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ABSTRACT

This thesis intends to describe our approach towards developing a framework for the inter-
active creation of music driven animations.

We aim to create an integrated environment where real-time musical information is easily
accessible and is able to be flexibly used for manipulating different aspects of a reactive
simulation. Such modifications are specified through the use of a scripting language and
include, for instance, geometrical transformations and geometry synthesis, gradual colour
changes as well as the application of arbitrary forces.

Our framework thus represents a proof-of-concept for converting musical information
into arbitrary modifications to a dynamic simulation, producing a variety of animations.
This is possible due to a bargaining between control and automation, where control is
present by allowing the user to program these modifications with a scripting language
and automation is present by using physics and interpolation to estimate the visual effects
resulting from those modifications.

The particular test case for our system was the animation/simulation of a growing tree
reacting to wind. In order to control or influence both the tree growth and wind field,
as well as other visual parameters, the system accepts two different but complementary
representations of music: a MIDI event stream and raw audio data. Different musical
features are obtainable from each of these representations. On one hand, by using MIDI, we
are able to discretely synchronise visual effects with the basic elements of music, such as the
sounding of notes or chords. On the other, using audio, we are able to produce continuous
changes by obtaining numerical data from basic spectral analysis. Our framework provides
a common interface for the combined application of these different sources of musical
information to the generation of visual imagery, under the form of procedural animations.

We will describe algorithms presented in multiple research papers, namely for tree gener-
ation, wind field generation and tree reaction to wind, briefly detailing our implementation
and architecture. We also describe why each of these particular methods was chosen, how
they are organised in our platform and how their parameters may be modified from our
scripting environment leading to what we regard as the procedural generation of anima-
tions.

By allowing the user to access musical information and give them control of what we have
come to refer to as animation primitives, such as wind and tree growth, we believe to have
taken a first step towards exploring a novel concept with a seemingly endless expressive

potential.
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RESUMO

Esta dissertagdo descreve o desenvolvimento de uma plataforma para a criagdo interativa de
animagoes dirigidas por musica. Focamo-nos em desenvolver um ambiente integrado onde
varios aspetos de uma animagado podem ser controlados pelo processamento em tempo real
de informacdo musical, com recurso a uma linguagem de script.

O caso de teste especifico da nossa aplicagdo consiste na animac¢do de uma arvore em
crescimento capaz de reagir a um campo de vento dindmico. De forma a controlar ou influ-
enciar quer o crescimento da drvore, quer o campo de vento, o sistema aceita como input
duas representagdes diferentes, mas complementares, de musica, uma sequéncia continua
de eventos MIDI e dudio.

Realcamos a distin¢do entre estas duas representa¢des visto que apesar de serem am-
bas referentes a musica, sdo fundamentalmente diferentes em termos da informagdo que
contém. Eventos MIDI contém informacdo simbdlica relativa a interpretacdo da mdsica,
nomeadamente os tempos de comego e final de notas. Por outro lado, informagdo audio
consiste num sinal continuo, que resulta da gravagdo de um instrumento ou de uma atuagao
musical. Com MIDI, a nossa plataforma é capaz de sincronizar alteracbes discretas a
simulacdo, com base nos elementos fundamentais da teoria musical, como o soar de no-
tas ou acordes. Com informacéo audio, é possivel produzir altera¢gdes continuas com base
nos dados numéricos obtidos por andlise espectral elementar do sinal de dudio.

Neste documento serdo descritos varios algoritmos apresentados em artigos de investigacao,
nomeadamente para a geragdo de arvores, geracdo de campos de vento e reagdo da arvore
ao vento. Iremos descrever os motivos que levaram a sua escolha, a sua organizacdo na
nossa plataforma e os varios pardmetros que podemos modificar a partir do nosso ambi-
ente de scripting.

Em suma, a nossa plataforma pode ser descrita como um sistema que converte informagao
musical em alteragdes arbitrdrias a um ambiente, que por sua vez influencia uma simulagao
reativa, produzindo animacdes. Foi estabelecido um compromisso entre controlo e automagao
de forma a tornar esta abordagem possivel. O controlo provém da capacidade de progra-
mar as modifica¢des que ocorrem no sistema, sendo que é utilizada automagao de forma a
estimar o movimento resultante de tais modificagdes.

Ao fornecer ao utilizador informag¢do musical em tempo real e oferecer-lhe controlo sobre
0 que nos referimos como “primitivas de animagdo”, como o controlo sobre vento e o cresci-
mento da drvore, consideramos que demos um primeiro passo no que toca a exploragdo de

um novo conceito, com um potencial expressivo aparentemente infinito.
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1

INTRODUCTION

Computer colours joined in harmony
with music offer the composer and the
artist alike a precious new amalgam of
dynamic art resources. Extraordinary
possibilities remain untried, unknown,

even barely imaginable.

John Whitney

The creation of audio-visual compositions is an interdisciplinary subject which connects
art, science and engineering. Establishing links between sound and vision has been a topic
of active exploration with origins dating back to ancient Greece (Caivano (1994)).

1.1 CONTEXT

Sound and light are two entirely unrelated phenomena that behave in similar ways - both
can penetrate materials, radiate equally in all directions, and diminish with distance follow-
ing the square-cube law (Betancourt (2015)). As such, it is not surprising that artists and
scientists alike are naturally drawn towards establish connections and associations between
them.

The interplay between visual effects and music provides a vibrant means of artistic ex-
pression and many performances have been conducted with it in mind, providing a com-
plementary experience to the audience. Dance, as a performing art, shows that a strong
connection exists between musical rhythm and motion. Regarding colour, recent studies
indicate that music—color associations are mediated by emotion (Palmer et al. (2013)).

Another valuable use for audio-visual compositions is that of teaching and aiding in the
understanding of the music. A great deal of academic research follows this approach and
often results in frameworks which are able to display various music theoretical aspects in
graphical form. Other platforms exist which strive for a purely aesthetic visual accompa-

niement of music, some of which referred to as music visualiser software. This software



1.2. Motivation

often employs the algorithmic generation of abstract imagery which bears some relation-
ship to the music being played since it draws information from the underlying audio-signal.
Music, however, contains much richer structure than what can be easily extracted from an
audio signal. Unfortunately, this information is seldom used for animation as it is far less

available and accessible.

1.2 MOTIVATION

Modern algorithmic visualisations of music are only possible due to the advent of digital
computers. However, these frequently do not go beyond the use the physical characteristics
of sound, such as loudness and frequency spectrum.

Music contains a large amount of underlying structure (Bergstrom et al. (2007)), which
music theory describes by assigning characteristics to concepts such as intervals, chords and
rhythm. However, we found the visual representation of these concepts has been mostly
used in the domain of teaching and aiding in the understanding music, as opposed to
artistic expression.

Although musical structure is thoroughly described by a formal theory it is often experi-
enced in an intuitive, emotional or intellectual way.

Research into human perception of auditory-visual mappings has had a great deal of
cross-disciplinary interest, namely that of visual perception and cognitive psychology. Sta-
tistical evidence has been found to indicate that there exist intuitive auditory-visual map-
pings common among the general population. These results encourage the design of com-
puter music tools that support the intuitive exploration of sound-spaces (Giannakis (2006)).

1.3 OBJECTIVES

Our main goal consists in exploring the potential that elementary musical features hold
for producing engaging animations. We do this by creating a proof-of-concept framework
which allows for musical features to be connected, in a configurable and intuitive way,
to having a direct impact on a reactive animation. The animation is obtained by creating a
physically-based simulation, which is able to be interactively modified. These modifications
may be manually described from a scripting environment with direct access to a real-time
stream of musical information.

The particular case study we selected is that of an animation of a growing tree under
adjustable wind conditions. We selected trees as our object of interest for three main reasons.
First, the procedural generation of trees is a well-studied field. Second, trees possess several
mutable aspects, such as topology, growth rate and colour, which can be used as a “canvas”



1.4. Document Structure

for projecting different musical aspects and third, by modifying the wind field we are able
to create a variety of swaying motions which arguably resemble a primitive form of dance.

1.4 DOCUMENT STRUCTURE

In chapter 2 we present a general overview of relevant scientific and artistic topics related
to the visualisation of music. Afterwards, in chapter 3, we proceed to describe our pro-
posed approach, as well as the implementation details we considered the most significant.
Chapter 4 contains a tutorial on the usage of our application, as well as a brief description
of two examples that we have conceived in order to explore some of the potential of our
framework. Lastly, chapter 5 summarises our work and presents some possible avenues for
future research and exploration.
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STATE OF THE ART

This project draws knowledge from distinct fields, ranging from music visualisation as an
art form, to the mathematical and algorithmic field of procedural generation. In order to
join these areas in a cohesive work, diverse research was required, as will be presented in
this chapter.

We begin with an introductory section on the most basic theoretical aspects of sound and
music, followed by a condensed historical perspective on the art of visualising music, the
technology that supported it and some of the most influential works.

We then narrow our focus on approaches which employ electronic and digital tools. This
includes the perspective of musical visualisation for impressing and entertaining, as well
as for teaching and understanding musical structure. Afterwards, we visit the cultural
phenomenon that is the Demoscene, since it bears a strong resemblance to our project by
employing algorithms for the creation of audio-visual presentations.

Finally, we step into the particular problem of modelling trees, which are our chosen
object of interest for this project. In order to obtain dynamic animations, this also entails

simulating the interaction between trees and their environment, in particular, the wind.

2.1 SOUND AND MUSIC BACKGROUND

Music is an art form and cultural activity whose medium is sound and silence organised
in time. Music is found in every known culture, past and present, varying widely between
times and places. The origins of music date back to at least 35 0oo years ago, when crude
flutes were found to be carved from vulture wing bones (Wilford (2009)).

Rather than giving a comprehensive overview of musical and acoustical concepts, our
goal for this chapter is to build some intuition on the subjects while introducing some basic

terminology relevant for the remainder of this document.



2.1. Sound and Music Background

2.1.1  Sound

A sound is generated by a vibrating object such as the vocal cords of a singer, the string
and soundboard of a violin or the diaphragm of a kettledrum. These vibrations cause
displacements and oscillations of air molecules, resulting in local regions of compression
and rarefaction. The alternating pressure travels through the air as a wave, from its source
to a listener or a microphone. At its destination, it can then be perceived as sound by the
human or converted into an electrical signal by a microphone.

This signal consists in what is referred as an audio representation of sound encodes all
information needed to reproduce an acoustic realisation of a piece of music. This includes
the temporal, dynamic, and tonal microdeviations that make up the specific performance
style of a musician.

Graphically, the change in air pressure at a certain location can be represented by a
pressure—time plot, as shown in figure 1, also referred to as the waveform of the sound.
The waveform shows the deviation of the air pressure from the average air pressure (Miiller
(2015)).

The digital representation of this waveform results in storing a large number of ampli-
tude measurements usually referred to as samples. These samples relate time with the
amplitude of the original signal, which then gives rise to the notion of sampling rate, the
number of samples recorded by unit of time.

The most common sampling rate for audio is 44.1kHz. This number results from the
sampling theorem, which states that an analogue signal can be reconstructed perfectly from
its sampled version, if the analogue does not contain any frequencies higher than twice the
sampling rate. This is referred to as the Nyquist Frequency. A poor choice of sampling rate
leads to artefacts known as aliasing. By choosing 44.1kHz the human hearing range from
20Hz to 20 kHz is fully covered. However, in studios, it is common to use much higher
sampling rates, such as 88.2kHz, 96kHz, 192kHz to reduce the probability of sampling
errors (Gallagher (2015)).

The direct reaction of sound frequencies to matter give rise to intriguing figures, collec-
tively studied by the field of Cymatics, as can be observed in figure 2.

2.1.2 Music

Music can be represented in many different ways and formats. For example, a composer
may write down a composition in the form of a musical score. In a score, musical symbols
are used to visually encode notes and how these notes are to be played by a musician. The

printed form of a musical score is also referred to as sheet music.

1 For a musical performance exploring these phenomena please visit http://nigelstanford.com/Cymatics/
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Figure 1: (a) Waveform of the first eight seconds of a recording of the first five measures of
Beethoven’s Fifth (b) Enlargement of the section between 7.3 and 7.8 seconds (Miiller

(2015)).

Figure 2: Examples of patterns formed by wave vibrations on metal plates (Jenny (2001)).



2.1. Sound and Music Background

We will follow the convention used in Miiller (2015) and use the term symbolic to refer to
any machine-readable data format that explicitly represents musical entities. These musical
entities may range from timed note events, as is the case of MIDI files (see 2.2.1), to graphical
shapes with associated musical meaning, as is the case of music engraving systems.

These symbolic representations are distinct from audio representations such as WAV or
MP3 files, which do not explicitly specify musical events. Such files directly encode the
electrical signal captured by microphones as stated in section 2.1.1.

Each of these representations reflects certain aspects of a musical object, but no single
representation encompasses all its properties.

Music is much more than a description of the notes to be played. Music is about making,
creating, and shaping sounds. When musicians start delving into the music, the playing
instructions recede into the background. The musical meter turns into a rhythmic flow,
the different note objects melt into harmonic sounds and smooth melody lines, and the
instruments communicate with each other. Musicians get emotionally involved with their
music and react to it by continuously adapting tempo, dynamics, and articulation. Instead
of playing mechanically, they speed up at some points and slow down at others in order to
shape a piece of music. Similarly, they continuously change the sound intensity and stress
certain notes. All of this results in a unique performance or an interpretation of the piece
of music (Miiller (2015)).

Music theory accompanied the evolution of music and includes considerations of tonal
systems, scales, tuning, intervals, consonance, dissonance, duration proportions and the
acoustics of pitch systems. A body of theory exists also about other aspects of music, such
as composition, performance, orchestration, ornamentation, improvisation and electronic
sound production.

In this section, we hope to give a very broad introduction of what is commonly referred
to as the fundamental constituents of music. According to Gardner (2011), there is little
dispute about the principal constituent elements of music, though experts differ on their
precise definitions.

As an illustrative example of musical symbols and concepts, we will refer to the sheet
music representation of Symphony No. 5 in C minor by Ludwig van Beethoven as present
on figure 3. This is one of the most popular and best-known compositions in classical music.
It begins with a short musical idea, the famous “short-short-short-long” motif, which is

commonly referred to as the “fate motif” of Beethoven'’s Fifth.
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Figure 3: Sheet music representation of the first five measures of Symphony No. 5 by Ludwig van
Beethoven in a piano reduced version.
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2.1.3 Western Music Notation

Generally speaking, music notation refers to a system for graphically representing music
through symbols. The standard Western music notation is based on a staff, which is a set
of five horizontal lines and four spaces each representing a different musical pitch.

Appropriate music symbols, depending upon the intended effect, are placed on the staff
according to their corresponding pitch or function. Pitch is shown by the vertical placement
of note symbols on the staff, sometimes modified by accidentals. The higher the placement
within a given staff, the higher the pitch of the corresponding note. Furthermore, the
duration is indicated by the shapes of the note symbols as well as additional symbols such
as dots and ties.

The notation is read from left to right. A staff generally begins with a clef symbol, which
indicates the position of one particular note on the staff. For example, by convention, the
treble clef, also known as the G-clef, indicates that the second line is the pitch G4 (see figure
4b). Similarly, the bass clef, also known as the F-clef, indicates that the fourth line is the
pitch F3 (see figure 4c¢).

Following the clef, the key signature placed on the staff indicates the key of the piece and
lastly, the time signature can be found. These concepts will be detailed in the following

sections.
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2.1. Sound and Music Background

2.1.4 Pitch

Pitch determines how “high” or “low” a note sounds. It is an auditory sensation in which
a listener assigns musical tones to relative positions on a musical scale based primarily on
their perception of the frequency of vibration. As such, it is closely related to the physical
concept of frequency, but the two are not equivalent. Frequency is an objective attribute that
can be measured while the pitch is each person’s subjective perception of a sound wave.

Pitches are usually associated with frequencies by comparison with pure tones, which
have periodic, sinusoidal waveforms. Playing a note on an instrument results in a (more
or less) periodic sound of a certain fundamental frequency (i.e. the lowest frequency of a
periodic waveform). This fundamental frequency is closely related to what is meant by the
pitch of a note.

Human perception of sound is fundamentally logarithmic. As a result, two notes with
fundamental frequencies in a ratio equal to any power of two (e.g., half, twice, or four times)
are perceived as very similar. This interval between pitches is referred to as an octave and
this phenomenon is referred to as octave equivalency: pitches one or more octaves apart
are considered musically equivalent in many ways. Consequently, notes an octave apart are
given the same note name in Western music notation. Another relevant definition is that of
a pitch class, which is the set of all pitches or notes that are an integer number of octaves
apart, such as C or D.

In order to describe music using a finite number of symbols, one needs to discretize the
space of all possible pitches. This leads to the notion of a musical scale, which can be
thought of as a finite set of representative pitches.

Although many other tuning systems exist, in virtually all western music, the octave
has been divided into 12 logarithmically equal steps, labelled semitones. The resulting
sequence of pitches is referred to as the twelve-tone equal temperament chromatic scale
and thus contains every defined pitch: C; Cf/Db; D; Di/Eb; E; F; Fi/Gb; G; G#/Ab; A;
Af/Bb; B. The next note in the scale would be C, only an octave higher than the previous.
Cf and Db, as well as the other examples, represent the same pitch class?, even though from
a musical point of view one distinguishes between these two concepts.

The term chromatic is derived from the Greek word chroma, meaning colour. In the
music context, the term “chroma” closely relates to the twelve different pitch classes. For
example, the notes C2 and C5 both have the same chroma value C. In other words, all notes
that have the same chroma value belong to the same pitch class.

As previously stated, notes that belong to the same pitch class (or have the same chroma
value) are perceived as similar in a certain way. This justifies the usage of the term “chroma”

in the sense that notes with different chroma values have a different “sound colour”.

2 This phenomenon is also known as enharmonic equivalence.
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Figure 6: Symbols for most common rest (a) and note (b) durations.

Pitches are then cyclical in nature, and to completely specify which pitch we are referred
to, an additional piece of information is required: a number representing its octave. This
representation of pitch is called Scientific Pitch Notation (SPM) and can be seen in figure
4. The cyclic nature of chroma values is illustrated by the chromatic circle as shown in 5.
Extending this notion, Shepard’s helix of pitch represents the linear pitch space as a helix

wrapped around a cylinder so that octave-related pitches lie along a single vertical line.

2.1.5 Rhythm

Rhythm is the element of time in music. It comprises different concepts, such as duration,
tempo and meter.

Tempo refers to the speed at which a piece of music is played. This usually translates
in how many beats there are in a unit of time, with Beats per Minute (BPM) being the most
common measure.

Tempo can also be described in a more subjective way, commonly using Italian words,

such as Largo, very slow pace, Moderato a moderate pace and Presto a very fast one. Tempo is
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not necessarily fixed within a piece, a composer may indicate a complete change of tempo,
often by using a double bar and introducing a new tempo indication, often with a new
time signature and/or key signature. It is also possible to indicate a more or less gradual
change in tempo, for instance with an accelerando (speeding up) or ritardando (slowing down)
marking.

Notes and rests are the fundamental

building blocks of music. Rests corre- ?;F'

A 1 iy |
. 1 | - 1 1 il |

spond to silence and notes correspond to (a) i?j.__ﬁ|—,|_|_g_¢_¢_|.|

the sounding of given pitch. Both have a
duration, which is usually a fraction of the
tempo defined for the piece. The duration

is represented by a specific symbol, such as l«

a whole-note, half-note or a quarter-note, as  (b) W—H—d—‘—?ﬂﬁ
illustrated on 6, as well as additional sym- Im_,_aJ
bols, such as dots and ties. measure (bar)

Usually, these notes are organised in mea-

Figure 7: Notation of time signature. (a) Four
quarter notes per measure. (b) Six eighth
sure defines a segment of time correspond- notes per measure.

sures, also referred to as bars. Each mea-

ing to a specific number of beats, in which

each beat, or sequence of beats, is represented by a particular note or rest, and the bound-
aries of the bar are indicated by vertical lines. Dividing music into bars provides regular
reference points to pinpoint locations within a musical composition.

The number and length of notes in each measure usually follow a pattern. This pattern is
indicated at the beginning of the composition, as two stacked numbers. This is the piece’s
time signature or metre. The bottom number indicates what the unit duration is and the
top number indicates how many of these there are in a single bar. Common time signatures
are 4/4 and 6/8. In the first case, the bottom number is 4, which means the unit duration
is the quarter note and the top number is 4 which means there are four quarter notes per
measure. In the second case, the unit duration is the eight note and there are six eight notes
per measure as can be seen in figure 7.

A metre may also determine recurring accent patterns, that is, how emphasis should be
given to individual notes based on their position on the measure. For instance, in a triple

meter (3/4), it is common to have the first beat stronger than the two that follow.

2.1.6 Dynamics

Dynamics refers to the relative loudness or quietness of a musical performance and may

also refer to other aspects of the execution of a given piece. In written compositions, dy-
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namics are indicated by abbreviations or symbols that signify the intensity at which a note
or passage should be played. They can be used like punctuation in a sentence to indicate
precise moments of emphasis.

In classical music, the terms used to describe dynamic levels are often presented in Italian,
such as pianissimo (very quiet), mezzo-forte (moderately loud) and forte (loud). Crescendo and
Diminuendo are other fundamental concepts of dynamics, and respectively indicate that the
performance should gradually become louder or quieter. Lastly, an accent is emphasis
placed on a particular note or set of notes or chord.

An accent may alter any aspect of the note, be it attack, duration or even pitch. Due
to its expressive nature, several markings exist to describe different accents. For instance,
articulation marks are used to indicate how certain notes are to be played. For example, a
staccato mark (a dot placed above or below a note) signifies that a note is to be played with
shortened duration detached from the subsequent note, whereas a legato mark (a curved line
placed above or below a group of notes) indicates that musical notes are played smoothly
and connected.

2.1.7 Melody

Melody is the element that focuses on the horizontal presentation of pitch and can be
interpreted as a sequence of notes. Melodies often consist of one or more musical phrases or
motifs and are usually repeated throughout a composition in various forms, often making
them one music’s most memorable aspects.

Melody is often composed based on the
key signature of the composition. The key

signature is usually associated with a par- (a)

ticular scale and defines the most common C4 D4 4 F4 G4 A4 B4 CS

notes used throughout the musical compo-

sition. The key signature is represented as ’J? 4 S
a set of sharp(f) and flat(b) markings on the (b) w
staff, following the clef, specifying that cer- C4 D4 E'4 F4 G4 AP4 BM C5

tain notes are flat or sharp throughout the

Figure 8: (a) Musical score of a C-major scale start-

piece unless otherwise specified. For exam- ing with C4 and ending with Cs. (b)

ple, the notes shown in figure 8a are C4, D4, Key signature consisting of three flats
E4, F4, G4, A4, B, C5 thus forming a C- converting the sequence into a C-minor
scale.

major scale. Using the key signature con-
sisting of three flats as shown in figure 1.5b,
the notes become Cy4, D4, Ebg, F4, G4, Abg, Bbg, Cs thus forming a (natural) C-minor scale.

12
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2.1.8 Harmony

Harmony is the verticalization of pitch. Most often harmony is thought of as the art of com-
bining pitches into chords (several notes played simultaneously as a “block”). These chords
are then arranged into sentence-like patterns called progressions. Usually, the harmony is
considered the accompaniement to a song, while the melody is the lead.

Harmony is often described as being dissonant when it produces a harsh-sounding har-
monic combination or consonant when the combination is smooth-sounding. Dissonant
chords produce musical “tension” which is often “released” by eventually transitioning to
consonant chords. However, since each person’s perception of consonance and dissonance
differ, these terms are somewhat subjective. This leads to a discussion on tonality. A vast
majority of western music is tonal, which means there is a certain key which is considered
the centre of the composition and provides a sense of consonance. This is, however, a very
vast subject, and a more detailed discussion would go beyond the scope of this work.

2.1.9 Timbre

In intuitive terms, timbre is what allows for sounds with identical pitch and loudness to
be distinguishable. That is, it is what allows the same note to be differentiated among
different instruments. Interestingly, timbre is also referred to as “tone colour”, since it can
be used analogously by a composer as colours are used by a painter. For example, the
upper register (i.e. range) of a clarinet produces tones that are brilliant and piercing, while
its lower register gives a rich and dark tone.

A sound generated on any instrument produces many modes of vibration that occur
simultaneously. A listener hears numerous frequencies at once. A partial is any of the
sinusoids by which a musical tone is described and the lowest partial is referred to as
the fundamental frequency. Any frequencies which are an integer multiple above (twice,
three-times, four-times) are referred to as overtones. The distribution of intensity among
these frequencies and their variation over time is one of the key ”ingredients” of timbre

since it gives rise to the unique sound which uniquely characterises every instrument.

2.2 FILE FORMATS

In this section, we will give a brief overview of the most relevant file types for the represen-
tation of symbolic musical information. MIDI is a very condensed representation of music,
due to its original intended purpose as a standard for communication between electronic
musical devices such as digital keyboard and synthesizers. MusicXML, on the other hand,

can be regarded as the digital equivalent of sheet music and as such provides much more
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information regarding musical structure. The use of MIDI carries several benefits, as re-
ferred in section 3.6. However, we also describe MusicXML since, ideally, it could provide
our system with a great deal more of musical information, as well as providing a familiar

and intuitive interface for musicians.

2.2.1 MIDI

In this section, we intend to give the reader an overview of the MIDI representation of
musical data. The most concise and intuitive introduction we found on this subject is part
of the book Fundamentals of Music Processing by Miiller et al. (2006). As such, this was our
primary reference for the following text.

“Musical Instrument Digital Interface (MIDI) is a technical standard that describes a com-
munication protocol, digital interface and electrical connectors to allow for a wide variety
of electronic musical instruments, computers and other related music and audio devices to
connect and communicate with one another” (MIDI).

MIDI was originally developed so as to allow digital electronic musical instruments from
different manufacturers to work and play together. It was the advent of MIDI in 1981-1983
that caused a rapid growth of the electronic musical instrument market. MIDI allows a
musician to remotely and automatically control an electronic instrument or a digital syn-
thesizer in real-time.

It is an important fact that MIDI does not represent audio, but only represents perfor-
mance information which encodes the instructions about how music is to be produced. To
do so MIDI specifies a set of messages which describe precisely what notes are to be played
and how.

An illustrative example is that of a digital piano. When a key is pressed on a keyboard
the intensity of the sound is controlled by the velocity of the keystroke and the release
the key stops the sound. Instead of physically pushing and releasing the piano key, the
musician may also instruct the instrument to produce the same sound by transmitting
equivalent MIDI messages, which encode the note-on, the velocity, the note-off, and other
information.

The original MIDI standard was later expanded in order to include the Standard MIDI
File (SMF) specification, which describes how MIDI data should be stored on a computer.
A MIDI file contains a list of MIDI messages together with timestamps, which determine
the timing of the messages.

For the purposes of this work, the most important MIDI messages are the note-on and
the note-off commands, which correspond to the start and the end of a note, respectively.

In MIDI files, each note-on and note-off message is characterised by a MIDI note number,

a value for the key velocity, a channel specification, as well as a timestamp.
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Figure 9: Various symbolic music representations of the first twelve notes of Beethoven’s Fifth. (a)
Sheet music representation. (b) MIDI representation (in a simplified, tabular form). (c)
Pianoroll representation. (Miiller et al. (2006)

The MIDI note number is an integer between o and 127 and encodes a note’s pitch. MIDI
pitch values are based on the equal-tempered scale as discussed in section 2.1.4. Similarly
to an acoustic piano, where the 88 keys of the keyboard correspond to the musical pitches
Ao to C8, the MIDI note numbers encode, in increasing order, the musical pitches Co to
Gi9. For example, note C4 has the MIDI note number 60, whereas the concert pitch A4 has
the MIDI note number 69.

The key velocity is an integer between o and 127, which controls the intensity of the
sound. In the case of a note-on event, it determines the volume, whereas in the case of a
note-off event it controls the decay during the release phase of the tone. The exact interpre-
tation of the key velocity, however, depends on the particular instrument or synthesizer.

The MIDI channel is an integer between o and 15. Intuitively speaking, this number
prompts the synthesizer to use the instrument that has been previously assigned to the
respective channel number.

Lastly, the time stamp is an integer value that represents how many clock pulses or ticks
to wait before the respective note-on or note-off command is executed.

We illustrate the MIDI representation by means of an example. figure 9 shows a (simpli-
tied and tabular) MIDI encoding of the first fate motif corresponding to the twelve notes of
the score in figure ga. In this example, the notes of the right hand are assigned to channel
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1 and the notes of the left hand to channel 2. The notes specified by corresponding note-on
and note-off events in the MIDI file can also be visualised by a piano-roll representation
(see figure 9c).

An important feature of the MIDI format is that it can handle musical as well as physical
onset times and note durations. Similarly to sheet music representations, MIDI can express
timing information in terms of musical entities. To this end, MIDI subdivides a quarter note
into basic time units referred to as clock pulses or ticks. The number of pulses per quarter
note (PPQN) (PPQN) is specified at the beginning, in the header of a MIDI file, and refers
to all subsequent MIDI messages.

A common value is 120 PPQN, which determines the resolution of the timestamps as-
sociated to note events. A time stamp indicates how many ticks to wait before a certain
MIDI message is executed, relative to the previous MIDI message. For example, in figure
9 the first note-on message with MIDI note number 67 is executed after 60 ticks, which
corresponds to the eighth rest at the beginning of Beethoven’s Fifth. The second and third
note-on messages are executed at the same time as the first one, encoded by the tick value
zero. Then, after 55 ticks, MIDI note 67 is switched off by the note-off message, and so on.

Like sheet music representation, MIDI also allows for encoding and storing absolute
timing information, at a much finer resolution level and in a more flexible way. To this end,
one can include additional tempo messages that specify the number of microseconds per
quarter note. From the tempo message, one can compute the absolute duration of a tick.
For example, having 600000 s per quarter note and 120 PPQN, each tick corresponds to
5000 ys. Furthermore, one can derive from the tempo message the number of quarter notes
played in a minute, which yields the tempo measured in BPM. For example, the 600000 pis
per quarter note correspond to 100 bpm.

While the number of pulses per quarter note is fixed throughout a MIDI file, the absolute
tempo information may be changed by inserting a tempo message between any two note-
on or other MIDI messages. This makes it possible to account not only for global tempo
information but also for local tempo changes such as accelerandi and ritardandi (Miiller

(2015)).

Limitations

MIDI was originally designed to solve problems in electronic music performance and is
limited in terms of the musical aspects it represents. For example, MIDI is not capable of
distinguishing between a Db4 and an Et4, both of which have the MIDI note number 63.
Furthermore, MIDI does not define a note element explicitly; rather, notes are bounded by
note-on and note-off events. Rests are not represented at all and must be inferred from the

absence of notes (Miiller (2015)).
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<note> n

[
<pitch> ¢
<step>E</step> k= ,_t

<alter>-1</alter> e
<octaver4</octave>
</pitch> I
<duration>2</duration>
<type>half</type>

</note> —&—

Figure 10: Textual description in the MusicXML format of a half note Eb4. The clef, key signature,
and time signature are defined at the beginning of the MusicXML file.

A

2.2.2 MusicXML

MusicXML has been developed to serve as a universal format for storing music files and
sharing them between different music notation applications. Following the general Extensi-
ble Markup Language (XML) paradigm, MusicXML is a textual data format that defines a set
of rules for encoding documents in a way that is both human and machine readable. It is
currently supported by most score writing programs, including Finale, Sibelius, as well as
Optical music recognition (OMR) programs and sequencer programs.

This representation contains explicit information regarding musical symbols such as the
staff system, clefs, time signatures, notes, rests, accidentals, and dynamics. Compared
with MIDI, this format is much closer to what is actually shown in sheet music and as
such the MIDI limitations referred in section 2.2.1 are no longer present in a MusicXML
representation.

A minimal but complete example can be found in Musicxml tutorial. As with most
XML-based formats, MusicXML is particularly verbose, leading a large file size. In order
to address this issue, MusicXML 2.0 added a compressed zip format which can make files

roughly 20 times smaller than their uncompressed version.

2.3 VISUAL MUSIC

Visual music is a term used to refer to a broad range of artistic practices united by a common
idea: that visual art can aspire to the dynamic and nonobjective qualities of music. This
translates into a strong influence of musical structures in the visual arts, from paintings to
films - and now to computer programs - the manifestations of visual music have evolved
along with the technology available to artists (Jones and Nevile (2005)).

Interest in audiovisual compositions dates back to ancient Greece when philosophers
Aristotle and Pythagoras had already speculated that there must be a correlation between
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the musical scale and the rainbow spectrum of hues (Caivano (1994)). Sir Isaac Newton
and many others have proposed different connections of sound and vision through the
wave properties of colour in light and pitch in music, usually in the form of mappings
between hues and pitch (Alves (2005)). However, due to the subjective nature of both music
and colour perception, a definite answer is yet to be found and remains a subject of great
debate and artistic exploration.

The earliest registered example of technology being used to aid in this form of expression
was invented by French Jesuit monk Louis-Bertrand Castel, who proposed the idea of Ocular
Harpsichord in the 1730’s. This device was similar to a piano in construction, except for also
having small coloured glass panes, each with a curtain that would lift briefly to show a flash
of corresponding colour when a key was struck (Moritz (1997)). By the late 19th century,
the American inventor Bainbridge Bishop and the British painter A. Wallace Rimington
had separately created musical devices that employed carbon-arc lamps to produce bright
flashes of colour. In the 20th century, numerous reinventions of the device emerged, each
nearly identical to its predecessors save for their differing schemes for mapping colours to
notes (Betancourt (2015)). These devices were collectively labelled as colour organs.

In the 1920s Walther Ruttmann and Oskar Fischinger were pioneering visual music films
in Germany. Oskar Fischinger is regarded as one of the most influential artists within visual
music. He created a series of highly acclaimed films which were some of the earliest ex-
amples of abstract animation to display an intuitive connection between musical and visual
form (Moritz (1997)). Built entirely with stop-motion techniques, by the direct colouring
film, they consisted mostly of delicately animated fluid forms engaging in harmonious mo-
tions or transformations inspired by the accompanying music (see figure 11). Fischinger
was also involved with the animation of Disney’s musical Fantasia (Searle (2013)) and went
later on to invent the Lumigraph, a device which produced imagery by pressing objects
or hands into a rubberised screen that would protrude into coloured light . In 1964 the
Lumigraph was used in the science fiction film The Time Travelers, in which was renamed to
lumichord.

Also noteworthy is the work of John and James Whitney, pioneers in the computer an-
imation industry, who developed music-driven films using intricate home-made analogue
computers (see figure 12). Their techniques inspired the traversal of the space-time contin-
uum scene in Kubrick’s famous sci-fi movie ”2001: Space Odyssey” (Youngblood and Fuller
(1970)). John Whitney was a strong believer that computers held tremendous potential for
merging music with visual art and dedicated himself to establishing a theory of how sound
and musical properties could mathematically relate to motion and animation (Alves (2005)).

Many more noteworthy artists have used this form of expression, however, a rigorous

analysis would go beyond the scope of this dissertation. A comprehensive survey, both
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Figure 11: An Optical Poem frames by Oskar Fischinger

Figure 12: Permutations frames by John Whitney
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Figure 13: Music visuals in Mitroo et al. (1979)

on artists and the history of visual music, can be found in Behravan (2007). An excellent

review of visual music is also presented in Evans (2005).

2.4 ALGORITHMIC MUSIC VISUALISATION
2.4.1  Focus on Audio-Visual Complementarity

The earliest examples of electronic music visualisers were “light organs”. These were de-
vices which automatically converted audio signals into rhythmic lighting effects and usually
functioned by decomposing the audio signal into several frequency bands, whose intensity
then regulated the intensity of differently-coloured lights. The first music visualiser resem-
bling modern software was developed by Atari in 1976. It consisted of a device which
received input from a Hi-Fi system and produced simple imagery based on waveform in-
formation. It was, however, unsuccessful and was removed from the market after a single
year (Edwards (2016)).

Among the earliest approaches to use a computer-based approach for musical visual-
isation was presented in Mitroo et al. (1979), where the authors developed software for
generating animations and images from music. The theory of music visualisation proposed
by artist Nancy Herman was implemented. It comprises the particular association between
the amount of white present in the colour and the musical octave of each note. Images were
produced starting at the centre of the canvas, with notes or chords appearing as concentric
areas in a basic shape, such as circles or squares, as can be seen in figure 13

Soon after the appearance of personal computers, the first real-time visualisers appeared
for the ZX Spectrum as shown in figure 14.

From the mid-1990s onward, several music players began incorporating visualiser soft-

ware and the concept became widespread.
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Figure 14: Sound to Light Generator for the ZX Spectrum

Concurrently, Video Jockey (V]) culture began to emerge, as artists began specialising in
producing visual content for concerts, nightclub and music festivals (Correia (2013)).

The earliest example of visualiser software is Cthugha, an open-source and cross-platform
visualiser released initially in 1993. Cthugha calls itself “an oscilloscope on acid” and may
have been the forerunner — either in inspiration or possibly even as source-code — of the
numerous and varied visualisers that followed. In 1997 Cthugha was extended to three
dimensions, which we show in figure 15.

One of such visualisers is Ryan Geiss” milkdrop (Geiss (2013a)) which was featured in the
popular WinAmp music player (Geiss (2013b)). Released originally in 2001, Milkdrop is able
to generate a myriad of fluid psychedelic effects. It operates with a beat-detection algorithm
coupled with presets, which consist of script files describing the variation of colour in every
frame, according to the input audio signal. These files can describe effects ranging from
simple particle effects to intricate fluid and fractal-like shapes and terrain. They contain
sections akin to fragment shader code, in the sense that a colour value is generated for
every pixel of every frame.

In 2007 Milkdrop2 was released featuring support for hardware accelerated fragment
shaders which allowed to push the possibilities even further.

Due to its vast versatility, Milkdrop remains popular to this day with a dedicated com-
munity who continue to re-invent presets, exploring the endless possibilities. Originally
implemented in Direct3D, Milkdrop has also been re-implemented in OpenGL and is also
available as a mobile application under the name ProjecM.

Overall, Milkdropz is able to produce an endless variety of effects (as illustrated on
tigure 16). Due to being rooted on beat detection and constantly changing of presets, its
connection to music, from a synchronisation standpoint, becomes particularly evident and
engaging in music genres with fast tempos, strong beats and pronounced bass lines, such
as trace and other electronic music. Other types of music, such as classical or jazz may
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Figure 15: Cthugha Music Visualiser

occasionally synchronise but in general produce poorer displays, where randomness is
mostly uncontrolled.

Also noteworthy is the G-force visualisation plug-in3. It is a popular commercial visu-
aliser, originally released in 2001 and featured as the iTunes default visualiser, (Soundspec-
trum). From then on, it’s been under constant development, accompanying numerous live
performances, of great artists such as Herbie Hancock, Journey, George Michael and Aero-
smith. It has also been used in various commercial enterprises as live decoration and has
recently been released as an iOS application. It is a plug-in more suitable for interactive
use, as it allows for tuning of the effects with a graphical user interface, as opposed to

Milkdrop’s more technical approach, of programming these effects.

Using Musical Data as Input

The Animusic animation company creates entrancing digital animations deeply rooted in
music ever since its founder, Wayne Lytle, made his first MIDI-based animation More bells
and whistles in 1990 4. Animusic’s production pipeline involves a custom software entitled
MIDImotion for deriving motion from music, which combines the output generated by
several algorithms and takes into account current, past and future notes. These factors
are combined to derive “intelligent”, natural-moving, self-playing instruments (Animusic
Company).

Ubiquitously mentioned in music visualisation literature is Stephen Malinkowski’s Music

Animation Machine. His work consists in what he refers to as “animated scores”, that

3 An image gallery is available at https://www.soundspectrum.com/g-force/screenshots.html
4 https://www.youtube.com/watch?v=xhwwKXLQSew
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Figure 16: Frames generated by Milkdrop2
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is, real-time animations of a musical sheet synchronised with a real performance. His
animations resemble the piano-roll representation of music, where the pitch is mapped to
height and time is mapped to width, with animated transitions inspired by the musical
piece in question and colours based on musical structure. His work dates back to 1985
and has been in constant improvement and exploration since. The piano roll part of the
animation is generated automatically via custom software, however, transition effects are
added manually. Synchronisation between audio and MIDI files is performed in a semi-
automated way by manually setting key-points. A vast library of animations has been
produced and is available on Stephen Malinkowski’s YouTube channel smalin.

In a more automated approach, Wood-Gaines (1997) described a system to model the
expressive movements of performing musicians. The case study was that of animating a
3D virtual drummer according to drum-tracks present in a MIDI file. The primary motions
were generated using kinematics based on MIDI information. Motions could be later cus-
tomised by an animator in order to convey the dynamics and expression of the piece being
played.

Another art form that is very relevant to the visualisation of music is dance. As such,
there have been some efforts in the generation of motions and choreography for virtual
dancers. In Perlin (1995), for instance, pseudo-random noise is used as the driving force
for generating motions for a virtual human dancer, coupled with constraints to prevent
impossible body movements.

Cardle et al. (2002) present an approach to interactively edit motion curves with cues
from musical information. The key to this approach is the use of music analysis techniques
on both MIDI and corresponding audio signals to automate the generation of synchronised
musical animations. These two sources complement each other, as extracting note infor-
mation from pure sonic data is a very difficult task as opposed to MIDI, from which it
is trivial. On the other hand, MIDI does not encode any sound information whatsoever,
so timbre and dynamics information is lost. The approach consists in taking pre-defined
motions, created by an animator or resulting from motion capture, which are then able to
be algorithmically emphasised according to musical cues, such as chord changes, repeating
patterns or variations in loudness.

Shiratori et al. (2006) define an approach for synthesising dance performance matched
to input music, based on the emotional aspects of dance performance. A database of mo-
tion captured dance movements is used and processed. This step segments motions into
sets of smaller sections, to which is assigned a measure of effort based on a cumulative
displacement of the various limbs. This value is used to estimate the intensity and rhythm
of the motion. The audio signal is also segmented based on the identification of repeated
sequences of notes, which themselves are obtained through spectral analysis. Intensity and

rhythm information are extracted as well. Finally, a sophisticated matching is made, by
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assigning motions to musical sequences, assuring connectivity and producing remarkable
results. >

In Taylor et al. (2005) a system was built to enable a musician to interact with life-sized
virtual characters within a virtual environment. The system’s goal was to enhance the ex-
perience of live musical performances by having a virtual character reacts in real-time to
the music being played. The Animus framework presented in Torres and Boulanger (2003)
was used, which specialises in creating believable characters that behave and react expres-
sively to different stimuli. The original system was comprised of three layers responsible
for creature behaviour: perception; cognition and expression. In short, the perception layer
is responsible for sensing stimulus, which is propagated to all creatures using a blackboard
approach. The cognition layer handles high-level cognitive processes, namely temporal
memory, personality, emotions and goals. Finally, the expression layer is the animation
engine in charge of showing the inner state of the creature to the audience. In this project,
a fourth layer was added, for the extraction of musical features from a microphone and a
MIDI-enabled Keyboard. This layer was implemented in Max/MSP and obtained attributes
such as the vocal pitch and amplitude harmonic spectra of the user’s voice as well as chords
being played on the keyboard. The information is then forwarded to the perception layer
for processing. There is, however, a great deal of manual work involved, since it is the de-
signer who establishes the musical features characters are attentive to in the virtual world’s
blackboard, as well as choosing which animated poses to translate between based on the
character’s evaluation of the musical input, and also how sharply or smoothly these tran-
sitions should take place based on the general mood of the music. The main limitation
identified was the need for the cognition layer to be very sophisticated in order to simulate
an emotional understanding of music, as well as the need for a large number of poses and
expressions to react accordingly.

Sauer and Yang (2009) enable the interactive creation of Celtic dance motion using in-
formation extracted directly from audio signals, namely tempo, beat onsets, and dynamics.
The system relies on a pre-defined set of dance moves which are combined to create dance
routines. A script file is used to establish the sequence of desired moves, which are then
automatically timed and adjusted according to the musical information extracted.

The authors in Ng et al. (2014) have developed a system for audio-visual mapping for
the accompaniement of live orchestral performances. Different colour mappings were im-
plemented based on the synesthetic experiences reported by renowned composers, such
as Messiaen, Ligeti and Sibelius, as well as recent neurological studies on synaesthesia. A
flexible score-following interface was implemented to ensure synchronisation with the mu-
sic sheet using a microphone, allowing, as well, for manual adjustments in real-time by

the conductor. The music score was interpreted in Music21 representation and allowed for

5 https://www.youtube.com/watch?v=_tSoLONjAJg
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manual selection of important events and structures within the composition. The final pro-
jected visualisation was generated by Processing and custom stage lighting controls were
also generated.

AVVX (Correia (2013)) is a tool for live visual and audiovisual performances designed to
explore music’s connection to abstract visual effects. The work of both Fishinger and Whit-
ney is cited as inspiration. AVVX is browser-based and allows the composition of anima-
tions based on geometrical shapes with input from Scalable Vector Graphics (SVG), a widely
used representation for vector images. Programming behaviours are made possible by
javascript. The use of open technologies such as SVG and javascript ensure cross-platform

compatibility and create an easily accessible, and free environment.

2.4.2  Focus on Musical Analysis

A significant portion of current research into generating music visualisations in an au-
tonomous or semi-autonomous way has been conducted with educational or analytical
purposes in mind. As such, several software implementations exist which aim to reveal or
make apparent various aspects of music’s internal structure, such as chord progression and
recurring motifs. Although most of these systems aim to be aesthetically pleasing, this is
generally not their main purpose and as such, they have different fundamental goals from
our project. However, they are relevant by providing valuable insight into what informa-
tion is possible to computationally extract from music, and how to map it in a useful and
relevant way to visual aspects.

In Wattenberg (2002), the author introduces arc diagrams, a visualisation method for repre-
senting sequence structure by highlighting repeated subsequences using a string matching
algorithm. These patterns are visualised through translucent arches that connect the repeat-
ing sections. The diagram is applicable to any sort of data which can be encoded as text,
such as DNA, however, they have been shown as particularly useful in representing the
recurrent structure in music, using MIDI data as input. The results are available in Shape
of Song.

ImproViz (Snydal and Hearst (2005)) is another visualisation method targeting music
students, particularly jazz students. The outcome is a diagram which brings to light the
signature patterns of a jazz musician’s improvisational style. ImproViz consists of two
parts: melodic landscapes which show the general contours of musical phrasing and harmonic
palettes which represent the musician’s tendency to use a particular combination of notes
in a given part of the song. The approach is algorithmic, however,it was presented as a
manual process. In spite of this, valuable insight is gained from the resulting diagrams

which possess both informative and aesthetic properties.
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The IsoChords framework, presented in Bergstrom et al. (2007), aims to visualise musical
structure. It does so by conveying information about interval quality, chord quality, and
the chord progression synchronously during playback of digital music. MIDI is used as
input and the main goal is to assist music theory students by representing the evolution
of chord progressions throughout a song. Notes are represented in triangular isometric
coordinate grid invented by Euler called Tonnetz, which allows for intervals within a chord
to be represented by connected adjacent nodes, following a predetermined pattern.

MuSA.RT 2 (Chew and Francois (2005)) is an interactive multi-scale music visualisation
system that tracks and displays the trajectory of the tonal content and context of music in
real-time. It applies principles defined in Chew (2000) and is the culmination of extensive
research. In this context, the purpose of tonal visualisation is to reveal pitch structures
in the music, including the pitch classes present, the chords, and the keys. It employs
the spiral array model which consists of a collection of nested spirals in three-dimensional
space, each comprising of a type of tonal object. Similarly to the tonnetz grid, distance is
mapped to the length of intervals.

MoshViz (Cantareira et al. (2016)) is one of the most recent efforts in the visualisation
of musical structure. A key feature lies in creating a high-level model of the musical data
and highlighting aspects of interest, which enables a detail+overview interpretation. The
software focused on analysing guitar solos. To this effect, some metrics are introduced to
measure aspects such as note density (notes played by unit of time), ”stability” as a result
of unpredictable note and rhythm variation and “complexity” as an estimation of learning
difficulty.

2.4.3 Audio and Visualisation Software

Pure Data

Pure Data is an open source visual programming language created and maintained by
Miller Puckette. Pd is used to process and generate sound, video, 2D/3D graphics, and
interface sensors, input devices, and MIDI. Algorithmic functions are represented in Pd by
visual boxes called objects placed within a patching window called a canvas. Data flow
between objects is achieved through visual connectors called cords. Each object performs a
specific task, which can vary in complexity from very low-level mathematical operations to
complicated audio or video functions such as reverberation, FFT transformations, or video
decoding.
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Max/MSP

One of the popular software packages among multimedia artists is Max/MSP. It belongs
to the same family as Pure Data and was originally authored by the same developer. It
is designed with live performance in mind and as such, allows for easy interfacing with
external hardware such as MIDI keyboards and synthesisers, as well as stage lighting. Like
Pure Data, Max adopts the paradigm of visual programming so as to allow for flexible mod-
ifications of running programs in real-time. Regarding visual effects, Max comes bundled
with the Jitter package which allows for low level 2d/3d graphics programming as well as
multimedia playback.

VDMX

VDMXs5 is a program that allows for assembly of custom real-time video processing appli-
cations. It is advertised as V] software and is for exclusive use on the Mac platform. Its
focus is on video manipulation from multiple sources with the addition of custom effects
and filters. Supports projection mapping as well as custom shading operations using the
ISF format.

Resolume Avenue

Resolume is yet another commercial V] software which focuses on the real-time generation
and improvisation of live visuals. It supports Projection Mapping and DMX lighting.

Other Software

There are several alternatives to the aforementioned software, namely:
e VVVV
e Avmixer pro
e Arkaos GrandV]

e Modul8

2.4.4 Demoscene

The Demoscene is an international computer art community that creates digital art in the
form of demos: small, self-contained computer programs which generate audio-visual clips,
rendered in real-time. It has its roots in the late 1970s when affordable computers appeared
in stores and were for the first time in history available to the masses (Reunanen and Silvast

(2007)).
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The beginning of the Demoscene is believed to be due to the advent of software cracking.
Cracker groups illegally distributed games and other software, which was often coupled
with digital ”signatures”, small executables containing digital presentations. Eventually
groups started competing for the best presentation which led the making of stand-alone
demos to become a specialised field on its own, and eventually split from the cracker culture
to become what is now called the Demoscene (Reunanen et al. (2010)).

A small community, estimated 10 ooo members, exists until this day who display their
demos on regular events. Demos are evaluated on a multitude of aspects, such as technical
proficiency, graphical effects and music synchronisation.

Demos often resemble the aesthetic of experimental (electronic) music video clips, since
both of them combine electronic music and a flow of abstract imagery but often without a
valid plot line. Additionally, demos employ basically the same programming techniques as
computer games, although they remain intentionally non-interactive so as to preserve the
synchronised visual and sound experience, which is considered an important part of the
creation itself (Doreen (2010)).

A key aspect of demos is a self-imposed limit on the file size of the executable. At the
beginning, this limitation was due to actual hardware constraints. Now it’s kept not only

because of tradition, but mostly as a means to boost creativity.

2.5 PROCEDURAL GENERATION

Procedural generation refers to any use of a formal algorithm to generate data algorith-
mically. Its initial application for creating digital content dates back to computers games
from the early 1980’s and new methods are actively developed and researched to this day,
spanning numerous disciplines, ranging from computer graphics and artificial intelligence
to psychology and linguistics.

Several different game aspects can be procedurally generated, from concrete aspects, such
as levels, buildings and vegetation, to more abstract aspects, such as behaviour and story.
As a direct result, methods for generating such content vary greatly and are usually not
general purpose (Hendrikx et al. (2013)).

A prominent example is SpeedTree, a group of commercial vegetation programming and
modelling software products that generate virtual foliage for animations, architecture and
in real-time for video games.

The concept, and application, of procedural generation techniques goes beyond creat-
ing game content. For instance Ebert et al. (2000) applied procedural shape generation
techniques, namely fractal detail generation, superquadrics, and implicit surfaces for multi-

dimensional data visualisation with promising results.
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Figure 17: Discrete branching pattern by Ulam: (a) simple pattern with the illustration of different
generations; (b) more complex branching pattern (Deussen and Lintermann (2005)).

For our work, however, we focused our investigation on methods for the generation of

plant life.

2.5.1  Plant Modelling

Computer modelling of plants has a long history spanning over 50 years. Many approaches
have been developed for different purposes. Biology is interested in plant models as a
means for better understanding the fundamental mechanisms that govern plant develop-
ment and structure. Models may also be used in computer-assisted decision-making in
horticulture, agriculture, and forestry. On the other hand, the computer graphics com-
munity is interested in plants as elements of scenery for computer animations and games
(Deussen and Lintermann (2005)).

Computer-assisted simulation of natural growth processes was introduced as early as the
1960s during the time computers became more and more available to researchers. Cellular
Automata marked the first step and were formalised by John von Neumann in the 1950s
while trying to develop an abstract model of self-reproduction in biology. These models
were employed by Stanislaw Ulam in Ulam (1962) for the generation of growth and branch-
ing patterns (figure 17). The first continuously growing plant model with a branching
structure was presented in Cohen (1967) (figure 18).

Early models of plants were based on procedural approaches that replicated growth
by repetitive application of a small set of rules to an initial structure, yielding complex
results. Honda (1971), described a set of three-dimensional tree topologies using a small
number of parameters. By changing numerical parameters, Honda obtained a wide variety
of tree-like shapes and was later able to apply his models to investigate the branching of
real trees (figure 19. In Aono and Kunii (1984) Honda’s model was extended in several
aspects, particularly in allowing for different branching patterns as well as taking thickness
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(a) (b) (c)

Figure 18: Continuous branching structures by Cohen: (a) branching restriction introduced by min-
imal distance to end of branches; (b) vertical alignment of growth; (c) use of an attractor
(square) and of an inhibitor (star) (Deussen and Lintermann (2005)).

(a)

Figure 19: Branching structure by Honda: (a) Projection to xz-plane; (b) to yz-plane; (c) to xy-plane
(Deussen and Lintermann (2005)).

into consideration. Aono and Kunii continuously extended their model, for instance by
introducing attractors and inhibitors, which bend the models and simulate the influence of
wind.

Around the same time, the first approaches with focus on visual realism were developed.
Bloomenthal (1985) focused on modelling the maple tree, also resorting to a parameterized
recursive algorithm for generating tree topology. Rendering was performed through gener-
alised cylinders along a spline for shaping the branches. Smooth branching discontinuities
are achieved by using a “ramiform” primitive and roots are rendered using “blobby” tech-
niques (figure 20b). The bark texture was obtained by scanning a plaster cast of actual
bark, as were the leaves. The results are remarkably realistic (figure 20a). Oppenheimer
(1986) used fractal techniques for generating tree topology and focused on optimisation,
achieving real-time performance. (figure 21). Moreover, he applied the same techniques for
generating other fractal objects in nature, such as snowflakes and fern leaves.

An approach oriented on botanical growth was pioneered by Reffye et al. (1988). The
authors simulated the growth of the shoot axes in discrete time steps from node to node, by
modelling the activity of buds at discrete time intervals. Each bud carries several probabil-
ities: the probability of dying, the probability of resting, and the probability of branching
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(b)

Figure 20: (a) Bloomenthal’s model of the maple tree
(b) The “ramiform” primitive allows for smooth branch junctions (Bloomenthal (1985)).

Figure 21: Oppenheimer’s fractal models (Oppenheimer (1986)).
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Figure 22: Greene’s Voxel Space Automata (Greene (1989)).

out. This allows for modelling based on real data, thus characterising different species.
In Greene (1989) the concept of Cellular Automata was extended to three dimensions and
successfully applied to the simulation of climbing plants in voxel space, reacting to their
environment by estimating light density in the scene. The remarkably realistic results are
shown in figure 22.

Weber and Penn (1995) propose approximate, though realistic-looking solutions for tree
modelling. Their procedure requires a set of approximately 50 parameters, all of which are
described in their work. Methods are also presented for the interaction of the models with
wind and a level-of-detail representation.

A distinct method for the modelling of plants is the usage L-systems, the most developed
formal approach for botanical plant modelling. In Lindenmayer (1968) the concept of string
rewriting was applied to the description of cellular interactions, which later evolved into the
L-System framework. String rewriting is a formalism to describe transformations of a given
character string throughout various iterations, according to a fixed set of rules. These rules
map characters or sequences of characters to their replacements and are simultaneously
applied in every iteration of the rewriting algorithm. Moreover, each character in this
string can then be interpreted as a drawing command, using what is referred to as turtle
geometry®. A virtual turtle is able to move and change its orientation, and as it moves a line
is drawn representing its path. L-Systems assign characters to each of these commands.

Due to their intrinsic recursive nature, the simplest L-Systems, so-called DOL-systems
(deterministic and context-free), were found to be suitable for modelling fractal objects,
such as the Koch snowflake (figure 24) and space-filling curves such as the Hilbert curve
(figure 23) (Prusinkiewicz and Lindenmayer (1990a)).

For the actual modelling of plants, however, the system had to be extended. This is
due to the fact that branching structures cannot be approximated by a single line, but

Made popular by the LOGO language, this metaphor arises since turtles are said to move similarly: if an initial
position and direction are given, they usually move in a straight line, until a change of direction becomes
necessary.
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Figure 23: Hilbert curve in three dimensions (Prusinkiewicz and Lindenmayer (1990a)).
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Figure 24: Koch Snowflake: (a) generator; (b) initiator; (c) illustrations after 1, 2, 3 and 77 rewritings
(Deussen and Lintermann (2005)).

instead requires that individual limbs be drawn separately. In order to accomplish this,
using the previously defined mechanism, it is necessary to keep track of positions where
discontinuities arise, such as branching points. This is can be elegantly implemented using
a stack structure which stores and loads previous states of the drawing turtle.

In figure 25, we have a rendering of a basic tree built on two simple rules, illustrated
in the top left corner of the image. The system went through 4 rewrite operations until
reaching the last image.

The first rule states that an apex (i.e. a terminal branch segment) yields a branching
structure consisting of two internodes: the apex continuing the main axis and two lateral
apices. The second rule states that, over the same time interval, the internodes will elongate
by a factor of two. In each step, all apices and internodes are subject to their respective
rules, applied in parallel.

From these examples, we hope to convey that L-Systems provide an elegant way of de-
scribing complex structures. These are some of the simplest L-Systems and many exten-
sions have been developed since. Namely, Parametric L-Systems (individual symbols have
parameters associated), Stochastic (non-deterministic application of productions), context-
sensitive (production application depends on neighbouring sequences) and Open L-Systems
(able to interact with their environment). The support for real-time animation is presented
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Figure 25: A simple branching structure Prusinkiewicz and Lindenmayer (1990a).

using differential equations in Prusinkiewicz and Lindenmayer (1990b) with remarkable
results.

The framework is still being improved to this day (Boudon et al. (2012)) and L-Systems
have proven useful beyond the botanical modelling of vegetation. For instance in the cre-
ation of game levels (Hendrikx et al. (2013)), music (Pestana (2012), Manousakis (2006)) and
inspiring the CGA shape grammar for modelling of buildings (Miiller et al. (2006)) which
is now part of the CityEngine software.

A different approach focused on interactive modelling was originally proposed in Linter-
mann and Deussen (1999). Here a set of components were developed to represent different
elements in plants, such as stems and leaves, as well as rules for multiplying and posi-
tioning them. These components are manually connected in a graph structure, which is
transversed to generate the final geometry. This is the approach in the Xfrog Software, a
commercial platform for modelling of natural environments. A survey and comparison of
tree modelling methods can be found on Deussen and Lintermann (2005).

Also present are image-based techniques, which produce tree models from sets of images.
For instance, in Neubert et al. (2007) an approximate voxel-based tree volume is estimated
and the density values of the voxels are used to produce initial positions for a set of particles.
Performing a 3D flow simulation, the particles are traced downwards to the tree basis and
are combined to form twigs and branches. Also possible is the reconstruction of tree-
models from Light Detection and Ranging (LiDaR) data, namely point clouds, as in Livny
et al. (2010). In Livny et al. (2011) the authors present a lobe-based tree representation for
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Figure 26: Synthetic landscape with self-organising trees (Palubicki et al. (2009)).

the modelling of trees which was found to be adequate for reconstructive processes. Sketch-
based generation has also been explored in Okabe et al. (2005) and Chen et al. (2008).

The Space Colonization Algorithm (SCA) presented in Runions et al. (2007) derives tree
shape from available space and will be detailed in 3.7.1. Essentially, the algorithm operates
by defining the region where the tree will grow using discrete points in space. The tree
skeleton will develop iteratively while being attracted to and extended towards nearby
points. This algorithm was our choice due to its elegant simplicity and versatility. By
arbitrarily defining a region of space through individual points any tree shape and size is
achievable. There is a small number of parameters which all have an intuitive impact on the
overall tree shape. This makes the method suitable for artistic use. In fact, this algorithm
has been implemented as a plug-in for the Maya modelling environment (Grower Maya
plugin).

In this algorithm, the tree develops in a botanically natural order starting at the root. This
makes the algorithm suitable to animate real-time growth which was one of the effects we
more thoroughly explored.

Am extension to this method is presented in Palubicki et al. (2009) in which the process
is further automated by generating plant shape as a result of a self-organising process
(see figure 26). This process is dominated by the competition of buds and branches for
light or space and is regulated by internal signalling mechanisms. This approach was later
employed to allow for the interactive creation of trees using free-hand sketches, as described
in Longay et al. (2012).
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Figure 27: The static tree model on the left is converted into a developmental model that encom-
passes the ability to create arbitrary intermediate stages between a very young model
and the given geometry (Pirk et al. (2012a)).

Pirk et al. (2012b) present a method for adapting pre-existing tree models to dynamic
changes in their environment, allowing for an efficient interactive construction of complex
scenes with multiple trees. Furthermore, Pirk et al. (2012a) propose a sophisticated method
to compute developmental stages that approximate the tree’s natural growth (as shown
in figure 27), allowing for the interactive creation of animations. The method takes as
input an adult tree and is able to infer positions and thickness past branches, taking into

consideration different growth rates when creating the animation.

2.6 TREE RESPONSE TO WIND

Wind is air in motion. It is produced as a response to pressure differences within the
atmosphere. The wind’s velocity results from the pressure difference between an area
of high pressure and an area of low pressure, with greater differences producing higher
velocities. Wind velocity at a given point can be represented as a vector quantity and as
such is characterised by its speed and direction.

Wind can be characterised as a viscous fluid, and as such can be described by the
Navier-Stokes equations. These equations describe how the velocity, pressure, tempera-
ture, and density of a moving fluid are related. More formally the Navier-Stokes equations
are a set of coupled differential equations which could, in theory, be solved for a given flow
problem by using methods from calculus. But, in practice, these equations are too difficult
to solve analytically. The use of computers is then common, and techniques used to derive
solutions to this set of equations is collectively referred as Computational Fluid Dynamics
(CFD) (NASA Navier Stokes Equations).

In practice, these equations are remarkably useful since they describe the physics of many
phenomena of scientific and engineering interest. They may be used to model the weather,
ocean currents, water flow in a pipe and air flow around a wing. The Navier-Stokes equa-
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Figure 28: The largest model presented Quigley et al. (2017), composed of over 3 million articulated
rigid bodies.

tions in their full and simplified forms help with the design of aircraft and cars, the study
of blood flow, the design of power stations, the analysis of pollution, and many other prob-
lems.

Physical models for wind animations are commonly based on computational fluid dy-
namics. Several methods exist to integrate the flow field, however,only a small number of
previous work employs them to animate tree and plant models (Pirk et al. (2014)).

The most physically accurate way to simulate a tree’s response to wind would be to use
many small volumes and apply the finite element method. However, this is unfeasible
in practice since it would require a vast number of elements as well as bio-mechanically
accurate constitutive models (Quigley et al. (2017)).

Noise-based solutions, such as Ota et al. (2004) and Shinya and Fournier (1992) were also
considered, however, we required the tree to be able to respond to a controllable wind-field
and not just engage in arbitrary, albeit natural looking motions. More sophisticated meth-
ods exist such as Habel et al. (2009), which take into account the deformation of individual
branch segments.

Quigley et al. (2017) present a remarkably optimised approach for simulating trees, in-
cluding organs such as leaves and fruits. By approximating trees as systems of rigid bodies
articulated by stiff joints the authors were able to use analytic solutions to the spring dy-
namics equations. This allows for robust and efficient treatment of joint springs which
avoids the cost of numeric integration with small timesteps (see figure 28).

In Sakaguchi and Ohya (1999) a segment based approach is described. Mainly employed
until then as a method of a dynamic simulation for string-like objects such as lawns and

hair, the authors successfully applied this segmented model to trees. Essentially a string-

38



2.6. Tree Response to Wind

like object is defined as a set of connected rigid segments, and the dynamics of the object
are obtained by calculating the movements of each segment individually and combining
the results at a later stage. This approach is used by recent works such as Pirk et al. (2014)
and Oliapuram and Kumar (2010).

This was the approach we selected due to being physically based, thus providing real-
istic results, and yet remains lightweight and relatively simple to implement. It was also
particularly suited to our project due to the fact that the input for the method matches our
segmented representation of the tree obtained from the SCA. Further detail is presented in
section 3.8.

The last element remaining for defining our simulation is the creation of the wind field,
which is by itself a challenging research topic. Unlike Pirk et al. (2014) and Oliapuram and
Kumar (2010), we did not employ CFD techniques to approximate the wind field. We took
an approach closer in complexity to Sakaguchi and Ohya (1999), who defined wind using
a manually crafted voxel grid which assigns wind velocity vectors to each region of space.
Our selected approach automates this process and was based on the method presented in
Wejchert and Haumann (1991), which defines a set of continuous flow primitives which can
be easily combined to generate complex wind flows, assuming an ideal physical fluid. This

will be further detailed in sections 3.1.2 and 3.10.
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The problem we face consists in allowing for the flexible generation of animations strongly
choreographed to music. In order to make this possible, configurable algorithms for pro-
cedural generation are necessary, as well as input for musical information. To join these
two parts a versatile strategy to create mappings between them is also required. Real-time
performance was also considered so as to allow for the possibility of live accompaniement
for performances.

Given that music is the result of artistic effort, we hypothesise that the generation of
any accompanying visual effects should not be derived entirely from algorithmic processes.
Instead, such algorithms should provide flexible and reactive building blocks from which
animations can be built.

Most music is structured around a fixed tempo and time signature, and cycling chord
progressions. Such patterns occur in all levels of music, including melody, rhythm, har-
mony, and texture (Cardle et al. (2002)). Traditional keyframing animation, which is based
on the concept of manually drawing every frame, becomes prohibitively costly and possi-
bly inaccurate when attempting large-scale synchronisation with a musical piece (Animu-
sic Company). The fact that such animation has to be created in advance also makes it
unsuitable for live accompaniement . These were two of the main motivations behind the
development of our framework.

Since any pre-defined mapping of musical to visual attributes would be arbitrary, what
we strive to accomplish is to allow for any mapping to be possible, within the scope we
have defined. For this, we found that the use of a scripting language provided not only
flexibility but also the freedom to create further abstractions, which aid in specifying more
complex behaviours.

What we hope to demonstrate is the possibility of unlocking artistic possibilities and em-
powering creativity by supplying a high-level interface for dealing with a real-time stream
of musical information. In particular, allowing it to be projected onto procedural generation
algorithms.

Our system can be described as a digital choreography assistant based on musical score,

in the sense that events in the animation can be timed to different sections of music, as if
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they were score markings, not unlike the rhythmic and dynamics annotations we briefly
discussed in section 2.1.6.

3.1 PROPOSED APPROACH

In order to bring our idea to life, a proof-of-concept implementation was developed.

Our system has at its core a procedural generation algorithm, which iteratively produces
a growing tree. Additionally, this tree reacts in real-time to its environment, particularly
wind conditions and available space. Its growth may also be biased by the application of
arbitrary tropisms. The algorithms used to implement these behaviours are described in
sections 3.7 and 3.8. Furthermore, we require a stream of musical information to provide
us with, for instance, precise timing regarding the occurrence of musical events which are,
in its simplest form, the beginning and the end of notes. Different representations of what
we collectively refer to as musical information can be found in 2.2.

The usage of musical features is one of the aspects which distinguishes our approach
from most visualisation attempts. The main advantage is that some musical cues are not
estimated from audio data but in fact known in advance or received in real-time in the case
of a live performance’.

Both wind and tropisms, as well as all other parameters, such as colour or leaf growth,
can be modified in real-time. All modifications are directed by a script file and, in the
examples, we have developed, are usually triggered at particular moments in the song, so
as to provide a sense of synchronization and attempt to match the expression contained in
the music.

To generate an animation, three elements are then necessary: an audio source, a music
information source and a script file.

Regarding audio, our system has support for most common file formats, namely ogg,
wav and aiff?. Ideally, the audio source would always consist in one of such audio files (or
live audio). However, it is difficult to obtain audio files for which synchronised musical in-
formation is readily available. To solve this problem two practical solutions were identified:
one could manually create this information with specific software by transcribing the music
or synchronising another transcription; one could work directly with the artist who would
supply said music information. A third solution also exists which is to extract this informa-
tion from the recording. This, however, is far from a simple task and is still under active
investigation. In particular, for polyphonic music where the components of various musi-
cal tones interfere with each other and intermingle this task becomes particularly difficult
(Mdller (2015)).

1 Live accompaniement is unfortunately not yet supported
2 All formats supported by libsndfile
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The popular Ableton Digital Audio Workstation (DAW) is able to assist in this task through
a semi-automated process where the user contributes by placing markers on the audio file
(Ableton MIDI). Other software products claim to obtain workable results, but all with a
large margin of error. Except for very simple music, the automatic conversion of a music
performance into score notation by a computer and is still a largely open problem despite
decades of research (Miiller (2015)). For a collection of edited articles on this topic, we refer
to Durrieu et al. (2010).

We chose MIDI as our primary musical information source for this project, which tack-
les some of the issues we have discussed so far. MIDI is a standard bearing 30 years of
active use, as such not only are many MIDI files readily available online, as MIDI output is
available on most keyboards or digital pianos (Chng (2016)), which would simplify the task
of interfacing with instruments during a live performance. Additionally, it is possible to
produce audio from MIDI by resorting to the operating system’s audio synthesizer, which
provides a convenient fallback for when there is no synchronised audio file available.

Evidently, resorting to MIDI audio as fallback yields poorer results, since synthesised
sound lacks the richness of an actual instrument and a recorded set of musical events lacks
the expressive variations found in human performances. In spite of this, we found that
using MIDI as an audio source produces acceptable results and is able to illustrate the
potential of what our system can accomplish.

Lastly, we implemented scripting with the lua programming language. For more details

please consult 3.4.

3.1.1 Tree growth, Interpolation and Tweens

Tree growth was one of the earliest aspects we implemented in our system. It is made
simple due to the nature of our algorithm, which generates branches in a natural root-
to-tips order. One of the first challenges consisted in allowing for the continuous growth
of branches over time since our algorithm only provides us with the growth of the tree
skeleton in discrete steps. For details on the method, the SCA, please refer to 3.7.1.

We can represent this problem as obtaining the length of a branch segment over time,
given a minimum and maximum length. This is a specific case of interpolation, which is,
more formally, a method of constructing new data points within the range of a discrete set
of known data points.

Interpolation is of particular relevance to the practice of animation in general, where it
could arguably be referred to as Inbetweening. In traditional animation, an artist will first
draw keyframes, which represent important moments in the animation and then draw the

frames in between so as to produce smooth transitions (Falkowski (1999)).
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In our framework, it is very relevant to allow for inbetweening with a satisfactory degree
both of automation and control, since we will wish to synchronize with musical events
which are often characterised by a start time and a duration. One possible solution is the use
of Tweens and easing functions, as featured in the popular Adobe Animate CC software. Our
simplified implementation of this method consists essentially in using linear interpolation,
whose constant rate of change is then adjusted based on a particular function with a suitable
variation. However, this could be further refined by allowing the user to place keyframes.
as found in the Animate CC User Guide.

We used this approach to control the growth of branches and by selecting one of sev-
eral predefined ease functions? we were able to subjectively adjust the growth animation
according to its context, such as a note’s particular duration. As the project development
continued we found tweens to be a flexible enough solution to control almost every aspect

of our animation. More detail is provided in section 3.5

3.1.2  Wind field generation

Wind is the motion of air, and as such, it can be simulated as a moving fluid. Mathematically,
the state of a fluid at a given instant of time is modelled as a velocity vector field: a function
that assigns a velocity vector to every point in space. In the simplest case, this field can be
generated as a single vector quantity, which will then result in a constant, uniform and
one-directional wind.

Recent literature on tree generation and wind-response simulation, such as Pirk et al.
(2014) and Oliapuram and Kumar (2010), has generated wind fields by solving the Navier-
Stokes equations. To this end, Pirk et al. (2014) use Smoothed Particle Hydrodynamics (SPH)
while Oliapuram and Kumar (2010) employ a discrete solver as described in Stam (1999).
Both these approaches offer some degree of control regarding the wind field. Pirk et al.
(2014), in particular, allow for the arbitrary placement of “wind emitters”, which are 3d
rectangles from where wind flow originates. Oliapuram and Kumar (2010) allow for control
by exerting external forces upon the wind field.

Our priority regarding the wind field is, however, fundamentally different from these
works since both strive for physical correctness, while for the generation of animation the
requirements are not so strict. Pirk et al. (2014) focus on the combination of developmen-
tal tree models with complex wind fields and Oliapuram and Kumar (2010) focus on the
optimised real-time animation of entire forests. In our work intuitive user control of the
animation is the main goal, so we required a mechanism which is both easy to use (and

precise) for specifying the wind field.

3 Visit http://easings.net/ for a gallery of interactive ease functions

43


http://easings.net/

3.1. Proposed Approach

As a result, we opted for the approach described in Wejchert and Haumann (1991). The
concept of uniform flow is used to simulate wind and a set of flow primitives is defined.
Each of these can be regarded as a building block of flow: uniform flow, which flows in
a given direction; sink/source flow, which flows towards/away from a given position and
lastly vortex flow, which flows around a given axis. Each of these primitives is also char-
acterised by a strength attribute. The final velocity field is obtained from the combination
of any number of these primitives. This method was particularly suited to our system due
to the fact that these primitives” attributes, for instance, strength (which is common to all
primitives), can be easily modified in real-time. This gives a further degree of control, by
allowing arbitrary changes to any primitive to occur at specific times. In theory, a prim-
itive mechanism such as this could be implemented using the force-based approaches of
Pirk et al. (2014) and Oliapuram and Kumar (2010). However, by applying this method we
avoid solving the Navier-Stokes equations due to the fact that the aforementioned primi-
tives are represented as linear equations, leading to a less numerically intensive solution.
This approach is further detailed in section 3.10.

3.1.3 Tree response to wind

Our tree is approximated as a set of branch segments. As such, a large number of hierar-
chical relationships is formed, which together represent the tree’s skeleton. Since several
segments approximate a single body, the whole structure must remain connected, acting as
a rigid surface. As a result, the movement of a branch segment is strongly influenced by
the movements of both its parent and child segments.

Similarly to Pirk et al. (2014) and Oliapuram and Kumar (2010), we implemented the
model from Sakaguchi and Ohya (1999). Our segmented representation of the tree closely
matches the input of their method, and as such, it was relatively straightforward to imple-
ment. Essentially, every segment is assumed to be a rigid stick with one fixed end (the
parent branch side), and only rotational movements about the fixed end are calculated.
The method operates by calculating the movement of segments individually, followed by
combining their positions so as to ensure connectivity.

The algorithm is described in more detail on 3.8

3.1.4 Scripting

The script module is the key binding element of this project, as it responsible for coordi-
nating exactly what happens within the animation and when. In short, it is what grants
configurability to animations and thus establishes our project as a tool with infinite possi-
bilities rather than a particular set of audio-visual mappings.
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Similarly to the way music sheet is annotated with dynamics and rhythmic information,
our scripting module allows the user to annotate sections of the music with the desired
actions to perform. To do so, the script receives musical events as they occur. The most
basic musical events are the beginning and ending of notes, which are currently the ones
used by the framework. However, we built the system so that new events can be added,
and these could be of any nature provided they can be extracted from musical information,
such as key and tempo changes, starting and ending of repeating motifs or changes in
articulation.

The most basic action the script can perform is the assignment of values to particular
attributes. Using only a single uniform flow primitive, for instance, one can easily associate
a change in wind strength to the sounding of a particular note. It is worth noting that
notes are not the only elements of synchronisation, one can use time as well, for instance
by changing the wind direction on every beat.

Instant changes provide a good starting point, however, it very often required in anima-
tions to gradually modify a value with a given rate. Tweens were found to be a flexible
strategy for dealing with these scenarios and as such, they were made usable from our
scripting environment and can control virtually any property of our animation, providing
that the interpolation is adequately defined. In our case, we have interpolation available
for floating point numbers, as well as simple strategies for both vectors and colour values.
As such any aspect of the animation represented by any of aforementioned structures can
be manipulated over time with minimal effort. This includes, for instance, all attributes of
wind primitives, thus allowing for a convenient manipulation of the wind field.

One of the most useful properties of using a scripting language is the ease with which
new effects can be implemented. This configuration of effects could technically have been
implemented in a simpler format, such as a plain text configuration file. However, this
would be more time-consuming in terms of implementation. Furthermore, embedding Lua
allowed us to take full advantage of its advanced mechanisms and data structures in order
to produce gradually more abstract functions which contribute to concisely express more
sophisticated effects.

3.2 OVERALL ARCHITECTURE

In this section, we wish to give the reader a brief overview of our system’s internal organ-
isation as well as introduce the different problems our system tackles. To do so, we will
present the modules and software components with the most relevant functionalities for
the final product. This is not a detailed presentation of the program’s implementation, but
rather a discussion on how the system was divided into modules and how their communi-

cation is established.
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Figure 29: A broad overview of our system’s organisation

The most challenging aspect of the implementation of our system is the simultaneous
processing of multiple aspects which direct the animation in real-time namely, tree growth
and response to wind, MIDI processing, script execution and tree rendering. Another
challenge is the organisation of, and interaction between, the distinct software components
carrying out these tasks while striving for extensibility and real-time performance.

We attempted to follow the Separation of Concerns (SoC) design principle so as to maintain
our system well organised, simplifying its development and maintenance, however, due to
the limited available time we do not claim to have achieved an optimal solution.

In figure 29 we illustrate the modules which will be discussed in the following sections,
as well as their interaction.

3.2.1  Attributes Module

The Attributes module is the backbone of our system, as it provides a common interface
for accessing every other module’s functionalities. This includes both the manipulation
of parameters, such as tree colour or wind strength, as well as the invocation of functions,
such as for triggering the tree growth, structurally modifying the wind field or for obtaining
audio features, such as the frequency spectrum.

In order to achieve this communication, virtually every module in the system is con-
nected to the Attributes module and will, at initialisation, register the set of functions and
parameters which will be accessible from it.
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The Attributes module is strongly coupled with the Script module since it is exactly
through this common interface that the Script module is granted access to all the features
implemented by the host program.

3.2.2  Script Module

The Script module implements the loading and execution of Lua scripts. As mentioned in
section 3.1.4, an animation in our system is configured through a script file, which defines
what effects occur as the song progresses. To do so, each of these files must define a set
of predetermined functions in order to correctly interface with our program. As a result,
we have created a small /ua library which provides the default implementations for most
required functions, as well as a set of helper functions and structures, which we found to
be common to most of our animation projects.

As illustrated in figure 29, the Script module is connected to the Tree, Animation and Wind
modules.

The connection to the Tree module results in the script being able to directly modify
the tree both visually and structurally, as is further described in sections 3.2.5, 3.7 and
3.9. Similarly, the connection to the Wind module allows the script to alter wind flow as
described in sections 3.2.6 and 3.10. Lastly, the connection with the Animation module
allows the Script module to create instances of animation primitives such as Tweens and
DataLinks, which specify continuous changes in any of the aforementioned attributes and
which will be further described in sections 3.2.4 and 3.5.

The Script module itself is described with more detail in section 3.4.

3.2.3 Music Module

The music module implements all aspects relating to music processing and playback. In
particular, this includes the loading of audio files and MIDI files.

As can be seen in figure 29, the music module is strongly linked to the Script module.
This results from the fact that our animations react in real-time to musical information, par-
ticularly note information, in order to direct the creation of visual effects. This information
is provided by the Music module. This is implemented by using the timing information
contained in MIDI files in order to simulate a MIDI stream. When fired, MIDI events are
converted to our intermediate representation and then sent to the active script file, which
will react according to the rules it defined. This mechanism is further described in sections
3.4 and 3.6.

The Music module is also responsible for the real-time analysis of audio data. At present,
the only audio feature we are extracting is the frequency spectrum, as is detailed in section
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3.6, which can be queried at any time during the script’s execution, again through the use
of the Attributes module.

3.2.4 Animation Module

The Animation module is used to implement all effects which are not the result of physical
simulation, but are also calculated based on the passage of time.

The animation module is comprised by a small set of animation primitives.

As shown in figure 29, the Animation module is connected to the Tree, Wind and Attributes
modules. This is the case since these changes in values are, once again, mediated by the
Attributes module (similarly to the Script module). Most animation primitives are bound
to a particular attribute, and while active will continuously change its value according to
the arguments supplied at their construction.

The most widely used animation primitive is the tween, as mentioned in 3.1.1. This
structure is essentially a versatile strategy for two-point interpolation and is conveniently
able to gradually modify any attribute exposed by the program. This includes, for instance,
branch length and thickness, wind strength and leaf colour.

Another relevant primitive is the DataLink, which we employ to manipulate real-time
data, such as the frequency spectrum and use it to alter any value available in the script
environment, which includes, but is not limited to, the exposed Attributes.

The Animation module is further described in section 3.5.

3.2.5 Tree Module

The Tree module is responsible for all aspects relating to our dynamic tree system, namely
its growth, graphical representation as a set of smoothly curved limbs and reaction to wind.

The growth of the tree is implemented using the SCA algorithm, which iteratively extends
the tree’s skeleton using a cloud of points which signal space for the tree to grow into and
is further described in section 3.7. The function for triggering a growth iteration is exposed
to the script environment, as well as specific tween instances which control the gradual
elongation of the segments and the growth of leaves.

The graphical representation of the tree is built by extruding a curve which interpolates
all of its segments” endpoints, and is detailed in section 3.9. Visual aspects of the tree
as exposed to the script environment, such as branch and leaf colour, as well as global
coefficients for adjusting branch thickness and leaf size.

Lastly, the tree’s reaction to wind is performed by simulating the movement of its indi-
vidual segments and then combining the result. This is achieved by defining a set of forces
which act simultaneously upon the tree, which leads to a final equation which is continu-
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ously integrated in order to estimate the resulting motion. This simulation is detailed in
section 3.8.

The tree is thus composed of several connected segments, which are also individually
accessible from the script environment. Furthermore, the script is able to arbitrarily select
subsets of the tree and manipulate them independently, which provides another degree of
flexibility for the creation of visual effects, such as only growing part of the tree or adding
leaves selectively.

Although our physics calculation method was implemented with focus on the interaction
with the wind field, it is also able to react to arbitrary forces applied to any individual tree

segment.

3.2.6  Wind Module

The Wind module is responsible for the generation of the wind field. As stated in section
3.1.2, the wind field is represented as a three-dimensional vector field, where each vector
indicates the wind velocity at its location. We construct this vector field using the simple
physical model of uniform flow, which applies a great deal of simplification to the equations
that govern fluid mechanics in order to create physically plausible vector fields from linear
equations. Each of these equations corresponds to a flow primitive.

Our system defines three types of elementary flow, namely uniform flow (section 3.10.1),
source/sink flow (section 3.10.2) and vortex flow (section 3.10.3). As previously stated, the
vector field pertaining to each of these flows is calculated by a simple linear equation. As
a result they may be combined with simple addition. We detail our implementation of this

method in section 3.10.

3.3 ATTRIBUTES SYSTEM

As stated in section 3.2.1, our attribute system is the most fundamental module of the
framework, as it is what provides a common interface for accessing and manipulating
the parameters of all of the described algorithms, namely tree growth, wind control and
animation. It is, as such, particularly intertwined with the scripting module. We took the
approach of building the system as minimal and simple as possible. Since the system is
very compact, we will describe it at a more technical level.

We were able to implement this mechanism using C++ templates in a single header
file of about 150 lines of code. The system consists of four main classes, AttributeBase,
Attribute, Operation and AttributeSet.
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AttributeBase, Attribute and Operation

AttributeBase is the base class of both Attribute and Operation which are templated
class wrappers over member variables and member functions respectively. These are col-
lectively managed by the AttributeSet class. In Attributes, in particular, access is encap-
sulated by getter and setter functions, which may be equipped with additional function
calls to perform subsequent update operations following changes in the attribute. These
two small classes encapsulate most interaction between the script environment and the

host platform.

AttributeSet

The AttributeSet serves as base class for all the main classes responsible for the frame-
work’s subsystems. As such, it encapsulates all the features required for establishing most
of the communication between the scripting environment and the host program.

This is accomplished by storing instances of Attribute and Operation in an associative
container using text strings as keys.

When deriving from AttributeSet all of our subsystems define which of their methods
and variables will be managed by the Attribute system, which is automatically exposed to
lua.

The Wind class, for instance, exposes its methods for adding new primitives to the current
wind field as seen in listing 3.1.

Wind::Wind(sol::state& lua)
AttributeSet ("Wind", lua),

{

bind("add_uniform", (std::function<UniformFlow* (const vec3&, float)>)
[this] (const vec3& dir, float str) { return addUniform(dir, str); 1});

bind ("add_source", (std::function<SourceFlow* (const vec3&, float)>)
[this] (const vec3& pos, float str) { return addSource(pos, str); });

bind ("add_vortex", (std::function<VortexFlow* (const vec3&, const vec3&, float)>)
[this] (const vec3& pos, const vec3& dir, float str) { return addVortex(pos, dir,

str); });
}

Listing 3.1: Constructor of our wind class

This particular call to the AttributeSet’s constructor takes as input the lua state. This
is required since the Wind class will be used as a singleton and as result, a global table
named Wind will be available in the [ua environment.

The next calls to AttributeSet: :bind(...) internally create a new Operation instance
with the appropriate lambda function and string identifier, which will be accessible from

the Wind table in lua as shown in listing 3.2, an excerpt of our examples in section 4.1.4.
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function onInit ()
uniformWind = Wind["add_uniform"](vec3.new(0.0, 1.0, 0.0), 0)

end
Listing 3.2: Adding a wind primitive in lua

As previously stated, FlowPrimitive and its subclasses are also derived from AttributeSet
so as to expose their attributes, as shown in listing 3.3.

struct UniformFlow : public FlowPrimitive

{
UniformFlow(const vec3& dir, float str)
direction(dir), strength(str)

bind("direction", direction);
bind ("strength", strength);
}

vec3 direction;
float strength;

Listing 3.3: The constructor of our UniformFlow, a derived class of AttributeSet

Note that here, the constructor, AttributeSet (const std::string& name, sol::state&
lua) used in listing 3.1 is not called, but instead, the default constructor is used. This is due
to the fact that since multiple instances UniformFlow are allowed it no longer makes sense to
create a global table in lua. In this case, strength and direction are created as Attribute

instances instead of Operation, since they are member variables and not methods.

3.4 SCRIPTING

We implemented scripting in our system so as to allow for flexible control over all the
methods and algorithms present in our framework. The scripting environment receives
musical events as they occur and has constant access to the audio features we extract. As
mentioned in section 3.1.4, scripts are what grant endless configurability to our application,
being responsible for establishing the link between parts of the song and the corresponding
changes in the animation.

We have selected Lua mostly due it to being specifically designed for embedding in larger
applications, as well as having a rich feature set and being both mature and time proven.
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To do so, we made most aspects of our framework accessible from the scripting environ-
ment as mentioned in sections 3.2.1, 3.2.2 and section 3.3.

Every animation project within our framework has its own script file which follows a set
of conventions for interfacing with our program, specifically the implementation of a set of
predetermined functions. These functions are then invoked under specific circumstances
and form the protocol we have established for the communication between our framework
and the scripting environment. For instance, the onUpdate function is called on every
update cycle and the onNoteOn function is called whenever a note begins playing.

Internally, our framework maintains a queue containing the different musical events de-
tected between update time steps. This queue is emptied on every update cycle and each
event will trigger the appropriate function call defined in the script file. Since we selected
MIDI as our musical source, our current event types refer to a subset of MIDI events,
namely note-on and note-off events. However, an intermediate layer, dubbed SongEvent,
was created so as to allow for the addition of event types. Following this approach, one
could add classes of SongEvent, for instance, a KeyChange event, defining what data it con-
tains, implementing its detection and specifying the corresponding handling function to be

implemented in script files.

3.4.1  Script File Structure

Currently our script files are required to define the following functions:

e onlnit
e onUpdate
e onNoteOn

e onNoteOff

In order to describe our systems functioning we proceed to describe each of them.

onlnit

The onInit function is called once at the start of the animation. This is where we define all
the mappings and create instances of objects which will be used throughout the animation,
such as the wind primitives we mention in section 3.2.6 and 3.10, and exemplify in section
4.1.4.

As previously mentioned, the main goal of the script system is the definition of actions
to perform when specific musical events occur. In order to do so, we must be able to label
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these moments with an identifier. We can use time to do this, however, we found that most
effects we intended to define were triggered by the playing of specific notes.

Our system was built around MIDI files and in MIDI files a note can be uniquely iden-
tified by the track it belongs its position (i.e. index) on that track. We found this number
to suffice for our purposes. However, situations exist where this approach’s limitations
become evident, such as tracks with simultaneous notes, which we often wish to treat as
if they were a single note. In order to mitigate this issue, we implemented a rudimentary
form of chord detection in Lua, which will further detailed and demonstrated on section
4.1.4 in the context of a practical example.

This labelling system is defined exclusively in Lua, so it is not very difficult to replace
it for a more elegant mechanism, for instance by using musical measures. However this
would require the file to have a time-signature defined, which is not always the case, and
might become more complicated if the time-signature were to change throughout the song.

Now that we have established that we will identify each note by its index in the track, we
can proceed to the general solution we have implemented for triggering actions at specific
events.

For each track we wish to create effects for, a list of tuples is created. These tuples contain
a predicate function and a function for each of the supported events, namely note_on, the
start of the notes, and note_off, the end of the notes. The predicate function evaluates both
the incoming event and the track’s state (including its current note) and decides whether
the corresponding function present in the tuple is to be executed. As such, we define a list
of these tuples for every track we wish to animate. This set of lists is represented internally,
as everything in lua, as a table which we named the handlers table and constitutes the most

relevant structure present in our animation’s script files.

handlers =

21 = {
{pred = noteRange(1, 16), note_on = full_grow }
}

Listing 3.4: The handlers table from our example project in section 4.1.2.

This line of code in listing 3.4 indicates that on track 2, when the note index falls between
1 and 16 (i.e. when noteRange returns true), the function full_grow will be called as each
note starts. This function in particular triggers an iteration of our growth algorithm, as will
be detailed in section 3.5.6. We may add more effects to this track by adding new tuples to

the list as we show in listing 3.5.
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handlers =
{
(21 = {
{pred = noteRange(1, 16), note_on = full_grow I,
{pred = singleNote(16), note_on = place_leaves 1}
}
}

Listing 3.5: The handlers table from our example project in section 4.1.5.

This new line follows the same pattern as before, except our predicate function now only
returning true at note 16 and invoking a different function, place_leaves.

Lastly, for animating other tracks the extension to the previous table is intuitive, as shown
in listing 3.6.

handlers =
{
[2] = {
{pred = noteRange (1, 16), note_on = full_grow 1},
{pred = singleNote(16), note_on = place_leaves 1}
}
(31 = {
{pred = noteRange (0, 3), note_on = onChord(3, wind_pull) }
}
}

Listing 3.6: The handlers table from our example project in section 4.1.5.

Although this effect makes use of another mechanism in the note_on function, which
we detail in section 3.4.2, the pattern remains unchanged with the specification of track 3
instead of track 2.

The onInit function is also responsible for initialising another table, which is the info
table (listing 3.7), which stores each track’s state, namely the current note index. As such
we are required to initialise this structure for every track in which effects are used. This

table is also used for implementing our chord detection.

info =

[2] { note 0, lastTime 0, lastNote {}, chordNotes {{}} 1},
[3] = { note = 0, lastTime = 0, lastNote = {}, chordNotes = {{}} }

Listing 3.7: The handlers table from our example project in section 4.1.5.
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onUpdate

The onUpdate function is called on every update step and takes as single argument the
time elapsed since the previous update, dt. Although the onUpdate function can perform
arbitrary modifications on the simulation we have most commonly used it for accumulating
the global time in the predefined global variable ¢ (listing 3.8). On some of our examples,
however, we have time-based effects which use an auxiliary clock structure we defined in
lua. The clock structure requires updating with the dt parameter, so its update method is
also-called on the onUpdate function.

function onUpdate (dt)
t =t + dt

end

Listing 3.8: Typical implementation of the onUpdate function.

An example usage is provided in section 4.1.6.

onNoteOn and onNoteOff

The onNoteOn and onNoteOff are called response to the respective NoteOn and NoteOff
SongEvents, built from the original MIDI events, but with extra information, the duration
which we are able to calculate since we are working with MIDI files and not a live MIDI
stream.

These two functions are implemented by default in our lua library and are responsible
for accessing the handlers structure described in section 3.4.1. For completeness, we show
the most relevant part of the implementation in listing 3.9.

function onNoteOn(track, key, vel, duration)

info[track] .lastNote = {key, vel, duration}
info[track] .lastTime = t

info[track] .note = info[track] .note + 1
local actions = handlers[track]

if (actions ~= nil)

then

for k, v in pairs (actions)

do
if (v.note_on “= nil and v.pred(info[track], key, vel, duratiomn))
then
v.note_on(info[track], key, vel, duration)
end
end
end

end

Listing 3.9: Default onNoteOn implementation.
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The onNoteOff definition is equivalent but differs by invoking the note_off function
instead of note_on.

By showing this definition we also reveal the signature of our predicate and effects func-
tions, which both consist of all the information contained in our NoteOn event. This pro-
vides a great deal of flexibility particularly to the predicate function since it can evaluate
the event in its entirety in order to determine whether the event function should be called.
For instance, we could easily define a predicate to only return true if the note’s duration is
longer than a given threshold or if the note played belongs to a given set of pitches. This
advantage also applies to effect function, since it can relate any of the aspects of the NoteOn

event when defining its corresponding action.

3.4.2 Closures

Closures are a very useful language feature in Lua which allows us to easily define func-
tions which build other functions and are thus able to abstract common behaviour or func-
tionality*. Essentially, a closure consists in a function which has its own local state. This
is possible because Lua supports lexical scoping, which means that when a function is
written enclosed in another function, it has full access to local variables from the enclosing
function. Lua also defines functions as first-class values, which means that functions are
handled just like regular variables, and as such can be stored in data structures (as we
have seen in the handlers structure in listing 3.4), passed as arguments, or used in control
structures.

The noteRange (notel, note2), singleNote(note) and onChord(n, f) are all examples
of functions which build closures.

The implementation of noteRange is actually quite simple:

function noteRange (notel, note2)
return function (trackInfo, key, vel, duration)
return trackInfo.note >= notel and trackInfo.note <= note2
end

end

Listing 3.10: Closure for calling a function during a given note interval.

The noteRange function operates by building specific predicate functions from its argu-
ments. As mentioned at the beginning of this section, the enclosed anonymous function
has access to the arguments passed to noteRange, which are referred to in lua as upvalues,
which allow us to compare them to the actual arguments this function receives when it is
called.

4 For more information of closures in lua refer to https://www.lua.org/pil/6.1.html
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The noteRange condition only requires two note indexes to evaluate its condition, so
we are able to return a new function which has the correct signature for being invoked
generically in the onNoteOn function and yet ignores unnecessary arguments, improving
readability and conciseness.

Overall we found closures to be a very expressive mechanism for defining behaviour.
Another useful condition, for instance, is calling a function every n notes:

function everyNNote(steps, notel, note2)

return function (trackInfo, key, vel, duration)

return trackInfo.note >= notel and trackInfo.note <= note2 and (trackInfo.note
-notel) 7% steps == 0
end

end
Listing 3.11: Closure for calling a function every N notes.

Closures are not only useful for predicates, they can be used in event functions as well.
In listing 3.6 we have the following line:

{pred = noteRange (0, 3), note_on = onChord(3, wind_pull) 1}
Listing 3.12: Example use of closures in our handler structure

This is an example of a closure used in an event function. In this case, the onChord
function builds a new function which only executes wind pull if a three note chord is
detected. This mechanism is further detailed in section 4.1.4.

In one of our examples, we have the line displayed in listing 3.13.

{pred = singleNote(38), note_on = make_wind_push(500)1},

Listing 3.13: A concrete example usage of closures

This is another example of using a closure as an event function. In this particular case,
the function make wind_push creates a “wind_push” closure with 500 strength. These are
the kinds of parameters which a user would tweak in order to achieve the intended effect
in their animation. By placing these numbers exactly where the effect is defined we make
the code easier to adjust. But more importantly, the general definition of the behaviour is
written in make_wind_push and can then be instantiated for different usages, in different
contexts. For completeness, we also include the definition of make_wind_push in listing 3.14.

function make_wind_push(strength)

return function (trackInfo, key, vel, duration)

local tween = TweenF.create("wind_push", uniformWind:attr_float("strength"),

strength, O, t, duration, easings["easeInQuad"])
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tween:setEnabled (true)
timeline:addItem(tween)
end

end

Listing 3.14: The definition of make_wind_push

This code displays a very common pattern in our script code, which is the creation of
a tween to control an aspect of the animation. In this particular case, a tween is created
to vary the strength attribute of a wind primitive named uniformWind from the argument
strength to o.

We could further generalise this behaviour by accepting more of the tween’s arguments
as argument to the make_wind_push function, such as the wind primitive instance and the

easing function.

3.4.3 Sol2

We used the Solz library for binding Lua to C++. Ideally, this binding could be automated
by using advanced language features such as reflection>. However, since C++ offers no
native support for this, we opted for a more manual approach made possible by the Sol2
library. This library makes extensive use of template meta programming techniques to
expose user defined functions and classes in C++ to Lua with minimum hassle. For instance,
registering the easing functions used on the make_wind_push, as shown in listing 3.15, is one

of the simplest examples.

sol::table easings = mState.create_named_table("easings");

easings["easeNone"] = easeNone;
easings["easeInQuad"] = easelInQuad;
easings["easeOutQuad"] = easeOutQuad;

easings["easeInOutQuad"] = easeInOutQuad;

Listing 3.15: Exposing easing functions to lua.

Exposing an entire (derived) class is also intuitive (listing 3.16).

mState.new_usertype<UniformFlow>("UniformFlow", sol::constructors<>(),
"direction", &UniformFlow::direction,
"strength", &UniformFlow::strength,
"attr_float", &AttributeSet::attribute<float>,
"attr_vec3", &AttributeSet::attribute<vec3>,
"attr_vec4d", &AttributeSet::attribute<vecd>,
sol::base_classes, sol::bases<AttributeSet>()

)

5 http://www.randygaul.net/2014/01/01/automated-1lua-binding/

58


http://www.randygaul.net/2014/01/01/automated-lua-binding/

3.5. Animation

¥ timeline root

enabled i Eemdli ndow

branch 16

Figure 30: Timeline interface

Listing 3.16: Using sol2’s new_usertype for exposing the UniformFlow primitive to lua.

Where mState is Sol2’s wrapper over the Lua interpreter object.
Another very useful feature is the automatic handling of Standard Template Library (STL)

containers, as well as smart pointers and lambda functions.

3.5 ANIMATION

The animation module is responsible for all changes in the animation which are not phys-
ically driven but instead established and customised by the user. Examples include the

continuous growth of branches and changes in wind strength or direction.

3.5.1 Timeline

The timeline is yet another fundamental part of our system. It is responsible for keeping
track of time elapsed since the animation began and correctly updating all effects on every
frame (the interface is shown on figure 30).

It is advantageous not only for centralising the processing of every time-dependent effect
but also allows for a convenient piano-roll like visualisation of all effects acting on the
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animation. We refer to these effects in abstract using the term timeline item, which is any
effect which requires an update every frame and is usually characterised by a start time

and a duration.

3.5.2 Tweens

Tweens are the most widely used timeline item in our examples due to their simplicity and
versatility. Tweens are essentially a simplified form of keyframing which is a technique
originating from traditional animation and which remains present in every animation today.

In traditional animation, the animator will draw frames of important moments in the
animation, dubbed keyframes, and then draw the frames in between so as to allow for a
smooth transition representing the illusion of motion.

In our implementation tweens partially automate this process by defining two key values
and interpolating between them. Any type of value can be used provided that the interpo-
lation algorithm is suitably defined. Although different interpolation schemes are possible,
we found that using linear interpolation sufficed since we adjust its constant rate of change
by applying what is commonly known as an easing function.

Easing functions are functions which take a single argument ¢ in the [0, 1] interval and
return a value in the same interval.

The most common naming convention is ease (In|Out|InOut) [type] depending on how
the rate of change varies. The rate of change of easeIn functions constantly increases as
t increases while in easeOut it decreases. easeInOut are usually the combination of the
first cases, which means the rate of change typically increases until half-way when it starts
decreasing. The last portion of the name usually references the mathematical primitive
upon which the easing function is based on, for instance, easeInQuad uses a quadratic
polynomial(#?) and easeInExpo uses exponentiation (2) ©. To demonstrate the simplicity of
this concept we present a condensed version of the Tween class’ update method in listing
3.17.

void Tween::update(float)
{

mProgress = clamp(mEase(animationTime(true)), 0.0f, 1.0f);

if (mActive && mTarget)
*mTarget = mInterpolate(mMin, mMax , mProgress);

Listing 3.17: Tween update implementation

6 For an interactive gallery of common easing functions visit http://easings.net/
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Figure 31: Plot of the easeInQuad and easeOutQuad functions, as well as the linear function for
reference.

animationTime (true) returns the normalized linear progress of the animation. We mod-
ify this value with the tween’s easing function and then use this value for the final interpo-
lation.

The simplest versions of easing functions are arguably the quadratic easeInQuad and

easeOutQuad shown in listing 3.18.

inline float easeInQuad(float t)

{
return tx*xt;
}
inline float easeOutQuad(float t)
{
return -t * (t - 2);
¥

Listing 3.18: Implementation of the quadratic easeln functions

These functions are represented graphically in figure 31 and portray the general be-
haviour of the easeln and easeOut family of functions.

Due to their abstract nature, we were able to use these functions to control several distinct
aspects of our animations, particularly every aspect where interpolation is applicable.

The most common effect we explore in our examples is synchronising a musical note
with a tween of the same duration. This tween may control attribute variations such as
branch growth, wind strength or colour changes. By using easing functions we are able
to expressively match, for instance, short notes with sudden effects and longer notes with
softer, more gradual effects. In summary, we found that these small mathematical helpers
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are versatile enough to provide a fair expressive power while granting a significant degree

of automation.

3.5.3 TweenSequence

TweenSequence objects are simply an encapsulated set of tweens which refer the same at-
tribute. As such, they are adequate for describing effects which require more than two
keyframes”. As described in section 3.5.6, a particular usage example of TweenSequence is
tree growth. Every GrowNode contains a TweenSequence to control its length. This allows us
to grow only a fraction of the segment at each time, since at present our growth algorithm

defines a uniform maximum length for every segment, as we mention in section 3.7.1.

3.5.4 DataLink

The DataLink is our basic primitive for the creation of continuouseffects. It is a pure ab-
straction of the concept of mapping, consisting of a structure containing only two function
pointers, which we termed an extract and an apply function. On every update cycle,
a value is extracted using the extract function and passed as an argument to the apply
function. It is a templated class, and its single type argument is used to simultaneously
determine the return type of the extract function and the argument type of the apply
function. These functions may be defined in Lua and as such, this object provides a very
flexible approach for continuously executing an effect, which is based on the arbitrary
transformations of any value. We use this object in particular for representing information
obtained through the AudioAnalyser, since it is continuous in nature. This primitive will

be revisited in the tutorial section 4.1.6.

3.5.5 Cue

The Cue class is the simplest of all Timelineltems, as its only function is to call an arbitrary
function once. This can be used, for instance, to change the visibility of an object or trigger

an activation of a wind primitive.

In the future, we would like to transition to a more robust approach, namely spline interpolation, which we
already employ for the construction of the tree.
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3.5.6 Application to Tree Growth

The growth of tree segments and leaves is a particular use case of tweens, since each seg-
ment contains tween objects to control each of those attributes, length and leaf size. Seg-
ments, in particular, contain a TweenSequence, which we describe in section 3.5.3.

We took the approach of coupling tree segments directly with tweens because when
creating examples we found that the pattern of creating a tween for branch length to be
incredibly common. As such, in order to avoid instantiating hundreds of tween objects
per growth iteration from the script file, we chose this approach, which creates them in

advance.

36 AUDIO AND MUSICAL INPUT

Thanks to SFML, our system has support for most common audio file types. It also gives
us access to every sound sample contained in the file as it is played. From this data, we
can extract low-level audio features, such as the frequency spectrum, which we obtain
directly by using the Short Time Fourier Transform (STFT). The sampled audio signal is in
a time-amplitude domain, and what the STFT allows is the conversion to the frequency-
magnitude domain. In essence, this transform operates by comparing the input signal with
sinusoids of various frequencies. Each of such sinusoids or pure tones may be thought of
as a prototype oscillation. As a result, we obtain for each considered frequency interval a
magnitude coefficient whose value indicates the degree of presence of those frequencies in
the original signal.

The final result is a histogram where each bin corresponds to a frequency interval and
the height to those frequency’s intensity over the sampling window. This type of low-level
feature is also employed by Milkdrop in order to increase the reactivity of the visualisations.
In their case, this spectrum is divided into 3 parts, namely the low, mid and high frequen-
cies. These values can then be used within presets for any desired effect. Although this is a
low-level feature, the human eye can often identify the individual instruments due to their
timing, intensity and frequency range.

However, in an audio representation, note parameters such as onset times, pitches or
durations are not given explicitly and extracting this information is not a simple task, in
particular regarding polyphonic music, where different instruments and voices are super-
imposed upon each other. In order to bypass this problem, we chose to add a musical input
source to our system, specifically MIDI. This decision was made for the following reasons:

e MIDI is widely supported and time-tested, allowing for communication with musical
input devices, such as keyboards;
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A vast amount of MIDI files are freely available online;

It is a very compact representation of music, which makes it both lightweight and

simple to process.

It allows for direct playback by controlling a synthesiser.

e Higher level formats such as MusicXML can be converted to MIDI representation.

By using MIDI we allow users to access low-level musical features and use them directly
in animations. This way we begin unlocking access to the musical structure. For instance,
we were able to quickly implement rudimentary chord recognition with MIDI streams since
individual notes are readily available.

It is also relevant that the output of algorithms for extracting musical information from
audio will ideally produce the same information as contained in MIDI, so by using MIDI,
we are not imposing limitations on our system.

The ideal situation for an animation to be generated is having both a MIDI file describing
every track, as well as a synchronized audio file. This combines the best of both worlds,
as specific musical analysis can be performed from the data in the MIDI file and dynamics
and timbre information are more accessible on the audio data.

3.7 TREE MODELLING

The first approach for the procedural modelling of trees was implemented with L-systems,
the most widely used system for the botanical simulation of plant growth. L-Systems are
rule-based, which makes them suitable to model a wide range of plants with very different
morphologies, usually consistent branching patterns, however complex. In this project,
however, capturing the morphology of different plants was not as much of priority as
was allowing their structure to be dynamically influenced by external factors. Moreover,
L-Systems are notoriously difficult to control, as any small change to a single rule may
radically change the entire structure.

Producing convincing models displaying some variety is sufficient for the broader prob-
lem we are approaching, which is why we found the SCA presented in Runions et al. (2007)
to be a perfect fit for this project. Using the algorithm we are able to interactively generate
a large variety of tree models based on the concept of having several points in space which
direct tree growth. The input parameters also correspond to visually relevant tree charac-
teristics and offer convenient control of tree shape and structure. The tree is produced with

a natural, base-to-tips order, which makes it suitable for animation.

64



3.7. Tree Modelling 65

$

D
J

e,

/9 5§

g
o
/0,35

'S
o
@

/o
000000

y=]

O

o
{"::I\_h
}
>

Y
i

|, @ |
R

-
S~

D
< ,/‘

e
e
7z

Figure 32: The space colonization algorithm Runions et al. (2007)

3.7.1  Space Colonization Algorithm

The beauty of the SCA lies in its simplicity. As previously stated, the key aspect of this
algorithm is the use of a cloud of points to signal the available space for a growing tree.
These points effectively act as attractors to the branching structure and are thus referred to
as attraction points.

In the original article, a three-dimensional envelope is given as an input. This envelope
represents the overall shape of the tree crown. The authors used a surface of revolution
obtained by rotating a planar generating curve. Afterwards, the inside of this envelope is
populated with random attraction points.

In our implementation, we simplify this step by obtaining points through a uniform
sampling of simple geometric primitives such as a box or a sphere. Given the attraction
points, the tree skeleton is formed in an iterative process, beginning with a single node at
the base of the tree. In each iteration, new nodes, delimiting short branch segments extend
the skeleton in the direction of nearby attraction points. In our implementation, we take
this length to be constant.

The algorithm is parametrized by the segment length [, radius of influence, d; and the
kill distance, dj as well as the number of attraction points created, N, and their distribution.
The radius of influence defines a spherical region surrounding every attraction point. Any
tree nodes within this region will be extended with new nodes on the next iteration. The
kill distance, on the other hand, defines the minimum distance between a node and an
attraction point, that when reached triggers the removal of the attraction point.
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Figure 32 illustrates a single iteration of the algorithm. We begin following its operation
at the stage when the tree structure is already composed of six nodes (black disks with
white centres) and there are four attraction points (blue disks) (figure 32a). First, each
attraction point is associated with the tree node that is closest to it, provided that the node
is within the radius of influence (figure 32b, blue lines); this establishes the set of attraction
points that will influence each node. The normalised vectors from each tree node to each
influencing point are calculated (figure 32c, black arrows). These vectors are added and
their sum is normalised again (figure 32d, red arrows), providing the basis for locating new
tree nodes (figure 32d, red circles). The new nodes are incorporated into the tree structure,
in this case extending the main axis and beginning a lateral branch (figure 32e). The region
surrounding each attraction points is now tested for the inclusion of (the centres of) tree
nodes, using the kill distance as the radius (figure 32f). The region of the two leftmost
points has been reached by the new branches and the attraction points are thus removed
(figure 32g). The tree nodes closest to these points are now identified (figure 32h), beginning
the next iteration of the algorithm.

All parameters have somewhat intuitive effects on the tree structure. So as to limit the
parameter space, we define both d; and dj as directly proportional to the unitary segment
length, I. Decreasing N or increasing di will yield crowns that are increasingly sparse.
Regarding the radius of influence, d;, as its value decreases, branch tips tend to alternate
radically between attraction points, coming into, then leaving their zones of influence which
results in a wiggly or gnarly appearance. On the other hand, if the value of d; increases the
resulting skeleton will have smoother branches since more attraction points will be used
for calculating their direction.

Due to the stochastic nature of point selection, this algorithm allows us to generate an
endless variety of trees, even with the same parameters and attraction point configuration.

Branch thickness can be obtained from a botanically accurate model, such as the pipe
model in Shinozaki et al. (1964), which relates the cross-section of a limb below a branching
point to the combined cross-sections of the limbs above. However, we opted for a more
ad-hoc solution based on a specified initial thickness and an arbitrary easing function, as

in section 3.8.3

3.7.2 Tree Representation

Our tree models are a hierarchically organised modular structure, represented internally by
an actual tree data-type. Each node on this data structure represents a possible branching
point, which has as its parent the preceding branching point. This connection establishes
a small branch segment, often referred to as an internode in botany. Each chain of vertices

thus represents a full branch.
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Figure 33: Tree nodes and their local coordinate system. x, y and z axes are represented in red, green
blue, respectively.

Each internode is approximated as a cylinder and has its own local coordinate system
(as can be seen on figure 33) where physics calculations are performed. Each cylinder is
placed at the end of its parent internode end and may only rotate with respect to that end.
The physics simulation step is described in 3.8.

As such, each node is characterised by several physical parameters detailed in 3.8.3.

Lastly, we store leaves as children of internodes, initially aligned perpendicularly to their
respective internode and then having their orientation disturbed by a random rotation. As
such each node stores each of its leaves’ relative position.

3.7.3 Tropisms

Tropisms in trees are the tendency of branches to turn in a particular direction. Several
tropisms have been identified by botany, for instance, phototropism, a turning towards
light and gravitropism, the turning according to gravity (positive in stems and negative in
roots).

Due to this nature of the algorithm, approximating the effects of tropism can be imple-
mented by biasing the growth direction, as can be seen in figure 34.

38 TREE PHYSICS SIMULATION

When simulating tree response to wind, we sought for an approach which was physically
based, in order to obtain realistic results, as well as lightweight and simple to implement.
The algorithm we selected was the one presented in Sakaguchi and Ohya (1999). Recent
literature on tree generation and wind-response simulation, such as Pirk et al. (2014) and
Oliapuram and Kumar (2010) made use of this approach with good results, which was our

primary motivation its selection.
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(a) (b)

Figure 34: The effect of tropisms in our implementation: (a) Left tropism (b) Right tropism (c) Right
tropism followed by left tropism.

Gravity and air resistance are not considered in this simulation. Gravity could have a
strong impact in the simulation, however, since it was not taken into account when creating
the tree, including it in the simulation would make the entire tree droop in a non-natural
way. Air resistance is considered not to have a significant impact on strongly rigid struc-
tures, such as branches, which are under the influence of strong binding forces.

The method operates in a two-step process, the dynamics calculation phase and the
integration phase. The dynamics phase is responsible for calculating the individual rota-
tional motion of each segment, while the integration phase joins the individual motions

and ensures the segments remain connected.

3.8.1  Dynamics Calculation

In the dynamics phase, we make use of the segments obtained from the SCA and model
each of them as a fixed cylinder, positioning its base at the end of its parent and allowing
only rotational movement about that end.

Each of these cylinders resides in its own local coordinate system with the origin at the
fixed end and the y-axis aligned with its resting direction, as calculated by the SCA and
shown on figure 33.

We calculate the movement of the tree by considering several forces acting upon each
segment, namely the force applied by wind F,, the restoring force R, the axial damping
force D and the back-propagation force from the child branches P, which we will discuss
in the following sections.

We take the classical Cartesian coordinate system (x,y,z) as our basis. As such, angular
orientation, 6, angular velocity, w and angular acceleration a = ‘Zl—‘;’ all have three compo-
nents corresponding to the rotation about each of the main axes. As such, the final axis of
rotation is found by normalising 0, 6, and the angle corresponds to its magnitude, |6|.

Lastly, since the local coordinate system of each node is aligned with its resting direction,
a segment will be is in resting orientation when 6 = (0,0,0).
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Wind Force

This is the external force exerted by moving air particles colliding with the branch segment.
It is directly proportional to the wind velocity v,, obtained from the wind field, the surface
area of the branch segment facing the wind Sy and a constant representing the viscosity
coefficient of air . The final formula is then:

Restoration Force

The restoration force is the internal force which attempts to restore the segment to its resting
position. This force is directly proportional to the segment’s rigidity coefficient, k as well as
the segment’s angular distance from its resting orientation.

R=—kf (2)

Axial damping force

The axial damping force suppresses the motion of branches as a result of the strong bind-
ing forces between branch segments. As such it acts against the angular velocity and its

magnitude is also proportional to the segment’s damping coefficient.
D= —dw (3)

Backpropagation Force

The backpropagation force is the accumulation of the forces exerted by child segments on
the current segment. Each child segment contributes to this force with a fraction of its own
restoration force, which per Newton’s third law is of inverse direction since the force being
propagated is the reaction force.

To obtain this force, all of the child branches’ forces must be known in advance. Con-
sequently, the force calculation is performed recursively from the outer edges to the root,
that is in tips-to-root order. The fraction of the restoration force which is propagated is
determined by the back-propagation coefficient, which depends on a fixed parameter and
the thickness ratio between the parent and child segment. This models the fact that thicker

branch segments will exert a stronger backpropagation force. Formally this can written as:

P=—) kK; (4)

69



3.8. Tree Physics Simulation

where k; is the propagation coefficient of the force, as defined by:

Th;
Thi (5)

Where bp, is the fixed propagation coefficient and Th; and Th;_; are the thickness of the
child and the parent segment respectively.

External Force

Our system also considers another force, which we refer to as the external force, F,. As any
of the previous forces, it is a vector quantity and it is exposed to our script system so as to

allow for arbitrary forces to be applied to the tree model.

Total Force

The final force can be expressed as the addition of all previous forces:
F=F,+R+D+P+F (6)

After the total force has been calculated, we must find the effective change in angular
velocity and orientation. Since we are dealing with the rotation of an object around a fixed
point we must first convert this force into torque.

The torque is calculated as the cross product of the total force F and the edge vector ¢,
that is the vector from the cylinder’s origin to its end. This is the same model one could

apply to determine the torque of a wrench acting on a nut.

T=Fxe (7)

Since we have both these quantities we can calculate the torque. Now it is necessary to
relate the torque to the angular acceleration, that is, the temporal derivative of the angular
velocity.

For a fixed cylinder the following approximately holds:

d, mr?
—phe
) 3

where I is the moment of inertia, m is the branch mass and r is the length of the edge

(8)

e. The actual values of the mass and length are calculated from the tree geometry obtained
from the SCA. In our implementation, the length is equal for all tree segments and as it
is a parameter for the SCA, while the mass is obtained by calculating the volume of the
approximating cylinder and multiplying it by a density coefficient which varies according

to the tree species.
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We now have all the terms required to find the angular acceleration. To do so we simply
rewrite the previous equation to:
do T
4 T 9
Finally, we must relate the angular acceleration to both angular velocity and angular

orientation. To do so we use the equations of angular motion:

r_ 1 2
0" =0+ w(At) + 21J¢(At) (<0)
w' = w+a(At)

These are evaluated at every time-step of the simulation and are responsible for the
movement of the tree as a whole. More specifically, we are integrating the equations of
motion using the traditional forward Euler method.

3.8.2 Integration of Movements

The force that propagates from the child branch to the parent branch is defined in 3.8.1,
but it is also necessary to consider the opposite case, that is, the influence of movement
propagating from the parent branch to the child branch.

The back propagation from the child branch to the parent branch is expressed by forces,
but the propagation from the parent branch to the child branch does not need to be ex-
pressed by forces. Even though the movements of the parent branch segment change the
absolute position of the child branch, their relative positions remain unchanged. As such
the integration of movements can be performed simply by placing the fixed end of child
segments at the free end of their respective parents and accumulating their rotation.

This behaviour is simply the accumulation of geometrical transformations commonly
found in scene graph implementations, which we had already implemented when estab-
lishing the tree representation, as described in section 3.7.2 (35¢).

The dynamics calculation phase (figure 35b) provides the local transformation of each
branch and since all segments are already hierarchically connected in a tree data structure
it is only necessary to ensure that individual transformations are correct and the desired
behaviour is obtained.

3.8.3 Tree Parameters

Each branch is parametrised by length and thickness, as well as rigidity and damping
coefficients. Finding an adequate method for calculating these parameters and obtaining
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Figure 35: (a) Resting Position (b) Dynamics calculation (c) Integration of movements
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satisfactory behaviour was actually one of the most challenging aspects of the implementa-
tion.

Each of these parameters has a dramatic effect on the overall motion of the tree, so we
searched for a flexible approach which allowed for obtaining different behaviours.

Ideally, we would find an adequate formula for connecting these physical attributes
(thickness, length or mass) with both the damping and rigidity coefficients. However, all
our attempts to craft and use such a formula led to unstable simulations. In order to over-
come this difficulty, we took a more heuristic approach.

The practical solution we applied was to find an attractive ratio between rigidity and
damping, establishing minimum and maximum values and then interpolating between
them. This is plausible since both these coefficients will become smaller as branches become
thinner, that is, a thin branch will offer less resistance to wind and will continue oscillating
longer after the wind has stopped. The minimum and maximum values are not based on
thickness but instead on the depth level of the segment. Unfortunately, this requires the user
to estimate the maximum depth of the tree, by previously simulating its growth. However,
this interpolation can be adjusted by, once again, using easing functions as described in
section 3.5. For completeness, we include the equation which translates this approach
determining the damp and rigidity values. The ratio we found was of 4:1 in rigidity to
damping respectively, the maximum tree depth is approximated as 30, and the maximum
values follow the ratio to obtain the values 20 and 5:

depth

rigidity = 20 x (1 — easeOutCubic( )

)

(11)
damp =5 x (1 — easeOutCubic(depth
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Figure 36: Tree mesh generation using generalized cylinders.

3.9 TREE CONSTRUCTION

As stated in 3.7.2, our tree model is stored as a collection of nodes, each representing a
branch segment. We can also regard these nodes as vertices of the tree skeleton representing
every possible branching point. Each node has numerous attributes, namely coefficients for
the physics simulation, however relevant for construction are the node’s position, thickness
and leaves.

We implement the construction of the tree structure by simplifying the approach de-
scribed in Bloomenthal (1985). As such, we make use of generalized cylinders whose axes
are splines which interpolate the tree skeleton. This approach can also be described as an
extrusion of the interpolating spline.

The key aspects of the algorithm are illustrated in figure 36. Since each of the nodes
resides in its own coordinate space we obtain their global positions by accumulating all
transformations of their parent nodes (figure 36a).

We then create as many interpolating splines as there are branches (chains of vertices) to
smoothly join the nodes. We employ Catmull-Rom splines as described in Twigg (2003) due
to their property of passing through the supplied control points (figure 36b).

Afterwards, we discretely step through the spline according to a resolution parameter
and build a coordinate frame at every step with its forward vector aligned with the curve
tangent. The thickness at every step is found by interpolating a separate one-dimensional
spline. The coordinate frame is then used to place a disk at each interpolated position
with the interpolated thickness as its radius (figure 36¢). Every vertex on the disk is then
“stitched” to its predecessor and successor, forming a continuous cylinder or tube (figure
36d). The result is a single mesh representing the tree (figure 36e).
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3.9.1 Limitations

In our implementation, although the final result of the construction algorithm is a single
mesh, the different branches are not effectively joined, but rather overlayed, as we show
on figure 36d. A solution to this is described and implemented in Bloomenthal (1985),
which consists in using a “ramiform” primitive, which is a dedicated mesh crafted for the
sole purpose of joining two branches together (see figure 20b). A different solution is also
considered in Runions et al. (2007) which is the use of the method described in Galbraith
et al. (2004). This method makes use of implicit surfaces (“"blobs”) to deal with branch
discontinuities. Although this yields impressive results, at the time of publication would
take under 1 hour to render complex models at a moderate resolution. In the article, the
authors claimed this cost to be prohibitive for interactive use. As such, due to this statement,

and the complexity of the implementation, we did not explore this approach.

3.10 WIND FIELD SIMULATION

A wind field can be described by the Navier-Stokes equations, which can be solved by a
variety of algorithms. In our system, we greatly simplify the original equations by using
linearized fluid flow, as described in Wejchert and Haumann (1991).

This simplification arises from three assumptions, the fluid is inviscid, irrotational and
incompressible, which is a reasonable model for air at normal speeds when it does not
exhibit turbulence Wejchert and Haumann (1991).

When two fluid layers move relative to each other, a friction force develops between them
and the slower layer tries to slow down the faster layer. This internal resistance to flow is
quantified by the fluid property viscosity, which is a measure of internal ”stickiness” of
the fluid. Viscosity is caused by cohesive forces between the molecules in liquids and by
molecular collisions in gases. As such all real fluid flows involve viscous effects to some
degree. However, in many flows of practical interest, there are regions (typically regions
not close to solid surfaces) where viscous forces are negligibly small and this assumption
greatly simplifies the analysis without much loss in accuracy, as described in EngArc Invis-
cid Flow.

The inviscid simplification leads to the valid assumption of irrotationality. Rotation of
a fluid particle can only be caused by a torque applied by shear forces on the sides of
the particles. Since shear forces are absent in an inviscid fluid, the flow of such fluids is
essentially irrotational. Although the fluid may travel in circular trajectories (as is the case
with vortex flow described in section 3.10.3) the fluid itself does not rotate (Massey and
Ward-Smith (1998)).
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Generally, when the flow is viscid, it also becomes rotational. This is due to the fact
that viscosity introduces velocity gradients and introduces distortion and rotation of fluid
particles. The condition of irrotationality can be expressed mathematically using the curl
operator (V x). Curl describes the infinitesimal rotation of a vector field, that is, at every
point in the field, the curl of that point is represented by a vector whose length and direction
characterize the rotation at that point. A vector field v representing irrotational flow satisfies
V xov=0.

Lastly, incompressibility dictates that the density of the flow remains constant. This can
be expressed using the divergence operator (V.), which assigns each point in the vector
tield with a scalar value representing the field’s tendency to converge toward or repel from
that point. Similarly to irrotationality, we can formulate incompressibility as V.v = 0.

A vector field which satisfies these restrictions will also satisfy Laplace’s equation:

Vo=V.Vgp=V=0 (12)

Where ¢ is the potential function. Potential functions are also known as harmonic func-
tions and are characterised by having continuous second-order partial derivatives. In this
context, we obtain three elementary vector fields (i.e. flow primitives) by applying the gra-
dient operator to a set of potential functions and obtain what the authors refer to as flow
primitives which are guaranteed to satisfy the Laplace equation.

Since equation 12 is a linear differential equation, if we find two analytical solutions then
their linear combination is also a solution. It is this property which allows us to combine
multiple primitives in order to create complex flows. Although the mathematical reasoning
behind this model is somewhat intricate, the practical implementation is both elegant and
intuitive.

Wind vector fields are then obtained from the combination of flow primitives (figure 38).
Each of these primitives corresponds to a flow building block: uniform flow, which flows
with a given strength in a given direction; sink/source flow, which flows towards/away
from a given position and lastly vortex flow, which flows around a given axis. These
primitives can be represented as three-dimensional linear equations and thus can be solved
analytically and combined through simple addition. Thus we can add the primitives to
create more complicated flows, as shown in figure 39.

Flow primitives can be concisely described in both cylindrical coordinate and spherical
systems, as illustrated in figure 37.
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(a) (b)

Figure 37: (a) Cylindrical coordinate system, each point is characterised by (r, 6, z)
(b) Spherical coordinate system, each point is characterised by (r,0, ¢)
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Figure 38: (a) Uniform Flow (b) Sink Flow (c) Source Flow (d) Vortex Flow
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Figure 39: 2D slice of a 3D wind vector field (a) Sink Flow (b) Source Flow (c) Vortex Flow
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3.10.1  Uniform Flow

Uniform flow (figure 38a) is the simplest flow possible and can be visualised as a one-
directional vector field. It can be expressed simply as a function which assigns the same

vector to every point in space.

3.10.2 Source/Sink Flow

Source flow (figure 38b) flows away from a given position while sink flow flows towards
a given position depending on whether its strength s is positive or negative, respectively
(figure 38¢). It is expressed in spherical coordinates (7,6, ¢) at the origin as:
s
vr:% vg=0 vp=0 (13)
This equation indicates that the velocity vectors have no angular component, which trans-

lates to a set of vectors pointing directly away or towards the origin.

3.10.3 Vortex Flow

Vortex flow (figure 38d) flows in concentric circular trajectories around a given axis with

strength s. It is expressed in cylindrical coordinates at the origin as:

S
vr=0 vp=5— v:=0 (14)

Contrary to source/sink flow, this equation dictates that the vectors only have an angular
component, leading to a set of vectors which circle the origin.

3.10.4 Drawbacks

Simplification is never without its limitations. In this model, turbulence is not simulated,
which is relevant for the chaotic behaviour of wind fields in reality. However, since our goal
was maximum control, this was not particularly severe and it would be possible to extend
our current system with noise (Bridson et al. (2007)) to simulate the effect of turbulence.
Another limitation is that we only model one-way coupling between the wind and the tree,
that is, the wind influences the tree but the inverse does not occur. This would also be
relevant for a realistic simulation since wind flow can be dramatically changed by collision
with the complex geometry of trees and leaves, producing intricate vortices and displaying

chaotic behaviour. Pirk et al. (2014) were able to achieve this by using SPH.
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USAGE AND EXPERIMENTS

Simple things should be simple,
complex things should be possible.

Alan Kay

In this chapter, we will present the end result of our project, which is the application

itself, named AuxIn™*

. The name comes from a wordplay between Auxiliary Input Ports,
commonly abbreviated to AUX, which are audio connections which allow devices to receive
sound from any media player with a normal headphone socket, and auxins, which are the
plant hormones produced in the stem tip that promote growth.

First, we will present an introductory tutorial which will showcase the application’s main
features while going through a basic example. We follow this section with a brief descrip-

tion of the two main examples we created throughout the development of the application.

4.1 USING AUXIN

AuxIn is a 3D application with a graphical user interface for the creation of sound-reactive
animations. We will introduce its most relevant features at present, going through the
complete creation of a very basic animation. As described in section 3.1, three elements are
used for creating an animation in our system, a MIDI file, an optional audio source and a
script file.

4.1.1  Obtaining a MIDI File

A MIDI file can be obtained in various ways. The best one would arguably be working
directly with a musician. The simplest case would be that of a pianist since most digital
pianos are able to produce MIDI output. This way, not only do we automatically obtain
MIDI data, but we also have the guarantee that it will be perfectly synchronised with the

1 not actually trademarked
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Figure 40: Our simple "melody”.

piano’s audio. Other musicians could transcribe their performance in such a way that a
digital sheet music becomes available. The conversion to MIDI can then be automated
using specific software. Another way would be to obtain a MIDI from the internet, where
they are abundant. However, this poses the problem of synchronisation if one wishes to use
real audio, as we described in section 3.1. Since our system provides MIDI playback, one
can use the MIDI data itself to produce the audio by using a software synthesizer, which is
available on most operating systems. This was the approach we took in our second example
“Navorski”. We will also take this approach for the purposes of this tutorial and we will
additionally be creating a MIDI file from scratch.

To do so, we will use the freely available open-source software MidiEditor.

To keep the example minimal we decided to create a simple ascending and descending
C major scale in straight quarter notes. We leave the tempo and time signature in their
default settings, which are 120 BPM and 4/4 time. The final result in MidiEditor is shown
in figure 40

We save this file as cmaj_scale.mid and we are done with creating our MIDL

Now let us load it in AuxIn to check if everything is correct, this is shown on figure 41.

At first, it seems odd that we have two tracks when we only created one, but this is due
to MidiEditor’s behaviour of creating a default track for selection of the time signature and
the tempo. Since there is no note information on this track, it is correctly displayed as blank.
We could adjust the file so that the scale also belongs to the first track, but this represents
minimal changes in our AuxIn script.
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Figure 41: Examining the MIDI file on AuxIn

Note that in both figures 40 and 41, the notes are not evenly spaced. This is to be expected
since we created a major scale, whose notes are not uniformly spaced, unlike the chromatic

scale mentioned in 2.1.4, but instead follow a particular interval pattern. This pattern can be

represented by the character sequence WWHWWWH where W stands for whole step? (i.e.

2 semitones) and H stands for half step (i.e. 1 semitone). This is the same interval pattern as
followed by the white keys on conventional pianos, since this scale contains neither sharp
nor flat notes, which correspond to black keys.

4.1.2  Creating the Script File

Since we will be generating audio from the MIDI file, we may now move on to create our
script file, which will determine exactly what happens during the animation. Since this is
plain-text lua source file, any editor can be used to create it. Let us begin with a small step
above the smallest example possible shown in listing 4.1. (This code would be equivalent
to having both the handlers and info tables empty).

require "auxin"

function onInit ()

print ("C major scale")

handlers =
{

[2] = {3
}

2 Also referred to as a major second interval.
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info =
{

[2] = { note = 0, lastTime = 0, lastNote = {}, chordNotes = {{}} },
}

timeline:setEnabled (true)
t = 0.0

end

function onUpdate (dt)
t =t + dt

end

Listing 4.1: Minimal auxin lua script file.

The auxin.lua file which we import on the first line consists of a small lua module for
interfacing with our program. Although this import is not strictly required to create a valid
script file for our program, it greatly simplifies this task. It contains our standard definitions
for the onNoteOn and onNoteOff functions (which usually do not require modifications
between projects), as well, as all auxiliary functions for defining note ranges (as discussed
in 3.4) and other helpers.

What remains to be implemented are the functions specific to our example, namely the
onInit and onUpdate functions. onInit will be called once, when the animation begins
and onUpdate will be called on every frame.

In the onInit function, we initialize our handler structure with no behaviour, as well as
the track info structure, whose purpose will be detailed later. The handler structure will
have a subtable for each of the tracks defined in the MIDI file, which we intend to animate,
as we describe in section 3.4.1. We also enable the global timeline. Since this function may
be called repeatedly in order to restart the animation, we also take care to reset the global
time, t to zero.

The onUpdate function has the standard behaviour of accumulating the time step dt in
the global t variable so we can keep track of absolute time (i.e. elapsed time since the start
of the animation).

This file is the minimal working example and as such could be considered as a script

skeleton for any animation.

4.1.3  Creating Our Musical Animation

As for our example mapping, in order to keep everything minimal, we will trigger a full
iteration and the growth of all tree branches at the start of every note on our scale. To do
this, we will borrow the full_growth function from our other examples:
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function full_grow(trackInfo, key, vel, duration)

nodes = TreeGrower ["iterate"] (0)

for k, v in pairs(nodes)
do
v.lengthSequence:setStartTime (t)
v.lengthSequence:addTween (TreeGrower ["full_length"]:get(), t, duration,
easings ["easeOutCubic"])
v.lengthSequence:setEnabled (true)

timeline:addItem(v.lengthSequence)
end

end
Listing 4.2: The full_growth function.

This function’s signature is common to all functions which react to a NoteOn event.
trackInfo refers to the subtable of the info structure we show in listing 4.1 and is usu-
ally used to access the current note index (i.e. its first field). Next, we have the three
attributes of the NoteOn event, namely the note number, key, the velocity (i.e. intensity)
and the event’s duration.

This note-to-growth assignment is used in both our examples, which will be briefly de-
scribe in sections 4.2 and 4.3.

The first line requests an iteration of the SCA and stores the set of newly produced nodes
on the global variable nodes. Since we want every branch to grow to their maximum length
in a single step, we only need to add a single tween to each branch’s lengthSequence
TweenSequence object (see section 3.5.3 for more detail).

The next step is iterating the new segments adding the aforementioned tween, using each
node’s addTween function.

Lua’s unusual implementation of the for loop comes from its core concept that every-
thing is a table. Even plain arrays, for instance, are tables with integer keys. As such it is
standard to use the pairs function when iterating a table, which returns a new key/value
pair on every iteration. In our case, v is the GrowNode instance we wish to access, and k is
its key in the collection, which we do not need3.

The addTween call appends a new tween to the TweenSequence object of each node, which
we mention in 3.5.3.

The first argument for addTween is the target value (length in this case), to which we
assign the max-length parameter, obtained from TreeGrower’s full_length attributet. Next
we have the starting time, which we set to the global time ¢, followed by the duration,

obtained from the event, and lastly the desired easing function. Since this TweenSequence

3 Itis generally regarded as good practice to replace unused return values with _ for clarity, as such this condition
would become for _, v in pairs(nodes)

4 Since this value is unlikely to be changed during the animation it could be cached in a global variable at
initialisation.
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object was already created referring to the segment’s length, this information does not need
to be specified in the addTween call.

By assigning the starting time to t, and duration as the note event’s duration, this tween
will start immediately, that is exactly as the note rings, and will last until it ends.

Now, the only remaining step towards having a working animation script is determining
when this behaviour is triggered. To do so, we assign it to the intended note interval by

modifying the handlers structure.

require "auxin"

function onInit ()
print ("C major scale")
t = 0.0

handlers =

{
[2] = {pred = noteRange(l, 16), note_on = full_grow }

info =

[2]

{ note = 0, lastTime = 0, lastNote = {}, chordNotes = {{}} 1},

timeline:setEnabled (true)

end

function onUpdate (dt)
t =t + dt

end

Listing 4.3: Assigning our function to the correct note interval.

As mentioned in section 3.4, the pred field is a predicate function which determines if
the corresponding note_on will be called at each received event. In this example, this field
is assigned a closure which will return true if the note index is between 1 and 16 (for more
information on closures see section 3.4.2).

All we are missing to get our first animation is to ensure the call to iterate works as
intended by defining the set of attraction points for the SCA. This is done in the application>.
We obtain our points from the uniform sampling of a sphere as we show in figure 42.

And that is all, the animation is working as intended and some frames of the final ani-

mation are shown in 43°.

5 We plan to move this process to the script file.
6 The video is available at https://youtu.be/tWdd_£f5jYzs
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Figure 42: Auxin with a spherical point cloud.

4.1.4 Adding Wind

The previous example showed how to make the tree grow synchronised to each note. Now
we will add the other main effect we implemented, which is wind. To do so, we revisit
MidiEditor in order to add a chord which rings simultaneously with the last note of the
scale. We also place this chord in a new track, as can be seen in figure 44.

We made sure to add this chord at the end of the scale since by then tree has completed
its growth and the wind effects will be most noticeable.

In order to add wind our current script file requires three modifications. We first need to
create a wind primitive, as referred in section 3.10, which we will do at the onInit function.

function onInit ()

uniformWind = Wind["add_uniform"](vec3.new(0.0, 1.0, 0.0), 0)

end
Listing 4.4: Adding uniform wind.

With this instruction, the global variable uniformWind is available and refers to a purely
vertical wind, initialised with no strength.

Now, we move on to creating the function that triggers the actual “blast” of wind, using
this primitive. It is more succinct than the full_growth function since we can implement it
by creating a single tween.

function wind_pull (trackInfo, key, vel, duration)
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Figure 43: Frames from our first animation.
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Figure 44: Adding a simple chord to our MIDI file.

local tween = TweenF.create("wind_pull", uniformWind:attr_float("strength"),
1000, O, t, duration, easings["easeOutCubic"])

tween:setEnabled (true)

timeline:addItem(tween)

end

Listing 4.5: Wind pull.

The arguments for the creation of a tween have already been described in section 3.5.2.

Comparatively to the growth tween of the previous section, we must now specify the actual
attribute this tween acts upon, which we obtain by requesting the strength attribute from
our global wind primitive. We assign it the initial value of 1000, which will drop to o
throughout the event’s duration, using a cubic ease out function. This choice of easing
function translates into a wind force which begins at its peak intensity, followed by a fast
decay.

Lastly, as we did with the tree growth, we must assign this change to be triggered at the
correct moment, so we revisit the handler and info structures.

handlers =
{
[2] = {
{pred = noteRange (1, 16), note_on = full_grow 1},
¥o

31 =<
{pred = noteRange (1, 3), note_on = onChord(3, wind_pull) },
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info =

[2] = { note = 0, lastTime = 0, lastNote = {}, chordNotes = {{}} 1},
[3] { note = 0, lastTime = 0, lastNote = {}, chordNotes = {{}} }

Listing 4.6: Wind pull.

Since we wish this effect to occur in the third track, we must add an extra entry to both
tables.

These are all the required changes to add wind to our previous example. We include
frames of the resulting animation in figure 457.

We also take this opportunity to discuss the limitations of using the note count as the
index for triggering effects, as well as our practical solution, which revolves around the
onChord closure in listing 4.6.

Since we currently process events individually, lua receives three NoteOn events when our
chord is sound. As a result, their order of arrival is undetermined. If we wish for a function
to be called only once during these three notes we make use of our rudimentary chord
detection. This method operates by continuously storing notes which occurred within a
very short time interval. This is why the three last fields in the info subtables exist. The
onChord (3, wind_pull) translates to “only execute wind_pull if a three-note chord has
been detected”. Unfortunately, limitations remain since this method makes it impossible to
distinguish between a complete 2-note chord from an incomplete 3-note chord. This could
be solved by a preprocessing step by part of the host program, which would wait for a very
small amount of time before firing every event, in order to distinguish individual notes
from chords. In this particular example, since we only have one chord, another practical
solution would be to treat it as a single note. However, this would not extend to an actual
chord track without individually specifying a single note for each chord (this could be
achieved using the noteSet closure, which accepts a list of notes).

4.1.5 Adding Leaves

We make another addition to our example by adding the growth of leaves at the end of
the animation. The same pattern from the two previous effects applies: we first define an
appropriate function and then determine when to invoke it.

This function is the most complex so far since it makes use of a few more advanced
features of our framework, particularly the selection (i.e. filtering) of tree nodes, which is

where leaves are placed.

7 Video available at https://youtu.be/bA4EW4AmIMs
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Figure 45: Our example with a blast of vertical wind at the end
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function place_leaves(trackInfo, key, vel, duration)

local tree = TreeGrower["tree"] ()

local nodes = tree:filter(
function (node)
return node.order >= 1
end)

for k, v in pairs(nodes)
do
if (not v.leavesTween:isEnabled())
then
v:placelLeaves (math.random(3, 5))

.leavesTween:setStartTime (t)
.leavesTween:setDuration (duration*2)

.leavesTween:setEaseFunction(easings["easeOutCubic"])

< < < <

.leavesTween:setEnabled (true)
timeline:addItem(v.leavesTween)
end
end

end

Listing 4.7: Add leaves function.

First, we must acquire a list of all nodes we want to place leaves on. We do this by
obtaining the root GrowNode and then selecting all its descendants which satisfy a given
predicate using the filter function. The condition, in this case, is having an order of
branching greater or equal to one®. This effectively prevents the addition of leaves to the
main trunk.

Afterwards, we iterate over the selected nodes, calling the appropriate GrowNode function,
placeLeaves which takes as its single argument the number of leaves, which we randomise
using lua’s built-in pseudo-random number generator®. We then proceed to initialise the
GrowNode’s leavesTween which is similar to lengthSequence. However, this is a not a
TweenSequence object, but instead a plain tween. As such, we individually set its multiple
parameters and add it to the timeline.

We now move on to the second half our last effect, which, as usual, consists in adding

the new function to the handler structure:

handlers =
{
[2] = {
{pred = noteRange (1, 16), note_on = full_grow },
{pred = singleNote(16), note_on = pleace_leaves 1}

} 2

8 In this context, order refers to the classic stream order, which begins at o for the tree trunk and increases with
every branching level.
9 The arrangement of leaves is determined automatically.
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[31 = {
{pred = noteRange (1, 3), note_on = onChord(3, wind_pull) },
¥
}

Listing 4.8: Placing leaves at the final note.

The effect is now functioning, and the resulting frames are shown in figure 46'°. Note
that changing this effect to, for instance, adding leaves with every note could be achieved
simply by altering the predicate function from singleNote(16) to noteRange (1, 16). This
is possible because our place_leaves ensures not to add leaves to nodes which have had
leaves previously added™".

4.1.6  Audio Reactivity

All we are missing in order to showcase most of the possibilities we implemented, is the
use of audio information. This poses a small problem since currently we only have MIDI
information available and our system does not have access to the audio data it produces
using the operating system’s software synthesizer. In order to bypass this problem, we will
resort to yet another excellent freely available open-source software, Audacity. Audacity
is able to capture all audio sent to the system’s audio devices, so we will use the MIDI
playback feature provided by MidiEditor, and record it in an actual ogg audio file, as
shown in figure 47. Although this data is not as interesting as real audio data, it bears

a very strong resemblance and will suffice to illustrate our system’s abilities.

Another problem arises, as it often does with audio data, which is that of synchronisation.

Although in this case, the problem is not severe since every note is correctly spaced. As
such, we only need to adjust the beginning of the first note, to match that of the MIDI. We

can determine the start time in seconds of the first note using a little bit of music arithmetic.

Our intricate composition has its tempo set at 120 BPM. Having a tempo of 120 beats per
minute means there are two beats per second, and conversely half a second per beat. Since
the time signature is 4/4 time, then the length of a beat corresponds the quarter note. This
means each quarter note corresponds exactly to 0.5 seconds. Since our scale begins playing
exactly after a quarter rest, then all we need to do in order to synchronise our audio file is
select the region beginning at the first note and shift it to start at o.5s.

As we mention in section 2.1.1, an audio representation is very rich in information, as it
encodes the real-time temporal, dynamic, and tonal microdeviations present in a musical

performance. Currently, our system explores only the spectral representation of the audio

Video available at https://youtu.be/Vb3qPSItAdw
This check could also be performed directly on the filter function so as to exclude nodes with leaves from
the selection.
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Figure 46: Our animation now ending with the growth of leaves.
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Figure 47: The audio resulting from our simple MIDIL

signal, obtained from the STFT, which by itself already provides interesting information.
This data is calculated every frame, as we show in figure 48.

As is observable in figure 48, it is clear when each note rings and when the chord is
reached. In every note, several peaks are present, each of which corresponds to a partial, as
We have discussed in 2.1.9. On the last two frames these peaks are particularly abundant,
since they correspond to the more intricate superimposition of all the three notes ringing
simultaneously.

Internally, this data is simply a large array which in practise assigns a magnitude coef-
ficient to every frequency. The vast topic of signal processing is beyond the scope of this
tutorial, but we have used 16384 samples for each execution of the STFT. This carries little
overhead in our system and already provides a fairly detailed spectrum.

We can use this data in any way we wish. For our purpose we found the global spectrum
average to be an interesting candidate, since it provides a measure of intensity of the audio,
as it peaks when each note sounds, and in particular at the ending chord.

Now the question arises on how to represent this number in a visually appealing way.
Since it is a value calculated at every frame, candidates would be values whose variation
is also continuous, such as wind strength or growth rate. However, these attributes are
already being controlled by tweens.

For this example, we chose to use the displacement attribute defined in the tree builder
module. This attribute is simply a fixed numeric value which scales the thickness of every

branch in the tree. As such it produces a swelling/shrinking effect whether it is greater or
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[ ‘

Figure 48: The evolution of the audio signal’s spectrum in a logarithmic scale, as calculated by
AuxIn.
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smaller than one, respectively. Since this value affects the whole tree, mapping the spectrum
average to it provides a captivating pulsating effect.
In order to implement this effect, we will make our first changes to the onUpdate function.

function onUpdate (dt)
t =t + dt

local spect_avg = AudioAnalyser ["spectrogram_average"]()

TreeBuilder["displacement"]:set (0.5 + spect_avg * 2.0)
end

Listing 4.9: Assigning the spectrum average to trunk displacement.

Those two lines are all that is necessary to add basic audio reactivity, and frames are
displayed on 49™. We give the displacement a minimum value of 0.5, which is why the tree
appears “thinner” than in the previous images: its thickness is is halved when the audio
intensity is low. Unfortunately, the pulsating effect is not illustrated in the captured frames.

We give the displacement a minimum value of 0.5 to which we then proceed to add the
spectrum average times 2. These sort of “magic numbers” can be determined by experi-
mentation to find the most interesting combinations.

A quick but relevant optimisation is caching access to both the spectrogram average
operation and displacement attribute, by assigning each to a global variables.

getSpectAvg = AudioAnalyser["spectrogram_average"]

displacement = TreeBuilder["displacement"]

function onUpdate (dt)
t =t + dt

local spect_avg = getSpectAvg()

displacement:set (0.5 + spect_avg * 2.0)

end

Listing 4.10: Caching AudioAnalyser’s attributes.

This avoids a map retrieval operation on every frame, which is significant.

Many more possibilities exist. For instance, this effect can be achieved identically for
leaves, using leaf_size instead of displacement. Another example would be colour. We
could determine two colours and interpolate between them according to a modified spec-
trum average, or adjust one of its components, such as brightness or saturation. Implement-

ing effects such as these would not pose many more difficulties than this example.

12 Video available at https://youtu.be/pRISVRGInEY
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Figure 49: Our animation with audio reactivity.
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A limitation of implementing this effect directly on the update function is the fact that it
will always be active, unless we use a lua mechanism, such as a Boolean flag. Since we have
a system that thrives on the timed addition of effects, in order to assist in doing the same
for this family of continuous changes, such as audio reactivity, we have developed another
concrete derivation of TimelineItem called DataLink. These objects are templated and are
equipped with two function pointers, which we dubbed extract and apply. As their name
suggests, the extract function is a function which retrieves a value and the apply function
does something with it, as we describe in section 3.5.4.

Keeping in mind that we could create a DataLink under any circumstance (as we do with
Tweens) we will create it at initialisation in order to maintain the same behaviour as before:

function onInit ()

uniformWind = Wind["add_uniform"](vec3.new(0.0, 1.0, 0.0), 0)

local pulselLink = DatalLinkF.create("pulse_link",
function (dt) return getSpectAvg() end,
function (dt, v) displacement:set(0.5 + v * 2.0) end)

pulselink:setEnabled (true)

pulselink:setInfinite (true)

timeline:addItem(pulseLink)
timeline:setEnabled (true)

end

Listing 4.11: Implementing audio reactivity with a DataLink.

The pulseLink variable is handled similarly to the other TimelineItems. Since we won't
be changing it throughout the animation we declare it as local to initialisation, but if we
were to declare it as global it could be manipulated anywhere in the script. Using separate
extract and apply functions we individually capture the two distinct behaviours which
were previously merged, providing a more decoupled implementation. A possible im-
provement for AuxIn would be allowing these “magic numbers” to be adjusted in real-time.
To do so it would be necessary to extend our program so as to give the script module access
the program’s graphical user interface and manipulate it. Should this be accomplished, the
lua file would be able to define custom user interfaces for each project, which could provide

many interesting possibilities for live accompaniement.
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4.1.7  Colour and More Wind

We conclude our example with two final touches. First, we will make leaves gradually
change their colour at the end of the animation. Second, we will add a second wind
primitive, now a vertical vortex wind, which will cause the tree to spin around its trunk.

First, we will have our leaves appear with every new note, as opposed to only once at the
end. We mentioned how small a change this is in terms of code in section 4.1.5:

handlers =
{
[2] = {
{pred = noteRange (1, 16), note_on = full_grow 1},
{pred = noteRange (1, 16), note_on = pleace_leaves 1}
¥o
31 = {
{pred = noteRange (1, 3), note_on = onChord(3, wind_pull) }
}

Listing 4.12: Placing leaves at every note.

Leaf colour is a global attribute present in our TreeBuilder class. It is represented as a
vec3, that is, a three-component vector, representing red, green and blue components re-
spectively. Modifying it is no different from modifying any other parameter and since linear
interpolation is also defined for vec3 objects, we can easily produce a simple colour gradi-
ent. We follow the same pattern as we have thus far. We first define our new leaf_color
function:

function leaf_colour (trackInfo, key, vel, duration)
local tween = TweenVec3.create("leaf_color", TreeBuilder["leaf_color"],
TreeBuilder ["leaf_color"]:get(), vec3.new(l, 0, 0), t, duration, easings["

easeInQuad"])

tween:setEnabled (true)
timeline:addItem (tween)

end

Listing 4.13: Changing the colour of the tree’s leaves

Now that we are dealing with a vec3 object, we must use the appropriate Tween construc-
tor, namely TweenVec3.

We access the attribute object as we did for displacement in section 4.1.6, by indexing
TreeBuilder’s global table. As initial value, we specify the current value and we make the
change to pure red.

All that’s left, as usual, is defining when to call this function. We schedule it to occur

simultaneously with the wind_pull function.
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handlers =
{
(21 = {
{pred = noteRange (1, 16), note_on = full_grow },
{pred = noteRange (1, 16), note_on = pleace_leaves 1}
},
(31 = {

{pred = noteRange(1, 3), note_on = onChord(3, wind_pull) },
{pred = noteRange (1, 3), note_on = onChord(3, leaf_color) }

Listing 4.14: Changing leaf colour at the sounding of the final chord.

The effect is complete and its frames are displayed on 50'3. Note that due to our
place_leaves implementation shown on listing 4.7, leaves will only effectively appear when
segments with order greater or equal to 1 are present, that is, after the first branching occurs.

The vortex wind is added similarly to the uniform wind, except for the different initialis-

ing function.

function onInit ()

uniformWind = Wind["add_uniform"](vec3.new(0.0, 1.0, 0.0), 0)
vortexWind = Wind["add_vortex"](vec3.new(0.0, 0.0, 0.0), vec3.new(0.0, 1.0, O
.0), 0)

end

Listing 4.15: Placing leaves at every note.

The vortex wind is characterised by different parameters, namely the point of origin,
where vortex strength is maximal, which we place at the origin, and the axis, which we
make vertical. We show a slice of the wind field for illustrative purposes in figure 51.

Now that the primitive has been created we need to make a function to trigger the acti-
vation of this wind field, similarly to wind_pull, which we will call wind_spin:

function wind_spin(trackInfo, key, vel, duration)
local tween = TweenF.create("wind_pull", vortexWind:attr_float("strength"), 200
* key, O, t, duration, easings["easeOutCubic"])
tween:setEnabled (true)
timeline:addItem(tween)
vortexWind.direction.y = -1 * vortexWind.direction.y

end

Listing 4.16: Triggering the vortex wind

13 Video available at https://youtu.be/HGANHiRLLM
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Figure 50: Gradual addition of leaves and color change.
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Figure 51: A single slice of our new vortex wind primitive.

We also take this opportunity to use the key argument for the first time. This is the
MIDI note number. Since we are playing the C major scale, we go from C4 up to Cs. This
translates to the key value varying from 60, up to 72. By using this value as our starting
wind strength at every “wind spin”, the tree will spin most intensely as we reach the
highest note. We also flip our vortex by inverting the y component of its direction, which
translates to alternating between spin directions on every note. Although the effect is not
very noticeable in the still images, we show frames of the animation on figure 52.™.

4.2 KOTOWARI

Kotowari is the eighth song of the soundtrack from the Japanese anime television series,
Mushishi. This song was used as our running example throughout the implementation.

We found Kotowari to be particularly suitable as a test case due to its small duration
of 70 seconds, as well as having two main contrasting melodic lines which are rich in
expressiveness and consequent interpretation. The two melodic tracks allowed us to explore
the two effects we dedicated our implementation to, namely the animation of tree growth
and its real-time reaction to a changing wind field.

In order to use this song, we obtained a freely available transcription which we later

synchronised manually to the audio data. This allowed us to use features from both repre-
sentations.

14 Video available at https://youtu.be/XYZTcN5LnjU
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Figure 52: Our example with vortex wind.



4.3. Navorski

The higher pitched melodic line was assigned to tree growth, while the lower one was
assigned to control the wind field. A third melodic line exists, which corresponds to the
unexpected ringing of a bell, which we mapped to the appearance of leaves.

This is, of course, our own subjective mapping of the song, and any other would also be
possible, depending on the input script file. Furthermore, nothing prevents these mappings
from being changed in different moments of the song, since they are established on a per-

note basis as we illustrated in the tutorial section.

4.3 NAVORSKI

Navorski is our code name for the song ”Viktor’s Tale” by John Williams, composed for the
film ”"The Terminal” directed by Steven Spielberg. This song is 4 minutes long and as such,
the creation of a “choreography” proved to be much more challenging and time-consuming
than for our previous example. A large part of the difficulty arises in engaging the audience
and holding their attention.

In this example, there is a small set of rules we defined to be fixed throughout the whole
song, such as a downward motion on a bass chord note, and an upwards motion on the
remaining chord notes. We find that in some moments these rules interact with temporary
rules to form interesting patterns which begin to resemble dancing motions.

Due to the length of the song, the code becomes significantly more extensive. In order to
obtain interesting behaviours, we make use of slightly more intricate algorithms to achieve
what we found to be intuitive mappings of the different aspects of the song. For instance,
there are scenes where we approximate the melodic motion of the song (ascending vs
descending melody lines) and map it to vertical changes in the wind direction. We also
make use of the twirling motion caused by a vortex wind, as we discuss in section 4.1.7.

However, properly assigning these effects to moments in the song has proved a chal-
lenging task. This is where we are confronted with strong evidence that a more adequate
interface would prove useful. We also found that the implementation of distinct effects
would greatly improve the quality of the final animations.

4.4 DISCUSSION

With this section, we hope to have given the reader greater insight regarding the inner
workings of our application, what we aimed to achieve by creating it and its potential.
We believe that the concept of supplying the user with a set of sophisticated, yet intuitive
animation primitives, as well as access to musical and audio information can allow for the
creation of imaginative and expressive works without requiring extensive prior knowledge.

Moreover, we believe that our system would have a vast leap in usability if we were to
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implement an interface following the visual programming paradigm as with Max/MSP
or Pure Data. To illustrate this, we drew inspiration from Pure Data and present a non-
rigorous mock-up of what our tutorial project could look like if represented as a hybrid

between code and visual representation, shown in figure 53.
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Track 1 >——| note_on } single_note

note_range

Track 2 note_range —— on_chord wind_pull

function wind_pull(trackInfo, key, vel, duration)

local tween = TweenF.create("wind_pull”,

uniformWind:attr_float("strength"),

1000, 0,

t, duration,

easings["easeOutCubic"])

tween:setEnabled(true)

timeline:addItem(tween)

end
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| "spectrum_average"

Audio Analyser

‘ "displacement" |

TreeBuilder

Figure 53: A concept mock-up of the tutorial project under a visual programming paradigm.
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CONCLUSION

In this project, we explored the challenge of creating a tool for deriving animation from
musical information. This was made possible by three key elements: the simulation of
a dynamic system, a configurable environment with which it interacts and a set of rules
which direct changes in this environment from incoming data. In our case, the system is
the growing tree simulation in the wind, the environment is the set of stimuli which the
tree reacts to, the set of rules is represented by the script file and the incoming data consists
of our supported representations of music.

In general terms, what this accomplishes is to provide a layer of abstraction from man-
ually specifying individual changes in the animation, which is replaced with triggering
changes in the environment. As such, we are effectively trading control for automation.
In any context where there is abundant real-time data, this drastically lowers the effort re-
quired to translate such data into a meaningful visualisation and we believe this concept
could be extended beyond music.

In our case study, we found this approach to be successful. Music structure is thoroughly
described and analysed by a formal theory, however, most of its elementary aspects are
perceived by the general population in an intuitive way. An example of such is dancing,
which comprises the performing of motion usually associated with aspects of music, in
particular rhythm, which gives rise to a particular form of expression. In a broad sense,
this is what we strive for our application to be, a means of expression. In our digital
approach, we provide the user with complementary, yet distinct, representations of music
information and give them programmable control over a dynamic reactive system.

We found that imagining visual metaphors for music comes naturally to most people
since our discussions regarding this application often brought with them fresh ideas for
possible associations between our tree’s reaction to moments in songs. The flow of ideas
was particularly abundant from those who with greater affinity for music, and even more
so from those who study it. This was both an exciting and motivating result since in this
project we have barely scratched the surface of what could be accomplished by extend-
ing this concept in different directions. For instance by modelling different phenomena,

introducing cinematography by capturing their evolution in meaningful ways as well as
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extracting more cues from musical information. The ever-growing available power of com-
putation continues to expand the sphere of possibilities of what computers may achieve,
and many ideas remain delightfully open for future research, exploration and experimenta-
tion. We can only hope that our project will be able to incite further development into this
realm of endless possibilities.

5.1 PROSPECT FOR FUTURE WORK

We can not over-emphasise how this project has merely scratched the surface of what we
believe is possible to achieve by enriching this concept. In order to produce more capti-
vating animations many features from many distinct fields could be incorporated into our
system.

As development progressed we found countless directions in which this idea could be
further extended and improved, some of which we will proceed to enumerate.

An interesting aspect of our project is that we used the approach of script-based real-time
animation particularly for the visualisation of music. Theoretically, any sort of real-time
data could be used instead, leading to many distinct usage possibilities.

We modelled the specific phenomena of tree motion and growth. And although we
believe that overall we obtained satisfactory results, there is still ample room for improve-
ment: improving performance and allowing for multiple trees and plants with different
behaviours; the animation of leaf motion and interaction with wind; the modelling of flow-
ers, different species of trees or even other families of plants. These are all interesting
possibilities for future development. Going further with this line of thought could lead to
simulation of entire ecosystems.

This takes us to what we consider to be one of the most relevant paths of future work,
namely amassing a library of procedural effects and behaviours.

We have explored the movement of trees swaying in the wind. This is a very specific
test case and, as such, many more exist which can be modelled by computers. Flock and
swarm behaviour, fluids, kinematics, fractals, autonomous agents are some one of the few
that come to mind. Biological, geological and chemical phenomena could also be the source
of endless inspiration and investigation. Any artistic field would also be a valid driving
force, dancing would be the most prominent candidate due to its proximity to music, but
the remaining performing and visual arts should not be disregarded.

Cinematography and theatrical concepts and techniques should also be considered, since
the end result of our software is effectively comparable to short films and plays. Incor-
porating only the most basic structural elements from these areas such as the notions of
scenes and acts could already yield significant improvements. Camera control and lighting

effects were painfully neglected throughout this project and would undoubtedly contribute
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to widen the range of expressive possibilities available. We considered real-time perfor-
mance for the possibility of live accompaniement , but this needs not always be the case,
which opens to computationally intensive photorealistic (or non-photorealistic) methods, as
usually found in computer-generated imagery.

Concerning music, we have only used the most its most readily accessible information
and many more expressive cues could be extracted from both sound and musical structure.
Regarding sound, more sophisticated signal analysis algorithms would be useful additions
for generating interesting imagery even if the musical representation is not available, which
unfortunately will always be the most common case. Algorithms for beat detection and
pitch detection would be a valid starting point. Regarding music, the use of information
such as key changes and articulation marks are just initial examples. One could analyse
the use of scales, intervals or chord and take this into consideration when assigning effects.
As such, receiving more musical input, such as the one found in MusicXML is definitely
a priority. By using slightly more sophisticated analysis techniques and describing music
in more abstract terms, such as motifs or repeating patterns, our system’s usability would
be greatly improved. We also believe music sheet would be ideal for complementing our
system’s interface since it is a time proven method for representing and analysing music.
The cues for our effects could be precisely represented as annotations in music sheet, which
would simultaneously benefit the user experience for musicians. The composer Alexander
Scriabin, for instance, already specified colour accompaniement s for his musical composi-
tions in sheet music (Berman (1999)).

Lastly, we could take the concept another step forward, allowing for live interaction. A
Disc Jockey (D]) has access to hundreds of switches and knobs, which we could accept as
input for our system and thus the animation would be effectively produced in real-time, and
user and system can cooperate to keep the animation interesting. An orchestra conductor,
for instance, could operate a system such as ours while directing an orchestral performance,
using gesture recognition and augmented reality techniques. Additionally, stage lighting,
special effects, such as lasers and fog machines could also considered.

We believe to have stumbled upon what seems to be a largely unexplored concept, a
union between the seemingly endless processing power of modern technology and human
expressiveness. As such, “extraordinary possibilities remain untried, unknown, even barely

imaginable”.
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