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1. Introduction

Anaerobic digestion is a sustainable technology used to produce renewable gas from
organic wastes. There are thousands of biogas facilities in the world, but many fundamental
aspects of anaerobic digestion processes are still being discovered. For example, the catalytic
effect of conductive materials is undoubtedly one of the key breakthroughs in recent years,
and it will improve the efficiency of every digester around the world [1]. Anaerobic
digestion involves a series of syntrophic relationships where hydrogen (H)/Formate (F)
electron carriers play an important role in the process of interspecies electron transfer (H/F
IET) [1]. When syntrophy is compromised, conversion rates are reduced, which affects
greatly the treatment efficiency.

Several strategies have been implemented to improve anaerobic digestion of organic
waste [2] such as empirical modifications of process design, operational conditions [3],
application of substrate pretreatments [4], and waste co-digestion [5,6]. Nevertheless, much
work is needed to understand the fundamental phenomena involved in the anaerobic
digestion process to accelerate the activity of anaerobic microorganisms and thus improve
the self-sufficiency and sustainability of anaerobic digesters.

This Special Issue brings together a broad range of recent advances in the field of
anaerobic digestion. Notably, these range from co-gasification of municipal solid waste
to a spatially explicit model and the definition of the best location for a co-digestion
biogas production facility. Additionally, this Special Issue presents some advancements in
pretreatments and co-digestion approaches and the application of conductive materials to
improve methane production. A total of eight articles were selected for publication.

2. Strategies to Improve Anaerobic Digestion of Organic Waste

Anaerobic digestion can be a suitable in situ solution for the treatment of agro-industry
wastes, providing a source of renewable energy, which can be a supply for the processes
in these industries [7]. Montes et al. [7] assessed the biomethanogenic potential of several
wastes and by-products from alcoholic beverage production, indicating that the economic
feasibility of anaerobic digestion technologies could depend on the capability of the in-
dustries to join forces and create consortiums [7]. Moreover, the implementation of biogas
production units may include pre/post-treatments and must consider the logistics of sludge
disposal [8]. Coura et al. [8] developed a spatially explicit model using an analytical hierar-
chy process concerning the suitable location and the pre-dimensioning of biogas units in
anaerobic co-digestion systems for liquid fraction treatment and valorization of sewage
sludge and dairy cattle manure. This approach will be very useful to decision-makers
working towards resources optimization.

Recent advances in the anaerobic digestion field have also shown that the addition of
conductive materials to anaerobic digestion processes can improve methane production
rates, reducing lag phases, increase organic loading rates, and contribute to a more stable
operation of the systems [1]. For example, Cavaleiro et al. [9] evaluated the effect of carbon
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nanotubes on the methanogenic activity of anaerobic sludge and river sediment. Carbon
nanotubes accelerated the initial specific methane production rate from acetate, hydrogen,
ethanol, and butyrate, with a more pronounced effect on the assays with acetate and
butyrate, i.e., 2.1 and 2.6 times, respectively. Experiments with river sediment showed that
cumulative methane production was 10.2 times higher in the assays with carbon nanotubes
impregnated with iron than in the assays without carbon nanotubes [9]. The conductive
particle-mediated interspecies electron transfer mechanism facilitates the electron transfer
between species and has been shown to be beneficial to accelerate methane production [10].

Other strategies include substrate pretreatment to overcome the recalcitrant complex
structure of some softwood species, such as Norway spruce (Picea abies). Ghimire et al. [11]
evaluated the methane yield in thermophilic anaerobic digestion conditions from hot water
extract of Norway spruce pretreated at two different pretreatment severities. A higher
pretreatment severity (170 ◦C) yielded higher concentrations of AD inhibitors. Despite
having lower sugar content, hydrolysate pretreated at the lower temperature of 140 ◦C had
an 18% higher methane yield. This result show that these substrates can be utilized safely
in continuous-flow industrial anaerobic digestion [11].

Furthermore, other recalcitrant wastes, such as cork boiling wastewater, were assessed
through a biochemical methane potential [12]. Results showed that anaerobic treatment
of this wastewater is possible and that co-digestion with food waste was not an advan-
tage. Nevertheless, the co-digestion with cow manure increased the biomethane yields,
demonstrating that this strategy increases biogas production and the quality of the final
digestate [12].

Different thermal hydrolysis technologies were analyzed using data from the wastewa-
ter treatment plant of Burgos (Spain) as the base scenario when operating with conventional
mesophilic anaerobic digestion [13]. García-Cascallana et al. [13] showed that when hy-
drolysis was applied to digested sludge and sludge from the Solidstream® process, this
resulted in a 35% increase in biogas available for engines and a 23% increase in electricity
production. In this case, the main advantage of the hydrolysis process is the decrease in the
volume of digesters and the amount of dewatered sludge needing final disposal [13].

The exposure of sewage sludge and cattle slurry to amoxicillin, oxytetracycline, sul-
famethoxazole, and metronidazole resulted in differences in the composition of microbiota
engaged in the anaerobic processes [14]. The number of copies of the characteristic genes
of the families Methanosarcinaceae and Methanosaetaceae declined in most of the digestate
samples with antimicrobial supplementation. In addition, metronidazole inhibited sewage
sludge fermentation to the greatest extent (a six-fold decrease in biogas production and an
over 50% decrease in methane content) [14].

Finally, an alternative strategy to the valorization of municipal solid waste was pro-
posed by Ding et al. [15]. The addition of bituminous coal improved the gasification
of municipal solid waste, and higher gasification temperatures increased the cold gas
efficiency and the overall energy efficiency [15].

3. Perspectives on the Future of Research on the Intensified Conversion of Organic
Waste into Biogas

While the work presented in this Special Issue offers concrete advancements to the
study of anaerobic digestion, much work is still needed. Future research should focus
on the development of sustainable pretreatment methods by achieving positive energy
and economic balances. Additionally, it is clear that in order to predict the impact of
pretreatment on anaerobic digestion, a more detailed understanding of the fundamental
phenomena during pretreatment and its influence on sludge properties is necessary. More-
over, more lab-scale and pilot-scale continuous experiments are needed to achieve a holistic
understanding of anaerobic co-digestion.

Additionally, it is essential to pursue research related to the inhibitory effect of phar-
maceuticals further, including such aspects as the assessment of abundance and activity of
microorganisms engaged in all steps of anaerobic digestion.



Appl. Sci. 2022, 12, 3573 3 of 3

Furthermore, little is known about the effect of conductive materials on anaerobic
digestion. Despite these recent advances in knowledge, more research is needed to under-
stand the effects of conductive materials on anaerobic communities in order to improve the
rate of methane production in anaerobic digestion processes. Further, control assays with
non-conductive materials are essential for understanding the effect of conductive materials,
but such controls have rarely been performed.
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