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ABSTRACT 

Gastric cancer is considered one of the most complex diseases in the world. There are more than 

200 cancer subtypes characterised. Efforts such as TCGA and ICGC aim to catalogue and discover major 

cancer-causing genome alterations in large cohorts of human samples. 

The accumulation of enormous quantities of multidimensional data requires new methods for 

integrative analysis of multiple data sources. We divided our work into two major topics: i) Recapitulation 

of genomic and epigenomic patterns of an independent study on gastric cancer conducted in the host 

group, and ii) Gender differential expression in gastric cancer. For these analyses, we used the TCGA as 

an independent cohort. Multiple genomic platforms were analysed such as DNA Methylation, copy 

number variation (CNV) and messenger RNA (mRNA). 

In an internal previous study, a gene amplified in 20% of gastric cancer cases showed regions of 

co-amplification. Our goal was to assess if we could recapitulate these results using the TCGA cohort. 

These amplifications can offer the tumour mechanisms of resistance to therapies and may have potential 

as therapeutic targets. 

For the same previous study, epigenomic patterns were also characterised. where a set of genes 

hypermethylated in 80% of the samples were found. Our goal was to investigate if these results could be 

recovered in the TCGA cohort. Eight genes were found constantly hypermethylated in the TCGA tumour 

samples. In the future, they can be important for early detection and classification of the tumour stages. 

Differences between males and females go beyond anatomy and include differential susceptibility 

to a variety of diseases. Cancer has an important and considerable gender differential susceptibility that 

has confirmation in several epidemiological studies. A second major goal of this dissertation was to 

evaluate gender differential expression in gastric cancer. We analysed RNA sequencing data from TCGA, 

revealing specific differentially expressed genes (DEGs) in males and females. There are a limited number 

of previous studies that integrate gender into their design. Our study shows that there are significant 

transcriptomic differences between genders, therefore, this subdivision should be taken into account in 

the design of cancer studies since the resulting heterogeneity may affect their results. Overall, our results 

shed light on the genomic mechanisms that may drive in a gender differential susceptibility to cancer. 
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In conclusion, we were able to recapitulate the results from the internal group study of genomic 

and epigenomic data using an independent cohort of TCGA using. With gender differential expression 

analysis, we provide novel insights into the differential risk underlying gastric cancer. The fast growth of 

high-throughput biology will further expand our knowledge of molecular dimensions of cancer. 

 

Keywords: Gastric Cancer; TCGA; DNA Methylation; RNA Sequencing; copy number variation (CNV) 
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RESUMO  

O cancro gástrico é considerado uma das doenças mais complexas do mundo. Existem mais de 

200 subtipos deste cancro. Esforços como o TCGA e o ICGC visam catalogar e descobrir as principais 

alterações e causadores de alterações em cancro, em grandes grupos de amostras humanas.  

A acumulação de enormes quantidades de dados multidimensionais requer novos métodos de 

análise integrativa de múltiplas fontes de dados. Dividimos o nosso trabalho em dois grandes tópicos: i) 

Recapitulação de padrões genómicos e epigenómicos de um estudo independente em cancro gástrico 

realizado no grupo; e ii) Expressão diferencial por género em cancro gástrico. Para estas análises, 

usamos o coorte independente do TCGA. Múltiplas plataformas genómicas foram analisadas, tais como 

metilação, a variação do número de cópias (CNV) e dados de RNA mensageiro (mRNA).  

Num estudo realizado internamente, um gene amplificado em 20% dos casos de cancro gástrico 

apresentou regiões de co-amplificação. O nosso objetivo era avaliar se conseguiríamos recapitular esses 

resultados, usando o coorte do TCGA. Estas amplificações podem conferir ao tumor mecanismos de 

resistência a terapias e podem ter potencial como alvos terapêuticos.  

No mesmo estudo interno, dados epigenómicos foram também caracterizados, onde foi 

encontrado um conjunto de genes hipermetilados em 80% das amostras. O nosso objetivo foi investigar 

se estes resultados poderiam ser recuperados no coorte do TCGA. Oito genes foram encontrados 

constantemente hipermetilados em amostras de cancro do TCGA. No futuro, estes podem ser 

importantes na deteção precoce e a classificação das fases do tumor.  

As diferenças entre homens e mulheres vão para além da anatomia, incluindo 

diferentes suscetibilidades a uma variedade de doenças. O cancro possuiu importante e 

considerável suscetibilidade diferencial entre géneros, confirmada em vários estudos epidemiológicos. O 

segundo grande objetivo desta dissertação foi avaliar a expressão diferencial dos genes nos dois sexos 

em cancro gástrico. Analisámos dados de sequenciação de RNA a partir do TCGA, revelando genes 

específicos diferencialmente expressos em homens e mulheres. Há um número limitado de estudos 

anteriores que integram o sexo no seu desenho. O nosso estudo mostra que existem 

diferenças trancritómicas significativas entre sexos, e por isso esta subdivisão deve ser tida em conta no 

desenho de estudos em cancro, uma vez que a heterogeneidade resultante pode ter impacto nos seus 
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resultados. No geral, os nossos resultados podem clarear os mecanismos genómicos que podem 

conduzir a numa suscetibilidade diferencial entre género para o cancro.  

Em conclusão, fomos capazes de recapitular os resultados do estudo interno de dados 

genómicos e epigenómicos, usando um coorte independente do TCGA. Com a análise de expressão 

diferencial entre géneros, fornecemos novas pistas sobre o risco diferencial que está subjacente ao 

cancro gástrico. O rápido crescimento da biologia de alto rendimento vai expandir ainda mais o nosso 

conhecimento sobre as dimensões moleculares no cancro. 

 

Palavras-Chave: Cancro gástrico; TCGA; metilação de DNA; sequenciação de RNA; variação no número 

e cópias (CNV) 
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1. INTRODUCTION 

1.1 Context and Motivation 

Cancer is a disease determined by genetic and epigenetic alterations, inherited or acquired (Wang, 

2013). These alterations can happen through several mechanisms: copy number changes, chromosomal 

rearrangements, DNA methylation of CpG islands and DNA sequence changes (McLendon et al., 2008). 

Cancer genome alterations can be divided into two classes: driver mutations, which cause tumour 

growth, and passenger mutations, which do not necessarily offer a growth advantage (Wang, 2013). 

Tumours are characterised by the presence of cell populations that suffer uncontrolled division and 

show the potential to invade other tissues (Soper and Rasooly, 2016). Each tumour is unique and typically 

has a large number of genetic alterations. Nevertheless, not all these lesions drive proliferation and 

metastasis (Akavia et al., 2010). The identification of driver mutations will offer perceptions into cancer 

biology and highlight new drug targets and diagnostic tests (Hudson (Chairperson) et al., 2010). 

Gastric cancer is currently the fifth most diagnosed cancer and the third principal cause of cancer-

related death in the world (GloboCan, 2012). Reaching a detailed molecular understanding of gastric 

cancer pathogenesis is crucial to improving patient outcome, but this goal has been hampered due to 

the histological and etiologic heterogeneity of these tumours (Tan and Yeoh, 2015).  

The majority of the gastric cancers are adenocarcinomas (Bass et al., 2014). These have been 

subdivided into intestinal and diffuse types according to the Lauren classification (Zhang, 2014). An 

alternative classification, proposed by the World Health Organisation (WHO), divides gastric cancer into 

papillary, tubular, mucinous and signet-ring cell carcinomas (Brambilla et al., 2001).  Nonetheless, these 

classifications have shown limited clinical utility (Zhang, 2014). 

The Cancer Genome Atlas (TCGA) network, is a project funded by the United States National 

Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI)  (Zhang, 2014), and 

aims to catalogue and discover key cancer-causing genome alterations in large cohorts of human tumours 

using high-resolution microarrays and Next-Generation Sequencing (NGS) platforms  (McLendon et al., 

2008). Stomach adenocarcinoma is one of the 25 main cancer types to be widely characterised by these 

platforms (Zhang, 2014). 
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With the large variety of rare mutations found in cancer cells, genome-wide studies for identifying 

cancer driver mutations demand to sequence large cohorts of patients (Vandin et al., 2012).  Through 

the use of large cohorts, DNA sequencing allowed uncovering a list of frequent genomic alterations (e.g. 

amplifications, deletions, translocations) (Chang et al., 2013). 

The recent landmark TCGA study (Bass et al., 2014) revealed data from 295 gastric cancer that 

were simultaneously profiled on multiple molecular platforms. Six molecular platforms were 

characterised: array-based somatic copy number analysis, microRNA (miRNA), array-based DNA 

methylation, whole-exome sequencing, messenger RNA sequencing and reverse-phase protein array 

(RPPA). About 77% of the tumours for all platforms were tested. This study proposed a classification of 

gastric cancer into four genomic subtypes: Epstein-Barr virus (EBV), genomically stable (GS), 

microsatellite unstable (MSI) and chromosomal instability (CIN). 

Tumours positive for EBV pinpoints the viral etiology of gastric cancer (Zhang, 2014), which 

shows common PIK3CA mutations, higher occurrence of DNA hypermethylation than other subtypes and 

amplifications of JAK2, CD274 and PDCD1LG2 (Bass et al., 2014).   

GS tumours are best represented by the diffuse type of gastric cancer, with a lower number of 

mutations when compared to other subtypes (Choi, 2015). Mutations in CDH1 and in the Ras homolog 

gene family, member A (RHOA) gene or fusions which involve RHO-family GTPase-activating proteins are 

characteristics of GS (Bass et al., 2014). 

MSI tumours show elevated mutation rates (Bass et al., 2014). Mutations in PIK3CA, ERBB2, 

ERBB3 and epidermal growth factor receptor (EGFR) were identified (Zhang, 2014). These mutations are 

normally related to the loss of function of mismatch repair (MMR) genes and associated with the intestinal 

type, women, and older age (Choi, 2015).  

In tumours with chromosomal instability, genomic amplifications of receptor tyrosine kinases 

(RTKs) were identified (Zhang, 2014). Frequent mutations in TP53 are also related with CIN subtype 

(Choi, 2015). 

In fact, these subtypes appear to be different at the molecular level, suggesting not only that 

molecular processes driving tumorigenesis can differ between patients but also that treatment may need 

to be tailored for each subtype of tumour (Shmulevich, 2014). 
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Further goals of TCGA include: the development and application of new technologies, 

identification of cancer-specific molecular alterations, production of data and results freely available to 

the scientific community (Chang et al., 2013). 

Each project assays a large number of cases in different data types: the sequencing of the exome, 

copy number variation (CNV), DNA methylation, mRNA expression, microRNA expression and protein 

expression (Shmulevich, 2014).  

1.2 Technologies used by the TCGA 

Two types of assays to measure the six data types from the TCGA project were used: array-based 

or sequenced-based.  

Within array-based methods, DNA microarrays are a collection of DNA probes arrayed on a solid 

support. These probes (radioactively labelled) can be a small fragment of a gene and are used to hybridise 

a complementary DNA (cDNA). Microarray probe intensity is assumed to be proportional to the 

concentration of the transcript (Gresham et al., 2008). High throughput, speed and automation are 

advantages of microarray techniques (Schrenzel et al., 2009). 

Within sequence based methods, RNA-Sequencing (RNA-Seq) is a technique for whole-genome 

sequencing transcriptome profiling (Li et al., 2010).  RNA-Seq is the direct sequencing of transcripts by 

sequencing technologies (Zhao et al., 2014). 

Microarrays are less efficient in detecting genes with low expression level due to cross-

hybridization while RNA-Seq is more sensitive, detecting genes with low expression and being very 

accurate on extremely abundant genes. The detection of new transcripts, isoforms, splice variants and 

allele-specific expression are some advantages of RNA-Seq avoiding some issues like the cross-

hybridization (Zhao et al., 2014). The assays used in each data type by TCGA are listed in Table 1. 
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Table 1 - Types of assay used in each TCGA data type studied 
CNV and DNA methylation were measured by microarray assays while mRNA expression through RNA-Seq. 

 

1.3 Dissertation Goals  

In this dissertation, we perform two major types of analyses: 

a) Recapitulate genomic and epigenomic results previously found in an internal study 

with data from a TCGA independent cohort. This internal project used 50 Tumour/Normal tissue 

samples of individuals from Portuguese origin. It made available for each sample three data types: CNV, 

DNA methylation and mRNA expression. However, only genomic and epigenomic platforms were analysed 

in this dissertation. There is currently a study underway with the results of genomic and epigenomic data 

analysis made in this dissertation and they will be published in the near future. For reasons of 

confidentiality, full details of the results cannot be provided here. Therefore, all the results obtained in 

this dissertation from this study will be masked;  

b) Understand gender differential expression in gastric cancer. It is well established that 

gender influences the response to cancer treatment. Nevertheless, the molecular causes are still 

undiscovered and therapies to cancer are usually carried out without taking into account the gender of 

the patient. In another research line in the group, we are trying to understand the molecular differences 

between genders that could explain a predisposition to cancer. Data from a TCGA cohort were used for 

this analyses.  

Data type Platform Assay 

CNV 
Affymetrix Genome-Wide Human SNP Array 

6.0 

Microarray - measured by Single 
Nucleotide Polymorphisms (SNP) 

arrays 

mRNA 
expression 

IlluminaHiSeq_RNASeqV2 RNA-Seq  

DNA 
Methylation 

Illumina Infinium HumanMethylation27 
 Illumina Infinium HumanMethylation450 

Microarray 
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In order to achieve the previous goals, the following general tasks were performed: i) TCGA data 

was accessed; ii) this data was processed in order to allow an efficient analysis and interrogation; iii) 

genetic patterns found in an independent study were validated, and iv) differential expression analysis 

was performed between two males and females. 

1.4 Organisation of the contents 

Chapter 2. TCGA data 

Comprehensive review of the TCGA data with the description of the data collected, how the TCGA data 

were divided (levels and access) and how the TCGA samples were identified. 

 

Chapter 3. Genomic data types 

The description of the genomic data types from the TCGA cohort and the internal group study cohort, 

used in this dissertation. Descriptions of how the data were obtained, thresholds and range of the values 

for each platform. 

 

Chapter 4. Tools 

The description of the tools used in this dissertation. Several types of bioinformatics tools were described. 

Two different programming languages were used: R system and batch (command-line) processing. 

 

Chapter 5. Hypothesis 

The hypothesis that standed at the core of this work and the specific questions for each data type studied. 

 

Chapter 6. Methods 

The developed methods used in this dissertation were described. 

 

Chapter 7. Results 

The results obtained for each analysis performed in this dissertation. 

 

Chapter 8. Discussion 

A global analysis of this work was described, along with possible improvements and future work. 
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2. TCGA DATA 

TCGA is an open data resource that provides publicly available cancer genomic data classified by 

data type (e.g. gene expression, methylation, somatic mutations) and data levels that allow a structured 

and easy access to this resource with suitable patient confidentiality protection (Bass et al., 2014). 

2.1 Data types collected 

TCGA examines a very large number of samples, aiming for 500 samples for each tumour type. 

This sample size offers the statistical power needed to produce comprehensive genomic profiles. The 

same samples are studied by different TCGA research teams, which can result in a most complete and 

consistent view of cancer genomes since every sample is analysed several times and for each platform 

(National Institute of Health, 2016a).  

A Tissue Source Site (TSS) collects samples (tissue, cell or blood) and clinical metadata from 

eligible patients. Next, these samples are sent to a Biospecimen Core Resource (BCR), which is a TCGA 

centre where samples are carefully catalogued, processed, quality-checked and stored along with 

participant clinical information (Tomczak et al., 2015).  

Table 2 shows the general clinical data for 445 patient studied in the TCGA cohort. 

Table 2 - Clinical data for patients studied in TCGA stomach cancer cohort 
This table consists of the most important clinical data from the patients of the TCGA cohort. 

Clinical Data Absolute value 

Race 

White 278 

Black or African American 13 

Asian 89 

NA 64 

Other 1 

Gender 

Male 285 

Female 158 

NA 2 

Ethnicity 

Not Hispanic or Latino 318 

Hispanic or Latino 5 

NA 112 

http://cancergenome.nih.gov/Common/PopUps/popDefinition.aspx?id=CDR0000561401&version=Patient&language=English
https://wiki.nci.nih.gov/x/bZNXAg
https://wiki.nci.nih.gov/x/BZhXAg
https://wiki.nci.nih.gov/x/8ZdXAg
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Family history of gastric cancer 

Yes 18 

No 324 

NA 103 

Age at initial diagnosis 

<50 35 

51-60 107 

61-70 143 

>70 153 

NA 5 

Tumour status 

Tumour free 291 

With tumour 92 

NA 62 

 

For most cases of TCGA, only tumour tissue samples were available (Table 3). However, for some 

TCGA cancer samples studied, normal adjacent tissue samples and samples of cancerous tissue were 

collected (Table 4). Pairs of matched normal and tumour tissue allow researchers to identify the genomic 

changes that might play a role in the development of studied cancer (National Institute of Health, 2016a). 

Table 3 - Tumour samples available by TCGA of data type studied 
Tumour samples quantity present in each platform and existing samples between two platforms. 

Tumour 
Samples 

CNV 
DNA 

Methylation 
mRNA 

expression 

CNV 442   

DNA 
Methylation 

441 443  

mRNA 
expression 

412 415 416 

 
 

Table 4 - Paired samples available by TCGA of data type studied 
Paired samples quantity present in each platform and existing samples between two platforms. 

Paired 
Samples 

CNV 
DNA 

Methylation 
mRNA 

expression 

CNV 411   

DNA 
Methylation 

26 27  

mRNA 
expression 

33 0 35 
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2.2 Data Access 

There are two data access tiers for TCGA data: Open Access data tier and Controlled Access data 

tier. The Open Access tier contains public data, which is not unique to an individual such as gene 

expression data, genotype frequencies, copy number alterations by regions, and epigenetic data.  

Controlled Access tier requires user authorization in order to access them and includes data that 

impacts the confidentiality  and privacy of the individuals like primary sequencing data, processed Exon 

array data, clinical text fields and individual germline variant data (National Institute of Health, 2016b). 

In this dissertation, we only focus on the Open Access data tier. 

2.3 Data Level 

Data level is a data classification method used in the TCGA network to assist researchers in 

communicating and locating their data of interest. There are four data levels (Table 5): Level 1 (raw data), 

Level 2 (processed data), Level 3 (segmented or interpreted data) and Level 4 (region of interest data) 

(Klinger, 2014).  

 While the access to most of the level 1 and 2 data is restricted, the entire level 3 data are publicly 

available (Zhu et al., 2014). Some data types can only be accessed in some levels like CNV and mRNA 

expression. However, data types like DNA methylation allows access to all levels. The data used in this 

project will normally be the most processed and normalised data (Ayala, 2014a). 

 

Table 5 - TCGA Data Levels 
The first three levels apply to individual sample while level four analyses across sample sets. Level 3 is the most used level. Based on 

(Klinger, 2014). 

Data Level Level type Description 

1 
Raw, not normalised 

data 
Not normalised low-level data for single sample 

2 Processed data 
Normalised data for single sample; verification of existing 

molecular abnormalities 

3 
Segmented/Interpreted 

data 
Set of processed data from single sample grouped by probed 

loci 

4 Summarised Data 
Quantified association between classes of samples based on 
molecular abnormalities, sample characteristics or clinical 

variables 

https://wiki.nci.nih.gov/x/bZNXAg
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2.4 TCGA Identifier 

TCGA biospecimen IDs can be represented in two forms: barcode (a human readable ID) and 

Universally Unique Identifiers (UUID) (a machine readable ID) (Ayala, 2014). 

Since the launching of the project, the barcode was the prime identifier of biospecimen data. This 

barcode is a composition of several identifiers, wherein each one identifies a different data element (Figure 

1).  

 

 
Figure 1 - Hypothetical TCGA barcode 

This figure shows how the TCGA barcode can be decomposed into components (labels) and after translated into its metadata. Based on 
(Ayala, 2013). The components are: Project (Project name), TSS (Tissue source site), Participant (Participant in study), Sample (sample 
type – tumour or normal), Vial (order of sample), Portion (order of portion), Analyte (analyte molecular type), Plate (order of plate), and 
Center (characterization center) (Ayala, 2013). a) Barcode representing the sample from the patient 8525 collected from tumour tissue 

(01). B) Barcode representing the sample from the patient 8525 collected from normal tissue (11). 
 

The Participant label indicates who donated the tissue sample to the TSS, and the Sample label 

shows the sample type, tumour types range from [01-09] and normal types range from [10-19] (Ayala, 

2013). 

The UUID consists of 32 randomly generated digits (e.g. ebf3e73f-41a0-4ca5-b608-

fe1c629e16de), having recently been applied in TCGA. Every TCGA barcode should have the 

corresponding UUID (Ayala, 2014). This change of identifiers occurred because the barcodes are limited 

on the number of variations and the UUID can be simply created and processed by computing systems 

(Ayala, 2013). 
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3. GENOMIC DATA TYPES 

The data generated from tumours in the TCGA project are very large in volume. For the molecular 

characterization of gastric cancer different genomic data types and molecular analysis different 

technologies were used (Shmulevich, 2014) that are reviewed in this chapter. 

3.1 Copy Number Variation 

CNVs are usually found in tumour tissues and involve losses (deletions) or gains (amplifications) 

of one or both copies of chromosomal regions. CNVs change the quantity and organisation of genomic 

material, which can cause an alteration of the transcriptional activity that may affect critical genes (Singh 

and Salnikova, 2015). 

Deletions, duplications, inversions, or translocations, can be causal alterations, possibly changing 

the gene function or affecting large chromosomal regions (Singh and Salnikova, 2015). 

Segments of copy number data (level 3) from the TCGA website with intensities for each array 

probe were downloaded. The obtained files were classified as nocnv or cnv using Hg18/Hg19.  Nocnv 

means that a fixed set of probes that frequently contain germline CNVs are removed before segmentation, 

while cnv has both germline and somatic variations (Zhu and Ji, 2014). Hg18 or Hg19 specifies that in 

preparation for segmentation, the probes are organised based on the order of reference genome HG18 

or Hg19 respectively (Human Genome) (Broad Institute of MIT and Harvard, 2016).  

Segment means are measured by log ratio (LR) also called log-2 ratio. LR can be calculated by 

the standard formula: log2 (observed intensity/reference intensity), which is the ratio of probes in the 

segment (Laddha et al., 2014). 

The objective is to define regions in the genome where the sample mean LR value is different 

from the reference. A mean LR of zero means that a sample has the same number of copies as the 

reference. When the LR segment mean is higher than zero represents a copy number gain while an LR 

segment mean lower than zero indicates copy number loss (Bozeman, 2014).  
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3.2 DNA Methylation 

DNA methylation is an epigenetic mechanism (Huang et al., 2015) that plays an important role 

in cancer and occurs when methyl groups are attached to cytosine bases at the C-5 position, usually in 

a CpG sequence context. Genes with high levels of methylation in their promoter region tend to be 

transcriptionally silent (Jin et al., 2011). 

TCGA used two platforms to obtain DNA methylation profiles: Illumina HumanMethylation27 

(HM27) and Illumina HumanMethylation450 (HM450) (Zhu and Ji, 2014). 

 The HM27 and HM450 arrays target 27,578 and 482,421 CpG sites, respectively. Level 2 

contains a summary of intensities for methylated (M) and unmethylated (U) data. Detection probabilities 

(p-values) were also calculated. Level 3 data contains beta values for each locus with annotations for the 

gene symbol, chromosome and CpG coordinate (Bass et al., 2014). 

 For each locus, the score for DNA methylation is represented as a beta (β) value (β= (M/ (M+U)), 

in which M represents the mean methylated signal intensities and U indicates the same but for 

unmethylated signal (Bass et al., 2014).  

Beta-values range from 0 and 1 (or 0 and 100%) and under ideal conditions a value of zero 

indicates no DNA methylation, while a value of one indicates complete DNA methylation (Du et al., 2010).  

In methylation arrays, detection p-values reflect the strength of DNA hybridization. It can be 

evaluated through the comparison between the CpG-intensity and the intensities of negative control 

probes. Non-significant detection p-values (greater than 0.05) typically means bad hybridization, bad 

probe design or chromosome abnormalities and is masked as “NA” on the array (Du et al., 2014). 

3.3 mRNA expression 

Messenger RNA  carries the genetic information derived from DNA in the form of code (in the 

form of a sequence of three base pairs) which specifies a particular amino acid (Lodish et al., 2000). 

RNA-Seq is a technology for transcriptome profiling. RNA-Seq can rapidly identify and quantify 

rare and common transcripts and non-coding RNAs, among a large range of samples. NGS quantifies 

discrete, digital sequencing read counts offering consistent and complete results (Tomczak et al., 2015). 

The quantification of RNA-Seq data is made by a high-throughput sequencer which generates 

millions of reads from the cDNA fragments(Li et al., 2010) . Next, there is the quantification of expression 
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by Reads per kilobase per million mapped reads (RPKM). RPKM is a method of quantifying gene 

expression from RNA-Seq data by normalising for total read length and the number of sequencing 

reads(Zhao et al., 2014). 

For this data type, RNASeqV2 data (instead of RNA-Seq, which uses a different set 

of algorithms to determine the expression levels) was downloaded. Level 3 data was available and files 

with normalised_results extension were used (files containing gene IDs and normalised counts for gene 

expression) (Pihl, 2013).  

 To better understand the range and the underlying distribution of the values in these technologies, 

we have analysed five randomly selected samples for each data type (Figure 2). 

 

 
Figure 2 - Samples distribution for five TCGA samples in each data type analysed 

a) CNV- log2-ratio range from [-9:7], follow a normal distribution c) mRNA expression – RPKM range from [-2:7], follow a log normal 
distribution; c) DNA Methylation – beta values range from [0:1], follow a log normal distribution. 
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Table 6 summarizes the parameters used in each data type analysis for the TCGA data. 

 

Table 6 - Parameters used in each data type studied - TCGA 
These are the parameters used by TCGA in each data type. Bass et al used the described thresholds (Bass et al., 2014) in the study of 

gastric adenocarcinoma and will be the considered values. 

Data type Parameters Description (Thresholds) 

CNV Log-2-ratio (LR) 
LR ≥ 0.1 : copy number gain 
LR ≤ - 0.1 : copy number loss 

- 0.1 < LR < 0.1 : no copy number variation 
DNA 

Methylation 
Beta-value (β) 

β ≥ 0.3 : Hypermethylated 
β < 0.3 : Hypomethylated 

mRNA 
expression 

RPKM RPKM > 5 : eligible for expression analysis 

 

3.4 Internal group study 

The internal group study (GROUPSTUDY) is a study developed by elements within the Expression 

Regulation in Cancer (ERIC) group from IPATIMUP-I3S. The study consists of 50 Tumour/Normal samples 

of gastric cancer of individuals from Portuguese origin. For each of these individuals, three types of data 

such as CNV, DNA methylation, and mRNA expression were analysed. CNVs were obtained through whole 

genome sequencing while DNA methylation data used Reduced Representation Bisulfite Sequencing 

(RRBS), different technologies from the ones used on TCGA. These two platforms are the ones studied in 

this dissertation. The analyses (genomic and epigenomic data like CNV and DNA methylation, 

respectively) performed in this dissertation were conducted to validate and better understand the results 

of this study. 

 

 

 

https://en.wikipedia.org/wiki/Reduced_representation_bisulfite_sequencing
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4. TOOLS 

To achieve the goals that we set ourselves, we used several types of bioinformatics tools, of distinct 

complexity. The programs that will be described here were used in two different ways: R system and 

batch (command-line) processing. In R, we used R programming mostly to treat data and R packages to 

perform the actual analysis. Just one tool was used in batch processing, BEDTools. 

4.1 Genome Annotation 

After sequencing the genome, the next logical step is to perform the respective annotation 

(Boundless Microbiology, 2016). The genome must be annotated for genes, or described, in a way that 

all biologists can use them (Stein, 2001).  

Genome annotation is the process which identifies the locations and structure of genes and every 

coding region in a genome (Boundless Microbiology, 2016). Available genomic annotations in the human 

genome are: Ensembl (Hubbard et al., 2002), RefSeq (Pruitt et al., 2007) and GENCODE (Harrow et al., 

2012). Further annotation includes gene function being commonly represented by Gene Ontology (GO) 

(Gene Ontology Consortium, 2004) which includes molecular functions, biological processes and cellular 

locations (Beaver et al., 2010). 

Functional Enrichment Analysis uses statistical methods to find enriched functional annotations 

among the provided list (e.g., metabolic pathways). The analysis depends on biological databases (e.g. 

GO, Kyoto Encyclopedia of genes (KEGG)) with the information of genes and associated functions (Tipney 

and Hunter, 2010). In this dissertation, functional enrichment analysis was done using the clusterProfiler 

package. 

4.1.1  clusterProfiler: 

In the postgenomic era, high-throughput experimental techniques such as microarray and RNA-

Seq generate a huge volume of data, driving to the development of techniques to capture biological 

information. Searching for shared function between genes by incorporating biological knowledge provided 

by biological ontologies is a typical way of doing this. For example, GO (Gene Ontology Consortium, 2004) 
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annotates genes to biological processes (BP), molecular functions (MF), and cellular components (CC), 

and KEGG (Kanehisa et al., 2010)  annotates genes to pathways, being widely used to achieve this goal. 

The clusterProfiler package provides a gene classification method called groupGO, to classify genes 

based on GO distribution at a specific level.  Functions such as enrichGO  and enrichKEGG, to calculate 

enrichment test for GO terms and KEGG pathways based on hypergeometric distribution, are also possible 

to use (Yu et al., 2012).  

This package adjusts the estimated significance level to account for multiple hypothesis testing. 

Therefore, q-values (Storey, 2002) are estimated to control false discovery rate (FDR). The FDR is the 

expected proportion of false positives tests declared statistically significant in which the null hypothesis is 

actually true (Glickman et al., 2014).  

Several visualisation methods are supported, such as barplot, cnetplot and enrichMap (Yu et al., 

2012).  

4.2 Hierarchical Clustering        

Cluster analysis is a technique for data reduction that divides data into groups (clusters) which 

are relatively homogeneous between them and heterogeneous with each other (Figure 3a) (Yim and 

Ramdeen, 2015).  

The goal is that within the same group, objects will be more similar, while different from the 

objects in other groups (Hale, 1981). To make this division, it is necessary to choose the variables 

according to required similarities within a group (Norusis, 2009). 

There are two key methods: hierarchical and non-hierarchical cluster analysis. To form a 

hierarchy of clusters is the goal of hierarchical clustering, combining cases into homogeneous clusters 

by merging them together sequentially (Figure 3b). Non-hierarchical clustering techniques (e.g. k-means 

clustering) establish a primary set of cluster means assigning each case to the closest cluster mean (Yim 

and Ramdeen, 2015). 

Strategies for hierarchical clustering generally are conceptualised into two types, agglomerative 

or divisive. Agglomerative hierarchical clustering separates each observation into its own cluster and at 

successive steps, the similar clusters are merged, until every case is grouped into one single cluster. 

Divisive hierarchical clustering works in an opposite way with all observations starting in one large cluster 
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and being separated into groups of clusters (Yim and Ramdeen, 2015). The results of hierarchical 

clustering are typically presented in a dendrogram (Figure 3b) (Hale, 1981). 

 

 
Figure 3 - Example of a hypothetical clustering and hierarchical clustering 

a) Hypothetical clustering with four distinct groups. Based on (Hale, 1981) b) Hypothetical dendrogram of an agglomerative 
hierarchical clustering. Based on (Yim and Ramdeen, 2015). 

4.3 BEDTools 

Genomic features are normally represented by the Browser Extensible Data (BED) format and could 

be compared using the University of California Santa Cruz (UCSC) Genome Browser (Karolchik, 2003) 

‘Table Browser’. 

BED format offers a flexible way to define the data lines that are shown in an annotation track. BED 

lines require three fields and nine could be used as additional fields (we describe here only three of nine 

because those are the fields that we used). The three required fields are chrom, chromStart and 

chromEnd, while the additional fields are the name, score, strand, thickStart, thickEnd, itemRgb, 

blockCount, blockSizes, and blockStarts (Table 7). 

An example of a BED 6 file could be: 

 

 
 
 
 
 
 
 
 
 
 

chr19    58864866   58866865  A1BG    10 + 

 

https://en.wikipedia.org/wiki/Dendrogram
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Table 7 - BED file constitution 
BED files consists of one line per feature, each containing 3-12 columns of data separated by tab. 

 Fields Fields Description Example 

Required 

chrom The name of the chromosome chr19 

chromStart The starting position of the feature in the chromosome 58864866 

chromEnd The ending position of the feature in the chromosome 58866865 

Optional 

name The name of the BED line A1BG 

score The feature score 0-1000 

strand The feature strand ‘+’ or ‘-“ 

 

This tool offers a consistent method for such analyses; however, it is difficult to work with large 

datasets. The necessity to work with high data volume produced by current DNA sequencing technologies 

drove to BEDTools (Quinlan and Hall, 2010) development.  

BEDTools is a fast and flexible set of utilities for common operations on genomic features. This tool 

supports an extensive variety of operations. One of the most used is intersectBed, which returns the 

overlap between two BED files. Others like mergeBed (merges overlapping features into a single feature) 

or sortBed (sort BED files in useful ways) can be used. 

The speed and wide functionality of BEDTools allow better flexibility in genomic comparisons 

between ever-larger genomic datasets.  

4.4 Wilcoxon signed rank sum test 

The Wilcoxon signed rank sum test is a nonparametric or distribution-free test. It is used to test the 

null hypothesis that the median of a distribution is equal to some value. There is the option to test for 

paired samples, depending on the samples to be used. 

This method consists of three steps such as: 1) Ranks all observation in increasing order of 

magnitude, independently of the group; 2) if groups differ in size, the ranks of the smaller group are 

added, if their size is equal, either one can be chosen 3) Calculate the p-value.  
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4.5 Differential Gene Expression (DGE) 

Gene expression is a biochemical process that determines which genes are actively transcribed 

into mRNA (and then translated into proteins) (Deraitus and Freeman, 2001). 

Gene expression can be quantified by software packages such as edgeR, DESeq2, NOISeq and 

tweeDEseq. These methods consist in the determination of changes in gene expression (upregulation and 

downregulation) between a given set of samples (Houle, 2008). 

NOISeq implements a non-parametric test while DESeq2, edgeR and tweeDEseq use parametric 

methods. While DESeq2 and edgeR use a negative binomial distribution, tweeDEseq uses the Poisson-

Tweedie (PT) distribution. These packages are publicly available at the Bioconductor repository 

(Gentleman et al., 2004). 

4.5.1 NOISeq 

NOISeq is a method for analysing count data coming from NGS technologies. This package is 

divided into three modules: 1) Quality control of count data; 2) Normalisation and low-count filtering, and 

3) Differential expression analysis. The NOISeq method is nonparametric and data-adaptive. Thus, as 

there are no distributional assumptions to be done for the data, differential expression analysis can be 

made for raw counts or previously normalised datasets (Tarazona et al., 2014).  

The package includes two robust non-parametric approaches for differential expression analysis: 

NOISeq and NOISeqBIO. The first is used when there are no biological replicates, while the second when 

there are biological replicates (Tarazona et al., 2015). When no replicates are available, the methods 

simulates technical replicates based on multinomial distribution (Tarazona et al., 2011). 

NOISeq makes a null distribution of count changes through the comparison between the numbers 

of reads of each gene in samples in the same condition. This distribution is then used to evaluate if the 

change in count number represents or not a differential expression (Tarazona et al., 2011).  
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4.5.2  DESeq2 

The package DESeq2 provides methods to test for differential expression using a negative 

binomial distribution and a shrinkage estimator (raw estimate is improved by combining it with other 

information) for the distribution's variance (Anders and Huber, 2010).  

It is divided into different steps as: 1) Input data - this package expects count data as obtained 

(raw counts of sequencing reads) because only the raw counts allow assessing the measurement 

precision correctly; 2) Normalisation - a geometric mean is calculated for each gene across all samples. 

The counts for a gene in each sample are then divided by this mean, allowing to the effective total number 

of reads estimation; 3) Variance Estimation – a dispersion value is estimated for each gene through a 

model fit procedure, using shrinkage estimation. It is necessary to have biological replicates of each test 

to estimate dispersion correctly. The inference depends on an estimation of the association between the 

data's variance and their mean, or vice versa, and 4) Inference – after calculating dispersion for each 

gene, it is possible to look for DEGs, according to some chosen threshold for the FDR, p-value and fold-

change (Anders and Huber, 2012). 

4.5.3  EdgeR 

EdgeR is a package that performs differential gene expression using count data under a negative 

binomial model. 

This method can be divided into several steps. These steps are: 1) Reading data and creating a 

DGElist object – only accepts raw count data to create an object with the read counts and the associated 

metadata; 2) Filtering and Normalisation – many genes will not be expressed, or will not have enough 

reads, so removing these genes it is important. The trimmed mean of M values (TMM) is used for sample 

normalisation (method of averaging that removes a small designated percentage of the largest and 

smallest values before calculating the mean); 3) Estimating Dispersion - using an empirical Bayes method 

to shrink the genewise dispersion estimates, the dispersion is calculated; 4) Differential Expression – in 

this step, the DEGs are found using the FDR and fold-change thresholds (Pereira and Rueda, 2015). 
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4.5.4  TweeDEseq 

TweeDEseq method offers statistical trials to test differential expression in RNA-Seq count data. It 

uses the Poisson-Tweedie (PT) family of distributions as the statistical model for count data. The PT 

distribution allows one to test for the goodness of fit to a particular count data distribution defined by a 

specific value of the PT shape parameter a (Puig and Valero, 2007). 

The tweeDEseq package provides a function to normalising count data using other functions from 

the edgeR package – using TMM (it is necessary to have edgeR packaged installed). This package 

contains a function for testing differential expression among two different conditions using a score based 

test (Esnaola et al., 2013). 

Figure 4 is a general scheme with basic steps for differential expression analysis using the methods 

described anteriorly for gene differential expression. In this scheme, is also represented the step of the 

functional enrichment analysis. These methods require read counts as input. As first steps, filtering 

(removing lowly expressed genes) and normalisation are performed on the input data. Prior to the 

differential expression analysis, thresholds are selected for the parameters (p-value, q-value, FDR and 

fold-change) that each method require. After obtaining the significant DEGs, the functional enrichment 

analyses for GO and KEGG is performed. 
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Figure 4 - General scheme with the basic processes realized in a differential expression analysis 

This scheme represents the basic step for a differential expression analysis. We divided the scheme in two different processes: i) 
differential expression analysis - significant DEGs are obtained; ii) Functional enrichment analysis – enriched GO terms and analysis. 
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5. HYPOTHESIS 

In this section, we introduced the hypothesis that stands at the core of this work and the specific 

questions for each data type that we studied in this dissertation. 

5.1 Validation of genomic and epigenomic patterns of GROUPSTUDY in the 

TCGA cohort 

5.1.1  TCGA Copy Number Variation 

The goal of this analysis is to test if the results found in the GROUPSTUDY can be recapitulated in 

a different cohort (in this case the TCGA). We hypothesise that when a gene X is amplified, there is a set 

of genes that are co-amplified with this gene (in GROUPSTUDY, we observed that gene X was amplified 

in ~20% of stomach cancer samples) and that a proportion of samples bearing amplification of gene X, 

concomitantly and recurrently displayed amplification of large regions of the same chromosome and other 

specific chromosomal regions.  

5.1.2  TCGA DNA Methylation 

5.1.2.1 Correlation between cohorts 

We wanted to test if the methylation patterns in the GROUPSTUDY cohort can be recapitulated in 

the TCGA dataset. The DNA Methylation dataset from GROUPSTUDY and the TCGA DNA Methylation 

dataset were obtained with two different technologies, RRBS and microarrays, respectively. We 

hypothesise that despite the different technologies used and the difference in the size and nature of the 

cohorts, we can recover similar patterns of methylation.  

5.1.2.2 Tumour vs Normal - Differential methylation 

We have two different groups of samples from the TCGA cohort: paired samples and unpaired 

samples. We remind that the number of unpaired samples is almost ten times larger than the number of 

paired samples. Here, we wanted to investigate if the results obtained with the paired and the unpaired 

cohort provided similar results in terms of methylation patterns. 
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5.1.2.3 DNA methylation patterns 

In a group study made by the ERIC group, a set of genes was found to be hypermethylated in 80% 

of samples. Our goal was to assess if the methylation of set of genes predominantly hypermethylated in 

the GROUPSTUDY cohort was also hypermethylated in the TCGA cohort.  

5.2 Gender differential expression in gastric cancer 

Gender is known as an important factor in the progression of cancer. Differences between males 

and females are not limited to anatomic differences. There are different susceptibilities to a variety of 

diseases and more importantly, in the response to treatment. Despite gender differential cancer incidence 

has been consistently described in epidemiologic studies, few cancer studies have considered the gender 

covariate in their design.  

Typically, males are more disposed to develop cancers, in particular blood malignancies (Ma et al., 

2016). Cancers such as Colorectal, Lung, Non-hodgkin Lymphoma, and Bladder or Kaposi sarcoma have 

the highest male to female ratio. On the other hand, Breast, Thyroid or Gall Bladder are examples of 

cancers with a higher incidence in females (Dorak and Karpuzoglu, 2012).  

It is expected that environmental causes explain the large proportion of cancer risk. However, this 

alone is not enough to clarify the full gender differential cancer risk. Early onset cancers still occur in 

larger proportion in males (Pearce and Parker, 2001). Females commonly have more efficient 

immunological responses than males. This may be an important factor for the differentiated behaviour in 

cancer, but also in autoimmune and inflammatory disorders, infectious diseases and vaccines responses 

(Klein et al., 2012). The sex chromosome can be another aspect of these different effects. The X-

chromosome contains the largest number of immune-related genes of the whole human genome. Given 

the gender differential expression of genes in the sex chromosomes, it is expected that they play an 

important role in the mechanisms underlying gender differential cancer susceptibility (Pinheiro et al., 

2011).  

In order to better understand gender differential genomic patterns and their relevance to human 

cancer biology, we set to investigate and identify transcriptomic differences between males and females 

that may be important to differential gastric cancer susceptibility. 
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6. METHODS 

6.1 Validation of genomic and epigenomic patterns of GROUPSTUDY in the 

TCGA cohort 

6.1.1  TCGA Copy Number Variation 

To test our hypothesis that several genes and chromosomal regions are co-amplified with gene 

X, we downloaded nocnv tumour samples from TCGA for the Stomach adenocarcinoma in a total of 274 

samples. 

Of the 274 initial samples, we filtered samples with amplification for the gene X resulting in a set 

of 52 samples. We used as threshold for the segment mean, a log2ratio of 0.25.  

The files obtained from TCGA did not provide the genes in which there were amplifications (TCGA 

provides CNV information oriented for genomic regions). Thus, we had to impute amplification to genes. 

For this, we used the genomic coordinates of gene X. We knew the chromosome and the genomic 

coordinates of start and end of the gene and, thus, we were able to find the amplifications occurring in 

that range. 

Having all required amplifications, we created a binary array with the genes and samples. Zero 

corresponds to no copy number amplification and one to a copy number amplification. Then, we 

performed a Hierarchical Clustering (Pearson correlation was the metric used) to find out the groups of 

samples more similar and their subsequent order. 

The next step was to find amplifications on other chromosomes (we searched specifically for two 

chromosomes found in the GROUPSTUDY). After this step, we had all amplifications in three 

chromosomes (chromosome of gene X and the other two that we searched before).  

The last step was to plot these amplifications using R package gplots. 

6.1.2  TCGA DNA Methylation 

Here our objective is to recapitulate results obtained in GROUPSTUDY with DNA methylation cohort 

using the TCGA cohort. In these analyses, we used DNA Methylation data downloaded from TCGA for the 
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Stomach adenocarcinoma (STAD) and the GROUPSTUDY DNA methylation samples. TCGA samples were 

divided into two platforms: HM450 and HM27 (Table 8).  

 

Table 8 - DNA Methylation platforms from TCGA 
The probes correspond to CpG sites throughout the genome. The HM450 platform was analysed for a greater number of genes and 

probes than HM27 platform. While HM450 has only tumour samples, HM27 has 25-paired samples. 

DNA Methylation 

Platforms HM450 HM27 

Tumour Samples 248 25 

Normal Samples  25 

Genes 25,095 15,311 

Probes 482,421 187,281 

 

Two filters for both platforms were applied. First, we filtered for CpG sites that were in the 

promoter region.  Using a BED file with the promoter annotation from the GROUPSTUDY, we intersected 

our probes with a file containing the promoter region (genomic coordinates of start and end of promoter 

region) for each gene. As a result, we obtained only probes within the promoter region. The genome 

browser Ensembl (Hubbard et al., 2002)  was used to search for the regions in which the probes were 

located for our set of genes. Some of these probes were located in a region next to the promoter. If the 

probes were in the region before the initiation codon (untranslated region), they were considered. Genes 

without information in 50% or more of the samples were filtered. 

After applying these filterers, we obtained our TCGA DNA Methylation dataset. 

6.1.2.1 Correlations between cohorts 

With the goal of testing data consistency between the GROUPSTUDY DNA methylation dataset and 

the TCGA DNA methylation dataset, we decided to do correlation tests between datasets. 
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First, we needed to process the data from both datasets. As they used different technologies to 

assess methylation status, different annotations for the genes were used. The GROUPSTUDY cohort was 

divided by gene regions (transcripts) represented by reference identifiers (refids). The TCGA cohort was 

divided by probes (fragment of DNA or RNA of variable length) and was represented by probe identifiers 

(probeids). Therefore, we needed to create a consensus annotation.  

 

We used the HM27 platform because we had the need to use paired samples as GROUPSTUDY 

did. After the filtering, we obtained a TCGA dataset with 11,139 probes. GROUPSTUDY had 24,002 

transcripts. Then, creating BED files (BED 6) for both datasets and using the operation intersectBed, we 

were able to obtain the overlap between annotations with chromosome and genomic coordinates of each 

of these probes and transcripts (Figure 5a). We obtained 18,222 overlap regions. One probe could have 

several transcripts and vice-versa (Figure 5b). 

 After, the mean beta-value for each overlapped probe-transcript in each dataset (n=18222) was 

calculated (we tested with the median and the results were similar). The last step was to build the plot all 

Figure 5 - Scheme of consensus annotation for DNA methylation correlation tests 
a) We intersected two cohorts. TCGA with probeids (11,139) and GROUPSTUDY with gene regions (24,002). This intersection, performed 

with intersectBED, originated 18222 overlapped regions; b) in this figure it is possible to see that one probe can be in several gene regions 
and a gene region can have several probes. 
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the probe-transcript between datasets in R, calculating the correlation between datasets using Pearson 

correlation test. 

6.1.2.2 Tumour vs Normal - Differential methylation 

Next, we tested if it would be the same to use paired samples or a dataset with unpaired samples, 

or if we would get a significant difference. 

For that, we divided the datasets into three groups shown in Table 9. The groups consist of: i) 25-

paired samples of gastric cancer from the TCGA cohort; ii) 248 tumour samples and 25 normal adjacent 

samples of gastric cancer from the TCGA cohort; iii) 50-paired samples of gastric cancer from the 

GROUPSTUDY cohort.  

 

Table 9 - Samples used in methylation hypothesis tests 
The three used groups were: TCGA – paired with 25 paired samples; TCGA – unpaired with 248 Tumour samples and 25 normal 

samples; and GROUPSTUDY with 50 paired samples. 

Samples 

Groups 
Tumour Samples Normal Samples 

TCGA – paired 25 25 

TCGA – unpaired 248 25 

GROUPSTUDY 50 50 

 

For each group, we calculated the p-value and the mean difference for each gene, to find significant 

genes and genes differentially methylated between Tumour and Normal, respectively. For evaluating 

significant genes, we used the Wilcoxon Rank-Sum Test (Tumour samples vs Normal Samples for each 

gene). These p-values were adjusted for multiple hypotheses testing using the Benjamini-Hochberg 

method. To calculate the mean difference for each gene, we calculated the absolute value of the difference 

between tumour and normal ([Tumour-Normal]). With these values calculated, we selected genes with a 

p-value lower than 0.05 and mean difference bigger than 0.25 for the TCGA groups. In the GROUPSTUDY, 

we changed the mean difference threshold to values below -1 and above 1 because of the scale of values 

in this group will be higher.  

Finally, we obtained significant and differentially methylated genes between tumour and normal for 

each group. 
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 6.1.2.2 DNA Methylation patterns 

Our goal was to test the methylation status in a set of genes previously found hypermethylated in 

80% of samples from the GROUPSTUDY. 

Since each gene may contain multiple probes, we calculated a single gene value based on the 

mean of all probes beta-values. Next, we assessed methylation percentage for our set of genes in all 

platforms (HM450 – Tumour samples, HM27 – Tumour samples, HM27 – Normal samples). As 

threshold, we used a beta-value of 0.3. Genes with a beta-value < 0.3 were considered hypermethylated, 

while genes with beta-values > 0.3 were considered hypomethylated. After evaluating whether the gene 

was hypermethylated or hypomethylated for each sample, we calculated the percentage of 

hypermethylation for each gene per platform. 

To perform the plots, we used the R package gplots more precisely the function heatmap.2. We 

applied the manhattan method to calculate the distance between genes. 

6.2 Gender differential expression in gastric cancer 

Our goal was to better understand gender differential gene expression and their relevance to human 

cancer biology. For that, we used the gene expression data (RNAseqV2) download from TCGA for the 

STAD. Table 10 shows the gene expression data collected. 

 

Table 10 - Samples used for differential expression analysis 
283 samples for 273 participants were downloaded from 171 males and 102 females for tumour samples (n=273). There are 10-paired 

samples, thus ten additional normal samples. In the paired samples, seven are males and three females. 

Samples 

Gender 
Tumour Samples Normal Samples 

Male 171 7 

Female 102 3 

Total 273 10 

  

Here, our work consists of: i) processing the downloaded data; ii) identification of genes that show 

differential expression in cancer with respect to patient sex. For this study, two different methods were 
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used: non-parametric tests (NOISeq) and parametric tests (DESeq2, tweeDEseq and edgeR); and iii) 

Functional enrichment analysis for DEGs.  

We performed four different types of analysis (Figure 6). The analyses for differential expression 

were: i) tumour vs normal samples, working as starting point; ii) male non-paired tumour tissue samples 

vs female non-paired tumour tissue samples; iii) male paired tumour tissue samples vs female paired 

tumour tissue samples; and iv) male paired normal tissue samples vs female paired normal tissue 

samples. In the three last analyses, we used gender to divide samples into two different groups. 

 

 

Figure 6 - First differential expression analysis workflow 
This first analysis consists of four tests. One with non-paired tumour samples and three with paired samples. Two types of test were used: 

Male vs Female and Tumour vs Normal. For each test, the DEGs were be obtained and their functional enrichment analysis. 
 

In a second analysis (Figure 7), we identified DEGs in Tumour vs Normal samples by gender. 

Doing this process, we removed the normal component of samples. The input was all paired samples 

(n=10), divided into males (n=7) and females (n=3). The differential expression analysis was done 

individually (for each donor, we opposed his tumour to normal), obtaining then the DEGs between tumour 

and normal tissues from each donor.  

In the next step, we made the intersection between all these genes for each gender, obtaining 

then all DEGs between tumour and normal by gender. Finally, we separated the genes that appear only 

in male and female, and these are the DEGs by gender. 
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Figure 7 - Second differential expression analysis workflow 
This second analysis consists of two tests. One with male samples and other with female samples, separately. The DEGs for each gender 

were obtained, being made next the functional enrichment analysis. 

 

The four methods that we used required the choice of thresholds. For p-values, FDR, q-value and 

log2fold-change. For p-value, we used values below 0.05, considering them statistically significant. FDRs 

smaller than 0.05 and a q-value (only used for NOISeq and is equivalent to 1-FDR) of 0.95. We considered 

genes whose value is at least 1.5 times higher expression in male or female and tumour or normal tissues 

are differentially expressed, therefore we used a log2fold-change of 0.6 (a corresponding increase of 50% 

in the gene expression is already significant). Other tests were performed with different thresholds (for 

instance, log2fold-change ≥ 1 and p-value ≤ 0.1) (results not shown), but these values were too much 

restrictive.  

We used gene expression levels calculated by TCGA consortium. This is based on UCSC 

annotation (Karolchik, 2003). Therefore, this was the version that we used to annotate the obtained 

genes. For some genes, we did not find their chromosome with any annotation that we tried to match 

them (GENCODE, Ensembl and RefSeq).  

We did the intersection between genes obtained by the different methods in both studies. DEGs 

found by at least two methods were considered. As input, we have files with DEGs for each method across 

all types of analyses, while the output was a heat map with genes. These heat maps had the four methods 

in the rows and genes in the columns. 

Next, we searched for enrichment of genes. A common way to do it is to integrate biological 

knowledge through biological ontologies as GO and KEGG. 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 

 

7. RESULTS 

7.1 Validation of genomic and epigenomic patterns of GROUPSTUDY in the 

TCGA cohort 

7.1.1 TCGA Copy Number Variation 

In this section, we focus on the analysis of copy number variation. Our goal was to recreate the 

results obtained by GROUPSTUDY and find regions of co-amplification for target gene X. We recall that 

we have analysed n=52 samples, obtained by microarrays technology. Figure 8 shows the plot with these 

amplifications and co-amplifications found on TCGA stomach tumour samples. 

 

 
Figure 8 - Plot with CNVs from stomach cancer TCGA samples 

The analysis was made for three chromosomal regions represented by colours (blue for genes on chromosomal region A, red for genes on 
chromosomal region B and green for genes on chromosomal region C). Each column represents the n=52 samples analysed, while rows 
represent the n=171 genes on the three chromosomal region. The black line on the middle of the plot represents gene X that is amplified 
in every sample. On top of figure, log-2-ratio represents the segment mean value and the more copies the gene has, darker is the colour. 
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Despite the use of different CNV technologies, we were able to recapitulate in TCGA cohort the 

results from the GROUPSTUDY. Large regions, not only on the same chromosome as well in the other 

two chromosomes, were found co-amplified.  

In the chromosomal region A, genes with co-amplifications were found in almost all samples. The 

chromosomal region B, although with fewer genes than other chromosomal regions, it was found a 

homogeneous behaviour in all samples. For the third chromosomal region (C), we found a sub-set of 

samples in which the co-amplifications were well defined. 

7.1.2  TCGA DNA Methylation 

7.1.2.1 Correlation between cohorts 

The goal here is to recapitulate the signal obtained in the GROUPSTUDY DNA methylation assay 

cohort that used a different technology from TCGA DNA methylation assay. To test this, we performed a 

correlation analysis between datasets, which can be visualised in Figure 9.  

 
Figure 9 - Mean methylation values across samples (GROUPSTUDY vs. TCGA) 

This scatterplot consists of 18222 probes corresponding to 7282 genes in each dataset. It is possible to verify that the scales were 
obtained in a different way (x and y-axis). This happens due to different technologies used to obtain each datasets and because of the 

different scale ranges, (TCGA scale is smaller and for that more sensitive to variation with low numbers). Moreover, in GROUPSTUDY we 
used the ratio between tumour and normal, and in TCGA we did the difference between tumour and normal (0 means that there are no 

differences between tumour and normal, below zero means that gene are more methylated in normal, and values above zero means that 
the tumour tissue is more methylated than normal tissue). 
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A high correlation of 0.67 was obtained between these two datasets, despite the fact that they 

were obtained with different technologies (Figure 10). This shows a good equivalency between datasets. 

We conclude that the TCGA cohort is a good proxy for the methylation status in the GROUPSTUDY. 

 

Figure 10 - Correlation between TCGA and GROUPSTUDY datasets 
Datasets revealed a correlation of 0.67 what suggests a strong correlation. The red line represents the regression curve between TCGA 

and GROUPSTUDY. The same values from figure 9 were used. These two figures only differ in the type of plot used. 

7.1.2.2 Tumour vs Normal - Differential methylation 

In the second test, we investigated if using paired samples provide a better agreement between 

cohorts or if larger cohort size provides stronger correlation. 

 We recall that the datasets were divided into three different groups: TCGA - paired, TCGA - 

unpaired and GROUPSTUDY. For each group, genes differentially methylated and statistically significant 

were obtained (Figure 11). 
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Figure 11 - Venn diagram with differentially methylated and significant genes for TCGA - paired, TCGA - unpaired and 

GROUPSTUDY. 
Differentially methylated and significant genes (p-value<0.05 (all groups); diffmean>0.25 (TCGA); diffmean>1 (GROUPSTUDY). 

 

Differential methylation analysis resulted in 145, 152 and 729 differential methylated genes in 

TCGA - paired, TCGA - unpaired and GROUPSTUDY, respectively. The intersection between the TCGA 

groups was 63 genes. Of these genes, 22 are specific for TCGA groups (34.9%). TCGA - paired and 

GROUPSTUDY intersected 92 genes, while GROUPSTUDY intersected 64 genes with TCGA - unpaired. 

The group of paired samples intercepted more genes with GROUPSTUDY than the unpaired group; 

however, the difference is not significant. Among the three groups, 41 genes were shared. 

 Next, we calculated the correlation between both TCGA groups with all the probes (see Figure 

10).  
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Figure 12 - Gene from the hypothesis tests in the correlation plots from TCGA and GROUPSTUDY 
This plot is the same from Figure 10 (only paired samples were used). a) Genes from TCGA - paired in blue; r=0.81 b) Genes from TCGA - 
unpaired in red; r=0.83. Although it appears that some of the genes were not differentially methylated, this plot was made with the paired 

samples. Then, we found where the differentially methylated genes from the TCGA - unpaired were positioned in the TCGA - paired vs 
GROUPSTUDY plot. 

 

The results obtained suggests a strong correlation, with a correlation of 0.81 and 0.83 for TCGA - 

paired and unpaired, respectively (Figure 12). Thus, we can conclude that TCGA – paired and unpaired 

provide roughly similar results. Therefore, in future validations of GROUPSTUDY DNA Methylation results, 

both TCGA - paired and -unpaired samples could be used. The fact that TCGA-paired group gets similar 

results to a cohort with a much larger sample size is a surprising and interesting result. 

7.1.2.3 DNA Methylation patterns 

In this Section, DNA methylation data of stomach cancer from TCGA was analysed. The goal was 

to test the methylation status in our samples for both platforms for a set of genes found hypermethylated 

in 80% of samples in GROUPSTUDY (shown in Section 4.2.2). Several types of heat maps were built such 

as: heat maps for all genes (not taking into account hypermethylation or hypomethylation); heat maps for 
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genes hypermethylated in at least 80% of samples in tumour samples; and heat maps for genes 

hypomethylated in at least 80% of samples in normal samples. 

Results were divided by platform, to be easier to interpret. 

 

Figure 13 - Heat Maps for analysis of HM450 platform - Tumour tissue samples 
a)  Analysis for all genes in Tumour samples; after filtering: 14,274 genes in 248 samples; b) genes hypermethylated in 80% of the cases; 

after filtering: 2,876 genes in 248 samples. 
 

Genes with a beta-value above 0.3 were considered hypermethylated while genes with beta-values 

below 0.3 were considered hypomethylated. Then, we calculated the percentage of hypermethylation for 

each gene. 

In this platform, after the filtering step, 14,274 genes were analysed. In total, 2,876 genes were 

found hypermethylated in at least 80% of the samples in 248 tumour samples (Figure 13).  

Table 11 shows that from our set of genes, eight genes (47%) are hypermethylated in more than 

80% of samples. If we consider a minimum percentage of 70% of samples, we can see additional three 

genes, increasing to eleven genes (65%). However, we found three genes (17.6%) that have a low 

percentage of hypermethylation (lower than 50%). Despite that, about 83% of genes were found 

hypermethylated in more than 50% of samples. 
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Table 11 - Selected genes and respective percentage of samples with hypermethylation – HM450 platform 
248 samples from HM450 platform were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 
% of hypermethylation 

(β≥0.3) 

Gene A 88 

Gene B 80 

Gene C 81 

Gene D 57 

Gene E 78 

Gene F 19 

Gene G 35 

Gene H 64 

Gene I 83 

Gene J 88 

Gene K 95 

Gene L 74 

Gene M 85 

Gene N 40 

Gene O 79 

Gene P 100 

Gene Q 51 
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For HM27 platform, we performed more heat maps for being composed of paired samples 

(Figure 14). 

Figure 14 - Heat Maps for analysis of HM27 platform - Tumour and Normal tissue samples 
a) Analysis for all genes in Tumour tissue samples; after filtering: 9,485 genes in 25 samples. b) genes hypermethylated in 80% of cases – 
Tumour tissue samples; after filtering: 1,463 genes in 25 samples. c) Analysis for all genes in normal tissue samples; after filtering: 9,485 

genes in 25 samples. d) Genes hypomethylated in 80% of cases – normal tissue samples; after filtering: 5,998 genes in 25 samples. 

 

After filtering, 9,485 genes were analysed for HM27 platform – Tumour and Normal. In 25 

tumour samples, 1,463 genes were found hypermethylated in at least 80% of the samples. For normal 

tissue samples, 5,998 genes were found hypomethylated in at least 80% of samples.  

Table 12 shows the hypermethylation status of tumour and normal tissues for our set of genes. 

In normal samples, the heat map was made for genes hypomethylated in at least 80% of samples. Thus, 

we considered as genes of interest those that have hypermethylation in tumour samples and a low 

percentage of hypermethylation in normal samples. 

Five genes (31.3%) presented results of hypermethylation in at least 80% of tumour samples and 

were hypermethylated in less than 50% of normal samples. Six genes (37.5%) were found 

hypermethylated in more than 50% of normal samples. 
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Table 12 - Selected genes and respective percentage of samples with hypermethylation – HM27 platform 
25 samples from HM27 platform were used; Gene G was not available in this platform. 

Genes 
% of hypermethylation 
Tumour tissue (β≥0.3) 

% of hypermethylation 
Normal tissue (β≥0.3) 

Gene A 100 100 

Gene B 80 0 

Gene C 100 32 

Gene D 24 0 

Gene E 84 24 

Gene F 80 100 

Gene H 60 0 

Gene I 84 44 

Gene J 92 20 

Gene K 60 100 

Gene L 92 60 

Gene M 20 8 

Gene N 92 100 

Gene O 88 48 

Gene P 100 100 

Gene Q 12 0 
 

TCGA samples from normal tissue are collected from adjacent tissue to the tumour. These 

samples may be contaminated by the tumour, possibly influencing methylation results of normal samples. 

For this reason, we searched for samples from stomachs of healthy donors (Lokk et al., 2014). We found 

4 samples, that were obtained by one of the platforms that we analysed before (HM450). Therefore, it 

was possible to compare the hypermethylation percentages obtained from normal stomach samples of 

TCGA and stomach samples from healthy people. With this analysis, we tried to understand if the 

proximity of tumour and normal tissue had an impact on the methylation results.  

The heat maps of Figure 15 were performed in the same way as before. 
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Figure 15 - Heat Maps for analysis of HM450 platform - Healthy tissue samples 
a) Analysis for all genes in healthy tissue samples; after filtering: 14,274 genes in four samples. b) Genes hypomethylated in 80% of cases 

– healthy tissue samples; after filtering: 8,933 genes in four samples. 

 
Of the 14,274 genes obtained after filtering, 8,933 genes were found hypermethylated in at least 

80% of healthy tissue samples.  

Table 13 shows the percentage of samples with hypermethylation in the healthy tissue samples. 

The percentages of samples with hypermethylation were high in two genes (Gene K and P). Despite the 

fact of having only four samples, in most genes, the percentage was zero (70.1%). If we take into account 

the samples hypermethylated in only 25% of cases, we increase the number of genes with a low 

percentage of hypermethylation (88%) to 15. 

 

Table 13 - Selected genes and respective percentage of samples with hypermethylation – Healthy samples 
Four samples from HM450 platform were used. 

Genes 
% of hypermethylation 
Healthy tissue (β≥0.3)  

Gene A 25 

Gene B 0 

Gene C 0 

Gene D 0 

Gene E 0 

Gene F 25 

Gene G 0 

Gene H 0 
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Gene I 0 

Gene J 0 

Gene K 100 

Gene L 0 

Gene M 0 

Gene N 0 

Gene O 25 

Gene P 100 

Gene Q 0 
 

This result seems to indicate that normal samples from areas adjacent to the tumour may have 

contributed to the high hypermethylation values in some of our selected genes since in samples from 

healthy individuals most of the genes were not found hypermethylated. 

7.2 Gender differential expression in gastric cancer 

We set to investigate patterns of gender differential expression in both tumour and normal tissue 

samples. We used n=283 samples obtained from gastric cancer study by TCGA to test gene differential 

expression, with the goal of identifying transcriptomic differences between genders.  

First, we divided the study into two different analyses. The first analysis, consisting of four different 

tests: i) tumour vs normal samples, worked as a starting point. ii) male non-paired tumour tissue samples 

vs female non-paired tumour tissue samples; iii) male paired tumour tissue samples vs female paired 

tumour tissue samples; and iv) male paired normal tissue samples vs female paired normal tissue 

samples. After the application of four different methods and evaluating their consistency (NOISeq, 

tweeDEseq, DESeq2 and edgeR), we obtained results described in the following eight tables (Table 14-

21). These tables represent the DEGs for each method (columns), the respective chromosome (X|Y or 

autosomal) and intersection results between methods and genes upregulated in male and female or 

tumour and normal (rows). 
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Table 14 - Differential expression analysis between paired tumour and normal tissue samples 
10 paired samples were used; DESeq2 and EdgeR obtained best and similar results; NOISeqBIO obtained the lowest number of genes; 

Intersection (2+) - Intersection in at least 2 methods. 

 

NOISeqBIO 
(~gender) 

tweeDEseq 
(~gender) 

DESeq2 (~race 
+ gender) 

EdgeR 
(~gender) 

Total gene 89 954 2,178 1,525 

X | Y genes 2 | 0 20 | 1 73 | 3 47 | 2 

Autosomal genes 81 848 1,971 1,346 

Intersection (2+) 1,410 

Genes upregulated in 
tumour 

87 505 1,213 908 

Genes upregulated in 
normal 

2 449 965 617 

Unknown genes 6 85 131 130 

 

Table 15 - Intersection of autosomal DEGs between tissue types across methods – paired samples 
 For this test, all methods obtained a large number of DEGs (except the NOISeqBIO). EdgeR and DESeq2 intersected for almost every 
DEGs found with edgeR (89.6%). TweeDEseq and DESeq2 intersected 90.4 % of DEGs found with tweeDEseq. NOISeqBIO and edgeR 

intersected 76 of 81 DEGs found with NOISeqBIO (93.8%) 

Methods 
NOISeqBIO 

(n=81) 
tweeDEseq 

(n=848) 
DESeq2 

(n=1,971) 
edgeR  

(n=1,347) 
NOISeqBIO 

(n=81) 
    

tweeDEseq 
(n=848) 

39    

DESeq2 
(n=1,971) 

71 767   

edgeR  
(n=1,347) 

76 585 1,207  
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Table 16 - Differential expression analysis between genders in non-paired tumour tissue samples 
505 non-paired tumour samples were used; the proportions between chromosomes of genes are quite similar. EdgeR stands out for 

number of DEGs, X and Y genes detected. Intersection (2+) - Intersection in at least 2 methods. 

 

NOISeqBIO 
(~gender) 

tweeDEseq 
(~gender) 

DESeq2 (~race 
+ gender) 

EdgeR 
(~gender) 

Total gene 20 23 65 453 

X | Y genes 2 | 12 5 | 12 4 | 12 10 | 14 

Autosomal genes 4 3 45 401 

Intersection (2+) 45 

Genes upregulated in  
male 

2 19 52 301 

Genes upregulated in 
female 

18 4 13 152 

Unknown genes 2 3 4 28 

 

Table 17 - Intersection of autosomal DEGs between genders across all methods – non-paired tumour tissue samples 
DESeq2 and edgeR intersected for almost every of DESeq2 genes (91.1%) while tweeDEseq and NOISeqBIO intersected every of their 

genes with edgeR 
 

Methods 
NOISeqBIO 

 (n=4) 
tweeDEseq  

(n=3) 
DESeq2  
(n=45) 

edgeR 
 (n=401) 

NOISeqBIO  
(n=4) 

    

tweeDEseq  
(n=3) 

0    

DESeq2 
 (n=45) 

1 2   

edgeR  
(n=401) 

4 3 41  
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Table 18 - Differential expression analysis between genders in paired tumour tissue samples 
Ten tumour samples were used; EdgeR and DESeq2 were the more sensible methods for detecting X and Y genes; tweeDEseq reported 

the biggest number of DEGs; Intersection (2+) - Intersection in at least 2 methods. 

 

NOISeqBIO 
(~gender) 

tweeDEseq 
(~gender) 

DESeq2 (~race 
+ gender) 

EdgeR 
(~gender) 

Total gene 10 161 45 80 

X | Y genes 1 | 8 5 | 8 4 | 10 3 | 11 

Autosomal genes 0 129 29 61 

Intersection (2+) 25 

Genes upregulated in 
male 

1 112 38 38 

Genes upregulated in 
female 

9 49 7 42 

Unknown genes 1 19 2 5 

 

 

Table 19 - Intersection of autosomal DEGs between genders across all methods – tumour paired samples  
DESeq2 intersected 51% of their DEGs with the DEGs found with tweeDEseq while edgeR only intersected 11% of their genes with 

tweeDEseq DEGs. EdgeR and DESeq2 intersected 55% of DEGs found with DESeq2. 

Methods 
NOISeqBIO  

(n=0) 
tweeDEseq 
 (n=129) 

DESeq2 
 (n=29) 

edgeR 
 (n=61) 

NOISeqBIO  
(n=0) 

    

tweeDEseq  
(n=129) 

0    

DESeq2  
(n=29) 

0 15   

edgeR  
(n=61) 

0 6 16  
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Table 20 - Differential expression analysis between genders in paired normal tissue samples 
Ten normal samples were used; Here NOISeqBIO stands out. Intersection (2+) - Intersection in at least 2 methods 

 

NOISeqBIO 
(~gender) 

tweeDEseq 
(~gender) 

DESeq2 (~race 
+ gender) 

EdgeR 
(~gender) 

Total gene 1,636 67 19 17 

X | Y genes 62 | 14 5 | 11 2 | 12 1 | 12 

Autosomal genes 1,364 44 2 2 

Intersection (2+) 7 

Genes upregulated in 
male 

225 43 16 14 

Genes upregulated in 
female 

1,411 24 3 3 

Unknown genes 196 7 3 2 

 

 

Table 21 - Intersection of autosomal DEGs between genders across all methods – normal paired samples 
For this test, only NOISeqBIO and tweeDEseq intersected their DEGs. TweeDEseq intersected 15.9% of their DEGs with the DEGs found 

with NOISeqBIO 

Methods 
NOISeqBIO  
(n=1,364) 

tweeDEseq  
(n=44) 

DESeq2 
 (n=2) 

edgeR 
 (n=2) 

NOISeqBIO 
(n=1,364) 

    

tweeDEseq 
(n=44) 

7    

DESeq2 
 (n=2) 

0 0   

edgeR  
(n=2) 

0 0 0  
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Table 22 - Intersection between paired tumour, normal and GTEx (male vs female) 
Intersection 1 – Intersection between autosomal DEGs 

             Methods 
 

 Genes 

DESeq2 (~race + age + gender) edgeR (~gender) 

Tumour: 
Male vs 
Female 

Normal: 
Male vs 
Female 

Tumour: 
Male vs 
Female 

Normal: 
Male vs 

Female M 
vs F 

GTEx 
Normal: 
Male vs 
Female 

Total genes 45 19 80 17 48 
X | Y genes 4 | 10 2 | 12 3 | 11 1 | 12 11 | 14 

Autosomal genes 29 2 61 2 23 

Intersection 1 0 
0  

 0 
Genes upregulated in 

male 
38 16 38 14 33 

Genes upregulated in 
female 

7 3 42 3 15 

Unknown genes 2 3 5 2 0 
 

The intersection between autosomal genes from the paired tumour tissue samples (male vs 

female) and paired normal tissue samples (male vs female) was done to evaluate if the genes found in 

the tumour could be specific for this tissue or if they are also in normal tissue. There were no genes found 

in tumour and normal tissue with edgeR (61 from tumour tissue vs 2 from normal tissue) or with DESeq2 

(29 from tumour tissue vs 2 from normal tissue) (Table 22). This suggests that the gender differential 

expression observed is tumour specific. 

No genes were found in the intersection between the differential expression genes in normal 

tissue (with edgeR, n=2 vs n=23 in GTEx). 

To find genes that were differentially expressed in at least two methods, we did the intersection 

between the genes and the methods for each type of analysis. With this information, we created heat 

maps for each analysis with the gene list (Figure 16). 
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Figure 16 - Heat Maps with autosomal DEGs for each method for analysis 1 
Each row contains the methods used in the analyses while columns represents all the genes found for each analysis. 

a) Paired samples – Tumour tissue Vs Normal tissue - were found 1,410 genes in at least two methods for a total of 2,186 genes; b) 
Tumour tissue samples – Male x Female - were found 45 genes in at least two methods for a total of 405 genes; c) Paired samples - 
Tumour: Male Vs Female - were found 25 genes in at least two methods for a total of 188 genes; were found 45 genes in at least two 

methods for a total of 1,406 genes. 
 
 

On the second analysis in which we test DEGs between tumour and normal samples by gender, 

we obtained DEGs for male and female for four different methods (Table 23). Considering genes in at 

least two methods, we found 290 autosomal DEGs for male and 283 autosomal DEGs for female. These 

genes may or may not be specific to each gender. Thus, we evaluated which would be specific for male 

and female (Table 24), finding 152 autosomal DEGs specific for male and 205 autosomal DEGs specific 

for female. 
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Table 23 - Autosomal DEGs by gender across methods 
Rows represent the autosomal genes intersections across methods and the genes in at least two methods by gender. Gene 2+ - genes in 

at least two methods. 

 

NOISeq tweeDEseq DESeq2 EdgeR Genes 
2+ 

Autosomal genes - Male 370 1,692 62 119 290 

Autosomal genes - Female 396 2,030 16 113 383 

 

Table 24 - Specific autosomal DEGs by gender across methods 
Genes from table 22 could be found differentially expressed on both genders. For this, we evaluated which DEGs were specific for each 

gender. Gene 2+ - genes in at least two methods. 

 

NOISeq tweeDEseq DESeq2 EdgeR 
Genes 

2+ 

Specific Male Genes 243 1,136 58 99 152 

Specific Female Genes 269 1,474 12 93 205 

 

To find genes that were differentially expressed in at least two methods in the second analysis, 

we did the intersection between the genes and the methods for each type of analyses (Figure 17).  

Figure 17 - Heat Maps with autosomal DEGS for each method in analysis 2 
Each row contains the methods used in the analyses while columns represents all the genes found for each analysis. 

a) Paired samples – Tumour vs Normal: Male - were found 152 genes in at least two methods for 1,362 genes; b) Paired samples – 
Tumour vs Normal: Female - were found 206 genes in at least two methods for 1,625 genes. 
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Next, we did the intersection of genes between analysis 1 and analysis 2 are shown in table 25.  

Table 25 - Intersections between analysis 1 and analysis 2 
Tumour - M vs F with Male/Female - Tumour vs Normal 

Methods 
NOISeq 

(n=4) 

tweeDEseq 

(n=3) 

DESeq2 

(n=45) 

edgeR 

(n=401) 

Genes in at 
least two 
methods 
(n=357) 

0 0 2 11 

 

Due to the large number of reported differentially expressed genes and the disagreement between 

methods, and to further understand the results in more detail, we chose to focus on the results provided 

by one of the methods. This allowed further analysing the relevance of this results. This next step included 

an enrichment analysis. The selected method was edgeR for the following reasons: i) this method was 

one of the quickest; ii) in general it was more sensitive, reporting more X and Y genes, which is a good 

indicator and obtained the best results in the intersection between studies; iii) Manual inspection of the 

expression values of DEGs showed a more clear difference in the fold-change of expression for genes 

reported by this method (see Figure 18). 
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Figure 18 - Box plot with DEGs found in edgeR 
These four DEGs found by edgeR and are examples of genes with differential expression between male and female and the other three 

methods could not catch them. 

 

7.2.1  Functional enrichment analysis 

In this section, we made the functional enrichment analysis of DEGs found in edgeR. We used the 

R package clusterProfiler to perform this analysis. Using the function compareCluster, we searched the 

functional enrichment between tumour and normal and between male and female. We divided each 

analysis into two groups (Tumour vs Normal and Male vs Female). 
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GO 

 

KEGG 

 

Figure 19 - GO and KEGG analysis for DEGs from tumour vs normal tissue samples 
On a total for 536 genes upregulated in normal and 810 upregulated in tumour, 504 and 742 could be correctly annotated, respectively. 

Gene Ontology analysis revealed five enriched activities for genes upregulated in normal and five for tumour. For KEGG analysis, less 
genes were annotated for a total of 276 for normal and 349 for tumour. 
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 Figure 19 shows the enrichment for ten molecular functions (five in normal and five in the 

tumour). We highlight the cytokine activity in tumour (n=34, p=2.7e-08) and oxidoreductase activity in 

normal (n=24, p=7.03e-13) as the more enriched. The cytokine-cytokine receptor interaction pathway 

was enriched in 35 genes (p=1.58e-04) and the most significant pathways enriched was chemical 

carcinogenesis in 18 genes (p=2.4e-04).  Cytokines are a category of small proteins that are important 

in cell signalling. They are important in health and disease, specifically in host responses such as 

infection, immune responses and cancer. Cytokines are released by several cells in the body, commonly 

in response to an activating stimulus, and inducing responses through binding to specific receptors on 

the cell surface of target cells (Schreiber and Walter, 2011). 

 

GO 

 

KEGG 

 
Figure 20 - GO and KEGG analysis for DEGs from male vs female – tumour tissue samples 

For a total for 152 genes of female, 119 could be correctly annotated. Gene Ontology analysis revealed five enriched activities for female 
genes. For KEGG analysis, less genes were annotated for a total of 69 genes 

 

https://en.wikipedia.org/wiki/Cell_signaling
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The GO enrichment analysis revealed five molecular functions enriched in female genes (Figure 

20). The more significant were metal ion transmembrane transporter activity (n=12 genes, p= 3.22e-05) 

and gated channel activity (n=11 genes, p=1.43e-05). Folate biosynthesis pathway (n=4 genes, p=0.001) 

was found enriched in female genes.  This pathway (Figure 21) is involved in the metabolism of vitamins. 

Folate is one of the B vitamins and it is used as a supplement during pregnancy to prevent neural tube 

defects (NTDs). It can be also used to treat anaemia caused by folic acid deficiency.  Folate 

is essential for the body to make DNA, RNA, and metabolise essential amino acids for cell division. 

Figure 21 - Folate biosynthesis pathway 
Scale values are represented by log2-fold-change, positive for female (red) and negative in male (green). Four genes showed a positive fold 

change for alkaline phosphatase – ALPI, ALPL, ALPP and ALPPL2. These genes are involved in the metabolism of cofactors and 
vitamins. 

 

The two analyses between male and female with paired samples (tumour and normal) were also 

tested, showing no enrichment in any of genes cluster. However, we were able to analyse the groupGO 

(Appendix I – Figures 25-30). Thus, we found that in the tumour, most genes have functions related to 

cellular compartments like membrane part (n=30) and plasma membrane (n=26). Twelve genes 

intervene in transferase activity and 25 in the regulation of metabolic processes. The normal tissue 

analyses shown function related with membrane and cell part (n=2), biological processes like single-

organism cellular process (n=2) and intervention in protein binding (n=2). 

 Next, we made the enrichment analyses for analysis 2. 

https://en.wikipedia.org/wiki/B_vitamins
https://en.wikipedia.org/wiki/Dietary_supplement
https://en.wikipedia.org/wiki/Pregnancy
https://en.wikipedia.org/wiki/Neural_tube_defect
https://en.wikipedia.org/wiki/Neural_tube_defect
https://en.wikipedia.org/wiki/Anemia
https://en.wikipedia.org/wiki/Folic_acid_deficiency
https://en.wikipedia.org/wiki/Essential_nutrient
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Amino_acids
https://en.wikipedia.org/wiki/Cell_division
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GO 

 

KEGG 

 
Figure 22 - GO and KEGG analysis for DEGs from tumour vs normal tissue samples by gender 

On a total for 93 genes of female and 99 of male, 81 and 89 could be correctly annotated, respectively. Gene Ontology analysis revealed 
one enriched activity for genes upregulated in female and five for male. For KEGG analysis, less genes were annotated for 49 for male and 

no enrichment found in female. 
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 As results of GO and KEGG analysis in analysis 2 (Figure 22), six molecular functions (one for 

female and five for male) and five pathways (all in male) were found enriched. For GO analysis we highlight 

the growth factor activity (n=7 genes, p=2.28e-05) and aspartic-type endopeptidase activity (n=4 genes, 

p=3.06e-05), a function that stimulates a cell to grow or proliferate. Most growth factors have other 

functions besides the induction of cell growth or proliferation. 

KEGG revealed five enriched pathways, being fat digestion and absorption the most significant 

(n=5 genes, p=7.79e-06). Gastric acid secretion (Figure 23) (n=4 genes, p=0.035) and Linoleic acid 

metabolism (Figure 24) (n=3 genes, p=0.034) are possibly two pathways of interest in the context of 

gastric cancer.  

 

Figure 23 - Gastric acid secretion pathway 
Four genes show enrichment in this pathway – CCKBR, KCNE2, KCNK2 and SLC9A4. 
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Gastric acid is a digestive fluid formed in the stomach. The acid plays a key role in the digestion 

of proteins by activating digestive enzymes and facilitates the digestion of protein and the absorption of 

iron, calcium, vitamin B12. Gastric acid, by lowering pH, kills ingested microorganisms and limits 

bacterial growth in the stomach and prevents intestinal infections such as Clostridium difficile (Schubert 

and Peura, 2008). 

 
Figure 24 - Linoleic acid metabolism pathway 

Three genes show enrichment in this pathway: CYP2C19, CYP2C8 and PLA2G3. 

 

Linoleic acid is a polyunsaturated omega-6 fatty acid. There is also proof of Conjugated linoleic 

acid (CLA) blocking the growth and spread of malignant tumours, primarily by influencing cell replication 

and mechanisms of carcinogenesis. On the other hand, it has been shown that CLA can induce insulin 

resistance and fatty liver (Field and Schley, 2004). Lee et al. (LEE et al., 2005) found that relatively small 

amounts of CLA inhibit tumour development. However, there is the need to perform studies to analyse 

the effects of CLA in clinical trials to humans. 

 

 

 

https://en.wikipedia.org/wiki/Stomach
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Digestive_enzyme
https://en.wikipedia.org/wiki/Polyunsaturated_fatty_acid
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8. DISCUSSION 

In this dissertation, we followed two lines of analysis: i) use the TCGA cohort to recover and 

validate patterns from an internal study. For this first goal, we used genomic data (CNVs) and epigenomic 

data (DNA Methylation) from the TCGA gastric cancer cohort; ii) gender differential expression in gastric 

cancer. Here, we used transcriptomic data (mRNA expression) from the TCGA cohort.  

With the genomic data in analysis i) our goal was to validate results found in GROUPSTUDY, 

which showed that when a particular gene was amplified there is co-amplification of regions on the same 

chromosome and other chromosomes. In human cancer, gene amplification offers a means of 

overexpression of oncogenes. These amplifications can work as a mechanism of resistance to therapies 

and are frequently related to poor prognosis. With the results obtained for this analysis, we found exactly 

the same patterns of co-amplification that in GROUPSTUDY. This provides a good evidence of validation 

of the initial results. It can be important to identify the genes or pathways that promote these 

amplifications since they can be targeted by a combination of therapy to avoid evolution of resistance to 

drugs planned to destroy the tumour. 

Regarding epigenomic data, our main goal was to test data correlation between the TCGA and 

GROUPSTUDY datasets, since these two cohorts used different technologies to assess methylation status. 

We found a correlation of 0.6, which indicates a good equivalency between cohorts. We conclude that the 

data from the TCGA cohort is a good proxy for the methylation status in the GROUPSTUDY. Recall that in 

GROUSTUDY a set of genes were found to be hypermethylated in 80% of cohort samples.  

As a subsequent task, we tried to validate these results with TCGA dataset. It is well known that 

DNA methylation can drive events in the pathogenesis of gastric cancer. Modifications in DNA methylation 

contribute to the molecular heterogeneity of gastric cancer. Detection of DNA methylation signatures can 

provide biomarkers for early detection, classification, assessment of the tumour prognosis, development 

of therapeutic strategies and patient follow-up.  Validation of these results can be an important 

contribution to the development of novel biomarkers and to understand the biology of the cancer 

epigenome.  

Our results showed that most genes (genes A, B, C, E, I, J, K, L, O and P) previously found as 

hypermethylated were hypermethylated in more than 80% of tumour samples. Results from adjacent 

normal samples should be interpreted with caution due to possible tumour contamination. Our results 
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suggest that could be a certain contamination level of normal samples in TCGA since comparison with 

independent normal gastric samples revealed different methylation patterns. Thus, from a total of 17 

initial genes, we considered eight (genes A, B, C, E, I, J, L and O) as validated (44.6%). These genes can 

be fully tested as potential biomarkers of gastric cancer and may be important in the development of new 

therapies against this disease.  

Our second major analysis consisted of gender differential expression analysis using a TCGA 

cohort, in order to better understand gender differential genomic patterns and their relevance to human 

cancer biology. We subdivided this study into two analyses.  

We recall that the first analysis consists of four tests: i) tumour vs normal samples; ii) male non-

paired tumour tissue samples vs female non-paired tumour tissue samples; iii) male paired tumour tissue 

samples vs female paired tumour tissue samples; and iv) male paired normal tissue samples vs female 

paired normal tissue samples. The second analysis consists of two tests: i) Male tumour samples vs Male 

normal samples, and ii) Female tumour samples vs Female normal samples). The second analysis was 

performed between tumour and normal for gender specific, we used each method individually (for each 

person) not taking into account the globality of samples.  

To our knowledge, methods for differential expression based on RNA-Seq data cannot directly 

implement this feature. We decided for this approach since no better alternative was found, although we 

are aware that this analysis could be further explored with a statistical approach that implements paired 

testing, e.g. Wilcoxon paired rank test.  

Focusing on the autosomal genes, for the first test of the first analysis, we found 1346 DEGs 

between tumour (810 upregulated in the tumour) and normal (536 upregulated in normal) tissue. 

Cytokine activity was found to be enriched, playing an important role in cell signalling, and being released 

by cells of the immune system, especially by monocytes and T lymphocytes. Functions such as growth 

factor binding and growth factor activity are recurrently found enriched in genes up-regulated in the 

tumour. 

 The analyses between male and female only with tumour samples revealed 401 DEGs specific 

for tumour tissue (268 upregulated in male and 133 upregulated in female). Folate biosynthesis pathway 

was found enriched (gene list). Folate is essential in the metabolism of nucleic acid precursors and 

several amino acids , which are required for cell division. Low levels of folate have been associated with 

specific cancers.  

javascript:mono61()
javascript:linfot61()
http://lpi.oregonstate.edu/mic/glossary#nucleic-acid
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https://en.wikipedia.org/wiki/Cell_division
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The analysis with paired samples in tumour and normal (between male and female) revealed 61 

DEGs (24 in male and 37 in female) and 2 DEGs (2 in female), respectively. These two analyses show 

no enrichment for any gene set. For normal tissues (2 DEGs found), we expected no enrichment due to 

the low number of DEGs found, but in the tumour, with 61 DEGs we already expected some functional 

enrichment.  

The second analyses between tumour and normal in gender specific showed 99 DEGs specific 

for male and 93 DEGs specific for female. Growth factor activities were found enriched in male. When 

secreted by tumour cells growth factors may play a major role in tumour cell progression stimulating cell 

division and cell migration. Linoleic acid metabolism pathways were also found to be enriched in male. 

There is literature evidence showing potential mechanisms in the effect of tumour metabolism and 

immune function at gender level (Field and Schley, 2004). Our results show that transcriptomic 

differences at gender level go beyond those expected to be found in sex chromosomes. We expect these 

results to shed light on the molecular differences and commonalities between genders and provide novel 

insights into the differential risk underlying this cancer.  

As future work, we would like to pursue three goals: 

i) Integrative analysis of multi-genomic data. By integrating multiple genomic data types, new 

fundamental information can arise to identify genomic alterations that characterise subtypes of biological 

and clinical significance. None of the data types can individually fully capture the complexity of the cancer 

genome or precisely identify the cancer-driving mechanism. However, together they can provide a new 

model for the discovery of new cancer subtypes and associated cancer genes (Shen et al., 2012);  

ii) Extend the gender differential expression analysis to other cancer types, in particular, those 

with previously found with a significant difference in the incidence between genders. There are studies 

underway in the group for this purpose; 

iii) Gene Co-Expression Networks. The correlation study of networks has increasingly risen in 

bioinformatics. Correlation networks enable network-based gene screening methods that can be used to 

find good candidate biomarkers or therapeutic targets (Langfelder and Horvath, 2008). 
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APPENDIX I – GROUPGO RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 - GroupGO (Biological Processes) analysis for DEGs obtained by edgeR – Paired Tumour 
samples Male vs Female  
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Figure 26 - GroupGO (Molecular Functions) analysis for DEGs obtained by edgeR – Paired Tumour samples 
Male vs Female 
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Figure 27 - GroupGO (Cellular Components) analysis for DEGs obtained by edgeR – Paired Tumour samples 
Male vs Female 
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 Figure 28 - GroupGO (Biological Processes) analysis for DEGs obtained by edgeR – Paired Normal samples 
Male vs Female 
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 Figure 29 - GroupGO (Molecular Functions) analysis for DEGs obtained by edgeR – Paired Normal samples 
Male vs Female 
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Figure 30 - GroupGO (Cellular Components) analysis for DEGs obtained by edgeR – Paired Normal samples 
Male vs Female 




