Improving the interface between orthopaedic implants and bone a comparison between different surface treatments

F. Melo-Fonseca^{1,2,3}, M. Gasik^{4,5}, Inês Mendes Pinto^{3,6}, S. Madeira^{1,2}, F. S. Silva^{1,2}, G. Miranda⁷

¹Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Portugal ²LABBELS – Associate Laboratory, Braga, Guimarães, Portugal ³International Iberian Nanotechnology Laboratory (INL), Braga, Portugal ⁴School of Chemical Engineering, Aalto University Foundation, Espoo, Finland ⁵Segvera Ltd., Helsinki, Finland ⁶i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal ⁷CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Portugal

unior EUROMA July 21st, 2022

unior

The team

Research unit: Center for MicroElectromechanical Systems (CMEMS-UMinho)

Research unit: CICECO-Instituto de Materiais de Aveiro (CICECO/UA)

Universidade do Minho

Contents

- Motivation
- **Experimental**
- **III.** Results
- V. Conclusions
- V. Acknowledgments

Contents

- Motivation
- **Experimental**
- **III.** Results
- V. Conclusions
- V. Acknowledgments

Universidade do Minho

Universidade do Minho

米

Improvement of implant-bone interface:

Surface chemical composition

Surface energy

Roughness

Topography

 \bigcirc

米

This oxide layer may be achieved by surface modification techniques

Pre-treatments:

 \bigcirc

 \bigcirc

Mechanical polishing

Chemical: alcohol cleaning vs acidic pre-treatment

Surface treatments:

- Anodic oxidation
 - Hydrothermal treatment
 - Anodic oxidation + hydrothermal treatment

Compare surface treatments and investigate whether a simpler treatment would be effective to improve surface properties of titanium implants

Contents

- Motivation
- **Experimental**
- **III.** Results
- V. Conclusions
- V. Acknowledgments

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

1. Pre-treatments:

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

1. Pre-treatments:

0 0

Non-polished vs polished

Alcohol cleaning vs acidic pre-treatment

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

1. Pre-treatments:

0 0

Non-polished vs polished

Alcohol cleaning vs acidic pre-treatment

Cleaned with isopropyl alcohol

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

1. Pre-treatments:

0 0

Non-polished vs polished

Alcohol cleaning vs acidic pre-treatment

10 M HCl (30 min) followed by ultrasonic rinsing with acetone (30 min)

Electrolyte: distilled water

180 °C for 180 min

*

2. Surface treatment:

 \bigcirc

 \bigcirc

Anodic oxidation (AO)

Hydrothermal treatment (Hydro)

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

2. Surface treatment:

 \bigcirc

 \bigcirc

0

Anodic oxidation (AO)

Hydrothermal treatment (Hydro)

Anodic oxidation + hydrothermal treatment (AO + hydro)

Commercially pure Ti (Ti grade 2)

Ti6Al4V (Ti grade 5)

3. Sterilization and storage

125 °C for 15 min
5X PBS for 24 h

Characterization:

1. Ti grade 2 and Ti grade 5 were subjected to different modification techniques

2. TiO_2 layer was characterized in-depth

3. Osseointegration potential was assessed by a preliminary cellular assay

Contents

- Motivation
- **Experimental**
- Results
- **IV**. Conclusions
- V. Acknowledgments

1 cm

Morphology

1 cm

Morphology

Both chemical pre-treatments are effective in **samples cleaning** and did not alter the surface morphology

Morphology

×

28

UMINHO

Morphology

S Grade Ē

Universidade do Minho

米

UMINHO

29

Phase composition

Phase composition

Anatase was found for all treated samples,

whereas rutile was only obtained for the hydrothermal treatment

The presence of **both crystalline phases** is preferable then an amorphous or

plain anatase structure

TiO₂ thickness

Anodic oxidation

20.0 µm

Hydrothermal treatment

Anodic oxidation + hydrothermal treatment

20.0 µm

Ti grade 2 samples subjected to the <u>acidic pre-treatment</u>

TiO₂ thickness

Anodic oxidation and anodic oxidation +

hydrothermal treatment produced an oxide

layer with a thickness > 100 nm

G4: Alcohol treatment + anodic oxidation

G5: Acidic pre-treatment + anodic oxidation

G8: Alcohol treatment + anodic oxidation + hydrothermal treatment G9: Acidic pre-treatment + anodic oxidation + hydrothermal treatment

米

Pre-treatment		No pre-treatment	Mechanical polishing and chemical pre-treatment			
Surface treatment		Hydro	No surface treatment	AO	Hydro	AO + hydro
Ti Grade 2	Anatase	+		+	+	++++
	Rutile	+			+++	++
	Wettabiliy (0h)	++	+	++	+	++
	Wettability (24h in 5XPBS)	+++	+	++	+++	+++
Ti Grade 5	Anatase	+++		++	+	++++
	Rutile	+			++	++
	Wettabiliy (0h)	+	+	++	+	+
	Wettability (24h in 5XPBS)	+++	++	++	++++	+++

The presence of both anatase and rutile is preferable for cellular outcomes and confers bioactivity

Micro-rough surfaces are more prone to cell anchorage than smooth surfaces

Moderate-hydrophilic surfaces promote cellular and protein adhesion

Alcohol cleaning and hydrothermal treatment followed by immersion for 24 hours in 5X PBS is

an effective and simple surface modification treatment capable of creating a moderate-

hydrophilic and bioactive surface

Actin RUNX2

BM-hMSC adhesion

Bone marrow derived human Mesenchymal Stem Cells (BM-hMSC) on Ti grade 5

Ti Control

米

0 days

21 days

Contents

- Motivation
- **Experimental**
- **III.** Results
- IV. Conclusions
- V. Acknowledgments

Universidade do Minho

Conclusions

No major differences were observed between pre-treatments (alcohol cleaning vs acidic pre-treatment)

considering surface crystallinity, roughness and wettability

TiO₂ layer obtained by AO, Hydro and AO + hydro presented different characteristics regarding its crystallinity, roughness, thickness and wettability

Alcohol cleaning followed by hydrothermal treatment is a simple methodology that results in a bioactive

oxide layer which properties are capable of enhancing bone-implant interface

Contents

- Motivation
- **Experimental**
- **III.** Results
- **IV.** Conclusions
- V. Acknowledgments

Acknowledgments

This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through the grant SFRH/BD/141056/2018 and the projects PTDC/EME-EME/1442/2020, POCI-01-0145-FEDER-030498, UIDB/04436/2019 and UIDP/04436/2020. In addition, this work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

Thank you for your attention!

Francisca Melo-Fonseca PhD student in Leaders for Technical Industries (MIT-Portugal)

francisca.fonseca@inl.int franciscarmelofonseca@gmail.com

Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

+351 253 510 732

米

Improving the interface between orthopaedic implants and bone – a comparison between different surface treatments

F. Melo-Fonseca^{1,2,3}, M. Gasik^{4,5}, Inês Mendes Pinto^{3,6}, S. Madeira^{1,2}, F. S. Silva^{1,2}, G. Miranda⁷

¹Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Portugal ²LABBELS – Associate Laboratory, Braga, Guimarães, Portugal ³International Iberian Nanotechnology Laboratory (INL), Braga, Portugal ⁴School of Chemical Engineering, Aalto University Foundation, Espoo, Finland ⁵Seqvera Ltd., Helsinki, Finland ⁶i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal ⁷CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Portugal

July 21st, 2022

MO

3 2 2

unior