
Using meta-learning to predict performance
metrics in Machine Learning problems

Davide Carneiro1,2, Miguel Guimarães1, Mariana Carvalho1, and Paulo Novais2

1 CIICESI,ESTG, Politécnico do Porto, Portugal
{dcarneiro,8150520,mrc}@estg.ipp.pt

2 Centro ALGORITMI, Universidade do Minho, Portugal
pjon@di.uminho.pt

Abstract. Machine Learning has been facing significant challenges over
the last years, much of which stem from the new characteristics of Ma-
chine Learning problems, such as learning from streaming data or in-
corporating Human feedback into existing datasets and models. In these
dynamic scenarios, data change over time and models must adapt. How-
ever, new data do not necessarily mean new patterns. The main goal
of this paper is to devise a method to predict a model’s performance
metrics before it is trained, in order to decide whether it is worth it to
train it or not. That is, will the model hold significantly better results
than the current one? To address this issue we propose the use of meta-
learning. Specifically, we evaluate two different meta-models, one built
for a specific Machine Learning problem, and another built based on
many different problems, meant to be a generic meta-model, applicable
to virtually any problem. In this paper we focus only on the prediction
of the rmse. Results show that it is possible to accurately predict the
rmse of future models, event in streaming scenarios. Moreover, results
also show that it is possible to reduce the need for re-training models
between 60% to 98%, depending on the problem and on the threshold
used.

Keywords: Interactive Machine Learning, Meta-Learning, Error Pre-
diction

Conflict of Interest

The authors declare that they have no conflict of interest to declare.

1 Introduction

Due to technological development and the growth of data use over the years,
organizations are currently dealing with very demanding and competitive sce-
narios on a daily basis. Organizations feel the pressure for rapid evolution and
need to invest and resort to new applications, technologies and tools in order
to gain a competitive advantage. In this context, Machine Learning has been
increasingly used to allow organizations to achieve competitive advantage.



2 Davide Carneiro et al.

Due to this increased and diverse use, very different application scenarios
and requirements for Machine Learning can be found, which also led to different
approaches to Machine Learning. A particularly interesting approach is that of
Active Learning (AL) Aggarwal et al. (2014). The key idea behind AL is that,
if allowed to choose from the training data, a ML algorithm can achieve higher
accuracy with fewer training samples. This is particularly important in domains
in which labeled data are hard or costly to get. When the process of obtaining
labeled data is implemented through the interaction with Human experts, this
form of Machine Learning is also often called interactive Machine Learning (iML)
Fails & Olsen Jr (2003).

iML can be defined as a continuous learning process that involves the interac-
tion of human experts: they analyze and evaluate its progress and integrate some
feedback, for example, by adding relevant variables to the model or even remov-
ing uninteresting ones, whenever necessary. As the human experts are responsible
for monitoring and evaluating the entire learning process, this interaction usually
leads to improved model outcomes and performance.

When iML approaches are used, one common concern is the occurrence of
significant changes in the structure, content or even the size of datasets over time.
As a consequence, trained models can quickly become outdated, loose relevance,
or even fail to represent the data patterns correctly. However, these problems
are not exclusive to iML systems, as they can also happen in applications which
resort to learning with streaming data Krawczyk et al. (2017) and also when
dealing with concept drift Widmer & Kubat (1996).

Knowing how and when to update a given model is thus crucial in these
scenarios. The how was already addressed by the research team in previous work
Ramos et al. (2020, 2019). This paper focuses on the when. Indeed, there is a
tradeoff between the usability or adequacy of the model, and the computational
resources and time that are needed to keep it up to date with the most recent
data.

The main goal of this paper, which extends the work published in Carneiro
et al. (2021), is to propose a method to minimize the need for retraining models
in ML use cases in which data change over time. The use case is a fraud detec-
tion system that maintains multiple machine learning models, that are updated
regularly as new labeled data is available. However, most of the times, the new
models are not significantly better than the previous ones, and their training
could have been avoided, thus saving computational resources and time.

To be able to avoid the unnecessary training of models, we propose the use
of a meta-model whose function is to predict the performance metrics of a given
model if it is trained on data with certain statistical properties. Performance
metrics include training time and well-known indicators such as rmse, mae or
r2. The statistical properties of data are obtained and represented through meta-
features: features that describe the original features of the dataset, such as miss-
ing data or the way data are distributed. The key idea is that a model for a
given ML problem for which there are new data is only retrained if there are
new and unknown patterns in the data that justify it. Indeed, new data does not



Using meta-learning to predict performance metrics 3

necessarily mean new patterns. This will allow organizations to save valuable
resources and time.

Specifically, in this paper we evaluate two different meta-models and their
ability to predict the performance metrics of models trained in the domain of
fraud detection. The first meta-model, deemed M1 was developed only with
data from a proprietary fraud detection dataset. The second, deemed M2, was
developed with data from 50 different datasets (including the fraud detection
dataset), and can be seen as a general meta-model, whose aim is to predict
performance metrics in virtually any ML problem.

We thus seek to answer the following research questions:

1. Is it possible to predict the performance metrics of a given model before it
is trained?

2. If so, will a specific meta-model developed for this purpose perform better
than a general-purpose one?

The significance of 1) resides on the ability to predict model performance,
and thus minimize the amount of models that need to be trained in interactive
learning scenarios. The potential advantages of this can be furthered if it can be
shown that a general-purpose meta-model, built from the statistical properties
of many datasets, can have better performance than a specific one, as in this
case there is no need to collect data and train a meta-model for each specific
application case. Moreover, a specific meta-model must be trained from scratch
for each ML problem, and there is a setup time in which an initial amount of
data is being collected to build the meta-model, so the meta-model can still not
be used. On the contrary, a general meta-model is trained and exists beforehand,
so it could be user right away at the onset of a ML project.

The paper thus starts with a description of the problem and context, and then
sets out to find the answers for these two main research questions. It is organized
as follows. Section 2 describes some related work in the field of interactive Ma-
chine Learning and its multiple application domains. Section 3 describes the use
case that sparked the development of this work: an interactive machine learning
system for financial fraud detection in which human auditors contribute with
labeled data over time. Next, Section 4 describes the proposed approach for pre-
dicting model performance, which is used to minimize the necessity for updating
or retraining models. Section 5 details the process through which the proposed
approach was validated, and the corresponding results. Finally, the conclusions,
limitations of the work, and future research directions are discussed in Section
6.

2 Related Work

In recent years, iML has drawn a lot of attention from the research community
and evolved into several domain fields Jiang et al. (2019). In Holzinger & Jurisica
(2014), the authors contribute with an overview on integrative and interactive
solutions for knowledge discovery in bioinformatics. The authors refer to the



4 Davide Carneiro et al.

importance of automated and interactive machine learning solutions given the
fast-paced growth of data and complex datasets.

The authors later follow up on their work in the health informatics do-
mainHolzinger (2016) showing that using iML can bring advantages when com-
pared to the use of automatic machine learning algorithms when dealing with
small datasets, or datasets with not enough training samples. The authors later
addressed the effectiveness of the IML-"human-in-the-loop", which consists in
model simulation with human interaction Holzinger et al. (2019). Specifically,
the authors focus on a case study on Ant Colony Optimization along with the
Traveling Salesman Problem.

In Berg et al. (2019), the authors present ilastik, which is an interactive tool
that allows the analysis of medical imaging using iML. This tool allows for image
segmentation, object classification tracking and counting, which are implemented
through the use of workflows that the users can adapt according to the problem
at hand.

iML has also been successfully applied in education: Kime et al. (2019) show
how one can use this technique to estimate the student mastery of calculus skills
using an online Problem-Solving Learning Environment. In Suh et al. (2019) the
authors present the AnchorViz, which is a tool that facilitates the discovery of
prediction errors and previously unseen concepts through human-driven semantic
data exploration.

The authors of Khan et al. (2019) show how one can overcome some of
the performance limitations of machine learning algorithms when dealing with
biomedical images, namely problems such as interactivity, dependence of large
datasets, and class imbalance. In particular, the authors address the advantages
of turning to iML when performing biomedical image visualization (Direct Vol-
ume Rendering).

The authors in Visi & Tanaka (2020) present an overview of the use of iML
techniques for analyzing and designing musical gestures. The authors address
the needs and challenges that one can face when working with sound synthe-
sis systems, and use iML techniques to human body gestures recognition and
how existing ML algorithms can be used in different tasks like interaction with
complex synthesis techniques and exploration of interaction possibilities.

More recently, Wu et al. (2021) propose a tool that combines iML and active
learning to high-impact bug report prediction. The authors suggest this combi-
nation since the results of a supervised learning application may be inaccurate
due to the need for a large number of labeled data.

The applications of interactive Machine Learning are thus numerous and di-
verse. In this paper we described one such application, in the domain of financial
fraud detection. However, the focus is not on the accuracy of the system itself
but rather on how a typical iML system can be improved by minimizing the
need for retraining models as new data becomes available.



Using meta-learning to predict performance metrics 5

3 An interactive Machine Learning system for Fraud
Detection

The main problem addressed in this paper is that of deciding when to update a
specific machine learning model in an interactive learning scenario. The problem
arose during the implementation of an iML system for Fraud Detection, which
is briefly described in this section (Figure 1).

The data used in this system is extracted from SAF-T (PT) files (Standard
Audit Files for Tax)1 from an organization. This file is an XML (eXtensible
Markup Language)2 file and contains information about national organizations’
billing and accounting data that must be shared regularly with the Portuguese
Tax Authority. Asides from this obligation, the data is also often used to perform
internal or external audits, especially in larger organizations.

In a first phase, the described data is transformed using a feature extraction
process, which results in the creation of the main features that are relevant for
auditing. Next, a Rule-based system is used to enrich the dataset by adding a
group of additional features, based on audit guidelines and other norms. The
resulting data is designated as unlabeled dataset.

After this feature extraction process, the interactive phase takes place: the
auditor initiates a new audit project by selecting specific instances from the pre-
viously defined dataset, and then proceeds to do the audit while providing struc-
tured and semi-structured feedback. This feedback can take can be diverse but
includes changes in the values of certain variables or natural or semi-structured
text used to justify certain decisions or audit rationale.

The instances reviewed by the auditors are then added to the labeled dataset,
which consists of the input for the training models that can predict the likelihood
of fraud of a certain instance. Additionally, when performing the analysis of
the unlabeled dataset, the auditor can also suggest new features or changes in
existing features. This allows auditors to add higher-level and more abstract
features, that often cannot be derived from the raw data through automated
processes, but that have meaning for an auditor. These features then go through
a curation process and, if approved, are added to the pipeline.

Since these user-defined features cannot be calculated directly from the raw
data, machine learning models are trained to predict them, so that they can be
automatically filled in the unlabeled dataset, so that the role of auditors grad-
ually becomes one of validating data rather than of providing feedback. Thus,
a pool of models exists in the system. One is considered the main model: the
model that predicts the likeliness of fraud. Additionally, one model is maintained
for each user-defined variable.

As the labeled dataset changes over time, with the contribution of the feed-
back provided by the auditors, the models eventually become outdated, which
decreases the accuracy of the system. The simplest solution would be to regularly

1 https://info.portaldasfinancas.gov.pt/pt/apoio_contribuinte/Pages/news-saf-t-pt-
vers-inglesa.aspx

2 https://www.w3.org/XML/



6 Davide Carneiro et al.

Fig. 1: Overview of the interactive learning system for fraud detection.

re-train the models. However, these model retrainings, which consume consid-
erable amounts of computational resources and time, do not always result in
significantly better models as new data does not necessarily mean new patterns.
Knowing if and when to re-train each of the models may significantly reduce the
resources used to maintain the models up to date. The process through which
this is implemented is described in the following section.

4 Predicting Model Performance

In interactive machine learning scenarios, as described before, the user can in-
teract with the system and contribute with feedback in the form of new data
or changes to existing data. One of the main consequences of using this type of
system is that the original dataset changes over time, not only due to the users’
feedback but also due to new unlabeled data arriving. Therefore, a key decision
in such systems is to determine the most appropriate time to retrain the model
or update parts of it.

There are two possible scenarios, which represent a trade-off between re-
sources consumption and accuracy: a system with more frequent updates and
a system with less frequent updates. A system with smaller intervals between
model updates will be a more dynamic system and adapt quicker to data changes.
But it can turn out to be more sensitive to noise and use more computational and
time resources for training the models. On the other hand, a system with large
intervals between models (or less frequent updates) is a less dynamic system
with slower responses to data changes. But a system with less frequent updates
has the advantage of using less computational and time resources, and also of
being less sensitive to noise in the data. A statically defined time interval for
updating models is also not a viable solution as data and patters arrive or change
at irregular intervals, thus making it hard if not impossible to find an adequate



Using meta-learning to predict performance metrics 7

interval. Hence the proposed solution of predicting models’ performance metrics
before training each model in order to determine if it is worth to update them.

Specifically, we aim at predicting the error metrics of each model if trained on
the most recent data. With this approach, the model is effectively only trained
if the statistical properties of the new data point to a better performance of the
model. Thus, the computational (and time) resources are only put in use when
required to perform the retraining/update of the model with a significantly lower
error.

To do this, we propose an approach based on meta-learning. Specifically, we
use a meta-model to predict the expected error of training a specific model on
a dataset with given statistical properties. The input of the meta-model is the
set of features that describe the statistical properties of the datasets, which we
call meta-features. The meta-features are in turn stored in the so-called meta-
dataset : one row for each dataset (or version of a dataset) for which a model
was trained. The meta-features, which are the independent variables of the meta-
model, consist of the characteristics of the dataset (number of rows and columns,
and respective ratio), statistical properties of the data (mean kurtosis and mean
skewness), information-theoretic (class entropy, mean entropy of variables, noise
signal ration), among many others. The meta-dataset also stores the dependent
variables, which consist of the performance metrics of each model trained with
the respective dataset, including the rmse, mae, F1-score or training time.

Figure 2 contains more information of the components of the system involved
in the prediction of the performance metrics. When the meta-dataset contains
enough information, the meta-model can be trained. First, the system checks
if there is any trained meta-model. If it does not exist, the first version of the
meta-model is trained with the available meta-data and it is added to the model
pool.

On the other hand, if there is already a meta-model, the system uses the
outcome of the meta-model, which is the expected error metric of a given model
when trained on a dataset, to decide if a model ought to be trained at a specific
moment. If the new model is not expected to have better performance metrics
than the previous model, then it is not worth it to re-train the model. If multiple
error metrics are required, one meta-model is trained for each error metric, all
based on the same meta-dataset but using the respective dependent variable.
These meta-models are also updated at regular intervals, as new meta-data is
available from the retraining of the models in the pool.

So, based on the outcome of the meta-model, the system decides if it worth it
to train a new model. Every time a new model is trained, the information about
the meta-features is added to the meta-dataset. With this, the capability of the
system to perform predictions on the quality of future models can be improved
over time.

The validation and results of this approach are discussed in the following
section.



8 Davide Carneiro et al.

Fig. 2: Detail of the components in the system involved in the training and use
of the meta-model.

5 Methodology and Results

This section details the methodology through which the proposed approach was
validated and the corresponding results. A twofold approach was followed. On
the one hand, we use a proprietary fraud detection dataset to create a first meta-
model M1 that is specific to this domain. On the other hand, we use a collection
of 50 publicly available datasets to create a second, more general meta-model
M2 that can, in principle, be used in any domain. We assess and compare the
performance of both meta-models at predicting the performance of new models
trained for predicting the level of fraud for this particular problem.

5.1 Data

Two sets of data are used in this experiment. The first is composed of a propri-
etary fraud detection dataset consisting of more than 20.000 instances and 28
attributes. Of the 28 attributes, 4 are enumerations proposed by human audi-
tors and represent high-level/abstract concepts that cannot be directly extracted
from the SAF-T files but have meaning in the domain. These are deemed f1 to f4.
Another attribute is the main dependent variable and it represents the likeliness
of an instance being fraud, from the auditors’ perspective. This is represented as
a number between 0 and 9. These 5 attributes are contributed by the auditors.
The remaining 23 attributes are either numeric or enumerations and are auto-
matically obtained from the SAF-T files through the feature extraction process
described before.

The second set of data is composed of 53 datasets, covering both regression
and classification problems, as well as streaming and batch scenarios. Table 1
describes some of them. Of these, 50 datasets were used to train the meta-model
whereas the last 3 depicted in the Table were used for testing it.



Using meta-learning to predict performance metrics 9

Table 1: Characterization of some of the 53 datasets used for building M2: the
first 50 were used as training sets (excerpt) while the last 3 were used for testing
the meta-model. (R: Regression, B: Binary Classification)
Dataset Source Type N Features
School grades https://www.mldata.io/dataset-details/school_grades/ R 649 33
Cardiovascular diseases https://kaggle.com/aiaiaidavid/cardio-data-dv13032020 B 10000 12
Killed or Seriously Injured https://kaggle.com/jrmistry/

killed-or-seriously-injured-ksi-toronto-clean
B 12557 56

Contains Aditives https://kaggle.com/jadeblue/openfoodfactsclean B 774 13
Starbucks proteins https://kaggle.com/jadeblue/openfoodfactsclean R 243 7
McDonalds proteins https://kaggle.com/jadeblue/openfoodfactsclean R 260 6
Medical Cost https://kaggle.com/mirichoi0218/insurance R 1338 7
Car Price Prediction https://kaggle.com/hellbuoy/car-price-prediction R 205 26
Social Network Ads https://kaggle.com/dragonheir/logistic-regression B 400 5
Abalone https://www.mldata.io/dataset-details/abalone/ R 4177 9
Auto mpg https://www.mldata.io/dataset-details/auto_mpg/ R 398 9
Exercise Calories https://kaggle.com/fmendes/fmendesdat263xdemos R 9000 8
Computer Hardware https://www.mldata.io/dataset-details/computer_

hardware/
R 209 10

Forbes Billionaires https://www.mldata.io/dataset-details/forbes_
billionaire/

R 2043 6

House Price https://kaggle.com/harlfoxem/housesalesprediction R 4600 19
Fraud Detection Proprietary R 22225 13
Wine quality (red) https://kaggle.com/uciml/red-wine-quality-cortez-et-al-2009R 1599 12
Wine quality (white) https://data.world/uci/wine-quality/workspace/

data-dictionary
R 4500 12

Diabetes https://kaggle.com/kandij/diabetes-dataset B 768 9
Breast Cancer https://archive.ics.uci.edu/ml/

machine-learning-databases/breast-cancer-wisconsin/
B 699 10

Airlines https://moa.cms.waikato.ac.nz/datasets/ B 10000 8
AWS Prices https://moa.cms.waikato.ac.nz/datasets/ R 10000 8
Electricity https://moa.cms.waikato.ac.nz/datasets/ B 10000 9

5.2 Creation of the Meta-models

The process followed to create both meta-models, albeit with some particulari-
ties, can be generalized to what is represented in Figure 3. The training datasets
(or parts of it, as described below) are first processed to standardize them. Next,
the meta-features are extracted. At the same time, a model is trained with the
dataset, and its resulting performance metrics are also extracted. These perfor-
mance metrics (which are dependent variables for the meta-model) are added,
together with the meta-features (the independent variables), as a new instance
to the meta-dataset. At regular intervals, a new meta-model is trained. The per-
formance of the meta-model is evaluated using 10-fold cross-validation. Once
the new version of the meta-model is available, it can be used to make predic-
tions about the performance of future models. All models and meta-models were
trained using a Random Forest algorithm, with 20 trees, each with a maximum
depth of 20 levels. While better algorithms/configurations may exist, we did
not yet focused on optimizing meta-model performance: so far, we rather fo-
cused on the validation of the proposed approach, and will improve meta-model
performance in future work.

Meta-datasets are composed of 111 columns. Of these, 105 correspond to the
meta-features extracted from the datasets, while the remaining six correspond to
relevant performance metrics: training time, rmse, mae, mse, rmsle and r2. This
means that the meta-dataset can be used to train six different meta-models, one
to predict each of these individual metrics. However, in this paper we focus on
the prediction of the rmse.

Two meta-models were used in these experiments. The first, deemed M1, was
built solely with data from the proprietary fraud detection dataset. The second,



10 Davide Carneiro et al.

Fig. 3: Methodology followed to create the meta-models.

deemed M2, is a more general meta-model that the team has been improving
over time, based on 50 datasets, as described in the previous section. There are
two main reasons for this twofold approach: 1) we want to determine if a specific
and domain-dependent meta-model built on-the-fly, as new data arrive, is good
enough to predict the performance of new models; and 2) we want to determine
if a general meta-model, build with data from many different problems, can be
used for a specific domain and eventually outperform the specific meta-model.
If the second case holds true, it may open the door to the use of a general meta-
model that can be used successfully in multiple domains, without the need to
train specific meta-models, thus avoiding the initial warm-up phase in which
data must be collected before predictions of the meta-model can be performed.

M1 was created solely with data from the proprietary dataset. The goal
is to assess how the proposed approach would perform in a real scenario, in
which the meta-model is trained only with the data of the domain, as it arrives.
To this end, a new instance was added to the meta-dataset at each 200 new
instances of labeled data. This also means that when the labeled data starts to
arrive, there is yet no meta-model that can be used to make predictions. For this
reason, the first version of the meta-modelM1 was only trained after 2000 labeled
instances were available. Since a new instance is added to the meta-dataset at
each 200 instances, the first version of M1 was trained with 10 instances of
meta-data. From this point on, M1 can start to be used to predict future models
performance. Moreover, a new meta-instance continues to be added at a 200-
instances interval (and the meta-model is updated), so that the meta-model
continues to improve over time.

Concerning M2, the goal is that we can have a general meta-model, built
based on many different datasets, that can virtually be applied to any specific
Machine Learning problem and still make good predictions regarding the per-



Using meta-learning to predict performance metrics 11

formance of its models. The main challenge is thus to have a sufficient number
of diverse datasets, so that the meta-model knows as much different problems as
possible. Diversity is related to the statistical properties of the datasets: datasets
that, albeit from different domains, have similar meta-features (statistical prop-
erties) will not add value to the meta-dataset.

For the sake of diversity, the list of datasets used to build M2 contains both
regression and binomial classification problems. In order to include them in a
single meta-dataset, all binomial classification problems were converted into re-
gression problems by replacing the binary labels with the values 0 and 1. We also
acknowledge that, if only one meta-instance were added to the meta-dataset for
each dataset, we would have a rather small meta-dataset (with only 50 meta-
instances). Thus, in order to increase its size, each dataset was also streamed in
blocks of 200 instances. For each block, a model was trained, and the correspond-
ing meta instance added to the meta-dataset. For example, for a dataset with
650 instances, 4 models are trained: the first with 200 instances, the second with
400, the third with 600, and the last one with the whole 650. For training each of
these models, a Random Forest algorithm was used. Each model is constituted
by 20 trees, each with a maximum depth of 20 levels. Following this approach,
the meta-dataset that was used to train M2 contains a total of 673 instances.

While the instances in the meta-dataset generated from a same dataset are
not very diverse, which is a limitation, this allows to create a relatively large
meta-dataset with a small number of input datasets. However, in future work
we will continue to include additional datasets so that the meta-model learns to
predict on a more variate range.

Table 2 describes some of the meta-features considered. The criteria for se-
lecting a sample of the meta-features was based on the relative importance of
each one during the training of the M2.

Table 2: Ten most relevant meta-features, out of 105 used to build the meta-
model.
Meta-feature Scaled Importance Description
linear_discr 100 Linear Discriminant classifier
mut_inf.sd 48.38 Standard deviation of mutual information
sparsity.sd 29.87 Standard deviation of sparsity metric
eq_num_attr 20.21 Attributes equivalent for a predictive task
one_itemset.sd 14.15 Standard deviation of one itemset
elite_nn.sd.relative 10.21 Performance of Elite Nearest Neighbor
one_itemset.mean 10.05 Mean of one itemset
ns_ratio 9.73 Noisiness of attributes
attr_ent.mean 8.29 Mean of Shannon’s entropy
mut_inf.mean 7.25 Mean of mutual information

Once the meta-dataset was built, the meta-model M2 was trained. The same
algorithm (Random Forest) and configuration used in the training of each model



12 Davide Carneiro et al.

was also used to train the meta-model. To assess the quality of the meta-model,
a 10-fold cross-validation approach was followed, as depicted in Figure 3. Metrics
were computed for each holdout prediction, and averaged at the end, resulting
in the following values: RMSE = 0.000355, r2 = 0.98 and mae = 0.007.

5.3 Results

This section details the results achieved when using both meta-models M1 and
M2 to predict the rmse of the fraud detection model over time. The experiments
described in this section were performed on a system with 2.7 GHz quad-core
processor and 16GB 2133 MHz RAM.

To evaluate both meta-models, the following methodology was implemented.
The fraud detection dataset was streamed in blocks of 200 instances, in the
order in which the data was labeled by the auditors, to simulate a real use case
scenario. For each block, a new fraud detection model was trained. At the same
time, each meta-model M1 and M2 was used to predict the rmse of each model
trained, and the predicted value of the rmse was compared against that of the
observed rmse after training the model.

The only difference is that, as detailed in the previous section, the M1 meta-
model was only available after the first 10 blocks of data. This happens because
M1 is trained with the data, as it arrives, so there is the need for a setup period
in which a minimum amount of meta-data is necessary. This does not happen
withM2, which was previously trained using data from 50 datasets, as previously
described. This means that for M1 101 models were trained, while for M2 this
number amounts to 111.

Moreover, for each model trained, we analyze whether using the prediction of
M1 and/or M2 to avoid unnecessarily training a model would have been a good
decision. To this end the following rationale was used: if the rmse predicted
by a meta-model changes by at least a given amount, the model is retrained,
otherwise we abstain from doing so. Nonetheless, for validation purposes we still
train every model, to ascertain the accuracy of the meta-models.

Specifically, we ran 4 experiments: one for each meta-model and for each of
two thresholds (5% and 10%), deemed A to D. That is, in experiment A and B
the meta-model M1 is used, but in A the fraud prediction model is re-trained
if M1 predicts a change of 5% or more in the rmse, while in B the model is
retrained only if M1 predicts a change of 10% or more. Experiments C and D
follow the same rationale, but use M2 as the meta-model instead.

The performance of each experiment is measured through several indicators:
the differences between the predicted and observed rmse (also calculated through
the rmse), the accuracy (measured as the percentage of times in which the meta-
model predicted that the rmse would decrease by at least the corresponding
threshold and it actually did), and the number of models whose training would
have been avoided if the proposed approach was being used. The results of the
four experiments are detailed in Table 3.

From Table 3 it is possible to conclude that M2 behaves fairly better at esti-
mating the rmse of each successive model that is trained: the rmse is significantly



Using meta-learning to predict performance metrics 13

Experiment RMSE Accuracy #Avoided models
A 0.122 93.07% (94/101) 79.21% (80/101)
B 0.122 94.06% (95/101) 85.15% (86/101)
C 0.001 99.10% (110/111) 71.17% (79/111)
D 0.001 100% (111/111) 83.78% (93/111)

Table 3: Summary of the performance indicators of each experiment performed.

lower while the accuracy is higher and the number of models whose training was
avoided is more or less in line with that of M1.

Figure 4 shows the plots of the predicted vs. observed rmse for each of the
experiments. Data points are color-coded according to the order in which the
models were trained, from red to blue. That is, instances that correspond to
earlier models are represented in red, and the later models are represented in
blue. This shows, first, that the rmse generally tends to decrease as the system
is provided with more labeled data. Moreover, it also shows that M2 is far better
at predicting the rmse of the models.

It should also be taken into consideration that one of the datasets used for
building M2 is the fraud detection dataset that was used to build M1. How-
ever, while M1 is based exclusively on this dataset, M2 is enriched with 50 other
datasets, which provide it with a significantly better ability to predict the per-
formance metrics of the models.

It is also worth noting that experiments A and B are very similar in terms
of results, as well as experiments C and D. This is because each of these pairs of
experiments was run with the exact same data, hence the similar results. What
changed is only the threshold for deciding when to re-train a model.

The differences in the experiments given the two different thresholds are
visible in Figures 5 and 6. In Figure 5 (5a), only 21 models would have to be
trained (instead of 101) if we were to update models only when the rmse is
predicted to change by at least 5%. If a threshold of 10% is used, the number of
models trained would have been only 15 (out of 101).

Figure 6 shows a similar analysis but in this case for meta-modelM2. A major
difference is that M2 can be used as soon as the first block of data is available,
while M1 requires a set of initial data (2000 instances) to train the first version
of the meta-model, as described previously. This explains the differences in the
X-axis.

The Figure shows that there is a very significant variability in the observed
rmse in the first 2000 instances of data: the rmse starts very low, and then quickly
increases, to start decreasing gradually. This can be explained with the initial
small volume of data, that leads to such variations. Nonetheless, M2 is able to
predict the rmse with a high degree of accuracy, even in these conditions. In the
case of experiment C, if the proposed approach was used (with meta-model M1)
only 32 models would have been trained (instead of 111), while in experiment D
only 18 models would have been trained.



14 Davide Carneiro et al.

Fig. 4: Observed vs. predicted RMSE in each of the experiments.

The more general meta-model M2 was also validated on the 3 test datasets,
whose details are provided at the end of Table 1. These datasets were not used
to train the meta-model, so they can be used to assess the ability of the meta-
model to generalize. Moreover, these are three of the well-known MOA datasets,
a framework for data stream mining that also provides datasets with concept
drift such as the three used in this work.

Table 4 summarizes the key performance indicators for each test dataset and
threshold used (5% and 10%). The results show thatM2 is fairly good at guessing
the rmse of models trained for each of the three datasets over time. Moreover,
depending on the dataset and on the threshold, the decrease of number of models
trained ranges between 63.27% and 97.96%, while the accuracy (the percentage
of times that the meta-model correctly predicted a significant variation in the
rmse) ranges between 81.63% and 100%.



Using meta-learning to predict performance metrics 15

0 2500 5000 7500 10000 12500 15000 17500 20000
number of instances

0.4

0.6

0.8

1.0

1.2

er
ro
r m

et
ric

 rm
se

rmse vs predictions
predict
rmse
predict 5% better error
retrain model

(a) Experiment A

0 2500 5000 7500 10000 12500 15000 17500 20000
number of instances

0.4

0.6

0.8

1.0

1.2

er
ro
r m

et
ric

 rm
se

rmse vs predictions
predict
rmse
predict 10% better error
retrain model

(b) Experiment B

Fig. 5: Evolution of RMSE over time in Experiments A and B. The solid line rep-
resents the observed rmse while the dashed line represents the rmse predicted
by M1. Green stars show the points in which the meta-model predicted a signif-
icant decrease in the rmse (over the corresponding threshold), while red crosses
represent the moments in which the models were trained.

0 5000 10000 15000 20000
number of instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

er
ro
r m

et
ric

 rm
se

rmse vs predictions
predict
rmse
predict 5% better error
retrain model

(a) Experiment C

0 5000 10000 15000 20000
number of instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

er
ro
r m

et
ric

 rm
se

rmse vs predictions
predict
rmse
predict 10% better error
retrain model

(b) Experiment D

Fig. 6: Evolution of rmse over time in Experiments C and D. The solid line rep-
resents the observed rmse while the dashed line represents the rmse predicted
by M2. Green stars show the points in which the meta-model predicted a signif-
icant decrease in the rmse (over the corresponding threshold), while red crosses
represent the moments in which the models were trained.



16 Davide Carneiro et al.

Experiment Threshold RMSE Accuracy #Avoided models
Airlines 5% 0.012 100.00% (49/49) 95.92% (47/49)
Airlines 10% 0.012 97.96% (48/49) 97.96% (48/49)
AWS 5% 0.004 81.63% (40/49) 63.27% (31/49)
AWS 10% 0.004 95.92% (47/49) 87.76% (43/49)

Electricity 5% 0.005 100.00% (49/49) 95.92% (47/49)
Electricity 10% 0.005 100.00% (49/49) 95.92% (47/49)

Table 4: Summary of the performance indicators of each experiment performed
for the test datasets.

Figures 7 to 9 provide additional details on the behavior of the meta-model
over time. These Figures show that, in general, M2 is able to predict the rmse
of the models trained over time in a satisfactory way, with the exception of the
beginning of the AWS experiment, in which the initial error is rather large, but
quickly decreases.

0 2000 4000 6000 8000 10000
number of instances

0.40

0.42

0.44

0.46

0.48

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 5% better error
retrain model

(a) M2 used on the Airlines dataset, with
a threshold of 5%.

0 2000 4000 6000 8000 10000
number of instances

0.40

0.42

0.44

0.46

0.48

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 10% better error
retrain model

(b) M2 used on the Airlines dataset, with
a threshold of 5%.

Fig. 7: Evolution of rmse over time in the Airlines experiment. The solid line rep-
resents the observed rmse while the dashed line represents the rmse predicted
by M2. Green stars show the points in which the meta-model predicted a signif-
icant decrease in the rmse (over the corresponding threshold), while red crosses
represent the moments in which the models were trained.

Figure 10 shows the plots of the predicted vs. observed rmse for each of the
three experiments with the test datasets. Data points are color-coded according
to the order in which the models were trained, from red to blue. That is, instances
that correspond to earlier models are represented in red, and the later models are
represented in blue. This shows, first, that the rmse generally tends to decrease
as the system is provided with more labeled data. Moreover, it also shows how
M2 has the largest error in the first models trained for the AWS dataset, but



Using meta-learning to predict performance metrics 17

0 2000 4000 6000 8000 10000
number of instances

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 5% better error
retrain model

(a) M2 used on the AWS dataset, with
a threshold of 5%.

0 2000 4000 6000 8000 10000
number of instances

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 10% better error
retrain model

(b) M2 used on the AWS dataset, with
a threshold of 5%.

Fig. 8: Evolution of rmse over time in the AWS experiment. The solid line rep-
resents the observed rmse while the dashed line represents the rmse predicted
by M2. Green stars show the points in which the meta-model predicted a signif-
icant decrease in the rmse (over the corresponding threshold), while red crosses
represent the moments in which the models were trained.

0 2000 4000 6000 8000 10000
number of instances

0.30

0.31

0.32

0.33

0.34

0.35

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 5% better error
retrain model

(a) M2 used on the Electricity dataset, with
a threshold of 5%.

0 2000 4000 6000 8000 10000
number of instances

0.30

0.31

0.32

0.33

0.34

0.35

er
ro
r m

et
ric

 rm
se

rmse vs predictions

predict
rmse
predict 10% better error
retrain model

(b) M2 used on the Electricity dataset, with
a threshold of 5%.

Fig. 9: Evolution of rmse over time in the Electricity experiment. The solid line
represents the observed rmse while the dashed line represents the rmse predicted
by M2. Green stars show the points in which the meta-model predicted a signif-
icant decrease in the rmse (over the corresponding threshold), while red crosses
represent the moments in which the models were trained.



18 Davide Carneiro et al.

behaves generally well other than that, and especially well in the Electricity
dataset in which the error is minimum.

Fig. 10: Observed vs. predicted RMSE in each of the experiments with the test
datasets.

While there are still limitations to the proposed approach, the results are
satisfactory and encouraging. Especially because M2, the more general meta-
model, behaves better than M1, the specific meta-model. This points out that it
might be possible to develop a meta-model that is robust enough to predict the
performance of any Machine Learning problem, as shown by the results of the
meta-model when used in the three test datasets.



Using meta-learning to predict performance metrics 19

6 Conclusions, Limitations and Future Work

In this paper, we proposed a solution to a problem commonly found in interactive
machine learning scenarios: to know whether or not is worth it to update a
model at a given time. The proposed solution predicts the performance metrics
of a model to be trained on data with certain statistical properties, represented
as meta-features of the original dataset. The main goal of this approach is to
minimize the necessary amount of computational resources and time in such
systems, and make a more efficient management of model pools.

To validate the solution, several experiments were run. Some aimed at val-
idating the approach for the specific use case of fraud detection, and others
validated the approach for 3 publicly available streaming datasets. Moreover,
two different meta-models were evaluated. The former, M1, was build on-the-fly
in the fraud detection use case, as new data arrived. The goal was to determine
if it is possible to kickstart such a process from the ground up, with no initial
meta-model, and start building the meta-model on-the-fly, only with the data
of a specific problem. The latter, M2, was trained previously, using data from
50 publicly available datasets. It was then tested on the fraud detection dataset
and on 3 test datasets. The goal was to determine if such a meta-model would
be able to generalize to any problem, and eventually behave better than a model
trained for a specific problem.

Results show that M2 behaves generally better when compared with M1.
This suggests that it might be possible to have a general meta-model, that is
able to predict performance metrics for any Machine Learning problem. This was
shown not only for the fraud detection dataset, in which M2 outperformed M1,
but also in the three test datasets, in which M2 showed that it can accurately
predict the evolution of the rmse over time, despite not knowing such datasets in
the training phase. Moreover, M2 maintains or improves its accuracy over time
even when testing on streaming datasets with concept drift, as was the case.

In terms of avoiding the retraining of models, M2 shows that it can avoid
between 60% to 90% of model retrainings, depending on the ML problem, when
models are updated at 200-instances intervals. In scenarios of interactive machine
learning in which multiple ML models are maintained in parallel, this may result
in significant savings in computational resources and training time.

It should also be taken into consideration that one of the datasets used for
building M2 is the fraud detection dataset, that was the only one used to build
M1. However, while M1 is based exclusively on this dataset, M2 is enriched with
50 other datasets, which provide it with a significantly better ability to predict
the performance metrics of the models. That is, the input of other ML problems
contributes to improve the accuracy of the meta-model for a specific problem.

In future work we will evaluate the proposed approach regarding the remain-
ing performance metrics, and also in what concerns training time. The goal is
to determine if the meta-models are able to predict the remaining performance
metrics with the same accuracy as rmse, including training time. This will result
in a much more thorough solution, that will enable far robust policies for up-
dating models in interactive learning scenarios. Based on these results, we will



20 Davide Carneiro et al.

also propose a better policy for updating models than that used in this paper,
which is only based on the predicted change of a specific error metric. Finally,
we will also increase the meta-dataset with data from additional ML problems,
with the goal of making it as generalizable as possible, and also test it in more
diverse ML problems.

Acknowledgments

This work was supported by the Northern Regional Operational Program, Por-
tugal 2020 and European Union, trough European Regional Development Fund
(ERDF) in the scope of project number 39900 - 31/SI/2017, and by FCT –
Fundação para a Ciência e Tecnologia within projects UIDB/04728/2020 and
UIDB/00319/2020.



Bibliography

Aggarwal, C. C., Kong, X., Gu, Q., Han, J. & Philip, S. Y. (2014), Active
learning: A survey, in ‘Data Classification: Algorithms and Applications’, CRC
Press, pp. 571–605.

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C.,
Schiegg, M., Ales, J., Beier, T., Rudy, M. et al. (2019), ‘Ilastik: interactive
machine learning for (bio) image analysis’, Nature Methods pp. 1–7.

Carneiro, D., Guimarães, M., Carvalho, M. & Novais, P. (2021), Optimizing
model training in interactive learning scenarios., in ‘WorldCIST (1)’, Springer,
pp. 156–165.

Fails, J. A. & Olsen Jr, D. R. (2003), Interactive machine learning, in ‘Pro-
ceedings of the 8th international conference on Intelligent user interfaces’,
pp. 39–45.

Holzinger, A. (2016), ‘Interactive machine learning for health informatics: when
do we need the human-in-the-loop?’, Brain Informatics 3(2), 119–131.

Holzinger, A. & Jurisica, I. (2014), Knowledge discovery and data mining in
biomedical informatics: The future is in integrative, interactive machine learn-
ing solutions, in ‘Interactive knowledge discovery and data mining in biomed-
ical informatics’, Springer, pp. 1–18.

Holzinger, A., Plass, M., Kickmeier-Rust, M., Holzinger, K., Crişan, G. C.,
Pintea, C.-M. & Palade, V. (2019), ‘Interactive machine learning: experi-
mental evidence for the human in the algorithmic loop’, Applied Intelligence
49(7), 2401–2414.

Jiang, L., Liu, S. & Chen, C. (2019), ‘Recent research advances on interactive
machine learning’, Journal of Visualization 22(2), 401–417.

Khan, N. M., Abraham, N., Hon, M. & Guan, L. (2019), Machine learning on
biomedical images: Interactive learning, transfer learning, class imbalance, and
beyond, in ‘2019 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR)’, IEEE, pp. 85–90.

Kime, K., Hickey, T. & Torrey, R. (2019), Refining skill classification with in-
teractive machine learning, in ‘2019 IEEE Frontiers in Education Conference
(FIE)’, IEEE, pp. 1–8.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J. & Woźniak, M. (2017),
‘Ensemble learning for data stream analysis: A survey’, Information Fusion
37, 132–156.

Ramos, D., Carneiro, D. & Novais, P. (2019), evorf: An evolutionary approach
to random forests, in ‘International Symposium on Intelligent and Distributed
Computing’, Springer, pp. 102–107.

Ramos, D., Carneiro, D. & Novais, P. (2020), ‘Using a genetic algorithm to
optimize a stacking ensemble in data streaming scenarios’, AI Communications
(Preprint), 1–14.

Suh, J., Ghorashi, S., Ramos, G., Chen, N.-C., Drucker, S., Verwey, J. & Simard,
P. (2019), ‘Anchorviz: facilitating semantic data exploration and concept dis-



22 Davide Carneiro et al.

covery for interactive machine learning’, ACM Transactions on Interactive
Intelligent Systems (TiiS) 10(1), 1–38.

Visi, F. G. & Tanaka, A. (2020), ‘Interactive machine learning of musical gesture’,
arXiv preprint arXiv:2011.13487 .

Widmer, G. & Kubat, M. (1996), ‘Learning in the presence of concept drift and
hidden contexts’, Machine learning 23(1), 69–101.

Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T. &Mu, D. (2021), ‘Improving high-
impact bug report prediction with combination of interactive machine learning
and active learning’, Information and Software Technology 133, 106530.


