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ABSTRACT  

Over the past years, research on cancer genomics has been boosted by the advances in high 

throughput sequencing technologies. The Cancer Genome Atlas (TCGA) project is an effort to map 

the genomic alterations possibly associated with specific types of tumours and aims to improve the 

prevention, diagnosis and treatment of cancer. The generation of large and heterogeneous datasets, 

as a result of TCGA and other similar projects, creates the need to use advanced bioinformatics and 

computational tools for the analysis of cancer genomic data. 

Despite different bioinformatics frameworks have been established in order to explore and perform 

comprehensive analysis of cancer datasets, the area of logic and probabilistic logic programming has 

not been sufficiently explored in the analysis of cancer data. 

The main goal of this thesis was to explore Problog – a probabilistic logic programming (PLP) 

language – to encode interactions on heterogeneous cancer genomics datasets that may lead to new 

insights. To accomplish this objective, our work consisted in the elaboration of a python program and 

a Problog framework. The used datasets involved stomach cancer genomic data. 

The python program – ProceOmics – aimed to process and format cancer genomic data so it 

could be used by Problog programs. The Problog framework – Problog Knowledge Base (KB) – 

intended to codify the data previously processed by ProceOmics. To evaluate the consistency of the 

developed framework and explore possible relations between the different types of genomic data, 

queries were formulated to the Problog KB. 

Thus, this thesis provides a tool that establishes a link between the genomic data contained in 

public databases with probabilistic logic programs. We hope this work may help to overcome future 

efforts to use PLP on genomic data analysis. 

 

 

 

 

Keywords: Cancer Genomics; Exploration; Problog; Stomach Cancer; TCGA; Data Processing  
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RESUMO 

Ao longo dos últimos anos, devido aos avanços significativos nas áreas tecnológicas responsáveis 

pelo estudo do genoma humano, o estudo dos dados genómicos associados a casos de ocorrência 

de cancro tem crescido exponencialmente. The Cancer Genome Atlas (TCGA), é um projeto que 

consiste no mapeamento de mudanças a nível genómico que possam estar associadas com algum 

tipo específico de cancro e que, por sua vez, possam fornecer alternativas mais avançadas de 

prevenção, prognóstico e tratamento relativamente àquelas já existentes. No entanto, a geração de 

inúmeros e extensivos datasets tem, consequentemente, vindo a aumentar. 

Apesar de já existir um número significativo de ferramentas e metodologias bioinformáticas que 

têm como objetivo explorar e realizar análises sobre os diferentes datasets relativos a variados tipos 

de cancro, a área da programação lógica, bem como da programação lógica probabilística, não têm 

sido frequentemente exploradas de modo a alcançar esse mesmo objetivo. 

Posto isto, o objetivo principal desta tese consistiu na exploração de uma extensão probabilística 

de uma linguagem lógica – Problog – de modo a codificar e explorar interações complexas entre 

diferentes datasets, visando ainda a descoberta de novas relações entre eles. De modo a alcançar 

este objetivo, o trabalho desenvolvido consistiu na elaboração de um programa em python e de uma 

framework em Problog. Todos os dados utilizados nas análises realizadas nesta tese são relativos à 

genómica do cancro do estômago.  

O programa em python – ProceOmics – teve como objetivo processar e formatar dados genómicos 

de cancro de modo a ser possível codificar esses mesmos dados em programas Problog. Por sua 

vez, a framework em Problog – Problog KB – foi criada com o intuito de codificar os dados 

previamente processados pelo programa. De modo a avaliar a consistência da framework 

desenvolvida e explorar possíveis relações entre os diferentes tipos de dados genómicos, foram 

colocadas queries à Problog KB. 

Assim sendo, esta tese forneceu uma ferramenta que estabelece uma ligação entre os dados 

genómicos, contidos em base dados públicas, e programas lógico probabilísticos. Esta ligação poderá 

ajudar a ultrapassar os poucos esforços aplicados na utilização deste tipo de linguagem para estudar 

dados genómicos. 

  

 

Palavras-chaves: Estudos Genómicos; Exploração; Problog; Cancro do Estômago; TCGA; 

Processamento de Dados  
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1.  Introduction 

1.1  Context 

When noxious modifications to DNA occur and the cells cannot repair or destroy them, they tend 

to attach definitively to the genome and a cascade of abnormal effects arise from it, leading to an 

improper function of an organism and its cells. A set of these events can develop a challenging, 

embracing and atrocious well-known genetic disease that control the way our cells function, especially 

how they grow and divide, the cancer (Sud, Kinnersley, & Houlston, 2017). Currently, is known that 

the hallmark of this genetic disease is the deregulation of gene expression profiles and disruption of 

molecular networks which are deployed, in most cases, by mutations and changes in DNA 

methylation (Sadikovic, Al-Romaih, Squire, & Zielenska, 2008). 

Life expectancy increase comes at the cost of higher incidence of some diseases. A good example 

is the cancer incidence. The World Cancer report done in 2014 by World Health Organization (WHO) 

has shown the increasing from 12.7 million in 2008 to 14.1 million cancer incidences and that this 

numbers tend to rise a further 75%, which leads to 25 million cases panorama over the next two 

decades (Stewart & Wild, 2014). 

There are at least 200 forms of cancer and many more subtypes. Over the past few years, a lot of 

efforts have been put in order to better understand the complexity of the disease by developing 

methods of treatment, early detection and prevention. The Cancer Genome Atlas (TGCA) (The Cancer 

Genome Atlas - National Human Genome Research, 2017) is a comprehensive and coordinated 

collaboration between the National Cancer Institute (NCI) and National Human Genome Research 

Institute (NHGRI) that aims is to understand the molecular basis of cancer that can be achieve 

through the application of genome analysis techniques like large-scale genome sequencing. Like 

TGCA, there are other projects in this field with the same or similar objectives, for instance, the 

International Cancer Genome Consortium (ICGS) (Consortium, 2017) and the Cancer Genome 

Project from Sanger Institute (Sanger Institute, 2017).  Databases and web tools like Cancer 

Genomics Hub (CGHub), European Genome-phenome Archive (EGA), Catalogue Of Somatic 

Mutations In Cancer (COSMIC), Cancer Program Resource Gateway (CPRG), Broad’s GDAC, 

SNP500Cancer, canEvolve, MethyCancer, SomamiR, Cancer Genome Work Bench (CGWB), among 

others more are also available (Yang et al., 2015). Along with the growing number of cancer projects, 

databases and web tools for cancer genomics, the number of collected data types in the field is 

increasing exponentially. However, despite the existence of few computational models to combine the 

different data types of cancer genomics, there is a lack of effective bioinformatics tools to centralize 

these different data types in an integrative analysis (Kristensen et al., 2014; Shen, Olshen, & Ladanyi, 
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2009). 

  Logic Programming (LP), uses logic and inference mechanisms to represent different information 

and provide logical outcomes (Kowalski, 1988).    

In the early 1970, Prolog emerged as a programming tool to solve problems in artificial intelligence 

fields (Bratko, 1987; Kowalski, 1988). Prolog is a programming language for symbolic and non-

numeric computation that is especially well suited for solving problems that involve objects and 

relations between objects (Bratko, 1987).  

Probabilistic Logic Programming (PLP) is a probabilistic extension of LP that explores uncertainty 

by incrementing probabilities within the program code. This allows to infer and estimate parameters 

to further obtain organized probable cases instead of uncertainties (De Raedt & Kimmig, 2015).  

 Problog is a probabilistic extension of Prolog that defines a probabilistic distribution over logic 

programs by specifying, for each clause, the probability that it belongs to a randomly sampled 

program (De Raedt, Kimmig, & Toivonen, 2007). 

Combining probability and logic for dealing with complex relational domains, such as the different 

cancer data types, can be a challenging and interesting study.  As an example, Problog programs can 

be developed to learn new knowledge by encoding complex interactions in heterogeneous datasets. 
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1.2  Objectives  

The principal aim of this thesis is to use Problog, a probabilistic logic programing language, to 

learn relations across data obtained from a cohort of cancer patients in multi-level genomics datasets 

(expression, methylation, genomic and clinical). We selected a specific cancer type, stomach cancer, 

to test and develop the proposed methodology.  

The first goal will focus on the development of processing and formatting strategies in order to 

prepare unprocessed datasets. This goal aims to create a representation that provides a knowledge 

base for our PLP framework. Through the review of literature, additional knowledge base (KB) facts 

are included as domain knowledge.  

Once the knowledge KB is created, the second goal of the thesis consists in generate a set of 

queries to allow the discovery of new insights. In particular, we are interested in developing queries 

that given the genomic and clinical characteristics of a patient allow evaluating its probability of having 

a certain cancer subtype. 

 

More specifically, the thesis goals are: 

 Retrieve cancer data from TCGA, in particular datasets that assay: 

o Gene expression. 

o Mutations. 

o Methylation. 

o Clinical. 

 Develop a general workflow to subject unprocessed genomic cancer data 

o Apply different approaches in order to process and format the cancer data. 

o Create files that store the processed data. 

 Create a knowledge base in Problog describing the processed data 

o Encode cancer background knowledge and processed genomic datasets into 

facts and rules. 

 Formulate accurate questions (queries) to the knowledge base in order to discover novel 

relations in the data. 

 

In the next chapter, we provide both computational and biological background for remainder of 

the thesis. A brief review will be provided on the three main topics of the thesis: Logic Programming, 

Probabilistic Logic Programming and Gastric Cancer.  
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2.  State of Art 

In the first part of this chapter we start by an introduction to logic programming and its main 

concepts, which will be necessary to later introduce the Problog language, the probabilistic extension 

of a logic programming language.  

In the second part of the chapter, an overview about genomics of gastric cancer will be provided. 

2.1  Logic Programming 

Programming paradigms (PP) are the result of ideas about how computer programs should be 

constructed and can be defined as a set of coherent abstractions used to effectively model a 

problem/domain that allows the classification of programming languages (Gamper, 2015). There are 

several PP, however, four of them – Imperative, Functional, Logical and Object-oriented – can be 

highlighted since these four are the most common (American Dictionary Language Edition, & 

Merriam-webster, 2013). 

Historically, logic programming as a field has its roots going back to 1915 to 1930. However, since 

there were no computers to run the logic procedures developed at that time, nobody was able to think 

in terms of programming. With the computers arrival in the early 1950’s, the first attempt to encode 

the 25 years old logic methods was realized by Evert Beth and followed by many others. Regardless, 

all the efforts made through all these years in logic programming field, it was only at the beginning of 

the 1970’s that LP had an abrupt paradigm change which was leaded by the creation of Prolog by 

Alain Colmerauer and Robert Kowalski (Lloyd, 1983). Although many different LP languages emerged 

since that decade, the current LP paradigm stands similar. 

The effort to apply a universal definition to LP has generated a lot of controversy and different 

definitions. Kowalski defines LP shared with mathematical theorem proving as the use of logic to 

represent knowledge and the use of deduction to solve problems by deriving logical consequences 

(Kowalski, 1988). Contrariwise, Carl Hewitt defines LP broadly as “using logic to deduce 

computational steps from existing propositions” (Hewitt, 2008). 

Logic Programming is part of the logical paradigm. A logic program is, basically, composed by a 

set of axioms that defines relations between objects. In this context, an axiom is a statement taken 

as true that serves as a starting point for further reasoning. They are represented by clauses that are 

either a fact or a rule (Kowalski, 1988). A detailed description of both types of clauses is provided in 

the next section of this chapter.  

Rather than viewing a computer program as a step-by-step description of an algorithm, the 

program is conceived as a logical theory, and a procedure call is viewed as a theorem of which the 
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truth needs to be established. Thus, executing a program means searching for a proof. A logic program 

concentrates on a declarative specification of what the problem is and differs from imperative 

programs since these last ones concentrates on a procedural specification of how a problem needs 

to be solved. Furthermore, LP is much closer to mathematical intuition than imperative programming 

(Sterling & Shapiro Ehud Y., 1999; Tzafestas, 1995). 

The LP machine model (abstraction of the computer on which programs are executed) is not a 

dynamic one. Computer plus program represent a certain amount of knowledge about the world, 

which is used to answer queries (Tzafestas, 1995). 

2.1.1  Prolog 

Prolog roots emerged in the early 1971, as a result from the work of Alain Colmerauer and Robert 

Kowalski based in a natural language question-answering system developed at Marseille (Kowalski, 

1988; White, 1989). However, the current form of this language was only obtained in the late 70s by 

Kowalski and colleagues in the UK (White, 1989). Actually is one of the most LP languages widely 

known.  

The Prolog usage for solving real-world situations relies mainly in AI problems. However, its usage 

has a huge range of applications. Table 1 display some applications of Prolog in real cases. 

Table 1 - Real-world Prolog applications. 

Field Application Description Reference 

Decision 

Support 

Systems 

“Options Trading 

Analysis System” 

(OTAS) 

Stock options analyses and 

investment strategies. 

(Tsadiras, 2009) 

“RoadWeather Pro” Expert weather advisor (Spreitzhofer, 

1997) 

Natural 

Language 

Processing 

“CAT2” Analysis, generation and translation 

of natural language sentences 

(Sharp, 1988) 

“LMT” Machine that performs the 

translation of English to German 

(McCord, 1989) 

Knowledge 

Base System 

“AGATHA Electronic 

Diagnosis Knowledge 

Based System” 

Test and diagnose complex printed 

circuit boards 

(Allred, Preist, 

Bennett, & Gupta, 

1991) 

Scheduling 

and Planning 

CAS/FPS Multi-criteria design that provide a 

computer-aided synthesis of the 

production plans and schedules 

from the possible building 

elements 

(Tsadiras, 2009) 
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Table 1 - Real-world Prolog applications (continuation). 

Field Application Description Reference 

Computer 

Vision 

GEONS Recognize the class of a 3-D 

volumetric object in an image 

(Dickson, 2003) 

Game Playing Chess Prediction of moves (Bain, 1994) 

 

The Prolog mechanics includes pattern matching, tree-based data structuring and automatic 

backtracking. This small set of basic mechanisms makes Prolog especially well suited for problems 

that involve objects and relations between them (Bratko, 1987). A Prolog program is written as a set 

of facts and rules defining the relationships between data items (Predicates, 2001). 

Prolog Syntax 

The Prolog system recognizes the type of an object in the program by its syntactic form. This is 

possible because the syntax of Prolog specifies different forms for each type of data objects and no 

additional information (such as data-type declaration) has to be communicated to Prolog in order to 

recognize the type of an object (Bratko, 1987). 

Terms 

The basic structure in Prolog is a term. There are four kinds of terms: atoms, numbers, variables 

and compound terms (Endriss, 2016; Predicates, 2001).  

Atoms. May be strings, starting with a lowercase letter, made up of lower and uppercase letters, 

digits, the underscore, any series of arbitrary characters enclosed in single quotes and strings made 

up solely of special characters like + - * = < > : &. 

Numbers. Integers or floats. 

Variables. Start with a capital letter or an underscore. Represented as strings of letters, digits and 

underscore. They are unbound values that will later be attached to data. 

The underscore may be used and constitutes a special case, which is named anonymous variable. 

This is the only variable where different occurrences represent different variables.  

Compound terms. Made up by a functor – a Prolog atom – and a number of arguments – Prolog 

terms like atoms, numbers, variables or other compound terms – enclosed in parenthesis and 

separated by commas. A set of compound terms and atoms together form the set of Prolog predicates 

and a term that does not contain any variables is called a ground term. 
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Clauses and Queries 

Prolog programs are made up by facts and rules. Facts and rules are also called clauses, which 

are axioms. A sequence of clauses is a Prolog program. Prolog programs are encoded in a knowledge 

base where queries are submitted in order to retrieve information from it.  

Facts. The intuitive meaning of a fact is that we define a certain instance of a relation as being 

true. A fact must start with a predicate, which is an atom and end with a full stop. The predicate may 

be followed by one or more arguments, enclosed by parentheses. Those arguments are separated by 

commas and may be atoms, variables or numbers. 

Rules. Consists of a head (predicate) and a body (sequence of predicates separated by commas). 

The head and the body are separated by the sign :-  which represents a condition (if). Like every 

Prolog expression, has to be terminated by a full stop. The intuitive meaning of a rule is that the goal 

expressed by its head is true if the Prolog system can demonstrate that all the subgoals in the rule’s 

body are true. 

Queries. Represent statements starting with a predicate and followed by arguments. The predicate 

must have appeared in at least one fact or rule of the program. Usually are entered at the Prolog 

prompt. When a query is submitted, Prolog tries to verify if all the query predicates are true. 

 

Table 2 exemplifies each simple Prolog syntax structure with examples. 

 

Table 2- Basic Prolog syntax examples. 

Basic Constructs Examples 

Terms 

 

Atoms 

 
banana        b       acbXYZ        y_333       

hello_world_again    +       <---->    *** 

Numbers -2    -1    0    3     16.403 

Variables 
X     Banana    _333    X_1      MyVariable     _ 

Compound terms date(1, may, 1983)    point(X,Y,Z)     ‘My 

Functor’(animal) 

Clauses Facts parent(pam, bob).      smokes(someone). 

Rules 
offspring(Y,X) :- parent(X,Y).      

 is_smaler(X,Y) :- is_bigger(Y,X). 

Queries  
?- offspring(liz,tom).      

?-is_bigger(elephant, donkey).     

?-small(X), green(X), slimy 
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2.2  Probabilistic Logic Programming 

Probabilistic Logic Programs are logic programs in which facts are annotated with probabilities 

(Fierens, Van Den Broeck, & Renkens, 2013). Emerged from AI, PLPs principal goal is to extend logic 

programming languages with primitives to support probabilistic inference and learning.  

The number of probabilistic logics has been increasing significantly with PRISM, PHA, SLPs pD 

and MLNs being the most used ones (De Raedt et al., 2007; Dries et al., 2015).  

The major goal of this programming paradigm is to provide efficient tools for modelling and 

reasoning about uncertain domains that can arise from several different fields. Besides the 

resemblance with statistical relational learning (SRL), the art of probabilistic programming is more 

focussed on a programming language perspective rather than on a graphical model one (Dries et al., 

2015).  

2.2.1  Problog 

The Problog language is a probabilistic programming language derived and extended from Prolog 

along the lines of Sato’s distribution semantics (Dries et al., 2015). Such semantics defines the join 

of probabilistic choices with a logic program results in a distribution over possible worlds (DTAI, 2015). 

As De Raedt and colleagues (De Raedt et al., 2007) defines “Problog is the simplest probabilistic 

extension of Prolog one can design.”. 

Problog allows the user reasoning with relational data, parameters learning and dealing with 

uncertainty. These Problog characteristics allows Problog programs to encode complex interactions 

between large sets of heterogeneous components as well the uncertainties that are exclusively related 

to real-life events (Dries et al., 2015).  

In order to perform its fundamental task, which is the efficient computation of a query’s successes 

probability, Problog apply different inference methods and employs several state-of-the-art 

technologies (Mantadelis & Rocha, 2017).  

From a modelling perspective, Problog programs have two different parts: 

 

I. Probabilistic part 

II. Logical part 

 

Part I defines a probability distribution over truth-values of a subset of the program’s atoms and 

part II derives truth-values of remaining atoms using a reasoning mechanism similar to Prolog. (Dries 

et al., 2015). 
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In terms of usage, Problog has not been quite explored and used for solving real-world biological 

issues. Only few studies on the application of this language to biological data have been published. 

Some of Problog studies include: 

 Ong & Lewis (Ong & Lewis, 2012) introduced logic-based regulation models in order to 

prove that network hypothesis can be generated from existing gene expression data. 

 Perez-Iratxeta  (Perez-Iratxeta, Bork, & Andrade, 2002) developed a scoring system for the 

relationship of human genes to 445 inherited diseases from certain chromosomal regions 

that have not been associated with any particular gene. 

Problog Syntax 

The fundamental difference between Prolog and Problog is that Problog supports probabilistic 

predicates. Alongside with the Prolog syntax, Problog introduces an additional operator :: and two 

predicates (query and evidence). 

 

The query predicate enables and represents the inference task that the user may want specify 

according to the goal. The evidence predicate allows specifying atoms that are known to be true or 

false. 

 

The :: operator allows to associate a probability P to a certain fact considered truth, i.e. P :: fact. The 

association of probabilities to facts may result in two distinct types of facts: 

 Non-probabilistic facts are not associated to probabilities, thus, considered as completely 

true. They can be represented without the variable P and the additional operator ::. However, 

these are easily transferred to probabilistic facts through the association of the variable P the 

value of 1.0. Both forms can be ground or not-grounded facts. The former one is related to 

cases when all variables are instantiated (assume a constant value) and the later is related 

to cases where not all the variables are instantiated.  

As an example, father(X,Y). is a non-probabilistic and not-grounded fact which is equivalent 

to its probabilistic form 1.0::father(X,Y). 

 Probabilistic facts are divided in two forms: probabilistic facts and intensional probability 

facts. The former fact form is Pi::Fi which can be translated as the probability of grounded Fi 

representing random events. The true assignment is Pi. The later has the following form: 

P::f(X1,X2,…,Xn) :- body, where body is a conjunction of probabilistic and non-probabilistic 

facts defining the domain of variable X1, X2, …, Xn which can be translated into a set of facts 

with the same probability P if the body is true. 
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However, intensional probabilistic facts have a particular characteristic. Due to Problog2 

engine, intensional probability facts support flexible probabilities. This means that the 

probability is not pre-specified but it is an arithmetic expression that needs to be computed. 

 

A simple Problog program example that aims to provide a general overview of the language syntax 

is presented at appendix I. 

2.3  Gastric Cancer 

Gastric cancer is one of the most common cancers worldwide. Although, due to the recognition of 

certain risk factors such as H. Pylori and other dietary and environmental risks, the GC incidence has 

declined rapidly over the recent decades. Alongside with additional stomach cancer features, such as 

epidemiology, pathology and etiology, the breakthroughs on GC genetic and epigenetic alterations 

considered genomic instability as the major trace for the GC development.  

Several reports that use different techniques to study GC have been created in order to obtain a 

better understanding about its genomics, i.e. The Cancer Genome Atlas (TCGA). In the mentioned 

report, a new molecular stomach cancer classification was established. This new classification model, 

divided the stomach cancer into four subtypes: EBV, MSI, GS and CIN.  

The genomic stomach cancer datasets involve three main types of data: genetic expression, 

mutations and methylation. Gene expression measures the activity/expression of a set of genes to 

create a global picture of cellular function. Mutations are characterized by permanent alterations of 

the nucleotide sequence. DNA methylation is a process where methyl groups are added to DNA, 

which can change the activity of the respective DNA segment without changing its sequence. All this 

three genomic events are stored respectively in genetic expression datasets, mutations datasets and 

methylation datasets, respectively.  

 

The next topics of this section are intended to provide a broad understanding about the stomach 

cancer. The aims of these topics are: 

 Provide a general overview about GC; 

 Describe the basic mechanisms that are inherent to GC; 

 Describe the genomic data on GC used in this thesis; 
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2.3.1  General Overview 

Gastric cancer has been classified as one of the most common deadliest cancer worldwide (Qu, 

Dang, & Hou, 2013). Like many other cancer types, most of the GC cases are adenocarcinomas. It 

can be divided and classified in different subtypes and stages, with variable clinical utility (Bass et al., 

2014).  

Epidemiology 

The high rates of GC incidence are comprehended between 60 to 80 years old individuals with a 

male preponderance. However, amplified geographic distribution studies shows that this age range is 

not standard for all countries and regions. India is the best example where the age range is much 

lower (35 to 55 years). Although the GC incidence in individuals younger than 30 years old are highly 

rare, they also occur (Nagini, 2012; Stewart & Wild, 2014). 

Countries that have poor systems of dietary patterns, food storages and control of Helicobacter 

Pylori are the most likely to have high incidence and mortality rates. Unlike North America and Africa, 

Eastern Asia, Eastern Europe and South America are the documented regions with higher GC 

incidence rates (Nagini, 2012). 

Pathology 

The stomach cancer cases are, approximately 95%, epithelial in origin and designated 

adenocarcinomas. Any malignant neoplasm that arises from the region extending between the 

gastroesophageal junction and the pylorus are considered a case of stomach cancer (Nagini, 2012). 

The World Health Organization and the Lauren classification systems are the two major histological 

classification systems that describes the types of gastric cancer. The system derived from the World 

Health Organization divides gastric cancer into papillary, tubular, mucinous and poorly cohesive 

carcinomas. The Lauren classification system divides gastric cancers into intestinal and diffuse types 

(Bass et al., 2014). 

Intestinal GC types are most common in men and with a better prognosis. It arises from 

precancerous lesions and can be influenced by environmental factors such as H. Pylori infections, 

obesity, among other factors. Diffuse GC types are most frequent in women and younger individuals. 

It is related to endemic areas which suggests a genetic susceptibility since it is associated with blood 

group A (Nagini, 2012). 
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Etiology 

GC etiology is considered a multifactorial and multistep process accompanied by accumulation of 

alterations of critical growth regulatory genes (Wu et al., 2005). The major cases are attributed to H. 

Pylori, genetic, lifestyle, diet and socioeconomic factors (Nagini, 2012). The majority of GCs are 

associated with infectious agents that vary across the globe. H. Pylori and Epstein-Barr virus (EB V) 

are the most common infectious agents (Bass et al., 2014). 

Although these factors contribute in a large scale for the etiology of GC, its development is a 

complex and progressive process deep-seated to genetic and epigenetic alterations. 

Genetic and Epigenetic alterations  

Genetic and epigenetic alterations represent an extreme important role concerned to GC. Alongside 

all etiological factors, they are associated to GC episodes and can occur in oncogenes, tumor 

suppressor genes (TSGs), DNA repair genes, cell cycle regulators and signalling molecules. The major 

trace of GC is the genomic instability which could be either microsatellite instability (MSI) or 

chromosomal instability (CIN) (Nagini, 2012). 

 MSI. Results from errors in DNA replication and represent 15-20 per cent of GC with a 

higher incidence in familial cases.  

 CIN. Manifests as a gain or loss of aneuploidy or parts of chromosomes. It is the most 

common instability in sporadic GC cases. 

 Oncogenes. Activation or amplification of several oncogenes through mutations in 

oncogenes may enhance the development of GC cases. In example, mutations at the 

codon-12 of the K-ras oncogene was found (Nagini, 2012). 

 Tumor Suppressor Genes. Inactivation, deletions and hyper methylations of TSGs lead to 

aggressive progress of GC. In example, the p53 gene is frequently inactivated in gastric 

carcinomas as well in precursor lesions by LOH, missense mutations or frameshifts 

deletions (Yamashita, Sakuramoto, & Watanabe, 2011). 

 Cell Cycle Regulators. Over and aberrational expression and downregulation of cell cycle 

regulators influence negatively the prognosis of GC types. In example, overexpression of 

cyclin E and CDK together with aberrant p53 expression and downregulation of p27 is a 

common event in gastric cancer (Bani-hani, Almasri, & Khader, 2005).  
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2.3.2  TCGA Report 

Although all the efforts put in order to facilitate and upgrade the diagnostic of GC, this type of 

cancer is often diagnosed at an advanced stage and the prognosis is still poor (Qu et al., 2013). 

Therefore, a classification based only on histology is not totally able to distinguish different molecular 

subtypes and, as a consequence, is not possible to develop a targeted therapy in cases of GC. Hence, 

the need for a new classifier based on molecular biology is needed (Lin, Wu, Guo, & Li, 2015). In 

order to better understand the genomics of gastric cancer, two huge significant seminal reports that 

used Next-Generation-Sequencing (NGS) technique were developed. One report was done by The 

Cancer Genome Atlas (TCGA) and the other by the Asian Cancer Research Group (ACRG) (Katona & 

Rustgi, 2017).  

The TCGA study evaluated 295 treatment-naïve primary gastric adenocarcinomas from multiple 

centers where several analysis including copy number analysis, whole-exome sequencing, DNA 

methylation and RNA analysis, microsatellite instability testing and, for a specific selected group of 

tumours, whole genome sequencing, were developed (Katona & Rustgi, 2017). The goal of this study 

was to develop a robust molecular classification of GC. A more detailed process about the methods 

and analyses perform in the TCGA study, is present in this report paper (Bass et al., 2014). 

The final result of this report was a new molecular classification that divides GC into four major 

subtypes:  

 EBV – infected tumours by the Epstein Virus; 

 MSI – tumours that show Microsatellite instability;   

 GS – genomically stable tumours; 

 CIN – chromosomally unstable tumours. 

 

2.3.2.1  Important TCGA data of GC 

According to the thesis goals, it is important to have a larger knowledge about the following 3 types 

of TCGA genomic data referent to gastric cancer, which are: 

 

 Mutations data 

 Gene expression data 

 DNA methylation data 
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Mutations 

The DNA sequence of a gene can be altered in a well-defined number of ways which can have a 

large spectrum of results. The impact of the mutations depend on where they occur within the gene 

and whether they alter the function of essential genes (Stewart & Wild, 2014).  

The advances in Next Generation Sequencing (NGS) as well in bioinformatics and computational 

tools have provided an abrupt development of several approaches to identify both new and known 

somatic mutations (Hsu, Hsiao, Kao, Chang, & Shieh, 2017; Illumina, 2015b). The genomic 

technique used for sequencing the majority of TCGA samples was the Whole Exome Sequencing 

(WES), which is a very cost-effective alternative to Whole Genome Sequencing (WGS). Differently from 

WGS technique, WES consists on sequencing only the coding genome regions which, is known as the 

exome (Magi et al., 2014). Studies like Magi and colleagues, (Magi et al., 2014), Przytycki and Singh 

(Przytycki & Singh, 2017) and Hsu and colleagues (Hsu et al., 2017) support the conclusion that 

WES is a very useful technique to discover and identify somatic mutations that can be common and 

rare single nucleotide variants (SNVs), small indels and breakpoints of structural variation. 

There are 7 common types of mutations, represented in Figure 1 retrieved from U.S. National 

Library of Medicine. These types of mutations can occur in the process of development and 

maintenance of any kind of cancer.  
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Figure 1 - Seven types of common mutations. (a) missense mutation; (b) nonsense mutation; (c) insertion mutation; (d) 
deletion mutation; (e) repeated expansion mutation; (f) frameshift mutation; (g) duplication mutation. All the represent 

examples were retrieved and adapted from U.S. National Library of Medicine. 
 

In the review of gene mutations in GC wrote by Lin and colleagues (Lin et al., 2015), the authors 

emphasize the need to full understand and learn the genetic composition of GC and construct a 

classifier that can guide clinical decisions. In order to overcome that needs that they appoint on the 

paper, the authors focused on newly discovered potential driver genes mutation in GC along with a 

short introduction to some establish and well-known driver mutations present at the TCGA database. 
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Genetic Expression 

Gene expression is the process by which the genetic code – the nucleotide sequence – of a gene 

is used to direct protein synthesis. Expressed genes include genes that are transcribed into mRNA 

and further translated into protein, as well as genes that are transcribed into RNA, such as transfer 

and ribosomal RNAs, but not translated into protein (Morange, 1999). 

The amount of mRNA produced during transcription provides a measure of the activity level of 

genes. Gene expression data reflects the disease state. These measurements are performed with 

microarrays and high-throughput sequencing of RNA. More concretely, these technologies are used 

to identify the gene expression levels between different experiments and/or to identify similarly 

expressed genes over multiple experiments. The results are represented in a gene expression matrix 

(GEM) that is structured with genes in the rows, the experiments in the columns and each cell in the 

matrix represents a normalized gene expression value (Fakoor, Ladhak, Nazi, & Huber, 2013). 

The gene expression is represented in a quantitative way through Reads Per Kilobase Million 

(RPKM), Fragments Per Kilobase Million (FPKM) or Transcripts Per Kilobase Million (TPM) measures. 

All these three measures attempt to correct sequencing depth and feature length. To compare the 

expression levels of a transcript across runs, the count of reads must be normalized (Soneson, Love, 

& Robinson, 2016).  

RPKM and FPKM are commonly used measures of gene expression. However, they present some 

limitations. To overcome some of the limitations of these two measures, the TPM measure has been 

proposed and now has been widely used. The TCGA gene expression data is available in a GEM matrix 

with the gene expression values derived from a FPKM formula (1). 

                                                    𝐹𝑃𝐾𝑀𝑖 =
𝑋𝑖

(
�̃�𝑖

103)(
𝑁

106)
=

𝑋𝑖

𝑙𝑖𝑁
∙ 109 (1) 

Xi – number of counts (number of reads that align to a particular feature) 

l̃i -  effective length (number of possible start sites a feature could have generated a fragment of that particular length) 

N – total number of reads sequenced 
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DNA Methylation  

DNA methylation is a major epigenetic factor that influences gene activities. It is catalysed by a 

family of DNA methyltransferases (Dnmts) which function consists in perform a transfer of a methyl 

group from S-adenyl methionine (SAM) to the fifth carbon of cytosine residue. This transfer results in 

5mC which is a normal cytosine nucleotide that has been modified by the addition of a methyl group 

(Moore, Le, & Fan, 2013). Dnmt1 gene codify Dnmt enzyme that is involved in maintaining the 

methylation during the DNA replication while Dnmt3a and Dnmt3b genes codify the enzymes involved 

in the novo methylation processes to unmodified DNA strands (Moore et al., 2013; Qu et al., 2013).  

It is also known that DNA methylation in different genomic regions may exert different influences 

on gene activities based on the underlying genetic sequence (Moore et al., 2013; Qu et al., 2013). In 

general, increased methylation profiles in the promoter region of a gene results in a reduced gene 

expression which leads to the conclusion that the occurrence of methylation in the transcribed region 

can have a variable effect on gene expression (Qu et al., 2013). 

There are three different genomic regions were DNA methylation is more prominent: 

 Intergenic Regions (DNA sequences regions located between genes, i.e. regions that do 

not code for genes). 

 CpG Islands (regions that have higher CpG density which frequently are not methylated 

when compared to the rest of the genome). 

 Gene Body (region between the first and last exon; methylation of those regions are related 

to variable levels of gene expression). 

  

The initiation and progression of GC cases are extremely affected by promoter methylation and an 

aberrant methylation of a number of genes with different functions is significantly associated with the 

pathology of this types of cancer (Qu et al., 2013). Particularly, the methylated region that is often 

associated with cancer cells is CpG Islands (Siegmund & Laird, 2002).  

Of the different technologies to assay methylation status we will focus on those based on DNA 

Microarrays. This technology remains universally used because the low-cost, high-throughput nature 

and the possibility to work alongside other techniques (Meaburn & Schulz, 2012).  Among the many 

chips used for the performance of this technique, the Infinium HumanMethylation450K Bead Chip 

array by Illumina is the most common. This array technique pursuit differentially methylated specific 

regions, specifically gene promoter regions, and measure DNA methylation using a quantitative 

“genotyping” of bisulfite-converted genomic DNA (Illumina, 2015a). The integrated software analysis 

from this technique display valuable information such as chromosomal coordinates, GC percent, 

location in a CpG Island and the methylation β-values (Kurdyukov & Bullock, 2016).  
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Methylation β-value is the current unit of methylation level measurement and it is the 

recommended method by Illumina. Since, as mentioned above, DNA methylation arrays are usually 

restricted to the comparison between methylated and unmethylated CpG, Illumina Infinium assay 

resort a pair of probes – one methylated and the other unmethylated – which measure the methylation 

level through an accurate method – β-value (Du et al., 2010). The β-value is calculated as the ratio 

of the methylated probe intensity and the overall intensity through the formula (2): 

                                              𝐵𝑒𝑡𝑎𝑖 =
𝑚𝑎𝑥(𝑦𝑖,𝑚𝑒𝑡ℎ𝑦,0)

max(𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ𝑦,0)+𝑚𝑎𝑥(𝑦𝑖,𝑚𝑒𝑡ℎ𝑦,0)+𝛼
 (2) 

𝑦𝑖,𝑚𝑒𝑡ℎ𝑦 - intensity measured by the 𝑖𝑡ℎ methylated probe 

𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ𝑦 - intensity measured by the 𝑖𝑡ℎ unmethylated probe 

α – constant offset (100 by default) 

 

The α constant is recommended by Illumina in order to regularize the β-value in cases where both 

probes intensities (methylated and unmethylated) are low. As a result, a number ranging from 0 to 1 

is the output. To interpret the results, is necessary to understand that, generally, a 0 value indicates 

that no methylated molecules occur in the respective CpG site and a value of 1 indicates that every 

copy of the CpG site was methylated (Du et al., 2010). 
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3.  Methods 

3.1  Data 

In order to create a Problog knowledge base (KB), which codes all different types of cancer 

genomic data to further management and exploration, it is first necessary to download all the 

respective datasets. The relevant data have their origins on TCGA studies and was retrieved from 

TCGA Data Portal (TCGA Data Portal, 2017) and cBioPortal (Cerami et al., 2014; Gao et al., 2013).  

The downloaded datasets must be properly organized as text files into the different types of 

genomic data. The relevant cancer genomic data covers mutations, gene expression, methylation and 

clinical data. 

In this project we will focus on the stomach cancer genomic data. Given that the supervisor is part 

of a group dedicated to research on stomach cancer, the choice of this cancer model allows to take 

advantage of the expertise in this model and to be able to discuss results with other experts within 

the group. 

The mutations and metadata datasets were retrieved from cBioPortal Data Sets menu, named as 

Stomach Adenocarcinoma (TCGA, Nature 20014). All the others datasets were retrieved from the 

TCGA Data Portal repository through a created manifest that contain the data for the download of the 

required datasets. 

All the downloaded datasets are described in the next section of this chapter. Most of them are 

very large text files. The full use of these original datasets would originate a very large Problog KB. 

Therefore, in order to facilitate the KB construction, all the cancer genomic data needs to be loaded 

as processed csv files to form the facts of the Problog knowledge base.  

In order to yield and provide a filtered, selected and concise dataset, which can then be loaded to 

the Problog KB, we have developed an oriented pre-processing and formatting program. The Problog 

KB and the previously mentioned program are further described in the next chapter. 

3.2  Datasets 

All datasets can be categorized into one of the following four categories: metadata, gene 

expression, mutations and methylation. 

It is possible that some categories may have more than one file containing different information, 

which is case of metadata and methylation classes for the stomach cancer. 

In order to efficiently run the pre-processing program, the different datasets must follow a precise 

structure. Those requirements are described within this section and represented in Table 3. 
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Table 3 - Required structure of downloaded datasets. 

 Columns 

Data Type File Name Must have May have 

Metadata data_clinical_patient.txt PATIENT_ID * 

AGE 

GENDER 

RACE 

ETHNICITY 

COUNTRY 

LAUREN_CLASS 

data_clinical_sample.txt PATIENT_ID * 

CANCER_SUBTYPE  or 

MOLECLAR_SUBTYPE 

TNMSTAGE 

Mutations data_mutations_extended.txt Hugo_Symbol 

Gene 

Variant_Classification 

Tumor_Sample_Barcode *, ** 

 

- 

Methylation files names differ Beta_value 

gene_symbol 

submitter_id 

- 

Genetic 

Expression 

file name may differ Tumor_Sample_Barcode *, **  

- 

* the PATIENT_ID and Tumor_Sample_Barcode columns contains the same information since the second column is a copy of 

the first with an additional version number. All the versions numbers were truncated to transform those different columns as the 

same one, which facilitates the further steps applied. 

** genetic expression matrix must have the Tumor_Sample_Barcode in the columns and the gene ensembl ID in the rows. 

 

3.2.1  Metadata 

The metadata is defined as data that provide information on other data. It is useful to summarize 

basic information about data.  

Two datasets concerning stomach cancer metadata were downloaded, which are: 

 Data_clinical_patient.txt (1) 

 Data_clinical_sample.txt (2)  

 

 

The metadata dataset (1) contains additional information about the patients, such as their age, 

gender, among others. 

 

 

 



21 

 

 

Table 4 – Representation of the metadata dataset (1).  

Note that only the relevant features were represented. 

Most Important Features Data Type Feature Example 

PATIENT_ID String TCGA-B7-5816-01 

TCGA-B7-5818-01 

AGE Numeric 51.19 

62.4 

GENDER String FEMALE 

MALE 

RACE String WHITE 

WHITE 

 

The metadata dataset (2) contains information about the samples, such as the respective cancer 

subtype, cancer stage, among others. 

Table 5 – Representation of the metadata dataset (2). 

Note that only the relevant features were represented. 

Most Important Features Data Type Feature Example 

SAMPLE_ID String TCGA-B7-5816-01 

TCGA-B7-5818-01 

MOLECULAR_SUBTYPE String MSI 

EBV 

TNMSTAGE String Stage_IIB 

Stage_IB 

 

3.2.2  Mutations Data 

Typically, the TCGA mutations datasets contains mutations identified by whole exome sequencing. 

The genomic somatic mutations dataset for stomach cancer has the structure described in table 6. 

 

 data_mutations_extended.txt (3) 

 

The mutations dataset (3) stores several columns with information regarding the occurred 

mutations registered by sample. However, the focused features were Tumor_Sample_Barcode, 

Hugo_Symbol, Variant_Classification and Gene. 
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Table 6 – Representation of the mutations dataset (data_mutations_extended.txt ). 

All these features may have duplicates values and the first dataset row is often a version number, which is necessary to be 

manually removed. In addition, all of them are string data type and may contain missing data. 

Most Important Features Data Type Feature Example 

Tumor_Sample_Barcode String TCGA-B7-5816-01-Tumor-SM-1V6U3 

Variant_Classification String Missense_Mutation 

Hugo_Symbol String KLHL17 

Gene String ENSG00000187961 

 

The Tumor_Sample_Barcode column represent the samples subjected to the WES technique. All 

samples have an associated code, i.e. ‘Tumor-SM-1V6U3’.  

The Variant_Classification column displays the type of somatic variant that is related to the impact 

of a DNA change. This is a very relevant feature since it can be used in the Problog KB as evidence 

in order to discard silent variants.  

Each row of Gene and Hugo_Symbol columns are referent, respectively, to the ensembl gene ID 

and the common gene name. 

3.2.3  Gene Expression Data 

As mentioned in the previous chapter, FPKM is a measure of quantification of gene expression, 

i.e. the abundance of the copies of a certain mRNA molecule in the cell. The measure is normalized 

to allow intra and inter sample comparison. It values range from [0, +Inf[, typically following a power-

law distribution per sample.  

The stomach cancer gene expression dataset has the structure described in table 7. 

 

 STAD.fpkm.txt (4) 

 

Table 7 – Representation of the gene expression dataset (STAD.fpkm.txt).  

The FPKM values must be a float type and should not exist any missing value. 

       Samples 

Genes 

TCGA-CG-4462-01 TCGA-VQ-A8P3-01 TCGA-D7-A6EV-01 

ENSG00000000003.13 4.75746614662 4.8661575768 4.45552240925 

ENSG00000000005.5 0 0 0 

ENSG00000000419.11 24.1066334708 28.7683191163 66.5659335117 
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The gene expression dataset (4) contains the FPKM values for each gene within a sample identifier 

in a GEM format. Gene ensemble IDs are displayed in the GEM rows and the various samples IDs are 

displayed in the GEM columns. Each row and column is attached to only one gene and sample, 

respectively. The cells of the matrix contain the FPKM values, which characterize the expression level 

of the particular gene in the particular sample.  

3.2.4  Methylation Data 

The methylation data is contained in different text files. Each file corresponds to the methylation 

data of a single gene. Therefore, all the files needed to be combined in a single dataset. 

All the files store several columns with information regarding the occurred methylation level 

registered by sample. However, the focused features were gene_symbol, submitter_id and 

Beta_value. 

For a better illustration of the methylation file structure and contents, Table 8 displays an example 

for the relevant features of the TP53 methylation data file. 

Table 8 – Representation of the TP53 methylation dataset. 

Most Important Features Data Type Feature Example 

gene_symbol String TP53 

submitter_id String TCGA-BR-8284-01 

Beta_value Numeric 0.613699241142926 

 

The gene_symbol column displays the respective gene in a determined probe. Each probe may 

have more than one occurrence of the same gene. In this case, a semicolon must separate the 

different gene names. 

The Beta_value column stores the β-value associated to genes present in the respective probe. 

Represented as the ratio of the methylated probe intensity and the overall intensity, these are float 

values that range from [0.0, 1.0]. 

The submitter_id column maps the β-value of the genes to their respective patient identifier.  

3.3  Genomic Data Arrangement 

All the different types of stomach cancer datasets were primarily processed via individual python 

and R scripts. However, we soon realized the importance and relevance of having a structured and 

streamlined workflow that can be applied to all genomic datasets. This would allow applying to other 
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datasets from other types of cancer. Thus, a substantial effort of the thesis was dedicated to the 

development of a comprehensive and easy-to-use python program. The program was named as 

ProceOmics.  

ProceOmics aims to process and format cancer genomic datasets which are later used by 

probabilistic logic knowledge-bases. In order to achieve this goal, the program relies on data 

dimensionality reduction, feature selection, data processing and data structuring operations resulting 

in the creation of several output files. 

 

Data Dimensionality Reduction 

Due to their large size, the load of the original datasets into the Problog KB can be prohibitive. 

Therefore, it is crucial to perform data dimensionality reduction on large genomic datasets. 

ProceOmics always performs a data dimensionality reduction based on the same approach. This 

method reduces datasets that contains the Hugo_Symbol and/or Gene (Ensembl ID) features. Its 

engine consists in selecting the data that contains a gene with a probability of being mutated in, at 

least, one of the four cancer subtypes, above a pre-defined threshold. The threshold may assume any 

value ranging from 0.0 to 1.0 and is provided by the user. 

Note that this operation is performed on the mutation datasets. However, the program creates a 

csv file that stores the most mutated genes for a given threshold. The list of genes that have been 

selected in the previous step are then used to reduce the gene expression and methylation datasets. 

 

Feature Selection 

Using all the original datasets features may result in an extensive, redundant and unstructured 

Problog KB. Some of these features will not be considered. Therefore, it is critical to perform a feature 

selection process that filters out all the non-relevant information and only selects the features that 

were considered to be the most important from the cancer genomic datasets. ProceOmics 

automatically performs this process of feature selection for each dataset. The selected features from 

the different types of dataset are mentioned in the section 3.2 of this chapter. 

 

Data Processing 

The data processing operations handle the existence of features with values in a range that may 

cause problems when loading to the Problog KB. Furthermore, since we are working with a 

probabilistic logic programming framework, the probabilities of certain genomic events in the genomic 

datasets need to be estimated. 

All data processing operations consist in a sequence of data processing steps that are applied to 
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specific features of the dataset. The applied distinct data processing operations are dependent on the 

type of dataset and its respective features. ProceOmics data processing steps among others include, 

replacement or withdraw of omitted values, string manipulation, probabilities calculi or duplicate 

removal. All the applied data processing steps are displayed at Table 12 in appendix III. 

 

Data Structuring 

In order to avoid conflicts related to the loading of the genomic datasets in the Problog KB, the 

datasets must follow a specific structure. All datasets must contain a header and a comma that 

separate all the available features. After applying a processing operation on a genomic dataset, 

ProceOmics organizes the respective dataset in conformity to the required structure. This structuring 

procedure is always performed along with data processing operations. 

 

File Creation 

Problog can use various sources to collect pre-established facts. Therefore, we can use this Problog 

property to exchange knowledge between the genomic datasets and our Problog KB. Csv files are 

readable by Problog. Thus, after ProceOmics performs data processing and structuring operation on 

a dataset, the resulting processed and well-structured dataset is stored in a comma-separated values 

(csv) file. The number of csv files created by the program is always dependent on the types of data 

to be handled selected by the user.  

3.4  Problog KB 

How to Use 

In order to use the Problog KB, we call the predicate query on the knowledge base code and run 

the script in command line environment, which returns the query results. Any time we want to query 

the knowledge base, the – >> <ProblogDirectory> problog scriptname.txt – command is executed. 

However, Problog also provides a shell within the command line environment that allows to 

interactively query the knowledge base. 

 

How to Load Data 

All the resulting files from the processing program have a csv format and must be in the same 

directory as the Problog KB.  These files can be loaded into the Problog KB using the library db and 

the predicate csv_load(+Filename, +Predicatename). Each time a file is uploaded into the Problog 

KB, a new fact with a new predicate is created. Therefore, the number of files loaded creates the 

exact same number of predicates.  
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Consider an example of a csv file named test.csv. This file contains data about a person name 

and its respective gender. Assuming that the test.csv file holds the following information: 

 

 

The file may be loaded into the Problog KB as: 

 

 

After use the csv_load predicate to load the information of the test.csv file into Problog, two 

different facts were automatically created with the predicate person_gender. The resulting structure 

look like the following: 

  

 

 

 

The next chapter is devoted to introduce the basic logic underlying the ProceOmics program and 

the Problog KB development. It is divided into the two following sections: 

 

1. ProceOmics Program. 

2. Problog KB. 

 

The first section starts by describing the ProceOmics program structure. It is followed by a briefly 

description of the program menus that performs the processing approaches and a detailed 

explanation of each probability inference mechanism developed and their purpose. The second 

section describes the reasoning under the Problog KB and its contents. It is also dedicated to provide 

the crucial background on the facts that compose rules that are further queried. 

  

"person","gender" 

"John","male" 

"Ruth","female" 

:- use_module(library(db)). 

:- csv_load("test.csv", "person_gender"). 

person_gender("John", "male"). 

person_gender("Ruth", "female"). 
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4.  Development 

4.1  ProceOmics Program 

 The ProceOmics program consists of a python module that uses other sub modules for data 

processing and Problog oriented-formatting. It is user-friendly and based on a menu system. It was 

built with python 3.5 under IDE Spyder. 

As previously mentioned, the main goal of the program consists in performing a concise processing 

and formatting procedures to cancer genomic datasets downloaded from the databases, mentioned 

in chapter 3, section 3.1, to a probabilistic logic programming syntax. The final results are stored in 

csv files that follow a specific structure so they can be loaded to the Problog KB as facts. 

The user must enter options and file names as input. In order to facilitate its usage, all the required 

python scripts are contained within a specific directory called DataProcessProgram. When the 

program processes an input file and writes a new csv file that contains the processed results for the 

first time, it automatically creates a new directory to store the output file, which is named OutputFiles. 

All the remaining new generated csv files will be stored in that same directory. Each of the output files 

the program creates are associated to a different action. The association between the action and the 

respective output file is represented at Table 9 present in appendix II. 

The program flows through interactions between the computer and the user. Each selected option 

is interconnected to another menu until the user reaches a desired one and performs an action. 

Along with the menu where the processing actions are available, the program contains two other 

menus. One of them allows the user to load the files to be processed into the specific directories 

within the program directory and the other menu allows the user to create auxiliary files. 

After all the files are loaded and the auxiliary files created and stored, the program is ready to 

perform the processing approaches at full potential. Although it is possible to use the program without 

applying these last two mentioned menus (Load Input Files menu and Get Auxiliary Files menu), some of 

the processing approaches available may be incomplete. 

In order to process correctly the input data, it is required that the structure of the genomic data 

follows the structure as specified in Tables 3 to Tables 8, even if it refers to different types of cancer.  

 

 

 



28 

 

4.1.1  Program Structure 

The general structure of the program is represented at Figure 2. 

 

 

Figure 2 - ProceOmics structure layout. 

 

The program structure may be compared to a tree data structure where the nodes are the available 

menus and the edges are the possible links between menus. Traceback between linked menus is 

always a possible option. 

The represented leaves represent the core operations of the program. Each single one contains 

different options to choose, with available distinct actions. Each action consists in different processing 

approaches that are applied to the various cancer genomic datasets. Some of the approaches are 

simple and generally applied to most of the datasets while some others are more complex and specific 

to some datasets. 

Although Figure 2 does not represent leaves for the Load Input Files and Get Auxiliary Files menus, 

they also contain different options for the user to choose. However, since none of those menus are 

strictly directed to data processing, their leaves were omitted in the program structure layout due to 

aesthetic reasons. 
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4.1.2  Data Processing Menus  

Simple Data Process Menu 

While in the Simple Data Process menu, the user has five available options to choose and each 

one of them containing different actions. These actions enable the user to apply several processing 

approaches on the intended data.  

All processing approaches are applied to the metadata input files in Metadata menu and to the 

mutations input file in Mutations and ID2Gene menus.  

Along with the feature selection procedure, all the input files are also subjected to very simple 

processing steps, such as non-existing value (NA) transformation\deletion, ambiguous character 

replacement, truncate IDs values, removal of duplicated values, conversion of non-numeric values to 

lower case, rename columns, among others. 

Probabilities Associated to Data Menu 

In the Probabilities Associated to Data menu, the user has four available options to choose and 

again each one of them contains different actions. Similar to the Simple Data Process menu, these 

actions enable the user to apply several processing steps. However, this menu has a particular goal. 

These actions are used to perform specific probability inference techniques.  

Therefore, these actions generic workflow comprehend two sequential steps: 

 

1. Data processing. 

2. Probability inference. 

 

The first step uses similar feature selection and data processing approaches to the ones applied 

on the Simple Data Process menu.  

The second step applies specific calculations to infer probabilities. These calculations are 

differentially performed according to the type of data upon which they are applied. Their mechanisms 

are explained in the next section. 

 

All of the processing steps as well the probabilities inference techniques applied in both menus 

available actions are discriminated in Table 11 and described in Table 12. Both tables are present at 

appendix III. 
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4.1.3  Probability Inference Techniques  

Metadata Probabilities Inference 

To perform this probability inference technique, it is required that the user give as input the 

metadata dataset (1) or metadata dataset (2) and the pt_cs.csv file that matches each patient 

identifier to its respective cancer subtype. This last file is generated by the first available action of the 

Get Auxiliary Files menu. 

After all the inputs are correctly introduced, the program first performs feature selection and 

processing approaches on the original metadata dataset. Then all the patients’ IDs and respective 

metadata feature of interest are mapped with the respective cancer subtype data, which is in the 

pt_cs.csv file.   

Further details on fitting statistical distributions to each feature are described below. 

 

Age Probabilities Inference 

Originally, the metadata dataset (1), described in the previous chapter, contains a column where 

the patients’ respective age values are stored. Attaching the patients’ respective cancer subtype to 

the mentioned values provides a subsequent union between age and cancer subtype data. However, 

there is always a probability associated to the incidence of particular cancer subtype at a certain age. 

Therefore, the distribution of age by cancer subtype needs to be modelled in order to infer its 

associated probability.  

The program computes the mean and the standard deviation of all age values by cancer subtype 

to further apply a Gaussian distribution, which is used to fit the probabilities of age according to each 

cancer subtype. The Gaussian distribution is mathematically performed through the Gaussian formula 

(3) and the resulting probabilities are stored. The (3) formula estimates the probability of an age value 

t to occur for a cancer subtype i. This formula is applied to all age values of the metadata dataset 

within all cancer subtypes. 

 

 (3) 

Other Metadata Probabilities Inference 

Besides the age attribute, the probabilities were inferred from other features of interest from the 

metadata datasets (1) and (2) including gender, race, country, Lauren classification, ethnicity and 

cancer stage features.  

Similarly as was done for the age attribute, the program binds the patient identifiers and the 

                𝑓(𝑡, 𝑖) =
1

𝜎𝑖√2𝜋
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metadata feature to the respective cancer subtype. Then, it computes all the occurrences of each 

unique metadata value within a specific cancer subtype. This is later divided by the total frequency 

of the respective metadata value. This approach is given by formula (4) which estimates the 

probability of a specific metadata value i be associated to a cancer subtype j. 

 (4) 

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑗) – frequency of a metadata value i within a cancer subtype j 

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖) – total frequency of a metadata value i 

 

As an example, the program may apply formula (4) to gender feature in order to compute the 

probability of the two unique gender values – male and female – be associated to each cancer 

subtype. Therefore, given the four different subtypes of stomach cancer and since each one of them 

occurs in the two distinct genders, this formula outputs eight probabilities that corresponds to the 

association of each unique gender value to each unique cancer subtypes. 

Mutations Probabilities Inference 

The program contains two distinct actions to infer the probabilities on the mutations data. 

 

In the Mutated Gene + Cancer Subtype + Probability action, the program allows the user to acquire 

a csv file that maps the probability of the mutated genes be present in a specific cancer subtype. This 

relation provides evidences to find the most common mutated genes in the various cancer subtypes. 

In order to perform this probability inference approach, the program computes all the occurrence 

of each mutated gene in the different cancer subtypes. All the occurrence values are later divided by 

the occurrence number of the respective cancer subtype. 

This probability inference approach is performed by the formula (5) which estimates the probability 

of a mutated gene i be present in a cancer subtype k. The resulting values of the applied formula are 

stored in a new column. 

 

 (5)  

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑘) - number of samples in a cancer subtype k with a mutated gene i 

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑘) - number of samples in a cancer subtype k 

 

 

                    𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎(𝑖)_𝑐𝑠(𝑗)_𝑝𝑟𝑜𝑏 =
𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑗)

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖)
 

                    𝑚𝑢𝑡𝑔𝑒𝑛𝑒(𝑖)_𝑐𝑠(𝑘)_𝑝𝑟𝑜𝑏 =
𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑘)

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑘)
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In the Mutated Gene + Variant Classification + Probability action, the user has the possibility to 

obtain a csv file that has the probabilities of the mutated genes have a defined impact on the DNA. 

This type of information is valuable once it yields information about the most common somatic 

variants in specific mutated genes. 

The approach applied in this action is achieved dividing the number of occurrences of a variant 

classification in a specific gene by the total number of that same variant classification in the whole 

dataset. 

This calculation is represented and performed by formula (6) which estimate the probability of a 

mutated gene i have a variant classification k. 

 

 (6) 

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑘) - number of samples with a variant classification k in a mutated gene i 

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑘) - number of samples with a variant classification k 

  

Gene Expression Probabilities Inference 

Similarly to previous probability inference techniques, the gene expression probability inference 

requires the join with the cancer subtype data. Therefore, when the user selects to perform this action, 

the program creates a csv file that stores information about the expression profiles of certain genes 

within a specific cancer subtype. 

The expression profile is a scaled term for a certain range of FPKM values. This gene expression 

profile scale is represented at Table 10 in appendix II.  

The gene expression probability inference is performed dividing the number of cases where a gene 

has an expression profile within a cancer subtype by the total case number of that same gene within 

that same cancer subtype. The probability inference technique is represented by formula (7) which 

estimates the probability of a gene i within a cancer subtype j have an expression profile k. 

 

 (7)  

𝑛_𝑐𝑎𝑠𝑒𝑠(𝑖,𝑗,𝑘) - number of cases in a gene i within a cancer subtype j with an expression profile k 

    𝑛_𝑐𝑎𝑠𝑒𝑠(𝑖,𝑗) - number of cases in a gene i within a cancer subtype j 

 

                         𝑚𝑢𝑡𝑔𝑒𝑛𝑒(𝑖)_𝑣𝑐(𝑘)_𝑝𝑟𝑜𝑏 =
𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑖,𝑘)

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑘)
 

                     𝑔𝑒𝑛𝑒(𝑖)_𝑐𝑠(𝑗)_𝑒𝑥𝑝𝑝𝑟𝑜𝑓(𝑘)_𝑝𝑟𝑜𝑏 =
𝑛_𝑐𝑎𝑠𝑒𝑠(𝑖,𝑗,𝑘)

𝑛_𝑐𝑎𝑠𝑒𝑠(𝑖,𝑗)
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Methylation Probabilities Inference 

In this action the program requires as input the directory path where all the methylation files are 

stored and the pt_cs.csv file. The program associates the probability of a gene be methylated in a 

specific cancer subtype. This data relation offers the user a better understanding of which genes have 

higher, or lower, methylation probabilities into the different cancer subtypes. 

The methylation probabilities correspond to a direct mapping of the methylation status of the gene, 

i.e. its Beta-value. Therefore, in this case, the inference does not require the use of a function to derive 

the probabilities. Instead, the program reads the methylation text files contained in the 

Methylation_Tables directory and, one by one, perform several processing steps and add the final 

result to a dataframe. After all methylation files are processed, the relevant information from all the 

files is concatenated into just one dataframe structure. 

The methylation status of each gene can be captured by one or more microarray probes. When 

more than one probe is available for a given gene, the mean Beta value is used to represent the 

probability of that gene being methylated. 

4.2  Problog KB 

A Problog KB was developed and oriented to use genomic data from stomach cancer. Currently, 

there is an absence of IDEs oriented to Problog. The knowledge bases may be developed under Prolog 

IDE, source code editors or simple text editors, i.e. notepad. Therefore, the Problog KB was built under 

notepad. We choose this simple text editor since it is already integrated into the operating system 

used and there is no need to install any new software. 

The engine used under the Problog KB development was ProbLog2. This is a second generation 

engine that reasons with the Problog language. The main reason why we selected this engine is due 

to the possibility to learn the parameters of the Problog program from partial interpretations and 

support intensional probabilistic facts with a flexible probability. 

The developed Problog KB was developed considering a specific organization and divided into four 

components, which are represented at Figure 3. 
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Figure 3 – General structure of Problog KB. 

Import Data 

After the original genomic data is processed by ProceOmics, the resulting data, stored in csv files, 

are loaded into the Problog KB as facts. As previously mentioned, the csv files are uploaded with the 

csv_load predicate. Table 13 displays the Problog code lines that allow importing the csv files 

sequentially with an example of the respective predicate. 

Table 13 – Code for loading stomach cancer genomic data into Problog KB. 

Problog KB Predicate Example Fact ID 

:- use_module(library(db)). db library which allows to read csv files - 

:- csv_load('pt_age.csv',meta_age). meta_age(‘TCGA-B7-5816’,51).  A1 

:- csv_load('pt_cs.csv',meta_cs). meta_cs(‘TCGA-B7-5816’,msi). A2 

:- csv_load('pt_gender.csv', meta_gender). meta_gender(‘TCGA-B7-5816’,female). A3 

:- csv_load('pt_race.csv',meta_race). meta_race(‘TCGA-B7-5816’,white). A4 

:- csv_load('pt_country.csv', 

             meta_country). 

meta_country(‘TCGA-B7-5816’, russia). A5 

:- csv_load('pt_lc.csv',meta_lc). meta_lc(‘TCGA-B7-5816’,diffuse). A6 

:- csv_load('pt_stage.csv',meta_stage). meta_stage(‘TCGA-B7-5816’,stage_iib). A7 

:- csv_load('cs_age_prob.csv', cs_age). cs_age(cin,51,0.0115). A8 

:- csv_load('cs_gender_prob.csv', cs_gender). cs_gender(female, cin, 0.442). A9 

:- csv_load('cs_race_prob.csv', cs_race). cs_race(asian, cin, 0.9.494). A10 

:- csv_load('cs_country_prob.csv', cs_country). cs_country(canada, cin, 0.667). A11 

:- csv_load('cs_lc_prob.csv', cs_lc). cs_lc(diffuse, cin, 0.261). A12 

:- csv_load('cs_stage_prob.csv', cs_stage). cs_stage(stage_ia, cin, 0.5). A13 

:- csv_load('DR_mutgene_cs_prob.csv', 

              mutgene_cs). 

mutgene_cs(‘ABCA12’,cin,0.108). A14 

:- csv_load('DR_GeneExpression_cs.csv', 

               gene_cs_expprof). 

gene_cs_expprof(ENSG0000000533

9,cin, high_exp, 0.563). 

A15 

 

Problog KB

General Structure 

(A) Import Data

Load data form csv files as background knowledge

(B) Create New Facts 

Based on information present at literature

(C) Develop Rules 

Rules codifying data relations and intereactions between facts 

(D) Query the Problog KB 



35 

 

Table 13 – Code for loading stomach cancer genomic data into Problog KB (continuation). 

Problog KB Predicate Example Fact ID 

:- csv_load('DR_metgene_cs.csv', 

             metgene_cs). 

metgene_cs(‘ABCA12’,msi,0.67). A16 

:- csv_load('DR_mutgene_vc_prob.csv', 

             mutgene_vc). 

mutgene_vc(‘ABCA12’,frame_shift_d

el, 

                    0.045). 

A17 

:- csv_load('DR_pt_gene_mutclass.csv', 

             pt_mutgene_mutclass). 

pt_mutgene_mutclass(‘TCGA-B7-

5816’, ‘RERE’, missense_mutation). 

A18 

:- csv_load('kegg.csv', gene_keggpath). gene_keggpath(‘RYR3’,‘Apelin 

signaling 

                       pathway’). 

A19 

:- csv_load('GOids.csv', gene_goterm). gene_goterm(‘ENSG00000005339’, 

            ‘GO:0000122’). 

A20 

:- csv_load('DR_Id2Gene.csv',id2gene). id2gene(ENSG00000142599,‘RERE’)

. 

A21 

 

As a result of each performed file loading, new facts, with a new predicate, are created. Each new 

predicate contains the same number of arguments as the number of columns of the respective loaded 

file. 

A total of 21 files were loaded into the Problog KB. This action created 21 non-probabilistic facts 

that codify different stomach cancer genomic data types and auxiliary information.  

Facts A1 to A7 encode simple metadata information. All the resulting predicates contain two 

arguments. The first argument is the patient identifier and the second argument is the respective 

metadata information. 

Facts A8 to A17 represent the genomic and clinical events with the associated probabilities. The 

resulting predicates arity differ. However, in all these predicates, the last argument is the associated 

probability inferred by ProceOmics program. 

The last three facts (facts A19 to A21) contained auxiliary information to the genomic events. All 

three predicates contain two arguments. 

Create New Facts 

The non-probabilistic A8 to A17 facts, mentioned above, were used in order to construct 10 

intensional probabilistic facts with a flexible probability. For each one of these 10 non-probabilistic 

facts, a respective intensional probabilistic fact was manually created, see facts B23 to B32 displayed 

at Table 14 below. This allows to instantiate the probability of B23 to B32 facts accordingly to the 

respective A8 to A17 facts last arguments.  
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As an example, consider the following intensional probabilistic fact P::mutgene_vc_prob(GENE, 

VC) :- mutgene_vc(GENE, VC, 0.7). For each ground instantiation P for which mutgene_vc(GENE, 

VC, 0.7) occurs, there is a corresponding probabilistic fact  0.7::mutgene_vc_prob(GENE, VC). 

Additional information about the cancer genomic data that lacked in the csv files was also 

manually introduced in the Problog KB as facts. This information was retrieved from the TCGA study 

(Bass et al., 2014).  

The new literature-based facts include the ground probabilities of the cancer subtypes occurrence. 

Like all Problog programs, all types of facts created, probabilistic or not, were later used in the 

program rules and/or queries. Auxiliary ground and intensional probabilistic facts created are 

represented at Table 14, which contains their encoding and description.  

 

Table 14 - Problog KB facts. 

Problog KB facts Description Fact ID 

0.088::cancer_subtype(ebv). 
0.217::cancer_subtype(msi). 
0.197::cancer_subtype(gs). 
0.498::cancer_subtype(cin). 

Ground probability of each 
cancer subtype (cs). 
 

B22 

P::cs_age_prob(CS,AGE) :- cs_age(CS,AGE,P). Intensional probabilistic fact of 

each age value be associated to 

the cancer subtypes. 

B23 

P::cs_gender_prob(CS,GDR) :- 

cs_gender(GDR,CS,P). 

Intensional probabilistic fact of 

each gender value be associated 

to the cancer subtypes. 

B24 

P::cs_country_prob(CS,COUNTRY) :- 

cs_country(COUNTRY,CS,P). 

Intensional probabilistic fact of 

each country value be 

associated to the cancer 

subtypes. 

B25 

P::cs_lc_prob(CS,LC) :- cs_lc(LC,CS,P). Intensional probabilistic fact of 

each lauren class value be 

associated to the cancer 

subtypes. 

B26 

P::cs_race_prob(CS,RACE) :- cs_race(RACE,CS,P). Intensional probabilistic fact of 

each race value be associated to 

the cancer subtypes. 

B27 

P::cs_stage_prob(CS,STG) :- cs_stage(STG,CS,P). Intensional probabilistic fact of 

each cancer stage value be 

associated to the cancer 

subtypes. 

B28 

 

 



37 

 

Table 14 - Problog KB facts (continuation). 

Problog KB facts Description Fact ID 

P::mutgene_cs_prob(GENE,CS) :- 
mutgene_cs(GENE,CS,P). 

Intensional probabilistic fact of 

each gene be mutated in all four 

cancer subtypes. 

B29 

P::mutgene_vc_prob(GENE,VC) :- 
mutgene_vc(GENE,VC,P). 

Intensional probabilistic fact of 

each mutated gene have a 

certain variant classification. 

B30 

P::gene_cs_expprof_prob(GENE,CS,EXPPRO) :- 
id2gene(GID,GENE), 
gene_cs_expprof(GID,CS,EXPPRO,P). 
 

Intensional probabilistic fact of 
expression profiles by cs for a 
gene. 

B31 

P::metgene_cs_prob(GENE,CS) :- 

metgene_cs(GENE,CS,P). 

Intensional probabilistic fact of 

each gene be methylated in all 

four cancer subtypes. 

B32 

P::phi_val(G1,G2) :- phi(G1,G2,P). Intensional probabilistic fact that 

associates the phi coefficient as 

a probability value. 

B33 

 

Development of Rules 

In order to interrogate the Problog KB, some rules were developed. They encode possible relations 

and interactions between the stomach cancer genomic, clinical and auxiliary data that are 

represented by the previously described facts. Some of the created rules only encode simple data 

interactions while the others encode more complex interactions. All the developed rules are displayed 

and described at Table 15. Each rule is also associated with a unique identifier that starts with the 

letter ‘R’ followed by a particular number. 

 

Table 15 - Problog KB rules. 

Problog KB rules Description Rule ID 

match_clinical(CS,AGE,GDR,COUNT,LC,RACE,STAGE) :- 
cancer_subtype(CS), cs_age_prob(CS,AGE), 
cs_gender_prob(CS,GDR), 
cs_country_prob(CS,COUNT), 
cs_lc_prob(CS,LC), 
cs_race_prob(CS,RACE), 
cs_stage_prob(CS,STAGE). 

Match all metadata. 

This rule aims to use 

partial or complete 

patient information to 

infer the probability of 

having one of the four 

cancer subtypes. 

R1 
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Table 15 - Problog KB rules (continuation). 

Problog KB rules Description Rule ID 

match_clinical_genomic(CS,AGE,GDR,COUNT,LC,RACE,STAGE, 

MUTGENES) :- 

match_clinical(CS,AGE,GDR,COUNT,LC,RACE,STAGE), 

mutgene_list_prob(MUTGENES). 

 

Match the probability of 

all partial or complete 

metadata to a given list 

of certain mutated 

genes. 

R2 

mutgene_list_prob([]). 

mutgene_list_prob([H|T]) :- mutgene_cs_prob(H,_), 

mutgene_list_prob(T). 

Create a list of genes to 

insert in the 

match_metadata 

predicate. 

R3 

mutgene_vc_cs_prob(GENE,VC,CS) :- 

mutgene_vc_prob(GENE,VC), mutgene_cs_prob(GENE,CS). 

Associate genes to a 

variant classification 

mutation type in a 

certain cancer subtype. 

R4 

mutgene_kp_cs_prob(GENE,KP,CS) :- 

mutgene_cs_prob(GENE,CS), gene_keggpath(GENE,KP). 

Mutated gene has a 

Kegg pathway in a 

cancer subtype. 

R5 

mutgene_goterm_cs_prob(GENE,GO,CS) :- id2gene(GID,GENE), 

mutgene_cs_prob(GENE,CS), gene_goterm(GID,GO). 

Mutated gene has an 

associated GO term in 

a cancer subtype. 

R6 

cs_metgene_expprof_prob(CS,GENE,EXPPRO) :- 

id2gene(GID,GENE), metgene_cs_prob(GENE,CS), 

gene_cs_expprof_prob(GENE,CS,EXPPRO). 

Associate the 

methylated genes to a 

genetic expression 

within all cancer 

subtypes. 

R7 

cs_mutgene_metgene_expprof_prob(CS,GENE,EXP) :- 

mutgene_cs_prob(GENE,CS),  metgene_cs_prob(GENE,CS), 

cs_mutgene_expprof(CS,GENE,EXP). 

 

Associate the 

methylated and 

mutated genes to a 

genetic expression 

within all cancer 

subtypes. 

R8 

strangelen([],0). 

strangelen([H|T], Len) :- (H = [_|_], strangelen(H, LenH); LenH 

= 1),strangelen(T,LenT), Len is LenH + LenT. 

Giving a certain list, get 

the respective list 

length. 

R9 

isNonElement(_,[]). 

isNonElement(X, [Y|Z]) :- X \= Y, isNonElement(X,Z).  

Check if an element is 

not in a list. 

R10 

delete(_, [], []). 

delete(Y, [X|W], Z) :- member(X,Y), delete(Y,W,Z).  

delete(Y, [X|W], [X|Z]) :- isNonElement(X, Y), delete(Y, W, Z). 

Delete an element from 

a list. 

R11 

 



39 

 

Table 15 - Problog KB rules (continuation). 

Problog KB rules Description Rule ID 

all_samp(L) :- findall(PT, pt_mutgene_mutclass(PT,_,_), X), 

sort(X,L). 

Get a list of all samples 

in the KB that has 

mutated genes (without 

duplicates). 

R12 

n_all_samp(N) :- all_samp(L), strangelen(L,N). Count the number of 

total samples that has 

gene mutated genes 

without duplicates in 

the KB. 

R13 

same_samp(G1,G2,PT) :- pt_mutgene_mutclass(PT,G1,_), 

pt_mutgene_mutclass(PT,G2,_). 

Get different genes that 

are mutated in the 

same sample. 

R14 

oc1_oc2(G1,G2,PT) :- findall(S, same_samp(G1,G2,S), PT). Get a list of samples 

that have mutations in 

two different genes. 

R15 

oc1_noc2(G1,G2,PT) :- findall(PT1, 

pt_mutgene_mutclass(PT1,G1,_), L1), findall(PT2, 

pt_mutgene_mutclass(PT2,G2,_), L2), delete(L2,L1,PT). 

Get a list of samples 

that just have 

mutations in the first of 

two given gene. 

R16 

noc1_oc2(G1,G2,PT) :- findall(PT1, 

pt_mutgene_mutclass(PT1,G1,_), L1), findall(PT2, 

pt_mutgene_mutclass(PT2,G2,_), L2), delete(L1,L2,PT). 

Get a list of samples 

that just have 

mutations in the 

second given gene.  

R17 

noc1_noc2(G1,G2,PT) :- findall(PT3, same_samp(G1,G2,PT3), 

L), all_samp(AS), delete(L,AS,PT). 

Get a list of samples 

that does not have 

mutations in any of the 

two given genes. 

R18 

freq_oc1_oc2(G1,G2,N) :- oc1_oc2(G1,G2,PT), strangelen(PT, 

N). 

Get the number of 

samples that have 

mutations in both given 

genes. 

R19 

freq_oc1_noc2(G1,G2,N) :- oc1_noc2(G1,G2,PT), strangelen(PT,N). Get the number of 

samples that just 

have mutations in 

the first of the two 

given genes. 

R20 
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Table 15 - Problog KB rules (continuation). 

Problog KB rules Description Rule ID 

freq_noc1_oc2(G1,G2,N) :- noc1_oc2(G1,G2,PT), strangelen(PT,N). Get the number of 

samples that just 

have mutations in 

the second given 

gene. 

R21 

freq_noc1_noc2(G1,G2,N) :- noc1_noc2(G1,G2,PT), 

strangelen(PT,N). 

Get the number of 

samples that does 

not have mutations 

in any of the two 

given genes. 

R22 

phi(G1,G2,PHI) :- freq_oc1_oc2(G1,G2,N11), 

freq_oc1_noc2(G1,G2,N10), freq_noc1_oc2(G1,G2,N01), 

freq_noc1_noc2(G1,G2,N00), N11 > 0, N10 > 0, N01 > 0, N00 > 

0,  

PHI is ((N11*N00)-

(N10*N01))/sqrt((N11+N10)*(N01+N00)*(N11+N01)*(N10+N00)). 

Calculate the phi 

coefficient for two 

given genes. 

R23 

P::phi_val(G1,G2) :- phi(G1,G2,P). Convert the phi 

predicate result to 

a probability. 

R24 

 

 

 

With the goal of performing queries that satisfy the objectives mentioned in the beginning of this 

section, four different case studies were performed. They are described in the next chapter. With the 

first case study we intended to infer the probability of a patient having a certain cancer subtype using 

genomic information. The second case study is devoted to explore the possible relation between 

different types of genomic data, in particular methylation and gene expression. The third case study 

is dedicated to implement a measure of association between mutation data. With the last case study, 

we sought to fit a patient within a certain cancer subtype given its partial clinical information. 
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5.  Results and Discussion 

In this study we have as main goal to develop a set of queries that allow inferring the probability 

of patient having a certain cancer subtype. For that we use the available genomic and clinical 

information on the patient and with the application of the appropriate query we derive this probability. 

Note, that the extent of genomic data available for the query patient is variable. Therefore, the rules 

and queries reflect the extent of the available data. Other queries were developed to demonstrate the 

possibilities of probabilistic logic programming on combining different types of data and the 

application of measures of association between genomic data. 

All the results obtained from the four case studies are presented and discussed in the next 

sections. Appendix IV contains the queries outputs when they are very extensive. 

5.1.1  Case study I: Distribution of patients’ somatic mutations by genes 

across the different stomach cancer subtypes 

Given information on somatic variants and/or mutated genes we used the Problog KB rule R4 to 

compute the probabilities of a patient having a certain stomach cancer subtype. This rule is composed 

by two distinct intensional probabilistic facts, which predicates are: mutgene_cs_prob and 

mutgene_vc_prob. The former stores a flexible probability, which provides the likelihood that each 

gene has of being mutated under the different cancer subtypes. The later performs a similar task but, 

instead of associating flexible probabilities to mutated genes, it attaches those probabilities to genetic 

variant classifications and their respective cancer subtype. In order to explore all the possible 

interactions between the data, we developed three different approaches of the same query. 

The first approach allowed to perceive which of the variant type of six known and randomly chosen 

patient mutated genes may occur more or less frequently in each stomach cancer subtype, 

respectively. A second approach sought to supply a more comprehensive survey on which mutated 

genes fitted in the distinct cancer subtypes, given a specific somatic variant. In the last approach, the 

connection between the mutated genes and their respective variant classes was analysed in more 

detail.  

The queries and respective results are shown in appendix IV and a descriptive distribution of all 

the three query versions results are represented in Figure 4, Figure 5 and Figure 6 below. 
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Figure 4 – First approach of case study I. 
  Distribution of variant classification occurrences within the stomach cancer subtypes for specific given mutated genes. 

(a) ARID1A mutated gene; (b) HERC2 mutated gene; (c) LAMA1 mutated gene; (d) PIK3CA mutated gene; (e) RERE 
mutated gene; (f) TP53 mutated gene. 
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Figure 5 – Second approach of case study I. 
Distribution of mutated genes within the cancer subtypes for a given variant classification. (a) in_frame_del variant; (b) 

intron variant; (c) splice region variant. 
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Figure 6 – Third Approach of Case Study III. 
Three most mutated genes and respective somatic variant within cancer subtype. 

 

A general overview of Figure 4 quickly suggests that, for each of the six mutated genes always 

exists a specific variant classification that has the highest probability of occurrence, regardless of the 

cancer subtype. This specific variant classification differs between the six mutated genes.  

From Figure 5, it is possible to observe an absolute prevalence of mutated genes within msi 

subtype, independently the three tested variants. However, in cases of in frame deletion variants, 

PIK3CA and TP53 are most probable to be associated with this somatic variant in ebv and cin 

subtypes, respectively. 

Figure 6 resutls show consistency with the other studied approaches in this case study. From its 

analysis, it is possible to verify that the most mutated genes between the different cancer subtypes 

are in agreement with the remaining results. 

Most of the results are in accordance with literature papers. As an example, Wu and colleagues 

(Wu et al., 2005) provides a figure that contains a summary of the somatic mutations according to 

molecular subtype where somatic variants are differentiated for a set of genes. Accordingly to their 

figure, TP53 does have the highest number of somatic mutations in cin (56,5%) and they are mainly 

missense mutations. ARID1A contains low number of mutation in cin subtype (26,1%) and mostly 

frameshift variants at msi (73,7%). PIK3CA holds somatic mutations principally in ebv (28,6%) and 

msi (36,8%) subtypes and most of them are missense mutations. Other studies also support our 

results for TP53, ARID1A and PIK3CA somatic mutations (Chia & Tan, 2016), (Pan, Ji, Zhang, Zhou, 

& Zhong, 2018) and (Bass et al., 2014). The association of TP53 with in frame deletion variant is 

also supported by Bass and colleagues (Bass et al., 2014). Few information on the role of HERC2, 

LAMA1 and RERE in stomach cancer was found on literature. 
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5.1.2  Case Study II: Influence of methylation on gene expression 

In this case study, we analysed the relation between two types genomic data: gene expression and 

methylation for the different cancer subtypes.  

The Problog KB R7 was used to compute the probabilities of this relation. This rule contains two 

intensional probabilistic facts and one non-probabilistic fact within its body. The non-probabilistic fact, 

id2gene, maps each gene ensembl ID from the gene expression data with the respective common 

gene name from the methylation data. The intensional probabilistic fact metgene_cs_prob attribute 

a probability of a certain gene to be methylated in the given subtype while the other intensional 

probabilistic fact, gene_cs_expprof_prob, assign probabilities to each occurred gene expression 

profile of a certain gene, within the cancer subtypes.  

A first approach explored the probability distribution of methylation events for a set of genes within 

the four stomach cancer subtypes. A second approach was intended to examine the impact of these 

methylation events in the gene expression profiles of those previously selected set of genes. The set 

of genes was restricted to the same six genes that were previously used in Case Study I. 

The performed queries and results are shown in appendix IV. Figure 7 and Figure 8 represent a 

descriptive interpretation from both approaches. 

 

Figure 7 - Methylation probabilities for a set of genes within the four stomach cancer subtypes. 

 

The results from Figure 7 demonstrate that, all genes show similar methylation probabilities, 

regardless the cancer subtype. Therefore, the probability methylation of a gene has a low relationship 

to the respective cancer subtype in which the event occurs. 
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Figure 8 - Methylation events joined with gene expression profiles within each cancer subtype, for the selected set of 
genes. 

 

Figure 8 shows a higher propensity of methylated genes to have an abnormal genetic expression 

– no normally expressed profiles – with subtype specific probabilities.  

ARID1A, RERE, TP53 and LAMA1 genes are associated to higher probabilities of having abnormal 

genetic expression profiles when methylated while HERC2 and PIK3CA genes are more likely to have 

normal expression profiles. Most of these abnormalities usually are largely associated with ebv 

subtypes. Interestingly, this is also the most probable subtype in normally expressed genes.  

Public reports have shown agreement with our results. Aso and colleagues (Aso, Uozaki, Morita, 

Kumagai, & Watanabe, 2015), stated that ebv status shown relation to ARID1A abnormality. It is also 

known that TP53 is often upregulated in stomach cancer cases (Wang, Stemmermann, & Noffsinger, 

2003).  

However, Riquelme et al. (Riquelme, Tapia, Espinoza, & Leal, 2016) describes that PIK3CA is 

pratically always found in overexpression scenarios in gastric cancer. Figure 8 results sugests that 

PIK3CA solely has normal expression profiles. Thus, this divergent information may suggest that 

methylation of PIK3CA, regardless the cancer subtype in which it occurs, regulates the overexpression 

of this gene in stomach cancer cases.   
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5.1.3  Case Study III: Co-occurrence mutations between genes 

In this case study we measured the co-occurrence of mutations for each pair of genes. The phi 

coefficient, described by Om (Om, 2011), was used to measure the strength of co-occurrence. This 

query was developed in order to obtain the phi coefficient for the number of mutation occurrences 

(binary variable automatically calculated by the Problog KB rules R26 to R29) between two mutated 

genes. It determines if the mutated genes contain co-occurring or exclusively mutations. Phi coefficient 

values closer to zero indicate exclusivity of the occurrences. Phi values higher than zero indicate that 

two genes have mutations co-occurring, i.e. occurring in the same samples. 

The rule that computed the phi coefficient is R31. However, in order to perform its calculations, 

this rule requires other auxiliary rules (R16 to R30). A total of 15 queries were performed. All of them 

used the same rule – phi_val. Table 16 displays each performed query and the respective output.  

Table 16 – Individual query results from case study III. 

Query Output 

phi_val(‘ARID1A’,’HERC2’). 0.639 

phi_val(‘ARID1A’,’LAMA1’). 0.451 

phi_val(‘ARID1A’,’PIK3CA’). 0.569 

phi_val(‘ARID1A’,’RERE’). 0.531 

phi_val(‘ARID1A’,’TP53’). 0.134 

phi_val(‘HERC2’,’LAMA1’). 0.518 

phi_val(‘HERC2’,’PIK3CA’). 0.536 

phi_val(‘HERC2’,’RERE’). 0.625 

phi_val(‘HERC2’,’TP53’). 0.158 

phi_val(‘LAMA1’,’PIK3CA’). 0.349 

phi_val(‘LAMA1’,’RERE’). 0.517 

phi_val(‘LAMA1’,’TP53’). 0.176 

phi_val(‘PIK3CA’,’RERE’). 0.458 

phi_val(‘PIK3CA’,’TP53’). 0.072 

phi_val(‘RERE’,’TP53’). 0.152 

 

 

In order to have a clear understanding of the results, all the queries outputs were converted into 

a co-occurrence table, which is represented by Table 17. 
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Table 17 – Co-occurrence table of case study III results. 

 ARID1A HERC2 LAMA1 PIK3CA RERE TP53 

ARID1A 0      

HERC2 0.639 0     

LAMA1 0.451 0.518 0    

PIK3CA 0.569 0.536 0.349 0   

RERE 0.531 0.625 0.517 0.458 0  

TP53 0.134 0.158 0.176 0.072 0.152 0 

 

 

The results show that ARID1A-HERC2 and ARID1A-PIK3CA have a high probability of co-occurring 

mutations. On the other hand, TP53-PIK3CA reveal a very low probability of mutation co-occurrence. 

All the remaining genes when paired with TP53 exhibit low co-occurrence mutation probability. These 

results are in agreement with the mutation co-occurrence events reported in several studies (Liang et 

al., 2012; Liu, Hu, Zhang, Hu, & Ye, 2018). 
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5.1.4  Case Study IV: Patient allocation in different cancer subtypes based 

on its incomplete clinical characteristics  

For this case study we used Problog KB R1 to compute the probability of a patient having a certain 

cancer subtype given partial clinical information. This rule resorts to one probabilistic fact and six 

intensional probabilistic facts in order to achieve its goals. These utilized facts are B22 to B28. With 

this goal in mind, we defined a set of four constant clinical characteristics – country, lauren 

classification, race and cancer stage – which values were randomly chosen. Three clinical 

characteristics – cancer subtype, age and gender – remained as variables. However, in order to limit 

the proof search performed by the Problog engine, we limited the age values between 60 and 70 

years old. 

The performed query and results are shown in appendix IV. Figure 9 represent a descriptive 

interpretation of the results. 

 

 

Figure 9 - Patient allocation in different cancer subtypes with variable age and gender attributes. 

 

Assuming a possible white German individual with a mixed lauren classification and a stomach 

cancer stage IIa, Figure 10 shows the probabilities distribution of that patient be fitted in each cancer 

subtype and its possible age and gender instances. Individuals that follow those pre-specified clinical 

characteristics have higher probability of be fitted in msi subtypes at older ages and female cases. In 

case of ebv association, it is most probable that the patient tends to be male regardless its age. The 

patient has higher probabilities for earlier age cases when classified as a gs subtype. The male gender 
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tendentially has higher probabilities than the female gender whenever a patient is fitted in one of the 

subtypes. 

Our results reveal high conformity with Bass and colleagues (Bass et al., 2014). They published 

that ebv patients tended to be male, msi cases are mainly females and, in addition, that gs subtypes 

are diagnosed at earlier ages while msi subtypes are diagnosed at an older age.  
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6.  Conclusions and Further Work 

The application of probabilistic logic programming to the study of cancer genomic data was 

accomplished through the development of a program to process data and the development of queries 

that interrogate the respective data. ProceOmics program was developed in order to process and 

format stomach cancer genomic data. All the program operations produced well-strucutured and 

consistent csv files that stored the processed data. Although the program tries to either deal with 

minor or large datasets, by performing a data dimensionality reduction, often even the processed 

output file may still contain vast amounts of data. In those cases, the program may take considerable 

running time to finish, in particular in the processing of genetic expression and mutation datasets.  

In order to test its utility when applied to genomic datasets of different types of cancer, genomic 

datasets on brain cancer were also processed. Although brain cancer datasets do not contain the 

exact same information as the stomach cancer, all the datasets that follow a structure similar to the 

stomach datasets was successfully processed and formatted. Therefore, we hope that the developed 

program can be applied to distinct types of cancer data, which was one of the original goals of this 

work. 

The created Problog KB codes for queries on simple and complex relations between the different 

stomach cancer genomic data. However, this framework was not tested to genomic data related to 

other types of cancer. 

It was possible to infer different conclusions based on the distribuiton of patient gene mutation 

data within the four different stomach cancer subtypes. The results of the first case study show higher 

probability of a patient to be classified in the msi subtype regardless of its somatic variants. Our 

results also revealed that ebv is the only cancer subtype that does have more than one different 

somatic variant in the three most frequently mutated genes. 

The study case II demonstrates that when a gene is methylated, it has an unbalanced distribution 

over certain expression profiles. From the studied genes, with exception of RERE gene, the ebv subtype 

appears to be the most probable cancer subtype in a scenario of high expression. It is also notable 

that cin is the only cancer subtype that always has probabilty of expression in normal profiles. 

However, a sample of six genes is not significantly representative to infer a global overview on the 

relation between methylation and gene expression in stomach cancer. 

Although the obtained results from the third case study reveals that TP53 has lower probability of 

co-ocurring mutations with the remaining analyzed genes, this case study should be performed with 

all Problog KB genes in order to confirm this statement.   

Additionally to revealing consistent results with the literature, the case study IV explored the utiliy 
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of Problog to deal with uncertainty.  

Note that, to obtain a reasonable computational performance, this analysis was only performed 

on a reduced sub-set of data. Therefore, the explored relations in stomach cancer were not tested in 

whole panorama. 

Even though the use of Problog in order to encode and manipulatie cancer genomic data has 

been so far unexplored, this thesis offers a seminal contribution on how genomic data can be modeled 

and further used under the probabilistic logic paradigm. 

 

Although most of the proposed goals in this thesis were accomplished, there are still opportunities 

for further improvements. Furhter work may including new developments to the data processing 

program and the development of new queries for the Problog KB: 

 

 Code optimization to increase the ProceOmics operation speed; 

 Expand the ProceOmics processing approaches to other features; 

 Expand the genomic information encoded in the Problog KB; 

 Integrate graphical representation about features of interest within ProceOmics; 

 Encode different cancer data as background knowledge on Problog KB; 

 Create new rules that provides more accurate and precise queries; 

 Generate new facts through machine learning algorithms based on association rules and 

decision trees. 
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Appendix I 

ProbLog Program Example 

The following simple ProbLog program example was retrieved and adapted from (DTAI, 2015) and 

it represents an experiment of tossing two coins, one fair and other biased. The fair coin has 0.5 

probability of land on head and the biased coin has 0.6 probability of land on head. Those are the 

facts. There is also a rule that represents a case when both coins land on heads. 

 

The first two queries are performed in order to obtain the probability of getting head when the fair 

coin is tossed and when the biased coin is tossed. The third query aims to obtain the probability of 

both coins landing on heads. 

 

The first two queries are simple questions once the answer is, immediately, represented in the KB 

as a fact and the result will be the attached probabilities to the respective fact. 

In order to be true, the third query implies that the fair coin land on head and the biased coin also 

land on head. Therefore, ProbLog performs the product of both probabilities (0.6*0.5). 

  

% Probabilistic facts: 

0.5::heads1. 

0.6::heads2. 

% Rules: 

twoHeads :- heads1, heads2. 

 

% Queries: 

query(heads1). 

query(heads2). 

query(twoHeads). 

Query Probability 

Heads1 10.5 

Heads2 20.6 

twoHeads 0.3 
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Appendix II 

 

Table 9 – ProceOmics output files by available actions. 

Menu Option Output File 

Get Auxiliary 

Files 

1. Patient and its respective Cancer Subtype pt_cs.csv 

2. Genes To Work GenesToWork.csv 

3. Ensembl ID to Gene Name DR_Id2Gene.csv 

Metadata 1. Age pt_age.csv 

2. Country pt_country.csv 

3. Gender pt_gender.csv 

4. Lauren Classification pt_lc.csv 

5. Race pt_race.csv 

6. Ethnicity pt_ethnicity.csv 

7. Cancer Stage pt_stage.csv 

8. Molecular Subtype (CS) pt_cs.csv 

Mutations 1. Patient ID + Mutated Gene + Variant Classification 

(N_RD) 

pt_gene_mutclass.csv 

2. Patient ID + Mutated Gene + Variant Classification 

(RD) 

DR_pt_gene_mutclass.csv 

3. Patient ID + Mutated Gene (N_RD) pt_mutgene.csv 

4. Patient ID + Mutated Gene (RD) DR_pt_mutgene.csv 

KEEG Pathways 1. Gene Name + KEEG Pathway kegg.csv 

GO Terms 1. Ensembl ID to GO Term GOids.csv 

Id2Gene 

 

1. Ensembl ID to Gene Name (N_RD) Id2Gene.csv 

2. Ensembl ID to Gene Name (RD) DR_Id2Gene.csv 

Metadata 

Associated 

Probabilities 

1. Cancer Subtype + Probability 

2. Cancer Subtype + Age + Probability 

3. Cancer Subtype + Country + Probability 

4. Cancer Subtype + Gender + Probability  

5. Cancer Subtype + Lauren Classification + 

Probability  

6. Cancer Subtype + Race + Probability 

7. Cancer Subtype + Ethnicity + Probability  

8. Cancer Subtype + Cancer Stage +  

Probability 

cs_prob.csv 

cs_age_prob.csv 

cs_country_prob.csv 

cs_gender_prob.csv 

cs_lc_prob.csv 

 

cs_race_prob.csv 

cs_ethnicity_prob.csv 

cs_stage_prob.csv 
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Table 9 – ProceOmics output files by available actions (continuation). 

Menu Option Output File 

Gene Mutations 

Associated 

Probabilities 

1. Mutated Gene + Cancer Subtype + Probability 

(N_RD) 

mutgene_cs_prob.csv 

2. Mutated Gene + Cancer Subtype + Probability (RD) DR_mutgene_cs_prob.csv 

3. Mutated Gene + Variant Classification + Probability 

(N_RD) 

mutgene_vc_prob.csv 

4. Mutated Gene + Variant Classification + Probability 

(RD) 

DR_mutgene_vc_prob.csv 

 

Methylation 

Associated 

Probabilities  

1. Gene + Cancer Subtype + Probability (RD) DR_metgene_cs.csv 

Gene 

Expression 

Associated 

Probabilities 

1. GEM + Cancer Subtype + Expression Profile + 

Probability 

DR_GeneExpression_cs.csv 

 

 

 

Table 10 - Developed genetic expression profile scale. 

FPKM values Applied String Applied String Description 

0 non_exp Non expressed 

]0, 1[ low_exp Low expressed 

[1, 10[ norm_exp Normally expressed 

[10, 100[ high_exp Highly expressed 

> 100 very_high_exp Very highly expressed 
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Appendix III 

 
Table 11 - Applied data processing steps. 

Menu Option Data Processing Steps 

Metadata 1. Age 1, 2, 3, 5 

2. Country 1, 2, 3, 4, 5 

3. Gender 1, 2,3, 4, 5 

4. Lauren Classification 1, 2, 3, 4, 5 

5. Race 1, 2, 3, 4, 5 

6. Ethnicity 1, 2, 3, 4, 5 

7. Cancer Stage 1, 2, 3, 4, 5 

8. Molecular Subtype (CS) 1, 2, 3, 4, 5 

Mutations 1. Patient ID + Mutated Gene + Variant Classification 

(N_RD) 

1, 2, 3, 4, 5, 6, 7 

2. Patient ID + Mutated Gene + Variant Classification 

(RD) 

1, 2, 3, 4, 5, 6, 7, 8 

3. Patient ID + Mutated Gene (N_RD) 1, 2, 3, 4, 5, 6, 7 

4. Patient ID + Mutated Gene (RD) 1, 2, 3, 4 ,5, 6, 7, 8 

KEEG Pathways 1. Gene Name + KEEG Pathway 5, 18, 19 

GO Terms 1. Ensembl ID to GO Term 5, 19, 20 

Id2Gene 1. Ensembl ID to Gene Name (N_RD) 1, 5, 6 

2. Ensembl ID to Gene Name (RD) 1, 5, 6, 8 

Metadata 

Associated 

Probabilities 

1. Cancer Subtype + Age + Probability 1, 2, 3, 4, 5, 6, 21, 21, 

23, 24 

Gene Mutations 

Associated 

Probabilities 

1. Mutated Gene + Cancer Subtype + Probability (N_RD) 1, 2, 3, 5, 6, 11, 19, 

21, 25, 26 

2. Mutated Gene + Cancer Subtype + Probability (RD) 1, 2, 3, 5, 6, 8, 11, 19, 

21, 25, 26 

3. Mutated Gene + Variant Classification + Probability 

(N_RD) 

1, 2, 3, 5, 6, 7, 28, 29 

4. Mutated Gene + Variant Classification + Probability 

(RD) 

1, 2, 3, 5, 6, 7, 8, 28, 

29 

Methylation 

Associated 

Probabilities  

1. Gene + Cancer Subtype + Probability (RD) 1, 2, 3, 5, 6, 8, 9, 10, 

11 

Gene 

Expression 

Associated 

Probabilities 

1. GEM + Cancer Subtype + Expression Profile + 

Probability 

1, 2, 5, 8, 11, 12, 13, 

14, 15, 16, 17, 21 
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Table 12 - Processing steps enumeration. 

Data Processing Steps Reference Numbers 

Select the interest features/columns 1 

Truncate the patient/Tumor_Sample_Barcode/Ensembl IDs 2 

Remove or replace omitted values 

In case of NA’s replacement, the value to be replaced assume the most common 

value when the data type is non-numeric or the mean of all the non-Na values or a 

well-marked value when the data type is numeric  

3 

Convert the non-numeric values to lower case 4 

Create a csv file to be loaded into the problog KB 5 

Removal of duplicated values  6 

Replace ambiguous characters on the Variant_Classification column 

In example, 5’UTR  5UTR 

7 

Data dimensionality reduction 

This approach allows to get genes in a specific threshold which improve the problog 

KB efficiency and velocity. Those genes are stored in the GenesToWork.csv file. The 

threshold value is given by the user. 

After the selection of the genes to work with, this approach can also be applied to 

several dataframes of different information, to retrieve only the features to the 

previously genes selected. 

8 

Unlist the column values 9 

Replace the multiple associated β -values of each gene by the average value  10 

Rename and/or reorder columns 11 

Transpose the GEM (gene expression matrix) 

Aims to swap the columns to the index and vice-versa 

12 

Subset the transposed GEM into N new data frames 

N corresponds to the number of columns (number of genes). The new data frames 

contain the same number of rows (samples) as the transposed GEM 

13 

Create an expression profile scale and apply it to FPKM values 

The expression profile scale is based on the expression value of each gene in each 

sample which aims to facilitate the results interpretations and replace as much 

numeric data as possible in the problog KB. This approach is applied to all the data 

frames that result from step 13. 

The expression profile scale is represented at Table 10 in appendix II. 

14 

FPKM value transformation of GEM values into probability of expression 

This approach is applied to all the data frames that result from step 13. 

15 

Concatenate the expression profile and probability value to the respective 

value 

This approach is applied to all the data frames that result from step 13 

16 
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Table 12 - Processing steps enumeration (continuation). 

Data Processing Steps Reference Numbers 

Merge all sub dataframes into just one 17 

Get all the kegg pathways 

Performed for all genes in the GenesToWork.csv file 

18 

Convert the final dataframe/structure to the desired structure that is most 

adequate to the problog KB 

19 

Get all the GO Terms 

Performed for all genes in the GenesToWork.csv file 

20 

Merge different dataframes based on column values 21 

Calculate the mean and standard deviation to all age values grouped by 

cancer subtype 

22 

Duplicate each dataframe row n times 

This n times duplication is required to further apply a Gaussian distribution. The n is 

equal to the number of cancer subtypes 

23 

Apply a Gaussian distribution to all the age values 

This step uses the step 22 and its applied to step 23 

24 

Perform a cross validation table 

Allows to obtain the occurrence number of gene mutations in each cancer subtype 

25 

Count the number of occurrence of each cancer subtype 26 

Probability calculation of each gene be mutated in each cancer subtype 

This step is applied to steps 25 and 26 

The probabilities values are obtained by dividing the occurrence number of a mutated 

gene in a subtype by the respective cancer subtype counts in the original dataframe 

27 

Remove undesired values 28 

Probability calculation of each gene be mutated with a specific variant 

classification 

The probabilities values are obtained by dividing the occurrence number of a mutated 

gene in a variant classification by the respective variant classification counts in all the 

dataframe 

29 
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Appendix IV 

Case Study I 

Approach I 

Queries 

 query(mutgene_vc_cs_prob('ARID1A',VC,CS)). (1) 

 query(mutgene_vc_cs_prob('HERC2',VC,CS)). (2) 

 query(mutgene_vc_cs_prob('LAMA1',VC,CS)). (3) 

 query(mutgene_vc_cs_prob('PIK3CA',VC,CS)). (4) 

 query(mutgene_vc_cs_prob('RERE',VC,CS)). (5) 

 query(mutgene_vc_cs_prob('TP53',VC,CS)). (6) 

 

 

Figure 10 - Query (1) results from approach I of case study I. 
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Figure 11 - Query (2) results from approach I of case study I. 
This figure is only a portion of the total query output.  

 
 

 

Figure 12 - Query (3) results from approach I of case study I. 
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Figure 13 - Query (4) results from approach I of case study I. 
 

 

Figure 14 - Query (5) results from approach I of case study I. 
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Figure 15 - Query (6) results from approach I of case study I. 

 

Approach II 

Queries 

 query(mutgene_vc_cs_prob(GENE,in_frame_del,CS)). (1) 

 query(mutgene_vc_cs_prob(GENE,intron,CS)). (2) 

 query(mutgene_vc_cs_prob(GENE,splice_region,CS)). (3) 

 

Figure 16 - Query (1) results from approach II of case study I. 
This figure is only a portion of the total query output.  



68 

 

 

Figure 17 - Query (2) results from approach II of case study I. 
This figure is only a portion of the total query output.  

 

 

Figure 18 - Query (3) results from approach II of case study I. 
This figure is only a portion of the total query output.  

 

Approach III 

Queries 

 query(mutgene_vc_cs_prob(GENE,VC,msi)).  (1) 

 query(mutgene_vc_cs_prob(GENE,VC,cin)). (2) 
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 query(mutgene_vc_cs_prob(GENE,VC,ebv)). (3) 

 query(mutgene_vc_cs_prob(GENE,VC,gs)) (4) 

 

 

Figure 19 - Query (1) results from approach III of case study I. 
This figure is only a portion of the total query output.  

 

 

Figure 20 - Query (2) results from approach III of case study I. 
This figure is only a portion of the total query output.  
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Figure 21 - Query (3) results from approach III of case study I. 
This figure is only a portion of the total query output. 

  

.  

Figure 22 - Query (4) results from approach III of case study I. 
This figure is only a portion of the total query output.  

 

  



71 

 

Case Study II 

Approach I 

Query 

 query(metgene_cs_prob(GENE,CS)). (1) 

 

Figure 23 - Query (1) results from approach I of case study II. 
This figure is only a portion of the total query output.  

 

Approach II 

Query 

 query(cs_metgene_expprof_prob(CS,GENE,EXP)). (1) 
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Figure 24 - Query (1) results from approach II of case study II. 
This figure is only a portion of the total query output.  

 

Case Study IV 

Query 

 query(match_clinical(CS,AGE,GDR,germany,mixed,white,stage_iia)) :-  
 between(60, 70, AGE). (1) 

 

 

 

Figure 25 - Query (1) results from of case study IV. 
This figure is only a portion of the total query output.  

 


