A new method for the identification of cohesive laws under pure loading modes

F. Pereira a,*, N. Dourado c,d, J.J.L. Morais a, M.F.S.F. de Moura b

a CITAB/UTAD, Departamento de Engenharias, Quinta de Prados, 5001-801 Vila Real, Portugal
b Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Mecânica, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
c CEMMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal
d LABBELS – Associate Laboratory, Braga, Guimarães, Portugal

ARTICLE INFO

Keywords:
Composite materials
Cohesive zone model
Cohesive laws
Inverse methods

ABSTRACT

In this work, a new and simple methodology is proposed to identify the cohesive law of composite materials submitted to pure mode I and II loading. This methodology combines the experimental measured crack opening displacement and corresponding strain energy release rate with numerical simulation, using finite element method including cohesive zone modelling. The proposed procedure was tested and validated numerically, considering the determination of cohesive laws with different shapes for pure mode I and II loading. This was accomplished using the double cantilever beam (mode I) and end-notched flexure (mode II) tests. It was verified that the proposed methodology points towards the unicity of the identified solution and reproduces well the cohesive laws used as input.

1. Introduction

The accurate prediction of damage initiation and propagation in structures is becoming a research topic with increasing interest of researchers. The classical approaches are based on strength of materials methods using stress or strain failure criteria. However, these methodologies are not appropriate in the presence of discontinuities and singularities in the material, such as notches or holes, which generate important stress concentration effects. This circumstance leads to mesh dependency in numerical approaches creating significant difficulties in damage progressive analysis. In alternative, fracture mechanics based analysis can be employed. In this case, the presence of an initial material defect must be considered, which is a drawback concerning the simulation of damage onset. In order to overcome these difficulties, cohesive zone models (CZM) can be employed with success. These models combine stress-based criteria to identify damage onset and fracture mechanics concepts to deal with damage growth, thus overcoming the weaknesses and exploit the advantages of those criteria. In fact, using this strategy no initial crack is required to simulate damage initiation and the mesh dependency complications during propagation vanish. Moreover, CZM are able to handle non-linear fracture mechanics problems characterized by the presence of non-negligible fracture process zones. For these reasons, CZM are becoming popular numerical tools to deal with damage prediction in materials [2,12,14,16]. These models are based on a constitutive softening relationship between tractions and crack opening displacements, which is commonly known as the cohesive law (CL). Depending on materials fracture behavior, the CL can assume different shapes, e.g., bilinear, trilinear, trapezoidal, exponential and others. The definition of the

* Corresponding author.
E-mail addresses: famp@utad.pt (F. Pereira), nunodourado@dem.uminho.pt (N. Dourado), jmorais@utad.pt (J.J.L. Morais), mfmoura@fe.up.pt (M.F.S.F. de Moura).
The objective of this work is to propose a new and simple methodology to determine the CL. The method combines experimental data with numerical simulation using finite element analysis including cohesive zone modelling. The proposed procedure was validated numerically considering the determination of the CL under pure mode I loading using the double cantilever beam (DCB) test and under pure mode II loading employing the end-notched flexure (ENF) test. In both cases, several CLs were considered as input and the suitability of the model to reproduce them was verified.
2. Cohesive zone model

The cohesive zone model used in this work is based on piecewise linear softening CL (Fig. 1). A stepwise softening law with several branches can be used to replicate with accuracy the fracture behaviour of most materials. Hence, before damage onset, the relation between normal or shear traction (σ_i) and corresponding relative displacement (w_i) writes

$$\sigma_i = kw_i; \quad (i = I, II)$$

where k is the interfacial stiffness. This parameter usually assumes a high value (10^6-10^7 N/mm2) to avoid unwanted interpenetrations during contact. Therefore, the relative displacement corresponding to damage onset ($w_{i,1}$) becomes quite small and it was neglected in the schematic representation of Fig. 1. After damage onset, the softening relationship is described by

$$\sigma_i = (1-d)kw_i; \quad (i = I, II)$$

being d the damage parameter, ranging between zero and one. The crack opening displacements and tractions at the transition points ($j = 2, 3, \ldots, n$) (Fig. 1) are employed to define the cohesive law.

Equating the critical energy release rate (G_{cr}) to the area of the softening law (Fig. 1) it is possible to determine the ultimate relative displacement for $j = n$ in the following equation, provided that the coordinates of the several inflection points (w_i, σ_i) are previously determined following the methodology described in the next section,

$$G_{\text{cr}} = \sum_{j=2}^{n} \left(\frac{\sigma_i + \sigma_{i,(j-1)}}{w_{i,j} - w_{i,(j-1)}} \right)$$

The expression of the damage parameter on the several segments can now be easily obtained equating the corresponding softening relation,

$$\sigma_i = \frac{\sigma_{i,j} - \sigma_{i,(j-1)}}{w_{i,j} - w_{i,(j-1)}} \left(w_{i,j} - w_{i,(j-1)} \right) + \sigma_{i,(j-1)} \quad \text{for} \quad w_{i,(j-1)} \leq w_i \leq w_{i,j}$$

Equating this relation to Eq. (2), and solving each equation in order to parameter d. This leads to the following relationship,

$$d = 1 - \frac{1}{kw_i} \left[\frac{\sigma_i w_i - \sigma_{i,(j-1)} w_{i,(j-1)}}{w_{i,j} - w_{i,(j-1)}} \right] \quad \text{for} \quad w_{i,(j-1)} \leq w_i \leq w_{i,j}$$

Giving this relation, damage progression is simulated differently according to the successive stages (branches) of damage evolution.

3. Identification of the cohesive law

The proposed methodology is based on the ultimate strength ($\sigma_{i,1}$) and on the relation between the strain energy release rate (G_i), and crack opening displacements (COD$_i$). The first step consists in the determination of traction values in the vertices of the softening region ($\sigma_{i,j}$ in Fig. 1), as a function of the ultimate strength according to the following equations,

$$\sigma_{i,j} = \frac{2(G_{i,j} - G_{i,(j-1)})}{w_{i,j} - w_{i,(j-1)}} - \sigma_{i,1} \quad \text{for} \quad j = 2$$

$$\sigma_{i,j} = \frac{2(G_{i,j} - G_{i,(j-1)})}{w_{i,j} - w_{i,(j-1)}} + \left(\frac{1}{-1} \right)^{j-1} \sigma_{i,1} - \left(\frac{1}{-1} \right)^{j-1} \sum_{k=1}^{j-2} \left(\frac{1}{-1} \right)^{k-1} \frac{2(G_{i,k+1} - G_{i,k})}{w_{i,k+1} - w_{i,k}}$$

Using this information and imposing the following constraints,
\[\sigma_{ij} > 0, \quad j = 1, 2, 3, \ldots, n \]
\[\sigma_{ij} > \sigma_{(j+1),1}, \quad j = 1, 2, 3, \ldots, n \] (7)

the allowable domain for the ultimate strength \((\sigma_{11})\) is therefore identified, making the seeking strategy a single variable problem. Fig. 2 shows a schematic representation of the proposed methodology to identify the ultimate strength \((\sigma_{11})\) search domain bearing in mind a softening law with five vertices, i.e., a total of four branches. Considering Eqs. (6), it is possible to plot the linear relations between the intermediate components of tractions \(\sigma_{ij}\) with \(j = 2.3,4) in function of \(\sigma_{11}\) (Fig. 2). Subsequently, the constraints given by Eqs. (7) are imposed, aiming to define the allowable domain for this cohesive parameter \((\sigma_{11})\) (dashed region in Fig. 2).

It should be noted that the increase of the number of branches, with consequent reduction of tractions range between the selected vertices, leads to a reduction of the allowable domain of the ultimate strength. The determination of this value \((\sigma_{11})\) in the allowable and limited region (dashed area in Fig. 2) is accomplished by minimization of the difference between the numerical and experimental load-displacement curves. In fact, the proposed procedure constitutes a single variable seeking technique and an accurate solution can be found after some iterations. Fig. 3 presents a flowchart of the implemented algorithm revealing the main steps and their sequence of the proposed procedure.

For the application of the described procedure it is important to determine the evolution of \(G_i\) during the mechanical test. The strain energy release rate can be obtained by means of an equivalent crack length procedure. In the DCB case ([8]), the specimen compliance versus crack length relation can be obtained from the Timoshenko beam theory,

\[C_1 = \frac{8a^3}{E_i Bh^3} + \frac{12a}{5BhG_{13}} \] (8)

where \(B, h, a\) stand for specimen dimensions (Fig. 4a and 5a) and \(E_1\) and \(G_{13}\) are the material elastic properties (Table 1). An equivalent crack length is obtained as a function of the current compliance, \(a_e = f(C_1)\). The solution can be found by the following equation,

\[\alpha a_e^3 + \beta a_e + \gamma = 0 \] (9)

where \(\alpha\) and \(\beta\) are the coefficients multiplying \(a_e^3\) and \(a_e\), respectively and \(\gamma = -G_i\). Using the Matlab® software and only keeping the real solution yields,

\[a_e = \frac{1}{6\alpha}A - \frac{2\beta}{A} \] (10)

with \(\alpha, \beta\) and \(A\) defined as,

\[\alpha = \frac{8}{Bh^3E_i}; \beta = \frac{12}{5BhG_{13}}; A = ((-108\gamma + 12\sqrt{3(4\beta^3 + 27\gamma^2\alpha)})\alpha^3)^{3} \] (11)

This equivalent crack length is longer than the actual one since it accounts for root rotation effects and the development of the fracture process zone ahead of the crack tip. Combining Eq. (8) with the Irwin-Kies relation,

\[G_i = \frac{P^2}{2B} \frac{dC}{da} \] (12)

it leads to

\[G_i = \frac{6P^2}{B^3h} \left(\frac{2a_e^2}{h^2E_i} + \frac{1}{5G_{13}} \right) \] (13)

This procedure provides the evolution of \(G_i\) in the course of the test, using only data ensuing from the load-displacement curve. In the case of the ENF test [6], the specimen compliance writes,
Fig. 3. Flowchart of the developed algorithm used to obtain the cohesive law.

Fig. 4. (a) Schematic representation of the DCB test (dimensions in mm: $a_0 = 45; h = 2.7, width B = 15$) and (b) used finite element mesh.
which allows to determine the equivalent crack length

\[a_e = \left[\left(C_{II} - \frac{3L^3}{10G_{II}Bh} \right) \frac{8E_1Bh^3}{3} - \frac{2L^3}{3} \right]^{1/3} \]

Combining Eqs. (15) and (12), the mode II strain energy release rate becomes,

\[G_{II} = \frac{9P^2a_e^4}{16E_1B^2h^3} \]

4. Numerical model

Finite element analyses of the double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed (Figs. 4 and 5). A two-dimensional analysis considering 1800 solid plane strain 8-node elements were used to simulate carbon-epoxy material (Tables 1 and 2), connected by means of compatible 200 cohesive elements with 6 nodes located at the specimen mid-height, aiming to simulate damage initiation and propagation. Non-linear geometrical analyses considering very small increments (0.0005 mm) for the loading applied displacement were assumed to simulate a quasi-static loading. The applied displacement was assumed equal to 10 mm to guarantee self-similar crack growth in all cases analysed.

5. Results and discussion

Different cohesive laws were used as input in the numerical analyses to perform the virtual tests. The crack opening displacement (COD, \(i = I, II \)) is measured in the numerical analysis at the pair of homologous points (above and below the crack line) located at the crack tip. Experimentally, they can be monitored by means of the digital image correlation [20]. These parameters allow to establish the relations \(G_i = f(COD_i) \) (Fig. 6), which are essential for the above described procedure.

A comparison between the cohesive law identification method developed by [18], in the following designated as “old algorithm”, and the method proposed in this work, named as “new algorithm”, was made. The “old algorithm” consists of an inverse method based on the combination of numerical simulations with an optimization algorithm aiming to minimize the difference between numerical and experimental load-displacement curves in each iteration. With this purpose, the pairs traction value (\(\sigma_{ij} \)) and relative displacement (\(w_{ij} \)) that define a cohesive law composed by four linear branches are iteratively changed envisaging the best agreement between the numerical and experimental load-displacement curves.

The two algorithms were applied to a DCB test considering a polynomial softening law and both provide a good agreement on load-displacement curves (Fig. 7a). Anyway, a detailed analysis of the load-displacement curves close to peak loads reveals that the new algorithm, considering \(j = 5 \) (Figs. 1 and 2), provides a better reproduction of the reference curve (Fig. 7b). Regarding the cohesive

\(E_1 = 109 \) GPa	\(v_{12} = 0.34 \)	\(G_{12} = 4315 \) MPa
\(E_2 = 8819 \) MPa	\(v_{13} = 0.34 \)	\(G_{13} = 4315 \) MPa
\(E_3 = 8819 \) MPa	\(v_{23} = 0.38 \)	\(G_{23} = 3200 \) MPa

\(C_{II} = \frac{3a^3 + 2L^3}{8E_1Bh} - \frac{3L^3}{10G_{II}Bh} \)

\(\frac{1}{3} \)

Fig. 5. (a) Schematic representation of the ENF test (dimensions in mm: \(a_0 = 75; h = 2.7; \) width \(B = 15; L = 100 \)) and (b) used finite element mesh.
laws, the old algorithm identified a softening law considerably different of the reference one. This highlights the difficulty of ensuring a unique solution from an adjustment based only on load-displacement curve. Another important issue is the CPU time consuming to achieve a solution. Both algorithms can be considered fast, however the new algorithm provides a solution in less than five iterations, which represents a decrease around 50% (Fig. 8).

Four common cohesive laws (CLs) representative of fracture behaviour of different composite materials were analysed to verify the model performance: the linear, the bilinear, the trapezoidal and the polynomial. Applying the data reduction methods described by the end of section 3. The respective Resistance-curves (R-curves) are presented in Fig. 9. As expected the values given by the plateau regions are in close agreement reflecting self-similar crack propagation under constant fracture energies (G_{IC} and G_{IIC} for mode I and mode II, respectively).

The piecewise linear softening law with four branches described in section 2 was employed to reproduce the considered CLs, in Figs. 10 and 11 it is possible to visualize the pairs (w, σ) used as input. In the mode I case, the bilinear and polynomial CLs were selected and the other ones (i.e., the linear and trapezoidal) were considered for mode II loading. Figs. 10 and 11 illustrate the agreement obtained for the referred four CLs. In the mode I case, both methods were considered, and it can be verified that the new algorithm captures well the reference law used as input. Instead, the old algorithm propitiates remarkable different softening laws when compared with the input ones.

In order to verify whether the excellent performance of the new algorithm obtained for mode I keeps valid for the mode II loading case, the procedure was applied to the linear and trapezoidal softening laws frequently used for this shear loading mode [9,19]. The results obtained are plotted in Fig. 11 confirming the excellent performance of the proposed methodology on the evaluation of the cohesive laws under pure loading modes.

6. Conclusions

In this work, a new and simple methodology allowing the determination of cohesive laws representative of the fracture behaviour of composite materials under pure mode I and II loading was developed. The procedure involves experimental data in combination with finite element analysis including cohesive zone modelling. The method requires the monitoring of the load-displacement and the crack opening displacement (COD, $i = I, II$) during the fracture test. From the load-displacement data, the strain energy release rate (G_i) in the course of the pure mode fracture tests (DCB and ENF) is obtained employing an equivalent crack length data reduction scheme, which allows to establish the $G_i = f(COD_i)$ relation. Subsequently, a piecewise linear cohesive law is used in a finite element analysis imposing several conditions that restrict the possible domain for the local strength. An optimization algorithm that minimizes the difference between the numerical and experimental load-displacement curves performs the final identification of this parameter. This inverse procedure englobes a single variable seeking, which means that it shows low sensitivity to lack of unicity of the found solution.

The method was tested considering four typical different cohesive laws, being two applied to pure mode I loading and the other two to the pure mode II loading, performing virtual DCB and ENF tests (mimicking experimental data), respectively. The ensuing $G_i = f(COD_i)$ relations and the respective load-displacement curves were used in the seeking procedure. A piecewise linear softening law
Fig. 7. a) Mode I load-displacement curve (polynomial cohesive law) b) detail close to peak loads; c) Mode II load-displacement curve (linear cohesive law) d) detail close to peak loads.

Fig. 8. Convergence analysis during iteration process.
Fig. 9. a) Mode I and b) mode II R-curves ensuing from the employed cohesive laws.

Fig. 10. Bilinear (a) and polynomial (b) CLs used for mode I loading.

Fig. 11. Linear (a) and trapezoidal (b) CLs used for mode II loading.
with four branches was used to capture the CLs used in the virtual test simulations. Overall, excellent agreement was obtained between the cohesive laws used as input and the ensuing ones resulting from the employed procedure, which makes the presented procedure a valuable tool regarding the identification of the cohesive laws representative of materials’ fracture. In fact, the proposed methodology can be easily implemented for coherent cohesive law assessment of any material with reduced computational costs owing to the set of the imposed restrictions.

CRediT authorship contribution statement

F. Pereira: Methodology, Conceptualization, Investigation, Writing-Original draft, Software, Data Curation, Funding acquisition.
N. Dourado: Formal analysis, Data Curation, Review & Editing, Funding acquisition. J.J.L. Morais: Methodology, Conceptualization, Investigation, Funding acquisition. M.F.S.F. de Moura: Methodology, Investigation, Software, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The first and third author acknowledges the Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020. The second author acknowledges FCT for the conceded financial support through the reference projects PTDC/EME-SIS/28225/2017 and UID/EEA/04436/2019. The fourth author acknowledges the “Laboratório Associado de Energia, Transportes e Aeronáutica” (LAETA) for the financial support by the project UID/EMS/50022/2013, and to the funding of Project NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

References