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Abstract 

 

Invasive fungal infections caused by Candida are associated with high mortality and morbidity 

rates in hospitalized patients. Iron plays a major role in these infections, as they are exacerbated under 

iron overload conditions. In this context, it is important to understand the association between iron 

levels and invasive fungal infections, as it can serve as an indicator of the severity of the disease, and 

eventually it can help establish measures to improve treatment efficacy. 

Nowadays, manually inferring these associations from biomedical documents is a time-

consuming task, due to the high amount of available scientific text data. As such, these tasks naturally 

benefit from the Biomedical Text Mining field, which includes a wide variety of methods for automatic 

extraction of high-quality information from biomedical text documents. 

In this work, relevant documents related to iron overload and fungal infections were retrieved 

from PubMed to build a corpus. Then, both Named Entity Recognition and Relation Extraction 

processes were executed using the @Note text mining tool. Finally, relevant sentences were manually 

extracted and a curated dataset with documents containing those sentences was created. 

Since the number of publications obtained about Candida and iron overload was very low, the 

analysis was made taking into account all fungi. A total of 15 publications were considered relevant and 

168 relevant associations were extracted. 

Although associations of iron levels with both severity of infection and treatment efficacy were not 

extracted, it was possible to conclude that, in many cases, iron overload is a predictor for fungal 

infections, and patients’ iron levels highly affect treatment efficacy. 

The Biomedical Text Mining process described in the present thesis enabled the creation of a 

dataset of relevant biomedical publications containing interesting associations between fungal 

infections, drugs and associated diseases in a clinical context of iron overload, although in the future 

this process could be improved, especially regarding dictionaries, in order to obtain a higher number of 

relevant publications. 

 

Keywords: Biomedical text mining; Invasive fungal infections; Iron overload. 
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Resumo 

 

As infeções fúngicas invasivas causadas por Candida estão associadas a elevadas taxas de 

mortalidade e morbilidade em doentes hospitalizados. O ferro tem um papel importante neste tipo de 

infeções, visto que estas são exacerbadas em condições de excesso de ferro. Neste contexto, é 

extremamente importante compreender a associação entre os níveis de ferro e infeções fúngicas 

invasivas, pois pode servir como indicador da severidade da doença e, eventualmente, ajudar a 

estabelecer medidas para melhorar a eficácia de tratamento. 

Atualmente, inferir manualmente este tipo de associações de documentos biomédicos revela-se 

uma tarefa bastante demorada, devido ao elevado volume de dados de texto científico disponíveis. 

Como tal, estas tarefas beneficiam claramente da área da mineração de textos biomédicos, que inclui 

uma ampla variedade de métodos para extração de informação de alta qualidade de documentos de 

texto biomédicos. 

No presente trabalho, foram identificados, inicialmente, documentos relevantes que associam o 

ferro com infeções fúngicas invasivas para construir um corpus. De seguida, os processos de 

Reconhecimento de entidades nomeadas e Extração de relações foram realizados usando a ferramenta 

de mineração de textos @Note. Finalmente, as frases mais relevantes foram extraídas e foi criado um 

corpus curado de documentos contendo essas mesmas frases. 

Visto que o número de publicações obtidas relacionadas com Candida e excesso de ferro foi 

muito baixo, a análise foi feita tendo em conta todos os fungos. Um total de 15 publicações foram 

consideradas relevantes e 168 associações foram extraídas. 

Embora não tivesse sido possível extrair associações entre níveis de ferro e a eficácia do 

tratamento/severidade da infeção, foi possível concluir que o excesso de ferro prevê o surgimento de 

infeções fúngicas em muitos casos, e que os níveis de ferro dos pacientes afetam fortemente a eficácia 

do tratamento. 

O processo de mineração de textos biomédicos no presente trabalho possibilitou a criação de um 

corpus de publicações biomédicas relevantes contendo associações interessantes entre infeções 

fúngicas, fármacos e doenças associadas, no contexto clínico de excesso de ferro, embora este 

processo pudesse ser melhorado no futuro, especialmente no que diz respeito aos dicionários, para 

que seja possível a obtenção de um maior número de publicações relevantes. 
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1. Introduction 

 

1.1. Context and motivation 

 

Invasive fungal infections (IFIs) caused by the yeast Candida, also named invasive candidiasis, 

represent the most common fungal disease among hospitalized patients receiving immunosuppressive 

or intensive antibacterial therapies, and are associated with high morbidity and mortality rates. Among 

hospital-acquired (nosocomial) infections, Candida species represent the tenth most frequent pathogen 

in Europe, while in the United States, invasive candidiasis is the fourth leading cause of nosocomial 

bloodstream infections [1, 2]. Iron has been reported to play a major role in fungal infections, as it is an 

essential element for all fungal pathogens and the infection is exacerbated under iron overload 

conditions [3, 4]. Thus, patients in a medical context of iron-loading might eventually experience disease 

relapse, which has significant clinical implications. Therefore, it is of utmost importance to better 

understand the associations between iron levels in patients with IFIs and both treatment efficacy and 

severity of infection. 

However, manually inferring these associations from biomedical documents is nearly impossible, 

since there are tens of thousands of text documents related to fungal infections in PubMed. Therefore, 

tasks such as correlating data or extracting relationships from text documents benefit from Text Mining 

automatic methods, which highly increase their speed and efficiency. Biomedical Text Mining (BioTM), a 

Text Mining subfield, has gained significant attention in the scientific community in recent years, since it 

helps researchers to deal with large amounts of textual data through the creation of tools for extraction 

of high-quality information in an automated and efficient way [5]. 

The task of recognizing and extracting biomedical terms (bio-entities) from biomedical documents 

is known as Named Entity Recognition (NER), which includes different approaches such as rule-based, 

dictionary-based tagging and Machine Learning (ML) based approaches [6-8]. Relation Extraction (RE) is 

a task that aims to extract bio-events, i.e. relations between bio-entities, and includes, among others, 

co-occurrence-based, syntactic-based and ML-based approaches [9-11].  
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1.2. Objectives 

 

The present work aims to generate and extract relevant knowledge from a set of textual 

documents that can show associations between iron levels in patients with IFIs and treatment efficacy 

or severity of infection.  

In detail, the main scientific and technological objectives are: 

• review the state of the art regarding IFIs and their associations with iron, as well as relevant 

BioTM topics and software tools; 

• explore available BioTM tools in the host group which may be used in the project; 

• identify documents related with IFIs caused by Candida, or fungi in general, in the context of 

iron overload, creating a corpus that will be the core of the project; 

• annotate the documents using available NER and co-occurrence based RE tools; 

• extract from the corpus relevant sentences containing the most relevant annotations and 

curate these results to create a curated dataset.  

 

 

1.3. Thesis structure 

 

This thesis is divided into 5 chapters, which comprises the present introduction, followed by the 

state of the art, methods, results and discussion, and conclusions and future work. 

The State-of-the-Art chapter includes two main topics: Invasive Fungal Infections and Biomedical 

Text Mining. The former consists of an overview of Invasive Fungal Infections caused by Candida and 

their relationship with iron, while in the latter, methods and tools of Information Retrieval and 

Information Extraction are presented. Named Entity Recognition and Relation Extraction approaches are 

then described in more detail for application in the present work. 

In the Methods chapter, the BioTM pipeline used to obtain a relevant set of publications is 

described, as well as the tools used throughout this work. 
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The Results and Discussion chapter includes the outcomes regarding the publications retrieved 

from PubMed, the annotation process, the extraction of relevant associations and the relevant 

documents obtained, as well as their discussion. 

The final chapter comprises conclusions about the BioTM process used and the publications 

obtained in this work, as well as future work considerations.   
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2. State of the Art 

 

2.1. Invasive Fungal Infections 

 

Fungal infections can be caused by primary or opportunistic pathogens. Primary pathogens are 

naturally able to establish an infection in healthy hosts and are often associated with superficial and 

cutaneous infections affecting skin, hair and nails. Differently, opportunistic pathogens do not usually 

infect healthy hosts. Instead, they take advantage of certain situations in the host, such as a weakened 

immune system, an altered microbiota, or a break in protective barriers, causing mucosal infections 

and invasive fungal infections (IFIs) [12]. In IFIs, fungal pathogens reach the host bloodstream and can 

colonize any major organ of the human body. These infections can cause symptoms ranging from a 

simple fever to a septic shock and are associated with an elevated mortality rate (at least 1.5 million 

deaths worldwide each year) [12]. 

Invasive candidiasis is an IFI caused by opportunistic pathogens belonging to the genus Candida 

and is the most common fungal disease among hospitalized patients receiving immunosuppressive or 

intensive antibacterial therapies. In Europe, Candida species occupy a noticeable tenth position in the 

rank of the most frequent pathogens causing nosocomial infections [1]. In the United States, 

concerning hospital acquired bloodstream infections (BSIs), Candida species rank in the fourth position, 

being the deadliest pathogens of all [2]. 

Nosocomial BSIs caused by Candida, also known as candidemia, are the most common form of 

invasive candidiasis and a serious problem in Intensive Care Units (ICUs) [13]. It was shown, in a 

recent study involving several countries and patients with nosocomial BSIs admitted to ICU, that a 

significant percentage of those infections were of fungal origin, with Candida albicans being the most 

frequent species followed by Candida glabrata and Candida parapsilosis [14]. 

Candidemia is linked to both high mortality rates and hospitalization costs [15]. Additionally, 

there is an alarming proportion of patients with candidemia who receive inadequate antifungal therapy. 

Studies have been reporting that some patients receive incomplete therapy or no therapy at all [15], 

and, in other cases, the administration of antifungal therapy is delayed due to a failure in recognizing at-

risk patients, which further increases the length of hospital stay as well as hospitalization costs [16]. 
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Although much research has been made in order to develop new therapeutic agents to treat 

invasive candidiasis, currently available drugs belong to four molecule classes: fluoropyrimidines, 

polyenes, azoles, and echinocandins, with the last ones being the most recent and the preferred drugs 

for the treatment of invasive candidiasis [17]. 

Iron (Fe) is an essential nutrient for several cellular metabolic processes and its presence can 

play an important role in the human immune response. During infection, mechanisms of defence are 

activated in the host to prevent pathogens from accessing essential nutrients, such as Fe. Host 

responses for Fe-withhold, such as mechanisms for controlling host Fe metabolism that decrease free 

ionic Fe levels in tissue fluids, can decrease microbes’ pathogenicity [3]. 

One of those mechanisms involves the expression Fe-binding proteins, such as transferrin and 

lactoferrin, which maintain a low-Fe environment by binding to Fe and decreasing its availability to 

extracellular microbes [4]. These proteins have high affinity for ferric iron, and are only 30–40% 

saturated under normal conditions, whereas in patients with Fe-overload complications, the level of 

saturation of serum transferrin with iron is abnormally high [4]. In addition, free iron can also be stored 

intracellularly in ferritin, a multimeric protein that is able to convert ferrous Fe into ferric Fe through its 

ferroxidase activity. This mechanism of Fe storage by ferritin also confers host protection against 

infections [3]. 

Contrarily, the shutdown of those defence mechanisms caused by freely available Fe can lead to 

rapid fungal growth infections in tissue fluids, which exacerbates the infection [4]. Accordingly, Fe-

overload conditions are associated with poor clinical outcomes in many infectious diseases [3].  

Several health conditions contribute to an increase in the levels of Fe during infection, including 

cancer, haemochromatosis and hepatic disease [4]. A study has shown that patients suffering from 

acute leukaemia, which is often accompanied by iron overload, were susceptible to infection caused by 

Candida albicans [19]. Additionally, it has been reported that two high-affinity iron permease genes are 

essential virulence factors in C. albicans [20]. Together, these findings support the fact that availability 

of iron plays an important role in fungal infections. Therefore, understanding the effect of iron levels in 

patients with IFIs is critical, since it has important implications in disease severity and may affect 

treatment efficacy. 

Manually inferring these associations from biomedical documents, such as publications, 

dissertations and clinical trials, can be a time-consuming task due to the high amount of available data. 

For instance, a recent PubMed search for abstracts that contain the words “fungal infection” returned a 
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dataset of more than 140 thousand documents, and a more narrowed search for abstracts mentioning 

“iron overload” returned more than 18 thousand documents. Any attempts to correlate data or extract 

relationships across documents are almost impossible to achieve due to the large number of resulting 

documents. As such, those tasks naturally benefit from Biomedical Text Mining (BioTM) automatic 

methods, which increase their speed and efficiency. 

 

 

2.2. Biomedical Text Mining 

 

The amount of textual data that is created every day is continuously growing, and the vast 

majority of it is written in natural language, an unstructured format which computers cannot simply 

process and understand as humans can [21]. As a result, the recent field of Text Mining has emerged, 

concerning automated processing and analysis of text, which allows the extraction of meaningful 

information from free text. 

In the biomedical fields, specialized literature is growing at an increasing rate, with PubMed 

database, for instance, having around 40 thousand new records added each month [22]. This text 

information overload creates a challenge for researchers to retrieve relevant publications from literature 

databases and extract relevant information from those publications. Thus, BioTM, a Text Mining 

subfield, has gained significant attention in the scientific community, since it allows researchers to deal 

with large amounts of text data by applying tools for extraction of high-quality information in an 

automated and efficient way [5]. 

Text Mining includes a variety of methods and algorithms for text analysis that are often related to 

distinct fields, such as Natural Language Processing (NLP), data mining, statistics and ML. A typical 

BioTM analysis involves many distinct steps (Figure 1), which are described in more detail in the 

following sections. 
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Figure 1 – Overview of a typical BioTM workflow. Firstly, Information Retrieval is used to get relevant documents 

on a given subject of interest from literature sources. The documents are then used for Named Entity 

Recognition. Lastly, Relation Extraction task detects relationships between relevant bio-entities (adapted from 

[23]). 

 

 

2.2.1. Information Retrieval 

 

The first step in BioTM is Information Retrieval (IR), which concerns the retrieval of relevant 

documents from a collection of datasets, usually a database, on a given subject of interest [23]. IR 

mostly focuses on making text information easily accessible for the user rather than analysing it and 

does not involve text processing or transformation. This process is often done by querying a set of 

keywords in a database, such as MEDLINE [23]. MEDLINE is a bibliographic database that contains 

more than 25 million references to journal articles in the life sciences. A distinctive feature of MEDLINE 

is that its records are indexed with National Library of Medicine's Medical Subject Headings (MeSH) 

[24]. MeSH terms consist of a comprehensive controlled vocabulary with the purpose of facilitating 

searching at various levels of specificity. 

As the majority of text mining processes aims at discovering patterns across large document 

collections, an important element in any text mining process is the creation of a document collection, 

often named as a corpus, which consists of a group of text documents and can range from thousands 

to millions of documents [22]. PubMed, which gives free access to more than 30 million scientific 

literature citations from the MEDLINE database, life science journals, and online books [25], is an 

example of a large document collection containing abstracts in text format for biomedical literature [22]. 
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PubMed represents the most comprehensive online collection of scientific abstracts, being the most 

used repository by biomedical researchers [23]. 

Besides scientific literature, other relevant text resources for biomedical research include patents, 

clinical trial records, medical records, biomedical related blogs and websites [26-29]. There are several 

available BioTM tools for IR in the biomedical domain (Table 1). Notably, several IR applications are 

built on the PubMed repository, mainly because it is open access and provides annotated abstracts with 

MeSH terms [23]. 

 

Table 1 – Overview of different IR tools for the biomedical domain. 

Name Description 

askMEDLINE [30] Natural language search tool for MEDLINE/PubMed citations 

HelioBLAST [31] 
Similarity engine that retrieves MEDLINE text records and ranks them 

according to their similarity to the submitted query 

Medline Ranker [32] 
Search tool that ranks MEDLINE abstracts based on a submitted biomedical 

topic 

MiSearch [33] Search tool that ranks retrieved citations from PubMed 

GeneView [34] 

Search engine built upon a comprehensively annotated version of PubMed 

abstracts and PubMed Central free full texts, which enables, for instance, 

searching for entities using unique database identifiers or ranking 

documents by the number of specific mentions they contain 

PICO [35] Search tool for MEDLINE/PubMed clinical trials  

PubCrawler [36] 
Lists new daily entries for MEDLINE/PubMed and GenBank that match 

specific search parameters 

PubFocus [37] 

Analyses MEDLINE/PubMed search queries and provides statistical 

information on publication trends, publishing journals and most prolific 

authors 

PubMatrix [38] 

Multiplex comparison tool that allows literature mining of PubMed using any 

two lists of terms, resulting in a frequency matrix of document hits based on 

term co-occurrence 
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PubNet [39] 

Maps publications into networks according to how related they are to each 

other based on at least one PubMed query, allowing for graphical 

visualization, textual navigation and topological analysis 

@Note [40] 
BioTM platform with a wide set of methodologies for IR and IE from 

biomedical literature. 

 

After the IR process, the resulting corpus can be analysed by search algorithms to extract 

relevant information such as occurrence of specific keywords of interest and relations between them. 

 

 

2.2.2. Information Extraction 

 

Information Extraction (IE) is the task of automatically extracting structured information or facts 

from unstructured or semi-structured texts [41, 42], being one of the main steps in text mining.  

In the biomedical domain, most of the biomedical literature and clinical information is written in 

an unstructured text format. As such, IE is usually considered as a pre-processing step for many other 

BioTM tasks such as question answering, knowledge extraction, hypothesis generation and 

summarization [43-46]. 

Usually, document collections need to be transformed into a structured format to be analysed by 

IE systems. Since information in biomedical literature is written in natural language documents, which 

is an unstructured format, pre-processing techniques are required to transform it into a structured 

machine-readable format. To achieve this, NLP methodologies concerning the analysis and 

representation of natural texts are used in BioTM processes [22]. 

NLP methodologies include sentence splitting (splitting a raw text into sentences by detecting 

punctuation, word capitalization and breaks in the text), tokenization (splitting a raw text into tokens, 

i.e., alphanumeric words), filtering (removing words that appear frequently, with no significant 

relevance, such as stop words), lemmatization (extracting the lemma/canonical form of each word in 

the raw text), stemming (similar to lemmatization but ignoring the context of the word in the text, 

performing only a removal of commoner morphological and inflectional endings from words), part-of-
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speech (POS) tagging (categorizing each token by their word class, such as noun, verb, adjective, etc.), 

chunking (generating tree structures according to the sentence token positions that are named with 

chunk tags, where each tag represents the noun phrase to which they belong) and dependency parsing 

(identifying grammatical relationships, such as the relation between subject/indirect object tokens and 

verb tokens) [21]. 

 

 

Named Entity Recognition 

In the BioTM domain, NER is an IE task that is used to identify biomedical entities in a corpus 

and classify them into different categories, such as proteins, genes or diseases [47]. Over the years, 

many biomedical entity and event extraction approaches have been proposed [48-50]. Nevertheless, 

the automatic extraction of biomedical entities with high accuracy from natural text remains a 

challenging task. The large number of related entities due to the progress in biomedical literature poses 

a challenge to NER systems as they are usually dependent on dictionaries of biological terms, which are 

often incomplete due to the continuous increase on the number of biomedical terms. Another challenge 

for NER in biomedical literature is the fact that a given biomedical concept may have more than one 

synonym, which makes NER systems not being able to recognise the same concept when represented 

in different forms. The use of acronyms and abbreviations is also an issue to NER systems which often 

fail to correctly identify biomedical concepts expressed in those forms [21]. 

Considering the above-mentioned challenges, it is crucial that NER systems have a high 

performance when analysing large amounts of text. To evaluate NER systems’ performance, metrics 

such as precision, recall and F-score are frequently used.  

NER techniques can be divided into three main types of approaches: rule-based, dictionary-based 

and ML-based approaches. 

In rule-based approaches, regular expression patterns are used to identify bio-entities in text. The 

patterns must be adapted according to the biomedical context [6]. 

Dictionary-based tagging approaches involve the use of curated dictionaries containing 

biomedical terms. The dictionary terms are matched to the text and each matched token is annotated 

with the biological class according to the dictionary term. Multiple dictionaries can be used 

simultaneously to allow a wider scope. The use of this type of approaches may eventually lead to an 
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ambiguity issue caused by the presence of different words with the same spelling but with distinct 

meanings, which can only be overcome with manual curation [7]. 

ML-based approaches for NER can be supervised or semi-supervised, and involve the training of 

mathematical models on an annotated corpus that is representative of the real-life dataset, which are 

then used for bio-entity prediction in an unannotated dataset [8]. Some examples of ML approaches for 

NER in biomedical texts include chemical entities identification, organism name identification, and 

extraction of cancer stage information from health records [51-53]. 

ML approaches include classification-based and sequence-based methods. In classification 

methods, NER is viewed as a classification problem, and classifiers such as Naive Bayes and Support 

Vector Machines are widely used [54, 55]. On the other hand, in sequence methods, the complete 

sequence of words is used to predict the most likely tag for a sequence of words, and Hidden Markov 

Models, Maximum Entropy Markov Models and Conditional Random Fields are the most commonly 

used approaches [56-58]. 

There are several available tools for NER tasks. Table 2 provides an overview of different NER 

systems, as well as their main functionalities. 

 

Table 2 – Overview of different NER tools for the biomedical domain. 

Name Description 

GeneValorization [59] 

Provides bibliographic overviews in the form of a matrix containing the 

number of publications with co-occurrences of gene names and keywords 

defining a context of study 

Anne O’Tate [60] 

Gives an overview of the set of articles retrieved by a PubMed query and 

displays them according to various categories such as important words, 

phrases or MeSH pairs found in titles or abstracts 

MEDIE [61] Semantic search tool that retrieves biomedical correlations from MEDLINE 

PubReMiner [62] 
Displays the results of a PubMed query into frequency tables, which can be 

added/excluded from the query to optimize the results 

Reflect [63] 
Tags gene, protein, and small molecules in any web page by querying a 

URL 
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Whatizit [64] 
Text processing system that identifies molecular biology terms and links 

them to publicly available databases 

LINNAEUS [65] 
An open source, stand-alone software system for recognition and 

normalization of species mentions, using a dictionary-based approach 

Neji [66] 
An open source framework optimized for biomedical NER using dictionary, 

rule and ML-based methods, with integrated NLP modules 

GNAT [67] 

A library and web service for gene NER and normalization in biomedical 

articles; mentions of genes and proteins in the articles are linked to Entrez 

Gene identifiers 

ABNER [68] 
An open source software tool for molecular biology NER, using a ML system 

for automatic tagging of genes, proteins and other bio-entities 

Génie [69] 

Takes a biological topic related to a gene function as input, evaluates 

MEDLINE for relevance to that subject, and then ranks all the genes of a 

requested organism according to the relevance of their MEDLINE records. 

BeFree [70] 
Text mining tool that contains a module for NER based on dictionary 

methods to find and uniquely identify bio-entity mentions in the literature 

 

 

Relation Extraction 

In the biomedical domain, RE concerns the recognition and extraction of bio-events and 

relationships among biomedical entities, in text documents. For instance, the identification of the verb 

“enhance” plus a gene entity allows the extraction of a gene expression enhancement event, while 

gene–disease associations and interactions between proteins are other examples of biomedical 

relationships. The associations are often between two entities, although they can include more than two 

entities. The vast majority of existing RE methods focus on extracting events and relationships within a 

sentence, although there are cases where a given relationship may span across more than one 

sentence [21]. RE approaches include co-occurrence-based, syntactic-based and ML-based methods 

[71]. Generally, ensembles of different techniques are much more effective than using just a single 

technique for RE tasks [72]. 
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In syntactic-based approaches, relationships between entities are identified by applying syntactic 

rules to each sentence in the text [10]. These methods are phrase based and are able to detect triples 

in text. In contrast to co-occurrence methods, they provide information about the type of relationship 

between two entities and usually have a higher precision than co-occurrence methods [23]. 

ML-based approaches are frequently used for RE. Like ML methods for NER, they also require 

the creation of high-quality annotated data for training and assessing the performance of RE systems 

[21]. Common ML approaches include feature-based and kernel-based methods [11]. 

In feature-based methods, for each pair of entity mentions, a set of features is generated and a 

classifier (or an ensemble of classifiers) is then trained to classify any new relation instance. Some 

important features are word-based features, phrase chunking-based features and semantic-based 

features [11]. 

In kernel-based methods, kernel functions are created to compute similarities between 

representations of two relation instances. Several kernel-based RE systems have different 

representations for relation instances, such as sequences, syntactic trees, dependency trees, 

dependency graph paths, and composite kernels that combine individual kernels [11]. Several tools for 

distinct RE tasks are available with various functionalities (Table 3). 

 

Table 3 – Overview of different RE tools for the biomedical domain. 

Name Description 

Quertle [73] 

Allows a semantic search in multiple biomedical databases and runs a 

query via relationships between concepts, enabling retrieval of more 

pertinent results and navigation by key concepts 

Chilibot [74] 
Identifies relationships between genes, proteins or any keywords queried by 

the user by mining PubMed, and displays them as a graph 

Coremine Medical™ 

[75] 

Presents results about health, medicine and biology in a dashboard format 

comprised of panels containing various categories of information ranging 

from introductory sources to the latest scientific articles 

FACTA+ [76] 
Text search engine that finds and allows visualization of indirect 

associations between biomedical concepts from MEDLINE abstracts 
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STRING [77] 

Database of known and predicted protein-protein interactions by collecting, 

scoring and integrating all publicly available sources of protein-protein 

interaction information 

PPInterFinder [78] 
Extracts human protein–protein interactions from MEDLINE abstracts using 

relation keyword co-occurrences with protein names 

CoCiter [79] 

Analyses gene–gene, gene–term or term–term associations by evaluating 

the co-citation significance of a gene set with any other user defined gene 

sets, or to any free terms, and by accessing NCBI Gene and MEDLINE  

LAITOR [80] 

Text mining software that finds co-occurrence of biological entities 

(gene/protein terms) together with bio-interactions and concept terms from 

customized dictionaries 

BeFree [81] 

Identifies relationships between bio-entities by their co-occurrence in 

sentences, which then are processed by a RE module based on Support 

Vector Machines to predict the correct associations 

EventMine [82] 
A ML-based system that extracts events from documents that already 

contain named entity annotations, such as genes and proteins 

@Note [40] 
Uses co-occurrence and semantic rules to extract relationships between bio-

entities 

 

 

2.2.3. Biomedical Text Mining Applications 

 

The vast majority of BioTM approaches to date has focused on extracting information regarding 

molecular processes and diseases, such as protein–protein interactions [83, 84], gene–gene 

relationships [85], phosphorylation events [86], metabolic and signalling pathways [87, 88], protein–

compound interactions [89], gene–disease associations [90, 91], gene–protein interactions [92], 

associations between genetic markers and diseases [93], and drug-related knowledge that includes the 

discovery of novel drug targets, drug-–side effects, drug–drug interactions, drug–disease and drug–

indications interactions [94]. A great amount of BioTM approaches concerns the molecular oncology 
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area, although other areas include cardiovascular diseases, synapse biology and brain disease-

associated genes, retinal diseases, and asthma candidate genes, among others [95]. 

While most existing BioTM approaches aim to extract information related to biological processes 

from scientific publications, some efforts have also been made in extracting relevant medical 

information from clinical records, such as temporal relations, status, assertion/risk and co-morbidities 

[96]. Many clinically-oriented challenge tasks have been introduced in the last decade, which consisted 

on, for instance, recognizing clinical concepts such as medical problems, tests, treatments, medication 

and dosage [97, 98], detecting temporal elations [99], determining smoking status [100], predicting 

obesity and its co-morbidities [101], and predicting heart disease risks [102]. 

Some BioTM tools have also been developed with the purpose of extraction of clinical information 

[103]. Table 4 provides an overview of the most widely used tools in the clinical context. 

Regardless of the work done in BioTM in both biological and clinical contexts, further study 

regarding medical entities recognition is required as this is essential to link molecular and medical 

observations, and thus improving the association between laboratory research and clinical applications 

described in the literature. 

 

Table 4 – Overview of different BioTM tools for the clinical context. 

Name Description 

cTakes [104] 
Open-source NLP system based on UIMA framework for extraction of 

information from electronic health records unstructured clinical text 

MetaMap [105] 
National Institutes of Health (NIH)-developed NLP tool that maps biomedical 

text to UMLS concepts 

MedLEE [106] 
NLP system that extracts, structures, and encodes clinical information from 

narrative clinical notes 

KMCI [107] 
NLP system that identifies biomedical concepts and maps them to UMLS 

concepts 

HITEx [108] 
Open-source NLP tool based on the GATE framework for various tasks such 

as principal diagnoses extraction and smoking status extraction 
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MedEx [109] 
NLP tool used to recognize drug names, dose, route, and frequency from 

free-text clinical records 

MedXN [110] 
A tool to extract comprehensive medication information from clinical 

narratives and normalize it to RxNorm 

MedTime [111] 
A tool to extract temporal information from clinical narratives and normalize 

it to the TIMEX3 standard 

MedTagger [112] 

Open-source NLP pipeline based on UIMA framework for indexing based on 

dictionaries, information extraction, and machine learning–based named 

entity recognition from clinical text 
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3. Methods 

 

3.1. Pipeline 

 

In order to extract relevant associations between iron overload and IFIs from biomedical 

literature, a BioTM pipeline was created. The essential steps involved in this pipeline are depicted in 

Figure 2.  

In the IR step, documents related with Candida in the context of iron overload were retrieved from 

PubMed to create a corpus that will be the core of the project. Initially, a PubMed search with the 

keyword “candida” was done, to obtain all publications related to Candida. However, the number of 

publications related to both Candida and iron overload was expected to be very low, since a PubMed 

search was previously done using the keywords “candida” and “iron overload”, which only returned 17 

publications. Therefore, a second analysis was undertaken, including every fungal organism instead of 

being limited to Candida species, to create a second corpus using the term “iron overload” to query 

PubMed publications related to iron overload. 

Next, in the NER step, the abstracts of the publications from both corpora were annotated using 

different dictionaries. In a first phase, the goal was to obtain every publication mentioning iron overload 

and Candida, or iron overload and any fungal organism. To achieve that, four dictionaries were used to 

generate the annotations: one to identify organisms in general (“all-organisms” dictionary), two to 

identify fungal organisms (“only-fungi” and “mycobank” dictionaries) and one to identify iron terms 

(“iron-terms” dictionary). 

The “all-organisms” dictionary was created based on the file available on NCBI Taxonomy [113] 

containing over 2 million entries for taxa names. The “only-fungi” dictionary contains all NCBI taxonomy 

fungi taxa names for the fungi subtree, obtained upon searching for fungi on NCBI Taxonomy [114]. 

Since the NCBI taxonomy database is not an authoritative source for nomenclature or classification, as 

stated in the disclaimer on its web page, another dictionary, was used to annotate terms related to 

fungal organisms. The “mycobank” dictionary is based on the MycoBank database [115] which 

contains the nomenclature for all fungal taxa and includes over 500 thousand entries. The “iron-terms” 

dictionary is a small dictionary with only nine entries that includes two classes, one for iron and other 

for iron overload terms, based on MeSH terms for iron and iron overload [116]. 
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Figure 2 – Overview of the pipeline used in the present work. Firstly, all publications on Candida and iron 

overload are retrieved from PubMed. Both corpora are then annotated by NER using dictionaries to annotate iron 

overload and Candida/fungi bio-entities. Only the documents containing annotations for both iron overload and 

fungi are selected for a second annotation step, this time using dictionaries of drugs and diseases. Lastly, RE is 

used to detect relationships between annotated bio-entities, and a dataset of documents containing the most 

relevant associations related to fungi, iron overload, and drugs or diseases is obtained.  
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The Candida corpus was annotated with two different organism related dictionaries: the “all-

organisms” and the “only-fungi” dictionaries. The iron overload corpus was annotated with the 

“mycobank” dictionary and with the “only-fungi” dictionary. In addition, both corpora were annotated 

with the “iron-terms” dictionary. Next, four sub-corpora were created based on the previous annotated 

corpus: from the Candida corpus, two sub-corpora resulted – a corpus with all NCBI organisms + iron 

terms annotations, and a corpus with only fungal organisms + iron terms annotations; from the iron 

overload corpus, two sub-corpora resulted – a corpus with fugal organisms + iron terms annotations, 

and a corpus with mycobank fungal organisms + iron terms annotations. Since the Candida sub-

corpora resulted in a small number of publications that can easily be manually curated, only the iron 

overload sub-corpora were analysed and curated using the next steps of the BioTM pipeline. 

In the second phase of NER analysis, full texts were used, when available, instead of the 

publication abstracts. To extract bio-entities of interest from iron overload sub-corpora, lexical resources 

for drugs, diseases, treatment, outcome and human terms were used, in addition to the “iron-terms”, 

“only-fungi” and “all-organisms” dictionaries. The “drugs” dictionary was created based on the 

DrugBank vocabulary dataset available on DrugBank [117] which includes DrugBank identifiers, names, 

and synonyms for all drugs. The “diseases” ontology was based on Disease Ontology file available on 

Disease Ontology’s GitHub repository [118], which is a standardized ontology that provides medical 

vocabulary for human disease concepts [119]. The “treatment” and “outcome” lookup tables were 

based on the synonyms for the “therapeutics” and “treatment outcome” MeSH categories, respectively 

[116]. Finally, the “human” lookup table contains synonyms for the word “human”. 

After the annotation process of the iron overload sub-corpora, relevant associations between 

annotated bio-entities were extracted. A RE method based on co-occurrence was used, in which every 

pair of annotated bio-entities that occurred in the same sentence were annotated as a possible 

relationship. 

In the manual curation step, the relevance of each extracted relationship was analysed, to select 

the most interesting sentences with evidence regarding the scope of the present work. Relevant 

relationships include associations between iron levels of a patient, the severity of infection and 

treatment efficacy of a fungal infection. In addition to those, the following associations were also 

investigated: associations between iron and fungus/fungal infection, in order to find which fungal 

organisms may cause IFIs in the context of iron overload; associations between iron and disease, in 

order to find which diseases, associated with iron overload, could be risk factors for IFIs; and 
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associations between fungus/fungal infection and drug, in order to assess existent drugs to treat a 

given fungal infection. 

Finally, a curated dataset of publications containing the aforementioned associations was 

obtained. In this step, only documents containing relevant relationships were considered, and of those, 

only publications referring to clinical cases were considered relevant. 

 

 

3.2. Tools 

 

3.2.1. @Note 

 

The tool used for the BioTM process in the present work was @Note [120], which is a BioTM 

platform with a wide set of methodologies for both Information Retrieval and Information Extraction 

tasks. This tool provides an end-user application, which includes interfaces for IR and IE tasks, and for 

the creation of lexical resources such as dictionaries, ontologies and lookup tables. The IR interface 

allows for querying specific databases, such as PubMed, managing and updating query results, 

downloading relevant documents, converting PDF to text, assigning relevance and managing corpora. 

The IE interface includes NER and RE tasks, both with several methods available. 

The PubMed searches to retrieve Candida and iron overload related publications were made 

using the Publication Manager plug-in. The Publication Manager view includes the date, query details, 

the number of publications and available abstracts for each search. 

The Lexical Resources plug-in, which allows for the management of different types of lexical 

resources, such as dictionaries, lookup tables and ontologies, was used to create the resources that 

were used later in the annotation process. To create the “only-fungi”, “mycobank” and “iron-terms” 

dictionaries, the option Dictionaries was used and csv files with their respective terms were imported. 

Both “all-organisms” and “drugs” dictionaries were imported using the native loaders for NCBI 

Taxonomy and DrugBank files, respectively. The Ontologies option was used to import the “diseases” 

ontology file. Finally, the “treatment”, “outcome” and “human” lookup tables were created using the 

Lookup Tables option. 
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The corpora obtained from the different PubMed searches were then annotated with the different 

lexical resources using the NER Lexical Resources Tagger, with case-insensitive and no pre-processing. 

After the NER process, relationships between pairs of annotated bio-entities were extracted using 

the RE Rel@tion Co-occurrence Extraction process. The Mix Entity Pairs Sentence model was selected, 

which allows for the extraction of relations between all combinations of entity pairs in a given sentence. 

The obtained relationships were then exported in csv format for manual curation. For each 

relationship, the csv file included information about its @note internal annotation ID, the PubMed ID of 

the publication from which it was extracted, co-occurring bio-entities, the start offset of the sentence 

from which it was extracted and the sentence itself. 

@Note has an associated relational database, in which all the information about PubMed queries, 

created corpora, lexical resources, and NER and RE processes are stored (Figure 3). 

 

Figure 3 – Tables from @Note associated relational database used in the present work (highlighted in orange) 

(adapted from http://anote-project.org/wiki/images/3/38/Database.png). 

 

http://anote-project.org/wiki/images/3/38/Database.png
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3.2.2. Queries 

 

During the BioTM process, SQL queries were done to easily access the information contained in 

the database created by @Note1. Regarding the Candida corpus, the following questions were 

answered: 

• how many publications contained Candida annotations, with both dictionaries for organisms; 

• how many annotations for each dictionary there were in total; 

• how many Candida annotations there were in total; 

• how many publications contained iron overload annotations; 

• how many publications contained iron overload and Candida annotations (with both 

dictionaries) simultaneously; 

• which publications contained iron overload and Candida annotations, simultaneously. 

Regarding the iron overload corpus, the following questions were answered: 

• how many annotations for each dictionary class there were in total; 

• how many publications contained iron overload and fungus annotations (with both dictionaries 

for fungi) simultaneously; 

• which publications contained iron overload and fungus annotations simultaneously. 

Finally, regarding the second step of NER, the following questions were answered: 

• how many annotations for each lexical resource there were in total; 

• which terms were the most frequently annotated with each lexical resource. 

  

 
1 All the resources used in the present work, such as lexical resources, database file, queries done to the database, as well as the resulting 
corpora, NER annotations and extracted relationships are available at https://drive.google.com/drive/folders/1wxat7XaGxuAT-
3zlKXumrnWnOj06-bw-?usp=sharing 

https://drive.google.com/drive/folders/1wxat7XaGxuAT-3zlKXumrnWnOj06-bw-?usp=sharing
https://drive.google.com/drive/folders/1wxat7XaGxuAT-3zlKXumrnWnOj06-bw-?usp=sharing
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4. Results and Discussion 

 

4.1. Corpora Retrieval and Annotation 

 

PubMed search for Candida resulted in 60421 documents, with 60418 of them having available 

abstracts. PubMed search for iron overload retrieved 13077 documents, all of them with available 

abstracts2. 

After the first step of NER, it was observed that only 59726 out of the 60418 abstracts retrieved 

from the PubMed search for Candida contained annotations when annotated with the “all-organisms” 

dictionary, and 55333 when annotated with the “only-fungi” dictionary, with a total of 521087 and 

171052 annotations, respectively. The same was observed for the PubMed search for iron overload, as 

only 12996 out of the initial 13077 abstracts were annotated.  

The fact that not all publications retrieved from PubMed searches contained annotations could be 

due to several reasons: 

• publications obtained from a PubMed search may not always reflect the keywords used for 

that search, due to the labels given by the authors to the publications; 

• the fact that this first step of NER was done only in the publications’ abstracts can also limit 

the number of resulting publications, as some of them may only refer to terms of interest in 

their text rather than in the abstract. However, doing this step only in the abstracts helps 

filtering the most relevant publications, since the most important keywords of a publication 

often appear in the abstract; 

• the dictionaries used to annotate the publications may be incomplete, which may limit the bio-

entities that are annotated and, in turn, could limit the number of retrieved publications if they 

mention bio-entities that are missing in the dictionaries; 

• regarding the annotation process of organisms, abstracts may actually contain the word, but 

the dictionary synonym may be associated with another term (for example, there are cases of 

organisms species which belonged to the genus Candida in the past, but currently belong to 

another genus); 

 
2 Both searches were done on 22/05/2020. 
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• occasionally, there are publications containing misspelled terms, especially regarding taxa 

names (for example, names of species are not correctly abbreviated). 

In the Candida corpus, a total of 168938 annotations were obtained with the “only-fungi” 

dictionary, and 518974 annotations were obtained using the “all-organisms” dictionary, which was 

expected since the “all-organisms” dictionary annotates every term referring to any organism, whereas 

the “only-fungi” dictionary only annotates terms for fungal organisms. Another reason for the difference 

in the number of annotations obtained with the two dictionaries is the presence of words in taxa 

nomenclature such as “this”, “data”, “all”, “other”, etc. in the “all-organisms” dictionary, which are 

extremely common words with a whole different meaning. Therefore, many documents annotated with 

this dictionary will be identified as false positives when searching for publications with organisms’ 

annotations. 

In total, 118077 Candida annotations were obtained with the fungi dictionary, and 162241 were 

obtained with the “all-organisms” dictionary. This can be explained because the “only-fungi” dictionary 

did not contained abbreviations for species names, which were only added later for the second NER 

step. However, despite this limitation and despite the higher number of Candida annotations obtained 

with the “all-organisms” dictionary, a higher number of publications containing Candida annotations 

was found when using the “only-fungi” dictionary (54047), as compared to when using the “all-

organisms” dictionary (50554). The reason why this happens is because “only-fungi” dictionary does 

not contain synonyms, which is especially important in the cases of taxa that changed their 

nomenclature over the time and some old publications might still refer to their old names. As such, 

there are cases of many Candida species that are not considered Candida nowadays (for example, 

Candida humicola has changed its name to Vanrija humicola), which means that the “only-fungi” 

dictionary annotates those species as Candida, but the “all-organisms” does not, and therefore some of 

the publications obtained with the “only-fungi” are possibly false positives. 

Only 25 publications of the Candida corpus were annotated with the “iron overload” class of the 

“iron-terms” dictionary, with a total of only 38 iron overload annotations. Of those, 20 documents had 

annotations for Candida using either the “only-fungi” dictionary or the “all-organisms” dictionary. As 

expected, the number of publications annotated for both Candida and iron overload terms was too low. 

Due to the dimension of the “all-organisms” dictionary, the NER process proved to be quite heavy 

computationally when using this dictionary. Additionally, the number of obtained publications related to 

Candida and iron overload was the same with either one of those dictionaries, despite of “only-fungi” 
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dictionary’s limitations. For those reasons, the “only-fungi” dictionary was used rather than the “all-

organisms” dictionary in the second step of NER. 

Regarding the iron overload corpus, 11445 publications containing a total of 31350 iron overload 

annotations were obtained. 150 publications containing fungi annotations were obtained with the “only-

fungi” dictionary, while 527 publications were obtained using the “mycobank” dictionary. 125 

documents had annotations simultaneously for iron overload and fungus using the “only-fungi” 

dictionary, and 448 documents using the “mycobank” dictionary. Given that the number of publications 

with annotations in general only differs by 10, the clear difference between the number of publications 

with fungus annotations obtained with the different dictionaries for fungi indicates that either the “only-

fungi” dictionary is quite incomplete, or the “mycobank” dictionary annotated too many terms as 

fungus. In Figure 4, the number of publications obtained with all dictionaries is represented, and in 

Figure 5, the number of annotations obtained with all the dictionaries is summarized, for both corpora. 

In the second step of NER, two corpora were created: one containing the 125 publications 

obtained with the “only-fungi” dictionary, and another containing the 448 publications obtained with the 

“mycobank” dictionary. The resulting corpora were annotated for fungi using the “only-fungi” and the 

“mycobank” dictionaries, respectively, in addition to the other lexical resources. 

After the annotation process, the 125 documents annotated with the “only-fungi” dictionary had 

1701 annotations for fungi, 595 annotations for iron overload, 7158 annotations for drugs, 2194 

annotations for diseases, 494 annotations for treatment, 38 annotations for outcome, and 342 

annotations for human, with a total of 15694 annotations The 448 documents annotated with the 

“mycobank” dictionary had 3736 annotations for fungi, 595 annotations for iron overload, 19338 

annotations for drugs, 7229 annotations for diseases, 1454 annotations for treatment, 113 annotations 

for outcome, and 873 annotations for human, with a total of 43238 annotations (Figure 6). 

By analysing which bio-entities are the most commonly annotated by each dictionary (Table 1, 

Annex), it is possible to observe that there is a clear ambiguity issue, caused by the presence of words 

in dictionaries with different meanings, which depends on the context of the text (Table 2, Annex). For 

example, words such as “Drosophila”, “melanogaster”, “C. elegans”, “P. aeruginosa” (in both “only-

fungi” and “mycobank” dictionaries), “necrosis”, “Plasmodium”, “Xenopus”, “omega” (in “mycobank” 

dictionary), “all”, “can” (in “drugs” dictionary), “al”, “as”, “Fig”, “mg”, “ng” (in “diseases” ontology) 

were annotated. However, in most cases, if not in all of them, their meaning in the text where they 

appear are completely different of their meaning in the dictionaries. 
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Figure 4 – Number of publications with annotations for all dictionaries, for both Candida and iron overload 

corpora, in the first step of NER. In brackets, the number of publications obtained with each dictionary for 

organisms terms is indicated, whenever applicable. 
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Figure 5 – Number of annotations of Candida, fungus and iron terms, for both corpora, when annotated with 

different dictionaries for organisms, in the first step of NER. 
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Figure 6 – Number of annotations obtained with all the lexical resources used in the second step of NER, for both 

corpora. 
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In addition to those, the words “bacteria”, “bacterium”, “algae” were annotated by the 

“mycobank” dictionary even though they do not represent any fungal organism, because this dictionary 

contains taxa that were considered fungal organisms in the past but currently are not. This explains the 

wide difference between the number of publications obtained with both dictionaries used to annotate 

fungi entities in the iron overload corpora, observed in the previous step. 

In order to overcome this ambiguity problem, these words were defined as stopwords. However, 

after repeating this NER step using stopwords, those words were still being annotated, which proved to 

be a limitation of @Note. Therefore, those terms were manually filtered only after the RE process. 

 

 

4.2. Extraction of Relevant Associations 

 

After the RE step, 21018 relations were extracted from the corpus annotated with the “only-

fungi” dictionary, and 48613 relations were extracted from the corpus annotated with the “mycobank” 

dictionary. Due to the ambiguity issue of both dictionaries for fungi, all publications not containing any 

annotations regarding actual fungal organisms were discarded. After that filtration, only 95 documents 

had annotations for fungus and iron, when annotated with the “only-fungi” dictionary, and 99 when 

annotated with the “mycobank” dictionary. Relationships were then filtered regarding the remaining 

lexical resources: those containing entities not related to either iron, fungus, disease, drug, treatment, 

outcome or human were not considered. At the end, there were a total of 5285 and 5754 relationships 

when annotated with the “only-fungi” and the “mycobank” dictionaries, respectively. 

As stated previously, both “only-fungi” and “mycobank” dictionaries contain ambiguous terms, 

although this issue seems to be more prevalent in the “mycobank” dictionary. Nevertheless, 

“mycobank” is more complete, therefore it is able to annotate taxa that are not annotated with the 

“only-fungi” dictionary. For instance, one publication mentions the fungus Pneumocystis jiroveci, which 

is fully annotated with the “mycobank” dictionary, but only partially annotated for Pneumocystis with the 

“only-fungi” dictionary. Also, in another publication, Memnoniella echinate is annotated with the 

“mycobank” dictionary, but is not annotated with the “only-fungi” dictionary. 
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In addition to the previously mentioned limitations of both dictionaries for fungal organisms, other 

limitations were observed. For instance, Pythium insidiosum and Dictyostelium discoideum are not 

fungi, but both are annotated by “mycobank” dictionary because they have been categorized as fungi in 

the past. 

In some cases, an abbreviation for a given fungus species may represent more than one different 

species of fungi within the dictionary. For example, in one publication, Candida humicola was not 

annotated with the “only-fungi” dictionary because it does not contain this species name. However, this 

term was annotated when abbreviated to C. humicola, although it does not refer to Candida humicola 

species but to Corneriella humicola. The “mycobank” dictionary, on the other hand, annotated this term 

correctly. This issue could be solved with tools for abbreviation annotation (@Note has an option for 

abbreviation). However, these tools only work if the term appears in full before it appears abbreviated in 

the same publication, which is not always the case. Additionally, using these tools can lead to ambiguity 

issues, which decreases the precision in annotation. 

Regarding the “drugs” dictionary and the “diseases” ontology, both contain organism names. For 

instance, Corynebacterium diphtheriae is annotated as a drug, and Vibrio cholerae is annotated as a 

disease. This can be explained by the fact that many organisms are used as drugs, and many are the 

cause of diseases. However, in this context, this may be a limitation, since it contributes to the 

ambiguity problem of using dictionaries. For instance, the word “yeast” is annotated by the “drugs” 

dictionary, although in no case this term referred to yeast as a drug in any of the publications. 

Some limitations regarding @Note were also observed. The sentence splitter does not always 

split sentences correctly, as sometimes it splits sentences in half, other times does not split at all and, 

as a result, two sentences are joint as one. This may happen due to the presence of abbreviations with 

dots, which hampers the sentence splitting process. For instance, in one publication, there is a 

sentence that contains the word “fig.” and it is split at that word. In another publication, two sentences 

are joint together, and C from the term “hepatitis C” from the first sentence is joint with the word 

“Serum” from the next sentence, and as a result, C. serum, which is a fungal organism, is annotated. 

Another reason is the formatting of some documents, which does not always allow for a correct 

sentence splitting, nor for a correct annotation of bio-entities. 

Additionally, in some publications, some sentences containing bio-entities of interest are not 

annotated as relationships. For instance, in one of the publications, the sentence “Mucormycosis is 

caused by fungi.” is not annotated as a relationship, although the terms “Mucormycosis”, annotated by 
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the “diseases” ontology, and the word “fungi”, annotated by the “only-fungi” dictionary, co-occur in that 

same sentence.  In a similar way, in another publication, the term Aspergillus is not included in any 

relationship, even though they co-occur with other annotated bio-entities in the sentence “Aspergillus 

disease after lung transplantation includes airway anastomotic infections, severe asthma, and invasive 

pulmonary aspergillosis, an infection of the lower respiratory tract.". 

There are other limitations regarding the annotation of bio-entities that are caused due to the way 

publications are written. For instance, misspelled taxa names in publications are never annotated, as 

well as species names that are incorrectly abbreviated, as they do not match any term in the dictionary 

(ex., Cr. Neoformans instead of C. neoformans; C pseudotropicalis instead of C. pseudotropicalis). In a 

similar way, some authors use abbreviations that are not in the dictionaries. For example, the 

abbreviation for pulmonary hemorrhage, PH, is not annotated because it is not present in the 

“diseases” ontology. As a result of this kind of limitations, many bio-entities of interest will not be 

annotated and, consequently, some eventually interesting relationships might be missing. 

Finally, there are some interesting terms that are missing in the lexical resources used. For 

instance, the term “invasive fungal infection” is not present in the “diseases” ontology, nor the word 

“fungal” in any of the dictionaries for fungi, which is a limiting factor for the analysis in the present 

work. 

In conclusion, the same relevant publications were obtained whether using the “only-fungi” 

dictionary or the “mycobank” dictionary. Overall, the “only-fungi” dictionary annotated fungus entities 

with more precision than the “mycobank” dictionary since it has shown to be less ambiguous. However, 

since the number of relevant relationships extracted when using the “mycobank” dictionary was slightly 

higher than when the “only-fungi” dictionary was used, from this point on, the results hereby presented 

will be the ones obtained regarding the “mycobank” dictionary. 

 

 

4.3. Curated Dataset 

 

Publications with relevant sentences were analysed regarding their relevance. After analysing all 

the publications, it was observed that 5 of them are written in languages other than English: two are 
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written in Spanish, one in German, one in Hungarian and one in Japanese. As a result, only the 

abstracts, which are in English, can be analysed in these cases. 

There were 38 publications of the 99 which were not related to fungal infections: 

• 11 publications were about the study of iron-related diseases where fungi (Saccharomyces 

cerevisiae) were used as model organisms; 

• 6 were about exposure to moulds causing acute pulmonary hemorrhage in infants; 

• 5 publications contained the term fungi but did not focus on fungal infections. Of those, three 

were about bacterial infections, one was about HIV infection, and another was about the effect 

of iron supplements in host defence from pathogenic microorganisms; 

• Two were about fungal organisms that cause diseases in plants; 

• The remaining focused on, among others, effects of feeding cattle a diet contaminated with 

fungi, hepatocellular carcinoma caused by human consumption of food contaminated with 

carcinogenic fungi, liver injury caused by ingestion of mushrooms, iron-chelating activity of 

mushrooms and iron tolerance/toxicity in fungi.  

The remaining 61 publications were related to fungal infections. Of those: 

• 20 were reviews, 13 of them were about mucormycosis, two were about Aspergillus, one was 

about Candida, and 6 were about fungi in general. In 11, iron overload was not the main 

focus, 3 focused on iron chelators, and one reviewed methods and agents for strengthening 

host’s iron-withholding defence; 

• 11 were studies in animal models, 4 of them using Candida, 3 using Pneumocystis carinii, 2 

using Cryptococcus neoformans, one using Rhizopus oryzae, and one using Aspergillus 

fumigatus; 

• 5 studies in vitro, two using Cryptococcus neoformans, one using Candida albicans, one using 

Candida glabrata, and one using Penicillium marneffei; 

• 25 clinical cases, 8 of which iron overload is not the case of infection (they only contain the 

term as one of many risk factors for fungal infections), and one case is related to iron 

overload but there is no fungal infection. All the remaining cases were considered relevant. 

Ultimately, only 15 publications were considered relevant [121-135]. All of them are either case 

reports or studies based on case reports. Of those, 8 are about mucormycosis/zygomycosis (4 are 
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caused by Rhizopus [122, 129, 131, 134], one is caused by Cunninghamella bertholletiae [133]), two 

are cutaneous infections [123, 130], two about invasive mould infections [125, 135], one about 

Candida [128], one about Trichosporon asahii fungemia [121], one about Trichophyton rubrum 

dermatophytosis [130], and the remaining two about fungal infections in general [126, 132] (Table 3, 

Annex). 

It is important to note that two of the 15 publications that were considered relevant did not 

contain any extracted associations that could be considered relevant, due to some of the limitations 

described earlier regarding the extraction of relevant associations. Nevertheless, they were considered 

relevant since both of them describe indeed cases of fungal infections in a clinical context of iron 

overload. 

Table 5 summarizes important information regarding the relevant publications obtained, 

including number of relevant relationships and interesting annotations in each publication. Relevant 

associations between iron and fungus, iron and disease, and fungus and drug, extracted from those 

publications, are summarized in tables 6, 7 and 8, respectively. 

 

Table 5 – Overview of the relevant publications obtained. 

PubMed ID Text available Number of relevant 

relationships 

Interesting annotations 

20434128 Abstract 2 
Trichosporon asahii; nosocomial 

fungemia; secondary hemochromatosis 

28348771 Abstract 1 
Rhizopus; transfusion-dependent beta 

thalassemia; iron overload; deferiprone 

7805414 Abstract 1 Mucormycosis; iron overload 

10723242 Abstract 3 

mucormycosis; aplastic anemia; 

myelodysplastic syndrome; iron overload; 

deferoxamine 

18781877 Full text 5 

Invasive mould infections; hematopoietic 

stem cell transplantation; Aspergillus; iron 

overload 

21331523 Abstract 2 Bloodstream infections; iron overload 
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17852457 Abstract 4 zygomycosis; iron overload; deferoxamine 

2640481 Abstract 4 Candida; thalassemia major 

10394647 Abstract 3 

Mucormycosis; aplastic anemia; 

neutropenia; Rhizopus; 

hemochromatosis, desferrioxamine; 

amphotericin B 

20092423 Abstract 3 

dermatophytosis; Trichophyton rubrum; 

hereditary hemochromatosis; cirrhosis: 

iron overload 

3662280 Abstract 0 Rhizopus; deferoxamine; hemodialysis 

16741903 Abstract 2 

iron overload; liver transplant; fungal 

infection; Candida; Aspergillus; 

Cryptococcus; Saccharomyces 

3060947 Abstract 1 
mucormycosis; Cunninghamella 

bertholletiae; iron overload; deferoxamine 

15078434 Abstract 1 

myelodysplastic syndrome; iron overload; 

pulmonary Rhizopus oryzae infection; 

itraconazole 

25082161 Abstract 0 

invasive mould infections; Aspergillus; 

mucorales; allogeneic hematopoietic 

stem cell transplantation; ferritin 

 

 

Table 6 – Overview of the iron-fungus relevant associations. 

Bio-entities Sentence 

hemochromatosis, 

T. asahii 

“We report a 53-year-old nongranulocytopenic female with secondary 

hemochromatosis, who developed nosocomial fungemia caused by T. asahii.” 

[121] 

T. asahii, 

hemochromatosis 

“This case suggests that clinicians should be aware that T. asahii fungemia can 

develop in nongranulocytopenic patients with secondary hemochromatosis.” [121] 
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Mucor, iron 

overload 

“Primary cutaneous mucormycosis with a Mucor species: is iron overload a 

factor?” [123] 

iron overload, 

zygomycosis 

“Most of the evidence for iron overload impacting on the risk of IMI comes from 

studies of zygomycosis.” [125] 

zygomycosis, iron 

overload 

“Maertens et al. [12] reported 5 cases of zygomycosis in allogeneic HSCT 

recipients, and iron overload was present in all 5 cases.” [125] 

candida, iron 

overload 

“With respect to phagocytes, the capacity to ingest candida is preserved while the 

candidacidal activity and the generation of toxic oxygen metabolites during the 

respiratory burst are diminished, and are inversely proportional with age and 

serum ferritin concentration, that is, older in age and higher in iron overload, more 

profound are the phagocyte dysfunctions.” [128] 

hemochromatosis, 

Rhizopus 

“The second patient did not survive his severe aplastic anemia (with neutropenia) 

and hemochromatosis (treated with desferrioxamine), complicated with a systemic 

Rhizopus infection, despite treatment with amphotericin B and granulocyte-colony-

stimulating factors.” [129] 

dermatophytosis, 

hemochromatosis 

“Disseminated dermatophytosis in a patient with hereditary hemochromatosis and 

hepatic cirrhosis: case report and review of the literature.” [130] 

mucormycosis, 

iron 

“Recent reports of mucormycosis in dialysis patients receiving deferoxamine for 

iron or aluminum overload have raised the possibility that deferoxamine therapy is 

a risk factor for mucormycosis.” [133] 

C. bertholletiae, 

iron overload 

“A case of C. bertholletiae infection in a patient receiving deferoxamine for iron 

overload unrelated to hemodialysis was investigated in detail, and possible 

explanations for this patient's infection were assessed.” [133] 

iron overload, 

Rhizopus oryzae 

“We report a non-neutropenic patient with myelodysplastic syndrome and iron 

overload receiving cytotoxic therapy who presented with pulmonary Rhizopus 

oryzae infection.” [134] 
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Table 7 – Overview of the iron-disease relevant associations. 

Bio-entities Sentence 

iron overload, 

aplastic anemia 

“Deferoxamine has been also used in the treatment of iron overload patients with 

aplastic anemia.” [124] 

myeloma, iron 

“In a study involving 365 patients with myeloma who underwent autologous 

HSCT, bone marrow iron level was an independent risk factor for the development 

of severe infection.” [125] 

iron overload, 

acute myeloid 

leukemia 

“We retrospectively studied the association between iron overload and 

bloodstream infections (BSI) in the 100-day period following allogeneic 

hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia or 

myelodysplastic syndromes.” [126] 

iron overload, liver 

disease 

“It is also the second case report of a Pearson patient suffering from severe iron 

overload and liver disease that responded to therapy with deferoxamine.” [127] 

thalassemia, iron 

overload 

“It is accepted that the immune alterations in patients with thalassemia major 

(TM) are secondary to the continuous transfusion-related antigenic stimulation 

together with iron overload.” [128] 

aplastic anemia, 

hemochromatosis; 

neutropenia, 

hemochromatosis 

“The second patient did not survive his severe aplastic anemia (with neutropenia) 

and hemochromatosis (treated with desferrioxamine), complicated with a systemic 

Rhizopus infection, despite treatment with amphotericin B and granulocyte-colony-

stimulating factors.” [129] 

myelodysplastic 

syndrome, iron 

overload 

“We report a non-neutropenic patient with myelodysplastic syndrome and iron 

overload receiving cytotoxic therapy who presented with pulmonary Rhizopus 

oryzae infection.” [134] 
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Table 8 – Overview of the fungus-drug relevant associations. 

Bio-entities Sentence 

deferiprone, 

Rhizopus 

“Although deferiprone, a newer iron chelator agent, has antifungal properties in 

vivo, this case illustrates that angioinvasive Rhizopus infections can occur in 

patients treated with deferiprone.” [122] 

mucormycosis, 

deferoxamine 

“Cases of mucormycosis occurring in dialysis patients receiving deferoxamine 

have recently appeared in the literature.” [124] 

mucormycosis, 

deferoxamine 

“There may be a relationship between mucormycosis and deferoxamine in 

patients with aplastic anemia.” [124] 

deferoxamine, 

Pneumocystis 

jiroveci 

deferoxamine, 

zygomycosis 

“After an initial response to deferoxamine she presented with cutaneous 

zygomycosis and died after metabolic derangement and Pneumocystis jiroveci 

pneumonia.” [127] 

desferrioxamine, 

Rhizopus; 

Rhizopus, 

amphotericin B 

“The second patient did not survive his severe aplastic anemia (with neutropenia) 

and hemochromatosis (treated with desferrioxamine), complicated with a systemic 

Rhizopus infection, despite treatment with amphotericin B and granulocyte-colony-

stimulating factors.” [129] 

deferoxamine, 

rhizopus 

“Four hemodialysis patients receiving deferoxamine for metal overload had fatal 

rhinocerebral rhizopus infections.” [131] 

Rhizopus, 

deferoxamine 
“Fatal Rhizopus infections in hemodialysis patients receiving deferoxamine.” [131] 

mucormycosis, 

deferoxamine 

“Recent reports of mucormycosis in dialysis patients receiving deferoxamine for 

iron or aluminum overload have raised the possibility that deferoxamine therapy is 

a risk factor for mucormycosis.” [133] 

C. bertholletiae, 

deferoxamine 

“A case of C. bertholletiae infection in a patient receiving deferoxamine for iron 

overload unrelated to hemodialysis was investigated in detail, and possible 

explanations for this patient's infection were assessed.” [133] 

itraconazole, 

zygomycosis 

“This patient was cured through the use of itraconazole alone and the literature on 

the utility of azole antifungals for zygomycosis is reviewed.” [134] 
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Rhizopus oryzae, 

itraconazole 

“Complete resolution of pulmonary Rhizopus oryzae infection with itraconazole 

treatment: more evidence of the utility of azoles for zygomycosis.” [134] 

 

Upon analysing all the publications obtained and their respective relevant associations, it was 

possible to observe that the most mentioned fungal infections are mucormycosis and invasive mould 

infections. As such, organisms from the Mucorales order, such as Rhizopus, and moulds, such as 

Aspergillus, were the most referred. 

Antifungals mentioned in the publications include itraconazole, voriconazole, amphotericin B and 

caspofungin. Itraconazole has shown to be effective in the treatment of a pulmonary Rhizopus oryzae 

infection [134]. Amphotericin B was not effective in a case of a systemic Rhizopus infection [129], but it 

has shown to be effective together with voriconazole and caspofungin, in another case of a Rhizopus 

infection [122]. 

High iron levels seem to be an indicator of susceptibility for fungal infections. Other factors or 

diseases related to iron overload that can also increase the risk for fungal infections include anemia, 

blood transfusions, hemodialysis, liver transplants and hematopoietic stem cell transplants. Usually, 

iron chelators are used as adjuvants in treating fungal infections, since they reduce iron levels in 

patients with iron overload. The most cited iron chelator in the resulting publications was deferoxamine 

(or desferrioxamine), followed by deferiprone. However, in many cases, iron chelators end up having the 

opposite effect, which made patients even more susceptible to fungal infections, since many organisms 

have developed strategies to take up chelated iron from iron chelators. In 6 out of the 8 publications 

about mucormycosis, patients who received iron chelating treatments for iron overload had shown 

complications with mucormycosis [122, 124, 127, 129, 131, 133]. In three cases [124, 129, 131], the 

patients did not survive, despite two of them having received antifungal treatment [124, 129]. Three 

publications suggested a possible link between deferoxamine therapy and the emergence of 

mucormycosis [124, 131, 133]. Deferiprone, a newer iron chelator agent which has shown to have 

antifungal properties in vivo, has also been associated to mucormycosis infections. A case of a patient 

who started on deferiprone therapy and subsequently presented with an angioinvasive Rhizopus 

infection suggests that this kind of infections may occur in patients treated with deferiprone [122]. 

Although associations of iron levels with both severity of infection and treatment efficacy were not 

extracted, studies in patients who had undergone hematopoietic stem cell transplantation had shown 

that iron overload is a biological risk factor for fungal infections after hematopoietic stem cell 
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transplantation [125], and pretransplantation serum ferritin is a strong predictor of BSIs, including IFIs, 

within a 100-day period after the cell transplant [126, 135]. The same is observed in liver 

transplantation, where hepatic iron overload is strongly associated with posttransplantation IFIs [132]. 

Moreover, it was possible to indirectly infer that high iron is associated with more severe fungal 

infections, since some iron chelating treatments have shown to increase the emergence of fungal 

infections in some cases, as opposed to what would be expected. It was also possible to conclude that 

treatment efficacy is highly affected by patients’ iron levels, since in many cases patients with iron 

overload or who were being treated with iron chelators, and who had invasive fungal infections, did not 

survive, even though they were receiving antifungal therapy. 
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5. Conclusions and Future Work 

 

The BioTM process described in the present thesis enabled the creation of a dataset of relevant 

biomedical publications containing interesting associations between fungal infections, drugs and 

associated diseases in a clinical context of iron overload. Although initially the main goal of this work 

was to obtain interesting publications related specifically to Candida and iron overload, that was not 

possible to achieve since there are very few publications on cases related to candidiasis and iron 

overload in PubMed. 

In order to compare the performance of this work’s BioTM process with the performance of a 

simple PubMed search, a PubMed search was done with the query (Fungal OR Fungus OR Fungi OR 

Fungemia OR mycosis) AND (transferrin OR ferritin OR iron) AND (iron overload OR Fe overload OR iron 

excess OR Fe excess) AND infection AND (treatment OR therapy OR outcome OR mortality OR morbidity 

OR prognostic) NOT bacteria NOT review, which returned 32 publications, 12 of which are relevant. 

When comparing those 12 relevant publications with the 15 relevant publications of the dataset 

obtained in this work, only a single publication [125] was found to be common between the two 

datasets. On one hand, the PubMed search is effective in returning relevant publications that mention 

the term “fungal infection”, as it includes the keywords “fungal” and “infection” in the query. As 

pointed out before, none of the dictionaries used in this work annotates these words, which limits to a 

certain extent the number and relevance of the publications obtained. However, those words were not 

considered for the initial search in this work because they are quite generic and, as such, their inclusion 

would lead to a high number of uninteresting publications. On the other hand, the PubMed search 

clearly failed to return publications that do not mention the terms “fungal infection” but that may 

mention fungal taxa instead. This is why the BioTM process described in the present work proves to be 

more effective than a simple search on PubMed, especially when the goal is to create a corpus on a 

given theme that encompasses a large number of publications and/or involves a large number of 

keywords, such as a group of genes, proteins, organisms, etc., which makes this task impossible to be 

done manually. 

Although the annotation process using dictionaries may take time (for instance, the NER process 

of the Candida corpus, which was the largest corpus, when annotated with the all-organisms dictionary, 

which was also the largest dictionary, took approximately two weeks), the manual curation of a dataset 

obtained from this BioTM process is less time-consuming than manually curating a dataset obtained 
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from a PubMed search, since the NER and RE processes help filtering publications of interest. If 

dictionaries are optimized and they do not contain ambiguous words, the manual curation step may be 

even less time-consuming. 

One disadvantage of this process is the lack of context in some cases, where extracted 

relationships do not give enough information to conclude about the relevance of the whole publication. 

Overall, documents with relevant relationships were considered relevant, as in most of the cases, the 

relationship itself is enough for the evaluation of its relevance. However, sentences immediately before 

and after are usually needed to infer the overall context of a given sentence, since there were a few 

cases of relevant relationships extracted from publications that were not relevant. This is the main 

reason why manual curation is an important step of this process. 

Another disadvantage is the limitation of getting full-text publications from PubMed, since for 

most of them only the abstract is available, which seriously limits the text analysis, especially in the 

cases where the abstract does not clearly summarize the study and, consequently, is not possible to 

draw any conclusions about the publication. Additionally, half of the clinical reports obtained in this 

work date from more than 15 years ago. 

In conclusion, this method is useful and effective, although in the future it could be improved 

regarding several points, in order to return a higher number of publications on iron overload and fungal 

infections: 

• NER process could be done in a case-sensitive way, especially when annotating taxa names, 

in order to improve the accuracy of annotation of taxa bio-entities; 

• dictionaries could be improved or additional ones could be used. For instance, the words 

“fungal” and “infection” could be included, and the lookup table for human terms could be 

improved and include terms for clinical context, such as “patient”, in order to optimize the 

search for clinical cases; 

• the first step of NER could be done using dictionaries containing more synonyms (more 

ambiguous), and the publications obtained could be filtered afterwards using more precise 

dictionaries (less ambiguous); 

• different methods for NER and RE could be used, for instance, ML-based; 

• clinical databases such as PubMed Clinical Queries [136] or in ClinicalTrials.gov database 

[137] could be searched, to obtain a higher number of clinical studies. 



42 
 

In addition, further searches with different keywords could also be done, to explore which 

genes/proteins are involved in the effect of iron excess in exacerbating fungal infections. 
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Annex 

 

Table 1 – Most frequent annotations, obtained with the “only-fungi”, “mycobank”, “iron-terms”, 

“drugs” and “diseases” lexical resources for both corpora, in the second step of NER. 

 
Annotated with “only-fungi” 

dictionary 

Annotated with “mycobank” 

dictionary 

only-fungi 

R. oryzae, C. albicans, A. fumigatus, 

fungi, Drosophila, Cryptococcus 

neoformans, Candida, S. chartarum, P. 

carinii, S. cerevisiae 

- 

mycobank - 

bacteria, necrosis, R. oryzae, C. albicans, 

A. fumigatus, C. glabrata, Plasmodium, 

Candida albicans, fungi, Drosophila 

iron-terms 
iron overload, hemochromatosis, iron 

accumulation 

iron overload, hemochromatosis, iron 

accumulation 

drugs 

as, al, Fig, Iron, DFO, yeast, mg, 

Candida albicans, copper, 

deferoxamine 

as, al, Fig, Iron, mg, DFO, Fe2+, com, As, 

yeast 

diseases 

disease, can, all, mucormycosis, asm, 

All, Mucormycosis, anemia, 

schistosomiasis, March 

can, disease, all, All, tuberculosis, malaria, 

anemia, asm, mucormycosis, March 
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Table 2 – Examples of terms with different meanings, present in the different lexical resources used in 

the second step of NER. 

Term Lexical resource Meaning in the resource Meaning in the text 

Drosophila only-fungi, mycobank Genus of fungus Genus of a fly 

melanogaster only-fungi, mycobank Genus of fungus 
Drosophila melanogaster 

(model organism, fly) 

P. 

aeruginosa 
only-fungi, mycobank Pholiotina aeruginosa 

Pseudomonas aeruginosa 

(bacterium) 

necrosis mycobank Genus of fungus Disease 

Plasmodium 
mycobank 

Genus of fungus 
Genus of the malaria 

parasite 

C. elegans only-fungi, mycobank 

Callistosporium elegans, 

Chaetothyriothecium elegans, 

Corallomycetella elegans, 

Conocybe elegans, 

Canalisporium elegans, 

Cymatoderma elegans, 

Cyrenella elegans, 

Cylindrocladiella elegans 

Caenorhabditis elegans 

(model organism, nematode) 

Xenopus mycobank Genus of fungus Genus of a frog 

omega mycobank Genus of fungus Greek letter 

all diseases Acute Lymphoblastic Leukemia all 

can diseases 
Crouzon syndrome-acanthosis 

nigricans syndrome 
can 

al drugs Aluminium As in et al 

as drugs Artesunate as 

Fig drugs Fig Figure 

mg drugs Glyceryl 1-oleate Microgram 

ng drugs Nitroglycerin Nanogram 
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Table 3 – Brief summary of the relevant publications obtained. 

Reference Summary 

[121] 

A 53-year-old nongranulocytopenic female with secondary hemochromatosis 

developed nosocomial fungemia caused by Trichosporon asahii. This case 

suggests that clinicians should be aware that T. asahii fungemia can develop in 

nongranulocytopenic patients with secondary hemochromatosis. 

[122] 

A 33-year-old female with transfusion-dependent beta thalassemia was started on 

intravenous deferiprone therapy and subsequently Rhizopus species were 

present in her blood. This case illustrates that angioinvasive Rhizopus infections 

can occur in patients treated with deferiprone, a newer iron chelator agent that 

has antifungal properties in vivo. 

[123] 

A severely debilitated patient showed primary cutaneous mucormycosis with a 

Mucor species at a tape erosion site. Iron overload may be a risk factor for 

mucormycosis. The pathogenic nature and epidemiologic features of this unusual 

fungal infection are reviewed. 

[124] 

A 58-year-old woman with a diagnosis of aplastic anemia became dependent on 

red blood cell transfusions. Deferoxamine was administered for iron overload. 

The patient later developed pneumonia and pulmonary mycosis. Although an 

antifungal agent was administered, the patient experienced respiratory failure 

and eventually died. Deferoxamine has been used in the treatment of iron 

overload patients with aplastic anemia, and may be a risk factor for 

mucormycosis. There may be a relationship between mucormycosis and 

deferoxamine in patients with aplastic anemia. 

[125] 

Invasive mould infections are common in patients who have undergone 

hematopoietic stem cell transplantation. Clinical and biological risk factors for 

different types of invasive mould infections after allogeneic hematopoietic stem 

cell transplantation were studied. Of a total of 1248 patients, 13.1% received a 

diagnosis of probable or proven invasive mould infection. The majority of cases 

were caused by Aspergillus species (88%). Iron overload is an important 

biological risk factor. 



54 
 

[126] 

The association between iron overload and bloodstream infections following 

allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia or 

myelodysplastic syndromes was retrospectively studied in 114 adult patients who 

underwent transplantation. In conclusion, pretransplantation serum ferritin 

significantly predicts bloodstream infections within a 100-day period after the 

transplantation. 

[127] 

A female infant suffering from anemia since birth, with iron overload 

disproportionate to blood transfusions, also suffered from type I 

hemochromatosis. After an initial response to deferoxamine, she presented with 

cutaneous zygomycosis and died after metabolic derangement and 

Pneumocystis jiroveci pneumonia. 

[128] 

Continuous transfusion-related antigenic stimulation together with iron overload 

cause immune alterations in 10-year-old or younger patients with thalassemia 

major. The immune status of thalassemia major patients was evaluated, and 

alterations regarding white blood cells were found, such as altered B-cell 

function, dysfunction of T immunoregulatory cells and defective NK activity 

observed, which are independent of the patients’ age and are attributed to blood 

transfusions. The capacity of phagocytes to ingest Candida is preserved, while 

the candidacidal activity and the generation of toxic oxygen metabolites during 

the respiratory burst are diminished, and are inversely proportional with age and 

serum ferritin concentration, meaning that the older the patient and the higher 

their iron overload, the more dysfunctional are the phagocytes. 

[129] 

A patient with severe aplastic anemia (with neutropenia) and hemochromatosis 

(treated with desferrioxamine), complicated with a systemic Rhizopus infection, 

did not survive despite treatment with amphotericin B and granulocyte-colony-

stimulating factors. 
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[130] 

A case of biopsy-proven, disseminated dermatophytosis caused by Trichophyton 

rubrum in a patient with hereditary hemochromatosis and hepatic cirrhosis is 

described. Over the course of the hospitalization, the dermatophytosis 

progressed to a more invasive form with widespread cutaneous dissemination. 

His risk factors for invasive fungal disease included cirrhosis and iron overload 

associated with hemochromatosis. Ultimately, he died from his underlying 

pneumonia, which prevented any conclusions to be taken regarding the efficacy 

of the antifungal therapy. 

[131] 

Four hemodialysis patients receiving deferoxamine for metal overload had fatal 

rhinocerebral Rhizopus infections. Serious fungal infections are not commonly 

seen in patients on dialysis, and none of these patients had the usual risk factors 

for Rhizopus infection. Deferoxamine is being used with increased frequency in 

dialysis patients for aluminum and iron overload states. It is proposed that there 

is a link between the deferoxamine therapy and this unusual infection. 

Deferoxamine may serve as a specific growth factor for Rhizopus species or may 

alter host immune function. Searching for fungal organisms in patients with 

unexplained illnesses receiving deferoxamine is suggested. 

[132] 

A cohort of 153 consecutive patients who underwent liver transplantation and 

who survived at least 7 days after transplantation was retrospectively studied. 

The association between various pretransplant patient characteristics, including 

hepatic explant iron and risk of invasive fungal infections, was analysed. During 

the first year after transplantation, 28 of 153 patients developed a total of 31 

invasive fungal infections, of which 21 (68%) were caused by Candida, 7 (23%) 

by Aspergillus, 2 (6%) by Cryptococcus, and 1 (3%) by Saccharomyces. In 

conclusion, our study found that hepatic iron overload is an independent risk 

factor for posttransplantation invasive fungal infections in liver transplant 

recipients. Patients with iron overload might benefit from closer monitoring for 

invasive fungal infections and/or targeted antifungal prophylaxis. Moderate iron 

deprivation before liver transplantation could be an additional approach for 

reducing the risk of posttransplantation invasive fungal infections and improving 

the posttransplantation outcome in iron‐loaded patients with cirrhosis. 
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[133] 

A patient receiving deferoxamine for iron overload unrelated to hemodialysis 

developed a Cunninghamella bertholletiae infection. Possible explanations for the 

patient's infection were assessed. 

[134] 

A non-neutropenic patient with myelodysplastic syndrome and iron overload 

receiving cytotoxic therapy presented with pulmonary Rhizopus oryzae infection. 

This patient was cured through the use of itraconazole alone and the literature on 

the utility of azole antifungals for zygomycosis is reviewed. 

[135] 

Invasive mould infections are life-threatening complications of allogeneic 

hematopoietic stem cell transplantation. The association between elevated serum 

ferritin prior to hematopoietic stem cell transplantation and the increased risk of 

invasive mould infections was studied in a large cohort of patients who had 

undergone allogeneic hematopoietic stem cell transplantation. 

 


