
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Marta Fernandes Tavares Sequeira

Building an automated platform for the
classification of peptides/proteins using
machine learning

October 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Marta Fernandes Tavares Sequeira

Building an automated platform for the
classification of peptides/proteins using
machine learning

Master dissertation
Master Degree in Bioinformatics

Dissertation supervised by
Prof. Miguel Francisco Almeida Pereira Rocha
Dr. Diana Andreia Pereira Lousa

October 2019

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um uso
do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor,
através do RepositóriUM da Universidade do Minho.

ii

A C K N O W L E D G E M E N T S

Throughout the writing of this dissertation I have received a great deal of support and help
from both professional and personal spheres, to which I would like to express my sincere
acknowledgment.

First, I would like to thank my supervisors Dr. Miguel Rocha from Minho University and
Dr. Diana Lousa from ITQB Nova for all the help and availability during this year. This
thesis would not have been possible without their advises and expertise. I would also like to
acknowledge all the colleagues from BisBII group, always willing to help me.

In addition, I want to thank to my closest family, who are always there for me, for their
love, care and support.

My special thanks are extended to Bomboémia, a percussion group from the university,
and my Judo crew for all the teachings, all the experiences and all the amazing people I had
the chance to meet this past year. They contributed immensely for my personal growth.

Last, but not least, I wish to thank to my dearest friends that help me get throughout
this difficult year and were always there, even from distant cities, giving support but also a
happy distraction. Pedro Lourenço, Cláudia Passos, Ricardo Jorge, Armando Nava, Helena
Freitas and Rita Ibañez, your support and true friendship was invaluable.

To all of you, here’s my sincere (BIG) Thank You!

iii

STATEMENT OF INTEGRITY
I hereby declare having conducted this academic work with integrity. I confirm that I have

not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

iv

R E S U M O

Um dos problemas mais desafiantes em bioinformática é a caracterização de sequências,
estruturas e funções de proteı́nas. Propriedades fı́sico-quı́micas e estruturais derivadas
da sequêcia proteica têm sido utilizadas no desenvolvimento de modelos de aprendizagem
máquina (AM). No entanto, ferramentas para calcular estes atributos são escassas e têm
limitações em termos de eficiência, facilidade de uso e capacidade de adaptação a diferentes
problemas. Aqui, é descrita uma plataforma modular genérica e automatizada para a
classificação de proteı́nas com base nas suas propriedades fı́sico-quı́micas, que faz uso de
diferentes algoritmos de AM. A ferramenta desenvolvida facilita as principais tarefas de
AM e inclui módulos para ler e alterar sequências, calcular atributos de proteı́nas, realizar
pré-processamento de dados, fazer redução e seleção de features, executar clustering, criar
modelos de AM e fazer previsões. Como é construı́do de forma modular, o utilizador
mantém o poder de alterar o código para atender às suas necessidades especı́ficas. Esta
plataforma foi testada com péptidos anticancerı́genos e antimicrobianos e foi ainda utilizada
para explorar péptidos de fusão virais. Os péptidos de fusão são uma classe de péptidos que
interagem com a membrana, encontrados em vı́rus encapsulados e que são particularmente
relevantes para a fusão da membrana do vı́rus com a membrana do hospedeiro. Determinar
quais são as propriedades que os caracterizam é uma questão cientı́fica muito relevante, com
importantes implicações tecnológicas.

Usando três conjuntos de dados diferentes compostos por sequências bem anotadas,
quatro técnicas diferentes de extração de features e cinco métodos diferentes de seleção de
features (num total de 24 conjuntos de dados testados), sete modelos de AM, com validação
cruzada de 10 vezes e uma abordagem de pesquisa em grelha, foram treinados e testados.
Os melhores modelos obtidos, com avaliações MCC entre 0,7 e 0,8 e precisão entre 0,85 e
0,9, foram utilizados para prever a localização de um péptido de fusão conhecido numa
sequência da proteı́na de fusão do vı́rus do Dengue. Os modelos obtidos para prever a
localização do péptido de fusão são úteis em pesquisas futuras, fornecendo também uma
visão biológica das caracterı́sticas fı́sico-quı́micas distintivas dos mesmos.

Este trabalho apresenta uma ferramenta disponı́vel gratuitamente para realizar a classificação
de proteı́nas com AM e a primeira análise global de péptidos de fusão virais usando
métodos baseados em AM, reforçando a usabilidade e a importância da AM em problemas
de classificação de proteı́nas.

Palavras Chave: Aprendizagem máquina; Classificação de péptidos; Péptidos de fusão
viral

v

A B S T R A C T

One of the challenging problems in bioinformatics is to computationally characterize se-
quences, structures and functions of proteins. Sequence-derived structural and physico-
chemical properties of proteins have been used in the development of machine learning
models in protein related problems. However, tools and platforms to calculate features and
perform Machine learning (ML) with proteins are scarce and have their limitations in terms of
effectiveness, user-friendliness and capacity.

Here, a generic modular automated platform for the classification of proteins based
on their physicochemical properties using different ML algorithms is proposed. The tool
developed, as a Python package, facilitates the major tasks of ML and includes modules
to read and alter sequences, calculate protein features, preprocess datasets, execute feature
reduction and selection, perform clustering, train and optimize ML models and make
predictions. As it is modular, the user retains the power to alter the code to fit specific needs.

This platform was tested to predict membrane active anticancer and antimicrobial peptides
and further used to explore viral fusion peptides. Membrane-interacting peptides play a
crucial role in several biological processes. Fusion peptides are a subclass found in enveloped
viruses, that are particularly relevant for membrane fusion. Determining what are the
properties that characterize fusion peptides and distinguishing them from other proteins is
a very relevant scientific question with important technological implications.

Using three different datasets composed by well annotated sequences, different feature
extraction techniques and feature selection methods (resulting in a total of over 20 datasets),
seven ML models were trained and tested, using cross validation for error estimation and
grid search for model selection. The different models, feature sets and feature selection
techniques were compared. The best models obtained for distinct metric were then used
to predict the location of a known fusion peptide in a protein sequence from the Dengue
virus. Feature importances were also analysed. The models obtained will be useful in future
research, also providing a biological insight of the distinctive physicochemical characteristics
of fusion peptides.

This work presents a freely available tool to perform ML-based protein classification and
the first global analysis and prediction of viral fusion peptides using ML, reinforcing the
usability and importance of ML in protein classification problems.

Keywords: Machine Learning; Peptide Classification; Viral Fusion Peptides

vi

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Objetives 2

1.3 Structure of the text 3

2 membrane-active peptides 4

2.1 Antimicrobial peptides 5

2.1.1 Structure of antimicrobial peptides 5

2.1.2 Mechanism of action of antimicrobial peptides 6

2.2 Anticancer peptides 7

2.2.1 Properties of anticancer peptides 9

2.3 Viral fusion peptides 9

2.3.1 Mechanisms of viral fusion proteins 10

2.3.2 Biophysical properties of viral fusion peptides 12

3 machine learning 13

3.1 Unsupervised machine learning 13

3.1.1 Dimensionality reduction - principal component analysis 14

3.1.2 Clustering 14

3.2 Supervised machine learning algorithms 14

3.2.1 Hidden markov models 15

3.2.2 K nearest neighbour 15

3.2.3 Linear methods 16

3.2.4 Naı̈ve bayes 16

3.2.5 Decision trees 17

3.2.6 Kernel support vector machines methods 17

3.2.7 Artificial neural networks and deep learning 18

3.2.8 Ensembles 18

3.3 Supervised machine learning workflow and key concepts 20

3.3.1 Data preparation 20

3.3.2 Model selection, training, evaluation and optimization 23

3.3.3 Model application and prediction 26

3.4 Relevant packages and tools 26

4 machine learning applied to peptides 28

4.1 Protein feature extraction 28

4.1.1 Physicochemical descriptors 29

vii

contents viii

4.1.2 Residue composition descriptors 29

4.1.3 Autocorrelation based descriptors 31

4.1.4 Composition, transition and distribution 32

4.1.5 Conjoint triad descriptors 33

4.1.6 Sequence order descriptors 35

4.1.7 Pseudo aminoacid composition descriptors 36

4.1.8 Base class peptide descriptors 37

4.1.9 Binary profiles 37

4.2 Relevant previous work on peptide classification 38

4.2.1 Packages and tools for peptide classification 38

4.2.2 Previous work on membrane-active peptides 39

5 development 43

5.1 Development of the python package 43

5.1.1 Read sequence module 44

5.1.2 Descriptors module 45

5.1.3 Preprocessing module 49

5.1.4 Feature reduction module 50

5.1.5 Feature selection module 51

5.1.6 Clustering module 54

5.1.7 Machine learning module 56

5.1.8 Other functions 58

5.2 Outcomes and discussion of the package developed 59

6 validation 61

6.1 Antimicrobial peptides - AmPEP 61

6.2 Anticancer peptides - MLACP 63

7 viral fusion peptide case study 65

7.1 Methods 65

7.1.1 Datasets for model construction 65

7.1.2 Generation and selection of features 66

7.1.3 Machine learning models: construction, optimization and evalua-
tion 68

7.1.4 Application to predict the location of peptide sequence 69

7.2 Results and discussion 69

7.2.1 Dataset 1 69

7.2.2 Dataset2 73

7.2.3 Dataset3 74

8 conclusion and prospects for future work 80

L I S T O F F I G U R E S

Figure 1 Schematic representation of the sequence of events in membrane
fusion promoted by a viral fusion peptide. 11

Figure 2 Supervised learning pipeline 21

Figure 3 Schematic diagram for constructing the vector space (V,F) of protein
sequence for Conjoint Triad descriptors 34

Figure 4 Schematic drawing to Sequence Order Coupling numbers 36

Figure 5 Schematic representation of the modules in the built package 44

Figure 6 Dengue’s fusion protein. Regions predicted as containing fusion
peptides using dataset1 70

Figure 7 Feature importance of the RF model using the dataset 1 with all
features selected recurring to a tree model 71

Figure 8 Dengue’s fusion protein. Regions predicted by SVM model (dataset 3

and feature selection SVC) 75

Figure 9 Dengue’s fusion protein. Regions predicted by SVM model (dataset 3

and feature selection univariate and SVC) 76

Figure 10 Dengue’s fusion protein. Regions predicted by SGD model (dataset 3

and feature selection univariate and SVC) 76

ix

L I S T O F TA B L E S

Table 1 Amino acid attributes and division in groups to calculate CTD de-
scriptors 33

Table 2 Summary of methods available for antimicrobial and anticancer clas-
sification 41

Table 3 Summary table of the methods available in the class ReadSequence 45

Table 4 Summary table of the functions available in the module Descriptor 47

Table 5 Summary table of the methods available in the class Preprocess 50

Table 6 Summary table of the methods available in the class Feature reduction

51

Table 7 Summary table of the methods available in the class Feature selection

54

Table 8 Summary table of the methods available in the class Cluster 56

Table 9 Summary table of the methods available in the class Machine learning 58

Table 10 Summary of the scores of the models produced with the package
comparing to AmPEP 63

Table 11 Comparative analysis of the performance of RF and SVM models in
MLACP article and with package. 64

Table 12 Description of the number of features used for each of the three
datasets 67

Table 13 Hyperparameter values used in grid search for the models: SVM, RF,
KNN, Gradient Boosting classifier (GB), SGD and NN 68

Table 14 Table with the best performing models in dataset 1 for all sets of
features 70

Table 15 Best performing models in dataset 2 for all set of features 73

Table 16 Best performing models in dataset 3 for all set of features 75

Table 17 Table discriminating the highest FI from the 4 models divided by the
hyperplane space they occupy. 79

x

A C R O N Y M S

A

AA aminoacid.

AAC Aminoacid Composition.

ACACS average chemical shifts.

ACP anticancer Peptides.

ALA alanine.

AM aprendizagem máquina.

AMP Antimicrobial Peptides.

ANN Artificial neural networks.

ANOVA analysis of variance.

APAAC Amphiphilic pseudo aminoacid composition.

ARG arginine.

ASN asparagine.

ASP aspartic acid.

ATC atomic composition.

AUC Area under curve.

B

BLOSUM Blocks of Amino Acid Substitution Matrix.

C

C Composition.

CL cardiolipin.

CTD Composition, Transisition, Distribution.

xi

Acronyms xii

CTRIAD Conjoint triad.

D

D Distribution.

DA discriminant analysis.

DI Informatics Department.

DPC Dipeptide Composition.

E

EBOV Ebola virus.

F

FDR False discovery rate.

FI features importances.

FN false negative.

FP false positive.

FPEP fusion peptide.

G

GB Gradient Boosting classifier.

GLN glutamine.

GLU glutamic acid.

GLY glycine.

GNB gaussian naive bayes.

GRAVY grand average of hydropathy.

GRNN Generalized regression neural network.

H

HC hierarchical clustering.

Acronyms xiii

HIS histidine.

HIV human immunodeficiency virus.

HMM Hidden markov models.

I

IFV Influenza virus.

ILE isoleucine.

K

KNN k-nearest neighbour algorithms.

L

LDA Linear discriminant analysis.

LEU leucine.

LPS lipopolysaccharide.

LYS lysine.

M

MCC Matthews correlation coefficient.

MET methionine.

ML Machine learning.

N

NGC negative gaussian curvature.

P

PAAC Pseudo aminoacid composition.

PC Principal component.

PCA Principal component analysis.

PECC Percentage of Examples Correctly Classified.

Acronyms xiv

PG phosphatidylglycerol.

PHE phenylalanine.

PNN Probabilistic Neutral network.

PPI Protein-Protein Interactions.

PRO proline.

PS phosphatidylserine.

PSSM position-specific weight matrix.

Q

QSO Quasi Sequence order descriptors.

R

RAAC Reduced amino acid composition.

RBF radial basis function.

RF Random Forest.

RFE recursive feature elimination.

RMSE Root mean squared error.

ROC receiver operating characteristic.

S

SAAC Split amino acid composition.

SER serine.

SGD stochastic gradient descendent.

SSE sum of squared errors.

SVC Support Vector Classification.

SVM support vector machines.

T

T Transition.

Acronyms xv

TMD Transmembrane domain.

TN true negative.

TP true positive.

TPC Tripeptide composition.

U

UM University of Minho.

V

VAL valine.

W

WHO World Health Organization.

1

I N T R O D U C T I O N

This dissertation describes the Master’s work developed in the context of the Bioinformatics
master held at Informatics Department (DI), University of Minho (UM).

1.1 motivation

Membrane-interacting peptides play a crucial role in several biological processes, such as
viral fusion, attaching proteins to membrane bilayers, inactivating bacteria (antimicrobial
peptides) or disrupting cancer cells (anticancer peptides) [1]. These peptides have some
common characteristics, such as a high hydrophobic content, nevertheless their specific
properties can vary according to their biological role. Determining what are the properties
that characterize different classes of membrane-interacting peptides and distinguishing them
is a very relevant scientific question with important technological implications. Classifying
these peptides according to their specific function can have very important applications, such
as the identification of novel fusion peptides or novel antimicrobial/anticancer peptides.

Fusion peptides are an important class of membrane-interacting peptides, found in
enveloped viruses, such as influenza, Dengue and HIV. These viruses have proteins whose
function is to fuse their membrane with the host membrane – fusion proteins. A segment of
these proteins known as the fusion peptide (FPep), which inserts into the host membrane, is
particularly relevant for membrane fusion. The FPeps from different virus families are quite
diverse at the sequence and structural level, although they have some common features [2].
The host team is currently trying to find the specific patterns that characterize viral FPeps
and enabling the identification of novel ones. The team has previously collected a large
amount of data on viral fusion peptides and proteins and performed a preliminary machine
learning-based classification of these peptides, with promising results.

Sequence-derived structural and physiochemical properties of peptides/proteins (e.g.
length, charge hydrophobicity, aminoacid composition, dipeptide composition) have been
used in the development of machine learning models to predict, among others, protein
structural and functional classes, protein-protein or protein-ligand interactions and peptides
with specific properties [3], as it is the case with the problems mentioned above. Indeed,

1

1.2. Objetives 2

this type of characterization can be useful in a variety of areas such as chemogenomics,
predicting drug target interaction [4] or antimicrobial activity [5]. This type of approach
assumes that the function/activity of a peptide (e.g. antimicrobial activity) may be predicted
from its physicochemical properties that can be computed from the knowledge of only the
peptide sequence [6]. After obtaining the subset of descriptors that is most relevant for the
prediction of the property of interest, it is then possible to use supervised machine learning
algorithms to assess and predict the property of interest in different protein sequences.

Machine learning algorithms have been used in the characterization and identification
of different types of peptides. Regarding the mentioned case studies, in what concerns
anticancer and antimicrobial peptides there are already tools for their identification [7, 8, 9]
and design [10, 11, 12, 13]. For fusion peptides, as far as we know, there is no systematic
and global analysis of FPep sequences from different viral families using machine learning
algorithm.

In the context of machine learning methods to analyse and classify proteins based on
sequence-derived properties, general tools have been developed. An example is the web
server Bio-seq analysis, a general platform that uses machine learning to analyse DNA,
RNA and protein sequences [14]. However, there is no tool specifically focused in analysing
and/or distinguishing membrane interacting peptides (such as anticancer peptides and viral
fusion peptides). Moreover, in the existing platforms the user does not have full control over
all the steps of the protocol and cannot adapt the code to its specific problem.

1.2 objetives

The aim of this project is to build a generic automated platform for the classification of
peptides/proteins based on their physicochemical properties that can make use of different
machine learning algorithms. This platform will be built in a modular way, allowing users
to have control over the different steps and adapting/extending the code to fit their specific
needs. During this thesis, we will focus on membrane-interacting peptides as test cases to
evaluate our platform.

The pipeline will receive as inputs a set of protein/peptide sequences and calculate a large
number of physicochemical descriptors. The pipeline will then evaluate different machine
learning algorithms, accounting for feature selection, hyperparameter optimization and
error estimation for the different models, aiming to select models with high performance
and to calculate variable importance. This platform will be applied to two different test
cases: classification of viral fusion peptides and classification of anticancer and antimicrobial
peptides.

In detail, the work will address the following scientific/technological objectives:

1.3. Structure of the text 3

• Review relevant literature for peptide/protein classification, machine learning methods
and applications in related scenarios;

• Collect and curate train and test datasets used to construct and evaluate the model
(definition of positive and negative datasets for training and testing);

• Develop a ML-based general-purpose pipeline for peptide classification, including
choice and calculation of physicochemical descriptors; selection and filtering of relevant
physicochemical descriptors; evaluation and selection of different machine learning
algorithms;

• Validate the platform with anticancer and antimicrobial test studies;

• Apply the developed pipeline to identify novel fusion peptides from the sequence of
viral fusion proteins with unknown fusion peptides;

• Analyse the distinctive features of FPep and their biological significance.

1.3 structure of the text

In chapter 2, an introduction to membrane active peptides will be presented. The definition,
structure and mechanism of action will be explained for antimicrobial peptides, anticancer
peptides and viral fusion peptides, which are the test-case peptides in this scientific work.

Chapter 3 will deliver an explanation of the concepts on ML, namely on unsupervised
and supervised machine learning algorithms, supervised ML workflow and key concepts,
such as cross validation, feature selection, and over and underfitting. Relevant ML packages
in python will also be addressed.

Chapter 4 will focus on the application of ML on peptides and description of the relevant
previous work existing in peptide classification using ML approaches.

In chapter 5 the description of the code developed will be presented. The structure of the
package, outcomes and possible improvements will be presented.

The developed package is tested against anticancer and antimicrobial case studies. The
results and discussion of this validation will be presented on chapter 6.

Chapter 7 will present the viral fusion peptide case study. The methods and results will
be reported followed by a discussion of the main results.

Finally, chapter 8 will highlight the main conclusions of the thesis followed by a description
of possible improvements and future work.

2

M E M B R A N E - A C T I V E P E P T I D E S

Membrane-interacting peptides are characterized for having a high membrane affinity and
in most cases an effect on the membranes they interact with. They are ubiquitous in nature
and participate in several biological processes such as viral fusion, attachment of proteins to
membrane bilayers, inactivation of bacteria or disruption of cancer cells [1].

Membrane-active peptides constitute a specific type of membrane-interacting peptides
that have an active role in the membrane. They can disrupt the membrane leading to cell
lysis, translocate through it to deliver cargos into the cell or promote membrane fusion [15].
These peptides have common characteristics like high hydrophobicity and,, in some cases,
the ability to generate a negative gaussian curvature (NGC) in model membranes (membrane
curvature required for common membrane permeation such as pore formation, blobbing
and budding) [6, 15]. They have, nonetheless, specific properties according to their specific
biological role.

Nowadays, two of the major global health challenges, signalled by the World Health
Organization (WHO), are the antibiotic resistant bacteria and cancer. Both microbial infection
and cancer are leading causes of morbidity and mortality worldwide and urgent solutions
and targeted approaches are needed [16]. Another major health concern are viral infections
caused by viruses such as human immunodeficiency virus (HIV), ZIKA, Ebola virus (EBOV),
Influenza virus (IFV), or Hepatitis virus [17].

Peptides have been in the front-line of the development and design of effective and cell
specific therapeutics [16]. This work will focus on the study of membrane-active peptides,
specifically peptides with antimicrobial activity (antimicrobial peptides), peptides with
anticancer activity (anticancer peptides) and peptides essential for the infection of viruses
(viral fusion peptides). A small summary of some of some of the specific properties and
characteristics of antimicrobial peptides, anticancer peptides and viral fusion peptides is
described in the following sub sections.

4

2.1. Antimicrobial peptides 5

2.1 antimicrobial peptides

Antimicrobial Peptides (AMP) are compounds widely distributed in nature that can kill
microbial pathogens directly or indirectly by modulating host defence systems [18]. AMPs
are produced by all life forms of organisms, from bacteria, fungi and plants to animals,
existing also synthetic variants. Bacteria produce AMPs to kill other bacteria competing
for the same ecological niche, while in higher organisms they are components of the innate
immunity. These small and generally amphipathic molecules, which usually contain cationic
and hydrophobic residues in elevated proportion [1], show a broad spectrum of antimicrobial
activities and the majority can kill both gram positive and gram negative bacteria. Besides
that, a significant number have been shown to have anticancer and antiviral activities, some
are known to have lipopolysaccharide (LPS) neutralizing ability and others have the capacity
to modulate the immune system [18, 19]. Examples of AMPs include defensin, dermcidin,
LL-37 (human origin), cecropin (insect origin) and magainin (amphibian origin) [15].

The rapidly increasing resistance toward conventional antibiotics is a growing problem
all over the world [16]. Most AMPs interact with the pathogen membrane in a reduced
time frame and act through nonspecific interactions with membrane lipids, decreasing the
probability of developing resistance [1]. Consequently, AMPs have captured attention as
novel drug candidates and for the development of novel therapies, with several being already
evaluated in clinical trials [18]. With the grown interest and focus on AMPs, AMPs databases,
have increased. An example is the antimicrobial peptide database (APD3), which contained
records for 3051 antimicrobial peptides on January 2019, in categories such as antibacterial,
antiviral, antifungal or anticancer [20], with some peptides overlapping in some categories
as they can exhibit dual properties [21].

2.1.1 Structure of antimicrobial peptides

AMPs display remarkable structural and functional diversity and a great variation in their
secondary structures has been reported [19]. They are generally short, commonly consisting
of 10-50 aminoacid (aa) residues (optimal length of 21-30) [21], net positively charged (cationic),
amphipathic and with a substantial fraction of hydrophobic residues (30% or more). Lysine
and arginine residues are frequently present [18, 19, 22] and are responsible for the positive
net charge interacting with the negatively charged phosphate groups on membranes of
bacteria [15]. Furthermore, glycine (neutral) and leucine (hydrophobic) are predominant aa
residues as well [21].

AMPs are commonly classified based on their secondary structure into α-helical, β-sheet,
or peptides with extended/random-coil structure (cysteine rich), with most AMPs belonging
to the first two categories [1, 18, 19]. The α-helical peptides, like melittin, dermcidin and

2.1. Antimicrobial peptides 6

LL-37 [15] are often unstructured in aqueous solution, but adopt an amphipathic helical
structure in contact with a biological membrane [18]. β-sheet peptides, like defensins [18],
are stabilized by disulphide bonds and, due to their rigid structure, are more ordered in
aqueous solution and do not undergo a drastic conformational change as helical peptides
upon membrane interaction. Furthermore, a peptide can adopt different conformations
depending on its concentration an the specific membrane composition [15].

Decreasing of the peptide length is expected to decrease binding to membranes and the
tendency to form ordered secondary structures resulting in a decreased adsorption driving
force. Adsorption and destabilization of membranes increase with peptide positive charge,
hydrophobicity and at pH<pKa (where the peptide is fully positively charged). Additionally,
amphiphilic conformations like α-helices,with an hydrophilic and an hydrophobic face,
contribute to peptide binding, membrane disruption, and bacterial killing. Moreover, AMP
anti-inflammatory effects are linked to LPS and lipid-A binding and activation of the
inflammatory cascade through the nuclear transcription factor NF-KB [22].

2.1.2 Mechanism of action of antimicrobial peptides

Unlike the majority of available antibiotics that interact with a specific target protein, AMPs
primary mode of action is the disruption of cell membrane of the microorganisms leading to
cell lysis and death [18, 19, 22]. The cationic charge of AMPs leads to their accumulation
next to negatively charged surfaces like the gram negative outer membranes (wich have
lipids such as phosphatidylglycerol (PG), cardiolipin (CL), phosphatidylserine (PS) and LPS) or
gram positive cell wall [19, 23].

In addition, by charge-exchange mechanisms, they can translocate across the membrane
into the cytoplasm and across pores in the cell wall of gram positive bacteria, acting on
intracellular targets including DNA, RNA, and interfering with protein synthesis [18, 19, 22,
23]. Besides that, as the peptides undergo changes in conformation and aggregation state in
the presence of membranes, a single peptide can act through several mechanisms depending
on the peptide’s structure, the peptide:lipid ratio, and the properties of the lipid membrane
[23].

Mammalian cell membranes consist largely of neutral charge phospholipids and are
therefore less attractive to cationic AMPs. In addition, cholesterol present in mammalian
membranes makes it harder for AMPs to disrupt lipid bilayer structures. This way, AMPs
are selectively toxic to bacteria [19].

The interaction of AMP with membrane depends on the physicochemical properties such
as the aminoacid sequence, peptide length, net charge, amphipathicity, hydrophobicity,
structural folding in membranes (secondary structure, dynamics and orientation), oligomer-
ization, peptide concentration and membrane composition [1, 19, 22]. There are several

2.2. Anticancer peptides 7

mechanisms of membrane-disruption proposed to explain the activityAMPs. The models
that have receive most attention in the field includes pore-forming models as the barrel-stave
model and toroidal-pore wormhole and nonpore-forming models such as the carpet model
that describes a mechanism of membrane dissolution and detergent type membrane lytic
mechanism [1, 15, 19].

Some AMPs have shown antiviral activities, interacting directly with the envelope of the
virus, leading to a pore formation and consequent lysis of the viral particle [19], capacity of
modulation of inflammation and neutralization of pathogenic toxins [18, 22]. In addition,
some AMPs (cationic AMPs), have anticancer properties which may be due to both bacteria
and cancer cell membranes having negative charge [19]. The properties and mode of action
of anticancer peptides are described in the section below.

The development of AMPs as therapeutic agents has grown interest due to the high and
rapid bactericidal activity and broad range of action (important in polymicrobial infections).
AMPS are a class of therapeutic agents, which are complementary to existing antibiotics, to
which bacteria develop less resistance, being on the frontline as an alternative to solve the
growing problem of resistance to conventional antibiotics [18, 19, 23]. Furthermore, altering
specific residues can significantly impact on their biological activity [16, 22].Few AMPs
are already approved for clinical use, numerous are nowadays under clinical development
[18, 19]. For all the reasons above, computational methods that can quickly and accurately
identify candidate peptides as AMPs for subsequent experimental assays are necessary to
shorten the drug discovery process [24].

2.2 anticancer peptides

Cancer is one of the major causes of death and affects millions of people. This condition is
caused by the uncontrolled growth and spreading of abnormal cells that have the ability
to rapidly spread or invade other parts of the body [1]. It is not a single disease but
rather a heterogeneous group of several complex diseases, which makes the development of
anticancer therapies difficult [12]. Despite the advances in cancer therapy, techniques used
today, such as chemotherapy and surgery, do not have high success rates in some cancer
types and cancer cells can develop mechanisms of resistance. Consequently, there is interest
in developing anticancer agents with a new mode of action, selective and more efficient
[1, 19]. In this context, a growing number of studies has indicated cationic antimicrobial
peptides as exhibiting a broad spectrum of cytotoxic activity against cancer cells. These
anticancer Peptides (ACP)s are considered a resourceful therapeutic strategy, that can be either
used isolated or in combination with other conventional drugs [1, 19].

ACPs display a broad spectrum of modes of action, not yet fully understood, including
the ability to kill cancer cells, interfere with cancer cells by causing apoptosis mediated

2.2. Anticancer peptides 8

via mitochondrial disruption, trigger necrosis via cell lysis, stimulate the immune system
of the host, prevent tumour angiogenesis and metastasis [21] or destroy primary tumours
[1, 12]. They are expected to be selective towards cancer cells without damaging normal
cells or vital organs and display a variety of modes of action, which are different across
cancer types [1, 12]. Despite some drawbacks, as low in vivo stability and high costs for
production, the fact that they do not impair the normal body physiological functions, makes
them promising therapeutics for cancer treatment [9]. Besides that, since ACPs exhibit
short time-frame of interaction, they are less probable to cause resistance than other drugs.
They also present good solubility as well as good tumour penetration [21]. As it is quite
expensive and time-consuming to identify anticancer peptides using experimental methods,
it is necessary to develop sequence based computational methods capable of determining
ACP candidates, accelerating the process of discovery and design of ACP [7, 12].

The mechanism underlying each membranolytic peptide activity is dependent on the ACP
characteristics and the target membrane. Cancer and normal mammalian cells have several
differences that are accounted responsible for the selectivity of some of the ACPs. Normal
cells usually have an overall neutral charge, whereas cancer cell membranes typically carry
a net negative charge due to a higher than normal expression of anionic molecules such
as PS (<9% of the total phospholipids of membranes) and O-glycosylated mucins. As it
occurs with AMPs, the electrostatic attraction between the negatively charged components
of cancer cells and the positively charged ACPs is believed to play a major role in the strong
binding and selective disruption of cancer cell membranes. Besides having a more positive
charge, cancer cell membranes present other differences, such as higher fluidity and lower
amounts of cholesterol, which makes the membrane more fluid and may allow cancer cells to
bind increased numbers of ACP molecules. These alterations could possibly affect receptor
accessibility, cell adhesion, and other types of interaction between the cancer cell and its
environment, and could also play a role in the selective binding of ACPs to the cancer cells
[1, 19].

ACPs include Aurein 1.2 (isolated from a frog species) which has been described to
have both antimicrobial activity and anticancer activity without significant cytotoxicity and
defensins like the human neutrophil peptide-1 , 2 and 3 (HNP-1, HNP-2, HNP-3) [21]. Being
a subset of antimicrobial peptides, the characteristics of ACPs are very similar to those of
other AMPs. However, the physicochemical properties that drive some AMPs to possess
anticancer activity, while others do not, is still unclear and more research is needed to
understand these differences and help drive specific designs of ACPs [21]. Although AMPs
and ACPs share similar molecular properties, not all AMPs are ACPs and therefore it is
important to understand the factors that allow ACPs to recognize and lyse neoplastic cells,
unravelling the specific targets that are expressed and presented within a certain tumour
type [1].

2.3. Viral fusion peptides 9

2.2.1 Properties of anticancer peptides

In terms of structure, ACPs are mainly categorized as adopting either an α-helix or β-
sheet conformation [1]. ACPs are short peptides containing between 5-30 aa residues and
exhibit cationic amphipathic structures [7, 12, 21]. ACPs most often consist of positively
charged, aromatic, and hydrophobic residues. Furthermore, a significant difference in residue
preference between ACPs and non-ACPs has been observed [12]. In a study performed
in 2013, Tyagi et al used computational methods to differentiate anticancer peptides from
general sequences and from AMPs that do not present anticancer activity. They concluded
that anticancer peptides, when compared to random sequences, had overall, more cysteine,
glycine, isoleucine, lysine and tryptophan residues. However, considering a comparison
between ACPs and AMPs who are not described to displayed anticancer activities, AMPs
have more alanine, glycine, lysine and leucine residues than ACPs and less phenylalanine,
proline and tryptophan residues. Furthermore, taking in consideration only the C and N
terminal residues (terminal residues play crucial roles in biological functions), ACPs have
shown to have a higher proportion of cysteine (and less glycine) in N-terminal and higher
proportion of tyrosin and tryptophan in C-terminal when comparing to other AMPs without
anticancer properties [25].

2.3 viral fusion peptides

Membrane fusion can be defined as the merging of two separate and apposed lipid bilayers
into a single bilayer resulting in the mix of two initially distinct aqueous compartments.
It is an important and ubiquitous process to the cell life [26, 27]. There are two types of
biological membrane fusion with different mechanisms associated: endoplasmatic fusion, i.e.,
fusion inside the cells, and exoplasmatic membrane fusion, fusion that starts with merging
monolayers topologically corresponding to the outer monolayers of plasma membranes.
Here, the focus is in the exoplasmic fusion that can be observed in virus-host cell membrane
fusion [28].

One of the key aspects of the infection by virus having lipid bilayer envelopes is the fusion
of the viral membrane with a membrane of the target cell [29]. Lipid enveloped pathogenic
viruses such as IFV, HIV or EBOV, use membrane glycoproteins to induce membrane fusion
and enter selected host cell, gaining access to internal components of the cell in a process
called ‘viral entry’. Some fuse with the plasma membrane at cell surface and others fuse
with the endosome after endocytosis by host cells [26, 27].

Present in the viral envelope, fusion proteins are a class of proteins indispensable to the
process of membrane fusion of the virus with host cell [27]. Although they can vary in

2.3. Viral fusion peptides 10

structure, its mechanism of action is common: triggered by the binding of ligand, they suffer
a conformational change that is coupled to apposition and merging of the two bilayers [29].

Fusion peptides are segments of viral fusion proteins, with approximately 20-25 aa residues
frequently found at the N (amino) terminus [2, 27]. They are moderately hydrophobic
segments of membrane fusion proteins that enable these proteins to disrupt and connect
two apposed biological membranes [26], being of viral (viral FPeps) or non-viral origin [30].
FPeps have been proposed to reduce binding energy, fill the void space between bilayers
(the space is energetically unfavourable), alter curvature of the membrane (promote negative
curvature) and induce depth dependent membrane ordering [2].

Viruses have very dynamic genomes and undergo many replication cycles during infec-
tion and because of this, viruses and theirs viral entry machineries, are under an intense
evolutionary pressure, having high mutation rates [26]. However, the sequences of fusion
peptides are highly conserved within different groups of fusion proteins within the same
virus family, but not between different viral families [30], which hinders the discovery of
the unique features that characterize viral FPeps. Understanding the common properties
present in the FPeps of all enveloped virus is crucial to understand the general mechanism
of protein mediated fusion. The conserved elements of the viral entry mechanism provide
clinical targets for the development of inhibitors (antivirals) and immunogens (vaccines)
[26].

2.3.1 Mechanisms of viral fusion proteins

For fusion to occur, the fusing bilayers must come into close apposition. To overcome the
kinetic barrier necessary for lipid bilayer fusion, viruses expose on their surface copies of
viral fusion proteins [29].

Viral fusion proteins are indispensable to this process as they have two membrane –
interacting elements: A C-terminal transmembrane anchor to hold the protein in the viral
membrane and the fusion peptide that interacts with the target membrane. They are held in
a ‘prefusion conformation’ until the fusogenic conformational transition occurs [29].

The fusion protein is stimulated by a signal associated with arrival at the cell to be infected
(for e.g., binding of a ligand like protons or receptor) and undergoes a conformational
change (liberating free energy and lowering the kinetic barrier to draw membranes together)
that favours the contact between membrane and fusion peptide and initiates the process
of membrane fusion. Then, the two proximal leaflets of the lipid bilayers, but not the two
distal ones, merge in a stalk structure, allowing the mixing of the lipids of the monolayers in
contact (hemifusion intermediate). Increased tension leads to the formation of a hydrophilic
pore and pore enlargement. This fusion pore connects the internal aqueous volumes enclosed
by the originally separated membranes [26, 28, 29].

2.3. Viral fusion peptides 11

In Figure 1 a schematic representation of the events in membrane fusion promoted by a
viral fusion protein describe as in [29] is represented.

Figure 1: Schematic representation of the sequence of events in membrane fusion promoted by a
viral fusion peptide. a) Protein in pre-fusion conformation, with fusion peptide (green)
sequestered b) extended intermediate, the protein opens up, extending the fusion peptide to
interact with cell lipid bilayer. The part of protein bearing the fusion peptide forms a trimer
cluster. c) Collapse of the extended intermediate, a C-terminal segment of the protein folds
back along the outside of the trimer core. The segments from the three subunits fold back
independently. d) Hemifusion occurs when collapse of the intermediate has proceeded far
enough to bring the two bilayers into contact, the apposed, proximal leaflets merge into a
hemifusion stalk. e) Fusion pore formation, as the hemifused open into a pore, the final
zipping up of the C terminal ectodomain segment snaps the refolder trimer into its fully
symmetric, post-fusion conformation, preventing the pore from resealing. From [29]

Viral fusion proteins can be divided in three glycoprotein classes, class I, II and III [26].
Class I glycoproteins are present in viruses such as IFV, HIV, EBOV or Influenza and is

probably the best studied class. In the pre-fusion state, class I virus-cell fusion proteins are
α-helix rich trimers of non-covalently associated heterodimers. They insert fusion peptides
that are located at the N-terminal of the fusion protein [26].

Class II virus-cell fusion proteins, such as Dengue E glycoprotein, are β-sheet-rich pre-
fusion homo- or heterodimers, employing barrel domains to assemble membrane trimeric
hairpins [29]. They insert hydrophobic fusion loops (internal fusion peptides connected to
fusion protein at both terminals) into membranes [26, 28].

Class III from viruses like vesicular stomatitis virus [29], combine structural signatures
found in classes I and II, i.e., they are trimers, with both α-helices and β-sheets that dissociate
into monomers. They insert hydrophobic fusion loops into membranes, and oligomerize
into post-fusion trimers [26, 28].

In the process of membrane fusion, fusion peptides insert into the host membrane, and are
thought to promote lipid disorder and lipid tail protrusion, increase membrane curvature
and promote polar head intrusion (sinking of nearby lipid head-groups and dimpling of
the membranes). The result is the destabilization of the membrane and the promotion of
the fusion between the cell and the virus membrane [28, 31, 32]. During membrane fusion,

2.3. Viral fusion peptides 12

orientation, insertion depth and structure of the FPep in the membrane are factors that
influence the process [31].

Despite the large number of studies focusing on these peptides, the mechanism of action
of fusion peptides remains unclear and several mechanisms have been suggested [31].

2.3.2 Biophysical properties of viral fusion peptides

FPeps comprise conserved hydrophobic domains absolutely required for the fusogenic
activity of glycoproteins from all enveloped virus families [26].

Some fusion peptides are located at the extreme N-termini of the transmembrane subunits
of the fusion proteins (e.g. IFV and HIV), whereas others are internal fusion loops (e.g.
Dengue). They are relatively conserved in terms of amino acid composition within the same
species. In many cases, even relatively conservative single amino acid changes in the fusion
peptide completely abolish the ability of fusion proteins to fuse membranes, while other
structural and functional properties of these proteins may remain intact [30].

Concerning the primary structure, FPeps have an intraspecies sequence homology as
high as 90% having high residue conservation and high alanine/glycine content which
is uncommon for hydrophobic protein domains and suggests an intrinsic conformational
flexibility required for membrane insertion. In particular when located internally, they
contain invariable proline residues. Aromatic residues are also frequently present in fusion
protein sequences. These residues may help overcome the energy cost of peptide partitioning
into membranes, enable membrane insertion of internal FPeps or contribute to stabilize
the insertion of FPep in one bilayer leaflet [26]. Furthermore, the fusion peptide length
influences its structure which has a strong correlation with function [32].

Viral fusion peptides sequences are structurally constrained to access the three states of
pre fusion, active form and post fusion [26].

In the first stage, peptides are constraint to fold after synthesis as a constituent of glob-
ular ectodomains, i.e., the sequence must remain stable in folding within the globular
ectodomains of glycoprotein complexes (inactive state) [26]. As they get transferred to target
cell, they adopt specific conformations therein (active state). The conformation adopted
by fusion peptides in membranes and both the insertion depth and angle vary on factors
such as the membrane lipid composition (particularly the presence of cholesterol or anionic
phospholipids) or peptide length [26]. Finally, in some cases, they should co-assemble with
transmembrane anchors coupled to fusion pore extension [26].

3

M A C H I N E L E A R N I N G

Machine Learning can be defined as a branch of artificial intelligence that systematically
applies algorithms to induce the underlying relationships within data [33]. ML encompasses
computational methods that are able to discover hidden non-obvious patterns in a training
dataset and, by building a mathematical model, predict future events or scenarios in new
data [34, 35]. In 1959, A. Samuel described ML as the “field of study that gives computers
the ability to learn without being explicitly programmed” [36]. ML has become essential
on the field of information technology and with the increasing amounts of data it is
reasonable to assume that it will become even more prominent in the future [37]. It has been
applied to multiple computational biology problems, where the generation of biological and
clinical data has increased exponentially, particularly after the advent of the next generation
sequencing technologies [34, 38].

In machine learning, an instance or example, represents one row of the dataset that
contains features as columns, including possibly a target/output variable. The training set is
used to train the model and the test set is used to calculate the performance metrics of the
model. The features that describe the instance are the input variables and can be categorical
or continuous. The target variable is used to train supervised models and is often called
label [39, 33].

ML algorithms fall into two broad classes: unsupervised and supervised algorithms suited
to address distinct questions that are based on the desired output and the type of input
available for training the model. Whereas unsupervised machine learning intends to extract
knowledge from inputs alone, supervised machine learning goal is to infer the relationship
between the observed data (input data) and a target variable (output variable). Additional
classes include semi supervised algorithms (combine labelled and unlabelled data) [38].

3.1 unsupervised machine learning

In unsupervised learning, the objective is to discover hidden and new patterns within
data and understand the underlying organizational structure of data [33]. The dataset
is usually composed of only inputs, from which the algorithms are expected to extract

13

3.2. Supervised machine learning algorithms 14

knowledge [39]. One difficulty in unsupervised learning is evaluating whether the algorithm
learned something useful. As a consequence, unsupervised algorithms are used often in an
exploratory setting, to understand the data better and as a pre-processing step for supervised
algorithms [39]. Their goal is to hypothesize representations of the input data in order
to filter information, clustering and for an efficient decision making. These algorithms
have been used in areas as data compression (discover dominant features in data), outlier
detection, classification and others. They are best applied within a single homogeneous
dataset [33, 38]. Dimensionality reduction and clustering are examples of unsupervised
learning.

3.1.1 Dimensionality reduction - principal component analysis

Dimensionality reduction allows to summarize the essential characteristics (represented
by a small number of features) of a high dimensional data representation (consisting of
many features). The most common motivations are visualization, compressing the data,
and finding a representation that is more informative for further processing [39]. One
of the algorithms used for this purpose is the Principal component analysis (PCA). PCA
generates novel latent features in the data that provide the most signal (the first PCA is
the latent feature that explains most of the variability in the data) [38]. PCA achieves its
results by rotating the dataset in a way such that the rotated features are orthogonal [39].
Besides the PCA algorithm, there are the non-negative matrix factorization (NMF) algorithm,
which is commonly used for feature extraction, and t-SNE algorithm (commonly used for
visualization using two-dimensional scatter plots) [39].

3.1.2 Clustering

Clustering algorithms allow partitioning the dataset into clusters, i.e., groups of similar
items. The data is split in a way that a cluster contains similar points and points in different
clusters are different. Algorithms for clustering include the K-means (most commonly used),
agglomerative clustering or hierarchical clustering [39]. After unsupervised learning detects
clusters, supervised algorithms can classify new samples by assigning them to the closest
cluster [38].

3.2 supervised machine learning algorithms

Supervised algorithms attempt to infer the relationship between the observed data (input
data) and a target variable (dependent/output variable) that is subject to prediction. The
algorithm uses the training data to synthesize the model function that generalizes the relation

3.2. Supervised machine learning algorithms 15

between the input of feature vectors and the desirable output value [33]. The overall goal is
to make predictions for unseen data [39].

A well-trained model based on a supervised learning algorithm can accurately predict the
class labels for hidden examples embedded in unfamiliar or unobserved data instances [33].
These algorithms can be better at ignoring dataset specific noise and are particularly suitable
for integrative analysis of broad data collections (collections that span multiple datasets)
which is relevant in the application of these models in biological contexts [38].

In supervised learning, we may distinguish models for classification, where output
values belong in a discrete set, and regression models, where output values are within a
continuous set [40]. In classification problems, a classifier trains a model representing the
relationship between features and the class label in the training set, i. e. it takes the values
of various features of an instance to classify and predicts to which class the instance belongs.
Classification can be separated into binary or multiclass classification if it involves two or
more than two classes, respectively [39]. In regression problems, the goal is to predict a
continuous number, i.e., there is continuity between possible outcomes [39].

Below, a brief description of the most popular machine learning algorithms is addressed.

3.2.1 Hidden markov models

Hidden markov models (HMM) are stochastic models related to Bayesian networks [35]. They
consist of a finite set of nodes representing ‘hidden states’ interconnected by links describing
the probabilities of a transition between the individual states. They are defined by a finite set
of states, a discrete alphabet of symbols, a probability transition, and a probability emission
matrix. When the system is in a given state i, it has a probability tji of moving to state j and
a probability eiX of emitting symbol X. The emissions and transitions depend only on the
current state and only the emitted symbols can be visible not the underlying walk between
states (‘hidden’). It is not possible to express dependencies between non-neighboured states.
Furthermore, model parameters increase with the size of alphabet employed, which is a
downside when considering for example protein models [35, 41].

3.2.2 K nearest neighbour

In k-nearest neighbour algorithms (KNN) algorithms, used both for regression and classification,
the distances between samples and training data are calculated in a descriptor hyperspace,
i.e., to make a prediction for a new point, the algorithm finds the closest point in the training
dataset, its nearest neighbour [39]. In classification, the prediction is determined by the class
of the majority of the k nearest points and in regression by the average of the k nearest
points [40]. The number of neighbours considered and the distance measure (e.g. Euclidean

3.2. Supervised machine learning algorithms 16

distance) are important parameters in this algorithm. The method requires pre-process
previously the data, not working well with datasets with many (hundreds or more) features
[39].

3.2.3 Linear methods

Linear models make a prediction using a linear function of the input features. There are
differences if the model is set for regression or classification. In regression the output is a
linear function like a plane or hyperplane, of the features. The simplest method used is the
linear regression, or ordinary least squares, which has no parameters and does not allow to
control model complexity. Other linear models are available such as ridge regression where
coefficients, that should be close to zero, are chosen not only to predict well on the training
data but to control model complexity [39]. In classification, the formula is similar but instead
of returning the weighted sum of features, the returned value represents probability of
belonging to a class.

The coefficients W and the intercept b can be calculated through the decision boundary
function, which separates two classes using a plane or a hyperplane. These models are fast
to train and predict, they work well with large datasets and sparse data and are intuitive
to understand. With highly correlated features, however, the coefficients can be hard to
interpret. Also, they do not model nonlinear relations between the data [39].

3.2.4 Naı̈ve bayes

The Bayes theorem describes the conditional probability of an event, based on prior knowl-
edge about the problem. Naı̈ve Bayes algorithms are based on Bayes theorem. These
algorithms assume that, regardless of the existence of correlations between features, the
values of individual features are independent from the values of any other feature, given
the predicted value (class variable). These ML algorithms work by calculating a likelihood
function between the relative frequencies of each attribute and the frequency of the class
variable. The class prediction will correspond to the highest likelihood probability. Despite
of simple and naive assumptions, they have shown to perform well on classification tasks
[42]. They are quite similar to the linear models but tend to be even faster in training and
predicting, work well with large, high dimensional and sparse data and are relatively robust
to parameter choice [39].

3.2. Supervised machine learning algorithms 17

3.2.5 Decision trees

Decision trees, used for both classification and regression, are flowchart-like structures used
to determine a course of action or outcome. Each node represents a ’test’ (if/else questions)
in an attribute, each branch of the tree represents a possible decision (based on the values of
input features) and each leaf represents a class label (decision after computing all attributes).
They learn a hierarchy of if/else questions, leading to a decision [39, 40, 43]. The tree is
structured to show how and why one choice may lead to the next, with branches indicating
that each option is mutually exclusive. The root node is the starting point and leaf nodes
contain questions or criteria to be addressed while the branches connects the nodes [40].

Decision tree learning uses a decision tree as a predictive model. Trees can be classification
trees when the target variable is a discrete set of values and leaves represent class labels or
regression trees where the target value can take continuous values [44].

A general framework to grow a tree is as follows: The algorithm first determines the
best attribute (the attribute that has more information gain) in the dataset. This attribute is
assigned as the decision attribute for the node and creates a new descendent of the node.
This way, on each iteration, new decision trees are recursively generated by using the subset
of data in each node. This cycle happens until a stage where it is not possible to further
classify date is reached and the class is represented as a leaf node. To make a prediction,
each attribute of the example is tested on the root node and goes on through next nodes
until reach a leaf node, obtaining the final prediction [44].

Decision trees are prone to overfitting. To prevent this, pre and post-pruning can be
applied. The pre-pruning of the tree is achieved by stopping the development of the tree
before it is fully developed, limiting the maximum depth of the tree, limiting the maximum
number of leaves or requiring a minimum number of points in a node to keep splitting.
Post-pruning of the tree is achieved by building the tree removing or collapsing nodes that
contain little information [39].

Decision trees algorithms do not vary with scaling of data, not needing pre-processing like
normalization or standardization of features and can be easily visualized and understood.
However, even with pruning they tend to have a poor generalization performance and
therefore, are often used in ensemble methods, which combine multiple trees into one
predictive model to improve performance [39, 40].

3.2.6 Kernel support vector machines methods

Kernelized support vector machines (SVM) are models for both regression and classification.
In these models, feature points are projected in a high dimensional space where groups are
separated using a hyperplane [40, 45]. The goal of SVM is to find a hyperplane that can

3.2. Supervised machine learning algorithms 18

maximize the distance between the samples of different classes [46]. The distance to the
hyperplane in a higher dimensional space can be computed using a polynomial kernel that
computes all possible polynomials up to a certain degree of the original features or through
the radial basis function (RBF) kernel, also known as the Gaussian kernel that corresponds to
an infinite-dimensional feature space (it considers all possible polynomials of all degrees,
but the importance of the features decreases for higher degrees) [39].

They are powerful methods that work well with sparse data, are less prone to overfitting
and work well with both few and many features. Nonetheless, it is necessary to be careful
with the pre- processing of data [39, 41].

3.2.7 Artificial neural networks and deep learning

Artificial neural networks (ANN) and deep learning are inspired by the idea of reproducing
the functioning of the human brain with artificial neurons (processing unit) arranged in
input, output and hidden layers [40, 47]. They are comprised of neurons arranged in layers
and connections between neurons. The first layer is the input layer and the last one the
output layer, all the layers between are hidden layers. In the hidden layers, each neuron
receives input signals from other neurons, integrates those signals and then uses the result
in a straightforward computation, i.e., each node on the left represents an input feature,
the connecting lines represent the learned coefficients, and the node on the right represents
the output, which is a weighted sum of the inputs. The connections between neurons
are numerical weight values that are optimized during the network training, representing
the stored knowledge of the network [40]. Examples of these models are the multilayer
feed-forward network [47].

They are accurate models and they can work well in large amounts of data and complex
models but require preprocessing of data as scaling, working best with ‘homogenous’ data.
They also take considerable time to train [39].

Deep learning approaches are usually based on neural networks, are high dimensional
data reduction techniques for constructing high-dimensional predictors in input-output
models [48]. They are characterized for using a cascade of multiple layers (each layer uses
the output from the previous) of nonlinear processing units for feature extraction and
transformation [49]. They can handle very large data sets, find hidden structure within them
while making accurate predictions [50].

3.2.8 Ensembles

Often, multiple models achieve a better performance when compared to a single model.
Ensembles are methods that combine multiple machine learning models to create more

3.2. Supervised machine learning algorithms 19

powerful models. The idea is to develop approaches to generate numerous independent
models that, when combined into an ensemble improve generalizability and robustness over
a single estimator [51, 52]. The final result is obtained by combining the values of models
and returning a single value, for example, the classification made by more individual models
[53]. Ensembles can be a combination of different algorithms or a combination of similar
algorithms but varying their internal values [40].

A low-level algorithm, base learner, is a single ML algorithm that gets used by ensemble
models [51]. An upper-level algorithm manipulates inputs to base learner in order to
generate independent models. Upper level algorithms include methods that resample
training data to create new models for each sample (bagging and boosting) and methods
that introduce random choices in models or modify some algorithms initial parameters) [51].

Ensemble methods can be averaging methods or boosting methods.
In averaging methods, several estimators are built independently, and the predictions are

the result of the average of their results. The combined estimator is usually better than a
single estimator once its variance is reduced. Bagging and random forests are examples of
this kind of methods [52].

Bagging, or bootstrap aggregating, takes repeated unweighted samples from data, the
samples are without replacement within a sample (each observation is included in a sample
only once) and within replacement across samples (observations can be included in all
samples). As samples are unweighted, misclassified observations do not have weight from
previous samples. The user selects the number and size of samples to generate. However, if
a small percentage of observations is selected, the number of samples must be larger [53].

Random Forest (RF) are collections of decision trees, where each tree is slightly different
from the others. The difference between trees is not only based on the sampling of obser-
vations used as training data (trees would split at similar features at each node) but on
the selection of the features used. These models decide where to split based on a random
selection of features, i.e., instead of searching for the most important feature and split the
node, it searches the best feature among a random set of features. This way, each tree will
split based on different features [54]. Feature importance is obtained by aggregating features
importance of the singular trees. They don’t tend to perform well on high dimensional
sparse data but work well on large datasets [39].

The combination of a large number of trees that are then used to vote in some manner
to build a stable and strong classifier, which allows retaining the predictive power of trees,
reducing the tendency to overfit [53].

In boosting methods, the base estimators are built sequentially and try to reduce the
bias of the combined estimator. Boosting algorithms include AdaBoost or Gradient Tree
boosting. Boosting is similar to bagging; however, the weights of misclassified observations
are increased in order to make them more likely to be selected in the sample. This way,

3.3. Supervised machine learning workflow and key concepts 20

reweighting after each sample and ‘boosting’ the performance of the model [53]. Gradient
boosted regression trees, as random forests, also combine multiple trees to create a more
powerful model that can be used for regression. However, they build trees in a serial manner,
where each tree tries to correct the mistakes of the previous one [39].

The computational cost of constructing an ensemble is not significantly larger than creating
a single learner. The algorithms to combine base learners are simple and the creation of
multiple models is comparable to the cost of creating a single learner that needs to run
several times for hyper-parameter tuning [54].

3.3 supervised machine learning workflow and key concepts

The process of developing ML algorithms may be decomposed in several steps. First, it
is necessary to collect data and select a subset of data attributes that might be useful to
solve the problem. The features should be extracted, the data transformed and features to
use in the model should be selected. Additionally, data must be sampled in train, test and
independent/validation dataset. The next step is where the model is trained. The training
set is used by the algorithm to extract knowledge and, when applied to the test data set,
allows the calculus of the performance metrics by comparing the real and predicted values
of the target variable. It is also possible to tune the hyperparameters and perform model
optimization. Finally, the validated model can be applied to previously unseen data. A
schematic view of the supervised ML pipeline can be observed in Figure 2.

3.3.1 Data preparation

The first part of ML pipeline is to obtain and prepare the data to be used in the model
building and training. This includes data collection and dataset construction, preprocessing,
feature extraction and selection and splitting of the data into training, test and validation
sets. All these topics are described below.

Data collection and dataset construction

The first step is to collect the data available and select a subset of data attributes that might
be useful to solve the problem. The set of features extracted from an object can be considered
as a signature describing the object and is usually organized in a feature vector [45]. Features
(input variables or attributes) represent the data in a fixed length vector and can be binary,
categorical or continuous [55].

A dataset is a matrix of data, where each column represents an attribute, and each row
represents a different instance. Generally, the last column represents the output attribute

3.3. Supervised machine learning workflow and key concepts 21

Figure 2: Supervised learning pipeline

and the remaining represent the input attributes. Building the benchmark dataset with
reliable data is very important as ML depends heavily on data.

For classification problems the dataset must contain a subset with instances representing
class members and a subset with instances representing non class members [56].

For training a classifier, one would usually select a positive/negative ratio of 1:1, however,
in some cases, re-balancing data techniques achieve better results [24].

Feature extraction

Feature extraction transforms raw data, such as text or images, into features suitable for
modelling. In models that take as input numerical values, categorical variables can be
converted to one or more new features with values 0 and 1 using for example one-hot
encoding. In One-hot encoding features are encoded as one-hot numeric array (one bit as 1

and all the others 0) [39]. Feature extraction can reduce the dimensionality of the dataset by
transforming the original measure data with raw variables to features with strong pattern
recognition (achieved for example using PCA algorithms) [57].

3.3. Supervised machine learning workflow and key concepts 22

Preprocessing data / Feature transformation

Preprocessing data is one of the most crucial steps in machine learning since the raw data
collected rarely comes in the form and shape that is necessary for the optimal performance
of a learning algorithm [58].

Preprocessing includes formatting of data [33], and the removal or substitution of corrupt
and missing data [33, 40]. One of the most used preprocessing transformations is stan-
dardization. Features can have different scales although they refer to comparable objects.
Standardization is a common requirement for many machine learning estimators (for ex-
ample SVM and linear models) as they need selected features to be on the same scale for
optimal performance [58]. Standardization re-scales the data so it has the properties of a
standard normal distribution with mean 0 and standard deviation of 1 [52, 55].

Feature selection

Feature selection is the process of selecting a subset of features that, ideally, is necessary
and sufficient to describe the target concept. This selection is important since the feature
set is the source of information for the learning algorithm [59]. Feature selection allows to
deal with the curse of dimensionality by eliminating the redundant and irrelevant features,
reducing the number of features to the most important ones. This allows the ML algorithm
to train faster, reduce the complexity, improve accuracy and reduces overfitting of the model.
Besides this, it can provide some understanding and knowledge about data [55]. Feature
selection can be done using filter, wrapper or embedded approaches [60].

Filter techniques select features independent of machine learning algorithms and can be
used as a preprocessing step. Features are selected based on scores in statistical tests for
their correlation with the outcome variable. They are computationally simple and fast and
are independent of the algorithm, however, they ignore the interaction with the algorithm
[55, 60]. Univariate feature selection, for example, can include methods such as Pearson
Correlation Coefficient, which measures linear correlation between two variables (from -1
meaning perfect negative correlation to 1 meaning perfect positive correlation, zero means
no correlation with data), Linear discriminant analysis (LDA), analysis of variance (ANOVA),
Chi-square or mutual information [37, 58, 60, 61].

Wrapper methods use a subset of features to train the model and assess its performance.
The feature space is tailored to the specific algorithm used. Wrappers include the interaction
between feature subset and model and can account for feature dependencies, however, these
approaches are computationally expensive and prone to overfitting [55, 60]. Some examples
may include forward selection (starts with no feature in the model, in each iteration, we
add the feature which best improves our model), backward elimination (starts with all
features and, at each iteration, the least significant feature is removed) or recursive feature
elimination (greedy algorithm that repeatedly creates models and keeps aside the best or

3.3. Supervised machine learning workflow and key concepts 23

the worst feature, constructing models until all the features are exhausted to, and ranking
the features based on order of elimination) [37, 58, 60, 61].

Embedded techniques incorporate feature subset generation and evaluation in the training
algorithm, i.e., the search for an optimal subset of features is built into the classifier construc-
tion. They account for the interaction with the model, being less computationally intensive
than wrapper methods [55, 60, 62]. Popular methods include LASSO and RIDGE regression
which have inbuilt penalization functions to reduce overfitting and improve generalization.
LASSO regression performs L1 regularization, it adds penalties equivalent to absolute value
of the magnitude of coefficients, forcing weak values to have zero as coefficients, producing
sparse solutions. RIDGE regression performs L2 regularization, it adds penalties equivalent
to the square of the magnitude of coefficients forcing the coefficient values to be spread
out more evenly, being more useful for feature interpretation rather than feature selection
[37, 58, 60, 61].

Sampling data

In order to estimate the error of different models, it is necessary to divide our data into
training and test data. The training set is the data used to train the machine learning model.
The test set is used to evaluate the performance of the final model and validate it [33]. After
being trained, the effectiveness of training and the performance of the algorithm is assessed
by evaluating the ability to accurately predict the output data on the test set. The division
of the dataset must be random to guarantee that the model is a good generalization of the
data and not only of the training set [58]. Data need to be sampled at regular or adaptive
intervals [33] and samples divided should be representative of the whole population [40].
When the test set is used to tune hyperparameters of the models, the evaluation of per-
formance may not reflect the true performance of the model in a real-world application.
Therefore, a third set of independent data is created on which the model will run. As the
model is running in a previous unseen data the performance values will be more accurate
[14, 63].

3.3.2 Model selection, training, evaluation and optimization

To train the model, first, it is necessary to choose the algorithm to apply to the previous
generated data. The algorithm’s choice depends on the type of data and the problem posed.
To have a more robust model, it is possible to take advantage of ensembles methods using a
combination of different algorithms or a combination of similar algorithms but varying the
values of their internal parameters [40].

After the model is trained, it must be evaluated. This evaluation allows optimization and
selection of the best model and is made by exposing the trained model to the test dataset [33].

3.3. Supervised machine learning workflow and key concepts 24

Errors are usually derived from model bias (incorrect assumptions in the algorithm that can
result in the model missing underlying relationships), model variance (sensitivity to small
fluctuations in training set like outliers, missing data, errors in measurement and calculation
of training data) and irreducible errors, with the total error being the sum of these [39].
There are many models proposed and their performance depends on the algorithm they
analyse the data with [45]. Each algorithm has its inherent biases and therefore, it is essential
to compare different algorithms in order to select the best performing model [58].

Performance metrics

The assessment of performance depends on the type of problem and the metrics to be used
must be chosen carefully [39].

In classification problems, confusion matrices are often used. Confusion matrices show,
in a clear way, correct and incorrect classifications for each class. Rows correspond to real
classes and columns to the predicted classes. This representation allows the easy assessment
of true positive (TP) and false positive (FP) and true negative (TN) and false negative (FN)
[39, 51, 58]. Accuracy, also known as Percentage of Examples Correctly Classified (PECC) can
be calculated by the number of correct predictions (TP+TN) divided by the number of all
samples and represents how often the classifier makes the correct prediction [39, 51, 58].
Precision (positive predictive value), measures the samples predicted positive that are
actually positive. It is given by the number of TP divided by all the predicted positives
(TP+FP). On the other hand, recall measures how many positive labels are successfully
predicted amongst all positive labels. Recall is obtained by the division of TP by the sum of
TP and FN [39, 51, 58].

F1 score is a harmonic mean between precision and recall. Being a harmonic mean, the F
score tends toward the smaller of the two elements, this way, it is going to be small if either
precision or recall is small. It ranges from 0 to 1, with larger values corresponding to better
predictions.

Furthermore, a precision-recall curve, and a receiver operating characteristic (ROC) curve can
be designed. A precision-recall curve describes the relation between the true positive rate,
recall (x axis) and the positive predictive value, precision (y axis), using different probability
thresholds (between 0 and 1). The ROC curve, plots False positive rate on the x axis and True
positive Rate (recall) on y axis between the values of 0 and 1. The Area under curve (AUC)
measures the area underneath the ROC curve, it takes the value of 0, if all the predictions are
wrong and 1, if all the predictions are correct [39, 51, 58]. ROC curves are more appropriate
when observations are balanced between each class (there are roughly equal numbers of
observations for each class) whereas precision-recall curves can be appropriate when dealing
with imbalanced datasets [64].

3.3. Supervised machine learning workflow and key concepts 25

Additionally, specificity and negative predicted value can be calculated. Specificity (error
type I) is obtained by the division of TN by the sum of TN and FP. The negative predicted
value is obtained by the division of the TN by the sum of TN and FN.

Matthews correlation coefficient (MCC) is used as a measure of the quality of binary
classifications. It takes into account true and false positive and negatives and is considered
a balanced measure which can be used even if the classes are of very different sizes. It
returns a value between -1 (total disagreement) and 1 (perfect prediction)[65]. MCC can be
calculated as follow:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

On regression problems, error metrics are based on error presented by each example
(difference between real and predicted value) and can be calculated for example through the
sum of squared errors (SSE), Root mean squared error (RMSE) or R-squared [66]. RMSE, also
known as standard error, measures the difference between predicted values and true values.
It ranges from 0, up with values close to zero representing better predictions. R-squared
measures the correlation between predicted values and actual observed values. It ranges
from 0, no correlation, to 1, perfect correlation [39, 51, 58].

Cross validation

Cross validation is a resampling method. In cross validation the training dataset is divided
into training and validation subsets in order to estimate the generalization performance of
the models [58]. In k-fold cross-validation, k is the number of folds in which the dataset is
equally partitioned. Then, a sequence of models is trained using each of the folds as test
set and the remaining as training set [39]. In each round, K-1 folds are training the model
and the remaining is used as the test data. Each example is in the training set once, which
improves the ability of generalization of the model. Leave-one-out is a cross validation
technique where k equals the total number of samples, i.e., each fold is a single sample.
Although being less arbitrary, is very time consuming when considering large datasets [39].
Cross validation techniques can give an accurate estimate of the true error. Considering the
division of the dataset into k-subsets, the true error is the average of the errors obtained by
training the different k models [44].

Underfitting and overfitting

Underfitting occurs when the model is not capable of adequately describing the relationship
between inputs and outputs, having a high bias [40]. On the other end, overfitting occurs

3.4. Relevant packages and tools 26

when the model becomes too complex (for example due to a high number of parameters)
and, although the accuracy representing training data is very high, the performance with
test data is not [40]. In an overfitting scenario, the model fits too closely to the train set but
not to the test set, not being able to generalize to new data. In an underfitting scenario, on
the other hand, the model is too simple to capture the variability in data. The objective is to
generate a model that generalizes as accurately as possible [39].

Hyperparameter optimization

Hyperparameters are model parameters not learned in the training phase, that represent
the knobs of models. The default values for these parameters are typically not optimal for
our specific problem and their alteration can improve or impair the learning process. In
hyperparameter optimization their values are changed to a value close to optimal, regarding
our problem specific task [40, 58]. A grid search can be performed where all the combinations
of parameters of interest are tried. To do this, it is necessary to divide the dataset in three
datasets as explained above using an independent test additionally to the train and test
dataset or, using a cross validation technique on the train dataset [39].

3.3.3 Model application and prediction

Lastly, the validated model can be applied in an actual task of prediction. The process of
training can coexist with the prediction task, this is, as new data are encountered, the model
can be retrained following the same pipeline [33].

3.4 relevant packages and tools

The code relevant for this thesis will be implemented in the python language. Taking that
into account, the most relevant packages for machine learning are NumPy, SciPy, Matplotlib,
pandas, Scikit-learn, Keras and TensorFlow.

NumPy is a package that contains functionality for multidimensional arrays and high-level
mathematical functions [67]. pandas library provides high-performance data structures tools
for data analysis [68]. Matplotlib is important for visualization of data [69]. SciPy contains a
collection of functions for scientific computing in Python, including general and specialised
tools for data management and computation and high performance computing [70].

Scikit-learn is a free machine learning library built on NumPy, SciPy and Matplotlib. It
integrates a wide range of state-of-the-art machine learning algorithms for medium-scale
supervised and unsupervised problems [52]. Keras is a deep learning python library capable
of performing high level neural networks. It runs on top of packages such as TensorFlow [71].

3.4. Relevant packages and tools 27

TensorFlow is a machine learning library used as interface for expressing and manipulate
machine learning algorithms [72].

4

M A C H I N E L E A R N I N G A P P L I E D T O P E P T I D E S

Biological sequences (DNA, RNA and protein sequences) and other relevant biological
data are growing exponentially with the development of sequencing tools and other high-
throughput technologies. However, due to the limitations of wet lab experiments, the gap
between sequence data and structural data is increasing. Computational methods that
analyse sequence data have been applied in an effort to understand structure, function and
drive the development of applications of this knowledge (e.g. disease research or precision
medicine) in a fast, inexpensive and efficient way. As the majority of tasks in the field of
sequence analysis are binary or multitask classification tasks, machine learning has a key
role in this area and has been applied for example to cancer detection and diagnosis or
protein secondary structure prediction [14].

Proteins are the major components of cell activities. Peptides scanned from whole
protein sequences are the core information to functional site prediction, protein structure
identification or protein function recognition. Therefore, peptide classification aims to find
a model that maps peptide residues to functional status [63]. The classification model
can be built using a learning algorithm with similar principles to those used in pattern
classification systems and described in the previous chapter. The major steps to analyse
biological sequence data are therefore, beginning from the benchmark dataset, the feature
extraction and selection, the predictor construction and the performance evaluation.

4.1 protein feature extraction

Feature extraction is the first step to build a computational model for biological sequences.
A biological sequence can be represented as a succession of L residues, where L is the length
of the sequence [73].

The simplest method to describe a protein is its entire aminoacid sequence. This sequence
can be used in sequence similarity search based tools (e.g. BLAST). However, this fails when
the query protein does not have significant homology to proteins with known function [74].

Besides that, ML methods as SVMs, correlation coefficient method or RF, are based on
vector mode rather than sequential and cannot perform directly on the sequence. This

28

4.1. Protein feature extraction 29

way, protein sequences should be converted into fixed length feature vectors that contain
information regarding patterns and sequence-order effects on residues. When compared to
DNA or RNA sequences, feature extraction methods for proteins raise some difficulties due
to the diversity of aminoacids and the various structures and functions of proteins [8, 14].
Taking this into account, it is necessary to have methods that can properly identify protein
characteristics from the primary sequences of proteins [75].

Feature extraction methods may include physicochemical, aminoacid composition, pseudo
aminoacid composition, autocorrelation based features, composition, transition and distribu-
tion, conjoint triad and Quasi sequence order descriptors. In alternative, binary profiles can
be generated. These descriptors are further detailed below.

4.1.1 Physicochemical descriptors

Physicochemical features are highly useful to represent and distinguish proteins or peptides
of different structural, functional and interaction properties and have been widely used in
protein prediction problems [76]. This group of descriptors includes mostly one dimension
peptide representations such as length, charge, molecular weight, hydrophobic ratio, grand
average of hydropathy (GRAVY), aromacity score, isoelectric point, number of C,H,N,O and
S atoms (atomic composition), number of each bond type and others. Boman index, a
descriptor proposed by Boman can also be computed [77]. This descriptor computes the
potential protein interaction index based in the amino acid sequence of a protein. The index
is equal to the sum of the solubility values for all residues in a sequence, and it might give
an overall estimate of the potential of a peptide to bind to membranes or other proteins [77].
Descriptors of this kind have been used in several studies to distinguish peptides [24, 12, 78].

4.1.2 Residue composition descriptors

The primary sequences of proteins are composed of 20 amino acids. This sequence can be
described in several ways.

Aminoacid composition

Aminoacid Composition (AAC) represents the fraction of each amino acid type within a protein
[8, 12, 74, 75]. The fraction of all 20 natural aa are calculated as:

f (r) =
Nr
N

r = 1, 2, 3, ..., 20 (2)

where Nr is the number of the amino acid type r and N is the length of the sequence.

4.1. Protein feature extraction 30

The AAC is a simple but powerful feature, is computationally tractable and, as described in
a paper by Roy et al [79], can be used to predict protein interactions with good performance.
In previous machine learning models, it has been demonstrated that anticancer and non-
anticancer peptides have significant differences considering the AAC [12, 75, 80].

Dipeptide composition

The Dipeptide Composition (DPC) describes the total number of dipeptides normalized by all
the possible combinations of dipeptides present in the given peptide sequence. It returns a
400-dimensional descriptor [81] and is defined as:

f (r, s) =
Nrs

N − 1
r, s = 1, 2, 3, ..., 20 (3)

where Nrs is the number of dipeptide represented by amino acid type r and s.
Adjoining DPC reflects the correlation between two adjoining amino acids. However, in a

3-Dimensional space, and taking into consideration the secondary structures of proteins, two
amino acids with g-gap residues may be adjacent. A value of g of 0 is the adjoining DPC,
g of 1 describes the correlation of two residues with one residue interval and so forth [82].
DPC composition, and g-gap DPC (reduce dimensionality) has demonstrated promising
results in computational proteomics and has been used in anticancer peptides classification
[7, 8, 9, 12, 80].

Tripeptide composition

Tripeptide composition (TPC) describes the total number of tripeptides normalized by all the
possible combinations of tripeptides present in the given peptide sequence [81], it gives a
8000 feature vector and is defined as:

f (r, s) =
Nrst

N − 2
r, s, t = 1, 2, 3, ..., 20 (4)

where Nrst is the number of tripeptide represented by amino acid type r, s and t.

Reduced aminoacid composition

Reduced amino acid composition (RAAC) represents a solution to overcome the high dimensional
feature vector issue. Here, the basic aas are grouped together into a smaller number of
representative residues based on physicochemical properties. This way, RAAC allows for the
minimization of the complexity vectors and enhances the ability to find structural similarity
of the peptides. RAAC has been used for protein family characterization [8, 75].

Using AAC based methods, all the sequence order effects are lost; for example, correla-
tions among the amino acids in proteins are ignored (residues apart in sequences may be
neighbouring in protein 3-dimensional structure) [14, 74].

4.1. Protein feature extraction 31

4.1.3 Autocorrelation based descriptors

Autocorrelation descriptors are defined based on the distribution of amino acid properties
along the sequence. Autocorrelation descriptors include the Normalized Moreau-Broto
autocorrelation descriptor, Moran autocorrelation and Geary autocorrelation Descriptor
[81, 83].

They quantitatively measure the autocorrelation information of aminoacid residues, based
on eight properties: hydrophobicity scale, average flexibility index, polarizability parameter,
free energy of amino acid solution in water, residue accessible surface area, aa residue
volume, steric parameters and relative mutability [81, 83]. All the aa indices are centralized
and standardized before the calculation [81, 83].

Normalized Moreau-Broto autocorrelation descriptors

Moreau Broto autocorrelation descriptors for protein sequence may be defined as:

AC(d) =
N−d

∑
i=1

PiPi+d d = 1, 2, 3, ..., nlag (5)

where d is called the lag of the autocorrelation and Pi and Pi+d are the properties of the
amino acids at position i and i + d , respectively. nlag is the maximum value of the lag.

The normalized Moreau-Broto autocorrelation descriptors are defined as:

ATS(d) =
AC(d)
N − d

d = 1, 2, 3, ..., nlag (6)

Moran autocorrelation descriptor

Moran autocorrelation descriptors to protein sequence may be defined as:

I(d) =
1

N−d ∑N−d
i=1 (Pi − P)(Pi+d − P)
1
N ∑N

i=1(Pi − P)2
d = 1, 2, 3, ..., 30 (7)

where d is called the lag of the autocorrelation and Pi and Pi+d are the properties of the
amino acids at position i and i + d , respectively. P is the average of the considered property
P along the sequence, i.e.,

P =
∑N

i=1 Pi

N
(8)

4.1. Protein feature extraction 32

Geary autocorrelation descriptor

Geary autocorrelation descriptors application to protein sequence may be defined as:

C(d) =
1

2(N−d) ∑N−d
i=1 (Pi − Pi+d)

2

1
N−1 ∑N

i=1(Pi − P)2
d = 1, 2, 3, ..., 30 (9)

where d is called the lag of the autocorrelation and Pi and Pi+d are the properties of the
amino acids at position i and i + d , respectively, P is the average of the considered property
P along the sequence.

For each amino acid index, there will be 30 × nlag autocorrelation descriptors, being
possible to calculate 240 features for each autocorrelation type [81, 83].

These features are especially useful for protein remote homology detection and fold
recognition because they are able to extract the sequence patterns among proteins sharing
low sequence similarities [14]. They are described to have good results in protein predictions
problems [84, 85, 86].

4.1.4 Composition, transition and distribution

Composition, Transisition, Distribution (CTD) feature is composed of three descriptors, Composi-
tion (C), Transition (T) and Distribution (D), which are based on 7 physicochemical attributes:
hydrophobicity, polarity, polarizability, charge, secondary structures, solvent accessibility
and normalized Van der Waals volume. As described in table 1, the amino acids are divided
in three classes according to their attribute with each amino acid being encoded by an index
(1, 2 or 3) according to which class it belongs. After setting the amino acid classes, C is
calculated. C is the global percentage for each encoded class in the sequence (number of
amino acids of a particular property (such as hydrophobicity) divided by the total number
of amino acids in a protein sequence). T represents the percent frequency with which class
is followed by another (e.g. 1 followed by 3 or 3 followed by 1) in the encoded sequence.
D characterizes the distribution patterns of amino acids of each class in the sequence. It
represents the position percentages in the whole sequence for the first residue, 25% residues,
50% residues, 75% residues and 100% residues for a specific encoded class [81].

This feature can be applied in various biological problems, such as the prediction of
antimicrobial peptides with high accuracy [24], and is described in literature as having good
results in protein predictions problems [84, 85, 86].

4.1. Protein feature extraction 33

Table 1: Amino acid attributes and the division of the amino acids into three groups for each attribute
to calculate CTD descriptors. Adapted from PyDPI package manual [81].

Group 1 Group 2 Group 3

Hydrophobicity Polar
R,K,E,D,Q,N

Neutral
G,A,S,T,P,H,Y

Hydrophobic
C,L,V,I,M,F,W

Normalized van der
waals

0-2.78

G,A,S,T,P,D
2.95-4.0
N,V,E,Q,I,L

4.03-8.08

M,H,K,F,R,Y,W
Polarity 4.9-6.2

L,I,F,W,C,M,V,Y
8.0-9.2
P,A,T,G,S

10.4-13.0
H,Q,R,K,N,E,D

Polarizability 0-1.08

G,A,S,D,T
0.128-0.186

C,P,N,V,E,Q,I,L
0.219-0.409

K,M,H,F,R,Y,W
Charge Positive

K,R
Neutral
A,N,C,Q,G,H,I,L,
M,F,P,S,T,W,Y

Negative
D,E

Secondary Structure Helix
E,A,L,M,Q,K,R,H

Strand
V,I,Y,C,W,F,T

Coil
G,N,P,S,D

Solvent accessibility Buried
A,L,F,C,G,I,V,W

Exposed
R,K,Q,E,N,D

Intermediate
M,S,P,T,H,Y

4.1.5 Conjoint triad descriptors

Conjoint triad (CTriad) descriptors were proposed in 2007 by Shen et al. to predict Protein-
Protein Interactions (PPI) [87]. CTriad consider the properties of the aa and regard any three
continuous aa as a unit. The 20 aa were clustered into seven classes according to dipoles
and volumes of the side chains as they reflect electrostatic and hydrophobic interactions
which are essential for protein-protein interactions and also for the interaction with other
molecules, such as lipids [81, 83]. In this way, there are 7× 7× 7 (343) different possible
triads and the feature vector produced will reflect the frequency of each triad in the protein
sequence. The triads can be differentiated according to the classes of aa, i.e., triads composed
by three aa belonging to the same classes could be treated identically, as they may play
similar roles [87].

Considering V the vector space of the sequence features, each feature Vi represents a sort
of triad type, F the frequency vector corresponding to V and f i the frequency of type Vi

appearing in the protein sequence, the detailed description for (V, F) is illustrated in Fig 3

[81, 83].

4.1. Protein feature extraction 34

Figure 3: Schematic diagram for constructing the vector space (V,F) of protein sequence for Conjoint
Triad descriptors. V is the vector space of the sequence features; each feature (Vi) represents
a triad composed of three consecutive amino acids; F is the frequency vector corresponding
to V, and the value of the ith dimension of F(fi) is the frequency that vi triad appeared in
the protein sequence. From [81, 83].

The length of a protein, number of aa residues, influences the value of fi. In general, a
long protein would have a large value of fi, which complicates the comparison between two
heterogeneous proteins. Because of this, fi is normalized with the following equation:

d(i) =
fi −min{ f1, f2, f3, ... f343}

max{ f1, f2, f3, ... f343}
(10)

The numerical value of di of each protein ranges from 0 to 1, which thereby enables the
comparison between proteins.

Conjoint Triad have been used to study protein-protein interaction [87], levels of EC
hierarchy and enzyme subfamily [88, 89].

4.1. Protein feature extraction 35

4.1.6 Sequence order descriptors

Sequence order descriptors were proposed by K.C. Chou [90], being derived from both the
Schneider-Wrede physicochemical distance matrix and the Grantham chemical distance
matrix between each pair of the 20 aminoacids. The physicochemical properties computed
include hydrophobicity, hydrophilicity, polarity and side-chain volume. These features
are able to represent aa distribution patterns of a specific physicochemical property along
peptide sequence [84].

Here, we can distinguish two type of features, sequence order coupling numbers and
quasi-sequence order. For a protein chain of n aa residues R1, R2, R3 . . . Rn, the sequence
order effect can be described through a set of sequence order coupling numbers that reflect
the coupling mode between all of the most contiguous residues along a protein sequence
[81, 83]. A schematic view is presented in Fig 4. The dth-rank sequence-order-coupling
number is defined as:

τd =
N−d

∑
i=1

(di,i+d)
2 d = 1, 2, 3, ..., maxlag (11)

where di,i+d is the ‘physicochemical’ distance between the two amino acids at position i
and i + d. maxlag is the maximum lag and the length of the protein must be not less than
maxlag.

Quasi-sequence order is derived from the coupling numbers but takes into account the
frequency of each aa and the sequence order coupling number [81, 83].

For each aa a Quasi Sequence order descriptors (QSO) can be defined as:

Xr =
fr

∑20
r=1 fr + W ∑

maxlag
d=1 τd)

r = 1, 2, 3, ..., 20 (12)

where fr is the normalized occurrence for amino acid type i and w is a weighting factor
(n=0.1). these are the first 20 quasi-sequence-order descriptors. The other 30 quasi sequence
order are defined as:

Xr =
wτd−20

∑20
r=1 fr + w ∑

maxlag
d=1 τd)

r = 21, 22, 23, ..., 20 + maxlag (13)

The number of descriptors produced varies accordingly to the maxlag chosen.
QSO descriptors have been used to predict protein subcellular location [90], proteins

binding affinity [91] or protein functional families [84].

4.1. Protein feature extraction 36

Figure 4: Schematic drawing to Sequence Order Coupling numbers of the (a) the 1st-rank, (b) the 2nd-
rank, and (c) the 3rd-rank. (a) Reflects the coupling mode between all the most contiguous
residues, (b) that between all the 2nd most contiguous residues, and (c) that between all the
3rd most contiguous residues. From [90].

4.1.7 Pseudo aminoacid composition descriptors

Chou’s Pseudo aminoacid composition (PAAC) of a protein allows to deal with the aminoacid
composition considering sequence order correlation. The sequence order correlation is calcu-
lated based on properties that play an important role in protein folding, interaction with both
the environment and other molecules and function: the values of position, hydrophobicity,
hydrophilicity or side chain mass of aa [8, 11, 14, 74]. For example, many helices in proteins
are amphiphilic, this is, they are formed by the hydrophobic and hydrophilic aa according
to a special order along the helix chain [92].

In PAAC descriptors, whereas the first 20 components reflect the conventional AAC, the
remaining PAAC components reflect the correlation patterns, hence incorporating sequence
order correlation patterns [74].

These descriptors englobe the PAAC, also called the type 1 pseudo-aminoacid composition
and the Amphiphilic pseudo aminoacid composition (APAAC), also called the type 2 pseudo-
aminoacid composition.

4.1. Protein feature extraction 37

These concepts proposed by Chou in 2001 and in 2005 have been extensively utilized
in various fields of protein structure and function prediction [74, 84] such as homology
detection, DNA-binding protein identification [8, 14], prediction of subfamily enzyme classes
[92] and prediction of anticancer peptides [11].

4.1.8 Base class peptide descriptors

Base class peptide descriptors englobe the calculus of moment of a sequence and auto and
cross correlation of aa values. For this calculus, several scales can be applied, like Eisenberg
hydrophobicity consensus aminoacid scale, aminoacid side chain flexibilitiy scale, GRAVY
hydrophobicity aminoacid scale, aminoacid side chain flexibilitiy scale, aminoacid polarity
scale, amino acid transmembrane propensity scale and several others [93].

4.1.9 Binary profiles

In binary profiles, the peptide segment is presented as binary numerical numbers. In this
features it is necessary to take into account that the length of the feature produced depends
on the length of the given sequence and therefore, sometimes may be recommended to input
sequences with equal length.

Considering aa composition, each aa is represented by a vector with 21 numerical values
(20 units for 20 aas and a dummy variable if necessary adding non-natural aa to the
sequence). For example A is presented by the vector (1,0)
and C by (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

Other way to implement a binary profile is to consider residue properties profile. For
example, considering a property-profile for positive charge residues, an aa will be presented
by ”1” if it is positive charge otherwise ”0”. It is possible to create property profiles
for 25 type of physicochemical properties like hydrophobicity, hydrophilicity or polarity.
For example, hydrophobicity profile for amino acid sequence DPARAAGAHQ” will be
(0,1,1,0,1,1,0,1,0,0) as amino acid ”P” and ”A” are hydrophobic [94].

Binary profiles have been widely used for residue level annotation that includes prediction
of protein’s secondary structure as well as nucleotide or ligand binding sites in proteins
[95, 96].

In order to calculate the features of a protein sequence various python packages are
available such as Propy [3], PyDPI [81], PROFEAT [76, 97], ProFET [98], modlAMP [93],
BioSeq-Analysis [14], PyBioMed [83], pfeature [94], PyFeat [99], iFeature [100] or iLearn [101].

4.2. Relevant previous work on peptide classification 38

4.2 relevant previous work on peptide classification

This section intends to briefly describe the already existing packages for peptide classification
and to address the work already done for the defined case studies, this is: antimicrobial,
anticancer and viral fusion peptides or general peptide classification.

4.2.1 Packages and tools for peptide classification

Several web servers and tools have been developed to analyse biological sequences. However,
many of them focus on only one of the steps of the machine learning pipeline (feature
extraction, predictor construction or performance evaluation). Besides that, at the time of the
beginning of this project, there were few packages available to calculate features of proteins
developed in python 3 and to perform machine learning with protein related problems.

One of the main tasks of peptide machine learning is the calculus of features. Here, the
best known packages like Propy [3], PyDPI [81] or PyBioMed [83] are developed in python 2,
which makes them less usable nowadays. pfeature, is another package, developed in April
2019 in python 3, that allows to compute protein features working on the command line.
These packages only do the calculus of features.

modlAMP is a Python-based software package for the design, classification and visual
representation of peptide data. It offers functions for molecular descriptor calculation and
the retrieval of amino acid sequences from public or local sequence databases [93].

Packages like ProFET [98], PyFeat [99], modlAMP [93], PROFEAT [102], BioSeq-Analysis
[14], IFeature [100] and iLearn [101] are packages that calculate features and have functions to
perform machine learning. ProFET, PyFeat and modlAMP have significantly less functions to
calculate features and to perform other machine learning tasks. PROFEAT computes a large
number of descriptors but is more focused on network descriptors. BioSeq-Analysis, a web
server (available as stand-alone program) that automatically does feature extraction, predictor
construction and performance evaluation only needing the upload of the benchmark dataset
for analysis of DNA, RNA and protein sequences [14], does not allow the user to have full
control over all the steps of the protocol and to adapt the code to its specific problem, having
less choice to the calculus of features and data treatment and analysis. iLearn is the package
more complete, having functions to calculate features, perform clustering, feature selection
and dimensionality reduction for DNA, RNA and protein sequences [101]. iLearn works by
command line.

In a general context, user friendly machine learning with proteins programs are scarce.
There is the need for packages that agglomerate all the main steps to construct a predictor
and are easy to use. Besides that, the tools and web servers available do not allow the user
to have full control over all the steps of the protocol and cannot adapt the code to its specific

4.2. Relevant previous work on peptide classification 39

problem. Nonetheless, there are no available tools specifically focused in analysing and/or
distinguishing membrane interacting peptides.

4.2.2 Previous work on membrane-active peptides

In the subsections below are summarized some of the tools or web servers that yield high
performance metrics on protein classification problems using machine learning, specifically
on antimicrobial, anticancer and antiviral peptides.

Antimicrobial peptides

ML approaches have been previously applied to differentiate AMPs from non-AMPs [103].
The AntiBP2 webserver classifies antibacterial peptides based on SVMs using amino acid

composition of the whole peptide, and was developed in 2010 [104]. In 2013, the Multilevel
classifier iAMP-2L was designed to predict AMPs and their activities although the web server
is no longer available. It was based on the PAAC and fuzzy K-nearest neighbor algorithm,
where the components of PAAC were featured by incorporating physicochemical properties
[105].

In 2016, an SVM-based classifier to investigate α-helical AMPs and the interrelated nature
of their functional commonality and sequence homology was developed. Several descriptors
(from AAC, PAAC, CTD, QSO and others) were used to distinguish membrane-active
sequences from non–membrane-active sequences. In the end, the method showed to be
useful as a general detector of membrane activity in peptide sequences and found an
unexpectedly diverse taxonomy of sequences that are just as membrane-active as known
AMPs, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and
amyloids [6].

In contrast to the previous tools, which predict AMPs based on physicochemical features,
CAMPSign predicts AMPs based on the presence of conserved AMP family-specific sequence
composition. CAMPSign is a webserver developed in 2016 that allows the identification of
antimicrobial peptides belonging to one of the 45 major AMP families present in CAMP
database. It can perform RF, SVM, ANN and discriminant analysis (DA). The tool utilizes
family-specific signatures captured using patterns and HMMs for identification of peptides
belonging to a particular AMP family [106].

In 2017, an SVM-based AMP classifer, iAMPpred, was created. The approach is based on
SVM with compositional (AAC, normalized AAC, PAAC), physicochemical and structural
features of the peptides and is able to predict its activity as antibacterial, antifungal, or
antiviral [107].

In 2018, the method AmPEP was proposed. It uses the RF algorithm and is based on the
distribution of aminoacid properties along the sequence. The feature set is composed of 105

4.2. Relevant previous work on peptide classification 40

distribution descriptors (D from CTD features) covering seven physicochemical properties of
peptides (hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge,
secondary structure, and solvent accessibility) but is further reduced to obtain a minimal
feature set of 23 features. This method showed to outperform both iAMP-2L and iAMPpred
[24]. Also in 2018, a deep learning approach was used to build a model to recognize
antimicrobial peptides obtaining good results [108].

Anticancer peptides

In order to predict anticancer peptides, several computational approaches have been used.
The AntiCP developed in 2013 is a web server for the design of anticancer peptides that
employs SVM models based on aminoacid composition (AAC and DPC) and binary profile
features (only one at time) [25].

In 2014, Hajisharifi et al., proposed a model to identify anticancer peptides, based on local
alignment kernel by using an SVM and PAAC as features [11].

iACP is a sequence-based predictor available as web server developed by the approach of
optimizing the g-gap dipeptide components and using SVM [9]. Li and Wang in the same
year, 2016, developed an improved predictor to identify the anticancer peptides using as
features a hybrid composition of the AAC, average chemical shifts (acACS) and the RAAC
using an SVM [75].

One year later, iACP-GAEnsC was developed. iACP-GAEnsC is a tool that uses a genetic
algorithm-based ensemble model for the identification of anticancer peptides. The features
used are the APAAC, g-Gap DPC, and RAAC. It uses an ensemble model formed by
combining SVMs, Probabilistic Neutral network (PNN), RF, Generalized regression neural network
(GRNN) and KNN [8].

MLACP, developed also in 2017, is a web server that employs SVM and RF algorithms and
uses a combination of all composition- and property-based features as inputs AAC, DPC,
atomic composition (ATC) and physicochemical properties being one of the first method using
a combination of features and describing the use of physicochemical and ATC features for
ACP prediction and demonstrated to outperform both antiCP and iACP in accuracy [12].

Khan et al, developed a model to predict anticancer peptides based on two different
classifiers: SVM and KNN and used as features the Split amino acid composition (SAAC), DPC
and PAAC [80].

In 2018, a sequence-based model for identifying ACPs (SAP) was proposed. In SAP, the
peptide is represented by adjoining or g-gap dipeptide features, and then the unrelated
features are pruned using the maximum relevance-maximum distance method [7]. There
are also works employing deep learning pipelines regarding anticancer peptides [109, 13].

The majority of anticancer predicting methods showed high accuracies, however there is
still room to improve the existing methods. The majority uses only the ZOH benchmark

4.2. Relevant previous work on peptide classification 41

dataset which does not have experimentally verified non-anticancer peptides. Furthermore,
the role of different types of features is not yet understood as there are very few models that
took advantage of feature selection methods to rank the importance and contributions of the
features. Besides that, not all of these models are publicly available as web servers or tools
which limits the access to the model’s prediction capability [21].

Viral fusion peptides

Models to predict viral fusion peptides are scarce and there is no general ML-based method
that can be applied to different viral proteins. Nonetheless, there is an SVM model using
sequence-based statistical scores of self-derived peptide inhibitors as input features to
correlate with their activities. The predictive model is able to predict peptides of envelope
proteins and would be useful in development of antiviral peptide inhibitors targeting the
virus fusion process [110].

All aforementioned tools and Web servers have been used in peptide classification, however
further work is necessary to improve these classifiers. It is also visible that there is lack of
models that can accurately predict viral fusion peptides or methods that can distinguish
between several types of membrane peptides. Furthermore, although there are some deep
learning tools available for DNA, RNA and protein classification, not many were found
for classification of membrane peptides, despite the good results that seem to reveal [108],
it may be other possible direction for further works. A summary of the above mention
methods can be seen in Table 2.

Table 2: Summary of methods available for antimicrobial and anticancer classification

Peptide class Name Features
used

ML algo-
rithm

Tool/web
server

Ref. Date

Antimicrobial
peptide

AntiBP2 AAC SVM web server [104] 2010

iAMP-2L PAAC Fuzzy
KNN

webserver
(not avail-
able)

[105] 2013

Lee et al. several SVM model [6] 2016

CAMPSign AMP
family-
specific
signatures

RF, SVM
ANN or
DA

web server [106] 2016

4.2. Relevant previous work on peptide classification 42

Peptide class Name Features
used

ML algo-
rithm

Tool/web
server

Ref. Date

iAMPpred AAC,
PAAC,
NAAC,
physico-
chemical,
structural

SVM web server [107] 2017

AmPEP D (from
CTD)

RF tool [24] 2018

Vetri et al. model au-
tomatically
extracted

deep learn-
ing

model [108] 2018

Anticancer
peptide

AntiCP AAC, DPC,
Binary com-
position

SVM web server [25] 2013

Hajisharifi
et al

PAAC SVM model [11] 2014

iACP g-Gap DPC SVM webserver [9] 2016

Li and
Wang

AAC,
acACS and
the RAAC

SVM tool [8] 2017

iACP-
GAEnsC

APAAC,
g-Gap DPC
and RAAC

Ensemble
SVM, PNN,
RF, GRNN
and KNN

web server [107] 2017

MLACP AAC,
DPC, ATC,
Physico-
chemical

SVM and
RF

webserver [12] 2017

Khan et al SAAC,
DPC and
PAAC

SVM, KNN model [80] 2017

SAP DPC or g-
gap DPC

SVM model [7] 2018

5

D E V E L O P M E N T

This section will present the project pipeline and the description of the methods used to
develop the tool to perform machine learning methods in protein classification problems.
This general-purpose Python package can be used in different problems involving the
classification of peptides/proteins based on their physicochemical properties.

All the code developed for this thesis was written in python 3.6 using the Anaconda Data
science platform and Pycharm professional 2019.1 as IDE. The most important libraries used
were Scikit-learn, NumPy, SciPy and pandas. Additionally, the packages of modlAMP, PyDPI,
pfeature and Biopython were used.

5.1 development of the python package

The package was built in a modular way, allowing users to have control over the different
steps and to adapt/extend the code to fit their specific needs. In order to use the modules, it
is necessary to create a class object and call the desired methods from each of the modules.
The user can set specific values for the majority of the parameters, but default values are
established.

The package is composed by the following modules:

1. Read sequence module: to read and/or change sequences or generate subsequences;

2. Descriptors module: to compute different types of protein descriptors;

3. Preprocessing module: to do a preprocessing of the feature vectors and ’clean’ the
dataset;

4. Feature reduction module: to reduce the number of features based on the unsuper-
vised technique PCA;

5. Feature selection module: to discover and select the most valuable features;

6. Cluster module: to perform and plot the results of a clustering analysis;

43

5.1. Development of the python package 44

7. Machine learning module: to implement supervised machine learning algorithms.

Additionally, the package contains a test module to validate if all the functions are working
properly and an example file of a possible implementation of a pipeline using the package.
A schematic view of the package can be seen in Figure 5.

Figure 5: Schematic representation of the modules in the built package

For the creation of the class ReadSequence and Descriptor, functions from the PyDPI
package were used. This package allows the download of protein sequences from UniProt,
of properties from AAindex database, to calculate protein descriptors individually or to
create a protein object [81]. As PyDPI is written in python 2.7, the first thing was to convert
files related to reading sequences and calculating of features of proteins to python 3 using
the to3 library.

5.1.1 Read sequence module

The read sequence module contains the ReadSequence class that is used to read or change
sequences and obtain subsequences. The class allows to:

• Read sequences from string or from an Uniprot ID (it is also possible to retrieve
sequences from text with UniProt IDs) retrieving sequence objects used to calculate
descriptors (following module);

• Check if it is a valid aa sequence;

• Obtain sequences with a given size from a list of sequences, adding or cutting from
both the N and C terminals. This may be specially relevant to calculate features that
are length sequence dependent;

5.1. Development of the python package 45

• From one sequence, generate a list of sub-sequences based on a sliding window
approach, from specific aa, from the terminals or dividing the sequence in parts.
Beginning with only one sequence it will generate a list of sub sequences. A sliding
window approach can be particularly helpful in screening sites problems, the division
by terminals and from specific AA are most used in biological approaches.

A summary table is show below (Table 3).

Table 3: Summary table of the methods available in the class ReadSequence

Class
ReadSe-
quence

Aim Method

Read
sequences

Read a protein sequence ReadProteinSequence()
Downloading a protein sequence by
uniprot id

GetProteinSequenceFromID()

retrieve sequences from a txt with
uniprot ID

GetProteinSequenceFromTxt()

Check
protein

Check if sequence is a valid aminoacid
sequence

Checkprotein()

Equal length
Cut or add aa to obtain sequences with
equal length

GetSizedSeq()

Generate
sub
seqs
(1→
n
sequences)

Sliding window of the protein given. It
will generate a list of n sequences with
length equal to the value of window
and spaced by a gap value

Get sub seq sliding window()

Get all 2*window+1 sub-sequences
whose center is ToAA in a protein

Get sub seq to aa()

Split the original seq in n number of
subsequences

Get sub seq split()

Divide the sequence in the N terminal
and C terminal with sizes defined by
the user

Get sub seq terminals()

5.1.2 Descriptors module

The descriptors module aims to compute different types of protein descriptors and is
carried out with the class named Descriptor. The descriptors functions are retrieved from
the packages Biopython, modlAMP, pfeature and PyDPI. The class takes as input a protein
sequence (from the previous model) that is used to calculate a variety of protein descriptors.

PyDPI, besides reading sequences, allows to download properties from AAindex database
and calculate protein descriptors individually or creating a protein object [81]. modlAMP is a

5.1. Development of the python package 46

package to work with peptides, proteins or any sequence of natural aminoacids that allows
to generate sequences, calculate descriptor values (different from the ones from PyDPI),
plot features, feature scaling, analysis and machine learning [93]. pfeature is a software
package that computes protein features, such as composition based features, binary profiles,
evolutionary information, structure based features and patterns [111]. Biopython is a set of
freely available tools for biological computation, it allows to calculate some protein features
with the ProtParam module [112].

The descriptors are divided into categories and it is possible to calculate the descriptors
with the individual functions, all the functions in same category or calculate all the descrip-
tors available by calling the GetAll function. If the user desires to choose the features, the
function adaptable receives as input a list containing the numbers of the desired descriptors
to be calculated.

This Descriptor class allows the calculation of:

• Binary profiles for both sequence and for 25 physicochemical properties of each residue
of the sequence;

• Physicochemical descriptors. It has 16 features available that include length, charge,
charge density, formula (number of C,H,N,O and S in the sequence), number of 4 types
of molecular bonds (total, single,double and hydrogen bonds), the molecular weight,
GRAVY, aromacity, isoelectric point, instability index, values for secondary structures
(a-helix, turns and b-sheets), molar extinction coefficient, flexibility, aliphatic index,
boman index and hydrophobic ratio;

• Aminoacid composition functions. It retrieves the aminoacid composition, the Dipep-
tide composition, and the tripeptide composition;

• Pseudo aminoacid composition and the amphiphilic aminoacid composition;

• Autocorrelation descriptors including Normalized Moreau-Broto autocorrelation, Moran
Autocorrelation and Geary autocorrelation values;

• Composition, Transition and Distribution descriptors;

• Conjoint Triad descriptors;

• Sequence order descriptors. It calculates sequence order coupling numbers and quasi
sequence order values;

• Base class peptide descriptors. It allows to calculate the sequence moment, the
global averaging descriptor, hydrophocity moments, arcs, autocorrelation and cross
correlation of amino acid values for a given descriptor value.

5.1. Development of the python package 47

Overall, 38 descriptor and 8 agglomerative functions are available. A summary table can
be seen below (Table 4).

Table 4: Summary table of the functions available in the module Descriptor. K means the length of
the sequence

Class
Descriptor

No Aim Method NoDescriptors

Binary
Profile

1 Binary profile of
aminoacid composition

Getbin aa() 20*k

2 Binary profile of
residues for 25 phy-
chem feature

Getbin resi prop() Max 25*k

Physico
chemical

3 Length of sequence Getlength() 1

4 Charge of sequence GetCharge() 1

5 Charge density of se-
quence

GetChargeDensity() 1

6 Number of C,H,N,O
and S of the aa of se-
quence

GetFormula() 5

7 Sum of the bond com-
position for each type of
bond

GetBond() 4

8 Molecular weight GetMW() 1

9 Gravy from sequence GetGravy() 1

10 Aromacity GetAromacity() 1

11 Isolectric Point GetIsoelectricPoint() 1

12 Instability index from
sequence

GetInstabilityIndex() 1

13 Fraction of aa which
tend to be in helix, turn
or sheet

GetSecStruct() 3

14 Molar extinction coeffi-
cient

GetMolarExtinction Coef-
ficient()

2

15 Flexibility according to
Vihinen, 1994

Getflexibility() -

16 Aliphatic index of se-
quence

GetAliphatic index() 1

17 Boman index of se-
quence

GetBoman index() 1

5.1. Development of the python package 48

Class
Descriptor

No Aim Method NoDescriptors

18 Hydrophobic ratio of se-
quence

GetHydrophobic ratio() 1

19 All 15 geral descriptors GetAllphysicochemical() -

Aminoacid
Composition

20 Aminoacid compositon GetAAComp() 20

21 Dipeptide composition GetDPComp() 400

22 Tripeptide composition GetTPComp() 8000

23 All descriptors from
Aminoacid Composi-
tion

GetAllAAC() 8420

Pseudo
aminoacid
Composition

24 Type I Pseudo
aminoacid compo-
sition

GetPAAC() Min 30,
depends
lambda

25 Type I Pseudo
aminoacid compo-
sition for a given
property

GetPAACp() Min 30,
depends
lambda

26 Type II Pseudo
aminoacid compo-
sition - Amphiphilic

GetAPAAC() Min 30,
depends
lambda

27 Calculate PAAC and
APAAC

GetAllPAAC() Min 60

Auto
correlation

28 Normalized Moreau-
Broto autocorrelation

GetMoreauBrotoAuto() 240

29 Moran autocorrelation GetMoranAuto() 240

30 Geary autocorrelation GetGearyAuto() 240

31 Calculate all descrip-
tors from Autocorrela-
tion

GetAllCorrelation() 720

CTD 32 Composition Transition
Distribution

GetCTD() 147

Conjoint
Triad

33 Conjoint Triad GetConjT() 343

Sequence
Order

34 Sequence order cou-
pling numbers

GetSOCN() 90 (default)

35 Sequence order cou-
pling numbers

GetSOCNp() 90 (default)

5.1. Development of the python package 49

Class
Descriptor

No Aim Method NoDescriptors

36 Quasi sequence order GetQSO() 100 (de-
fault)

37 Quasi sequence order GetQSOp() 100 (de-
fault)

38 Calculate all values for
sequence order descrip-
tors

GetAllsequenceorder() 190 (de-
fault)

Base
Class
Peptide

39 Moment of sequence calculate moment() 1

40 Global / window aver-
aging descriptor

calculate global() 1

41 Hydrophobicity or hy-
drophobic moment pro-
files

calculate profile() 2

42 Calculates arcs calculate arc() 5

43 Autocorrelation of aa
values for a given de-
scriptor scale

calculate autocorr() -

44 Cross correlation of aa
values for a given de-
scriptor scale

calculate crosscorr() -

45 All functions from Base
class

GetAllBaseClass() -

All 46 Calculate all possible
descriptors (except
tripeptide)

GetAll() -

Adaptable 47 Choose which functions
to calculate

adaptable()
(list of functions=[])

-

5.1.3 Preprocessing module

The preprocessing module allows the transformation of the feature vectors into representa-
tions suitable for downstream estimators. By ‘cleaning’ the dataset from redundant features,
it removes a large number of non relevant columns from the dataset. It is callable by the
class Preprocess and allows for the:

• Elimination of columns with only zero values;

5.1. Development of the python package 50

• Elimination of repeated columns;

• Elimination of low variance columns (by default zero variance, but the user can adapt,
this function has an imbued scaler).

It is possible to call a single function preprocess to run all the functions above. The functions
names and aims can be seen in Table 5.

Table 5: Summary table of the methods available in the class Preprocess

Class Preprocess Aim Method

Check data Check nans missing data()

Remove
low
relevance
columns

Remove columns that have all values
as zero

remove columns all zeros()

Remove duplicated columns remove duplicate columns()

Remove all features whose variance
does not meet some threshold

remove low variance()

Remove columns that have all values
as zero, duplicated and low variance
columns

preprocess()

5.1.4 Feature reduction module

In ML, feature reduction techniques allow to summarize the essential characteristics of a
high dimensional data representation reducing the number of features [39]. This way, the
class Feature reduction enables to reduce the number of features on a dataset based on the
unsupervised technique PCA. PCA is a statistical procedure that orthogonally transforms
the original coordinate system of a (numerical) data set into a new set of coordinates, the
principal components, that capture well the variance of original features. For better PCA
analysis and perception, this module enables the production of two plots. The main purposes
of this class are to:

• Derive the PCA of the data. The function receives a dataset, scales it (using standard
scaler as default) and applies the Scikit-learn PCA algorithm retrieving the fitted and
the transformed dataset [1];

5.1. Development of the python package 51

• Access the contribution of each feature for the component and the variance ratio of
each component;

• Produce a bar plot with percentage of explained variance ratio by components;

• Produce a scatter plot that represents the different classes based on two Principal
component (PC)s (by default the first two). As the PCA components are orthogonal to
each other (not correlated), this usually allows to distinguish classes in a clear way.

It is worth noting that PCA is an unsupervised method, meaning that PCA components
are calculated only from features and no information from classes are considered. Besides
this, each component does not represent a feature but a mixture of the original features.

A summary table of the functions that can be implemented with this class is given below
(Table 6).

Table 6: Summary table of the methods available in the class Feature reduction

Class
Feature reduction Aim Method

PCA
Perform the PCA analysis PCA()

Measure the variance ratio of the
principal components

variance ratio components()

Retrieve a dataframe containing the
contribution of each feature (rows)
for component

contribution of features to
components()

Design
Graphics

Derive a bar plot representing the
percentage of explained variance ra-
tio by PCA

pca bar plot()

Scatter plot of the labels based on
two components (by default the first
ones)

pca scatter plot()

5.1.5 Feature selection module

Feature selection is another way to reduce the dimensionality of the dataset by selecting
the most valuable features to improve estimators’ accuracy and/or boost their performance
on very high dimensional datasets [52]. This selection allows to gain knowledge and
understanding of the data, quite important in biological questions [55].

5.1. Development of the python package 52

There are three major methods to select features - filter methods, wrapper methods and
embedded methods [60] and therefore, this package has methods to perform univariate
feature selection, recursive feature elimination (RFE) and selection of features based on model
like a tree or SVM. The package class Feature selection is based on Scikit-learn functions from
the feature.selection module.

This module allows to:

• Perform univariate feature selection. The function has a configurable strategy and the
user will decide which score function to use and how the features will be selected
exactly like in Scikit-learn. It is possible to select the k highest scoring features, specified
percentage of features and features based on false positive rate, false discovery rate or
family wise error. The scoring functions (return scoring values and p-values) include
chi2, f classif or mutual info classif ;

• Perform recursive feature elimination with or without cross validation. The user can
decide the number of features to select;

• Retrieve scores from recursive feature elimination rankings;

• Select features based on embedded techniques using user selected estimators (e.g.
TreeClassifier, logistic regression and linear SVC);

• Obtain the features names and scores of importance for univariate and embedded
techniques, retrieving a dataframe with features names and scores of univariate tests
or select from model by order of relevance.

Univariate feature selection selects the best features (high correlation with outcome
variable) based on univariate statistical tests and can be used as preprocessing step. This
test is only reliable if the variables are fully independent. They are independent of any
machine learning algorithm, with the features being selected solely based on their correlation
with the outcome variable. It is important to take into account that the methods based on
F-test estimate the degree of linear dependency between two random variables whereas,
mutual information methods can capture any kind of statistical dependency, but being non
parametric, they require more samples for accurate estimation. Chi2 will only work for
non negative features. If the parameters are not given the function will calculate based on
the scoring function mutual info classif and selecting the best 10−5 percentile of features. It
returns the dataset fit and transformed, the new dataset and the columns selected. The
higher the score the more representative is the feature.

Wrapper methods use a subset of features to train and assess the performance of a
model, being the subset of features tailored to this model. RFE uses an external supervised
learning estimator that provides information about feature importance (a coef attribute or a
features importances attribute), such as SVM; from the initial set of features, the estimator

5.1. Development of the python package 53

assigns weights to each feature and eliminates the ones with smallest weights, repeating
the process until the desired number of features is achieved. The recursive feature elimination
function allows to recursively eliminate features less important with or without cross
validation. The user can decide the number of features to select. The function retrieves the
dataset fit and transformed, the original dataset with the features selected, the columns
names and the features ranking. Using the function rfe ranking a dataframe containing the
features names and the ranking by order is obtained. Rankings of 1 corresponds to the ones
selected.

It is also possible to select features based on embedded techniques. Here, the optimal
set of features is built into the classifier construction as the estimator retrieves a coef or a
feature importances vector. The features considered unimportant, below a threshold, are
removed. The threshold can be a ‘median’, ‘mean’, floats of the strings or any numerically
valuable. It is possible to do this in two ways:

• Considering linear models penalized with the L1 norm for classification, such as
logistic regression and linear Support Vector Classification (SVC). They retrieve sparse
solutions and negative values. The data should not be very noisy and the features
should be independent. The most important features have the highest scores and
features uncorrelated with the output variable should have coefficients close to zero.
If the correlation coefficient is negative, it provides statistical evidence of a negative
relationship between the variables. The increase in the first variable will cause the
decrease in the second variable.

• Considering tree based estimators that compute features importance and can be used
to discard irrelevant features.

A view of the methods available in this class can be seen in the table below (Table 7).

5.1. Development of the python package 54

Table 7: Summary table of the methods available in the class Feature selection

Class
Feature selection Aim Method

Feature selection
Univariate feature selector univariate()

Recursive feature elimination recursive feature elimination()

Select from model
select from model feature
elimination()

Retrieve
features
dataframes

Retrieve a dataframe with features
names and scores of importance re-
sulting of the univariate tests and
from model selection

features scores()

Retrieve a dataframe with features
names and its ranking position or-
dered

rfe ranking()

5.1.6 Clustering module

The class Cluster aims to perform and plot clustering analysis. Clustering is a type of
unsupervised machine learning useful to find homogenous subgroups, such that objects in
the same group (cluster) are more similar to each other than with others [19]. If the labels are
already available, clustering analysis can be useful to see how the samples are grouped and
if they match indeed the labels defined. Besides that, clusters can also be used as features in
a supervised machine learning model.

When the class is initialized, a dataset corresponding to the X dataset (input dataset
without the target column) and the target column must be provided. Additionally, the test
size to split the data into training and test dataset must be provided (established by default
as 0.3).

This class implements methods for:

• Performing K means classification;

• Performing hierarchical clustering;

• Applying the K-means algorithm to train data and predict the test set. These labels can
be added as a feature or can replace the previous labels in the dataset. It is possible to
see how they perform with the function classify [3].

5.1. Development of the python package 55

The k-means algorithm clusters data by dividing observations into k groups of equal
variance - clusters. It can be easily used in classification where we divide data into clusters
which can be equal to or more than the number of classes. It scales well to large number of
samples and is one of the most widely used clustering algorithms. The algorithm divides the
samples into clusters, each described by the mean of the samples of the cluster – centroids.
Initially, the algorithm chooses the initial centroids randomly; then, it will loop between
assigning each sample to its nearest centroid and changing the centroids by taking the mean
value of all the samples assigned to each previous centroid, repeating until the centroids do
not move. The function Kmeans applies the Kmeans algorithm to the dataset. It is possible
to edit the maximum number of iterations (300 per default) and the number of clusters (by
default the number of existing labels). The method implements the k-means initialization
scheme to address the primary choice of the centroids distant from each other leading to
better results.

The class has functions to visualize data with hierarchical clustering (HC) as well. Hier-
archical clustering builds nested clusters by merging or splitting them successively, with
this hierarchy being represented as dendograms (trees). The root of the tree is a unique
cluster with all the samples and the leaves are clusters with only one sample. The HC uses a
bottom up approach where each observation starts in its own cluster and where clusters are
successively merged together [4]. The algorithm stops when only one cluster remains, the
root.

To build the hierarchical clusters, the SciPy library cluster.hierarchy was used. It is possible
to calculate the distance between clusters using the method ‘single’ that minimizes the
distance of all the pairs of clusters, the method ‘complete’ that maximizes that distance or
the method ‘average’ that represents the average of all distances. Other methods such as
‘weighted’, ‘centroid’, ‘median’, ‘ward’ are available as well [5]. The metric used to pairwise
distances between observations in n-dimensional space can be chosen as well, taking values
as ‘correlation’, ‘euclidean’, ‘hamming’ or others [6]. The function hierarchical takes as input
the metric and distance parameters and returns the graphic of the hierarchical division of
samples.

A view of the methods available in this class can be seen in the table below (Table 8).

5.1. Development of the python package 56

Table 8: Summary table of the methods available in the module Cluster

Class Cluster Aim Method

Kmeans
Perform K means cluster Kmeans()

Perform the kmeans to train data
and predict the test set. If add, the
labels produced by clustering will
be added as features. If replace, la-
bels produced will replace the old
labels

Kmeans predict()

Fit the model in train datasets and
predict on the test dataset, return-
ing the accuracy

classify()

Hierarchical Perform hierarchical clustering hierarchical()

5.1.7 Machine learning module

In order to implement supervised machine learning algorithms, the class Machine learning

was created. The machine learning module intends to facilitate the application of ML models
to the classification of peptides. It is possible to do model selection using grid search for
hyperparameters tuning and selecting the best model, do model evaluation, return feature
importance (as dataframe or bar plot), and plot validation and learning curves. The user
must create an object Machine learning giving the X dataset (inputs) and the column of
labels and the size of the test set. The function will load and split the data.

This class allows to:

• Perform a grid search on different model parameters, returning the best fitted model.
As models, it is possible to choose between RF, GB, SVM, KNN, stochastic gradient
descendent (SGD), gaussian naive bayes (GNB) and ANN;

• Plot a validation curve for the specified classifier on any parameter in grid search;

• Plot Learning curves;

• Retrieve test set scores for the specified scoring metrics allowing for an evaluation of
the performance of the model through test-set prediction. It retrieves the values for
MCC, accuracy, precision, recall, f1, ROC - AUC, TN, FP, FN, TP, False discovery rate
(FDR), sensitivity and specificity derived from metrics Scikit-learn module;

5.1. Development of the python package 57

• Plot a ROC curve;

• Retrieve the features importance of the final model for classifiers SVM, RF, GB, SGD.
It retrieves a dataframe and draws a bar plot. For both SVM and SGD the retrieved
values are the coefficients of the features and for the RF it is possible to retrieve the
values of feature importance;

• Make predictions for unseen sequences (ultimate goal for ML models). The function
predict can be used to predict novel peptides with a trained classifier model returning
a dataframe with predictions using the specified estimator and test data. If the true
class is given, the scoring value for the test data is provided;

• Scan a protein using a sliding window approach to predict sites with a trained classifier
model. It will return a dataframe with the subsequences generated, positions in the
original sequence, probability of belonging to the class and a class probability if the
probability is bigger than 0.99, 0.95, 0.9, 0.8, 0.7, 0.6 or predicted as a negative.

In the search for the best model, it is possible to adjust several parameters. The pipeline
includes the use of a scaler, standardscaler by default, but the user, can choose any other from
Scikit-learn such as normalizer, minmaxscale or None. The score used to find the best model
in the grid search can be chosen by the user, being by default the MCC. The MCC is often
used in machine learning to measure the quality of binary classifications, being a balanced
measure that can be used even if the classes are of different sizes. The values are between
1, a perfect prediction, and −1, total disagreement between predictions and observations.
Values of 0 are considered to be no better than random predictions. Sample weights for
training data, number of parallel jobs (by default -1) and number of cross validation folds
(by default 10) can also be tuned by the user. In all the models available, the parameters can
be tuned, however, if none is given, a default parameter grid is set for each model.

A learning curve determines cross validated training and test scores for different training
set sizes, being useful to determine if it is beneficial to add more training data and whether
the estimator suffers more from a variance error or a bias error (for example: if both
validation and training cross converge to a value that is low when increasing the training
dataset, the model will not benefit from the addition of more samples).

A cross validation generator splits the dataset k times in training and test data, a score for
each training subset and test will be computed and the scores will be averaged over all k
runs for each training subset size. The function receives the estimator, title for the graph,
train sizes to test and cross validation parameters and retrieves the plot learning curve for
that model, numbers of training examples, scores on training sets and scores on test set. It is
based on Scikit-learn functions.

The ROC curve is a probability curve and is a good way to see how much the model is
capable of distinguishing between classes. The higher the AUC, i.e., close to 1, the better the

5.1. Development of the python package 58

model. The X axis corresponds to the false positive rate and the Y axis to the true positive
rate. A larger area under the curve, and the plot on top left corner are ideal. The function
plot roc curve receives a classifier, and test sets and automatically retrieves the plot.

A view of the methods available in this class can be seen in the table 9.

Table 9: Summary table of the methods available in the class Machine learning

Class
Machine learning Aim Methods

Build
model

Parameter grid search on a selected
classifier model and peptide train-
ing data set

train best model()

Plots a cross-validation curve for
the specified classifier on all tested
parameters given in the option
’param range’

plot validation curve()

Test set scores for the specified scor-
ing metrics in a pandas.DataFrame

score testset()

Function to plot a ROC curve plot roc curve()

Function that given a classifier re-
trieves the features importances as
a dataset and represent as barplot

features importances()

Plot a learning curve to determine
cross validated training and test
scores for different training set sizes

plot learning curve()

Predict
Predict novel peptides with a
trained classifier model

predict()

Scan a protein in a sliding window
approach to predict novel peptides
with a trained classifier model

predict window()

5.1.8 Other functions

Besides these models previously described, the package contains a test directory that contains
a python file to test all the functions of the package.

A file Scores.py (in the directory of the feature selection and reduction) allows to calculate
scores for SVM, SVC, RF and GNB comparing two given X datasets and labels considering a

5.2. Outcomes and discussion of the package developed 59

10 fold cross validation. This function can be used as a simple way to compare the results of
two datasets for example, when testing methods of feature selection.

5.2 outcomes and discussion of the package developed

The package built during the development of this thesis facilitates the major tasks of machine
learning and it includes modules to read and alter sequences, to calculate protein features,
perform dataset preprocessing, feature reduction and selection, execute clustering algorithms
and build machine learning models and make predictions. The package is directed to handle
protein related problems, but its modular construction allow users to use it in other problems.
The same way, as it is built in a modular way, the user retains the power to manipulate the
functions and to use other functions outside of the package.

One of the main tasks of this tool is the calculation of features. Before this project, there
were few packages available to calculate features of proteins developed in python 3 and to
perform machine learning with protein related proteins.

Indeed, the best known packages like Propy, PyDPI or PyBioMed are developed in python
2, which makes them less usable. pfeature is another package, developed in April 2019

in python 3, that allows to compute protein features working on the command line. The
majority of the features presented on pfeature are included in the package here described,
not all were integrated due to its complexity or because they would increase exponentially
and unnecessarily the number of features. Interesting features presented in pfeature or iLearn
that are not contained within this package include AAindex schemes, position-specific weight
matrix (PSSM) and Blocks of Amino Acid Substitution Matrix (BLOSUM) encoding schemes, as
the protein secondary structures.

Most of the packages above do not have functions besides the calculation of features.
Packages like ProFET (2015), PyFeat (2019) , modlAMP (2017), BioSeq-Analysis (2017), Ifeature
and iLearn (2019) calculate features and have functions to perform machine learning. ProFET,
PyFeat and modlAMP have significantly less functions to calculate features and to perform
other machine learning tasks. PROFEAT computes a large number of descriptors but is
more focused on network descriptors. BioSeq-Analysis automatically does feature extrac-
tion, predictor construction and performance evaluation only needing the upload of the
benchmark dataset for analysis of DNA, RNA and protein sequences [14]. However, the
user does not have full control over all the steps of the protocol and cannot adapt the code
to its specific problem, having less choice to the calculation of features and data treatment
and analysis. iLearn is the more complete package, having functions to calculate features,
perform clustering, feature selection and dimensionality reduction for DNA, RNA and
protein sequences. iLearn works by command line and offers different options than the
package here developed.

5.2. Outcomes and discussion of the package developed 60

Although it meets all the tasks it was built for, the package could be improved. Functions
to accept FASTA files, to calculate directly N and C terminal features, to calculate PSSM or
other functions including evolutionary and structure information could be interesting as
features. Besides that, the prediction methods could include various classifiers at the same
time, or allow ensemble models. A user friendly feature to add would be, the retrieval of
a sequence image highlighted in the method predict window; the user would not only see
through the dataframe produced the potential positive locals, but would have a schematic
view of the predicted sites in the sequence. The code itself could be improved in order to be
more efficient. The package would also benefit if a Deep learning pipeline was included as
no package until nowadays features it. The availability of a web server would also be a plus.

6

VA L I D AT I O N

This section will present a comparative analysis to demonstrate the application and perfor-
mance of the developed package for addressing sequence-based prediction problems. The
comparative analysis will be made with two test cases: antimicrobial peptides [24] and with
anticancer peptides [12], both membrane active peptides.

6.1 antimicrobial peptides - ampep

Antimicrobial peptides are promising candidates to fight multi-drug-resistant pathogens
having a broad range of activities and low toxicity. The development of computational tools
to predict AMP are crucial as the identification through wet lab experiments is still expensive
and time consuming. To assess the predictive ability of our package to address sequence
based prediction problems we tested against the AmPEP method which is described to
highly perform on AMP prediction methods. In the publication, Bhadra et al., used a dataset
with a positive:negative ratio (AMP/non-AMP) of 1:3, based on the distribution patterns
of aa properties along the sequence (CTD features), with a 10 fold cross validation RF
model. The collection of data with sets of AMP and non-AMP data is freely available at
https://sourceforge.net/projects/axpep/files. Their model obtained a sensitivity of 0.95, a
specificity and accuracy of 0.96, MCC of 0.9 and AUC-ROC of 0.98 [24].

Firstly, based on the available collection of data available of AMP and non AMP a dataset
constituting of a 1:3 ratio was built. Taking this dataset as base, two datasets were assembled.

On the first one, CTD descriptors were calculated. A derived dataset was constructed
restraining the features to the D feature. These two datasets were used to mimic the model
published.

To understand if adding features would alter the performance of the model a second
dataset was built. Physicochemical (15), AAC and DPC (420), CTD (147) and CTriad (343)
descriptors were calculated. To reduce the number of features and select the more important
ones, the dataset was scanned for invariable columns, and a univariate feature selector was
used to reduce the number of features to 250 (mutual info classif used as function, selecting

61

6.1. Antimicrobial peptides - AmPEP 62

the best k=250 features). This dataset was standardized. After, a L1 logistic regression model
(C=0.01) was applied, being the final dataset made of 160 features.

Using these two datasets, RF models were built using the parameters of the article [24],
with RF models performing grid search. Additionally, SVM models using grid search were
also tested.

To mimic the model published, a RF model using the D from CTD descriptors with 105

estimators, the number of input variables tried at each split,mtry, defined as the square root
of the number of features and a CV of 10 was built.

This model obtained a sensitivity of 0.91, a specificity of 0.93, accuracy of 0.96, MCC of
0.90 and AUC-ROC of 0.95 against the test set. With the same descriptors, but using a grid
search approach, the model yielded similar results. Using all the CTD features a model
was obtained with a sensitivity of 0.98, a specificity of 0.93, accuracy of 0.96, MCC of 0.90

and AUC-ROC of 0.95 yielding as described in the article slightly better results. Using the
dataset with more features, the resulting model achieved similar results.

To test if a SVM model would outperform a RF based one, two models using the grid
search approach were built. Using only the CTD features, the model obtained a sensitivity
of 0.96, a specificity of 0.89, accuracy of 0.94, MCC of 0.86 and AUC-ROC of 0.93 against the
test set, whereas using the dataset with more features the model obtained a sensitivity of
0.96, a specificity of 0.91, accuracy of 0.95, MCC of 0.87 and AUC-ROC of 0.94 against the
test set.

A summary of these models and their performance is available on table 10.
The model mimicking the AmPEP predictive model yielded slightly different results,

achieving more sensitivity but less specificity and having the same accuracy and MCC scores.
This result shows that the package can be used to build models as it performs with similar
performance to the best ones described in literature. Taking the results into account, it is
also notorious that adding more sequence descriptors in RF models did not lead to better
models whereas in SVM models more features led to better performance results. Both SVM
models performed worse than any RF model, which was also in concordance with article
that reports RF models performing better than SVM ones. The small differences observed
when using the same model may be due to the methods used to perform RF or the scoring
functions used to choose the best performance models. In the article, the authors did not
specify which measure they took into account to select the best models. Here, to perform
grid search, MCC score was used.

6.2. Anticancer peptides - MLACP 63

Table 10: Summary of the scores of the models produced with the package comparing to AmPEP

Model Parameters
Feature
Set

Sens. Specif. Acc MCC
AUC
ROC

AmPEP RF
AmPEP
parameters

CTD D
(105)

0.95 0.96 0.96 0.90 0.98

Package
developed

RF
AmPEP
parameters

CTD D
(105)

0.91 0.93 0.96 0.90 0.95

RF
Grid
search

CTD
(147)

0.98 0.93 0.96 0.90 0.95

RF
AmPEP
parameters

Features

Calculus
Selection
(160)

0.97 0.93 0.96 0.90 0.95

SVM
Grid
Search

CTD
(147)

0.96 0.89 0.94 0.86 0.93

SVM
Grid
search

Features

Calculus
Selection
(160)

0.96 0.91 0.95 0.87 0.94

6.2 anticancer peptides - mlacp

Anticancer peptides are promising drug candidates for cancer treatment. However, simi-
larly to AMPs, identification of ACP through wet lab experiments is expensive and time
consuming and, therefore, the development of an efficient computational method is essential
to identify potential ACPs candidates prior to in vitro and in vivo experimentation.

To have a second comparative analysis with a different dataset, the package built was
used to mimic the model developed by Manavalan et.al., MLACP [12]. In this publica-
tion, SVM and RF ML methods were developed. The features used to predict ACPs were
calculated from the aminoacid sequence, including AAC, DPC, ATC, and from physic-
ochemical properties. Tyagi-B datasets were used to train the models (free available at:
http://www.thegleelab.org/MLACPData.html).

As the physicochemical properties defined in the article are different from the ones
available in the package, the features AAC, DPC, ATC were considered to compare results.
To this end, RF and SVM models were built using as features AAC, DPC and a hybrid model
with the features AAC+DPC. A grid search with a cross validation of 10-fold was performed
as described in the article. In SVM, a ‘rbf’ kernel was defined and the parameters C and γ

optimized (parameter range: 0.001, 0.01, 0.1, 1). In RF models, the grid search contained the
parameters: number of estimators (100, 300, 400, 500), number of maximum features (‘sqrt’

6.2. Anticancer peptides - MLACP 64

or 2,3,5,7) and minimal number of sample splits [5, 6, 7, 8]. The parameters changed were
the same as used in the article, however, and due to computational limitations, a significantly
smaller range of parameters were tested. A comparative analysis of the performance of the
models in MLACP article and with the package can be seen below (Table 11).

Table 11: Comparative analysis of the performance of RF and SVM models in MLACP article and
with package.

Model RF SVM
Features Package MCC Acc Sens. Specif. MCC Acc Sens. Specif.

AAC
MLACP 0.66 0.85 0.70 0.93 0.69 0.87 0.70 0.95

Developed 0.62 0.83 0.90 0.70 0.71 0.87 0.91 0.79

DPC
MLACP 0.65 0.85 0.70 0.92 0.64 0.85 0.60 0.97

Developed 0.65 0.84 0.96 0.62 0.62 0.83 0.90 0.70

AAC+DPC
MLACP 0.67 0.86 0.70 0.93 0.66 0.86 0.61 0.97

Developed 0.65 0.84 0.92 0.70 0.60 0.82 0.88 0.70

As shown in Table 11, the models constructed with the package developed have similar
results to the ones reported in the original article. Bigger differences are found in sensitivity
and specificity values, showing a different trade-off. MCC and Accuracy are very similar
with the values from the package developed. Differences may be due to the diverse feature
set, parameter ranges or the use of different packages. Similarly with AmPEP article, the
authors did not specify which measure they took into account to select the best models.
Here, to perform grid search, MCC score was again used.

Overall, this comparative analysis evidences the performance and validates the package
here described.

7

V I R A L F U S I O N P E P T I D E C A S E S T U D Y

After testing and validating the package on membrane active peptides classification problems,
it was applied to the study of viral fusion peptides, also membrane active. This chapter
will present the analysis pipeline and the description of the methods used to construct
the models, the results obtained and the analysis and discussion of results both from a
computational and biological point of view of viral fusion peptides.

7.1 methods

The methods used for dataset construction and preprocessing, feature generation and
selection, machine learning models construction, optimization and evaluation and the
application of these models to predict the location of a viral fusion peptide in a viral fusion
protein are described below.

7.1.1 Datasets for model construction

The datasets used were developed by Sara Pereira in her bioinformatics dissertation [113].
A total of three datasets of viral fusion peptides differing in the negative cases were tested.

All the three datasets were composed by 222 instances, being 111 of viral fusion peptides
(positive dataset) and 111 of non viral fusion peptides sequences (negative dataset). The
positive samples were labelled as ‘vfp’ whereas the negative samples were given the label
‘non vfp’.

For the construction of the positive dataset, only viral fusion peptide sequences with
experimental evidence were considered.

In the first dataset, the negative cases, contain randomly generated sequences from fusion
proteins (excluding the fusion peptide) having the same length as the corresponding fusion
peptide.

65

7.1. Methods 66

In the second one, the negative cases contain transmembrane domains. This dataset was
used in order to evaluate the ability of the model to distinguish between fusion peptides
and Transmembrane domain (TMD)s, both the most hydrophobic regions of fusion proteins.

In the third, the negative dataset is the combination of the first two datasets containing
half of the randomly generated sequences from fusion proteins and half of TMDs.

The dataset is composed primarily of sequences belonging to class I fusion proteins (82%),
followed by class II (15%) and only 5% belong to class III. From the retrieved sequences, the
majority of them belongs to the Retroviridae family, which includes HIV virus, followed
by Flaviviridae (includes the Dengue and Zika viruses) and Paramyxoviridae (includes
Parainfluenza and Hendra virus).

7.1.2 Generation and selection of features

For the three major datasets, datasets with different sets of features were constructed using
the methods from the class Descriptor. One dataset contained all possible features (except
binaries) which include 15 physicochemical descriptors, AAC, DPC and TPC, type I and
II of PAAC, autocorrelation descriptors including Moran, Geary and normalized moreau
broto autocorrelation, CTD, Conjoint triad, sequence and quasi sequence order and 6 base
class peptide descriptors. Additionally, datasets containing only AAC, PAAC and APAAC
and CTD were set up. The features were generated using the functions GetAll and adaptable
from Descriptor class. These datasets were preprocessed to remove equal columns, columns
with only zeros and non variant columns (class Preprocess of package described in previous
section).

Furthermore, the dataset with all possible features was subject to various types of
feature selection to select the most predictive subset of features and eliminate redun-
dant or irrelevant features. To do this, methods from the class Feature selection (se-
lect from model feature elimination and univariate) were employed.

Four approaches for feature selection were used. First, two embedded feature selection
techniques were applied, namely a tree and a SVC model.

The SVC model followed the approach made by Lee et al. [78], where a linear SVC is
built employing a L1 norm. First a grid search to determine a near-optimal value of C
parameter was carried out. Linear models penalized with L1 norm have sparse solutions
with many coefficients estimated equal to zero and with the relevant features having non
zero coefficients. The parameter C controls the sparsity (smaller the C, fewer features
selected).

To build the tree classifier, we first performed a grid search to determine a near-optimal
value of number of estimators parameter. This parameter represents the number of trees
in the forest, the larger the better but it may take longer to compute and, beyond a critical

7.1. Methods 67

number of trees results stop being significantly better. The parameter max features was left
as the default [52].

As the number of features remained high, two approaches were added combining both
SVC and tree models with a previous univariate feature selection.

Univariate feature selection allows to remove descriptors with low correlation with the
outcome variable based on univariate statistical tests and was performed with the function
univariate. The best half of the features (percentile=50) using the mutual info classif method
were selected. The mutual info classif method was preferred to f classif (compute the ANOVA
F-value for the provided sample, i.e, estimate the degree of linear dependency between two
random variables scoring features individually) because, although it requires more samples
for accurate estimation, it can capture any kind of statistical dependency [52].

The dataset with no feature selection was used to compare results and feature selection
techniques.

Models with features AAC, CTD, PAAC and APAAC did not went through feature
selection.

The selection and features importances scores were obtained with functions from the class
Feature selection of the package. For each function, as defined by default in the package
functions, the datasets were standardized using the standard scaler, removing the variance
and scaling to unit variance. Each function retrieves the original dataset with features
selected.

This way, for all the three datasets a total of 8 datasets were generated containing only
AAC, CTD and PAAC features and all features available in the package with no feature
selection, SVC, tree or combination of univariate and SVC and tree feature selection models.
In the table below (Table 12) we summarize the number of features for each dataset created.

Table 12: Description of the number of features used for each of the three datasets
Features F.selection Dataset 1 Dataset 2 Dataset 3

All Features

None 2212 2089 2175

svc 78 57 122

tree 569 404 397

mutual svc 76 58 105

mutual tree 278 158 748

AAC None 20 20 20

CTD None 135 135 148

PAAC None 60 60 60

All the features are exclusively numerical.

7.1. Methods 68

7.1.3 Machine learning models: construction, optimization and evaluation

The next step was to build and run several machine learning models and evaluate them. We
ran the same machine learning pipeline for all the 24 generated datasets.

After creating a class object Machine learning with the data and labels, the dataset is
divided into train and test set with a split ratio of 0.3. The function train best model was used
to retrieve the best model from a hyperparameter optimization through grid search on the
training dataset. This function then performs standard scaling and retrieves the best model
using 10 fold cross validation. The evaluation of the models created was made using the
function score testset that scores Matthews correlation coefficient, accuracy, precision, recall,
f1 and area under the ROC curve of the predictions made by the model on the test dataset.
The models SVM, RF, SGD, GB, KNN, ANN and GNB were tested.

Table 13 describes the hyperparameter grid used for each of the seven machine learning
models tested.

Table 13: Hyperparameter values used in grid search for the models: SVM, RF, KNN, GB, SGD and
NN

Model Parameter grid

SVM
’clf C’: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]
’clf kernel’: [’linear’]
’clf gamma’: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]

RF
’clf n estimators’: [10, 100, 500]
’clf max features’: [’sqrt’, ’log2’]
’clf bootstrap’: [True]
’clf criterion’: [”gini”]

KNN
’clf n neighbors’: [2, 5, 10, 15]
’clf weights’: [’uniform’, ’distance’]
’clf leaf size’: [15, 30, 60]

GB
’clf loss’: [’deviance’, ’exponential’]
’clf n estimators’: [10, 100, 500]
’clf max depth’: [1,3,5,10]

SGD
’clf loss’: [’hinge’, ’log’, ’modified huber’, ’percep-

tron’]
’clf penalty’: [’l2’, ’l1’,’elasticnet’]
’clf alpha’: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]

GNB ’clf var smoothing’: [1e-12, 1e-9, 1e-4]

NN
’clf activation’: [’identity’, ’logistic’, ’tanh’, ’relu’]
’clf batch size’: [0,5,10]

For SVM models, the grid search only included the linear kernel as the RBF one does not
retrieve feature importance.

7.2. Results and discussion 69

For the models of SGD, SVM, RF and GB the feature importance was assessed and
plotted using the function feature importances. All the other models do not retrieve feature
importance.

Additionally, validation, learning curves and ROC curves were plotted.

7.1.4 Application to predict the location of peptide sequence

In order to select the models, the scores of MCC, accuracy, AUC-ROC, sensibility and
specificity were taken into special consideration. The best models were used to predict the
location of a known fusion peptide from a Dengue virus viral fusion protein sequence.

To this task, the package function predict window was used, as it allows to use a sliding
window approach to scan all the possible subsequences from a full protein sequence using
an input trained ML model. A window size of 20 and a gap space of 1 was used and all the
subsequences and respective probability percentages of being or not a viral fusion peptide
were recorded.

7.2 results and discussion

The results obtained for the three major datasets, their analysis and discussion are presented
in this section.

7.2.1 Dataset 1

The first dataset was used to evaluate the models’ capability to distinguish fusion peptides
from other random sequences belonging to the fusion protein. Overall, this dataset obtained
models with very good performances. Models with only AAC, CTD or only PAAC features
performed well, with MCC in the order of the 80%. The models that used a more developed
set of features, however, achieved scores higher than 90%, specially models of SVM and
ANN.

Feature selection demonstrated also to be a good asset for the development of such models.
It decreased the number of features and increased the performance of the models. However,
it was not easy to perceive which feature selection scheme was better across the majority of
models. In the table below (Table 14), it is possible to observe a selection of the best models
for each set of features.

The results were better than expected and probably are overfitting. Nonetheless, the
models were analysed. Learning curves for all models were also plotted, the majority
showed higher training and lower validation scores. As validation scores could be increased
with more training samples, the model could benefit from more training samples.

7.2. Results and discussion 70

Table 14: Table with the best performing models in dataset 1 for all sets of features
Feature

Selection
Number
Features

ML
Model

Scores

MCC Acc
AUC-
ROC

Sens. Specif.

all mutual svc 76 SVM 0.97 0.99 0.99 0.97 1

all tree 569 SVM 0.97 0.99 0.99 0.97 1

all mutual tree 278 SVM 0.94 0.97 0.97 0.94 1

all svc 78 SGD 0.97 0.99 0.99 0.97 1

all svc 78 ANN 0.97 0.99 0.99 0.97 1

all tree 569 RF 0.89 0.94 0.94 0.89 1

AAC 20 KNN 0.91 0.96 0.96 0.94 0.97

CTD 135 RF 0.83 0.91 0.91 0.86 0.97

PAAC 60 SGD 0.84 0.91 0.92 0.83 1

When fed with a viral fusion protein of Dengue virus, to predict the location of viral
fusion peptide, the models predict the fusion peptide sequence but also several other zones.
This indicates that the model obtained with this dataset has a good recall, but its precision
needs to be improved. However, we note that in this case recall is more important than
precision, since our aim is to make predictions that can be validated or discarded by in in
vitro experiments. The model that got closer was the RF fed with a dataset containing all
features selected by a tree. In Figure 6, it is possible to observe the regions predicted with
a confidence ≥ 0.99 in yellow, regions with confidence of 0.95-0.99 in blue and the actual
location of FPep in red.

Figure 6: Dengue’s fusion protein. Classification using dataset1, RF model and all features se-
lected with tree. Regions predicted as containing fusion peptides with confidence ≥ 0.99
highlighted in yellow, 0.95-0.99 in blue. Actual fusion peptide displayed in the red box.

It is possible to observe that although the model predicted the FPep, it also predicted
some sequences immediately before and after the actual FPep. Besides this, it also predicts
as FPep a portion of the end of the fusion protein that is the TMD of the sequence.

The results showed that this dataset, although makes acceptable previsions it is not able to
distinguish fusion peptides from transmembrane domains. However, it is able to distinguish
fusion peptides and TMDs from the other parts of sequence. If we look into the relevant

7.2. Results and discussion 71

features used in the RF model (Figure 7), it is possible to observe that PAAC, CTD features
(especially the ones regarding the composition), some autocorrelation factors and QSO are
relevant. Besides that, the aminoacids phenylalanine (phe) (F) and glycine (gly) (G) also appear
to be relevant.

Figure 7: Feature importance of the RF model using the dataset with all features selected recurring to
a tree model

PAAC are the initials for pseudo aminoacid composition, and APAAC the initials for
amphiphilic pseudo aminoacid composition, the number after these initials represents the
amino acid index. So, contributing to the model are PAAC and APAAC gly and APAAC
phe, indicating the importance of Glycine and Phenylalanine. In the same way, Glycine and
Phenylalanine single aminoacid frequencies appear to have a relevant role in the machine
learning model to distinguish fusion peptides, being both hydrophobic residues and often
buried in the protein core, phe being aromatic and gly aliphatic.

CTD features’ aim is to capture the meaningful biological information from the protein
calculating the composition, transition and distribution of aminoacid attributes, such as
hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary

7.2. Results and discussion 72

structure and solvent accessibility of the protein sequences. From the CTD features, com-
position features, that indicates the fraction of aa with a particular property, appears as
very relevant. Solvent accessibility C1 indicates the importance of the fraction of aa that
are buried inside the core of protein (A,L,F,C,G,I,V,W), polarity C2 the fraction of aa with
polarity between 8 and 9.2 (P,A,T,G,S), Hydrophobicity C1 indicates polar aa (R,K,E,D,Q,N),
polarizability C1 (G,A,S,D,T) and C2 (C,P,N,V,E,Q,I,L) indicate the frequency of polarized aa
between 0-1.08 and 0.128-0.186 respectively. Besides composition, a feature also important is
the percentage transition of hydrophobicity between classes 1 and 3, and 2 and 3.

Quasi sequence order using the matrix Schneider-wrede (QSO) from glycine and phenylala-
nine and the Boman index also achieved high relative importances. Boman index indicates
the potential protein interaction. The index, proposed by Boman, is equal to the sum of the
solubility values for all residues in a sequence and might give an overall estimate of the
potential of a peptide to bind to membranes or other proteins as receptors [77].

Autocorrelation 1 and 6 are descriptive of autocorrelation values taking into considera-
tion the Einsenberg hydrophobicity consensus amino acid scale (Eisenberg hydrophobicity
consensus amino acid scale [114]).

In this studied model is latent the weight that glycine and phenylalanine, both hydrophobic
aa and their characteristics are having to distinguish viral fusion peptides. This makes sense
as viral fusion peptides and TMDs are hydrophobic sequence, which explains the difficult of
the model to distinguish them.

Taking a look into other models, that achieve better results, but did not distinguish so
well the viral fusion peptides and TMDs, it is possible to observe that the features selected
are different. In random forests, the features used are quite similar with the ones described
above, with some models benefiting from more autocorrelation descriptors, like MoranAuto-
Mutability 1, Geary auto residue ASA4, Moran auto polarizability4, moranautofreeenergy3,
as well as distribution of secondary structures (D component of CTD), like the secondary
structure D1025 that represents the distribution of helix in the first quarter of sequence
and the secondary structure D3001 representing the distribution of coil aa (gly, asparagine
(asn),phe, serine (ser), aspartic acid (asp)) on the first residue. SVM models look into other
features with more components of CTD and some dipeptide and tripeptide composition
being relevant.

Models predicting only with AAC give higher importance to phe and gly aa, which is
concordance with the above results, with alanine (ala), lysine (lys), asn and arginine (arg) aa
being also relevant (lys, asn, arg appear to have negative contributions in SVM predicting
the negative class).

Models predicting with only CTD give higher importance to Solvent Accessibility and
hydrophobicity C1, Polarity and polarizability C2, charge and secondary structure also in
concordance with the results above.

7.2. Results and discussion 73

Models predicting only with PAAC and APAAC give higher importances to gly and phe
(PAAC and APAAC 8 and 14), and also to PAAC21 , 27 and PAAC and APAAC 6 and 3

glutamine (gln) and asn, reinforcing the importance of phe and gly.

7.2.2 Dataset2

The second dataset was used to evaluate the models’ ability to distinguish fusion peptides
from transmembrane domains. Models with this dataset achieved performances very close
or even 1. Models with only AAC, CTD or PAAC features performed well with MCC in the
order of the 90%. The models that used a more developed set of features, however, achieved
scores higher than 90%. Feature selection was not a differentiating factor. In the table below
(Table 15), it is possible to observe a selection of the best models for each set of features.

Table 15: Best performing models in dataset 2 for all set of features
Feature
Selection

Number
Features

ML
Model

Scores

MCC Acc
AUC-
ROC

Sens. Specif.

svc 67 SVM 1 1 1 1 1

svc 67 SGD 1 1 1 1 1

svc 67 RF 0.97 0.99 0.99 0.97 1

svc 67 ANN 1 1 1 1 1

AAC 20 RF 0.91 0.96 0.96 0.92 1

CTD 135 KNN 0.94 0.97 0.97 1 0.94

PAAC 60 SVM 0.91 0.96 0.95 0.97 0.94

When fed with a viral fusion protein of Dengue virus, in order to forecast the location
of viral fusion peptide, the models did not obtained good results predicting several other
zones not related either with fusion peptide nor TMD region. These models were not able to
distinguish the fusion peptide from other zones of the sequence.

Although the models using this dataset did not identify the viral fusion peptide, the
features used could provide clues to differentiate FPep from TMDs.

CTD features specially linked to hydrophobicity, polarity and charge, autocorrelation
descriptors linked to flexibility, hydrophobicity and polarizability appear as relevant features.
Secondary structure as helix, length, aliphatic index (relative volume occupied by aliphatic
side chains as ala, valine (val), isoleucine (ile) and leucine (leu)), PAAC and some aminoacids
as leu and gly are relevant as well. This set of features is a very good indicator of the
differences between this two zones of viral fusion proteins. They are in concordance with
the literature that points out as differentiating characteristics the aa, hydrophobicity and
structural properties [115, 116].

7.2. Results and discussion 74

Both FPep and TMDs have similar properties such as high hydrophobicity, which implies
high content of aa such as ala, ile, leu, methionine (met), phe, val, proline (pro) and gly.
However, the relative frequencies of each aa residues may vary between FPeps and TMDs.
Fusion peptides are hydrophobic sequences composed of 20-30 aminoacids mostly apolar
residues, enriched with alanines and glycines, whereas TMDs consist of around 20 aa
hydrophobic residues with also a greater content of glycine [115].

Other important feature is the structural flexibility, where regarding the FPep is not a
universal criteria differing between classes. The transmembrane domain, on contrary, adopt
mainly a helix structure [116, 115].

Besides this, FPeps are usually located further upstream in the sequence than TMDs
(located at the C terminus) [116]. FPeps are very conserved among viruses of the same
family and, in pre-fusion state, are buried in the fusion protein, whereas TMDs are exposed
(connect to the membrane). To refine the models ability to distinguish FPep and TMDs,
aligments, structural (especially in pre-fusion state) and location information could be added.

The exploration of these models could also reveal different features not explored yet to
distinguish TMDs from FPeps.

7.2.3 Dataset3

The third dataset was used to evaluate the models’ capability to distinguish fusion pep-
tides from a negative set, having both random sequences from the fusion protein and
transmembrane domains.

As expected, the models obtained did not achieved MCC scores as higher as the previous
datasets. Models with only AAC, CTD or only PAAC features performed poorly not
achieving MCC scores higher than 60%. Models using more features had better results,
specially SVM and SGD. The RF, KNN and GNB performed worst. With this dataset only
the models based on feature selection with SVC got scores higher than 0.70, representing a
significative difference to the models using none or with feature selection using tree models.

Furthermore, and as had succeed with above two models, using a combination set of
features instead of individual sets of features gives better performances. This is also shown
in several studies such as [84].

In the table below (Table 16) it is possible to observe the models with MCC scores ≥ 0.72.
SVM models have optimized parameters of C value of 0.01 and a linear kernel. SGD

models were obtained with loss function of hinge and alpha of 1 to feature selection only
with SVC and loss function log and alpha of 10 for both univariate and SVC feature selection.
Both models used L2 regularization. ANN was achieved using a identity activation function
with batch size of 5 and the GNB had a var smoothing parameter of 0.0001.

7.2. Results and discussion 75

Table 16: Best performing models in dataset 3 for all set of features
Feature

Selection
Number
Features

ML Model
Scores

MCC Accuracy
AUC-
ROC

Sens. Specif.

svc 122 SVM 0.8 0.9 0.9 0.83 0.97

mutual svc 105 SVM 0.76 0.88 0.88 0.86 0.9
svc 122 SGD 0.8 0.9 0.9 0.83 0.97

mutual svc 105 SGD 0.73 0.85 0.86 0.75 0.97

svc 122 ANN 0.72 0.85 0.86 0.78 0.94

svc 122 GNB 0.72 0.84 0.85 0.69 1

The learning curves plotted, showed high training scores and low validation scores
suggesting that the model could benefit from more training samples.

When fed with viral fusion protein of Dengue virus, to predict the location of the viral
fusion peptide, the models achieved good results predicting the fusion peptide location
relatively accurately. Figures 8, 9 and 10 represent the regions predicted with a confidence
of ≥ 0.99 in yellow, regions with confidence of 0.95 – 0.99 in blue and the actual location
of FPep in a red box for the three best performing models. Figure 8 is obtained with a
SVM model and feature selection using SVC. Figure 9 is obtained with a SVM model using
univariate followed by SVC feature selection. Figure 10 represents the prediction with a
SGD model using univariate followed by SVC feature selection.

Figure 8: Dengue’s fusion protein. Regions predicted by SVM model (dataset 3 and feature selection
SVC) as containing fusion peptides with confidence ≥ 0.99 highlighted in yellow, 0.95-0.99

in blue. Actual fusion peptide displayed in the red box

Figure 8, SVM model and feature selection using SVC, predicted with relative high
accuracy the location of the FPep. The two first aa of the viral FPep only are revealed when
taking in consideration probabilities between 0.95 and 0.99.

7.2. Results and discussion 76

Figure 9: Dengue’s fusion protein. Regions predicted by SVM model (dataset 3 and feature selection
univariate and SVC) as containing fusion peptides with confidence ≥ 0.99 highlighted in
yellow, 0.95-0.99 in blue. Actual fusion peptide displayed in the red box.

The SVM model using univariate followed by SVC feature selection, Figure 9, also
predicted with relative high accuracy the location of the FPep. Although it only locates the
FPep 4 aa downstream of the real one. Considering the prevision higher than 0.99 it predicts
the location in a more constrained way than the other models.

Figure 10: Dengue’s fusion protein. Regions predicted by SGD model (dataset 3 and feature selection
univariate and SVC) as containing fusion peptides with confidence ≥ 0.99 highlighted in
yellow, 0.95-0.99 in blue. Actual fusion peptide displayed in the red box.

Figure 10 represents the prediction with a SGD model using univariate followed by SVC
feature selection. This model did not predict any subsequence with a confidence higher than
0.99. With probabilities between 0.95-0.99, it locates the FPep relatively close to the real one,
starting 2 aa downstream and ending with 16 aa downstream of the real one.

All three models performed well, predicting the location of the FPep of Dengue’s virus
fusion protein without predicting the TMD sequence. However, any of them recognize with
confidence the first 2 aa of FPep and all predicted several aa right after the real FPep as being
part of the FPep. This is not surprising, given that the actual limits of viral fusion peptides
are somewhat arbitrary and not clearly defined. Besides this, another possible correlated
reason may be the fact that the algorithm search for subsequences with 20 aa. Nonetheless,
it is necessary to experiment the models in more known sequences to validate them.

Table 17 displays the highest score features (positive and negative) with their features
importances (FI) in all 4 models tested. The features common in all 4 models are highlighted

7.2. Results and discussion 77

(the positive ones in red and the negatives in blue). Tripeptide and dipeptide composition,
secondary structure, autocorrelation and CTD descriptors appear as relevant features.

TPC and DPC appeared as some of the relevant features, specially involving the phe and
gly aa. It is worth noting that while phe appears on the positive hyperplane space, the gly is
associated with the negative space. Tripeptides with ala in composition are also important.

In the first residue (on positive side of hyperplane) aa related to helix secondary structure
(glutamic acid (glu), ala, leu, met, gln, lys, arg, histidine (his)) are expected. When considering
the first 75% of residues of the sequence (as features on the negative side of the hyperplane)
are expected aa linked to random coil secondary structure (gly, asn, pro, ser, asp).

Autocorrelation Mutability calculated by Geary, that describes the probability of each
aminoacid change in a given small evolutionary interval [117], is relevant in the positive
space of the SVM hyperplane.

Boman index, that indicates the potential to protein interaction [77] with membranes or
other receptors is also common in all 4 models in the negative space. This result is highly
expected in viral fusion peptides.

CTD features involving solvent accessibility, polarity and hydrophobicity as autocorrela-
tion descriptors, PAAC and APAAC are important as well. As said before, although there
is no precise definition of the fusion peptide, it generally is a hydrophobic or amphipathic
segment rich in gly and ala residues, located at the N terminus of viral protein sequence and
with reduced to moderate polarity [118]. Another criterion is that mutation in the fusion
peptide segment of the fusion protein often leads to loss of activity because of the essential
nature of the fusion peptide segment for membrane fusion [2]. These characteristics are very
patent in the models with the importance of aminoacids gly, ala and phe.

Another structural characteristic of viral fusion peptides is their secondary structure. They
often are helices or partially a-helical although some families have other structure [2]. The
appearance of relevant features linked to distribution of secondary structure is therefore
expectable. Besides this, the features related with Boman index, solvent accessibility, polarity
and hydrophobicity, autocorrelation and PAAC also agree with the FPep properties described
in literature, make sense in the problem context and could provide clues to a clearer insight
of viral fusion peptides.

Despite the scarcity of data and the lack of case studies, the models provided good results
and the features extracted make biological sense, suggesting that the machine learning
approach followed, although it could be improved, is correct. With no doubt, the best dataset
to work to predict a fusion peptide is the dataset 3, although it yields lower MCC scores, it
produce models that clearly identify the FPep not predicting TMDs or other parts of fusion
protein. Taking this dataset into account, feature selection revealed to be very important
with only feature selection based on SVC models producing good results. In the same line,

7.2. Results and discussion 78

SGD, SVM and ANN models yielded satisfactory results whereas tree based models as RF
demonstrate not to be as good for this kind of problem.

One should take into consideration that the dataset is composed primarily of sequences
belonging to class I fusion proteins, which may lead to a high degree of similarity between
sequences in the dataset. Nonetheless, it showed to perform well when fed with the Dengue
fusion protein, a class II protein.

Adding more known case studies and extending with confidence the database of fusion
peptides could lead to a significant improvement and provide important information on
viral fusion peptides. Refining the models could also lead to improve the location prediction
of viral fusion peptides.

Besides this, the models could also benefit from features, such as alignments, motif
searches or location of the viral fusion peptide in sequence since these are important features
in real situations but not described computationally in this study. Structural information of
fusion proteins in pre-fusion state could also be a good feature to add, for the model be able
to distinguish between FPep and TMD as one is buried in the fusion protein and the other is
exposed to connect to the membrane.

All the discussed results give insights on the possible location of the FPep on the tested
fusion protein sequences, however they lack experimental evidence. Hence, the next steps of
this work should also include the experimentally validation of the results obtained in this
dissertation.

This study and the features described by the models could provide unknown biological
insight on sequence and function of viral fusion peptides. Here, it is demonstrated that
secondary structure, hydrophobicity, polarity, flexibility and charge, aa composition (sin-
gle, di and tripeptide composition) involving gly and phe, Boman index, autocorrelation
descriptors, CTD and PAAC are very good features to distinguish fusion peptides. To test if
these models are truly accurate more secure case studies and wet lab experiments would be
needed.

7.2. Results and discussion 79

Table 17: Table discriminating the highest FI from the 4 models divided by the hyperplane space they
occupy. Features that are common in all four models are highlighted, in red the positive
ones and in blue the negatives ones.

SVM
(svc sel.)

FI
SGD

(svc sel.)
FI

SVM
(mutual svc sel.)

FI
SGD

(mutual svc sel.)
FI

KGG 0.155 PolarityC1 0.114 HydrophobicityC3 0.138 HydrophobicityC3 0.297

PolarityC1 0.122 FCS 0.100

SecondaryStr
D1001

0.133 FCS 0.279

RSA 0.110 KGG 0.100 global 0.133 global 0.279

FIG 0.110

Solvent
AccessibilityC1

0.099 FCS 0.130 FIG 0.274

Solvent
AccessibilityC1

0.110

MoreauBrotoAuto
ResidueVol13

0.098 FIG 0.129 IAG 0.265

VIA 0.093 AFC 0.094 IAG 0.108

SecondaryStr
D1001

0.238

FCS 0.092

SecondaryStr
D1001

0.088 PAAC28 0.108 PAAC28 0.227

MoreauBrotoAuto
ResidueVol13

0.091 autocorr 3 0.078 PAAC22 0.107

GearyAuto
Mutability5

0.218

autocorr 3 0.090

GearyAuto
Mutability5

0.078

MoranAuto
AvFlexibility19

0.099

MoranAuto
AvFlexibility19

0.217

AFC 0.089 LTS 0.076

GearyAuto
Mutability5

0.096

NormalizedVDWV
D3075

0.207

SecondaryStr
D1001

0.089 VIA 0.074 PAAC13 0.085 PAAC22 0.201

GearyAuto
Mutability5

0.077 PAAC27 0.072 YST 0.084 F 0.192

F 0.076 RSA 0.070 F 0.082 QC 0.192

PAAC27 0.074 FIG 0.070 SLS 0.080 PAAC30 0.189

AAT 0.069 MF 0.068

NormalizedVDWV
D3075

0.080 LI 0.186

LTS 0.066 M 0.068 SAA 0.078 PAAC13 0.185

GS -0.069 GIG -0.068

GearyAuto
Steric22

-0.077

Solvent
AccessibilityT23

-0.164

GIG -0.070 GST -0.068 APAAC16 -0.079 taugrant3 -0.165

GST -0.070

MoreauBrotoAuto
AvFlexibility24

-0.068 NR -0.079

Solvent
AccessibilityD3050

-0.170

AVT -0.071 GS -0.071 IAL -0.079 HydrophobicityT13 -0.171

AVP -0.072 VSV -0.075

MoranAuto
ResidueASA5

-0.080

MoranAuto
ResidueASA5

-0.179

GearyAuto
Mutability20

-0.083 AVT -0.075 APAAC17 -0.083 GWT -0.193

VSV -0.087 GWT -0.075 APAAC20 -0.089 GIG -0.196

SecondaryStr
D3100

-0.089

MoranAuto
AvFlexibility20

-0.078 GIG -0.090 APAAC20 -0.199

MoranAuto
AvFlexibility20

-0.100 SecondaryStrD3100 -0.079 ME -0.090 GS -0.208

bomanindex -0.103 LVD -0.091

Solvent
AccessibilityD3050

-0.114 IAL -0.212

SecondaryStr
D3075

-0.106

GearyAuto
Mutability20

-0.093 GWT -0.115 NR -0.224

GearyAuto
Hydrophobicity20

-0.114

GearyAuto
Hydrophobicity20

-0.102 bomanindex -0.117 APAAC17 -0.235

LVD -0.121 bomanindex -0.104 GS -0.142 bomanindex -0.285

GWT -0.121 SecondaryStrD3075 -0.107

SecondaryStr
D3075

-0.172

SecondaryStr
D3075

-0.414

8

C O N C L U S I O N A N D P R O S P E C T S F O R F U T U R E W O R K

The first aim of this project was to build a generic automated platform for the classification
of peptides/proteins based on their physicochemical properties and making use of different
machine learning models. The package developed facilitates the major tasks of machine
learning and it includes modules to read and alter sequences, to calculate protein features,
do dataset preprocessing, do feature reduction and selection, perform clustering and to build
machine learning models and make predictions. As it is built in a modular way, the user
retains the power to manipulate and use others functions outside of the package, having
control over the different steps and adapting/extending the code to fit their specific needs.
The package is directed to handle protein related problems, but its modular construction
allows users to use it in other problems.

This package was validated using two membrane-interacting peptides studies involv-
ing antimicrobial and anticancer peptides. The comparative analysis made evident the
performance and validated the package here described.

Although it meets all the tasks it was built for, the package could be improved. More
features could be included (structural and evolutionary), the code could be improved to
enhance efficiency, and other traits could be added such a deep learning pipeline, more ML
functions and availability as a web server.

During the development of this thesis, several web servers and stand alone packages were
published and released. Nonetheless, the developed package maintains its usability and
interest. It is advantageous because:

• It offers the option to change the sequences and obtain subsequences (such as N and C
terminals or scanning windows)

• It can extract/calculate a high number and type of descriptors for protein sequences;

• It is designed to conduct all main steps to construct a predictor, facilitating the machine
learning process in all of its stages (which is not common in the available packages);

• It is, compared to others, more user friendly with more variety of plots and schemes
to help cluster, features and machine learning analyses;

80

81

• It is built in modular ways, which is also a major advantage, as the user can, easily
integrate other features or use other methods of different tools to complete their work

The second major goal of this work was, using the tool developed, explore the viral fusion
peptides, one of the most relevant players in viral fusion processes and therefore, very
promising drug targets. The use of ML to identify and further understand viral fusion
peptides is a promising and unexplored approach, and, as far as we know, there are no ML
studies focused on them.

Here, a ML pipeline was applied to understand the major differences between TMDs
and FPeps and from FPeps from the rest of the viral fusion protein sequence. The models
developed accurately predict the location of the FPep inside the fusion protein and could
be used not only, to predict the location, but to understand and unravel the distinctive
characteristics of these peptides.

A complex set of physicochemical features was compared to the use of individual sets
of features. Different feature techniques and ML algorithms were tested. The models
using a combination set of features instead of individual sets achieved better performances.
Feature selection revealed to be an important asset, with the use of a SVC L1 penalized
approach performing better than approaches involving trees. ML models SVM and SGD
also outperformed other models.

The feature analysis revealed key differentiating characteristics of viral fusion peptides.
Secondary structure, hydrophobicity, polarity, flexibility and charge, aa composition (single,
di and tripeptidecomposition) involving gly and phe, Boman index, autocorrelation descrip-
tors, CTD and PAAC revealed to be important features to distinguish the fusion peptides.
These characteristics were in concordance with bibliography and make biological sense.
Furthermore, this approach could be used to deeply understand and find characteristics not
yet described.

To further improve this study, future steps would be the extension of the fusion peptide
database. Besides this, the models could also benefit from features such as alignments,
motif searches or location in sequence, as they are important features in real situations but
not described computationally in this study. Structural information of fusion proteins in
pre-fusion state could also be a good feature for the model to be able to distinguish between
FPep and TMDs as one is buried in the fusion protein and the other is exposed to connect to
the membrane. To test if these models are truly accurate more secure case studies and wet
lab experiments would be needed.

Overall, the models built provide good results and the features extracted make biological
sense, suggesting that the machine learning approach followed, although not perfect, is
correct. These models could be used to understand and find precious data to understand
the viral fusion process.

B I B L I O G R A P H Y

[1] D. Gaspar, A. Salomé Veiga, and M. A. R. B. Castanho, “From antimicrobial to
anticancer peptides. A review,” Frontiers in Microbiology, vol. 4, no. OCT, pp. 1–16,
2013.

[2] R. M. Epand, “Fusion peptides and the mechanism of viral fusion,” 2003.

[3] D. S. Cao, Q. S. Xu, and Y. Z. Liang, “Propy: A tool to generate various modes of
Chou’s PseAAC,” Bioinformatics, vol. 29, no. 7, pp. 960–962, 2013.

[4] Z. He, J. Zhang, X. H. Shi, L. L. Hu, X. Kong, Y. D. Cai, and K. C. Chou, “Predicting
drug-target interaction networks based on functional groups and biological features,”
PLoS ONE, vol. 5, no. 3, pp. 1–8, 2010.

[5] A. Sharma, P. Gupta, R. Kumar, and A. Bhardwaj, “DPABBs: A Novel in silico
Approach for Predicting and Designing Anti-biofilm Peptides,” Scientific Reports, vol. 6,
no. July 2015, pp. 1–13, 2016.

[6] E. Y. Lee, B. M. Fulan, G. C. L. Wong, and A. L. Ferguson, Mapping membrane activity
in undiscovered peptide sequence space using machine learning, vol. 113. 2016.

[7] L. Xu, G. Liang, L. Wang, and C. Liao, “A novel hybrid sequence-based model for
identifying anticancer peptides,” Genes, vol. 9, no. 3, 2018.

[8] S. Akbar, M. Hayat, M. Iqbal, and M. A. Jan, “iACP-GAEnsC: Evolutionary genetic
algorithm based ensemble classification of anticancer peptides by utilizing hybrid
feature space,” Artificial Intelligence in Medicine, vol. 79, pp. 62–70, 2017.

[9] W. Chen, H. Ding, P. Feng, H. Lin, and K.-c. Chou, “iACP: a sequence-based tool for
identifying anticancer peptides,” Oncotarget, vol. 7, no. 13, pp. 16895–16909, 2016.

[10] S. Kumar and H. Li, “In Silico Design of Anticancer Peptides,” vol. 1647, 2017.

[11] Z. Hajisharifi, M. Piryaiee, M. Mohammad Beigi, M. Behbahani, and H. Mohabatkar,
“Predicting anticancer peptides with Chou’s pseudo amino acid composition and
investigating their mutagenicity via Ames test,” Journal of Theoretical Biology, vol. 341,
pp. 34–40, 2014.

82

bibliography 83

[12] B. Manavalan, S. Basith, T. Hwan Shin, S. Choi, M. Ok Kim, and G. Lee, “MLACP:
machine-learning-based prediction of anticancer peptides,” Oncotarget, vol. 8, no. 44,
pp. 77121–77136, 2017.

[13] F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider,
“Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem,
vol. 13, no. 13, pp. 1300–1302, 2018.

[14] B. Liu, “BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis
based on machine learning approaches,” Briefings in Bioinformatics, no. January, pp. 1–
15, 2017.

[15] F. G. Avci, B. S. Akbulut, and E. Ozkirimli, “Membrane active peptides and their
biophysical characterization,” Biomolecules, vol. 8, no. 3, pp. 1–43, 2018.

[16] N. M. O’Brien-Simpson, R. Hoffmann, C. S. B. Chia, and J. D. Wade, “Editorial:
Antimicrobial and Anticancer Peptides,” Frontiers in Chemistry, vol. 6, no. February,
pp. 1–2, 2018.

[17] World Health Organization (WHO), “The top ten leading causes of death by broad
income group,” Fact sheet, 2011.

[18] M. Mahlapuu, J. Håkansson, L. Ringstad, and C. Björn, “Antimicrobial Peptides:
An Emerging Category of Therapeutic Agents,” Frontiers in Cellular and Infection
Microbiology, vol. 6, no. December, pp. 1–12, 2016.

[19] D. W. Hoskin and A. Ramamoorthy, “Studies on Anticancer Activities of Antimicrobial
Peptides,” vol. 64, no. 12, pp. 2391–2404, 2008.

[20] G. Wang, X. Li, and Z. Wang, “APD3: The antimicrobial peptide database as a tool
for research and education,” Nucleic Acids Research, vol. 44, no. D1, pp. D1087–D1093,
2016.

[21] W. Shoombuatong, N. Schaduangrat, and C. Nantasenamat, “Unraveling the bioactivity
of anticancer peptides as deduced from machine learning,” EXCLI Journal, vol. 17,
no. Thundimadathil 2012, pp. 734–752, 2018.

[22] M. Malmsten, “Interactions of Antimicrobial Peptides with Bacterial Membranes and
Membrane Components,” Current Topics in Medicinal Chemistry, vol. 16, no. 1, pp. 16–24,
2015.

[23] B. Bechinger and S. U. Gorr, “Antimicrobial Peptides: Mechanisms of Action and
Resistance,” Journal of Dental Research, vol. 96, no. 3, pp. 254–260, 2017.

bibliography 84

[24] P. Bhadra, J. Yan, J. Li, S. Fong, and S. W. Siu, “AmPEP: Sequence-based prediction
of antimicrobial peptides using distribution patterns of amino acid properties and
random forest,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.

[25] A. Tyagi, P. Kapoor, R. Kumar, K. Chaudhary, A. Gautam, and G. P. Raghava, “In silico
models for designing and discovering novel anticancer peptides,” Scientific Reports,
vol. 3, pp. 1–8, 2013.

[26] B. Apellániz, N. Huarte, E. Largo, and J. L. Nieva, “The three lives of viral fusion
peptides,” Chemistry and Physics of Lipids, vol. 181, pp. 40–55, 2014.

[27] G. P. Pattnaik, G. Meher, and H. Chakraborty, “Exploring the Mechanism of Viral
Peptide-Induced Membrane Fusion,” pp. 69–78, 2018.

[28] B. Podbilewicz, “Virus and Cell Fusion Mechanisms,” Annual Review of Cell and
Developmental Biology, vol. 30, no. 1, pp. 111–139, 2014.

[29] S. C. Harrison, “Viral membrane fusionHarrison, S. C. (2009). Viral membrane fusion,
15(7), 690–698.,” National Structure Molecular Biology, vol. 15, no. 7, pp. 690–698, 2009.

[30] L. K. Tamm and X. Han, “Viral fusion peptides: A tool set to disrupt and connect
biological membranes,” Bioscience Reports, vol. 20, no. 6, pp. 501–518, 2000.

[31] B. L. Victor, D. Lousa, J. M. Antunes, and C. M. Soares, “Self-assembly molecular
dynamics simulations shed light into the interaction of the influenza fusion peptide
with a membrane bilayer,” Journal of Chemical Information and Modeling, vol. 55, no. 4,
pp. 795–805, 2015.

[32] D. Lousa, A. R. Pinto, B. L. Victor, A. Laio, A. S. Veiga, M. A. Castanho, and C. M.
Soares, “Fusing simulation and experiment: The effect of mutations on the structure
and activity of the influenza fusion peptide,” Scientific Reports, vol. 6, no. May, pp. 1–14,
2016.

[33] M. Awad and R. Khanna, Efficient Learning Machines. Apress Media, 2015.

[34] D. Chicco, “Ten quick tips for machine learning in computational biology,” BioData
Mining, vol. 10, no. 1, pp. 1–17, 2017.

[35] P. Baldi and S. Brunak, Bioinformatics: The machine learning approach. second ed., 2001.

[36] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, 2000.

[37] A. Smola and S. Vishwanathan, Introduction to machine learning. Cambridge University
Press 2008, 2008.

bibliography 85

[38] C. S. Greene, J. Tan, M. Ung, J. H. Moore, and C. Cheng, “Big data bioinformatics,”
Journal of Cellular Physiology, vol. 229, no. 12, pp. 1896–1900, 2014.

[39] A. C. Muller and S. Guido, Introduction to Machine Learning with Python: A guide for
data scientists. O’Reilly Media, 2017.

[40] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning
for molecular and materials science,” Nature, vol. 559, no. 7715, pp. 547–555, 2018.

[41] G. Schneider and U. Fechner, “Advances in the prediction of protein targeting signals,”
Proteomics, vol. 4, no. 6, pp. 1571–1580, 2004.

[42] E. Frank, L. Trigg, G. Holmes, and I. H. Witten, “Technical note: Naive Bayes for
regression,” Machine Learning, vol. 41, no. 1, pp. 5–25, 2000.

[43] C. Kingsford and S. L. Salzberg, “What are decision trees?,” Nature Biotechnology, 2008.

[44] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms, vol. 9781107057. 2013.

[45] E. Veronese, U. Castellani, D. Peruzzo, M. Bellani, and P. Brambilla, “Machine learn-
ing approaches: From theory to application in schizophrenia,” Computational and
Mathematical Methods in Medicine, vol. 2013, 2013.

[46] Chih-Wei Hsu, Chih-Chung Chang, C.-J. Lin, Chih-Wei Hsu, Chih-Chung Chang, C.-J.
Lin, Chih-Wei Hsu, Chih-Chung Chang, and C.-J. Lin, “A Practical Guide to Support
Vector Classification,” BJU international, 2008.

[47] B. Dasgupta, D. Liu, and H. T. Siegelmann, “Neural networks,” in Handbook of Approxi-
mation Algorithms and Metaheuristics, 2007.

[48] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” 2015.

[49] L. Zhang, J. Tan, D. Han, and H. Zhu, “From machine learning to deep learning:
progress in machine intelligence for rational drug discovery,” Drug Discovery Today,
vol. 22, no. 11, pp. 1680–1685, 2017.

[50] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for computa-
tional biology,” Molecular Systems Biology, 2016.

[51] M. Bowles, Machine Learning in python: essential techniques for predictive analysis. 2015.

[52] T. Klikauer, “Scikit-learn: Machine Learning in Python,” TripleC, 2016.

[53] J. Dean, Big data, data mining, and machine learning: Value creation for business leaders and
practitioners. Wiley, 2014.

bibliography 86

[54] Z.-H. Zhou, Ensemble methods: Foundations and Algorithms. 2012.

[55] I. Guyon and A. Elisseef, “An Introduction to Feature Extraction,” pp. 1–24, 2006.

[56] J. Li, S. Fong, S. Mohammed, and J. Fiaidhi, “Improving the classification performance
of biological imbalanced datasets by swarm optimization algorithms,” Journal of
Supercomputing, vol. 72, no. 10, pp. 3708–3728, 2016.

[57] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A new
perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.

[58] S. Raschka, Python Machine learning. Packt Publishing, 2015.

[59] S. Piramuthu, “Evaluating Feature Selection Methods for Learning in Data Mining
Applications,” vol. 00, no. c, 1998.

[60] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in
bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007.

[61] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature extraction
methods applied on microarray data,” Advances in Bioinformatics, vol. 2015, no. 1, 2015.

[62] L. Wang, Y. Wang, and Q. Chang, “Feature selection methods for big data bioinformat-
ics: A survey from the search perspective,” Methods, vol. 111, pp. 21–31, 2016.

[63] R. Y. Zheng, “Peptide Bioinformatics,” Artificial Neural Network: Methods and Applica-
tions2, pp. 155–179, 2008.

[64] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,”
pp. 233–240, 2016.

[65] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data
using Matthews Correlation Coefficient metric,” PLoS ONE, vol. 12, no. 6, pp. 1–17,
2017.

[66] T. M. Mitchell, Machine learning. McGraw Hill Higher Education, 1997.

[67] I. Idris, NumPy Beginner’s Guide. 2013.

[68] W. McKinney, “pandas: a Foundational Python Library for Data Analysis and Statis-
tics,” in PyHPC, 2011.

[69] S. Tosi, Matplotlib for Python Developers. 2009.

[70] J. Eric, O. Travis, P. Pearu, and et Al., “SciPy : Open source scientific tools for Python,”
Computing in Science and Engineering, 2001.

bibliography 87

[71] F. Chollet and E. all., “Keras,” 2015.

[72] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, Y. J. Michael Isard,
Rafal Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga,
S. Moore, D. Murray, J. Chris Olah, O. Shlens, B. Steiner, I. Sutskever, P. T. Kunal Talwar,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015.

[73] S. Vinga, “Biological sequence analysis by vector-valued functions: revisiting
alignment-free methodologies for DNA and protein classification,” pp. 1–36, 2006.

[74] K.-C. Chou, “Pseudo Amino Acid Composition and its Applications in Bioinformatics,
Proteomics and System Biology,” Current Proteomics, vol. 6, no. 4, pp. 262–274, 2009.

[75] F. M. Li and X. Q. Wang, “Identifying anticancer peptides by using improved hybrid
compositions,” Scientific Reports, vol. 6, pp. 1–6, 2016.

[76] Z. R. Li, H. H. Lin, L. Y. Han, L. Jiang, X. Chen, and Y. Z. Chen, “PROFEAT: A
web server for computing structural and physicochemical features of proteins and
peptides from amino acid sequence,” Nucleic Acids Research, vol. 34, no. WEB. SERV.
ISS., pp. 32–37, 2006.

[77] H. G. Boman, “Antibacterial peptides: Basic facts and emerging concepts,” Journal of
Internal Medicine, vol. 254, no. 3, pp. 197–215, 2003.

[78] E. Y. Lee, B. M. Fulan, G. C. L. Wong, and A. L. Ferguson, Mapping membrane activity
in undiscovered peptide sequence space using machine learning, vol. 113. 2016.

[79] S. Roy, D. Martinez, H. Platero, T. Lane, and M. Werner-Washburne, “Exploiting amino
acid composition for predicting protein-protein interactions,” PLoS ONE, vol. 4, no. 11,
2009.

[80] A. Basit, “Identification of Anticancer Peptides Using Optimal Feature Space of Chou ’
s Split Amino Acid Composition and Support Vector Machine,” 2017.

[81] D. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely available
python package for chemoinformatics, bioinformatics, and chemogenomics studies,”
Journal of Chemical Information and Modeling, 2013.

[82] H. Ding, P. M. Feng, W. Chen, and H. Lin, “Identification of bacteriophage virion
proteins by the ANOVA feature selection and analysis,” Molecular BioSystems, vol. 10,
no. 8, pp. 2229–2235, 2014.

bibliography 88

[83] J. Dong, Z. J. Yao, L. Zhang, F. Luo, Q. Lin, A. P. Lu, A. F. Chen, and D. S. Cao,
“PyBioMed: a python library for various molecular representations of chemicals,
proteins and DNAs and their interactions,” Journal of Cheminformatics, 2018.

[84] S. A. Ong, H. H. Lin, Y. Z. Chen, Z. R. Li, and Z. Cao, “Efficacy of different protein
descriptors in predicting protein functional families,” BMC Bioinformatics, vol. 8, pp. 1–
14, 2007.

[85] D. S. Horne, “Prediction of protein helix content from an autocorrelation analysis of
sequence hydrophobicities,” Biopolymers, vol. 27, no. 3, pp. 451–477, 1988.

[86] Y. Liang, “Prediction of Protein Structural Class Based on Different Autocorrelation
Descriptors of Position – Specific Scoring Matrix,” vol. 73, pp. 765–784, 2015.

[87] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang, “Predicting
protein-protein interactions based only on sequences information,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4337–4341,
2007.

[88] Y.-C. Wang, X.-B. Wang, Z.-X. Yang, and N.-Y. Deng, “Prediction of Enzyme Subfamily
Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad
Feature,” Protein & Peptide Letters, vol. 17, no. 11, pp. 1441–1449, 2012.

[89] Y. C. Wang, Y. Wang, Z. X. Yang, and N. Y. Deng, “Support vector machine prediction
of enzyme function with conjoint triad feature and hierarchical context,” BMC Systems
Biology, vol. 5, no. SUPPL. 1, p. S6, 2011.

[90] K. C. Chou, “Prediction of protein subcellular locations by incorporating quasi-
sequence-order effect,” Biochemical and Biophysical Research Communications, vol. 278,
no. 2, pp. 477–483, 2000.

[91] W. A. Abbasi, F. U. Hassan, A. Yaseen, and F. U. A. A. Minhas, “ISLAND: In-Silico
Prediction of Proteins Binding Affinity Using Sequence Descriptors,” pp. 1–14, 2017.

[92] K. C. Chou, “Using amphiphilic pseudo amino acid composition to predict enzyme
subfamily classes,” Bioinformatics, vol. 21, no. 1, pp. 10–19, 2005.

[93] A. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for
antimicrobial peptides,” Bioinformatics (Oxford, England), vol. 33, no. 17, pp. 2753–2755,
2017.

[94] A. Pande, S. Patiyal, A. Lathwal, C. Arora, D. Kaur, A. Dhall, G. Mishra, H. Kaur,
N. Sharma, S. Jain, S. S. Usmani, P. Agrawal, R. Kumar, V. Kumar, and G. P. Raghava,
“Computing wide range of protein/peptide features from their sequence and structure,”
bioRxiv, p. 599126, 2019.

bibliography 89

[95] B. Panwar, S. Gupta, and G. P. Raghava, “Prediction of vitamin interacting residues
in a vitamin binding protein using evolutionary information,” BMC Bioinformatics,
vol. 14, no. 1, 2013.

[96] P. Agrawal, S. Bhalla, K. Chaudhary, R. Kumar, M. Sharma, and G. P. Raghava, “In
silico approach for prediction of antifungal peptides,” Frontiers in Microbiology, vol. 9,
no. FEB, pp. 1–13, 2018.

[97] H. B. Rao, F. Zhu, G. B. Yang, Z. R. Li, and Y. Z. Chen, “Update of PROFEAT: A web
server for computing structural and physicochemical features of proteins and peptides
from amino acid sequence,” Nucleic Acids Research, vol. 39, no. SUPPL. 2, pp. 385–390,
2011.

[98] D. Ofer and M. Linial, “ProFET: Feature engineering captures high-level protein
functions,” Bioinformatics, vol. 31, no. 21, pp. 3429–3436, 2015.

[99] R. Muhammod, S. Ahmed, D. Md Farid, S. Shatabda, A. Sharma, and A. Dehzangi,
“PyFeat: a Python-based effective feature generation tool for DNA, RNA and protein
sequences,” Bioinformatics, pp. 2–3, 2019.

[100] Z. Chen, P. Zhao, F. Li, A. Leier, T. T. Marquez-Lago, Y. Wang, G. I. Webb, A. I. Smith,
R. J. Daly, K. C. Chou, and J. Song, “IFeature: A Python package and web server for
features extraction and selection from protein and peptide sequences,” Bioinformatics,
2018.

[101] Z. Chen, P. Zhao, F. Li, T. T. Marquez-Lago, A. Leier, J. Revote, Y. Zhu, D. R. Powell,
T. Akutsu, G. I. Webb, K.-C. Chou, A. I. Smith, R. J. Daly, J. Li, and J. Song, “iLearn: an
integrated platform and meta-learner for feature engineering, machine-learning analy-
sis and modeling of DNA, RNA and protein sequence data,” Briefings in Bioinformatics,
vol. 00, no. January, pp. 1–11, 2019.

[102] H. B. Rao, F. Zhu, G. B. Yang, Z. R. Li, and Y. Z. Chen, “Update of PROFEAT: A web
server for computing structural and physicochemical features of proteins and peptides
from amino acid sequence,” Nucleic Acids Research, vol. 39, no. SUPPL. 2, pp. 385–390,
2011.

[103] S. Liu, L. Fan, J. Sun, X. Lao, and H. Zheng, “Computational resources and tools for
antimicrobial peptides,” Journal of Peptide Science, vol. 23, no. 1, pp. 4–12, 2017.

[104] S. Lata, N. K. Mishra, and G. P. S. Raghava, “AntiBP2: Improved version of antibacterial
peptide prediction,” BMC Bioinformatics, vol. 11, no. SUPPLL.1, pp. 1–7, 2010.

bibliography 90

[105] X. Xiao, P. Wang, W. Z. Lin, J. H. Jia, and K. C. Chou, “IAMP-2L: A two-level multi-label
classifier for identifying antimicrobial peptides and their functional types,” Analytical
Biochemistry, vol. 436, no. 2, pp. 168–177, 2013.

[106] F. H. Waghu, R. S. Barai, and S. Idicula-Thomas, “Leveraging family-specific signatures
for AMP discovery and high-throughput annotation,” Scientific Reports, vol. 6, pp. 1–7,
2016.

[107] P. K. Meher, T. K. Sahu, V. Saini, and A. R. Rao, “Predicting antimicrobial peptides
with improved accuracy by incorporating the compositional, physico-chemical and
structural features into Chou’s general PseAAC,” Scientific Reports, vol. 7, no. January,
pp. 1–12, 2017.

[108] D. Veltri, U. Kamath, and A. Shehu, “Deep learning improves antimicrobial peptide
recognition,” Bioinformatics, vol. 34, no. 16, pp. 2740–2747, 2018.

[109] A. C. Kaushik and D.-Q. Wei, “An Accurate Bioinformatics Tool For Anti-Cancer
Peptide Generation Through Deep Learning Omics,” bioRxiv, p. 654277, 2019.

[110] Y. Xu, S. Yu, J. W. Zou, G. Hu, N. A. Rahman, R. B. Othman, X. Tao, and M. Huang,
“Identification of peptide inhibitors of enveloped viruses using support vector machine,”
PLoS ONE, vol. 10, no. 12, pp. 1–15, 2015.

[111] A. Pande, S. Patiyal, A. Lathwal, C. Arora, D. Kaur, A. Dhall, G. Mishra, H. Kaur,
N. Sharma, S. Jain, S. S. Usmani, P. Agrawal, R. Kumar, V. Kumar, and G. P. Raghava,
“Computing wide range of protein/peptide features from their sequence and structure,”
bioRxiv, p. 599126, 2019.

[112] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg,
T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. De Hoon, “Biopython: Freely available
Python tools for computational molecular biology and bioinformatics,” Bioinformatics,
vol. 25, no. 11, pp. 1422–1423, 2009.

[113] S. C. M. Pereira, Building a database and development of a Machine Learning algorithm to
identify and characterize viral Fusion Peptides. Master dissertation, Minho University,
2019.

[114] D. Eisenberg, E. Schwarz, M. Komaromy, and R. Wall, “Analysis of membrane and
surface protein sequences with the hydrophobic moment plot,” Journal of Molecular
Biology, vol. 179, no. 1, pp. 125–142, 1984.

[115] K. Weise and J. Reed, “Fusion peptides and transmembrane domains of fusion proteins
are characterized by different but specific structural properties,” ChemBioChem, vol. 9,
no. 6, pp. 934–943, 2008.

bibliography 91

[116] H. Yao, M. W. Lee, A. J. Waring, G. C. Wong, and M. Hong, “Viral fusion protein
transmembrane domain adopts β-strand structure to facilitate membrane topological
changes for virus-cell fusion,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 112, no. 35, pp. 10926–10931, 2015.

[117] M. O. Dayoff, R. M. Schartz, and B. C. Orcutt, “A Model of Evolutionary Change in
Proteins,” ATLAS OF PROTEIN SEQUENCE AND STRUCTURE, pp. 345–352, 1978.

[118] A. Ashkenazi and Y. Shai, “Viral Fusion Peptides,” Handbook of Biologically Active
Peptides, no. chapter260, p. 1904, 2013.

	1 Introduction
	1.1 Motivation
	1.2 Objetives
	1.3 Structure of the text

	2 Membrane-active peptides
	2.1 Antimicrobial peptides
	2.1.1 Structure of antimicrobial peptides
	2.1.2 Mechanism of action of antimicrobial peptides

	2.2 Anticancer peptides
	2.2.1 Properties of anticancer peptides

	2.3 Viral fusion peptides
	2.3.1 Mechanisms of viral fusion proteins
	2.3.2 Biophysical properties of viral fusion peptides

	3 Machine Learning
	3.1 Unsupervised machine learning
	3.1.1 Dimensionality reduction - principal component analysis
	3.1.2 Clustering

	3.2 Supervised machine learning algorithms
	3.2.1 Hidden markov models
	3.2.2 K nearest neighbour
	3.2.3 Linear methods
	3.2.4 Naïve bayes
	3.2.5 Decision trees
	3.2.6 Kernel support vector machines methods
	3.2.7 Artificial neural networks and deep learning
	3.2.8 Ensembles

	3.3 Supervised machine learning workflow and key concepts
	3.3.1 Data preparation
	3.3.2 Model selection, training, evaluation and optimization
	3.3.3 Model application and prediction

	3.4 Relevant packages and tools

	4 Machine Learning applied to peptides
	4.1 Protein feature extraction
	4.1.1 Physicochemical descriptors
	4.1.2 Residue composition descriptors
	4.1.3 Autocorrelation based descriptors
	4.1.4 Composition, transition and distribution
	4.1.5 Conjoint triad descriptors
	4.1.6 Sequence order descriptors
	4.1.7 Pseudo aminoacid composition descriptors
	4.1.8 Base class peptide descriptors
	4.1.9 Binary profiles

	4.2 Relevant previous work on peptide classification
	4.2.1 Packages and tools for peptide classification
	4.2.2 Previous work on membrane-active peptides

	5 Development
	5.1 Development of the python package
	5.1.1 Read sequence module
	5.1.2 Descriptors module
	5.1.3 Preprocessing module
	5.1.4 Feature reduction module
	5.1.5 Feature selection module
	5.1.6 Clustering module
	5.1.7 Machine learning module
	5.1.8 Other functions

	5.2 Outcomes and discussion of the package developed

	6 Validation
	6.1 Antimicrobial peptides - AmPEP
	6.2 Anticancer peptides - MLACP

	7 Viral Fusion Peptide Case Study
	7.1 Methods
	7.1.1 Datasets for model construction
	7.1.2 Generation and selection of features
	7.1.3 Machine learning models: construction, optimization and evaluation
	7.1.4 Application to predict the location of peptide sequence

	7.2 Results and discussion
	7.2.1 Dataset 1
	7.2.2 Dataset2
	7.2.3 Dataset3

	8 Conclusion and prospects for future work

