RECENT TRENDS IN BIOFILM SCIENCE AND TECHNOLOGY

Edited by
Manuel Simões
Anabela Borges
Lúcia Chaves Simões
Recent Trends in Biofilm Science and Technology
This page intentionally left blank
Contents

Contributors xiii
Preface xvii
Acknowledgments xix

1. Biofilm formation and resistance
 Astrid Gędas and Magdalena A. Olszewska
 1.1 Biofilm mode of growth 1
 1.2 Biofilm formation is a multistep process 3
 1.3 Biofilm-specific resistance to antimicrobials 9
 1.4 Conclusions 14
 Acknowledgments 15
 References 15

2. Nuclear magnetic resonance to study bacterial biofilms structure, formation, and resilience
 Ana Cristina Abreu and Ignacio Fernández
 2.1 Introduction 23
 2.2 Biofilm formation and structure 25
 2.3 The composition of extracellular polymeric substances and how it affects biofilm architecture 28
 2.4 Applications of nuclear magnetic resonance spectroscopy to study biofilms 31
 2.4.1 Several analytical techniques to study and characterize soluble parts of biofilms 33
 2.4.2 Solid-state nuclear magnetic resonance to determine the insoluble constituents of biofilms 36
 2.4.3 Imaging techniques to define biofilm structures and dynamics 37
 2.4.4 Explore diffusion and mass transport within a biofilm 40
 2.4.5 Diffusion-ordered nuclear magnetic resonance spectroscopy applications to determine molecular size 45
2.5 Nuclear magnetic resonance—based metabolomics approach to study biofilms

2.5.1 Designing a metabolomics experiment

2.5.2 Multivariate data analysis in metabolomics

2.5.3 Recent advances on nuclear magnetic resonance—based metabolomics applied to biofilms

2.6 Conclusion

References

3. Design and fabrication of biofilm reactors

D.M. Goeres, S. Pedersen, B. Warwood, D.K. Walker, A.E. Parker, M. Mettler and P. Sturman

3.1 Definition of a biofilm reactor

3.2 Design process

3.3 Implementing the design process: industrial surfaces biofilm reactor

3.3.1 Step 1. Identify the list of key attributes for the biofilm reactor

3.3.2 Step 2. Using the list of attributes identified in step 1, design a reactor and build a prototype

3.3.3 Step 3. Laboratory validation and design optimization

3.3.4 Step 4. Repeatability testing of the final design

3.3.5 Step 5. Incorporate a manufacturing approach to ready the reactor for commercialization

3.4 Conclusions

Acknowledgments

References

4. Oral biofilms

Marta Ribeiro and Manuel Simões

4.1 Defining the problematic: an introduction

4.2 The oral cavity and its microbiota

4.3 Dental plaque

4.4 Disease-associated oral biofilms

4.4.1 Dental caries

4.4.2 Periodontitis

4.4.3 Periimplantitis

4.5 Non-oral infections associated with oral bacteria

4.6 Conclusions

Acknowledgments

References
5. The role of filamentous fungi in drinking water biofilm formation
Ana F.A. Chaves, Lúcia Chaves Simões, Russell Paterson, Manuel Simões and Nelson Lima

5.1 Drinking water concerns

5.2 Microbiology of drinking water distribution systems
5.2.1 Filamentous fungi in drinking water
5.2.2 Biofilms

5.3 Drinking water distribution systems maintenance
5.3.1 Disinfection

5.4 Bacterial and fungal interactions
Acknowledgments
References

6. Microalgal and cyanobacterial biofilms
Ana Cláudia Barros, A.L. Gonçalves and Manuel Simões

6.1 Microalgae and cyanobacteria

6.2 Applications of microalgae and cyanobacteria

6.3 Microalgal/cyanobacterial cultivation

6.4 Microalgal harvesting techniques
6.4.1 Chemical flocculation
6.4.2 Autoflocculation
6.4.3 Bioflocculation
6.4.4 Electrocoagulation–flocculation
6.4.5 Gravitational sedimentation
6.4.6 Flotation
6.4.7 Centrifugation
6.4.8 Filtration

6.5 Factors affecting microalgal/cyanobacterial biofilms
6.5.1 Light
6.5.2 CO₂ concentration
6.5.3 pH
6.5.4 Nutrients
6.5.5 Temperature
6.5.6 Surface properties
6.5.7 Hydrodynamic conditions
6.5.8 Extracellular polymeric substances
6.5.9 Microalgal species
6.5.10 Presence of other microorganisms

6.6 The role of microalgal/cyanobacterial biofilms in wastewater treatment processes

6.7 Conclusions
Acknowledgments
References
7. Biofilms in membrane systems for drinking water production

Nadia M. Farhat, Szilard S. Bucs and Johannes S. Vrouwenvelder

7.1 Introduction
7.2 Methods to evaluate biofilm growth potential of feedwater
7.3 Conventional biofouling control strategies
7.3.1 Preventive biofouling control
7.3.2 Risk of chemical dosage: antiscalants, acids, and biocides
7.3.3 Conventional curative biofouling control: cleanings
7.4 New control strategies
7.4.1 Membrane modification
7.4.2 Feed spacer modification
7.4.3 Advanced cleaning strategies
7.5 Future perspectives
Acknowledgment
References

8. Biofilm fuel cells

Marcela N. Gatti, Facundo Quiñones and Ruben H. Milocco

8.1 Processes involved in the biofilm of a microbial fuel cell
8.1.1 Bacteria-catalyzed reactions
8.1.2 Mechanisms involved in releasing electrons on the anode surface
8.1.3 The faradaic charge transfer processes
8.1.4 The double-layer capacitance
8.1.5 Mass transfer
8.2 Microbial fuel cell structures
8.3 Integration of main processes in a microbial fuel cell model
8.3.1 Parameter identification
8.3.2 Electrical analogy for small-signal operation
8.3.3 Maximum steady-state power delivered by microbial fuel cell
8.3.4 Sensitivity analysis of the maximum power
8.3.5 Achievable maximum power
8.4 Dimensional electrodes
8.4.1 Problem formulation
8.4.2 Substrate diffusion
8.4.3 Charge transfer
8.4.4 Simulation results
8.5 Conclusions
References
9. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms
E. Giaouris

9.1 Introduction

9.2 Antibiofilm activities of lactic acid bacteria and their metabolites against foodborne bacterial pathogens
9.2.1 Antibiofilm activity of the in situ lactic acid bacteria presence
9.2.2 Antibiofilm activity of lactic acid bacteria cell-free culture supernatants
9.2.3 Antibiofilm activity of purified lactic acid bacteriocins
9.2.4 Antibiofilm activity of lactic acid bacteria exopolysaccharides
9.2.5 Antibiofilm activity of lactic acid bacteria biosurfactants
9.2.6 Biofilm inhibition through quorum sensing interference by lactic acid bacteria

9.3 Conclusions
References

10. Role of equipment design in biofilm prevention
Thierry Bénézech and Christine Faille

10.1 Introduction
10.2 Simple equipment geometries
10.3 Complex equipment design
 10.3.1 Immersed surfaces
 10.3.2 Air–liquid–material interfaces
 10.3.3 Splash areas
10.4 Material properties
 10.4.1 Physicochemistry
 10.4.2 Topography
10.5 Conclusion
Acknowledgments
References

11. Biofilm control with enzymes
Anabela Borges, Ana Meireles, Filipe Mergulhão, Luís Melo and Manuel Simões

11.1 Biofilms and problems associated with their control
11.2 Biofilm structure and mechanisms of bacterial resistance
11.3 Emergent strategies of biofilm control and eradication
11.4 Antibiofilm enzymes
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>11.4.1 Biofilm disruption by enzymes</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>11.4.2 Example applications</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusions</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td>12.</td>
<td>The potential of phytochemical products in biofilm control</td>
<td>Mafalda Andrade, Joana Malheiro, Fernanda Borges, Maria José Saavedra and Manuel Simões</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>12.1 Antimicrobial properties of phytochemicals</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>12.1.1 Phytochemical classes</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>12.1.2 Modes of antimicrobial action</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>12.2 Phytochemicals as biofilm-controlling agents</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>12.3 Conclusions</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>13.</td>
<td>Photoinactivation of biofilms</td>
<td>Alex Fiori Silva, João Vitor de Oliveira Silva, Paula Aline Zanetti Campanerut-Sá and Jane Martha Graton Mikcha</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>13.1 Photodynamic therapy</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>13.1.1 Historical remarks</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>13.1.2 Basic principles and mechanism of photosensitization</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>13.1.3 Photosensitizers and light sources</td>
<td></td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>13.2 Photoinactivation of biofilms</td>
<td></td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>13.3 Concluding remarks</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>14.</td>
<td>The potential of drug repurposing to face bacterial and fungal biofilm infections</td>
<td>Isabel M. Oliveira, Anabela Borges and Manuel Simões</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>14.1 Introduction</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>14.2 Antimicrobial activity among drugs used for noninfectious human diseases</td>
<td></td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>14.3 Drug repurposing—an alternative strategy against biofilm infections</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>14.4 Conclusions</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>320</td>
</tr>
</tbody>
</table>
15. **In silico development of quorum sensing inhibitors**

Rita P. Magalhães, Tatiana F. Vieira, André Melo and Sérgio F. Sousa

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Biofilms in health</td>
<td>329</td>
</tr>
<tr>
<td>15.2</td>
<td>Mechanisms of biofilm formation</td>
<td>330</td>
</tr>
<tr>
<td>15.3</td>
<td>Quorum sensing</td>
<td>332</td>
</tr>
<tr>
<td>15.4</td>
<td>In silico methods</td>
<td>335</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Computer-aided drug design: history and methods</td>
<td>335</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Molecular docking</td>
<td>337</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Virtual screening</td>
<td>341</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Quantitative structure–activity relationships</td>
<td>345</td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusions</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>349</td>
</tr>
</tbody>
</table>

16. **Challenges and perspectives in reactor scale modeling of biofilm processes**

Hermann J. Eberl and Matthew J. Wade

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>359</td>
</tr>
<tr>
<td>16.2</td>
<td>Mathematical modeling of biofilm reactors</td>
<td>363</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Chemostat modeling</td>
<td>364</td>
</tr>
<tr>
<td>16.2.2</td>
<td>One-dimensional biofilm models</td>
<td>368</td>
</tr>
<tr>
<td>16.2.3</td>
<td>A biofilm reactor model</td>
<td>371</td>
</tr>
<tr>
<td>16.3</td>
<td>Modeling challenges and perspectives</td>
<td>373</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Mathematical and computational challenges</td>
<td>373</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Implicit model assumptions and level of detail in process descriptions</td>
<td>375</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Some parallels and connections between modeling and experimental studies</td>
<td>377</td>
</tr>
<tr>
<td>16.4</td>
<td>Conclusion</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>380</td>
</tr>
</tbody>
</table>

Index | 385 |
This page intentionally left blank
Contributors

Ana Cristina Abreu, Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain

Mafalda Andrade, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Ana Cláudia Barros, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Thierry Bénézech, Univ. Lille, CNRS, INRAE, ENSCL, UMET, Villeneuve d’Ascq, France

Anabela Borges, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Fernanda Borges, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom

Szilard S. Bucs, Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Paula Aline Zanetti Campanerut-Sá, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil

Ana F.A. Chaves, Faculty of Engineering, University of Porto, Porto, Portugal

João Vitor de Oliveira Silva, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil

Hermann J. Eberl, Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada

Christine Faille, Univ. Lille, CNRS, INRAE, ENSCL, UMET, Villeneuve d’Ascq, France

Nadia M. Farhat, Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Ignacio Fernández, Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain

Marcela N. Gatti, Grupo de Control Autómático y Sistemas, Facultad de Ingeniería. Universidad Nacional del Comahue, Neuquén, Argentina
Astrid Gędas, Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

E. Giaouris, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, Lemnos, Greece

D.M. Goeres, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States

A.L. Gonçalves, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Nelson Lima, Centre of Biological Engineering, University of Minho, Braga, Portugal

Rita P. Magalhães, UCIBIO/REQUIMTE, BioSIM — Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal

Joana Malheiro, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal; Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom

Ana Meireles, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

André Melo, LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Porto, Portugal

Luís Melo, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Filipe Mergulhão, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

M. Mettler, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States

Jane Martha Gratton Mikcha, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil

Ruben H. Milocco, Grupo de Control Automático y Sistemas, Facultad de Ingeniería. Universidad Nacional del Comahue, Neuquén, Argentina

Isabel M. Oliveira, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Magdalena A. Olszewska, Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

A.E. Parker, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States; Department of Mathematical Sciences, Montana State University, Bozeman, MT, United States
Russell Paterson, Centre of Biological Engineering, University of Minho, Braga, Portugal

S. Pedersen, BioSurface Technologies Corporation, Bozeman, MT, United States

Facundo Quiñones, Grupo de Control Automático y Sistemas, Facultad de Ingeniería. Universidad Nacional del Comahue, Neuquén, Argentina

Marta Ribeiro, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Maria José Saavedra, CITAB-Centre for Research and Technology of Agro-Environmental and Biological Sciences, Veterinary Science Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Alex Fiori Silva, Federal Institute of Paraná, Paranavaí, Paraná, Brazil

Lúcia Chaves Simões, Centre of Biological Engineering, University of Minho, Braga, Portugal; LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Manuel Simões, LEPABE — Laboratory for Process Engineering Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Sérgio F. Sousa, UCIBIO/REQUIMTE, BioSIM — Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal

P. Sturman, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States

Tatiana F. Vieira, UCIBIO/REQUIMTE, BioSIM — Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal

Johannes S. Vrouwenvelder, Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Matthew J. Wade, School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom

D.K. Walker, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States

B. Warwood, BioSurface Technologies Corporation, Bozeman, MT, United States
This page intentionally left blank
Preface

The ability of microorganisms to adhere on surfaces and form biofilms is a privilege. These aggregates of cells enclosed in a matrix of extracellular polymeric substances show a physiology that is distinctly different from that of the same cells in planktonic state. Biofilm growth is arguably the most relevant growth state for the majority of microorganisms, particularly bacteria. Its complexity relative to planktonic growth means that we still have a poor understanding of how microorganisms behave in such a complex structure. Biofilms are as versatile as they are ubiquitous. Intentional and unintentional biofilms concern a broad range of areas, comprising special attention in the industrial/environmental and biomedical areas. As consequence, research on biofilm science and technology is an evolving research area.

This book contributes with new insights regarding the biofilm mode of life, giving the readers a significant content focusing the recent advances on multidisciplinary biofilm research. The book is strategically outlined with data on biofilm formation by diverse microorganisms—bacteria, microalgae, and filamentous fungi. Top-notch methods for biofilm analysis and characterization are described in terms of analytical chemistry and mathematical modeling. Advanced strategies for biofilm control are detailed in several chapters as well as the in silico analysis for the development of biofilm-targeting molecules. Biofilms are further conveniently described for their biotechnological potential, particularly for wastewater treatment and for bioenergy production as biofilm fuel cells.
Acknowledgments

This work was financially supported by Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE)—funded by national funds through the FCT/MCTES (PID-DAC); projects PTDC/BII-BTI/30219/2017 - POCI-01-0145-FEDER-030219, POCI-01-0145-FEDER-028397, POCI-01-0145-FEDER-033298, and POCI-01-0145-FEDER-035234 funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through the FCT/MCTES. FCT under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Sabbatical grant SFRH/BSAB/150379/2019.
This page intentionally left blank