

s.len()

} // Here, s goes out of scope. But because it does not have ownership of what

// it refers to, nothing happens.

Listing 2.2: Example of immutable borrow

There are two types of borrows, immutable and mutable. The previous example shows an

immutable borrow, meaning it would be illegal to change the string s1. Mutable borrows

can be defined as seen on listing 2.3.

We can have an unlimited number of immutable references or a single mutable reference,

and it is only valid to have one of the borrow types at the same time. This is how Rust can

prevent data races at compile time.
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fn main() {

let mut s = String::from("hello");

change(&mut s); //now it is allowed to change the string

}

fn change(some_string: &mut String) {

some_string.push_str(", world");

}

Listing 2.3: Example of mutable borrow

2.3.3 Lifetimes

Every reference has a lifetime, that is, the scope for which that reference is valid, applying

both to owned and borrowed variables. Its purpose is to prevent dangling references.

{

let r; // ---------+-- 'a

// |

{ // |

let x = 5; // -+-- 'b |

r = &x; // | |

} // -+ |

// |

println!("r: {}", r); // |

} // ---------+

Listing 2.4: Example of lifetimes with annotations

In this example, the code will not compile because the value r is referring to (x) has gone

out of scope before being used. The compiler compares the size of the two lifetimes (’a and

’b), and because ’b is shorter than ’a, r cannot refer to memory with a shorter lifetime.

{

let x = 5; // ----------+-- 'b

// |

let r = &x; // --+-- 'a |

// | |

println!("r: {}", r); // | |

// --+ |

} // ----------+

Listing 2.5: Example without dangling reference
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In listing 2.5, r can reference x because its lifetime is shorter than the lifetime of x. Most

times the compiler infers the lifetime, but with some data types (like structs) lifetimes must

be explicitly annotated by the programmer.

2.3.4 Rust Verification

Although Rust is a safe language, sometimes the developer needs to perform some unsafe

operations. Rust compiler is conservative, because if it cannot determine whether the code

upholds its guarantees, then the code is rejected. Because sometimes the programmer

needs to bypass this conservative analysis of the compiler, unsafe Rust exists. When the

unsafe keyword is used, the code inside a unsafe block is not verified by the compiler,

making it prone to memory safety errors such as null pointer dereferencing. These unsafe

features are needed in order to do low-level systems programming, like directly interacting

with the operating system. There are libraries that contain unsafe Rust code, which means

that programmers must take responsibility to uphold the guarantees normally guaranteed

by the compiler.

While it is expected for bugs occurring just when unsafe code is used, there have been

studies [57] showing the presence of bugs, like deadlocks and data races, on concurrent

programs with ”safe” code. This means the developers should always be cautious, because

the compiler isn’t 100% safe proof.

As previously stated, the presence of unsafe code means there is no protection from the

compiler on those code blocks. Furthermore, there is no tool provided by Rust capable of

features like model checking. As with other software programming languages, Rust has

already some software verification tools to address these issues.

smack SMACK is a software verification toolchain and a self-contained software veri-

fier that can be used to verify assertions in programs. SMACK translates LLVM IR code

into Boogie intermediate verification language, which is in turn verified using back-end

Boogie verifiers such as Corral [5]. Since rustc can produce LLVM IR code, small efforts

were needed for SMACK to support the verification of Rust programs, because LLVM IR

code patterns produced by the compiler of Rust and Clang compiler can be different. For

example, Rust compiler emits instructions to verify if integer operations perform overflow

through the use of LLVM arithmetic. By using SMACK, it is possible to check for integer

overflow. Image 2.2 shows the tool flow of SMACK.
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Figure 2.2.: SMACK tool flow [5]

There is still some work to do regarding this tool, namely modelling more standard

libraries, checking of unsafe pointers and concurrent programming.

rustbelt Since none of the safety features that Rust claims were formally proven, and

because some Rust standard libraries make use of unsafe blocks, the RustBelt project was

proposed. In this project, the first formal (and machine-checked) tools are presented, in

order to verify safe encapsulation of unsafe code [23]. The people behind this project

developed λRust, the formal version of Rust which is very close to the Mid-level Intermediate

Representation (MIR) of Rust, and RustBelt, a semantic model of λRust types in Iris.

The main result of RustBelt is the authors showing that for any inference rule of the type

system the resulting Iris theorem holds, which means that safe and unsafe code can be used

together (it is semantically well-typed), and a semantically well-typed program is memory

and thread safe, meaning it will never perform any invalid memory access and will not

have data races.

For future work, the authors intend to bring λRust closer to MIR, which should allow

them to reduce the number of primitive instructions.

k-rust K-Rust is the first formal executable semantics for Rust [24] [54]. It uses K, an

executable semantic framework which has been applied to programming languages such

as C and Java. This semantics covers all safe constructors and the totality of the Rust type

system, leaving only the unsafe constructors.

The workflow is to first type check a surface-rust program with the type system of K-Rust,

and if the program is correct, then it is translated to a core-language level to test its oper-

ational semantics. These were executed and compared with normal Rust executions, and

inconsistencies were found between the compiler and the ownership rules, namely allow-

ing a mutable and immutable borrow simultaneously, but applying a freezing mechanism

to prevent any data-race.

At time of publication, the authors aimed for providing automatic translation between

the surface-language and core-language, semantics for non-safe Rust constructors and to

prove refinement between K-Rust ownership system and existing abstract principles of the

ownership system [24].
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other projects There were being developed projects for more Rust verification tools,

but as of today, there have not been updates to keep up with the updates of the language

itself.

CRUST was a bounded verifier, designed for detecting memory safety errors and aliasing

invariant violations in unsafe Rust code. CRUST translates Rust to C code, and then uses

CBMC, a well known C bounded model checker, which uses an internal SAT solver to

determine what properties hold. The goal of CRUST was to find memory-safety bugs in a

library, if any exists [51].

Klee-Rust was another project that utilises Rust compiler feature of producing LLVM IR

code, because KLEE is a tool for symbolic execution operating on the LLVM IR of an input

program. Its aim was to statically ensure memory safety and panic-free execution of code,

to avoid downgrading the performance of the program and panicking [30].

2.3.5 Embedded Rust

Rust is a promising language to be used in embedded systems, because of the safety fea-

tures without sacrificing what current languages offer. Moreover, its linear type system

allows capabilities which cannot be implemented efficiently on the current languages, and

improve security and reliability of system software [4]. The most stable embedded architec-

tures Rust targets at the moment are the ARM Cortex-M, MIPS and RISC-V [48].

Since it is a recent language, Rust is not present in embedded systems like C or Ada

are, but there are already some projects using Rust. Tock [50] is an embedded operat-

ing system designed for running multiple concurrent, mutually distrustful applications

on Cortex-M based embedded platforms. Tock isolates software flaws, provides memory

protection, and efficiently manages memory for dynamic application workloads written in

any language [28]. Furthermore, the authors claim that using a type-safe language with-

out garbage collector prevents what would be some of the largest sections of trusted code

base [29], meaning a language like Rust can reduce its amount. A smaller trusted code base

results in reduced susceptibility for the system to be compromised.

Sensirion, Airborne Engineering, 49 Nord and Terminal Technologies are companies al-

ready using Rust in embedded systems, in a variety of embedded products such as an

embedded demonstrator for a particulate matter sensor, an Ethernet bootloader or contact-

less payment terminals [11].

2.4 other possible languages

There are other programming languages rising up in popularity, and with safety features

by design, which can also be a good option for future critical software.
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d The D programming language is a multi-paradigm language designed to attempt to

combine performance and safety of compiled languages with the expressiveness of dynamic

languages. It has a garbage collector to manage memory, but it can be controlled by the

programmer. Moreover, it possess a safe subset named SafeD, which guarantees no writes

to memory that were not allocated.

go Golang is a language designed at Google, syntactically close to C, but with memory

safety, garbage collection, strong static typing and rich support for concurrency. One of its

strong points is the GCC front end. Although it has garbage collection, it could be used in

an embedded environment where that would not be a restriction.

haskell Haskell is a purely functional programming language with lazy evaluation. It

has inspired several programming languages, including Rust. While recursive functions

are forbidden by coding guidelines for critical software, the functional features of Haskell

alongside its type system allow you to write safe software.

2.5 summary

There are safety standards that safety-critical software must comply with, like the DO178-

C in aerospace industry, and several coding guidelines, like the MISRA-C, help software

developers in writing code compliant with the safety standards.

The most used language on this environment is mostly C, with some code still being

developed in Ada. C is the most popular language, with more documentation and users,

but it is very unsafe so it must be written in accordance with safety guidelines. Moreover,

it requires an extensive verification process to ensure it is written without errors. Ada is

a much more verbose and restrictive language than C, resulting in programmers disliking

it, but it does guarantee more reliability and eliminates some of the process of verification

which is required by using C on safety-critical software.

Rust is a promising language, since it offers the best of both worlds: popularity and writ-

ing similar to C, and safety of Ada. The concepts of Ownership, Borrowing and Lifetimes

give some potential safety features guaranteed by the design of the programming language.

The ability of the compiler to detect bugs can help programming safer software in these

industries. Rust is already being used in embedded systems, but it is still a very recent

language compared with the established ones in the aerospace industry, where its presence

has not been observed.
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P O T E N T I A L F O R R U S T I N C R I T I C A L E M B E D D E D

The main research question addressed by this dissertation is whether Rust — a recent,

promising programming language that is much loved by programmers [46] — can replace C

as the primary language in critical embedded systems. Secondly, we wish to identify what

is necessary to change, either in the language or in the embedded systems environment, for

it to be effectively used in this context.

The strategy envisioned to provide answers to such questions is two-fold:

• Objective 1 – Investigate in what measure Rust ensures software verification and

meets the demands of current standards used in the safety-critical software industry.

• Objective 2 – Assess the maturity of Rust for embedded systems (namely with respect

to which processors it is available for) and compare the language with others currently

used in embedded systems.

In this chapter we shall analyse Rust features and how they relate to current software

standards, compare Rust with Ada/SPARK in terms of safety features and with C in terms

of performance, and finally evaluate the Rust maturity for embedded systems.

3.1 rust and safety

As mentioned in chapter 2, the design of the Rust language is essential to build reliable

code. Rust features such as the strong type system, ownership and lifetimes prevents data

races and dangling references, ensuring memory safety. Also, the verification tools allow

to verify user assertions in programs and use Rust libraries formally verified. Nonetheless,

safety-critical software must comply with safety standards.

3.1.1 Current Software Standards

There is an extensive verification of critical-safe software in order to achieve code compliant

with, for example, MISRA-C. The objective of these coding guidelines is to eliminate any

18
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undefined behaviour on software. Rust has the potential to ease up this process, because of

its safety features that prevent undefined behaviour. We investigated some rules of MISRA-

C, first some used by JPL, since they are aimed at the development of mission critical flight

software, and then other rules that we understand that can be handled in some way by

Rust. In the end, we identified why the rules exist and how Rust obviates them.

rule 1 .5 This rule states ”Floating-point implementations should comply with a de-

fined floating-point standard”. There have been several incidents related with floating-point

arithmetic, and some of these problems are solved by using an appropriate standard, such

as the IEEE-754.

The floating-point types (32 and 64 bits) used in Rust are represented according to the

IEEE-754.

rule 2 .3 This rule states ”The character sequence /* shall not be used within a com-

ment”. C language itself does not support nested comments because of the syntax.

int i = 3, j = 6;

/* printf("debug: i=%d\n", i); /* check the value of i */

printf("debug: j=%d\n", j); // check the value of j */

Listing 3.1: C example of nested comments

As the example shows, the second printf would actually be executed. Rust language sup-

ports nested block comments, meaning an equivalent program would only do the variable

assignments.

rule 9 .1 This rule states ”All automatic variables shall have been assigned a value

before being used”. Although in ISO C, uninitialised variables are automatically initialised

to zero by default, many embedded environments do not implement this behaviour, which

can lead to undefined behaviour.

In Rust, it is impossible to use a variable not initialised, as the compiler forbids this

behaviour.

rule 12 .2 This rule states ”The value of an expression shall be the same under any

order of evaluation that the standard permits”. This means code such as the one presented

on listing 3.2 is forbidden.

These operations are forbidden because of the potential of side effects, since the order

in which the expressions may be evaluated can vary. In Rust, every assignment returns (),

also called as Unit Type, which means this type of behaviour is not allowed by design of
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x = b[i] + i++;

/* Code with potential side effects. Should be written as:

x = b[i] + i;

i++; */

a = func( i++, i ); /*Another use of increment operators with potential side

effects*/

Listing 3.2: C examples of increment operators

the language. Moreover, operators such as ++ do not exist in Rust for the same reason, as

they often lead to bugs and undefined behaviour.

rule 12 .9 This rule states ”The unary minus operator shall not be applied to an expres-

sion whose underlying type is unsigned”. In C it is possible to apply the minus operator

to a unsigned variable. For example:

int main()

{

unsigned int x = 2;

printf("%u", -x); //Prints UINT_MAX - 1 = 4294967294

return 0;

}

Listing 3.3: C example of assigning minus operator to unsigned integer

As we can see, this is a software practice which can lead to unexpected behaviours since a

developer may expect the value of -x to be -2 (e.g. forgetting the variable is unsigned).

In Rust, this type of behaviour is forbidden by the compiler.

rule 13 .1 This rule states ”Assignment operators shall not be used in expressions that

yield a Boolean value”. Due to being easy to type ’=’ instead of ’==’, sometimes the code

is syntactically valid, but the software behaviour is different than expected. Unfortunately,

mistakes such as this one can be very common, since the C language allows for this types

of assignments.

As previously mentioned, assignments in Rust return a Unit type, meaning the com-

piler does not allow this type of behaviour, even suggesting to change the assignment to a

comparison as shown on listing 3.4.
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error[E0308]: mismatched types

--> src\main.rs:4:8

| let x = 1;

|

4 | if x = 2 {

| ^^^^^

| |

| expected bool, found ()

| help: try comparing for equality: `x == 2`

Listing 3.4: Compiler error on if assignment

rule 14 .1 This rule states ”There shall be no unreachable code”. The example given on

MISRA-C is the following:

switch (event)

{

case E_wakeup:

do_wakeup();

break; /* unconditional control transfer */

do_more(); /* Not compliant - unreachable code */

/* ... */

default:

/* ... */

break;

}

Listing 3.5: C example of unreachable code

Unreachable code is undesired because it leads to unnecessary memory overheads and

caching cycles, as well as code that can be unnecessarily maintained as it is never executed.

Although the Rust compiler cannot catch all types of unreachable code, it does warn for

cases such as the one present on listing 3.5.

Moreover, there is a utility macro for unreachable code on the core library. It is intended

to be used whenever the compiler cannot determine if some code is unreachable, like in

match arms with guard conditions, or loops/iterators that dynamically terminate. In the

case that the unreachable code is actually reachable, the unreachable macro invokes a panic,

with the behaviour defined by the developers in the panic handler function.

rule 14 .4 This rule states ”The goto statement shall not be used”. In 1962, Edsger

Dijkstra explained why goto was consider harmful, as it lead to unstructured code, and

adivsed for the statement to be abolished from all ”high level” programming languages[12].

Rust, like other modern languages, does not support this type of statements.
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rule 14 .8 This rule states ”The statement forming the body of a switch, while, do . . .

while or for statement shall be a compound statement”. The reason for this is due to fact

that the code can be misleading and lead to unexpected behaviour, as seen in the following

example.

for (i = 0; i < N_ELEMENTS; ++i)

{

buffer[i] = 0; /* Even a single statement must be in braces */

}

while ( new_data_available )

process_data (); /* Incorrectly not enclosed in braces */

service_watchdog (); /* Added later but, despite the appearance

(from the indent) it is actually not part of

the body of the while statement, and is

executed only after the loop has terminated */

Listing 3.6: C example of layout for compound statements

In Rust it is obligatory for the code to be enclosed within braces in loop constructs,

therefore avoiding this type of mistakes.

rule 14 .9 This rule states ”An if (expression) construct shall be followed by a compound

statement. The else keyword shall be followed by either a compound statement, or another if

statement”. This rule uses the same reasoning as the previous rule, preventing unexpected

behaviour. Moreover, in Rust it is obligatory for the code to be enclosed within braces in if

constructs.

rules 15 This set of rules specifies how switch cases shall be used, even having a spe-

cific MISRA-C syntax. The issue with the switch statement is that it allows complex and

unstructured behaviour. We think that the Rust Pattern syntax can eliminate part of this set

of rules, like:

• An unconditional break statement shall terminate every non-empty switch clause;

• The final clause of a switch statement shall be the default clause;

• Every switch statement shall have at least one case clause;

Regarding the break statement, there is no need of its use in Pattern Match of Rust, as every

match arm is separated by a comma. In terms of the default clause, while it is defensive

programming, Rust compiler will warn for non-exhaustive patterns, and if a match arm is

left without any code, the compiler will issue an error, expecting expression. Coding the C

example on MISRA-C guidelines to Rust, we confirmed these compiler errors:
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match i {

let x; /*expected pattern, not variable assignment*/

0 => a=b,

1 => , /*expected expression*/

2 => {

a = c;

if a == b {

3 => println!("Error"); /*The compiler doesn't allow the => to

be used here*/

};

},

4 => a=b,

5 => a=c,

_ => errorflag = 1,

};

Listing 3.7: Rust version of switch example on MISRA-C guidelines

There is also another rule stating the switch expression shall not represent a boolean value.

Rust Match pattern evaluates the type of the value, so in case it is coded a boolean value,

the only accepted patterns are True and False.

rule 16 .10 This rule states ”If a function returns error information, then that error

information shall be tested”. This is because C does not enforce using the return value of a

function, and the return value may provide information on the occurrence of an error. The

Enum Result is a more robust and simple mechanism to handle the occurrence of errors,

opposed to C where an error must be coded with a special flag. The Result type contains

two variants, Ok(T) represents success and contains a value, Err(E) represents an error and

contains an error value. This rule is still required in Rust but if the Enum Result is used,

Rust compiler issues a warning when a Result value is ignored.

warning: unused `std::result::Result` that must be used

--> src\main.rs:8:1

|

8 | file.write_all(b"important message");

| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

|

= note: #[warn(unused_must_use)] on by default

= note: this `Result` may be an `Err` variant, which should be handled

Listing 3.8: Compiler warning if Result value is ignored
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rule 21 .1 This rule states ”Minimisation of run-time failures shall be ensured by the use

of at least one of (a) static analysis tools/techniques; (b) dynamic analysis tools/techniques;

(c) explicit coding of checks to handle run-time faults”. While there are few verification

tools for Rust, this rule also gives some guidance on dynamic checks that Rust can handle:

• Pointer Dereferencing: Due to Rust ownership system, all dereferences are always valid

at compile time. Another important feature is the absence of NULL in Rust, having

instead the Enum Option that encodes the concept of a value being present or absent.

• Arithmetic Errors: While compiling in debug mode, Rust includes checks for integer

overflow, and if it occurs, the program will panic (exit with an error);

• Divisions by zero: Once again, the Option Enum of Rust can be an answer to this

problem, returning values when the division is possible and returning None when

the quotient is zero. Nonetheless, verification for division by zero is still required;

• Array bound Errors: In Rust, when trying to access a position outside the bounds of

the array, the program will panic;

We summarise this rules in table 3.1:

Misra
Rule

Satisfied
Partially
Satisfied

1.5 ✓

2.3 ✓

9.1 ✓

12.2 ✓

12.9 ✓

13.1 ✓

14.1 ✓

14.4 ✓

14.8 ✓

14.9 ✓

15 ✓

16.10 ✓

21.1 ✓

Total Rules 9 4

Table 3.1.: Summary of evaluation of Rust on MISRA-C Rules

It is important to note that although the features of Rust eliminate some of the rules on

software standards, the certification process usually involves using coding guidelines in

order to be compliant with DO178-C, and if it is not possible to completely eliminate these

guidelines, then there must exist alternative guidelines for Rust or, for example, using
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formal methods. Another important information is that automatic analysis of Rust code

must be validated by the certification authority, that is, must be target of a Tool Qualification

process.

3.1.2 Comparison with other safety-critical languages

spark Comparing Rust with SPARK regarding safety features, there are some present

in both languages [21] :

• No-aliasing: Both languages prevent harmful aliasing in the source code;

• Lifetime check: Rust compiler borrow-checker ensures lifetimes, whereas it is a separate

analysis of GNAT compiler;

• Automatic reclamation: In Rust this is handled by the borrow checker, and in Ada it is

handled with pools;

• Initialisation checking: Initialisations are checked by the borrow-checker, and SPARK

does it with flow analysis, catching some uninitialised variable usage;

• Nullity checking: There are no NULL pointers in Rust (excluding unsafe code), while

in SPARK they must be checked by static analysis tools.

c After noticing how Rust safety features exceed those of C by analysing the MISRA

guidelines, we also need to compare Rust with C, but in terms of performance, one of the

main objectives for being used in critical systems. In two projects, one where Rust is used

to build network drivers(Ixy) [13] and other where it is used on developing a kernel [31],

there were tests comparing the performance of Rust and C.

In Ixy, the developers compared the Rust implementation with a C implementation. In

terms of throughput, the benchmark showed the relative difference between these imple-

mentations varying from the C version being one-eight faster than the Rust version, to a

negligible performance difference. In the safe kernel project, no losses of performance were

registered, with similar results being obtained. But it is important to note that if a different

device driver were to be used, that could result in different performance results.

A common point of both of these investigations is that Rust provides memory safety, and

even if some unsafe code is used, it is always safer than the full unsafe C code.
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3.2 embedded rust maturity

One important aspect is to assess in what platforms Rust is available in the present. Cur-

rently, the Rust embedded working group [42] is divided in teams, developing and main-

taining the core crates (libraries), tools and resources in the embedded ecosystem.

Rust is currently available for the ARM Cortex-M, Cortex-A and Cortex-R, with the last

two being in a early state. The Cortex-A crate currently only provides safe wrappers around

assembly instructions, and the Cortex-R crate is being worked on, aiming for a safe API to

emit architecture specific instructions and to manipulate system registers. The Cortex-M

architecture is the most stable, with the crate providing access to core peripherals (e.g. NVIC,

SysTick), access to core registers (e.g. MSP, PSR), interrupt manipulation mechanisms and

safe wrappers around Cortex-M specific instructions (e.g. bkpt). Rust is also available on

RISC-V, with its crate providing access to core registers such as mstatus or mcause, interrupt

manipulation mechanisms and wrappers around assembly instructions like WFI. Lastly, it

is available in the MIPS CPU architecture, with its crate providing abstractions for virtual

and physical addresses, MIPS specific instructions, control the interrupt processing and

paging virtual address management.

Alongside crates for the architectures referred previously, there are also crates for specific

boards, with the more popular ones being the STM32F3 Discovery, the Stellaris Launchpad

and the Micro Bit (regarding downloads on crates.io). There are several crates for peripheral

access API for a number of boards, like for most STM32 microcontrollers, Texas Instruments

TM4C123x and TM4C129x microcontrollers, and various others. Most of these crates are

generated using svd2rust, which generates Rust register maps from SVD files. There is also

the embedded-HAL, which aims to build abstractions (traits) for all the embedded I/O

functionality commonly found on microcontrollers. Some of the defined traits in the HAL

are the input and output pins (GPIO), serial communication and timers/countdowns.

Several driver crates, agnostic to platform, have been released with documentation. These

use the embedded-hal interface to support all the devices which implement the traits. There

are currently over 20 drivers with released status, and more than 60 with work in progress

status.

There are also no-std crates, designed to run on resource constrained devices by not using

the Rust standard library. Currently there are over 800 embedded crates on crates.io. Table

3.2 summarises the information of embedded Rust.
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Supported
Architectures

ARM Cortex-M, Cortex-A and Cortex-R
RISC-V
MIPS

Supported
Boards

Several from STMicroeletronics,
Texas Instruments,

Nordic,
Adafruit

Number of
Hardware Drivers

20+

Number of
Work in Progress Drivers

60+

Number of
no-std crates

800+

Table 3.2.: Aspects of Embedded Rust Maturity

Another important aspect of the Rust language is the crate system. In C there is no

standard package manager, and when projects are big, complex, with a significant number

of files, inappropriately handling includes results in:

• Bigger compilation times.

• Increase in complexity.

• Increased difficulty in restructuring programs.

• Often importing unnecessary functions.

• Difficulty in managing versions of libraries.

In Rust, there is a tool named Cargo, capable of downloading dependencies of a package,

compiling them, updating (with option to just update a desired package), and also invoking

the compiler or other build tool. The website crates.io is the crate registry from the commu-

nity, and cargo is configured to use it by default, although allowing to use crates from

other websites (e.g. GitHub) is possible. Every project has a manifest file where the user can

specify which dependencies the project will use, as well as which version. Comparing with

C, this means dependencies are much easier to deal with. It also uses conventions for file

placement in order to better structure the project.

Another feature available on Rust is testing. In case of testing for embedded, there are

different approaches available:

• Testing the drivers without accessing real hardware (using crates like embedded-hal-

mocking)
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• User and System testing inside an emulator (QEMU for example)

• Testing on bare metal with the help of crates such as µtest

Unfortunately, there is not a big support for testing in Rust as there is in C, where there

exist several testing tools specific for critical industries like aerospace, which can guarantee

code compliant with DO-178C. Moreover, testing inside an emulator such as QEMU is only

available for Cortex-M processors without FPU.

3.3 summary

There exist coding guidelines for C like MISRA-C and its objective is to avoid writing code

that leads to undefined behaviour. Since Rust provides safety in its type system and own-

ership model, along with the compiler’s borrow checker, we consider some guidelines can

be eliminated because Rust simply does not allow those coding practices. By analysing

MISRA-C rules, we identified 9 rules that can be eliminated by using Rust. It is also im-

portant to refer that unsafe code does allow some undefined behaviours, meaning that

guidelines for unsafe Rust will probably be necessary.

Comparing Rust with the other languages used in aerospace critical systems, we found

some similarities that Rust shares with these languages. Safety wise, Rust and Spark share

features such as initialisation checking or nullity checking. Comparing with C in terms of

performance, we found out that similar results were achieved for both implementations.

In terms of maturity on the embedded environment, Rust is still at a fairly early state,

but has a community focused on implementing several HAL, drivers, and board support

crates.
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C A S E S T U D I E S

After a better understanding of how Rust can be influential in the critical software industry

and assessing its maturity for embedded systems, some case studies on Rust embedded

code were carried out to further continue this evaluation of programming languages for

critical systems.

The chosen platform is the STM32F407G-DISC1 micro-controller with ARM Cortex-M4 32

bit core with floating point unit, 1 Mbyte of flash memory and 192 Kbyte of RAM. It in-

cludes an ST-LINK/V2-A embedded debug tool, four user leds, push buttons, accelerometer

and a Digital to Analogue Converter (DAC).

The implementations consist of different schedulers of a Real Time Operating System

(RTOS), specifically preemptive and cooperative. A RTOS differs from a regular operating

system because a regular operating system usually provides non-deterministic responses,

which means there are no guarantees when each task is going to be completed. RTOS are

used in critical embedded systems because of its deterministic execution pattern, allowing

to meet real time requirements.

To better understand Rust capabilities in embedded software, we implemented first the

schedulers in C and then in Rust. This allows us to verify differences in the software

development process. Moreover, we implemented a driver for the accelerometer, and a

program in Rust which makes use of the accelerometer, user leds on the STM32F407G-

DISC1, and the preemptive scheduler previously developed.

4.1 preemptive scheduler

A preemptive scheduler is a type of scheduler where the operating system chooses when

to interrupt a thread from running and start a different one running. This may happen

because the thread has used all of the time given by the CPU, or when a thread with higher

priority has entered a ready state. Preemption is often needed to guarantee fairness, and

helps guaranteeing that deadlines are met, a characteristic of any (hard) real time software

system. Some algorithms which are based on preemptive scheduling are the Round Robin

and the Shortest Remaining Time.

29
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Figure 4.1 illustrates the Round Robin algorithm.

Thread Arrival Time Burst Time Turnaround Time

A 0 5 14

B 1 3 5

C 2 8 20

D 3 6 17

Figure 4.1.: Example of preemptive scheduling

In this example, every thread has the same priority and 3 units of time to execute (quanta).

When the time slice runs out, the operating system puts the thread in waiting state and gives

the CPU to the next thread.

4.1.1 C implementation

The first implementation is a preemptive scheduler in C. We first start by defining a Thread

Control Block (TCB) structure with two elements: a pointer to the thread stack and a pointer

to the next element on the list. The last element has a pointer to the first element, thus

making it a circular linked list. There is also a variable indicating which current thread is

running and an array that represents the stack of each thread.

The kernel initialisation starts by defining the value of millis prescaler with the bus fre-

quency value divided by 1000 in order to have the quanta time in milliseconds. Then occurs

the addition of threads, that consists on defining which TCB is the next, initialising the stack

of each thread and assigning a value to the current thread variable. Finally, the kernel is

launched when the SysTick is initialised. Launching the scheduler consists in determining

which thread is the first and assigning the stack pointer to the first thread stack pointer.

The Systick is triggered at a fixed rate, the quanta. When an interrupt occurs, the Systick

Handler will perform the preemptive thread switch by saving the content of registers and

then switching the stack pointer to the next threads stack pointer.
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#define NUM_OF_THREADS 3

#define STACKSIZE 100

struct tcb{

int32_t *stackPt;

struct tcb *nextPt;

};

typedef struct tcb tcbType;

tcbType tcbs[NUM_OF_THREADS];

const tcbType *currentPt;

int32_t TCB_STACK[NUM_OF_THREADS][STACKSIZE];

Listing 4.1: Structure of the Thread Control Block

It is important to note that in Cortex M4 processors, the registers R0 to R3, R12, LR,

PC and PSR are automatically saved, which means we are saving the registers R4 to R11

manually in the Systick Handler.

SysTick_Handler

CPSID I

PUSH {R4-R11}

LDR R0, =currentPt ; r0 points to currentPt

LDR R1, [R0] ; r1 = currentPt

STR SP, [R1]

LDR R1, [R1,#4] ; r1 = currentPt->next

STR R1, [R0] ; currentPt = r1

LDR SP, [R1] ; SP = currentPt->stackPt

POP {R4-R11}

CPSIE I

BX LR

Listing 4.2: SysTick Handler perfoming the context switching

The main file is a simple program with 3 functions representing the desired threads,

where each of these threads increments one global variable.

Running the scheduler and inspecting the counter variables values, we observe the ex-

pected behaviour: the variables are incremented at a similar rate.
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uint32_t count0,count1,count2;

void Task0(void){

while(1){

count0+= 1;

}

}

void Task1(void){

while(1){

count1+= 1;

}

}

void Task2(void){

while(1){

count2+= 1;

}

}

int main (void){

osKernelInit();

osKernelAddThreads(&Task0,&Task1,&Task2);

osKernelLaunch(QUANTA);

}

Listing 4.3: Preemptive scheduler main file
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4.1.2 Rust Implementation

The Rust implementation starts by identifying in which aspects this version would differ

from the C one. For starters, circular linked lists in Rust are known for being problematic

to implement because of the ownership system rules (if each variable can only have one

owner, in a linked list every node owns the next one). As most implementations make use

of pointers, and heap allocation in critical systems are forbidden, we implemented the TCB

as a struct that has the same behaviour as the linked list.

This struct contains an array of Tasks (instead of a linked list) and a variable which

indicates the current index of the task running, current task. When we switch threads, we

compare the number of the current task with current task, and if it is equal to the total

number of tasks, we update it to the first index of the array, thus obtaining the circular

behaviour without breaking the ownership rules.

pub struct Task {

stack_pointer : *mut usize,

states: [usize; 8], //Number of registers

}

pub struct TaskCB {

current_task : usize,

tasks : [Task; TASK_NUM],// TASK_NUM = 3

}

fn update_to_next_task(&mut self) {

self.current_task += 1;

if self.current_task == TASK_NUM {

self.current_task = 0;

}

}

Listing 4.4: Task and TCB structures

The function switch to task is responsible for saving the registers R4 to R11, what was also

done in the C implementation. This function also triggers a service call interrupt. Then,

the SVC handler function performs the switch, and the execution returns to switch to task,

restoring the registers.

The asm! macro is how we use inline assembly in Rust. The first parameter is a literal

string containing the instructions. The following parameters are output operands, input
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pub unsafe extern "C" fn switch_to_task(

mut user_stack: *mut usize,

process_regs: &mut [usize; 8],

) -> *mut usize {

asm!("

msr psp, $0

ldmia $2, {r4-r11}

svc 0xff

stmia $2, {r4-r11}

mrs $0, PSP

"

: "={r0}"(user_stack)

: "{r0}"(user_stack), "{r1}"(process_regs)

: "r4","r5","r6","r7","r8","r9","r10","r11" : "volatile" );

user_stack

}

Listing 4.5: Function that executes the context switching

operands, clobbers and options, all of them optional. This macro is only present in the

nightly compiler and not yet stabilised.

Similarly to the C implementation, the actual program is 3 functions representing threads,

each one incrementing a global variable. Note that in Rust, global mutable variables require

unsafe blocks to perform actions. In our case, we are sure that these variables are only being

mutated in each thread, but because the ownership rules ensures absence of data races and

having multiple threads accessing these variables would likely result in data races, we have

to use unsafe in our code.

Running the scheduler, the values printed are the ones expected, replicating the be-

haviour of the C preemptive scheduler.

difficulties encountered One objective of these implementations was to try to

write similar programs in C and Rust, with code and behaviour as close as possible.

As mentioned before, the circular linked list became an obstacle but quickly overtaken

with the solution found. Also, if we tried to write Rust as C, we would end up with a lot

of unsafe code, ignoring one of the strongest points in using Rust. Although we use static

mut as global variables and enforced the use of unsafe, we could have instead used Mutex,

a synchronisation primitive which ensures exclusive access to a variable.
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static mut COUNT0 : usize = 0;

static mut COUNT1 : usize = 0;

static mut COUNT2 : usize = 0;

fn main() -> ! { // The exclamation point represents that the function never returns

let mut cp = Peripherals::take().unwrap();

let mut tcb = TaskCB::new();

let mut process_task0 = unsafe {

Task::new(TASK_STACKS[0].last_mut().unwrap() as *mut usize, task0)

};

(...)

tcb.add_task(process_task2,2);

systick::systick_start(&mut cp.SYST);

loop {

unsafe {

hprintln!("c0: {} c1: {} c2: {}",COUNT0,COUNT1,COUNT2).unwrap();

}

tcb.scheduling();

}

}

fn task0() -> ! {

loop{

unsafe {

COUNT0+=1;

}

}

}

(...)

Listing 4.6: Excerpt from the preemptive scheduler main file
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4.2 cooperative scheduler

Cooperative scheduling is a style in which the operative system does not initiate the context

switching from one thread to another, instead letting the threads yield control of the proces-

sor, giving it to the next thread. Some algorithms that are based on cooperative scheduling

are the First Come First Serve and the Shortest Job Next.

Figure 4.2 illustrates the First Come First Serve algorithm.

Thread Arrival Time Burst Time Turnaround Time

A 0 5 5

B 1 3 8

C 2 8 16

D 3 6 22

Figure 4.2.: Example of cooperative scheduling

In this example, the threads execute on the order of arrival, independent of the time. The

operating system will always wait until the thread completes its execution, then allowing

the next thread to execute.

4.2.1 C implementation

To build a cooperative scheduler we add a function called osThreadYield. This function

writes directly a value into the interrupt control register, triggering the Systick and when

an interrupt request is made to Systick, the scheduler chooses the next thread. With it,

every thread can simply run this function after their task is done and giving the cpu to the

following thread.

Every other aspect of the kernel is maintained (initialisation of kernel, threads and launch-

ing the scheduler), so the preemptive scheduler turns into a cooperative when every thread

calls the yielding function.
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#define INTCTRL (*((volatile uint32_t *)0xE000ED04))

void osThreadYield(void) {

INTCTRL = 0x04000000;

}

Listing 4.7: Function responsible for yielding the control of the CPU

void Task0(void){

while(1){

count0+= 1;

osThreadYield();

}

}

void Task1(void){

while(1){

count1+= 1;

osThreadYield();

}

}

Listing 4.8: Excerpt of cooperative scheduler main file

Running this scheduler and inspecting the counter variables values, we observe the ex-

pected behaviour: the variables are incremented at the same rate, only performing one

variable increment before yielding the processor.

4.2.2 Rust Implementation

As with the C implementation, in Rust we also build a function that writes directly into the

interrupt control register, while using the rest of the preemptive scheduler code.

Because we only know the address of the register, and it is not mapped in any peripheral

access crate, we use the write volatile function to directly write into the register.

unsafe fn os_thread_yield() {

ptr::write_volatile(0xE000ED04 as *mut usize, 0x04000000);

}

Listing 4.9: Function responsible for yielding the control of the CPU

Likewise in C implementation, in Rust the only alteration to the code is adding the

function on every thread.
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fn task0() -> ! {

loop{

unsafe {

COUNT0+=1;

os_thread_yield();

}

}

}

Listing 4.10: Excerpt of cooperative scheduler main file

Running this scheduler, the values printed are the ones expected, replicating the be-

haviour of the C cooperative scheduler.

4.3 accelerometer driver

We built a platform agnostic driver to interface with the LIS3DSH, the accelerometer avail-

able in the STM32F4 Discovery. The LIS3DSH is an ultra-low power high-performance

3-axis linear accelerometer, capable of measuring accelerations with output data rates from

3.125Hz to 1.6 kHz and allows for user-selectable full scales of ±2g/±4g/±6g/±8g/±16g. It

provides both I2C and Serial Peripheral Interface (SPI), although it only uses SPI to communi-

cate with our platform. The implementation uses the embedded-hal interface to support all

the devices that implement embedded-hal traits. The accelerometer measures proper acceler-

ation, that is, the physical acceleration experienced by an object.

Figure 4.3.: Direction of detectable accelerations

The SPI allows half/full-duplex, synchronous serial communication with external devices

interface. It uses the master-slave architecture. In our case study, the micro-controller is the

master, with the accelerometer being the slave.



4.3. Accelerometer Driver 39

Several functions are written to interact with the accelerometer, with the core ones being

the functions responsible for writing and reading registers, and the function responsible for

returning the acceleration values.

The write register function receives as parameters the desired Register and the byte of

information to write. The process starts by setting the slave select to low in order to activate

the slave device. Then, the information is configured and written into the register. Finally,

the slave pin is set as high, deactivating the slave device. As everything went as expected,

an Ok() is returned.

fn write_register(&mut self, reg : Register, byte: u8) -> Result<(), E> {

self.cs.set_low();

let buffer = [reg.addr() | SINGLE | WRITE , byte];

self.spi.write(&buffer)?;

self.cs.set_high();

Ok(())

}

Listing 4.11: Function to write bytes on a register

The read register receives as parameter the desired Register to read. The behaviour is

similar to the function responsible for writing on the register, but in this case, the transfer

method performs a write and read on the register. Since we only intend to read from the

register, no bytes are written on it. The value is then returned on the second position of the

array, returned inside the Result type.

fn read_register(&mut self, reg : Register) -> Result<u8, E> {

self.cs.set_low();

let mut buffer = [reg.addr() | SINGLE | READ, 0];

self.spi.transfer(&mut buffer)?;

self.cs.set_high();

Ok(buffer[1])

}

Listing 4.12: Function to read bytes from a register
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The function accel is the one responsible with reading the OUT X H, OUT X L, OUT Y H,

OUT Y L, OUT Z H and OUT Z L registers. These contain, respectively, the most signifi-

cant part and least significant part of the acceleration signals acting on the X,Y and Z axes.

The values are then stored in a structure as 16 bit integers.

pub fn accel(&mut self) -> Result<I16x3, E> {

let x_l = self.read_register(Register::OUT_X_L)?;

let x_h = self.read_register(Register::OUT_X_H)?;

(...)

let z_h = self.read_register(Register::OUT_Z_H)?;

Ok(I16x3 {

x : (x_l as u16 | (x_h as u16) << 8) as i16,

y : (y_l as u16 | (y_h as u16) << 8) as i16,

z : (z_l as u16 | (z_h as u16) << 8) as i16,

})

}

Listing 4.13: Function responsible for obtaining the acceleration values

With this library we are able to use the accelerometer and read the acceleration values.

The type system of Rust, more specifically Result allow us to be more confident on the

robustness of the code written. Also, the initialisation requires a specific pin configuration,

and thanks to the type system, a pin configuration that does not comply with the types will

result in a compiler error.

4.4 putting it all together

To have a better use case of the scheduler built in Rust, we implemented a program that

measures the acceleration of the micro-controller and turns on the corresponding Led. The

structure is the following:
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Figure 4.4.: Structure of the program

The scheduler used for this case study is the preemptive scheduler, as most RTOS im-

plement a preemptive scheduling algorithm [16] [10]. We want to note that we also imple-

mented the cooperative scheduler and the program did not suffer significant changes.

The initialisation of this program starts by creating the stacks for each of the threads, the

TCB and initialising the systick. Because we are using user leds and the accelerometer, we

need to make use of more peripherals. The crate built for the STM32F407G-DISC1 provides

us several methods to safely interact with the peripherals, like the method take that returns

all the peripherals, modelled as singletons to ensure there is only one instance of any one

of them at any given point in time, inside an Option. Subsequent calls to this method will

result in a None value.

fn main() -> ! {

let mut cp = Peripherals::take().unwrap();

let dp = stm32::Peripherals::take().unwrap();

Listing 4.14: Example of safely obtaining the peripherals
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As previously explained on 4.3, the accelerometer requires a specific pin configuration

to be initialised. After checking the required pin configuration and the data-sheet of the

micro-controller, we initialise the GPIOA and GPIOE in the desired configuration.

To manipulate the user leds, we once again use an abstraction available on the crate

of the micro-controller. The abstraction safely initialises the leds, and provides an array

containing the 4 user leds, with 3 methods to interact with them: on, off and toggle.

To safely use both the leds and accelerometer in the threads, we use Mutex. With it,

we safely guarantee exclusive access to both of them. Moreover, another reason to use

Mutex is because of the initialisation taking place in the main thread. To use the leds or

accelerometer inside the thread, we had to store them in a global variable and again, and in

Rust that implies several lines of unsafe code. With Mutex, not a single line of unsafe code

is written.

static MY_LEDS: Mutex<RefCell<Option<Leds>>> =

Mutex::new(RefCell::new(None));

(...)

let leds = Leds::new(gpiod);

interrupt::free(|cs| MY_LEDS.borrow(cs).replace(Some(leds)));

(...)

interrupt::free(|cs| {

if let Some(ref mut leds) = MY_LEDS.borrow(cs).borrow_mut().deref_mut() {

leds[0].on();

}

});

Listing 4.15: Leds being used inside the critical section

With RefCell, we can safely mutate data even when there are immutable references to that

data. RefCell uses a runtime check to ensure only one reference to a peripheral is given out

at a time. Furthermore, we use the Option to initialise MY LEDS with a None value, being

later replaced when the leds are initialised.

After we have both the accelerometer and leds working in each thread, we use another

global variable to communicate between them using again a Mutex, but this time with a Cell

inside because we are using a simple type, like i16, that can be copied. The communication

is then performed by writing the values from the accelerometer in the global variable, and

the other thread reads those values, turning on the leds accordingly.

Finally, the leds are turned on and off accordingly to the values read. First, we compare

the absolute values of X and Y, when the first is greater than the second it means the

micro-controller is either being tilted to the left of right, otherwise top or bottom. Then we

compare the coordinate value with a threshold value to define which led shall be turned

on. The leds are then turned off, waiting for new values read from the accelerometer.
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static COORDINATES: Mutex<Cell<(i16,i16)>> = Mutex::new(Cell::new((0,0)));

//Thread 1

{

interrupt::free(|cs| {

if let Some(ref mut accelerometer) =

ACCELEROMETER.borrow(cs).borrow_mut().deref_mut() {

let I16x3 {x,y,z} = accelerometer.accel().unwrap();

interrupt::free(|cs| COORDINATES.borrow(cs).set((x,y)));

}

});

}

//Thread 2

{

interrupt::free(|cs| {

if let Some(ref mut leds) =

MY_LEDS.borrow(cs).borrow_mut().deref_mut() {

let (x,y) = COORDINATES.borrow(cs).get();

(...)

}

Listing 4.16: Communication between the threads

let (x,y) = COORDINATES.borrow(cs).get();

if x.abs() > y.abs() {

if x > THRESHOLD_HIGH {

leds[2].on();

} else if x < THRESHOLD_LOW {

leds[0].on();

}

} else {

if y < THRESHOLD_LOW {

leds[3].on();

} else if y > THRESHOLD_HIGH {

leds[1].on();

}

}

leds[0].off();

leds[1].off();

(...)

Listing 4.17: Algorithm to turn on the leds according to acceleration values
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4.5 lessons learned

Thanks to these case studies, we were able to draw some conclusions concerning using Rust

in embedded software development instead of C.

First, the way Rust is designed encourages programmers to write safe code. The owner-

ship system means memory safety, but it also means we have to think twice about the code

we are writing, since code perfectly acceptable in C will not compile in Rust. It can take

time to get used to the restrictions imposed by the language, but once they are understood

the reasoning behind the code changes.

Programming with types is also another example of Rust’s safety-by-design. Using types

means catching errors at compile-time. For instance (and opposed to C), in Rust one cannot

just cast a variable to another type in order to bypass the compiler. The lack of a NULL type

is a big plus (Tony Hoare called NULL references ”The Billion Dollar Mistake” [34]), with

Rust using instead the Option and Result types which allow us to have a better handling of

the code.

However, throughout this implementation phase we assessed some limitations of the

language. Compilation time gets longer as projects get bigger, the debugging tools gave us

a few setbacks and we had a few problems on using Instrumentation Trace Macrocell (ITM) to

log messages from the micro-controller. Note however that some of these problems could

have been caused by the Windows 10 operating system, since some debugger errors were

found in this operating system and not in others (e.g. MacOS). Moreover, while developing

the case studies, we found an issue with integer overflowing that caused the program to

panic. In safety-critical software, this type of issues are detected by using tools that perform

Extended Static Checking (ESC), and in our case, could be solved by using SMACK.

Another aspect we wanted to address is the use of assembly code in Rust. Currently,

there are three options to use assembly code.

• Inline assembly with the asm! macro is only available in nightly versions of the com-

piler, without estimate for stabilisation.

• Free form assembly with the global asm! macro suffers from the same problem of

inline assembly.

• Writing assembly code in an external file and then using an external crate (cc) to

assemble the file into an archive file. Although the compiler version can be stable, the

downside of using this approach is that the crate requires some assembler program

depending on the target architecture.

In this project we used inline assembly for its simplicity, and a nightly version of the

compiler still allowed us to develop the case studies.
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4.6 summary

The case studies developed in this dissertation consisted in two schedulers, preemptive

and cooperative, a driver for the accelerometer present on a micro-controller and finally

a program that makes use of the schedulers already built, by having one thread reading

acceleration values and other thread toggling leds according to the values read. We devel-

oped case studies both in Rust and C, namely the schedulers, to understand the differences

between these languages. Also, the ones developed in Rust allowed us to evaluate Rust

capabilities in embedded environments.

With these implementations, we were able to catch some behaviours that are normal in C

but cannot be replicated exactly in Rust, like e.g. the circular linked list example, which in

Rust was sorted out with a normal array replicating its behaviour. We also took advantage

of safety features present in Rust. Due to global mutable variables being considered unsafe

we can use the synchronisation primitive Mutex that allows us to write concurrent code

without the use of unsafe blocks.

Nevertheless, throughout this work we identified some limitations of developing Rust

embedded code, such as long compiling times and the use of assembly code in Rust as

opposed to C.
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C O N C L U S I O N

The main aim of this final chapter is to discuss what was achieved in this dissertation

with respect to the objectives proposed in chapter 3, taking into account the case studies

carried out. We finish this by proposing a few ideas for future work, concerning the project

reported in this thesis and the language itself.

5.1 achievements and contributions

In this dissertation we proposed to answer the following research questions:

• Objective 1 – Investigate in what measure Rust ensures software verification and

meets the demands of current standards used in the safety-critical software industry.

• Objective 2 – Assess the maturity of Rust for embedded systems (namely with respect

to which processors it is available for) and compare the language with others currently

used in embedded systems.

Starting with the Objective 1, we investigated how the Rust language works and what

safety features it offers, and presented some verification tools that can be used alongside the

compiler and borrow checker. Thereafter, we proceeded to identify on MISRA-C guidelines

(which are used in the development of critical software for aerospace and other industries)

rules that would be eliminated and/or alleviated by Rust’s safety features, having identified

13 rules.

As previously noted, these guidelines aim at eliminating any undefined behaviour from

safety-critical software. However, with unsafe Rust there could be guidelines identifying

some common mistakes and helping developers using unsafe Rust, safely. Looking at the

results obtained, we believe using Rust in the safety critical domain can help the verification

process by eliminating part of it, but we also acknowledge that in order for Rust to be used

in the aerospace industry, it has to be compliant with DO178-C, and the automatic analysis

of Rust code must be target of a Tool Qualification process.

Regarding Objective 2, we examined how the Rust embedded team is organised, how

mature the ecosystem is by analysing supported architectures, boards, drivers and crates.
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Currently, Rust is mostly available for Cortex-M processors, but with developments on

other architectures. Also, we evaluated the Rust crate system and testing features, which

are non existent in C, and how it can help in the development of critical software. We

believe that, for Rust to be used in the aerospace industry, its availability has to increase as

well as the maturity of the whole embedded ecosystem.

Also for Objective 2, we developed some case studies both in Rust and in C on a STM

micro-controller. We developed two types of schedulers, preemptive and cooperative, a

driver for the accelerometer present on the micro-controller used and a bigger project that

makes use of the schedulers and accelerometer driver. With these case studies we identi-

fied some differences between Rust and C code, such as structures that do not meet the

ownership rules and type safety that Rust provides.

The experience of developing code in Rust was satisfying. Rust is close to other low

level programming languages (e.g. C and C++) in terms of syntax, which means a short

adaption period on how the language works. In the beginning, comparing with other

programming languages, we spent more time analysing compiler errors due to the borrow

checker not allowing some incorrect behaviours (that is, not respecting ownership and

borrowing rules). After adjusting to it, the process of developing became easier and the

code consequently safer. Features already mentioned several times in this dissertation (e.g.

Ownership model, types specific for handling errors (Result type), absence of NULL instead

using the Option type, immutability of variables by default) changed our way of thinking

about software development. Furthermore, the embedded crates used (crate of the board

used and embedded-HAL crate) definitely help in understanding which functions should

be used and how to use them.

The work presented in this dissertation has originated a scientific paper entitled ”Towards

Rust for Critical Systems” [37] to appear in the 30th International Symposium on Software

Reliability Engineering.

5.2 prospect for future work

In this dissertation we were able to answer the questions proposed, and developed some

case studies to use Rust on bare metal. Still, we identify the need for more work that could

be done as follow up.

future work on this project For starters, the micro-controller used has the capa-

bility of reproducing sound and a microphone. We could have implemented in our case

study the micro-controller reproducing a sound depending on the movement of it. This

would better test our schedulers, and the safety guarantees Rust provides concerning con-

currency. Since the micro-controller used contains an audio DAC, we could have also used
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it to output sounds according to the acceleration values, or even a program that would

measure sound intensity by turning on the leds accordingly.

Furthermore, there is still the possibility to add more complexity to the schedulers, like as-

signing priority to the threads. In this case, we could use the scheduler in a more complex

system and better evaluate how the RTOS behaves with performance and time measure-

ments.

suggestions for the rust community In order for Rust to become usable for

critical embedded systems there is a need to certify Rust compilers and associated tool

chain for use in such industry. The languages currently used in safety critical systems are

stable, mature and their compilers are fairly optimised. Rust is a fairly recent language,

reaching its first stable release only in 2015. To this date there is only Rust compiler (rustc).

Finally, only nightly compiler allows for compilation of programs with unstable features,

like inline assembly. So, we think the language needs to be more mature to be used in

safety-critical. Sealed Rust [47] is a plan of Ferrous Systems to bring Rust to the safety

critical domain by qualifying the language and compiler. They propose a subset of Rust

with a different level of stability to be used in safety critical domains. This different level of

stability would allow for specifications and validation of new releases.

Another important aspect is concerned with the use of software coding guidelines. Rust

can dispense with some of the guidelines that are concerned with eliminating undefined

behaviour in safety-critical software. However, there are situations where unsafe Rust has

to be used, and in these cases it certainly would be beneficial to have coding guidelines for

this situations.

We also reviewed some verification tools for Rust, and although it was not an objective of

this dissertation, we know that testing is a important part of critical software cycle. Software

verification tools for Rust are still in an early state, in particular software testing tools.

C has numerous verification tools used in the industry that make sure code meet safety

standards (e.g. DO-178C). Furthermore, it is common to use tools that perform ESC, which

means to identify errors such as integer overflow, division-by-zero, array out of bounds or

null-dereferencing. SMACK is already capable of detecting integer overflow, and although

null-dereferencing is not possible in safe Rust, there is no such verification tool that allow

us to identify errors as the ones mentioned. One possible solution would be to implement

a tool that would use Dafny [27] (by translating Rust code to Dafny) in order to verify for

divisions-by-zero and array out of bounds errors. To conclude, we believe more verification

tools for Rust would be very important for its adoption in safety-critical industries.

Finally, we believe an IDE specific for embedded Rust (comparable to µVision for C)

would be very beneficial for developers writing and debugging embedded software.



B I B L I O G R A P H Y

[1] K. C. Addagarrala and P. Kinnicutt. Safety critical software ground rules. Interna-

tional Journal of Engineering & Technology, 7(2.28):344–350, 2018. ISSN 2227-524X. doi:

10.14419/ijet.v7i2.28.13209. URL https://www.sciencepubco.com/index.php/ijet/

article/view/13209.

[2] Alloy, 2018. URL http://alloytools.org/.

[3] M. I. S. R. Association et al. MISRA-C: 2004: Guidelines for the Use of the C Language in

Critical Systems. MIRA, 2008.

[4] A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda, Z. Rakamari, and

L. Ryzhyk. System programming in rust: Beyond safety. ACM SIGOPS Operating

Systems Review, 51(1):94–99, 2017.

[5] M. Baranowski, S. He, and Z. Rakamarić. Verifying Rust programs with smack. In
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A
P R E E M P T I V E S C H E D U L E R I N C

a.1 main file

#define QUANTA 10

uint32_t count0,count1,count2;

void Task0(void){

while(1){

count0+= 1;

}

}

void Task1(void){

while(1){

count1+= 1;

}

}

void Task2(void){

while(1){

count2+= 1;

}

}

int main (void){

osKernelInit();

osKernelAddThreads(&Task0,&Task1,&Task2);

osKernelLaunch(QUANTA);

}

54



A.2. Kernel Functions 55

a.2 kernel functions

#define SYSPRI3 (*((volatile uint32_t *)0xE000ED20))

void osSchedulerLaunch(void);

#define NUM_OF_THREADS 3

#define STACKSIZE 100

#define BUS_FREQ 16000000

uint32_t MILLIS_PRESCALER;

struct tcb{

int32_t *stackPt;

struct tcb *nextPt;

};

typedef struct tcb tcbType;

tcbType tcbs[NUM_OF_THREADS];

const tcbType *currentPt;

int32_t TCB_STACK[NUM_OF_THREADS][STACKSIZE];

void osKernelStackinit(int i) {

tcbs[i].stackPt = &TCB_STACK[i][STACKSIZE-16];

TCB_STACK[i][STACKSIZE-1] = 0x01000000;

}

uint8_t osKernelAddThreads(void (*task0)(void), void (*task1)(void), void

(*task2)(void)) {

__disable_irq();

tcbs[0].nextPt = &tcbs[1];

tcbs[1].nextPt = &tcbs[2];

tcbs[2].nextPt = &tcbs[0];

osKernelStackinit(0);

TCB_STACK[0][STACKSIZE-2] = (int32_t)(task0);//location of pc on the stack

osKernelStackinit(1);

TCB_STACK[1][STACKSIZE-2] = (int32_t)(task1);//location of pc on the stack
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osKernelStackinit(2);

TCB_STACK[2][STACKSIZE-2] = (int32_t)(task2);//location of pc on the stack

currentPt = &tcbs[0];

__enable_irq();

return 1;

}

void osKernelInit(void){

__disable_irq();

MILLIS_PRESCALER = BUS_FREQ / 1000;

}

void osKernelLaunch(uint32_t quanta) {

SysTick->CTRL = 0;

SysTick->VAL = 0;

SYSPRI3 = (SYSPRI3&0x00FFFFFF) | 0XE0000000; //Priority 7

SysTick->LOAD = (quanta*MILLIS_PRESCALER)-1;

SysTick->CTRL = 0x00000007;

osSchedulerLaunch();

}

a.3 assembly code

AREA | .text|,CODE,READONLY,ALIGN=2

THUMB

EXTERN currentPt

EXPORT SysTick_Handler

EXPORT osSchedulerLaunch

SysTick_Handler ; Salva automaticamente r0,r1,r2,r3,r12,lr,pc,psr

CPSID I

PUSH {R4-R11} ; Save r4,r5,r6,r7,r8,r9,r10,r11

LDR R0, =currentPt ; r0 points to currentPt

LDR R1, [R0] ; r1 = currentPt

STR SP, [R1]

LDR R1, [R1,#4] ; r1 = currentPt->next

STR R1, [R0] ; currentPt = r1

LDR SP, [R1] ; SP = currentPt->stackPt

POP {R4-R11}
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CPSIE I

BX LR

osSchedulerLaunch

LDR R0,=currentPt

LDR R2, [R0] ; R2 = currentPt

LDR SP, [R2] ; SP =currentPt->stackPt

POP {R4-R11}

POP {R0-R3}

POP {R12}

ADD SP,SP,#4

POP {LR}

ADD SP,SP,#4

CPSIE I

BX LR

ALIGN

END



B
P R E E M P T I V E S C H E D U L E R I N R U S T

b.1 main file

#![no_std]

#![no_main]

entry!(main);

pub const TASK_NUM: usize = 3;

const TASK_STACK_SIZE: usize = 100;

static mut TASK_STACKS: [[usize; TASK_STACK_SIZE]; TASK_NUM] = [[0;

TASK_STACK_SIZE]; TASK_NUM];

static mut COUNT0 : usize = 0;

static mut COUNT1 : usize = 0;

static mut COUNT2 : usize = 0;

fn main() -> ! {

let mut cp = Peripherals::take().unwrap();

let dp = stm32::Peripherals::take().unwrap();

let mut tcb = TaskCB::new();

let mut process_task0 = unsafe {

Task::new(TASK_STACKS[0].last_mut().unwrap() as *mut usize, task0)

};

let mut process_task1 = unsafe {

Task::new(TASK_STACKS[1].last_mut().unwrap() as *mut usize, task1)

};

58



B.1. Main File 59

let mut process_task2 = unsafe {

Task::new(TASK_STACKS[2].last_mut().unwrap() as *mut usize, task2)

};

tcb.add_task(process_task0,0);

tcb.add_task(process_task1,1);

tcb.add_task(process_task2,2);

let mut rcc = dp.RCC.constrain();

let clocks = rcc.cfgr.sysclk(168.mhz()).freeze();

systick::systick_start(&mut cp.SYST);

let gpiod = dp.GPIOD.split();

let mut leds = Leds::new(gpiod);

leds[0].on();

leds[1].on();

leds[2].on();

leds[3].on();

hprintln!("Kernel Initiated").unwrap();

loop {

unsafe {

hprintln!("c0: {} c1: {} c2: {}",COUNT0,COUNT1,COUNT2).unwrap();

}

tcb.scheduling();

}

}

#[no_mangle]

fn task0() -> ! {

loop{

unsafe {

COUNT0+=1;

}

}

}
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#[no_mangle]

fn task1() -> ! {

loop{

unsafe {

COUNT1+=1;

}

}

}

#[no_mangle]

fn task2() -> ! {

loop {

unsafe {

COUNT2 += 1;

}

}

}

b.2 kernel functions

pub fn systick_start(syst: &mut SYST) {

syst.set_clock_source(SystClkSource::External);

syst.set_reload(159999); //rvr

syst.clear_current(); //cvr.write(0)

syst.enable_interrupt(); //csr

syst.enable_counter(); //csr

}

pub unsafe extern "C" fn switch_to_task(

mut user_stack: *mut usize,

process_regs: &mut [usize; 8],

) -> *mut usize {

asm!("

msr psp, $0

ldmia $2, {r4-r11}

svc 0xff

stmia $2, {r4-r11}
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mrs $0, PSP

"

: "={r0}"(user_stack)

: "{r0}"(user_stack), "{r1}"(process_regs)

: "r4","r5","r6","r7","r8","r9","r10","r11" : "volatile" );

user_stack

}

#[no_mangle]

pub unsafe extern "C" fn SVCall() {

asm!("

cmp lr, #0xfffffff9

bne to_kernel

movw lr, #0xfffd

movt lr, #0xffff

bx lr

to_kernel:

movw lr, #0xfff9

movt lr, #0xffff

bx lr"

:::: "volatile" );

}

#[no_mangle]

pub unsafe extern "C" fn SysTick() {

asm!("

movw lr, #0xfff9

movt lr, #0xffff

bx lr

"

:::: "volatile" );

}

b.3 tasks functions

pub struct Task {

stack_pointer : *mut usize,

states: [usize; 8],

}
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impl Task {

pub unsafe fn new(stack_pointer: *mut usize, callback: fn() -> !) -> Self {

Self {

stack_pointer: unsafe { push_function_call(stack_pointer, callback) },

states: [0; 8],

}

}

}

pub struct TaskCB {

current_task : usize,

tasks : [Task; TASK_NUM],

}

impl TaskCB {

pub fn new() -> TaskCB {

TaskCB {

current_task : 0,

tasks : [Task { stack_pointer : 0 as *mut usize , states : [0; 8]};

TASK_NUM],

}

}

pub fn add_task(&mut self, t: Task , index : usize) {

self.tasks[index] = t;

}

fn update_to_next_task(&mut self) {

self.current_task += 1;

if self.current_task == TASK_NUM {

self.current_task = 0;

}

}

fn get_current_task (&mut self) -> &mut Task {

&mut self.tasks[self.current_task]

}

fn get_next_task (&mut self) -> &mut Task {
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let i = TASK_NUM - 1;

match self.current_task {

i => {

&mut self.tasks[0]

}

_ => {

&mut self.tasks[self.current_task+1]

}

}

}

pub fn scheduling (&mut self) {

for i in 0..TASK_NUM{

let t = self.get_current_task();

unsafe {

t.stack_pointer = switch_to_task(t.stack_pointer, &mut t.states);

}

self.update_to_next_task();

}

}

}

pub unsafe fn push_function_call(user_stack: *mut usize, callback: fn() -> !) ->

*mut usize {

let stack_bottom = user_stack.offset(-8);

write_volatile(stack_bottom.offset(7), 0x01000000);

write_volatile(stack_bottom.offset(6), callback as usize | 1);

write_volatile(stack_bottom.offset(5), 0 | 0x1);

write_volatile(stack_bottom.offset(3), 0);

write_volatile(stack_bottom.offset(2), 0);

write_volatile(stack_bottom.offset(1), 0);

write_volatile(stack_bottom.offset(0), 0);

stack_bottom

}



C
C O O P E R AT I V E S C H E D U L E R I N C

c.1 main file

#define QUANTA 10

uint32_t count0,count1,count2;

void Task0(void){

while(1){

count0+= 1;

osThreadYield();

}

}

void Task1(void){

while(1){

count1+= 1;

osThreadYield();

}

}

void Task2(void){

while(1){

count2+= 1;

osThreadYield();

}

}

int main (void){

osKernelInit();
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osKernelAddThreads(&Task0,&Task1,&Task2);

osKernelLaunch(QUANTA);

}

c.2 kernel functions

#define SYSPRI3 (*((volatile uint32_t *)0xE000ED20))

#define INTCTRL (*((volatile uint32_t *)0xE000ED04))

void osSchedulerLaunch(void);

#define NUM_OF_THREADS 3

#define STACKSIZE 100

#define BUS_FREQ 16000000

uint32_t MILLIS_PRESCALER;

struct tcb{

int32_t *stackPt;

struct tcb *nextPt;

};

typedef struct tcb tcbType;

tcbType tcbs[NUM_OF_THREADS];

tcbType *currentPt;

int32_t TCB_STACK[NUM_OF_THREADS][STACKSIZE];

void osKernelStackinit(int i) {

tcbs[i].stackPt = &TCB_STACK[i][STACKSIZE-16];

TCB_STACK[i][STACKSIZE-1] = 0x01000000;

}

uint8_t osKernelAddThreads(void (*task0)(void), void (*task1)(void), void

(*task2)(void)) {

__disable_irq();

tcbs[0].nextPt = &tcbs[1];

tcbs[1].nextPt = &tcbs[2];
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tcbs[2].nextPt = &tcbs[0];

osKernelStackinit(0);

TCB_STACK[0][STACKSIZE-2] = (int32_t)(task0);//location of pc on the stack

osKernelStackinit(1);

TCB_STACK[1][STACKSIZE-2] = (int32_t)(task1);//location of pc on the stack

osKernelStackinit(2);

TCB_STACK[2][STACKSIZE-2] = (int32_t)(task2);//location of pc on the stack

currentPt = &tcbs[0];

__enable_irq();

return 1;

}

void osKernelInit(void){

__disable_irq();

MILLIS_PRESCALER = BUS_FREQ / 1000;

}

void osKernelLaunch(uint32_t quanta) {

SysTick->CTRL = 0;

SysTick->VAL = 0;

SYSPRI3 = (SYSPRI3&0x00FFFFFF) | 0XE0000000; //Priority 7

SysTick->LOAD = (quanta*MILLIS_PRESCALER)-1;

SysTick->CTRL = 0x00000007;

osSchedulerLaunch();

}

void osThreadYield(void) {

INTCTRL = 0x04000000; // trigger SysTick

}



D
C O O P E R AT I V E S C H E D U L E R I N R U S T

d.1 main file

#![no_std]

#![no_main]

entry!(main);

pub const TASK_NUM: usize = 3;

const TASK_STACK_SIZE: usize = 100;

static mut TASK_STACKS: [[usize; TASK_STACK_SIZE]; TASK_NUM] = [[0;

TASK_STACK_SIZE]; TASK_NUM];

static mut COUNT0 : usize = 0;

static mut COUNT1 : usize = 0;

static mut COUNT2 : usize = 0;

fn main() -> ! {

let mut cp = Peripherals::take().unwrap();

let dp = stm32::Peripherals::take().unwrap();

let mut tcb = TaskCB::new();

let mut process_task0 = unsafe {

Task::new(TASK_STACKS[0].last_mut().unwrap() as *mut usize, task0)

};

let mut process_task1 = unsafe {

Task::new(TASK_STACKS[1].last_mut().unwrap() as *mut usize, task1)

};
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let mut process_task2 = unsafe {

Task::new(TASK_STACKS[2].last_mut().unwrap() as *mut usize, task2)

};

tcb.add_task(process_task0,0);

tcb.add_task(process_task1,1);

tcb.add_task(process_task2,2);

let mut rcc = dp.RCC.constrain();

let clocks = rcc.cfgr.sysclk(168.mhz()).freeze();

systick::systick_start(&mut cp.SYST);

let gpiod = dp.GPIOD.split();

let mut leds = Leds::new(gpiod);

leds[0].on();

leds[1].on();

leds[2].on();

leds[3].on();

hprintln!("Kernel Initiated").unwrap();

loop {

unsafe {

hprintln!("c0: {} c1: {} c2: {}",COUNT0,COUNT1,COUNT2).unwrap();

}

tcb.scheduling();

}

}

#[no_mangle]

fn task0() -> ! {

loop{

unsafe {

COUNT0+=1;

os_thread_yield();

}

}

}
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#[no_mangle]

fn task1() -> ! {

loop{

unsafe {

COUNT1+=1;

os_thread_yield();

}

}

}

#[no_mangle]

fn task2() -> ! {

loop {

unsafe {

COUNT2 += 1;

os_thread_yield();

}

}

}

unsafe fn os_thread_yield() {

ptr::write_volatile(0xE000ED04 as *mut usize, 0x04000000);

}



E
L I S 3 D S H D R I V E R

#![no_std]

pub const MODE: Mode = Mode {

phase: Phase::CaptureOnFirstTransition,

polarity: Polarity::IdleLow,

};

pub struct LIS3DSH<SPI, CS> {

spi: SPI,

cs: CS,

}

impl<SPI,CS, E> LIS3DSH<SPI,CS>

where

SPI: Transfer<u8, Error = E> + Write<u8, Error = E>,

CS: OutputPin,

{

pub fn new(spi:SPI, cs : CS) -> Result<Self, E> {

let mut lis3dsh = LIS3DSH {spi, cs};

lis3dsh.write_register(Register::CTRL_REG4, 0b01100111)?;

lis3dsh.write_register(Register::CTRL_REG5, 0b00000000)?;

Ok(lis3dsh)

}

fn write_register(&mut self, reg : Register, byte: u8) -> Result<(), E> {

self.cs.set_low();
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let buffer = [reg.addr(), byte];

self.spi.write(&buffer)?;

self.cs.set_high();

Ok(())

}

fn read_register(&mut self, reg : Register) -> Result<u8, E> {

self.cs.set_low();

let mut buffer = [reg.addr() | SINGLE | READ, 0];

self.spi.transfer(&mut buffer)?;

self.cs.set_high();

Ok(buffer[1])

}

fn read_registers<N>(&mut self, reg: Register) -> Result<GenericArray<u8, N>, E>

where

N: ArrayLength<u8>,

{

self.cs.set_low();

let mut buffer: GenericArray<u8,N> = unsafe {mem::uninitialized()};

{

let slice: &mut [u8] = &mut buffer;

slice[0] = reg.addr() | MULTI | READ;

self.spi.transfer(slice)?;

}

self.cs.set_high();

Ok(buffer)

}

pub fn accel(&mut self) -> Result<I16x3, E> {

let x_l = self.read_register(Register::OUT_X_L)?;
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let x_h = self.read_register(Register::OUT_X_H)?;

let y_l = self.read_register(Register::OUT_Y_L)?;

let y_h = self.read_register(Register::OUT_Y_H)?;

let z_l = self.read_register(Register::OUT_Z_L)?;

let z_h = self.read_register(Register::OUT_Z_H)?;

Ok(I16x3 {

x : (x_l as u16 | (x_h as u16) << 8) as i16,

y : (y_l as u16 | (y_h as u16) << 8) as i16,

z : (z_l as u16 | (z_h as u16) << 8) as i16,

})

}

pub fn who_am_i(&mut self) -> Result<u8, E> {

self.read_register(Register::WHO_AM_I)

}

pub fn status(&mut self) -> Result<u8, E> {

self.read_register(Register::STATUS)

}

pub fn set_sensitivity(&mut self, sensitivity : Sensitivity) -> Result<(), E> {

self.modify_sensitivity(Register::CTRL_REG4, |r| {

r & !(0b111 << 3) | (sensitivity.value() << 3)

})

}

fn modify_sensitivity<F>(&mut self, reg: Register, f : F) -> Result<(), E>

where

F: FnOnce(u8) -> u8,

{

let r = self.read_register(reg)?;

self.write_register(reg, f(r))?;

Ok(())

}

}

/// XYZ triple

#[derive(Debug)]

pub struct I16x3 {
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/// X component

pub x: i16,

/// Y component

pub y: i16,

/// Z component

pub z: i16,

}

const READ: u8 = 1 << 7;

const WRITE: u8 = 1 << 7;

const MULTI: u8 = 1 << 6;

const SINGLE: u8 = 0 << 6;

#[allow(dead_code)]

#[allow(non_camel_case_types)]

#[derive(Clone, Copy)]

enum Register {

OUT_T = 0x0C,

INFO1 = 0x0D,

INFO2 = 0x0E,

WHO_AM_I = 0x0F,

OFF_X = 0x10,

OFF_Y = 0x11,

OFF_Z = 0x12,

CS_X = 0x13,

CS_Y = 0x14,

CS_Z = 0x15,

LC_L = 0x16,

LC_H = 0x17,

STAT = 0x18,

PEAK1 = 0x19,

PEAK2 = 0x1A,

VCF_1 = 0x1B,

VCF_2 = 0x1C,

VCF_3 = 0x1D,

VCF_4 = 0x1E,

THRS3 = 0x1F,

CTRL_REG4 = 0x20,

CTRL_REG1 = 0x21,

CTRL_REG2 = 0x22,

CTRL_REG3 = 0x23,

CTRL_REG5 = 0x24,
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CTRL_REG6 = 0x25,

STATUS = 0x27,

OUT_X_L = 0x28,

OUT_X_H = 0x29,

OUT_Y_L = 0x2A,

OUT_Y_H = 0x2B,

OUT_Z_L = 0x2C,

OUT_Z_H = 0x2D,

FIFO_CTRL = 0x2E,

FIFO_SRC = 0x2F,

ST1_1 = 0x40,

ST1_2 = 0x41,

ST1_3 = 0x42,

ST1_4 = 0x43,

ST1_5 = 0x44,

ST1_6 = 0x45,

ST1_7 = 0x46,

ST1_8 = 0x47,

ST1_9 = 0x48,

ST1_10 = 0x49,

ST1_11 = 0x4A,

ST1_12 = 0x4B,

ST1_13 = 0x4C,

ST1_14 = 0x4D,

ST1_15 = 0x4E,

ST1_16 = 0x4F,

TIM4_1 = 0x50,

TIM3_1 = 0x51,

TIM2_1_L = 0x52,

TIM2_1_H = 0x53,

TIM1_1_L = 0x54,

TIM1_1_H = 0x55,

THRS2_1 = 0x56,

THRS1_1 = 0x57,

MASK1_B = 0x59,

MASK1_A = 0x5A,

SETT1 = 0x5B,

PR1 = 0x5C,

TC1_L = 0x5D,

TC1_H = 0x5E,

OUTS1 = 0x5F,

ST2_1 = 0x60,

ST2_2 = 0x61,
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ST2_3 = 0x62,

ST2_4 = 0x63,

ST2_5 = 0x64,

ST2_6 = 0x65,

ST2_7 = 0x66,

ST2_8 = 0x67,

ST2_9 = 0x68,

ST2_10 = 0x69,

ST2_11 = 0x6A,

ST2_12 = 0x6B,

ST2_13 = 0x6C,

ST2_14 = 0x6D,

ST2_15 = 0x6E,

ST2_16 = 0x6F,

TIM4_2 = 0x70,

TIM3_2 = 0x71,

TIM2_2_L = 0x72,

TIM2_2_H = 0x73,

TIM1_2_L = 0x74,

TIM1_2_H = 0x75,

THRS2_2 = 0x76,

THRS1_2 = 0x77,

DES2 = 0x78,

MASK2_B = 0x79,

MASK2_A = 0x7A,

SETT2 = 0x7B,

PR2 = 0x7C,

TC2_L = 0x7D,

TC2_H = 0x7E,

OUTS2 = 0x7F,

}

impl Register {

fn addr(self) -> u8 {

self as u8

}

}

///Output Data Rate

#[derive(Debug, Clone, Copy)]

pub enum Odr {

Powerdown = 0x00,
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Hz3_125 = 0x10,

Hz6_25 = 0x20,

Hz12_5 = 0x30,

Hz25 = 0x40,

Hz50 = 0x50,

Hz100 = 0x60,

Hz400 = 0x70,

Hz800 = 0x80,

Hz1600 = 0x90,

}

pub enum Sensitivity {

G2 = 0b000,

G4 = 0b001,

G6 = 0b010,

G8 = 0b011,

G16 = 0b100,

}

impl Sensitivity {

fn value(self) -> u8 {

self as u8

}

}



F
S C H E D U L E R + A C C E L E R O M E T E R + L E D S

#![no_std]

#![no_main]

entry!(main);

pub const QUANTA: usize = 10;

pub const TASK_NUM: usize = 2;

const TASK_STACK_SIZE: usize = 10000;

static mut TASK_STACKS: [[usize; TASK_STACK_SIZE]; TASK_NUM] = [[0;

TASK_STACK_SIZE]; TASK_NUM];

const THRESHOLD_HIGH : i16 = 650;

const THRESHOLD_LOW : i16 = -650;

pub type Lis3dsh = driver::LIS3DSH<Spi<SPI1, (PA5<Alternate<AF5>>,

PA6<Alternate<AF5>>, PA7<Alternate<AF5>>)>, PE3<Output<PushPull>>>;

static MY_LEDS: Mutex<RefCell<Option<Leds>>> =

Mutex::new(RefCell::new(None));

static ACCELEROMETER: Mutex<RefCell<Option<Lis3dsh>>> =

Mutex::new(RefCell::new(None));

static COORDINATES: Mutex<Cell<(i16,i16)>> = Mutex::new(Cell::new((0,0)));

fn main() -> ! {

let mut cp = Peripherals::take().unwrap();

let dp = stm32::Peripherals::take().unwrap();

let mut tcb = TaskCB::new();
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// Create Tasks, creating stacks and functions

let process_task0 = unsafe {

Task::new(TASK_STACKS[0].last_mut().unwrap() as *mut usize, task0)

};

let process_task1 = unsafe {

Task::new(TASK_STACKS[1].last_mut().unwrap() as *mut usize, task1)

};

// Add Tasks to the Thread Control Block

tcb.add_task(process_task0,0);

tcb.add_task(process_task1,1);

// Initialization of various Peripherals

let rcc = dp.RCC.constrain();

let clocks = rcc.cfgr.sysclk(168.mhz()).freeze();

// Initialize Systick

systick::systick_start(&mut cp.SYST);

// Initialize Leds and store them in Mutex

let gpiod = dp.GPIOD.split();

let leds = Leds::new(gpiod);

interrupt::free(|cs| MY_LEDS.borrow(cs).replace(Some(leds)));

// Initialize Accelerometer

let gpioe = dp.GPIOE.split();

let mut nss = gpioe.pe3.into_push_pull_output();

nss.set_high();

let gpioa = dp.GPIOA.split();

let sck = gpioa.pa5.into_alternate_af5();

let miso = gpioa.pa6.into_alternate_af5();

let mosi = gpioa.pa7.into_alternate_af5();

let spi = Spi::spi1(

dp.SPI1,
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(sck, miso, mosi),

MODE,

25.mhz().into(),

clocks,

);

let mut lis3dsh = driver::LIS3DSH::new(spi, nss).unwrap();

lis3dsh.set_sensitivity(Sensitivity::G16).unwrap();

// Put accelerometer in Mutex

interrupt::free(|cs| ACCELEROMETER.borrow(cs).replace(Some(lis3dsh)));

// Assert Who Am I

interrupt::free(|cs| {

if let Some(ref mut accelerometer) =

ACCELEROMETER.borrow(cs).borrow_mut().deref_mut() {

let x = accelerometer.who_am_i().unwrap();

assert_eq!(x, 0x3F);

}

});

loop {

// Schedule Tasks

tcb.scheduling();

}

}

/*

** Task responsible for turning on the leds according to the values read from the

variable containing the readings from the accelerometer

*/

#[no_mangle]

fn task0() -> ! {

loop{

interrupt::free(|cs| {

if let Some(ref mut leds) = MY_LEDS.borrow(cs).borrow_mut().deref_mut() {

let (x,y) = COORDINATES.borrow(cs).get();

if x.abs() > y.abs() {

if x > THRESHOLD_HIGH {

leds[2].on();

} else if x < THRESHOLD_LOW {
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leds[0].on();

}

} else {

if y < THRESHOLD_LOW {

leds[3].on();

} else if y > THRESHOLD_HIGH {

leds[1].on();

}

}

leds[0].off();

leds[1].off();

leds[2].off();

leds[3].off();

}

});

}

}

/*

** Task responsible for reading values from the accelerometer and inserting them in

a variable to be read by the other Task

*/

#[no_mangle]

fn task1() -> ! {

loop {

interrupt::free(|cs| {

if let Some(ref mut accelerometer) =

ACCELEROMETER.borrow(cs).borrow_mut().deref_mut() {

let I16x3 {x,y,z} = accelerometer.accel().unwrap();

interrupt::free(|cs| COORDINATES.borrow(cs).set((x,y)));

}

});

}

}




