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Abstract  

 
In this work a theoretical study of the charge transport through a nanostructure composed by a 

double quantum dot was made by treating the system in two different ways: as single junction 

(SJ) within the scanning tunneling microscopy theory and a double junction (DJ) within the 

usual non equilibrium Green´s function theory approach. In the first case (SJ), the three blocks 

– contact-device-contact – is treated as a single junction by ‘breaking’ the nanostructure into 

two parts and considering each one as belonging to an ‘extended contact’. In the DJ case, the 

usual treatment with two contacts-related broadening and the exact Green´s function describing 

the propagation inside the system was made. Proceeding in this way, for a minimum two-level 

model system, we show that the results obtained with the SJ and DJ treatment are identical  

despite they start with a different general formulae for transmission. Finally, both treatments 

were used with a minimal model for a biphenyl system in an asymmetric sample-biphenyl-tip 

configuration and analyzed in terms of a SJ point of view bringing another perspective to the 

main features of this system.  

 

Keywords:  A. Molecular Electronics.  

                   D. Quantum transport. 

                   D. STM-theory. 

                  

 

1. Introduction  

 

Molecular electronics (ME) aims to develop devices to control the flow of 

electrons at nanoscale by using molecules as an active component [1-4]. For this, it is 

necessary to insert an organic component containing certain characteristics (asymmetry, 

for example) between two electrodes. Depending on the characteristics  the molecule 

can function as an active component, allowing, for example, a greater flow of electrons 

in only one direction, such as in molecular transistors [5, 6]. Devices based on organic 

molecules, when compared to their silicon analogues, have several specific advantages, 

among which we can mention [7, 8]: size (molecules have nanometric dimensions and, 

therefore, ME devices may occupy much smaller volumes than current silicon-based 

components), speed (the time for an electron to pass through a molecule is faster than in 

silicon components) and functionality once on a nanometric scale, quantum effects such 



as Coulomb blockade, among others, are present and can be used for the development of 

new types of devices. 

From an experimental point of view, there are several methods fabricate a 

molecular device and measure its electrical properties, such as [4, 7]: the “self-

assembly” sections (self assembly monolayer - SAM), a mechanically controlled 

junction break (MCBJ), an atomic force microscopy (AFM) and scanning tunneling 

microscopy (STM). In the latter, instead of a direct tip to tip coupling, a molecule can 

be attached between the tips and internal features of this compound (tips plus molecule) 

dictates how an electron propagates through it. Once a molecule is sandwiched between 

the tips, specific properties of the full system – geometrical structure, asymmetries, 

constrictions, vacancies and so on – will dictate the shape of electrical current of this 

system [6, 9]. When the strength of the interaction between the molecule and the 

metallic tips is large, we are in the so called strong coupling limit (sometimes referred 

to as the self-consistent field regime) where the molecular levels are broadened by their 

interaction with the contacts, resulting in a coherent (ballistic) electronic transport 

through the system [4, 10]. In this regime, perturbation theory is not valid anymore and 

the most used formalism, in this case, is the Landauer-Büttiker with an energy-

dependent transmission probability function T(E) calculated using Green´s function 

techniques [11, 12]. The device conductance obtained from transmission function is the 

key feature to determine charge transport properties through the nanostructure.                

 In this work we will study the charge transport through a nanostructure with two 

different approaches, here refereed as the single junction (SJ) and the double junction 

(DJ). For the SJ treatment, in spite of considering three blocks – contact-device-contact 

– we will ‘break’ the nanostructure in two parts, an extended right contact (containing 

part of the device), an extended left contact (containing the remaining part of the 

device) and use STM-theory of tunneling [2, 9, 13, 14] to study the electronic transport 

through these extended tips. The second approach we will use the standard Non 

Equilibrium Green´s Function (NEGF) treatment [11, 15, 16] for the transport in a 

double junction (DJ) system, consisting in  three blocks – contact-device-contact. These 

two approaches, despite starting from a very distinct general expression for the 

transmission function, for a minimal two level model, give equal results. In what 

follows, we will describe the methodology of our theoretical approach in section 2 and 

in section 3 we will apply the described approach for a model composed by two sites 

connected within a tight binding model and present the main results. In section 4, we 

will use a DJ treatment to study the transport through a biphenyl molecule as function of 

the torsion angle and show how the results can be interpreted in terms of a SJ point of 

view. Finally, the conclusions and perspectives will be presented in section 5.             

  

2. Eletronic transport methodology. 

 

The electronic transport through a single molecule attached to two (Left and 

Right) electrodes will be treated as a single junction (SJ) problem within STM-theory 

approach and as a double junction (DJ) within NEGF and, for both methods we will 

calculate the transmission function for a minimal two level model. In principle, and for 



different reasons, this problem could be viewed as a device connected to two electrodes 

forming a double junction or as two “extended-tips” with each part of the molecule 

forming an extended contact forming a single junction. For both cases, if a strong 

coupling limit exist, the strength of the interaction between the molecule and the 

metallic leads is large, resulting in a strongly hybridization between contacts and device 

(a molecule, for example) and the broadening of the device’s levels. In this limit, the 

transport is coherent and the Landauer approach can be used to describe the electronic 

transport through the molecule with the current calculated as [6, 10, 12]:  
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In Eq. (1) ( )Lf E  { ( )Rf E } are the Fermi distribution functions of the left {right} 

electrodes and ( )ET  is the total transmission function. This transmission, however, has 

different mathematical forms if we adopt a double junction (DJ) or a single junction 

(SJ) approach. In the DJ approach, a Non Equilibrium Green´s Function (NEGF) is used 

for the transmission in a linear regime and for a zero-temperature, which can be 

expressed as [10, 12]:     
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All quantities in brackets are matrices with dimension given by the number of 

elements of the atom-centered basis set spanning the system – usually an extended 

molecule with part of electrodes coupled at the ends – and Tr denotes the trace over the 

matrix. The terms L  and R  are the spectral matrix densities (the imaginary part of the 

self-energy) due to the coupling with left and right contacts and 
/

LR

r aG is the 

retarded/advanced Green´s function which can be viewed as the probability for a 

particle to propagate along the device. We stress that only if L , R  and 
/

LR

r aG  are 

simultaneously diagonalizable, Eq. (2) can be reduced to a sum of independent 

eigenchannels contribution [17]: ( ) ( )
tot

E ET T 



 .  

For the SJ approach, the strong hybridization allow us represent each half of the 

system as the active part of an extended left tip/sample and an extended right 

tip/sample. The energy-dependent transmission consider the multiple scattering 



processes at the junction, and  in its matrix formulation the total contribution is given by 

the trace of the resultant matrix [2, 9, 14]: 
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where  
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and 
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In previous equation, 0 ( )ˆ
L E  { 0 ( )ˆ

R E } is the density of states for the 

independent left {right} contact, 
(0) /

( )ˆ r a

L EG {
(0) /

( )ˆ r a

R EG } the retarded/advanced Green´s 

function of the uncoupled left {right} tip and ˆ
LR

V  the coupling between left and right 

tips. We stress that another version for ( )ˆ Et , could be obtained by changing L→R (and 

R→L) and using the identities: 
/ /ˆ ˆ ˆ ˆr a r a

LR R L LRV D D V  and 
/ /ˆ ˆ ˆ ˆr a r a

RL L R RLV D D V  [9, 14]. For a 

minimal two level model ( a , b ) Eq. (5a) can be reduced into a simple and useful 

expression:  
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In what follows, we will apply both treatments (DJ → Eq. (2) and SJ → Eq. (4)) 

in a tight binding approach for a minimal two level model that consist in two sites each 

one connected to a semi-infinite lead and coupled with each other via a hopping term. 

At the end we will show that these two approaches are identical, allowing a SJ 

interpretation of DJ results and vice versa.  

 

3. Two coupled sites in a tight binding model: theory. 

 

To apply the SJ and DJ treatment, let´s consider a minimal model composed by 

two sites A and B, each one attached to a semi-infinite electrode as showed in figure 

1(a).   



 

 
Figure 1: (a) Model of two sites A and B connected to Left and Right semi-infinite electrodes 
and (b) the renormalized sites with the leads L [R] ‘incorporated’ in site A [B].   

 

In previous figure, sites A and B represents the left and right moieties of a 

molecular system (such as an extended molecule composed by biphenyl connected to a 

small gold cluster, for example), with ‘sites’ L and R represents the Left and Right 

electrodes (or tips), respectively. The Hamiltonian of this system is given by: 
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Note that  there isn’t a direct coupling between left and right electrodes, nor a 

direct coupling between left electrode [right electrode] and site B [A], thus all 

interactions are local. With an explicit matrix written, a decimation [18] procedure can 

be performed, resulting in renormalized energies in sites A and B, and an effective 

Hamiltonian for the system, as showed schematically in figure 1b. In the effective 

Hamiltonian, the site´s energies are renormalized and given, respectively, by: 

( )A A L EE E  and ( )B B R EE E  . The term / ( )L R E  is the so called self energies 

and appears as a result of the coupling with semi-infinite leads and posses a real 

( / ( )L R E ) and an imaginary part ( / ( )L R Ei ). While the real part shift the energies values 

the imaginary one broad the level given to it a finite life time. For simplicity, let´s 

employ the wide band limit approximation [19] where the self-energies are energy-

independent and purely imaginary: / /( )L R L RE i   . With these considerations, for a 

simple two level model, the effective Hamiltonian can be written as:   
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Evidently that a matrix version exists and can be written as: 
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with all quantities ( /
ˆ ˆ, A BK H and /

ˆ
L R ) inside ˆ eff

H  being subspace’s matrixes. The 

transmission can now be obtained as: 

 

i) DJ-theory: in this case the exact Green´s function can be easily obtained by its 

definition (
1ˆ ˆ ˆ( )
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    , Î is a 2x2 identity matrix) and given by: 
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The transmission is then given by: 
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ii) SJ-theory: in this model the local density of states may be obtained by the usual 

relation [6, 20] 
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function of the uncoupled renormalized sites. Thus we have:  
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Considering the real (      
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parts of Green´s function in ˆ r

LD  (see Eq. (5d)), with ˆ
LRV K , the transmission is given 

by: 
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Finally, with a little algebra, it’s straightforward to show that with Eq. (12b-c), 

( )E  can be written as: 
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which, substituting in Eq. (12a) recover, exactly, the DJ results as in Eq. (10). Thus, 

despite Eq. (2) and Eq. (4) have distinct starting points, both give the same final 

expression for the transmission. This fact allows different points of view when 

interpreting the same phenomenon. For the SJ case, broadening effects due to device-

electrodes coupling appear naturally in the calculation of the local state density (LDOS), 

in the imaginary part of Green's function. Note that, while the Green´s function 

describes the propagation in each separate moiety, the STM theory 'solve' the scattering 

problem for a single barrier at some arbitrary point in the system (in our case, at the 

midpoint). The denominator  of ( )E  takes into account multiple scattering processes 

(transmissions and reflection) summing infinite terms of a series expansion, thus 

converging to the exact solution. Note that the absence of ( )E  will result in an 

unsaturated tunneling current when the tip-sample distance becomes small.   

For the DJ case, we have two scattering rates (barriers) at the junctions, with the 

Green´s function describing the propagation of a ´particle inside the full system, in our 

case, the two coupled sites. The strength of the coupling between electrodes also broad 

(and shift, if we discard the WBL approximation) the levels and all information of the 

full structure is contained in the exact Green´s function. Note that this is not true for the 

SJ case since  this case involves the Green´s function for each separated site, i.e., in  the 

absence of the internal coupling between them. However, the term ˆ r

LD  suppresses this 

lack, once it includes all orders of perturbation theory [13] so, correcting the Green´s 

function to its exact form. Note also,  that for the DJ case, the net flux across the left 

junction and the net flux across the right junction are equal but with opposite sign if we 

are in a steady state situation where there is no net flux into or out of the device [10]. 

These different points of views are illustrated in figure 2. 

 



 
Figure 2: (a) DJ point of view formalism with part of the tips included in the system forming an 

extended device. (b) SJ-theory point of view of dealing with the same problem with the device 

as part of an extended tip.            

 

In summary, the key feature of the similarity between both methods can be 

stated as follows: the point of the device where the electrical current is evaluated is 

somewhat arbitrary [6]. In other words, it doesn’t matter if the electrical current is 

calculated at a single junction (SJ) or through double junction (DJ): for a given system 

the results must be independent of this choice, once at steady state there is no net flux 

into or out of the device [10]. This equivalence, allow us to use Eq. (10) instead of Eq. 

(12a) to address problems involving STM, since a full calculation of ˆ r

LD  using Eq. 

(12a) seems to be more cumbersome than the use of Eq. (10). We stress that the equality 

TDJ= TSJ is valid even outside of WBL approximation. To see this, is enough to consider 

the full self energy correction adding the real part ( ( )X X X EE E  ) and the energy 

dependence in the broadening terms ( )X X E  in Eq. (10) and Eq. (12a).  In next 

section we will focus on  understanding of how Eq. (10) can be interpreted in terms of 

the STM-theory.  

 

4. Two coupled sites in a tight binding model: results. 

 

The numerical parameters for the model system in fig 1, were conveniently 

chosen so as to consider an asymmetrical coupling (    ; 0.16 ; 0.49L R   ), equal 

onsite energies (EA=EB=E0=0) with the internal coupling between the sites (K) treated as 

a varying parameter assuming (in arbitrary units) the following values: K= 0.07, 0.15, 

0.28, 0.50, 2.00 and 3.00.  

  



 
Figure 3: Transmission function for an asymmetric coupling (ГL = 0.16 and ГR = 0.49 – in 

arbitrary units) for different values of internal coupling K: (a) DJ approach. (b) SJ approach 
showing identical results for different formulas: Eq. (10) and Eq. (12a-c).      

 

As shown in figure 3a-b) the transmission results are equal for both cases SJ and 

DJ approaches. The maximum peak in the transmission around E=E0 is T=1 and occurs 

when .L R CK K    , i.e., when K is equal to the geometric mean of the couplings – 

in our case, for KC=0.28. As a consequence, for a symmetric coupling (where 

R L    ) we have T=1 only when K   , in accordance with the others works [21, 

22]. Thus, the maximum value in transmission allow us to distinguish two ‘regimes’ 

relating |K| and the coupling parameters: .L R CK K     and .L R CK K    . 

When CK K , we are in the so called contact regime. In this case, the split of the two levels 

starts to become apparent as presented in figure 2, and despite the height of the curves,  the 

area under the curves decreases around the fermi energy level and consequently the 

contribution for the electrical current decreases, reaching their maximum value 

for ,L RK   . We stress that if the values of the coupling parameters ( /L R ) are very 

small, the contact regime is also called weak coupling limit. In this limit ( L RK   ) the 

molecular levels are clearly resolved with a pronounced pseudo-gap between them and, 

consequently, we have two well defined eigenchannels with the transmission given by the 

Breit-Wigner formula as showed by magenta/x-letter and brown/asterisk curves in figure 3. 

Thus, the internal coupling for K>KC acts more as a measure of peaks distance (dpeaks=2K) 

between two Lorentzians curves than as a barrier inside the system. In this regime the system 

is almost transparent to the internal coupling [21-23], with the width fully ‘controlled’ by the 

coupling parameters ( /L R ), and the transmission through the system described by the Breit-

Wigner formula for two independent eigenchannels.      

The behavior of the transmission changes when CK K . In this case K acts like a 

internal ‘barrier’ in the sense that increasing its value the transmission´s peak also 

increases as shown in figure 3. Evidently that K is not only a ‘barrier’, but as mentioned 

before, it also splits the values of E0 into two values (E0 ± K). As long as CK K , this 

effect is suppressed by the broadening effects, with the gap between E0 ± K filled with 

states, which results in a non null transmission around the unperturbed level and with E0 

behaving like an ‘effective’ eigenchannel. We stress that near this limit (specifically 



for / 2CK K ) the tunneling approximation still works and an expression for the 

behavior in the tunneling regime can be obtained considering K<<1 in Eq. (12a) (or in 

Eq. (10)). In the both cases (SJ and DJ approaches), assuming that ˆ 1r

LD , it’s 

straightforward to show  that Eq. (10) (or Eq. (12a)) can be approximated to: 
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In figure 4 we plot the equation 13 and the exact solution for the transmission.     

     

 
Figure 4: Transmission in the tunneling approximation (Eq. (13)) for different values of the 

internal coupling KxA (x = 1, 2 and 3) and the exact solution (Eq. (10)) for different values of the 

internal coupling KxE (x = 1, 2 and 3). Doted and Dashed lines indicates the difference between 

the approximated and the exact height of peaks for the pairs (K1E ; K1A) and (K2E ; K2A).   

 

As expected for small values of K, the exact (Eq. (10)) and the approximated 

solution (Eq. (13)) almost coincide (see doted lines in figure 4). But increasing K, the 

peaks of the approximated solution grow up quicker than the exact solution. Note that 

for the resonance (E= E0), when 2 .L R CK K    , the approximate transmission is 

one and after this value, the transmission peaks blow up as depicted in the blue curve of 

figure 4. However, it remains finite and lower than one for the exact solution for all 

transmission peaks as shown in figure 4, by the dark-blue/x-points curve. Thus, in 

principle, despite overestimate the peak’s height, KC/2 defines the limit – in the sense 

that its maximum value is T=1 – of the tunneling regime and consequently, the 

application of the approximation in Eq. (13). Because this critical value is related to the 

couplings parameters ГL/R, we can see that for situations where there is a strong 

coupling between just one side of the SJ (left tip, for example) and the system  and a 

very weak coupling between the system and the other tip, Eq. (13) fails. In particular, 

when ГL >> ГR with ГR → 0 (or vice-versa) due to the strong asymmetry, the tunneling 

limit becomes too restrictive since in this case KC → 0.   



 

5. Tight Binding (TB) and Double Two Level Model (DTLM) 

approach for biphenyl     

 

 In previous section it was discussed  the transition between tunneling and 

contact regimes in quantum transport for a two level model system. For some reason, 

this type of analysis is also usually made in a STM-theory context where the tip-sample 

distance defines the transport regime: while a small distance implies in a strong 

coupling parameter between tip and sample and configures a contact regime, a long 

distance is related to a weak coupling parameter and configures a tunneling regime. But 

if, instead a direct coupling between the tip and the sample, we have a quantum circuit 

between them (a molecule, for example), the internal structure of the device can define 

the transport regime even for a small tip-device distance. A well known example of an 

internal parameter that may define the transport regime is the torsion angle (φ) in a 

biphenyl molecule [22-24]: the coupling between the two rings can be drastically 

reduced when the torsion angle between them, goes from 0 to 90 degrees [21-23]. This 

behavior can change the transport regime and, motivated by this peculiarity, we will 

apply both approaches (DJ and SJ) to study the quantum transport transition regime 

through this system. For this, we opt for a system disposed in an asymmetric 

configuration (tip-device-sample), and the transmission calculated by different methods: 

a Tight Binding (TB) approach within the DJ theory (DJTB), a Tight Binding with the 

SJ theory (SJTB) and a Double Two Level Model (DTLM) with the transmission as 

defined by Eq. (10).     

As mentioned above, the biphenyl system in figure 5a, changes its conductance 

as function of the torsion angle between the rings. This fact occurs even for small 

distances between the tip and the molecule. Experiments with STM-break junction 

technique show that the conductance can vary drastically depending if the rings are in a 

planar or in a perpendicular conformation, the latest one showing a tunneling like 

regime. The change in conductance from contact to tunneling regime reported by these 

experiments suggests that the conductance depends on the internal torsion angle and 

obeys a cos2(φ) law [22, 23].  

From a theoretical point of view, the minimal model that can be used to explain 

this result is a ‘two level model’ (TLM) approach [21, 22] or a four level model (FLM) 

approach [25]. In these models the on-site parameters are the pair's energies of some 

frontier molecular orbital (highest occupied molecular orbital - HOMO or the lowest 

unoccupied molecular orbital - LUMO) for each separated moiety (see fig. 5b). Their 

energy values are usually obtained: either by fitting experimental results [22] or they 

can be parameterized by other reference theoretical methods  such as density functional 

theory (DFT) or a simple tight binding approach (TB). Finally, with all necessary 

parameters in hand, the cosine law can be applied for subsequent calculations.  

      



 
 

Figure 5: (a) Schematic view of a biphenyl coupled to gold atoms via sulfur ‘clips’. (b) Two level 
model where each phenyl ring is treated as a site and each degenerate state as channels in 
parallel with a coupling proportional to cos(φ).  In (c) the ‘geometry’ for obtain the parameters 
for a two level model. The torsion angle φ represented in panel (d).      

 

In this work we choose to compare between the transmissions obtained with 

DJTB and SJTB approaches with an alternative treatment: a DTLM model as defined by 

Eq. (10). Employing the wide band limit approximation [8, 20, 26], the effective 

Hamiltonian can be constructed as follows: 

 

i) DJTB - in this case (see figure 5c) the molecular Hamiltonian contains five 

parameters: the on-site parameters for sulfur and carbons (γC and γS), the carbon-

carbon and sulfur-carbon interaction (βC~C and βSC) and the Top (T) and Bottom (B) 

line broadening matrix ГX (X = T, B). As usual [27-29] a simple formulae for the 

parameters can be adopted, denoting by γX = γ + aX β and βXY = bXY β, the on-site 

energy at the X-atom and the resonance integral between atoms X and Y, respectively. 

Conventionally [6, 27, 28], γ is taken as the 2px-orbital energy of carbon and β the 

resonance bond integral – represented by tilde between carbons (C~C) to 

differentiate single (C ̶ C), double (C=C) and triple (C≡C) bond – between the 2px-

orbitals of adjacent carbons with values given by γ = γC = 0 and β = βC~C = 1. Thus, 

all energies are measured in units of resonance integral with the on-site parameter of 

carbon taken as the zero level. For the sulfur on-site energy and the intra-site 

coupling energy we use [27] aS = 0.43 and bSC = 0.8, respectively, and the single 

bond between the phenyl rings we have bC-C = 0.9 which result in an inter-ring 

coupling given by: K(φ) = 0.9 cos(φ). For the coupling between the molecule and the 

semi-infinity systems (Tip and Sample), we employ the wide band limit 

approximation and assume that the tip (T) and sample (B) self-energies matrices are 

non null only at the terminal carbon and at the sulfur atom as showed in figure 5c. 



Also, to simulate the asymmetry between the sample at the Bottom (strongly 

coupled) and the tip (weakly coupled) we take ГB = 1 eV >> ГT = 0.01 eV. Finally, 

we solve the pair of non-hermitian Hamiltonian [30, 31], 
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which satisfy the bi-orthonormal relation [30] ,k l k l   and allow us to write 

the Green´s function into a spectral form: 
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In Eq. (15) ,m k  and ,m k  are the expansion (complex) coefficients of the linear 

combination of atomic orbitals (LCAO) of k and k , respectively. Notice that H0 in 

Eqs. 14a-b is related to the full system: left and right phenyl rings.  

 

ii) SJTB –At first we solve the pair of effective top moiety (X = T, x = t) and the 

effective bottom moiety (X = B, x = b), separated:      
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that again satisfy the bi-orthonormal relation [30] ,k l k l    and allow us to write 

the (n;m)-element of the retarded Green's function (
(0)

, ,

r

x n mG ) for each separated 

(unperturbed) moiety in its spectral form: 
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Again, ,m x  and ,m x  in Eq. (17) are the expansion (complex) coefficients of the linear 

combination of atomic orbitals (LCAO) of x and x , respectively. Once we have the 

Green´s function, the density matrix for each moiety ( ˆ
X , X = T, B) can be obtained by 

Eq. 11. Note that so far, we obtained the operators (effective Hamiltonian, Green´s 

function, density matrix) for each separate moiety that is nothing but a subspace of the 

full system, the latter given by the direct sum of each subspace. Thus, for a given 



operator ( Ô ) we have: ˆ ˆ ˆ
Full T BO O O  , and in the full space, each moiety operator is 

just the projection into a specific subspace. The full Green´s function, for example, is: 
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Finally, defining V̂ as: 
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we can apply Eq. 4 and obtain the transmission function for the SJ case within the STM-

theory.  

 

iii)   DTLM – in this model the on-site parameters are the pair's energies of the HOMOs 

and LUMOs of each separated moiety. The effective Hamiltonian is a 4x4 block 

matrix, composed by a direct sum of (non interactive) HOMO subspaces and LUMO 

subspaces ( ˆ ˆ ˆeff eff eff

TOT HOMOs LUMOsH H H  ), with each block given by:  
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The parameters of the DTLM were obtained from the DJTB results. More 

specifically, while the inter-site coupling and the on-site energy were chosen so as to fit 

the real part of HOMO-1, HOMO, LUMO and LUMO+1 of the DJTB eigenvalues, the 

level broadening are chosen to fit the order of magnitude of the transmission peaks and 

such that  ГB >> ГT. Proceeding in this manner and remembering that K(φ) = K0.cos(φ), 

we have: (ET,HOMO , EB,HOMO , ET,LUMO , EB,LUMO , K0) = (-1.0 , -1.1 , 1.0 , 1.2 , 0.3),       

ГB = 0.1 and ГT = 0.005, all quantities in eV. The transmission functions are shown in 

figure 6a-d for three different values of torsion angle (10°, 40° and 70°). 

 



 
Figure 6: Transmission function for biphenyl within DTLM (red/line) and TB (DJ and SJ) (black 
line/circle) approaches: (a) for ϕ=10°,  (b) ϕ=40° and  (c) for ϕ=70°. In (d) we put for all DTLM 
results (for the three torsion angles) together and for TB approach in the inset.    

Notice that, as for the simple TLM, the TB approach giveidentical results for DJ 

(eq 2) and SJ methods (Eq. 4). The same treatment must be used to incorporate the 

semi-infinity contacts and  in our case, we opt for a simple WBL approximation. 

Therefore, with this in mind, from now on we will consider the DJTB and SJTB 

approaches as TB in general. 

Observing figures 6a-c,  the DTLM gives a good description of the two first 

unoccupied and occupied levels, when comparing with the TB approach. Around E=0 

the energy positions of the four peaks in the transmission function, not only coincides 

(as expected) but, once the DTLM parameters (EX,Y , K0 , ГX) were fixed, they described 

the same trends as in TB: the splitting of unoccupied and occupied levels decrease when 

the torsion angle increases. On the other hand, in the HOMO-LUMO gap region, the 

DTLM approach underestimates the magnitude of the transmission when compared 

with the TB approach. This discrepancy is a result of the odd number of sites in the TB 

approach with a complex eigenvalue with a real part near E=0  having a very high 

imaginary part but with a small transmission’s coefficient in the Green´s function. This 

feature is absent in DTLM treatment. However, as shown in Fig. 6(d), in both cases (TB 

and DTLM), outside the HOMO/HOMO-1 and LUMO/LUMO+1 gaps, we have T10° > 

T40° > T70°, showing that the smaller the torsion angle, the greater the conductivity of the 

system[22, 24, 26]. The same is not valid inside the gap, since increasing the torsion 

angle the HOMO/HOMO-1  peaks becomes closer, thus summing their intensities and 

resulting in higher transmission in the gap region. The same behavior is also observed 

for LUMO/LUMO+1 peaks. We stress that this peculiar aspect is not enough to change 



the global behavior of the conductance, since the electrical current involves an 

integration over de energy within the Fermi window where, in general, we have T10° > 

T40° > T70°.  The DLTM approach could also be analyzed from a STM-theory point of 

view, focusing on the transport regime as function of the torsion angle. For  φ=10° ( see 

fig 6(a)) we can observe  the splitting of the HOMO levels around E=-1.2 eV from their 

uncoupled values., which is related to the strong coupling of the phenyl rings due to the 

small torsion angle between them. In this case we have: |K0 (10°)| = 0.295 > KC = 0.023, 

with the molecular levels being clearly resolved with a pronounced gap between them, 

resulting in two well defined eigenchannels in the transmission function. This  can be 

viewed as a contact transport regime. The same reasoning can be applied for LUMO 

and LUMO+1 levels, around E=1 eV. This behavior is still valid for φ=40° where, in 

this case we have |K0 (40°)| = 0.23 eV = 10KC, but with the gap between the peaks 

becoming smaller. However for large torsion angles φ=70°, the  peaks become 

unresolved as as evident  in Fig. 6(c). In this case we have |K0 (70°)| = 0.1 eV ~ 4KC and 

we can perceive a transition from the contact transport regime to the tunneling one. One 

might expect that above this value of torsion angle, the gap between these pair of levels 

decreases even further, with each pair of levels becoming a single effective transport 

channel and, in this case we are dealing with a tunneling transport regime.  

 

Evidently that, by considering more levels, in principle, more peaks would 

appear, as one can see for the TB approach. However, the analysis is similar and this 

simple DLTM explains the essence of the physical behavior of this system within SJ 

point of view for a less cumbersome DJ transmission formulae.              

                

6. Conclusions  

 

In this work we study the transmission through a molecular system using a 

double junction (DJ) – and single junction (SJ) mathematical treatment. Employing the 

wide band limit for a minimal two level model (TLM), we develop two exact formulas 

for the transmission function: one starting from a STM-theory and treating the system as 

single junction and another one starting from the usual NEGF  and treating the system 

as a double junction. Despite starting from different general formulae, we show that for 

a TLM the final results are similar, allowing us to choose the use of the least 

cumbersome one and interpret results in light of both points of view.  

To illustrate the application of this equality between DJ and SJ-theory we apply 

both formulas to understand the transmission through an ideal double quantum dot 

asymmetrically attached to two semi-infinite systems, representing a typical STM 

device composed by a tip-device-sample configuration. In a second case study, we  

calculated the transmission in a biphenyl molecule connected between gold atoms, 

using a standard tight binding approach (DJTB and SJTB) and an alternative one here 

called double two level model (DTLM) approach. Within a wide band limit 

approximation, for both cases (DJ and SJ) an analytic expression was obtained and 

showed that the equality between the two treatments holds, also in a matrix form. 

Therefore, the results obtained within a DJTB treatment, can be interpreted in light of 



the STM-theory (SJ) where a transition from tunneling regime to contact regime can be 

verified when the torsion angle between the rings decreases. Thus, while for the contact 

regime the split of the almost degenerate (unperturbed) levels gives rise to two well 

resolved channels for transmission, while for the tunneling regime each pair of levels 

becomes a single effective transport channel. Because the transition from one transport 

regime to another can occur even for a small distance, depending only of the torsion 

angle, the equality between DJ and SJ treatment enable us to use STM concepts for 

situations involving double junctions. Finally, we stress that despite the simple models 

adopted in this work, we showed that the equivalence between DJ and SJ-theory can be 

a valuable tool to study these systems, bringing new insights on the behavior of the 

system and permitting the use of a less cumbersome treatment for a given situation.           
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