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Abstract: Masonry is a building material that has been used in the last 10.000 years and 

remains competitive today for the building industry. The compressive strength of masonry is 

used in modern design not only for gravitational and lateral loading, but also for quality 

control of materials and execution. Given the large variations of geometry of units and joint 

thickness, materials and building practices, it is not feasible to test all possible combinations. 

Many researchers tried to provide relations to estimate the compressive strength of masonry 

from the constituents, which remains a challenge. Similarly, modern design codes provide 

lower bound solutions, which have been demonstrated to be weakly correlated to observed 

test results in many cases. The present paper adopts soft-computing techniques to address this 

problem and a dataset with 401 specimens is considered. The obtained results allow to 

identify the most relevant parameters affecting masonry compressive strength, areas in which 

more experimental research is needed and expressions providing better estimates when 

compared to formulas existing in codes or literature. 
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Notations  

AC dense aggregate concrete 

ACC autoclaved aerated concrete 

ANN(s) Artificial Neural Network(s) 

B brick 

BCB burnt clay brick 

BPNN Back Propagation Neural Network 

C calcarenite 

CCB compressed cement block 

CEB compressed earth block 

CeU ceramic unit 

ClB clay brick 

Co Competitive transfer function 

CoB concrete block 

CSB calcium silicate block 

CSEB cement stabilized earth block 

fbc compressive strength of the masonry unit [in MPa] 

fmc compressive strength of the mortar [in MPa] 

FS flagstone 

fwc compressive strength of wall or prism [in MPa] 

GP Genetic Programming 

GS granite stone 

HCB hollow concrete block 

HCSB hollow calcium silicate block 

HHClB horizontal hollow clay brick 

HLC hollow lightweight concrete 

HTS Hyperbolic Tangent Sigmoid transfer function 

hw height of the wall or prism-to-thickness ratio 

k volume of mortar-to-volume of wall ratio 

kh factor that accounts for the ratio of unit height to mortar joint thickness 

km 
code that accounts for the type of unit, the mortar compressive strength 

and the bedding type 

ko ratio depending on the type of masonry (brick or stone masonry) 

Li Linear transfer function 

LS Log-Sigmoid transfer function 

MAPE Mean Absolute Percentage Error 

MB mud brick 

MCU modular cored unit 

MSE Mean Square Error 

NDT Non-Destructive Test 

NRB Normalized Radial Basis transfer function 

OS Ohio stone 

PClB perforated clay block 

PCoB perforated concrete block 

PLi Positive Linear transfer function 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

R Pearson correlation coefficient 

RB Radial Basis transfer function 

SBClB solid burnt clay brick 

SClB solid clay brick 

SCoB solid concrete block 

SCWB soft clay wire-cut brick 

SM Soft Max transfer function 

SMB stabilized mud brick 

SMP standard modular paver 

SSE Sum Square Error 

SSL Symmetric Saturating Linear transfer function 

TB Triangular Basis transfer function 

tb mean value of the masonry unit height  

tm mean value of bed joint thickness  

TMB table mould brick 

tw thickness of the wall or prism 

vm relative volume of mortar 

Vm volume of mortar 

VSCB solid clay brick 

vu  relative volume of unit 

Vwall volume of wall 

WB wire-cut brick 

α 
factor that accounts the effect of the type and the shape of the  

masonry unit 

α, b, c, m, n  
constants for the analytical/empirical determination of the compressive 

strength of masonry 

β 
factor that expresses the effect of the interfacial transition zone  

and bond strength between the masonry unit and the mortar 

Κ 
constant depending on the material and on the group of the masonry unit, 

and the type of the mortar 

ξ 
factor that considers the influence of the thickness of the joints and the 

volume fraction of the mortar 
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1. Introduction 

Masonry is a construction bearing system made from individual masonry units that are laid 

together with or without mortar. Masonry units may be either solid or hollow, and may be made 

of a wide variety of materials. The most common materials used as masonry units are adobe and 

clay brick, concrete block and natural stone block, whereas frequently used mortars consist of 

earth, aerial lime (with or without the addition of pozzolan), hydraulic lime or cement. The first 

evidence of Humanity using masonry building system (consisting from sundry bricks bonded 

with earth mortar) is placed back in 6500 BC (Engesser 1907, Khan and Lemmen 2013). 

Masonry construction is often preferred also in our days, not only in developing countries, due to 

its low cost compared to other modern materials, but also in developed countries, due to the 

aesthetic value, durability, solidity, fire resistance and other characteristics that it provides. 

Masonry constructions are typically complex structures that require a thorough and detailed 

knowledge and information concerning the mechanical behaviour of their structural systems 

(Ceroni et. al. 2012). This is mainly related to the difficulty in estimating properties, composite 

and anisotropic nature of the material “masonry” (Syrmakezis and Asteris 2001, Lourenço 2002, 

Milani et al. 2006, Asteris et al. 2011, Chrysostomou, and Asteris 2012, Asteris et al. 2013, 

Asteris et al. 2014). Practice, as well as experimental testing, has shown that these structures have 

low resistance in tension and in shear, whereas their compressive strength is, in general, adequate 

for the level of loads of conventional structures. Actually, masonry buildings fail mainly due to 

diagonal cracking against in-plane actions or cracking with the formation of rotation lines against 

out-of-plane bending. Furthermore, masonry structures have usually excellent thermal properties, 

as they keep the structure cool in the summer and warm in the winter (ACI/TMS 122R-14, 2014). 

Although, masonry is generally a highly durable construction form, the materials used, the quality 

of the mortar, the workmanship and the pattern in which the units are arranged may substantially 

affect the performance of the overall masonry construction. 
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The design of new masonry structures according to the applicable code and their structural 

analysis through software programs available in the market require the value of the compressive 

strength 
𝑤𝑐

 of the masonry to be known. This value may be obtained by testing masonry 

prisms and wallettes or is estimated using semi-empirical formulas. In these formulas, data such 

as the compressive strength of the masonry units and the mortar that constitute the masonry are 

required. A dominant position among the first researchers involved in masonry structures is 

Engesser, who, in 1907, proposed in his work entitled Über weitgespannte Wölbbrücken, the first 

formulae for the estimation of masonry compressive strength considering the mortar and unit 

strengths. Thenceforth, a plethora of research work was carried out on compressive strength of 

masonry and numerous equations are available in the literature, as will be shown in the following 

sections. It is stressed that the objective is modern masonry, made with regular units and with an 

arrangement so that the masonry bond has limited influence on the compressive strength and 

complies with the code requirements (in most cases the usual staggered configuration given by 

running bond). Existing variations of masonry such as rubble masonry or dry-stacked masonry 

are out of the scope of the present paper. 

Despite the plethora of research work in the last decades, the mechanics of masonry structures 

remains an open issue and, at the same time, a challenge for the practicing civil engineer. 

Furthermore, masonry strength as a function of the geometrical and mechanical characteristics of 

components is a subject not sufficiently explored, and more research is needed towards a robust 

and accurate prediction method. Considering the multiple geometrical and mechanical 

parameters of a masonry wall, which affect its compressive strength in a highly nonlinear 

manner, soft computing techniques emerge as the tool that can shed light on the prediction of 

masonry prism characteristics. This can assist in a better understanding of the material, as 

well as in design optimization processes in an integrated space, something that has not been 

possible until now. 
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Regarding the prediction of the compressive strength of masonry structures, an 

investigation based on a collection of 96 compressive tests on masonry was carried out by 

(Garzón-Roca et al. 2013). The authors used Artificial Neural Networks (ANNs) and Fuzzy 

Logic to forecast the compressive strength of masonry walls composed of clay masonry units 

and cement mortar. For their investigation they considered two parameters: the compressive 

strength of the unit and that of the mortar. In the same direction Zhou et al. (Zhou et al. 2016) 

used ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) models to forecast the 

compressive strength of hollow concrete block masonry and compared the predicted values to 

those obtained by experiments. Parameters such as height-to-thickness of the wall, the 

compressive strength of the masonry unit and the compressive strength of the mortar were 

used as input data, while the compressive strength of masonry was the output parameter. A 

major development with respect to modern masonry codes is that the material of the masonry 

unit is not being considered in the formulation, aiming at a novel and universal unified 

prediction. 

More recently, Asteris et al. (Asteris et al. 2018) used back-propagation neural network 

models for the prediction of the compressive strength of masonry walls based on 

experimental data collected from the relevant literature (232 datasets). For this investigation, 

five parameters were used as input data, namely the volume fraction of masonry unit, the 

compressive strength of masonry unit and of the mortar, the height-to-thickness ratio of the 

masonry specimen and the volume ratio of bed joint mortar. According to the authors, the 

comparison of the derived results with the experimental findings demonstrates the ability of 

artificial neural networks to approximate the compressive strength of masonry walls in a 

reliable and robust manner. Finally, (Mishra et al. 2020, Mishra et al. 2021) used machine 

learning techniques as an alternative method for the prediction of compressive strength of 

masonry. The data used were obtained from experimental tests on masonry wallettes (direct 
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tests) and from non-destructive test (NDT) data (rebound hammer and ultrasonic pulse 

velocity tests), which were interpreted to determine the mechanical parameters of masonry. 

Three modelling approaches, namely fuzzy set, fuzzy logic, and neural network, were 

combined into the hybrid framework of a neuro-fuzzy modelling system and the predicted 

data were compared to those obtained by experiments. 

In this context, in the work presented herein, the modelling of the compressive strength of 

single-leaf masonry walls has been investigated in-depth using soft-computing techniques. In 

particular, this study investigates both the application of Artificial Neural Networks (ANNs) 

and genetic programming (GP) models for the prediction of the compressive strength of 

masonry prisms. Specifically, for the development and the training of the computational 

models, a database consisting of 401 specimens taken from the literature was utilized. The 

masonry unit compressive strength 
𝑏𝑐

, the mortar compressive strength 
𝑚𝑐

, the masonry 

prism height-to-thickness ratio h𝑤 t𝑤⁄  and the mortar thickness-to-masonry unit thickness 

ratio 𝑡𝑚 t𝑏⁄  were used as input parameters, while the value of the masonry prism 

compressive strength 
𝑤𝑐

 was used as output parameter. The optimum developed ANN 

model has proven to be successful, exhibiting very reliable predictions. Furthermore, 

compressive strength maps have been developed and are presented, revealing the nature of 

the compressive strength of masonry walls. These maps assist in the visualization of the 

effect of the different parameters on masonry compressive strength and can serve as a tool for 

educational purposes. 

 

2. Literature review on masonry compressive strength 

The enormous variety of masonry types can be characterized through parameters such as: (a) 

the type of the mortar (composition and quantity expressed through the joint thickness), (b) the 

nature of the material and form of the masonry units, (c) masonry construction procedure and 
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workmanship quality, and (d) the bonding properties between masonry units and mortar. It is well 

known that these parameters, together with the geometry of the tested specimen in compression, 

affect the mechanical properties of the material “masonry” (Hendry 1998). ,  

In the following sections an attempt is made to highlight shortly the effect of the most 

representative parameters that affect single-leaf masonry’s compressive strength, as well as to 

present the proposals developed by different researchers and adopted by International Codes that 

account the effect of these parameters on the compressive strength of masonry. 

 

2.1 Relevant mechanical and geometrical parameters based on experimental works 

With the purpose to assess the effect of selected parameters on masonry’s compressive 

strength, previous research has included compression tests on prisms or wallettes (Figure 1). 

The possibility of testing two different types of specimens is also reflected in the standards 

that regulate the experimental determination of the compressive strength of masonry elements 


𝑤𝑐

. In particular, the European standard EN 1052-1:1999 describes wallettes having specific 

geometry. The geometry of the specimen accounts for the effect of head joints. Additionally, 

the slenderness is such to avoid plate restraint effects on the measured strength. At least three 

identical specimens are constructed and tested in compression. Special care is taken after the 

construction of the specimens, in order to avoid drying of the specimen during the first days. 

For the estimation of the compressive strength of the wallette, the maximum load is divided 

by the gross cross-sectional area of the wallette. On the other hand, the American standard 

ASTM C1314 proposes a simpler configuration for testing masonry. In particular, stack bond 

prisms consisting of a sufficient number of stacked units are constructed and tested in 

compression. Prisms at least two masonry units’ height are considered. A set of at least three 

prisms made of the same material are tested at the same age. It should be noted that in the 

case of ASTM C1314, the compressive strength of the prism is derived by dividing the 
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maximum load by the net cross-sectional area of that prism. 

  

Figure 1. Geometry and notations of a masonry wall 

The majority of the studies investigate the effect of the following parameters: (a) the 

compressive strength of masonry unit 
𝑏𝑐

, (b) the compressive strength of the mortar 
𝑚𝑐

, 

(c) the height-to-thickness ratio of the specimen and finally, (d) the ratio of masonry unit 

height to mortar bed joint thickness. Usually, the mortar is weaker than the masonry unit 

(
𝑚𝑐

˂
𝑏𝑐

) and the behaviour of masonry in compression is governed either by the mortar 

confined compressive strength or by the strength of the unit under vertical compression and 

lateral tension. In such cases, 
𝑤𝑐

 values range between 
𝑚𝑐  and 

𝑏𝑐
, while an increase of 

the compressive strength of the constituent materials leads to an increase of the masonry 

strength (e.g. Kaushik et al. 2007, Lumantarna et al. 2014, Thamboo 2014, Zhou et al. 2016). 

For example, for the materials examined by (Kaushik et al. 2007), an increase of the order of 

40% in 
𝑤𝑐

 is observed by increasing the value of 
𝑏𝑐

 by only 10%. However, an increase 
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of 
𝑏𝑐

 of the order of 30% leads to a disproportional increase of 
𝑤𝑐

 (of the order of 50%). 

Similarly, an increase of 
𝑚𝑐

 by 400% leads to an increase of 
𝑤𝑐

, but only by 60-100% 

depending on the masonry unit. Finally, it is seen that the type of mortars determines the 

damage pattern observed in the masonry prisms as well as the post-peak behaviour. In 

particular, failure in masonry with a high-strength mortar is more brittle when compared to 

that with a low-strength mortar.  

In case the compressive strength of units is smaller than the compressive strength of the 

mortar, the response of the masonry is controlled by the unit. In this case, compressive 

strength of masonry itself usually is lower than the compressive strength of both unit and 

mortar (e.g. Mohamad et al. 2007, Nagarajan et al. 2014, Balasubramanian et al. 2015, 

Ravula and Subramaniam 2017). The aforementioned effects of fbc and fmc on fwc still apply 

(e.g. Thamboo 2014, Thaickavil and Thomas 2018).  

Regarding the effect of the height-to-thickness ratio of the specimen on fwc, it is found that 

the thinner mortar layers increase the bond strength between the mortar joint and the masonry 

unit, and thus, contribute to the increase in compression capacity of masonry. For the specific 

tested walls, this reduction is of the order of 30-40% (e.g. Thaickavil and Thomas 2018). 

Finally, an increase of the ratio of masonry unit height to mortar bed joint thickness on 
𝑤𝑐

 

results in a decrease of the values of 
𝑤𝑐

; e.g., for usual combinations of materials where 


𝑏𝑐

˃
𝑚𝑐

, a 50% decrease of the joint thickness can lead to a 10-20% reduction of 
𝑤𝑐

 (e.g. 

Reddy and Vyas 2008, Thamboo 2014). 

 

2.2 Available proposals in the literature for strength prediction  

2.2.1 Individual researchers  

The prediction of the compressive strength of masonry walls 
𝑤𝑐

, as well as its 

deformability characteristics (Young modulus of elasticity, Poisson ratio, σ-ε diagram, etc.), 
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have been the objective of several studies. Focusing on the compressive strength of modern 

masonry, analytical formulas have been developed by (Hilsdorf 1969), (Francis et al. 1970), 

(Tassios 1986) that consider the interaction between the masonry unit and mortar joint as a 

result of their different deformation characteristics. Two approaches have been adopted as the 

basis of failure theories: the first theory assumes plastic behaviour, whereas the second theory 

considers elastic behaviour, which in some cases is related to the behaviour of the unit and 

joint materials under the action of bi- or tri-axial stresses. These approaches simulate, in some 

cases, accurately the response of masonry under compression. However, the use of these 

formulas requires the deformability characteristics of the masonry unit and the mortar (such 

as Poisson ratio) to be known. These values are not usually available and, therefore, the use 

of these relationships is rather difficult. 

Contrarily, most of the studies available in the literature propose empirical/mathematical 

models for the estimation of the compressive strength of masonry walls. These models are, in 

particular, based on the first formula proposed by (Engesser 1907), in which the compressive 

strength of masonry is related to the compressive strength of the masonry unit and of the 

mortar. The majority of studies propose linear or power expressions for the prediction of the 

compressive strength of masonry, such as: 


𝑤𝑐

= 𝑎
𝑏𝑐
𝑚 + 𝑏

𝑚𝑐
𝑛

 (1) 

or 


𝑤𝑐

= 𝑐
𝑏𝑐
𝑚


𝑚𝑐
𝑛

 (2) 

where 
𝑏𝑐

, 
𝑚𝑐

 are the compressive strength of masonry units and mortar, respectively and a, 

b, c, m and n are constants related to the specific materials and geometry under consideration. 

In Table 1, the most representative equations from the literature are presented (namely, 

Equations 3 to 20), concerning the estimation of masonry prism or wallette compressive 

strength. It is noted that in these formulas, global effects, such as the slenderness of the wall, 

local-compression resistance, the thickness of mortar joint-to-height of the masonry unit ratio 
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(𝑡𝑚 𝑡𝑏⁄  ratio), or the effect of bi- or tri-axial stress on the constituent materials, are not 

considered. 
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Table 1. Empirical equations for the prediction of masonry compressive strength proposed by individual researchers 

Nr Formula  Equation Reference Method used 

1 mcbcwc fff
3

2

3

1


 
(3) (Engesser 1907) 

RG 

2 
3/12/1

68.0 mcbcwc fff 
 

(4) (Bröcker 1963) RG 

3 
18.066.0

83.0 mcbcwc fff 
 

(5) (Mann 1982) RG 

4 
208.0531.0

317.0 mcbcwc fff 
 

(6) (Hendry & Malek 1986) RG 

5 
5.05.0

275.0 mcbcwc fff 
 

(7) (Dayaratnam 1987) RG 

6 bcwc ff 3.0
 (8) (Bennett et al. 1997) RG 

7  mcbcbcwc ffff 0147.00027.013266.0 
 (9) (Dymiotis & Gutlederer 2002) RG 

8 
32.049.0

63.0 mcbcwc fff 
 

(10) (Gumaste et al. 2007) RG 

9 
134.0866.0

317.0 mcbcwc fff 
 

(11) (Kaushik et al. 2007) RG 

10 
25.065.0

35.0 mcbcwc fff 
 

(12) (Christy et al. 2013) RG 

11 32.1093.053.0  mcbcwc fff
 (13) (Garzón-Roca et al. 2013) RG 
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12 𝑓𝑤𝑐 =
84

1 + 𝑒3.6−0.077𝑓𝑚𝑐−0.034𝑓𝑏𝑐
− 0.36 (14) (Garzón-Roca et al. 2013) 

ANNs 

13 𝑓𝑤𝑐 = 13.04 + 0.402𝑓𝑏𝑐 
 

(15) (Fortes et al. 2014) RG 

14 
31.075.0

75.0 mcbcwc fff 
 

(16) (Lumantarna et al. 2014) RG 

15 
18.075.0

886.0 mcbcwc fff 
 

(17) (Sarhat & Sherwood 2014) RG 

16 𝑓𝑤𝑐 = 1.34𝑓𝑏𝑐
0.1𝑓𝑚𝑐

0.33
 (18) (Basha and Kaushik 2015) RG 

17 
35.06.0

69.0 mcbcwc fff 
 

(19) (Kumavat 2016) RG 

18 𝑓𝑤𝑐 = 0.25𝑓𝑏𝑐
1.09𝑓𝑚𝑐

0.12
 (20) (Thamboo and Dhanasekar 2019) RG 

 𝑓𝑤𝑐 is the masonry compressive strength; 𝑓𝑏𝑐 is the masonry unit compressive strength; 𝑓𝑚𝑐 is the mortar 

compressive strength. 
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Most proposals fail to consider the effect of the height-to-thickness ratio of the masonry 

prism, the volume fraction of mortar and of the brick, the effect of interfacial transition zone 

and bond strength, or the influence of the thickness of the joints on the compressive strength 

of masonry (Tassios & Chronopoulos 1986), (Tassios 1988), (Thaickavil & Thomas 2018). In 

particular, the semi-empirical formula proposed by (Tassios & Chronopoulos 1986) for the 

estimation of the compressive strength, fwc, of one leaf stone or brick masonry, considers the 

effect of several parameters affecting the strength:  

𝑓𝑤𝑐 = 𝜉 ⋅ [(2/3√𝑓𝑏𝑐 − 𝑎) + 𝛽 ⋅ 𝑓𝑚𝑐] (21) 

 

where ξ = 1/[1 + 3.5(k ‒ ko)] is a factor that takes into account the influence of the thickness 

of the joints and the volume fraction of the mortar, k = Vm/Vwall is equal to the volume of 

mortar-to-volume of wall ratio, ko is equal to 0.30, α is a factor that accounts the effect of the 

type and the shape of the masonry unit (α = 0.5 for brick units and stone blocks) and β is a 

factor that expresses the effect of the interfacial transition zone and bond strength between 

the masonry unit and the mortar (β = 0.5 for rough interfaces and β = 0.1 for very smooth-

surface interfaces). According to the authors, this proposition should be applied for masonry 

with fmc lower than 2.5MPa. 

For well-built and regular masonry structures, (Tassios 1988) proposed the following 

expressions for the estimation of the compressive strength:  

𝑓𝑤𝑐 = {

[𝑓𝑚𝑐 + 0.4 (𝑓𝑏𝑐 − 𝑓𝑚𝑐)](1 − 0.8√𝐴
3

),    𝑓𝑏𝑐 > 𝑓𝑚𝑐

𝑓𝑏𝑐(1 − 0.8√𝐴
3

),                                         𝑓𝑏𝑐 < 𝑓𝑚𝑐

 (22) 

 

where 𝑓𝑏𝑐, 𝑓𝑚𝑐 are the compressive strength of masonry units and mortar, respectively, and 

𝐴 = 𝑡𝑚 𝑡𝑏⁄  is the ratio between the mean value of bed joint thickness 𝑡𝑚, and the mean value 

of the masonry unit height 𝑡𝑏. 

The formula proposed by (Rozza 1995), presented in (Apolo & Martinez-Luengas 1995) 
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considers the effect of the compressive strength of the constituents’ materials, as well as the 

relative fraction volume of the unit and of the mortar. In particular, 𝑓𝑤𝑐 is estimated by the 

equation: 

  10/8.0 mcmbcuwc fvfvf 
 

(23) 

 

where vu is the relative volume of unit and vm is the relative volume of mortar. 

More recently, (Thaickavil & Thomas 2018) proposed a formula that considers the 

majority of the parameters that affect the masonry compressive strength. The authors carried 

out a regression analysis on a plethora of test data (232 datasets) within the following ranges: 

masonry unit strength from 3.1 to 127.0 MPa, mortar strength from 0.3 to 52.6 MPa and 

ℎ𝑤 𝑡𝑤⁄  ratio from 1.15 to 5.75. Then, the following formula has been proposed: 

𝑓𝑤𝑐 =
0.54 × 𝑓𝑏𝑐

1.06 × 𝑓𝑚𝑐
0.004

(ℎ𝑤 𝑡𝑤⁄ )0.28
 

(24) 

where 𝑓𝑏𝑐, 𝑓𝑚𝑐 are the compressive strength of masonry units and mortar, respectively, and 

ℎ𝑤 𝑡𝑤⁄  is the height-to-thickness ratio. 

 

2.2.2 International codes and standards 

The form of the equations proposed by individual researchers have been adopted by 

international building codes and standards, usually not in terms of average values but adopting 

characteristic values (or the 5% quartile). This means that some care applied when comparing 

code and individual research expressions. Actually, the European Standard for the design of 

masonry structures (Eurocode 6, 2005 (EN 1996-1-1)) adopts a power model for the prediction 

of the compressive strength of masonry using the compressive strength of its components 

(see Equations 27 in Table 2). In these formulas, a K factor is introduced to consider the 

material and the voids of the masonry unit, as well as the type of the mortar. It should be 
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noted that the thickness of the mortar joint does not appear in the proposed formulas. The 

reason is that a predefined value for the thickness of joints is adopted (less than 15 mm for 

general purpose mortars and 1 to 3 mm for thin layer mortars). Thus, the influence of the 

thickness of the mortar joint has already been considered in the formulas and, therefore, is not 

taken as a parameter. 

In the same line as above, in the MSJC (2013) standard, a linear model is adopted for the 

calculation of the compressive strength of masonry (Equation 26, Table 2), where fwc is 

estimated only through the compressive strength of the masonry unit based on the gross 

cross-sectional area. On the contrary, the Australian code AS3700-2018 recognizes the 

significant effect of the height of unit-to-joint thickness ratio on the compressive strength of 

masonry. Therefore, it estimates the compressive strength of the masonry wall through a 

power model (Equation 25, Table 2) that accounts for the influence of the height of unit-to-

joint thickness ratio through kh factor and the type of unit, the mortar compressive strength 

and the bedding type (full or face shell) through km factor. Finally, in North American 

standards (TMS 402-11, CSA S304-14) tabulated values are provided for the calculation of 

the compressive strength of masonry based on the masonry unit strength and mortar type. 
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Table 2. Empirical equations for the prediction of masonry compressive strength adopted by International codes and standards. 

Nr Formula  Equation Reference 

1 𝑓𝑤𝑐 = 𝑘ℎ𝑘𝑚𝑓𝑏𝑐
0.5

 (25) AS 3700-2018 

2 𝑓𝑤𝑐 = 2.758 + 0.2𝑓𝑏𝑐 (26) 

ACI 530.1-02/ASCE 6-02/TMS 602-02 

MSJC 2013 

3 𝑓𝑤𝑐 = {
𝛫𝑓𝑏𝑐

0.7𝑓𝑚𝑐
0.3, 3𝑚𝑚 ≤ 𝑡𝑚 ≤ 15𝑚𝑚

𝛫𝑓𝑏𝑐
0.85, 𝑡𝑚 ≤ 3𝑚𝑚

 (27) Eurocode 6, 2005 (EN 1996-1-1) 

𝑓𝑤𝑐 is the masonry compressive strength; 𝑓𝑏𝑐 is the masonry unit compressive strength; 𝑓𝑚𝑐 is the mortar compressive 

strength;  

𝑘ℎ is a factor in Australian code AS 3700-2018 that accounts for the ratio of unit height to mortar joint thickness, which 

should not exceed the value of 1.3; 𝑘𝑚 is also a factor in Australian code AS 3700-2018 that accounts for the type of unit, 

the mortar compressive strength and the bedding type; 

K is a constant in Eurocode 6, 2005 (EN 1996-1-1) formula, modified according to the National Annex for different 

countries. The value of this constant in the UK is 0.52 while in Greece K values range between 0.35 to 0.55 depending on 

the material and on the group of the masonry unit, the type of the mortar (e.g. general purpose mortar, thin layer mortar or 

mortar made with lightweight aggregates).  
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2.2.3 Research needs 

In order to illustrate the broad range of 𝑓𝑤𝑐 values proposed by the studies available in the 

literature, the obtained curves were plotted in Figure 2. In particular, the 𝑓𝑤𝑐 values are depicted 

for mortar strength equal to 5 MPa. It is apparent from the figure that the range of 𝑓𝑤𝑐 values is 

too broad, especially for higher values of 𝑓𝑏𝑐 (in some formulas, limits apply). In fact, the 

lower bounds of the envelope are given by the propositions of (Hendry and Malek 1986; 

Dayaratnam 1987; Rozza 1995; Basha and Kaushik 2015), while the upper bound is given by that 

of (Engesser 1907; Fortes et al. 2014; Sarhat and Sherwood 2014; Lumantarna et al. 2014; 

Thaickavil and Thomas 2018; Thamboo and Dhanasekar 2019), while the propositions of the 

International Codes lie in-between (note that these are characteristic values and should be 

multiplied by 1.25 per (EN 1052-1 1998)). It is observed that the most conservative forecast 

among international codes is given by the Australian code. These findings further justify the need 

for additional research on the subject and for developing a more reliable and robust soft 

computing-based model for prediction of the compressive strength of masonry walls. 
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Figure 2. Masonry compressive strength based on different proposals with reference to a 

mortar compressive strength equal to 5 MPa. 

 

3. Materials and Methods 

3.1 Computational Predictive Models 

This section presents the basic principles and constitutive models underpinning the 

computational predictive methods and techniques used in this research. Specifically, a brief 

review of the basic principles of Artificial Neural Networks (ANNs), with a specific focus on 

back-propagation neural networks (BPNNs), and Genetic Programming (GP) techniques will 

be presented. 

 

3.1.1 Artificial Neural Networks  

ANNs are advanced numerical models mimicking the structure and interaction of biological 

neural networks and were initially used for medicine research purposes to simulate strongly 
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nonlinear relationships between numerous input and ouput parameters (Wu et al. 1993, 

Anthimopoulos et al. 2016, Asteris et al. 2020, Rahimi et al. 2021, Gavriilaki et al. 2021). 

ANN models were subsequently introduced into the wider context of engineering disciplines 

(for example Gandomi and Alavi 2012, Le et al. 2021), which significantly enriched the 

mathematical backgound underpinning ANN.. At present, most neural network models 

presented in literature are structured on coarse elements of the biological neuron networks, and in 

this context it is expected that artificial neural network models will in the future be refined as the 

function underpinning biological neurons is advanced.  

Artificial Neural Networks (ANNs) are information-processing models that are configured to 

learn and perform several tasks, such as classification, prediction, and decision-making. A trained 

ANN correlates a given input with a specific output, and it is therefore considered to be similar to 

a response surface method. The main advantage of a trained ANN over conventional numerical 

analysis procedures (such as regression analysis) is that the results are more reliable and require 

significant less computational effort (Samui 2008, Samui and Kothari 2011, Das et al. 2011, 

Hornik et al. 1989, Sadowski and Nikoo 2014, Asteris and Plevris 2013 and 2016, Cascardi et al. 

2016,  Cavaleri et al. 2017, Asteris et al. 2017 and 2019, Apostolopoulou et al. 2018, 2019 and 

2020, Kechagias et al. 2018, Asteris and Mokos 2019, Armaghani et al. 2019, Cavaleri et al. 

2019, Xu et al. 2019, Chen et al. 2019, Jiang et al. 2020). 

In this research, a specific ANN type has been trained and developed, namely using back-

propagation neural networks (BPNNs). A BPNN is a feed-forward, multilayer network (Hornik et 

al. 1989), in which information flows only from the input towards the output nodes with no 

feedback loops, and the neurons of the same layer are not connected to each other, but they are 

connected with all the neurons of the previous and subsequent layers. A BPNN has a standard 

structure that can be expressed as: 

𝑁 − 𝐻1 − 𝐻2 −∙∙∙ −𝐻𝑁𝐻𝐿 − 𝑀 (28) 
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where N is the number of input neurons (input parameters), 𝐻𝑖 is the number of neurons in the ith 

hidden layer for i = 1, …, NHL, where NHL is the number of hidden layers, and M is the number 

of output neurons (output parameters). 

Despite the fact that the majority of researchers employing ANN techniques use multilayer 

NN models, ANN models comprising only one hidden layer can predict any forecast problem in a 

reliable and robust manner. A typical structure of a single node (with the corresponding R-

element input vector) of a hidden layer is presented in Figure 3. 

 

Figure 3. A neuron with a single R-element input vector 

For each neuron i, the individual element inputs 𝑝1, … ,  𝑝𝑅  are multiplied by the 

corresponding weights 𝑤𝑖,1, … ,  𝑤𝑖,𝑅  and the weighted values are fed to the junction of the 

summation function, in which the dot product (𝑊 ∙ 𝑝) of the weight vector 𝑊 = [𝑤𝑖,1, … , 𝑤𝑖,𝑅] 

and the input vector 𝑝 = [𝑝1, … ,  𝑝𝑅]𝑇 is generated. The threshold b (bias) is added to the dot-

product forming the net input 𝑛, which is the argument of the transfer function ƒ: 

𝑛 = 𝑊 ∙ 𝑝 = 𝑤𝑖,1𝑝1 + 𝑤𝑖,2𝑝2 + …+ 𝑤𝑖,𝑅𝑝𝑅 + 𝑏 (29) 

The choice of the transfer (or activation) function ƒ may significantly influence the complexity 

and performance of ANN. Although sigmoidal transfer functions are the most commonly used, 
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different types of functions are available. For example, Bartlett (1998) and Karlik and Olgac 

(2011) proposed a significant number of alternative transfer functions. In the present study, the 

Logistic Sigmoid and the Hyperbolic Tangent transfer functions were assumed to be more 

suitable for the specific research topic investigated. During the training phase, the training data 

are fed into the network which tries to create a mapping between the input and the output values. 

This mapping is achieved by adjusting the weights in order to minimize the following error 

function: 

𝐸 = ∑(𝑥𝑖 − 𝑦𝑖)
2 (30) 

 

where 𝑥𝑖 and 𝑦𝑖 are the measured value and the prediction of the network, respectively, within 

an optimization framework. 

In this research, an in-depth investigation was carried out based on (i) a plethora of different 

architectures and (ii) ten different activation functions which will be presented and discussed in 

depth in a next section. This resulted in 100 (1010) different combinations being applied during 

the training and development process of the BPNNs. 

 

3.1.2 Genetic Programming 

The underlying principle of genetic programming (GP) techniques is associated with the 

natural selection and genetic recombination theory (Darwin 1859). In the context of soft 

computing techniques, the individuals in the population are assumed to be computer programs 

(Koza 1992). Genetic programming techniques operate by randomly generating a population of 

computer programs (Ramesh et al. 2020). Mutation, crossover, and reproduction take place 

during computation. Generation by GP iteratively transforms populations of programs into other 

populations of programs (Hajihassani et al. 2019). 

In this soft computing technique, a random population of each individual (i.e. computer 
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programs) is generated to reach high multiplicity. A member is formed hierarchically by trial and 

error optimization of several functions. These functions are selected randomly by one or a set of 

functions such as for example Boolean logic functions (OR, NOT, AND, etc.), arithmetic 

operations (sum, divide, multiplication, substation, etc.) and trigonometric functions (sin, cos, 

tanh, etc.). All these functions operate on genetic concept such as reproduction, recombination 

(crossover) and mutation. Reproduction is carried out by copying an individual without affecting 

it. Recombination is carried out by changing genes between two individuals and mutation is 

carried out by exchanging part of randomly selected genes.  

The terminating criteria used for genetic programming models are maximum population size, 

maximum number of generations, maximum tournament size, elite fraction, maximum number of 

genes, maximum tree depth and fitness value. Details of these criteria are discussed below in the 

results and discussion section. However, each criterion should be optimized carefully to deal with 

the local optima and global optima issues. 

 

3.2 Gathering the Experimental Database 

An adequate database should consist of reliable data, as well as of a sufficient quantity of data, 

covering the full range of parameter values, with regard to the parameters that influence the 

problem under investigation. According to Holický et al. (2016), a database is a compilation of 

various test sets, which should include all relevant parameter values, as well as all the information 

to allow assessing the quality and tolerances of the results. The following principles apply for 

establishing a test database, to define ranges of design parameters: (1) suitable identification of 

the measured strength, (2) correspondence between the test result and the failure mode as per the 

theoretical model, and (3) ability of the model to differentiate between various sub-divisions of a 

failure mode. 

The demand for a reliable database is particularly crucial in databases compiled using 
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experimental results, in which high variations between experimental values are frequently 

observed, not only between experiments conducted by different scientists, but also between 

datasets derived from "identical" specimens, constructed by the same masons, cured under the 

same conditions and tested implementing the same standards and testing setup.  

In light of the above, a large database has been composed within the present study. In 

particular, for the construction of the database used herein, 401 experimental datasets were 

employed from fifty-eight well known and reliable published experimental works, available in 

the literature (Table 3). All datasets used are based on specimens that have been prepared and 

tested in accordance with international standards. The parameters included in this database were: 

the mean value of the compressive strength of the masonry unit fbc [in MPa], the mean value of 

the compressive strength of the mortar at the age of testing fmc [in MPa], the slenderness of the 

masonry specimen expressed by the height-to-width of the specimen ratio, and the thickness of 

the mortar expressed by joint-to-height of the masonry unit ratio. 

In the framework of the principles described above, for the preparation process of the 

database, masonry prisms and walls were considered. The specimens (each having from 2 up to 8 

rows) were constructed by masonry units that were connected with thin or medium-thickness or 

thick joint mortar layer. The compositions of the mortars found in the literature were mainly 

cement based (with or without the addition of lime or soil). It was decided to include only 

experimental results related to specimens with mortar joints up to 20 mm. Several types of 

masonry units were found in the literature and the relevant test results were included in the 

database; namely, clay bricks, adobes, concrete blocks, compressed earth blocks, cement 

stabilized compressed earth blocks, calcium silicate bricks, several types of natural stones etc. 

The majority of the masonry units were either solid or units belonging to Group 1 (low volume of 

perforations) or 2 (moderate volume of perforations) according to Eurocode 6, 2005 (EN 1996-1-

1). 
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It should be emphasized though that in case of hollow units filled with grout, only the results 

of grout having compressive strength similar with that of the units were included in the database. 

Furthermore, it is noted that the effect of the shape of the masonry unit used for the compression 

tests and, thus, the effect of the δ-factor (size effect) on the compressive strength of the unit, 

although included in the database, was not considered in the present investigation. For the 

maximum values of the compression strength of the masonry units and of the mortar, it was 

decided to adopt the limits from Eurocode 6, 2005 (EN 1996-1-1), namely fbc and fmc values up to 

75 MPa and 20 MPa, respectively. Moreover, it was decided that the compressive strength of the 

masonry units, as well as the masonry prisms or wallettes in the database would be referred to the 

gross area of the specimens. 

It should be stated that each dataset corresponds to a particular combination of different 

parameters. If several individual tests were performed for a given combination of parameters, 

then the database includes the mean values of the parameters and the mean value of the 

compressive strength of the masonry specimen. In this case, it is observed that the coefficient of 

variation (CoV) is in some cases up to 27%.  Similar values of CoV were found for the 

compression test results of masonry prisms and wallettes having the same combination of 

parameters. It was decided to include the results of both specimens’ configuration in the database, 

for completeness reasons as well as for further investigation. In general, despite their extensive 

exploitation in the present work, the measurements in the database can be further employed in 

other directions for future analysis.  
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Table 3. Data from experiments published in literature 

Nr.  Reference 
Number of 

Samples 

Masonry Compressive 

Strength in MPa 
Type of Unit 

1 Thaickavil and Thomas 2018 48 0.73-2.80 CSEB, BCB 

2 Ravula and Subramaniam 2017 1 5.80 SCWB 

3 Singh and Munjal  2017 8 2.07-10.26 BCB, CoB 

4 Zhou et al. 2016 12 5.48-14.60 HCB 

5 Balasubramanian et al. 2015 1 2.82 B 

6 Vindhyashree et al. 2015 1 4.42 SCoB 

7 Lumantarna et al. 2014 12 6.19-30.79 VSCB 

8 Nagarajan et al. 2014 3 1.92-2.43 BCB 

9 Thamboo 2014 4 6.90-10.10 HCB 

10 Vimala et al. 2014 12 0.65-3.20 SMB 

11 Reddy and Vyas 2008 3 3.34-3.85 CEB 

12 Kaushik et al. 2007 8 2.90-7.20 CoB 

13 Gumaste et al. 2007 6 1.25-10.00 TMB 

14 Mohamad et al. 2007 6 7.54-11.70 WC 

15 Brencich and Gambarotta 2005 2 9.90-13.50 HCB 

16 Bakhteri and Sambasivam 2003 4 10.89-16.89 SClB 

17 Ip 1999 1 3.50 FS, B, OS 

18 Hossain et al. 1997 1 18.20 BCB 

19 Vermeltfoort 1994 29 3.90-26.90 WB, SMB, PMB, CSB 

20 McNary and Abrams 1985 2 19.70-27.00 SMP, MCU 

21 Francis et al. 1970 24 8.40-37.49 SB, EB 

22 Gumaste et al. 2007 6 1.18-12.60 TMB, WB 

23 N.C.M.A. 2012 26 6.98-16.46 HCB 

24 Drougkas et al. 2016 6 9.05-13.80 SClB 

25 Gayed et al. 2012 16 1.80-11.15 HCB 

26 Vyas and Reddy 2010 3 5.01-6.32 CCB 

27 Barbosa et al. 2010 3 10.00-12.00 HCB 

28 Thamboo and Dhanasekar 2019 20 1.22-7.27 ClB, CEB 
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29 Mohebkhah 2007 1 7.66 SClB 

30 Padalu et al. 2018 6 5.96-7.90 SClB 

31 Muñoz et al.  1 9.84 SClB 

32 Graus et al. 2019 1 22.90 GS 

33 Zavalis et al. 2018 11 11.57-15.86 HCSB 

34 Carvalho 2015 2 1.84-2.80 CEB 

35 Oliveira 2014 4 2.62-4.05 CEB 

36 Lourenço et al. 2013 1 5.37 PCoB 

37 Medeiros et al. 2013 1 2.80 PCoB 

38 Lourenço et al. 2010 1 5.26 PClB 

39 Haach et al. 2010 2 5.44-5.95 PCoB 

40 Vasconcelos and Lourenço 2009 1 37.00 GS 

41 Mauro A. 2008 2 5.98-7.54 SClB 

42 Mohamad 1998 8 7.54-11.70 HCB 

43 Raposo et al. 2018 1 2.40 HCB 

44 Cavaleri et al. 2012 3 7.42-9.05 HClB 

45 Cavaleri and Di Trapani 2014 3 2.53-4.20 C 

46 Cavaleri et al. 2014 1 1.74 HCL 

47 Bosiljkov V. 2000 3 6.93-15.38 ClB 

48 Gregoire 2007 4 1.57-11.03 CB, AC, AAC 

49 Mishra et al. 2019 38 1.09-6.07 SClB 

50 Furtado et al. 2016 7 0.45-0.97 HHClB 

51 Furtado et al. 2020 9 0.54-1.28 HHClB 

52 Shivaraj et al. 2014 1 4.21 HCoB 

53 Sandeep et al. 2013 1 4.49 HCoB 

54 Machado et al. 2019 9 4.35-12.04 CeU 

55 Mohamad et al. 2011 4 5.25-9.27 CoB 

56 Mohamad et al. 2007 1 8.24 CoB 

57 Radovanović et al. 2015 4 2.16-3.10 ClB, CoB 

58 Nwofor 2012  2 10.58-11.54 SBClB 

  Total 401 0.45-37.49   

CSEB: cement stabilized earth block SClB: solid clay brick PClB: perforated clay block 
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BCB: burnt clay brick 

SCWB: soft clay wire-cut brick 

CoB: concrete block  

HCB: hollow concrete block 

B: brick 

SCoB: solid concrete block 

VSCB: solid clay brick 

SMB: stabilized adobe brick 

CEB: compressed earth block 

TMB: table moulded brick 

WB: wire-cut brick 

FS: flagstone 

OS: Ohio stone 

MB: adobe brick 

CSB: calcium silicate block 

SMP: standard modular paver 

MCU: modular cored unit 

CCB: compressed cement block 

ClB: clay brick 

GS: granite stone 

HCSB: hollow calcium silicate block 

PCoB: perforated concrete block 

C: calcarenite 

HLC: hollow lightweight concrete 

ClB: clay brick 

AC: dense aggregate concrete 

ACC: autoclaved aerated concrete 

HHClB: horizontal hollow clay brick 

CeU: ceramic unit 

SBClB: solid burnt clay brick 
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For the development of the soft computing model, input training vectors p (input 

parameters) with dimensions (1×6) are used consisting of: the value of the masonry unit 

compressive strength 𝑓𝑏𝑐 , the mortar compressive strength 𝑓𝑚𝑐 , the masonry specimen 

height-to-thickness ratio ℎ𝑤 𝑡𝑤⁄ , the mortar joint thickness 𝑡𝑚, the masonry unit height 

𝑡𝑏 and the mortar joint thickness to masonry unit thickness ratio 𝑡𝑚 𝑡𝑏⁄ . The corresponding 

output training vector (output parameter) is of dimension (1 × 1) and consists of the value of 

the masonry compressive strength of walletes or prisms.  

 Table 4 presents the average, the minimum and the maximum values of the parameters 

included in the database, as well as the standard deviation (STD). It should be highlighted 

that some of the input variables may be dependent on each other. 

 

Table 4 The input and output parameters used in the development of soft computing models 

Nr.  Variable Symbol Unit Category 
Statistics 

Min Average Max STD 

1 

Masonry unit 

Compressive 

Strength 
𝑓𝑏𝑐 MPa Input 2.30 18.53 69.80 17.21 

2 
Mortar 

Compressive 

Strength 

𝑓𝑚𝑐 MPa Input 0.30 9.27 19.90 5.17 

3 
Masonry Prism 

height to 

thickness ratio 

ℎ𝑤 𝑡𝑤⁄  % Input 1.15 3.47 8.60 1.21 

4 Mortar thickness 𝑡𝑚 mm Input 0.51 11.24 20.00 3.02 

5 Brick Thickness 𝑡𝑏 mm Input 36.00 115.02 250.00 59.41 

6 
Mortar thickness 

to masonry unit 

thickness ratio 

𝑡𝑚 𝑡𝑏⁄  % Input 0.01 0.13 0.25 0.07 

7 
Masonry 

Compressive 

Strength 

𝑓𝑤𝑐 MPa Output 0.45 7.50 37.49 6.43 

 

Consequently, as shown in Figure 4, the correlation coefficients between all possible 

variables were estimated. High correlation coefficient values (negative or positive) between 
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the input may lead to poor efficiency of the computational models and difficulty in 

interpreting the effects of the variables on the response. It is observed that besides 𝑡𝑚 and 

(tm/tb) parameters, there is no significant correlation among the input parameters. On the 

contrary, the correlation coefficients between the input variables (parameters) and the output 

compressive strength parameter 𝑓𝑤𝑐, must be strong in order to establish an accurate, robust 

and optimum ANN model. As shown in Figure 4, a very strong correlation between the 

masonry compressive strength 𝑓𝑤𝑐 and the masonry unit compressive strength 𝑓𝑏𝑐 exists: 

the correlation factor is of the order of 78%. The other correlation factors with the masonry 

compressive strength are relatively low. 

  

Figure 4. Correlogram of the variables (Input and Output parameters) 

 

Furthermore, Figure 5 and Figure 6 depict the frequency histograms of the parameters 
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used for the modelling of masonry compressive strength. Significant insight can be gained 

from these figures, as potential ranges of the involved parameters, where the collected data 

are insufficient, become visually revealed. When sufficient data are available, covering a 

broad range of the parameter values, then the computational model can lead to a reliable 

prediction. On the contrary, when a certain range of an input parameter is not covered 

sufficiently or even lacks any data, the opposite usually occurs: the model does not have 

enough data to be trained successfully. In this context, the highlighted histogram areas where 

experimental data is lacking can provide the ground for future studies to investigate the 

aforementioned parameters, thus, not only leading to new experimental results, but also to 

enhancing the database. 

As shown in Figure 5 and Figure 6, only 15% of all the datasets in the reviewed literature 

feature masonry units with fbc values higher than 30 MPa. This can be attributed to the fact 

that medium and low strength masonry units are usually used for the construction of masonry 

buildings and thus, become more frequently a subject of investigation. Similarly, the vast 

majority (about 90%) of datasets represents specimens having ℎ𝑤 𝑡𝑤⁄  values between 2 and 

6, as these values are dictated by the relevant testing standards for masonry walls. Likewise, a 

very high percentage (about 95%) of datasets refers to specimens with tm values more than 

8.0 mm (about 95%). These tm values are usually used for the construction of loadbearing 

masonry. Overall, the database covers a wide range of input parameter values and is thus 

considered adequate for the development and training of the ANNs under investigation. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Histograms of parameters used for the prediction of masonry compressive strength 

for: (a) unit compressive strength, (b) mortar compressive strength, and (c) tm/tb ratio 
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(a) 

 

 

 
(b) 

 

 

 

 
(c) 

 

 

Figure 6. Histograms of parameters used for the prediction of masonry compressive strength 

for: (a) mortar thickness, (b) unit thickness, and (c) mortar to unit thickness ratio  
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3.3 Sensitivity analysis of the compressive strength based on experimental database 

In general, sensitivity analysis of a numerical model is a technique used to determine if the 

output of the model is affected by changes in the input parameters. This will provide 

feedback as to which input parameters are the most significant, and thus, by removing the 

insignificant ones, the input space will be reduced and subsequently the complexity of the 

model as well as the training times required will be also reduced. In order to identify the 

effects of model inputs on the output, a sensitivity analysis (SA) can be conducted on the 

database. To perform the SA, the cosine amplitude method (CAM) which was used by many 

researchers (Khandelwal et al. 2016, Momeni et al. 2015 and Armaghani et al. 2015) was 

selected and implemented. In CAM, data pairs will be used to construct a data array, X, as 

follows: 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖 , … , 𝑥𝑛} (31) 

 

Variable 𝑥𝑖 in array, X, is a length vector of m as: 

𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑚} (32) 

 

The relationship between 𝑅𝑖𝑗  (strength of the relation) and datasets of 𝑥𝑖  and 𝑥𝑗  is 

presented by the following equation: 

𝑅𝑖𝑗 =
∑ xikxjk

m
k=1

√∑ x2
ik ∑ x2

ik
m
k=1

m
k=1

 (33) 

 

The 𝑅𝑖𝑗 values between the compressive strength and the input parameters are shown in 

Figure 7. This analysis reveals that, among the parameters examined, the Unit compressive 

strength and the Mortar thickness have the greatest influence on compressive strength of 
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masonry walls, with strength values 0.90 and 0.74 respectively, followed by the Masonry 

prism height-to-thickness ratio, the Masonry unit thickness and the Mortar thickness-to-

masonry unit thickness ratio. The Mortar compressive strength has the lowest impact on the 

compressive strength of masonry wall. 

  

 

Figure 7. Sensitivity analysis of compressive strength on mechanical and geometrical mortar 

prism parameters based on experimental database 
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3.4 Performance Indices 

Three different statistical parameters were employed to evaluate the performance of the 

derived model as well as first order linear equations available in the literature, including the 

root mean square error (RMSE), the mean absolute percentage error (MAPE), and the 

coefficient of determination (R2). Lower RMSE and MAPE values represent more accurate 

prediction results (a null value indicates a perfect fit), while higher R2 values represent a 

better fit between the analytical and predicted values (a zero indicates no fit and a unit value 

indicates a perfect fit). The aforementioned statistical parameters have been calculated using 

the following expressions (Alavi and Gandomi 2012): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (34) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑥𝑖 − 𝑦𝑖

𝑥𝑖
|

𝑛

𝑖=1

 (35) 

𝑅2 = 1 − (
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

) (36) 

where, 𝑛 denotes the total number of datasets, and 𝑥𝑖 and 𝑦𝑖 represent the predicted and 

target values, respectively. 

The reliability and accuracy of the developed neural networks were evaluated using R2 and 

RMSE. RMSE presents information on the short-term efficiency which is a benchmark of the 

difference of predicated values in relation to the experimental values. The R2 measures the 

variance that is interpreted by the model, which is the reduction of variance when using the 

model. It should be highlighted that, amongst the statistical indexes available, the majority of 

researchers use the R2, in order to evaluate the effectiveness of the developed computation 

model. The R2 is a measure of the linear correlation between two variables X and Y. For 
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forecasting models, such as AI models, X and Y represent the predicted and target values, 

respectively. According to the Cauchy–Schwarz inequality (Wu and Wu 2009), the coefficient 

R has a value between +1 and −1. The further away R is from zero, the stronger the linear 

relationship is between the two variables. The sign of R corresponds to the direction of the 

relationship. If R is positive, then as one variable increases, the other tends to also increase. If 

R is negative, then as one variable increases, the other tends to decrease. A perfect linear 

relationship (R = –1 or R =+1) means that one of the variables can be perfectly explained by 

a linear function of the other. As aforementioned, the reliability of a model’s forecasting 

ability increases as the R2 value approached the unit value. 

When two forecasting models present different R values, as well as different slope values, 

comparison between the models is impossible. The same applies (even more so), when 

evaluating neural networks developed through different architectures. Therefore, the a20-

index, has been recently proposed (Apostolopoulou et al. 2019, Asteris and Mokos 2019 and 

Armaghani and Asteris 2020) for the reliability assessment of the developed soft computing 

techniques:  

a20‒ index =
m20

M
 (37) 

where, M is the number of dataset sample and m20 is the number of samples with a value of 

(experimental value)/(predicted value) ratio, between 0.80 and 1.20. It should be stated that 

the adoption of the a20-index according to the range within ±20% is justified by the high 

values of the coefficient of variation observed in the results of compression tests of given 

masonry specimens. Note that for a perfect predictive model, the values of a20-index values 

are expected to be the unit value. The proposed a20-index has the advantage of a physical 

engineering meaning, as it declares the amount of the samples that satisfy the predicted 

values with a deviation of ±20%, compared to experimental values. 
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3.5 Methodology 

In order to evaluate and find the optimal computational model for the prediction of the 

compressive masonry strength a number of individual steps were followed, as explained in detail 

hereafter: 

Step 1. In the first step of the proposed methodology, a selection of the parameters that lead 

more successfully to the modelling of masonry compressive strength will be 

searched for. Specifically, a combination of the six input parameters (masonry unit 

compressive strength, mortar compressive strength, prism height to thickness ratio, 

mortar thickness, brick thickness, mortar to masonry unit thickness ratio) will be 

searched for, that leads to the more accurate estimation of the masonry compressive 

strength. For every possible combination of the six input parameters, a great 

number of ANNs will be created and trained, and the optimal will be selected as the 

one offering the best prediction. 

Step 2. The selection of the optimal combination of parameters from the last step, 

determines the optimal ANN for the prediction of the masonry compressive 

strength. Based on its architecture and its final weight and bias values, an 

analytical expression can be formulated that describes the functionality of the 

ANN completely, and predicts the masonry compressive strength. The 

derivation of this analytical expression is particularly useful since it facilitates 

the implementation of the proposed model in software, without prior knowledge 

of the ANN technique. 

Step 3. The parameters related with the selected optimal ANN, are also used as input 

parameters for the derivation of the optimal analytical expression, based on 

genetic programming, as described in a previous section.  
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Step 4. In this step, the optimal mathematical models are evaluated in terms of 

performance indices as well as regarding their numerical stability, particularly 

against overfitting. The best model is selected and semi-empirical expressions 

available in the literature, described previously, are also evaluated. 

Step 5. In the last step, the proposed optimal model is employed for the prediction of the 

masonry compressive strength, parametrically investigating the influence of its 

relevant geometrical and mechanical properties and also producing relevant 2D 

and 3D maps/diagrams. 

 

4. Results and Discussion 

 

4.1 ANN models 

4.1.1 Development and training  

Different architecture ANNs were developed and trained, according to the following steps 

and parameters (summarized in Table 5): 

 The 401 datasets comprising the database used for the training and development of 

the ANN models were divided into three separate sets. Specifically, 268 of 401 

(66.8%) datasets were designated as Training datasets, 66 (16.5%) as Validation 

datasets, while 67 (16.7%) datasets were used as Testing datasets. 

 During the training phase of the ANNs, the above datasets were used with and 

without normalization. In the case were normalization of the data was conducted, 

the minmax normalization technique in the range [0.10, 0.90] was implemented. 

 The Levenberg–Marquardt algorithm (Lourakis 2005) was used for the training of 

the ANNs. 

 10 different initial values of weights and biases were applied for each architecture 

using the Matlab rand function. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 ANNs with only one hidden layer were developed and trained. 

 The Number of Neurons per Hidden Layer ranged from 1 to 20, with an increment 

step of 1. 

 Two functions, the Mean Square Error (MSE) and Sum Square Error (SSE) 

functions, were used as cost function, during the training and validation process. 

 10 functions, as presented in Table 5, were used as transfer or activation functions. 

Model uncertainty may also influence the prediction of the structural resistance (e.g. 

Holický et al. 2016). Data-driven models are affected by epistemic and aleatoric uncertainties, 

the first ones due to limited data and knowledge on the modelled response, while the aleatoric 

uncertainties are related to a natural variability of the data concerning the input parameters. In 

this work, both types of uncertainties are implicitly considered in the processes for 

developing the proposed models while handling data, whereas a deeper study on this topic is 

beyond the scope of the present work. 

In the present work, there is a series of datasets which was just used for testing the ANNs. 

These data could be used in some way to assess the model uncertainty. Note, however, that 

conventional approaches for uncertainty modelling, like Gaussian processes, are hardly 

scalable with larger data and lack the computational complexity of ANNs. A dropout 

approach would be possible, as it is applied at both training and test time. In this case, at test 

stage, the data is processed through the network several times, with different parameters 

being dropped at each run. Then, the outputs can be averaged over the several runs to output 

the probability, P(Y|X), as well as the mean and CoV values of model uncertainty can be 

computed (e.g. Gal and Ghahramani 2016).
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Table 5 Training parameters of ANN models 

Parameter Value Matlab function 

Training Algorithm Levenberg-Marquardt Algorithm trainlm 

Normalization Minmax in the range 0.10 – 0.90 mapminmax 

Number of Hidden Layers 1  

Number of Neurons per Hidden Layer 1 to 20 by step 1  

Control random number generation 10 different random generation 
rand(seed, generator), where generator 

range from 1 to 10 by step 1 

Training Goal 0  

Epochs 250  

Cost Function 
Mean Square Error (MSE) 

Sum Square Error (SSE) 

mse 

sse 

Transfer Functions 

 

Hyperbolic Tangent Sigmoid transfer function (HTS) 

Log-sigmoid transfer function (LS) 

Linear transfer function (Li) 

Positive linear transfer function (PLi) 

Symmetric saturating linear transfer function (SSL) 

Soft max transfer function (SM) 

Competitive transfer function (Co) 

Triangular basis transfer function (TB) 

Radial basis transfer function (RB) 

Normalized radial basis transfer function (NRB) 

 

tansig 

logsig  

purelin 

poslin 

satlins 

softmax 

compet 

tribas 

radbas 

radbasn 
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4.1.2 Optimum input parameters and model 

In order to select the optimal combination of input parameters that results in a better 

prediction of the masonry compressive strength, according to the proposed methodology, four 

separate combinations of the geometrical and mechanical parameters, related to the prism, 

were examined, as shown in Table 6 The first combination (case I) takes into account only 

two input parameters, the masonry unit compressive strength 
𝑏𝑐

 and the mortar 

compressive strength 
𝑚𝑐

. The second one (case II) considers three input parameters, the 

masonry unit compressive strength 
𝑏

, the mortar compressive strength 
𝑚𝑐

 and the 

masonry prism height-to-thickness ratio h𝑤 t𝑤⁄ . For the third combination (case III), also 

three input parameters are considered, the masonry unit compressive strength 
𝑏𝑐

, the mortar 

compressive strength 
𝑚𝑐

 and the mortar thickness to masonry unit thickness ratio 𝑡𝑚 t𝑏⁄ , 

while the fourth combination (case IV) considers all four input parameters for the 

development and training of ANN models. 

Table 6 Cases of ANN architectures based on the number of used input parameters 

Case 

Number of 

Input 

Parameters 

Input Parameters 


𝑏𝑐

 
𝑚𝑐

 h𝑤 t𝑤⁄  𝑡𝑚 t𝑏⁄  

I 2     

II 3     

III 3     

IV 4     

 

For the presented parameters in Table 5 the development and training of 60.000 different 

architectures of ANN models was undertaken, for each one of the four different cases. It is 

worth to mention that the use of 10 different transfer functions alone, results in 100 different 

ANNs, for each architecture with the same number of neurons, as a result of the 100 (=102) 

different dual combinations of the 10 different transfer functions. The developed 60.000 
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ANNs for each one of the four cases were ranked based on the value of the RMSE 

performance index, for the Testing Datasets. The top 20 architectures are presented in Table 

A.1 to Table A.4 in Appendix A, while the optimum architecture of each one case is presented 

in Table 7. Among them, the optimum ANN model, based on the value of RMSE of Testing 

Datasets, is the BPNN 3-17-1 model that corresponds to the third case in Table 6, with three 

input parameters, the masonry unit compressive strength 
𝑏𝑐

, the mortar compressive 

strength 
𝑚𝑐

 and the mortar thickness to masonry unit thickness ratio 𝑡𝑚 t𝑏⁄ . Specifically, 

the optimum BPNN 3-17-1 model (Figure 8) corresponds to a structure with three input 

parameters, 17 neurons and with use of normalization technique. 

Based on the results presented in the Table 7, the following key findings are revealed, 

regarding the transfer functions of the hidden layer for all the optimum architectures. The 

most appropriate transfer functions for the hidden layer were the Normalized radial basis 

transfer function (NRB), the Radial basis transfer function (RB), the Triangular basis transfer 

function (TB) and the Symmetric saturating linear transfer function (SSL). All these transfer 

functions were rarely used by most of researchers for the development of ANN models. On 

the contrary, a common practice among the majority of researchers is to use the Hyperbolic 

Tangent Sigmoid transfer function (HTS) and the Log-sigmoid transfer function (LS). 
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Table 7 Best ANN architectures for each one case based on RMSE performance index for Testing Datasets 

Case Architecture Normalization 
Cost 

Function 

Transfer Function 
Random 

Number 
Epochs 

Performance Indices 

Testing Datasets Training Datasets All Datasets 

Hidden 

Layer 

Output 

Layer 
R RMSE R RMSE R RMSE 

I 2-28-1 yes MSE NRB SSL 8 50 0.920 2.314 0.929 2.379 0.903 2.794 

II 3-12-1 no MSE TB SSL 7 27 0.937 1.960 0.883 3.043 0.891 2.931 

1II 3-17-1 yes MSE RB HTS 4 49 0.951 1.757 0.970 1.561 0.948 2.052 

1V 4-24-1 no MSE SSL HTS 2 12 0.949 1.818 0.950 2.019 0.946 2.091 

 

HTS : Hyperbolic Tangent Sigmoid transfer function; SSL : Symmetric saturating linear transfer function; NRB : Normalized radial basis 

transfer function; RB: Radial basis transfer function ; TB: Triangular basis transfer function 
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Figure 8. Architecture of the optimum BPNN 3-17-1 model
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Furthermore, in Table 8 , Figure 9 and Figure 10, a detailed presentation of the 

performance of the optimum ANN model if given, that includes the a20-index. At this point, 

it should be stated that the most representative models are those more commonly adopted in 

several regions, particularly in design codes. The formulas proposed in this study are 

intended to be universal unified models, regardless of the masonry materials. The formulas 

can be applied to cases with values of parameters falling in the ranges considered in the 

database used to adjust the models.  

Outliers are observed in Figure 9, which are in any case very limited. Outlying 

observations may be due either to the erraticism of the masonry materials or to the 

unconformity of experimental procedures. Different failure modes of similar specimens, for 

instance, due to defects in the masonry samples or to a nonconforming testing protocol, can 

lead to considerably different results, potentially resulting in outliers. 

A potential outlier is scrutinized, when observing large deviation of an experimental result 

against the corresponding predictions (e.g., in Figure 9), by performing a deep analysis of the 

experimental response (damage trend and stress-strain evolution) amongst similar specimens 

in the considered dataset, to detect the cause of the deviation and decide if the experimental 

record should be considered an outlier. 

The diagram in Figure 10 is aimed to assess (together with the performance indices) the 

reliability and the performance of the optimum BPNN model. It is verified that the developed 

optimum model is a reliable tool for the prediction of the masonry prism compressive 

strength, taking into consideration all 5 performance indices in Table 8. 

Table 8 Summary of prediction capability of the optimum 3-17-1 BPNN 

Model Datasets 

Performance Indices 

a20-index R RMSE MAPE VAF 

BPNN 3-

17-1 

Training 0.5709 0.9703 1.5609 0.2797 94.1382 

Testing 0.5373 0.9506 1.7572 0.3024 90.1892 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



All 0.5362 0.9479 2.0521 0.3017 89.8133 
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Figure 9. Experimental vs Predicted values of the masonry compressive strength for the 

optimum 3-17-1 BPNN model 
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Figure 10. Experimental vs Predicted values of the masonry compressive strength for the 

optimum 3-17-1 BPNN model 
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4.1.3 Proposed explicit equation 

In this section, a close form solution for the explicit equations to predict the masonry 

prism compressive strength is given, based on the optimal machine learning model presented. 

It is not convenient for engineers/researchers to use machine learning models in practice, 

because such a “black-box” model is composed of weights and bias, together with activation 

functions. Thus, explicit equations based on the developed machine learning model should be 

derived for a direct and efficient application. The proposed mathematic calculation for 

prediction of the masonry wall compressive strength 
𝑤𝑐

 in relation of the masonry unit 

compressive strength 
𝑏𝑐

, the mortar compressive strength 
𝑚𝑐

  and the mortar thickness to 

masonry unit thickness ratio 𝑡𝑚 t𝑏⁄  is given in a matrix form by: 

 


𝑤𝑐

= (
𝑤𝑐
𝑛 + 1) (

𝑚𝑎𝑥
𝑤𝑐

− 𝑚𝑖𝑛
𝑤𝑐

2
) + 𝑚𝑖𝑛

𝑤𝑐
 (38) 

 

where 
𝑤𝑐
𝑛

 is the normalized value of masonry compressive strength, defined by: 

 


𝑤𝑐
𝑛 = tansig([𝐿𝑊][radbas([𝐼𝑊] × [𝐼𝑃] + [𝑏𝑖])] + [𝑏0]) (39) 

 

where tansig is the Hyperbolic tangent sigmoid transfer function and radbas is the Radial 

basis transfer function, while [𝐼𝑊] is a 17×3 matrix containing weights of the hidden layer; 

[𝐿𝑊] is a 1×17 vector containing weights of the output layer; [𝐼𝑃] is a 3×1 vector of the 3 

Input Parameters, [𝑏𝑖] is a 17×1 vector containing the bias values of the hidden layer; and 

[𝑏0] is a 1×1 vector containing the bias values of the output layer. All these matrices are 

given in Appendix B. 
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4.2 Genetic Programming based Expression 

Based on the optimum combination of the parameters that mostly influence the value of 

the masonry prism compressive strength, an analytical closed form equation is investigated in 

this section. Specifically, using the Gene Expression Programming (GEP) method and the 

401 experimental datasets, an equation was obtained for the prediction of the masonry prism 

compressive strength 
𝑤𝑐

 as a function of the masonry unit compressive strength 
𝑏𝑐

, the 

mortar compressive strength 
𝑚𝑐

 and the mortar thickness to masonry unit thickness ratio 

𝑡𝑚 𝑡𝑏⁄ . To validate the modelling results, the available datasets were divided into two groups 

of training and validation/test datasets. Resulting from a trial and error method, two important 

features of the GEP configurations, namely the number of chromosomes and the number of 

genes were determined at 50 and 8, respectively. The relationships between the masonry 

compressive strength and the three input parameters, using GEP algorithm are implemented 

through MATLAB Code A.1, included in appendix. 

 

The performance indexes of the proposed equation for the prediction of the masonry prism 

compressive strength 
𝑤𝑐

 as a function of the masonry unit compressive strength 
𝑏𝑐

, the 

mortar compressive strength 
𝑚𝑐

 and the mortar thickness to masonry unit thickness ratio 

𝑡𝑚 t𝑏⁄ , are shown in Table 9. 

 

Table 9 Summary of prediction capability of the optimum GEP 

Model Datasets 

Performance Indices 

a20-index R RMSE MAPE VAF 

GEP 
Training 0.369 0.895 2.875 1.839 80.116 

Testing 0.313 0.896 2.491 0.556 79.854 
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All 0.362 0.887 2.952 1.361 78.646 
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4.3 Comparison of the developed models and proposals in the literature  

In Table 10, the statistical indices describing the performance of the two developed models 

and other proposals from the literature are reported. The models are sorted according to their 

a20-index. The proposed BPNN 6-7-1 model is ranked first among all models. Its 

performance is quite remarkable in terms of the a20-index, succeeding to predict the masonry 

compressive strength within a 20% margin of accuracy for a far greater number of specimens, 

compared to existing approaches. In fact, twice more specimens are well predicted by the 

BPNN 6-7-1 model, compared to the ACI 530.1-02/ASCE 6-02/TMS 602-02 and Eurocode 

6, 2005 codes, and most of the other models. The proposed BPNN 6-7-1 model also performs 

better in terms of all other performance indices. For the RMSE index, the improvement is 

almost 40% compared to the best performing approach from the literature, which is proved 

the one by Mann (1982), in terms of RMSE. Similarly, the BPNN 6-7-1 model achieves a 

correlation coefficient R much closer to unity compared to any other model. 

The alternative model developed in this paper, using the GEP apporach, is ranked second 

in terms of a20-index. Compared to Dymiotis & Gutlederer (2002) approach, which is the 

best performing model from the literature, in terms of a20-index, the GEP offers only a slight 

improvement. However, its performance is considerably better in terms of R coefficient and 

RMSE index, with a 30% reduction of RMSE compared to Dymiotis & Gutlederer (2002) 

and 25% from Mann (1982). Comparing the two developed models, the BPNN 6-7-1 and the 

GEP, the BPNN 6-7-1 scores a 71% increased a20-index and a 18% reduced RMSE 

compared to the GEP one. 

A closer evaluation of the developed models has been undertaken, directly comparing their 

predictions with a key selection of experimental results from the database. The results are 

diagrammatically depicted in Figure 11 and Figure 12. Specifically, a set of specimens from 
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the same source (National Concrete Masonry Association, 2012), featuring varying unit 

compressive strength, has been selected for the evaluation of the developed BPNN 6-7-1 and 

GEP models, along with the best two performing models from the literature (Dymiotis & 

Gutlederer, 2002 and Tassios, 1988). The two diagrams differ in terms of mortar compressive 

strength (9.1MPa for the first and 4.6MPa for the second), while the mortar thickness to 

masonry unit thickness ratio remains constant. Such a reduction of the problem to a 2D space 

is valuable for the visualization of the fitting performance of the models and the uncovering 

of protentional numerical problems such as over-fitting, a deficiency that is not manifested 

through the statistical performance indices. 

The general outlook from the two diagrams confirms that no overfitting occurs for either 

one of the two developed models, which present a smooth behaviour throughout the whole 

domain of the input values. The BPNN 6-7-1 model seems smoothly calibrated between the 

experimental values, while the GEP model seems to systematically underestimate the 

experimental value in the first diagram (i.e. for mortar compressive strength equal to 9.1MPa) 

and approximately averaging it in the second diagram (i.e. for mortar compressive strength 

equal to 4.6MPa). Both developed models present an improved overall fit to the experimental 

values, compared to the alternative models from the literature. 
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Table 10 Summary of prediction capability of the developed models against proposals in literature, based on a20-index and Testing Datasets 

Datasets Ranking Model Method 

Performance Indices 

a20-index R 
RMSE 

(MPa) 
MAPE VAF 

All 

1 BPNN 6-7-1 ANNs 0.536 0.948 2.052 0.302 89.813 

2 GEP GP 0.313 0.896 2.491 0.556 79.854 

3 Dymiotis & Gutlederer, 2002 RG 0.299 0.806 3.560 0.572 64.590 

4 Tassios, 1988 RG 0.284 0.803 3.388 0.455 63.887 

5 ACI 530.1-02/ASCE 6-02/TMS 602-02 RG 0.269 0.797 3.748 0.505 57.644 

6 MSJC 2013 RG 0.269 0.797 3.758 0.508 57.644 

7 Mann 1982 RG 0.254 0.803 3.345 0.427 64.303 

8 Eurocode 6, 2005 RG 0.254 0.781 3.576 0.514 60.798 

9 Bennett et al., 1997 RG 0.239 0.797 3.931 0.717 63.390 

10 Garzón-Roca et al., 2013 ANN 0.239 0.631 5.433 0.556 13.317 

RG: Regression Analysis 
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Figure 11. Comparison of developed models with experimental results and the three best 

proposals available in literature (mortar compressive strength equal to 9.1MPa) 

 

Figure 12. Comparison of developed models with experimental results and the three best 

proposals available in literature (mortar compressive strength equal to 4.6MPa) 
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4.4 Mapping of Masonry Compressive Strength 

In this section, a mapping of the parameters that influence the masonry compressive 

strength is undertaken. Specifically, the maps in Figure 13 have been created using the 

optimal BPNN 3-17-1 model. The three maps depict the contours of the masonry 

compressive strength as a function of the unit compressive strength and the mortar 

compressive strength, under three distinctive and equally spaced values of the mortar 

thickness to unit thickness ratio (0.05, 0.10 and 0.15). Based on these maps, the following 

points can be made: 

 The smoothness of the contours confirms that the proposed computational 

methodology does not suffer from overfitting, a commonly encountered 

problem during the development of ANN models. In case of overfitting, the 

model seems fitted quite close to the experimental data that are used for its 

training, however for slightly perturbated ranges of data the predictions 

become exceedingly worse, 

 the highly nonlinear impact of the mortar compressive strength, for values of 

mortar compressive strength over 5 MPa, is indicated, as well as the nonlinear 

effect of the unit compressive strength for mortar strength values between 4.0 

and 8.0 MPa, 

 the mortar thickness to unit thickness ratio, whereas it is currently ignored in 

established approaches, it seems to significantly affect the masonry 

compressive strength, 

 the proposed ANN is valuable not only for the reliable prediction of the 

masonry compressive strength, but also as a tool that demonstrates the way 

input parameters affect it. Thus, the proposed ANN can be a rather useful 

learning tool that reinforces the teaching of masonry mechanics. 
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However, a word of caution is needed regarding the applicability of ANN techniques. 

Before general conclusions can be made, a very broad experimental investigation is required 

in order to validate the ANN model predictions, particularly for these regions of the input 

parameters that lack a sufficient number of specimens. Such an investigation is indeed 

performed to the present work, yet for the range of parameters for which data is available. 
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Figure 13. Mapping of the masonry compressive strength for the optimum 3-17-1 BPNN 

model 
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5. Conclusions 

In the present paper, an artificial neural network was developed based on six parameters 

that influence the compressive strength of single-leaf masonry walls. A database of 

experimental specimens was compiled and used for the training and validation of the model.  

From the results of sensitivity analysis, a very strong correlation is indicated between the 

masonry compressive strength and the masonry unit compressive strength, which is the most 

important influencing parameter. In addition to this parameter, the mortar thickness has the 

greatest influence on compressive strength of masonry walls, followed by the masonry prism 

height to mortar thickness ratio, the masonry unit height, and the mortar thickness to masonry 

unit height ratio. The mortar compressive strength has the lowest impact on the compressive 

strength of a masonry wall. 

The obtained soft-computing models provide much better results than the expressions 

from literature. In particular, the ANN model provides a R for all dataset of 0.948, which 

compares to a best value of 0.806 for the literature expressions. Moreover, the proposed 

model predicts the masonry compressive strength within a 20% margin of accuracy, for more 

than half of the tests, which is almost twice the value from the literature expressions. 

It should be stated that the proposed computational tool can become more accurate if more 

data are made available. Based on the data currently available, histograms have been obtained 

and revealed that the ANN model is more accurate for the whole range of mortar joint 

thickness to the masonry unit height ratio and for: (a) masonry units with compressive 

strength lower than 15 MPa, (b) mortars with compressive strength lower than 15 MPa, (c) 

masonry prism height-to-thickness ratio between 2 and 6, (d) mortar joint thickness between 

8mm and 12mm and (e) masonry unit height between 50mm and 100mm, and 150mm and 

200mm. It is therefore recommended that more data should be included in the database in 
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order to cover the full range of parameters considered in this investigation. Future systematic 

experimental studies should be carried out, particularly to cover the range of missing data, 

leading to new experimental results and the enhancement of the database. Such new results 

can be used to further train the ANN model, so that it is applicable to the entire range of 

parameters. 

The approach here can also be applied to particular datasets with given ranges of material 

properties, through clustering or segmentation of the data (e.g., records with a fmc 

significantly lower than the fbc and/or with the highest tm/tb ratios, since in this case the mortar 

is the weakest and more significant portion of the masonry). The application, fine-tuning and 

evaluation of the approach in such cases is an interesting topic for future work. Likewise, the 

proposed approach can also be applied to the case of single leaf masonry walls in historical 

buildings, after making proper adjustments to fit the available experimental data and include 

the relevant input parameters. 
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Appendix A 

Table A.1. Top 20 best architectures for the Case I of input parameters for modelling the masonry compressive strength based on 

RMSE and Testing Datasets 

Ranking Architecture Normalization 
Cost 

Function 

Transfer Function 
Random 

Number 
Epochs 

Performance Indices 

Testing Datasets Training Datasets All Datasets 

Hidden 

Layer 

Output 

Layer 
R RMSE R RMSE R RMSE 

1 2-28-1 yes MSE radbasn satlins 8 50 0.9197 2.3142 0.9294 2.3786 0.9025 2.7937 

2 2-6-1 no SSE logsig tansig 3 39 0.9089 2.3475 0.8542 3.3514 0.8561 3.3199 

3 2-9-1 no MSE radbas purelin 2 33 0.9110 2.3663 0.8907 2.9300 0.8968 2.8406 

4 2-8-1 yes SSE radbas tansig 1 49 0.9066 2.3674 0.8640 3.2471 0.8683 3.1852 

5 2-4-1 no MSE logsig tansig 2 50 0.9062 2.3743 0.8509 3.3864 0.8577 3.3035 

6 2-16-1 no MSE radbas tansig 3 39 0.9185 2.3758 0.9011 2.7973 0.9043 2.7420 

7 2-4-1 yes SSE logsig tansig 7 49 0.9050 2.3872 0.8484 3.4133 0.8559 3.3227 

8 2-7-1 yes MSE logsig satlins 3 49 0.9054 2.4032 0.8645 3.2423 0.8685 3.1823 

9 2-4-1 no MSE logsig tansig 7 39 0.9031 2.4091 0.8479 3.4177 0.8553 3.3286 

10 2-26-1 yes SSE radbas tansig 8 49 0.9218 2.4111 0.9362 2.2654 0.9135 2.6215 

11 2-6-1 no MSE radbasn purelin 4 39 0.9029 2.4150 0.8608 3.2815 0.8613 3.2626 

12 2-5-1 yes SSE tribas satlins 6 49 0.9031 2.4254 0.8500 3.3984 0.8502 3.3804 

13 2-3-1 yes SSE radbasn purelin 7 49 0.9008 2.4288 0.8419 3.4789 0.8447 3.4365 

14 2-3-1 yes MSE radbasn purelin 7 49 0.9007 2.4292 0.8419 3.4792 0.8447 3.4370 

15 2-24-1 no SSE radbas satlins 9 39 0.9052 2.4302 0.9161 2.5864 0.9129 2.6290 

16 2-8-1 yes MSE softmax tansig 4 49 0.9006 2.4337 0.8653 3.2314 0.8715 3.1493 

17 2-4-1 yes MSE radbasn satlins 5 49 0.9009 2.4372 0.8481 3.4162 0.8557 3.3232 

18 2-23-1 yes SSE tansig tansig 5 49 0.9054 2.4381 0.9250 2.4500 0.9186 2.5378 

19 2-20-1 yes SSE softmax tansig 2 49 0.9005 2.4396 0.8723 3.1519 0.8720 3.1426 

20 2-3-1 no SSE radbasn purelin 7 39 0.8997 2.4404 0.8420 3.4778 0.8446 3.4376 
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Table A 2. Top 20 best architectures for the Case II of input parameters for modelling the masonry compressive strength 

Rankin

g 
Architecture Normalization 

Cost 

Function 

Transfer Function 
Random 

Number 
Epochs 

Performance Indices 

Testing Datasets Training Datasets All Datasets 

Hidden L

ayer 

Output L

ayer 
R RMSE R RMSE R RMSE 

1 3-12-1 no MSE tribas satlins 7 27 0.9367 1.9598 0.8831 3.0433 0.8906 2.9314 

2 3-10-1 no SSE tribas satlins 10 27 0.9383 1.9760 0.8829 3.0274 0.8807 3.0427 

3 3-20-1 no MSE radbasn tansig 6 47 0.9405 2.0451 0.9324 2.3359 0.9068 2.7356 

4 3-19-1 no MSE tansig purelin 8 27 0.9318 2.0454 0.9013 2.7924 0.8897 2.9314 

5 3-11-1 no MSE tribas tansig 1 39 0.9335 2.0546 0.9100 2.6730 0.9061 2.7183 

6 3-9-1 no SSE poslin purelin 7 47 0.9301 2.0566 0.8924 2.9092 0.8936 2.8827 

7 3-12-1 no MSE satlins satlins 1 13 0.9312 2.0579 0.9018 2.7881 0.8994 2.8156 

8 3-27-1 yes MSE satlins purelin 2 15 0.9304 2.0585 0.9035 2.7657 0.9036 2.7587 

9 3-24-1 no MSE poslin satlins 5 39 0.9307 2.0676 0.9198 2.5307 0.9170 2.5682 

10 3-10-1 no SSE logsig tansig 8 27 0.9298 2.0854 0.8936 2.8938 0.8942 2.8757 

11 3-5-1 no SSE radbasn satlins 7 27 0.9285 2.1036 0.8917 2.9183 0.8967 2.8509 

12 3-18-1 no MSE poslin purelin 2 39 0.9264 2.1127 0.8971 2.8486 0.8985 2.8195 

13 3-8-1 yes MSE radbas satlins 9 15 0.9291 2.1200 0.9003 2.8075 0.9029 2.7677 

14 3-6-1 no SSE radbasn satlins 6 47 0.9276 2.1233 0.8999 2.8114 0.8929 2.8928 

15 3-17-1 yes SSE poslin tansig 10 15 0.9251 2.1257 0.8985 2.8310 0.9018 2.7815 

16 3-22-1 no SSE radbasn tansig 2 39 0.9323 2.1288 0.9406 2.1887 0.9271 2.4106 

17 3-29-1 no MSE tribas tansig 1 39 0.9289 2.1365 0.9074 2.7156 0.9024 2.7771 

18 3-14-1 yes SSE radbasn purelin 3 15 0.9270 2.1415 0.9371 2.2510 0.9328 2.3168 

19 3-10-1 yes SSE satlins satlins 9 15 0.9237 2.1428 0.8853 2.9984 0.8858 2.9809 

20 3-14-1 no MSE radbas tansig 1 39 0.9248 2.1483 0.9123 2.6426 0.9002 2.7972 
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Table A.3. Top 20 best architectures for the Case III of input parameters for modelling the masonry compressive strength 

Ranking Architecture Normalization 
Cost 

Function 

Transfer Function 
Random 

Number 
Epochs 

Performance Indices 

Testing Datasets Training Datasets All Datasets 

Hidden 

Layer 

Output 

Layer 
R RMSE R RMSE R RMSE 

1 3-17-1 yes MSE radbas tansig 4 49 0.9506 1.7572 0.9703 1.5609 0.9479 2.0521 

2 3-28-1 yes SSE tribas satlins 8 12 0.9394 1.9953 0.9615 1.7856 0.9354 2.3081 

3 3-18-1 yes SSE tribas satlins 10 12 0.9335 2.0207 0.9498 2.0162 0.9394 2.2049 

4 3-27-1 no MSE softmax satlins 7 49 0.9325 2.0216 0.9164 2.5825 0.9170 2.5682 

5 3-26-1 yes SSE tribas purelin 2 6 0.9299 2.0577 0.9500 2.0144 0.9392 2.2043 

6 3-9-1 yes MSE satlins satlins 1 29 0.9306 2.0602 0.9100 2.6735 0.9082 2.6894 

7 3-24-1 no SSE poslin purelin 10 49 0.9297 2.0651 0.9119 2.6524 0.9149 2.5955 

8 3-28-1 yes SSE softmax purelin 3 6 0.9323 2.0715 0.9342 2.3002 0.9325 2.3189 

9 3-14-1 yes SSE poslin purelin 10 12 0.9291 2.0748 0.9055 2.7371 0.9074 2.6986 

10 3-13-1 yes SSE poslin tansig 9 12 0.9298 2.0759 0.8993 2.8204 0.9018 2.7808 

11 3-18-1 yes MSE softmax purelin 2 29 0.9341 2.0793 0.9317 2.3496 0.9315 2.3447 

12 3-13-1 no MSE tansig purelin 9 49 0.9284 2.0795 0.9245 2.4582 0.9225 2.4779 

13 3-13-1 yes SSE tribas purelin 5 6 0.9283 2.0858 0.9341 2.3012 0.9306 2.3550 

14 3-9-1 yes SSE radbasn satlins 5 6 0.9314 2.0884 0.9325 2.3283 0.9143 2.6085 

15 3-24-1 yes MSE tribas tansig 2 29 0.9319 2.0916 0.9425 2.2002 0.9210 2.5548 

16 3-16-1 no SSE satlins tansig 4 10 0.9281 2.0929 0.9269 2.4215 0.9250 2.4461 

17 3-30-1 no SSE satlins tansig 6 49 0.9273 2.0934 0.9437 2.1359 0.9392 2.2055 

18 3-18-1 no MSE poslin satlins 3 20 0.9275 2.0974 0.9425 2.1544 0.9368 2.2493 

19 3-9-1 yes SSE tribas satlins 7 6 0.9273 2.0979 0.8920 2.9330 0.8965 2.8607 

20 3-9-1 no MSE softmax purelin 8 49 0.9265 2.1121 0.9146 2.6114 0.9180 2.5506 
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Table A.4. Top 20 best architectures for the Case IV of input parameters for modelling the masonry compressive strength 

Ranking Architecture Normalization 
Cost 

Function 

Transfer Function 
Random 

Number 
Epochs 

Performance Indices 

Testing Datasets Training Datasets All Datasets 

Hidden 

Layer 

Output 

Layer 
R RMSE R RMSE R RMSE 

1 4-24-1 no MSE satlins tansig 2 12 0.9485 1.8183 0.9500 2.0193 0.9464 2.0910 

2 4-6-1 yes MSE satlins satlins 9 15 0.9457 1.8277 0.9287 2.3912 0.9313 2.3407 

3 4-8-1 no SSE tansig purelin 7 12 0.9441 1.8553 0.9385 2.2286 0.9341 2.2935 

4 4-9-1 yes SSE tribas purelin 2 10 0.9434 1.8625 0.9296 2.3794 0.9239 2.4591 

5 4-10-1 yes SSE logsig tansig 9 10 0.9464 1.8637 0.9261 2.4380 0.9269 2.4184 

6 4-21-1 yes SSE poslin satlins 7 10 0.9437 1.8665 0.9432 2.1491 0.9385 2.2301 

7 4-17-1 no MSE poslin tansig 3 12 0.9448 1.8711 0.9243 2.4833 0.9212 2.5190 

8 4-9-1 no SSE satlins tansig 2 12 0.9423 1.8806 0.9356 2.2784 0.9340 2.2948 

9 4-23-1 no MSE softmax tansig 5 12 0.9422 1.8864 0.9307 2.3656 0.9290 2.3818 

10 4-20-1 yes MSE satlins satlins 6 10 0.9417 1.8964 0.9560 1.8907 0.9466 2.0733 

11 4-7-1 yes MSE tribas tansig 10 15 0.9422 1.9007 0.9283 2.4020 0.9299 2.3726 

12 4-10-1 no MSE tansig tansig 9 12 0.9407 1.9019 0.9465 2.0798 0.9396 2.2007 

13 4-7-1 yes MSE poslin satlins 7 10 0.9413 1.9121 0.9158 2.5887 0.9187 2.5353 

14 4-4-1 no SSE radbas tansig 8 12 0.9415 1.9149 0.9133 2.6271 0.9164 2.5725 

15 4-16-1 no SSE satlins satlins 8 12 0.9419 1.9151 0.9313 2.3508 0.9338 2.3062 

16 4-17-1 no MSE tansig tansig 8 12 0.9397 1.9238 0.9293 2.3882 0.9305 2.3551 

17 4-18-1 yes SSE poslin satlins 4 10 0.9390 1.9259 0.9378 2.2388 0.9357 2.2697 

18 4-5-1 yes MSE radbas satlins 9 15 0.9386 1.9339 0.9326 2.3293 0.9315 2.3397 

19 4-12-1 yes MSE tribas satlins 8 10 0.9384 1.9381 0.9248 2.4560 0.9294 2.3718 

20 4-23-1 yes MSE poslin satlins 5 10 0.9389 1.9383 0.9451 2.1079 0.9417 2.1654 
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Code A.1 MATLAB code for estimation of the masonry wall compressive strength based on GEP model 

clear; clc; 

% Input 

d(1) = input('Enter the value of the Masonry Unit Compressive Strength 

(MPa)  :'); 

d(2) = input('Enter the value of the Mortar Compressive Strength 

(MPa)  :'); 

d(3) = input('Enter the value of the Mortar thickness to Masonry unit 

thickness ratio  :'); 

 

% Computing of the value of Masonry Prism Compressive Strength  

 

G1C2 = -3.69857375928129;   G1C3 = -4.45177027159265e-02; 

G2C9 = -15.8343505505162;   G2C6 = -4.89207688284471; 

G2C0 = 3.03812680741293;    G3C8 = 9.56580756727409; 

G3C6 = 26.314588309691;     G4C6 = 0.385461839301458; 

G4C2 = 10.5638768473138;    G5C1 = -4.64339121677297; 

G5C6 = 18.8783164760921; 

 

y = (G1C2-(G1C3*(gep3Rt(((d(2)^2)-d(1)))*gep3Rt((d(1)^2)))))+ 

     gep3Rt((G2C9+(G2C6-((1.0/((((d(2)*d(2))-G2C0)^2)))^2))))+ 

     ((gep3Rt(((d(1)+d(1))/d(3)))+d(3))-(1.0/(((d(2)-  

     G3C8)*gep3Rt(G3C6)))))+ gep3Rt((d(3)/((d(3)+((G4C2- 

     d(2))/d(1)))*gep3Rt((G4C6/d(1))))))+ gep3Rt((((d(1)- 

     ((d(1)-G5C6)*d(3)))^2)+(1.0/(((G5C1+d(2))^2))))); 

 

% Results 

 

X = [' The value of masonry compressive strength is :',num2str(y)]; 

disp(X); 

 

function result = gep3Rt(x) 

if (x < 0.0), 

    result = -((-x)^(1.0/3.0)); 

else 

    result = x^(1.0/3.0); 

 end 
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Appendix B 

 

In the following formulas, the obtained matrices that are required in the mathematical 

expression of the optimum ANN model, given by Equation 39, are presented.  

Specifically, [𝐼𝑊] is given as: 

 

[𝐼𝑊] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−5.3910 1.5310 −5.6512
9.3528 −18.4219 −6.0231

2.0582 14.0461 2.9575
5.1694 10.0439 12.7909

−18.5102 16.7774 6.0558
0.3807 −3.0667 0.7209
13.3363 0.0954 8.0548

−7.3981 −1.7045 −18.4896
−4.2164 4.8989 −4.1091
−3.2744 13.8312 13.8448
−1.2817 4.0998 −12.3361
−0.6244 3.2565 −1.0145

−9.7726 −34.8139 −14.8376
5.7715 −8.4101 −16.3449
−0.9708 −0.6121 0.4154
3.2055 −0.6710 7.6088
−4.4868 0.2041 0.4323 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (40) 

 

while [𝐿𝑊], [𝑏𝑖] and [𝑏0] are given by: 
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[𝐿𝑊]𝑇 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1.5677
0.0227

−0.3286
−0.5525
−0.9092
−2.0052
1.0294
0.6070
0.4631

−0.2270
−0.6366
0.3000

−0.1892
0.3112
1.3308
0.3252

−1.9442]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  [𝑏𝑖] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−13.3026
9.8899

−6.7016
−13.1773
6.1248
5.0079

−5.4187
4.6020

−0.2131
−5.0976
0.0174
0.1619

−3.9587
9.2426
0.8441
4.4998

−4.9953 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [𝑏0] = [−1.0581] (41) 

 

The [𝐼𝑃] vector of the Input Parameters is given by 

 

[𝐼𝑃] =

[
 
 
 
 
 
 2


𝑏𝑐

− 𝑚𝑖𝑛
𝑏𝑐

𝑚𝑎𝑥
𝑏𝑐

− 𝑚𝑖𝑛
𝑏𝑐

− 1

2


𝑚𝑐
− 𝑚𝑖𝑛

𝑚𝑐

𝑚𝑎𝑥
𝑚𝑐

− 𝑚𝑖𝑛
𝑚𝑐

− 1

2
𝑡𝑚 t𝑏⁄ − 𝑚𝑖𝑛(𝑡𝑚 t𝑏⁄ )

𝑚𝑎𝑥(𝑡𝑚 t𝑏⁄ ) − 𝑚𝑖𝑛(𝑡𝑚 t𝑏⁄ )
− 1

]
 
 
 
 
 
 

 (42) 

 

where the min and max values of 
𝑤𝑐

, 
𝑏𝑐

, 
𝑚𝑐

  and 𝑡𝑚 t𝑏⁄  are given in Table 4. 
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