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Abstract In this paper, we investigate the use of a simple heuristic in the DIRECT
method context, aiming to select a set of the hyperrectangles that have the lowest
function values in each size group. For solving bound constrained global optimiza-
tion problems, the proposed heuristic divides the region where the hyperrectangles
with the lowest function values in each size group lie into three subregions. From
each subregion, different numbers of hyperrectangles are selected depending on the
subregion they lie. Subsequently, from those selected hyperrectangles, the poten-
tially optimal ones are identified for further division. Furthermore, the two-phase
strategy aims to firstly encourage the global search and secondly enhance the local
search. Global and local phases differ on the number of selected hyperrectangles
from each subregion. The process is repeated until convergence. Numerical exper-
iments carried out until now show that the proposed two-phase heuristic coupled
DIRECT method is effective in converging to the optimal solution.
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1 Introduction

This paper addresses the use of a DIRECT-type method that coupled with a sim-
ple heuristic and a two-phase strategy aims to globally solve non-smooth and non-
convex bound constrained optimization problems. The bound constrained global
optimization (BCGO) problem can de stated as:

min f (x), (1)
where f : R" — R is a nonlinear function and Q = {x € R" : —eo < [; <x; < u; <
oo i=1,...,n} is a bounded feasible region. We assume that the optimal set X* of
the problem (T)) is nonempty and bounded, x* is a global minimizer and f* repre-
sents the global optimal value.

When the function f is non-smooth, or its evaluation requires different simula-
tions, and those simulations may add noise to the problem, analytical or numerical
gradient-based methods may fail to solve the problem (). Derivative-free methods,
like the DIRECT method [1} 2], can solve it. The main idea in the DIRECT method
is the partition of the feasible region into an increasing number of each time smaller
hyperrectangles. At each iteration, a set of the most promising hyperrectangles are
identified for further division. DIRECT needs to store all the information about all
the generated hyperrectangles. This means that for larger dimensional problems,
computational requirements may prevent DIRECT to find a high quality solution.
DIRECT has strong convergence properties and produces a good coverage of the
feasible region [3]]. For the hyperrectangle division, DIRECT uses two criteria: the
size of the hyperrectangle to favor the global search feature of the algorithm and the
value of the hyperrectangle, translated by the objective function value at the center
point of the hyperrectangle, to give preference to its local search feature. DIRECT-
type algorithms that are more biased toward local search are proposed in [4} 13].
They are mostly suitable for small problems with one global minimizer and a few
local minimizers. In [3]], the deterministic partition strategy of the DIRECT method
is used, in a multi-start context, to perform local minimizations starting from the
center points of the most promising hyperrectangles. Globally biased searches are
also reinforced in DIRECT by making use of a new technique for selecting the hy-
perrectangles to be divided [6, [7} I8]].

For further details on the original DIRECT and other recent interesting modifi-
cations, we refer the reader to 6,7, (8,19, [10]].

This paper investigates the use of a DIRECT-type method coupled with a heuris-
tic aiming to potentiate the exploration of the most promising regions in the DI-
RECT method context. The heuristic categorizes the hyperrectangles with the low-
est function values in each size group into three subregions for further sampling
and division. Additionally, a two-phase strategy aims to cyclically encourage the
global search phase (first phase) and enhance the local search one (second phase).
Our proposal reinforces the global search capabilities of the DIRECT by avoiding
the selection of the hyperrectangles that were mostly divided and choosing all the
hyperrectangles with largest sizes (first phase). Conversely, when the new algorithm
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enters the second phase, the hyperrectangles with largest sizes are mostly prevented
from being selected and the ones with smallest sizes are all included in the selection.

The paper is organized as follows. Section[2]briefly presents the main ideas of the
DIRECT method and Sect. [3] describes the heuristic and the two-phase strategy in
the DIRECT method context. Finally, Sect. 4 contains the results of our preliminary
numerical experiments and we conclude the paper with the Sect. 5]

2 DIRECT Method

The DIRECT (DIviding RECTangles) algorithm has been originally proposed to
solve BCGO problems like (I)) where f is assumed to be a continuous function, by
producing finer and finer partitions of the hyperrectangles generated from Q [1].
The algorithm is a modification of the standard Lipschitzian approach, in which f
must satisfy the Lipschitz condition

|f(x1) = f(x2)| < K||x1 —x2|| forall x;,x; € Q,

where K > 0 is the Lipschitz constant. DIRECT is a derivative-free and determin-
istic global optimizer since it is able to explore potentially optimal regions in order
to converge to the global optimum solution, thus avoiding to be trapped in a lo-
cal optimum solution. It does not require any derivative information or the value
of the Lipschitz constant [2]. DIRECT views the Lipschitz constant as a weighting
parameter that balances global and local search. These searches are carried out by
exploring some of the hyperrectangles in the current partition of €2, in order to di-
vide them further [5, [11]. First, the method organizes hyperrectangles by groups of
the same size and considers dividing in each group the hyperrectangles that have the
lowest value of the objective function — herein denoted by candidate hyperrectan-
gles. However, not all of these candidate hyperrectangles are divided. The selection
falls on the hyperrectangles that satisfy the following two criteria that define a po-
tentially optimal hyperrectangle (POH):

Definition 1 Given the partition {P' : i € I} of £, let € be a positive constant and let
Jmin be the current best function value. A hyperrectangle j is said to be potentially
optimal if there exists some rate-of-change constant K; > 0 such that

Flej) = L =V < fler) = Ll ~¥] Vi @

K, . ..
f(cj)_71||uj_lj|| Sfmin_£|fmin| ) 3)
where ¢; is the center and ||u/ —1/|| /2 is a measure of the size of hyperrectangle j.

The use of K ; intends to show that it is not the Lipschitz constant but it is just a rate-
of-change constant [I]]. Condition in (Z) aims to check if the lower bound on the
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minimum of f on the hyperrectangle j is lower than the lower bounds on the min-
ima of the other hyperrectangles of the partition P’ (for the hyperrectangle j to be
potentially optimal). Condition (3] aims to balance the local and global search and
prevents the algorithm from searching locally a region where very small improve-
ments are obtained. The parameter € aims to ensure that a sufficient improvement
of f for the hyperrectangle j will be potentially found based on the current fii,
[12.[13]. The value of fini, — €| fmin| (in contrast to fmi,) prevents the hyperrectangle
with the smallest objective function value from being a POH.
DIRECT can be briefly described by Algorithm|T] [1]].

Input: f, Q.

Olltpllt: (Xminvfmin)-

Normalize Q to be the unit hypercube and compute f(c) where ¢ is the center;
Setk =0, fmin = f(c)v Xmin = €}

while Stopping condition is not satisfied do

Define the set I of the candidate hyperrectangles;

Identify the set Oy C I of POH;

while O # 0 do

Select a hyperrectangle j € Ox;

Identify the set L; of dimensions with maximum size 8,qy; Set 8 = (1/3)8pax;
forallic L; do

Sample f at ¢c; + Se;;

Divide hyperrectangle j into thirds along the dimensions in L; starting with
the dimension with lowest w; = min{ f(c; + de;), f(c; — 5e;)} and
continue until the dimension with highest w;;

end
Set O, = Ok\{j};

end

Update fiin = Ininie[;< f(ci);
Set Xpmin = argmin;eg, f(c;);
Setk=k+1;

end

Algorithm 1: DIRECT algorithm

Identifying the set of POH can be regarded as a problem of finding the extreme
points on the lower right convex hull of a set of points in the plane [1]]. A 2D-
plot can be used to identify the set of POH. The horizontal axis corresponds to
the size of the hyperrectangle and the vertical axis corresponds to the f value at
the center of the hyperrectangle. Figures and [I(b)|show the center points of the
hyperrectangles (marked with ‘red’ ‘+’ in the plots) generated up to iteration 4 (after
47 function evaluations) and iteration 7 (after 159 function evaluations) respectively,
of DIRECT when solving the problem:

4
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where Q = {x € R*: —2<x< 3} [14]. The mark that identifies a candidate hy-
perrectangle is a ‘magenta’ diamond and the mark to identify a POH is a ‘black’
square. The identified POH at iteration 4 were divided and generated smaller hyper-
rectangles. They are no longer hyperrectangles of that size at iteration 7, although

other hyperrectangles with the same sizes and higher function values are identified
as POH.
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Fig. 1 Points representing hyperrectangles, candidate hyperrectangles and POH, when solving the
problem (@) by DIRECT. a Iteration 4. b Iteration 7

3 Two-Phase Heuristic Coupled DIRECT Method

In this section, we reveal how the DIRECT algorithm is modified to incorporate a
heuristic that aims to divide a promising search region into three subregions. The
implementation of the two-phase strategy aims to drastically reduce the selection of
the mostly divided hyperrectangles and, in contrast, select all the hyperrectangles
that have the lowest function values in each group of the largest sizes, when a global
search phase seems convenient. Conversely, for the local search phase, all the hyper-
rectangles that have the lowest function values in each group of the smallest sizes
are selected and, at the same time, the selection of the largest hyperrectangles are
greatly reduced.

3.1 Heuristic

POH either have center points with low function values or are large enough to pro-
vide good and unexplored regions for the global search [14]. Hyperrectangles with
the smallest sizes are the ones that were mostly divided so far. On the other hand,
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hyperrectangles with large sizes were the least divided. Avoiding the identification
of POH that were mostly divided can enhance the global search capabilities of DI-
RECT [7]. Conversely, identifying POH that are close to the hyperrectangle which
corresponds to fi,in may improve the local search process in DIRECT. Thus, at any
iteration k, the present heuristic incorporated into the DIRECT method aims to di-
vide the region of the candidate hyperrectangles (the ones with least function values
at each size group) into three subregions. The leftmost subregion includes hyperrect-
angles with indices based on size that are larger than i; = |2/3imi, | (denoting the
set by I,? ), where ipi, is the index based on the size of the hyperrectangle that corre-
sponds to fmin. The rightmost subregion contains the hyperrectangles with indices
that are smaller than i, = [1/3imin | (denoting the set by Ikl ). The middle subregion
contains hyperrectangles with indices i that satisfy i; < i < i, (denoting the set by
I,?). (We remark that the larger the size, the smaller is the index based on size.)

We present in Algorithm [2] the main steps of the proposed heuristic to be inte-
grated into the DIRECT method, coupled with the two-phase strategy (see details in
the next subsection).

3.2 Two-Phase Strategy

Since the balance between global and local information must be provided with cau-
tion so that convergence to the global solution is guaranteed and stagnation in a
local solution is avoided, the two-phase strategy performs a cycling process be-
tween a globally biased set of iterations and locally biased iterations. The first phase
(identified in the algorithm by ‘phase=global’) runs for Gy iterations and aims
to potentiate the exploration of the hyperrectangles with the largest sizes. Here, all
candidate hyperrectangles with indices based on size in Ilg are selected. From the
middle region, 50% of the indices in the set I,% are randomly selected and the cor-
responding candidate hyperrectangles are used in the selection. From the leftmost
subregion, 10% of the indices in the set I,? are randomly selected and the correspond-
ing candidate hyperrectangles are selected. Thereafter, the set of POH are identified
(following Definition [I)) from all these selected hyperrectangles.

The second phase runs for Ly, iterations. Now, all candidate hyperrectangles
that have indices in the set I,? are selected, 50% of randomly selected indices from
I,? are used to choose the corresponding candidate hyperrectangles, and 10% of
randomly selected indices from I,& are used to pick the corresponding candidate
hyperrectangles. Then, based on all these selected hyperrectangles, the set of POH
are identified. This process is repeated until convergence.

Figures [2(a)] and 2(b)] show the centers of the hyperretangles generated by Al-
gorithm 2] up to iteration 4 (after 43 function evaluations) and iteration 7 (after
79 function evaluations) respectively, when solving the problem (@). In each plot, the
‘green’ circles correspond to the selected candidate hyperrectangles from the set I°,
the ‘magenta’ diamonds correspond to the selected candidate hyperrectangles from
I?, and the ‘blue’ “*’ correspond to the selected candidate hyperrectangles from
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Input: f, Q, Gnaxs Lmax-

Olltpllt: (Xminvfmin)~

Normalize Q to be the unit hypercube and compute f(c) where ¢ is the center;

Set k =0, fmin = f(€), Xmin = ¢; phase=global; kg =0, k;, =0

while Stopping condition is not satisfied do

Identify the indices based on size i; = |2/3imin| and iy, = | 1/3imin| and define the sets
of indices I,i R I,f, I ,? of candidate hyperrectangles;

if phase=global then

Set Hk] = I,: ; Randomly select 50% of indices in I,g to define H, kz; Randomly select
10% of indices in I,? to define H,?;

Set kg = kg + 1;

else

Set H,f = 1,-:’; Randomly select 50% of indices in I,f to define H, ,f; Randomly select
10% of indices in I} to define H};

Setky = kp +1;

end

Set Hy = H} UHZ UH};

Identify the set Oy C H of POH;

while Oy # 0 do

Select a hyperrectangle j € Oy;

Identify the set L; of dimensions with maximum size 8yax; Set 8 = (1/3)8pax;
forallic L;do

Sample f at ¢; & Se;;

Divide hyperrectangle j into thirds along the dimensions in L; starting with
the dimension with lowest w; = min{f(c; + &e;), f(c; — Je;)} and
continue until the dimension with highest w;;

end
Set O, = Ok\{j}

end

Update finin = minjep, f(¢;);

Set Xpin = argminjeq, f(¢;);

if phase=global and kG > Gnax then

| Set phase=local; kg = 0;

else

if phase=local and ki, > Ly,.x then
| Set phase=global; k;, = 0;

end

end

Setk=k+1;

end

Algorithm 2: Two-phase heuristic coupled DIRECT algorithm

I'. The identified POH are marked with the ‘black’ squares. Comparing with the
previous Figs. [T(a)] and [I(b)] obtained from DIRECT, it may be concluded that the
heuristic and the two-phase strategy have reduced the number of selected candidate
hyperrectangles from which POH are identified, without affecting the convergence
to a global solution.
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(a) (b)

Fig. 2 Points representing hyperrectangles, selected candidate hyperrectangles and POH, when
solving the problem (@) by Algorithm[2] a Iteration 4. b Iteration 7

4 Numerical Experiments

Numerical experiments were carried out to analyze the performance of the presented
two-phase heuristic coupled DIRECT method, when compared with other DIRECT-
type methods. The MATLAB® (MATLAB is a registered trademark of the Math-
Works, Inc.) programming language is used to code the algorithm and the tested
problems. The parameter € is set to 1E — 04. Because there are some elements of
randomness in the algorithm, each problem was solved 20 times by the algorithm.

4.1 Termination Based on a Budget

First, we want to analyze what would be the most favorable set of Gyax and L,k to
be used in the Algorithm[2] The following three sets are tested:

® Gpnax = 10 and Ly = 10 giving the Variant V_1;
® Gnax = 10 and Ly,ax = 5 giving the Variant V_2;
® Gpax = 5 and Lp,x = 10 giving the Variant V_3.

The algorithm runs for a budget of 100 function evaluations. This type of stopping
condition is what would be used in practice [4].

The well-known Jones set of benchmark problems [[1} 14} 18} 19, [10L [11} [14} 115} [16]
is used to compare the above defined three variants of the Algorithm 2| The Jones
set contains nine problems: Shekel 5 (S5) with n = 4, Shekel 7 (S7) with n =4,
Shekel 10 (S10) with n = 4, Hartman 3 (H3) with » = 3, Hartaman 6 (H6) with
n = 6, Branin (BR) with n = 2, Goldstein and Price (GP) with n = 2, Six-Hump
Camel (C6) with n = 2, Schubert (SHU) with n = 2.

Table[1| shows the perror value given by
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perror = (fmin_f ) ’ 5)
I

where fiin is the best obtained function value and f* is the best known global min-
imum. Our results are compared to those reported in [4]. The perror value reported
from our algorithm is obtained by using the average value of the solutions fyi, ob-
tained over the 20 runs. Although the differences in the performance of the Variants
V_1 and V_2 are almost negligible, Variant V_1 is slightly superior, and both outper-
form the Variant V_3. We may conclude that adopting a larger maximum number of
global search iterations gives a better advance in the convergence issue. The com-
parison with the results in [4] is slightly favorable to the therein locally-biased form
of the DIRECT algorithm since it finds slightly better solutions for S5, H3 and H6.
However, the results for the remaining six test problems are almost identical to our
results.

Table 1 Achieved perror for 100 function evaluations, using three variants of Algorithm

Variant V_1 Variant V_2 Variant V_3 DIRECT-1¢
Problem perror perror perror perror
S5 0.12E +00 0.17E +00 0.21E+00 0.59E — 02
S7 0.58E —02 0.58E — 02 0.62E — 01 0.58E — 02
S10 0.57E — 02 0.57E — 02 0.81E — 01 0.41E —02
H3 0.66E — 03 0.62E — 03 0.77E - 03 0.85E — 04
H6 0.13E+00 0.13E+00 0.13E+00 0.23E —01
BR 0.16E —03 0.19E - 03 0.20E —03 0.39E —-03
GP 0.27E - 03 0.27E - 03 0.14E — 02 0.27E - 03
C6 0.10E —01 0.11E —01 0.63E — 02 0.16E — 01
SHU 0.83E +00 0.83E +00 0.83E +00 0.82E +00

@ Results (locally-biased form) reported in [4].

4.2 Termination Based on the Known Global Minimum

We now test the Algorithm [2| with a stopping condition that uses the knowledge
of the global minimum f*. The algorithm aims to guarantee a solution as close as
possible to the f*. Thus, the algorithm stops when

perror < T, (6)

where perror has been defined in (3) and 7 is a positive small tolerance. It is as-
sumed that f* # 0. However, if condition (6)) is not satisfied, the algorithm runs un-
til a specified number of function evaluations is reached. When f* = 0, the perror
becomes fin-
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Based on the previous results, we compare Variant V_1 and Variant V_2 of Al-
gorithm [2 with other DIRECT-type algorithms and some stochastic heuristics. The
nine problems of the Jones set are used. Table [2] shows the number of function
evaluations required to achieve a solution with accuracy given by 7 = 1E — 04 and
T = 1E — 06, in the context of the stopping condition (6)). The results reported from
the two variants of Algorithm[2|correspond to the average value of the required num-
ber of function evaluations of the 20 runs. The results from the other DIRECT-type
algorithms are taken from their original papers [, [8, 9} [10} [14], unless otherwise
stated. The maximum number of function evaluations is set to 1E + 05.

Firstly, we note that using the stopping condition (6) with a higher accuracy de-
mand (0.01% and 0.0001%), the results favor Variant V_2. (This conclusion is dif-
ferent from what would be expected after the comparisons in Table[T}) In fact, when
T = 1E — 04, Variant V_2 is better, i.e., reaches the required accuracy with fewer
function evaluations than Variant V_1 on 6 problems (out of 9) and is a tie in one
problem. When a higher accuracy is demanded (7 = 1E — 06), Variant V_2 is still
better on 7 problems.

When we compare the results of both variants of Algorithm [2| with DIRECT
[1] and the solver RDIRECT-b [9], we may conclude that the results for a 0.01%
accuracy is favorable to [9] on four problems, but is favorable to our algorithm
on five problems. On the other hand, for a higher accuracy demand (0.0001%), the
overall balance is six against three. From the comparison with the original DIRECT,
we conclude that our algorithm wins (requires less function evaluations) for a 0.01%
accuracy solution on five problems and wins for a 0.0001% accuracy solution on
six problems. RDIRECT-b is a robust (insensitive to linear scaling of f) version
of DIRECT with a bilevel strategy to accelerate convergence to a higher accurate
result. The table also shows the results obtained by DIRECT-GL [8], that includes
new strategies for the identification of an extended set of POH, a modified DIRECT
version that uses an update to the condition (3)) [14], and those reported in [[10] of
the two versions DISIMPL-V and DISIMPL-C of a DIRECT-like method that uses
simplices instead of hyperrectangles. The first evaluates f at 2" vertices and divides
a simplex into two new simplices, the second evaluates f at n! centroid points and
divides a simplex into three new simplices. For a 0.01% accuracy solution, we may
conclude that our algorithm outperforms DIRECT-GL [§]] on seven (out of eight
common problems), the modified DIRECT [14] on six (out of nine problems), the
DISIMPL-V [[10] on eight (out of nine problems), and the DISIMPL-C [10] also on
eight problems.

Finally, we compare our results with three stochastic algorithms. In the directed
tabu search with the adaptive pattern search in the intensification phase (DTSps)
[L5], the average number of function evaluations therein reported are related only to
successful trials. For completeness, we also report the corresponding success rates
(shown in the table as “% succ”). The other stochastic algorithm used in the com-
parison is the mutation-based artificial fish swarm algorithm (m-AFSA) [16]. It is
a population based algorithm that uses a local search procedure to refine the search
around the best point found so far. Another population-based algorithm is selected
for the comparison. It uses a stochastic version of the coordinate descent method (St-



Two-Phase Heuristic Coupled DIRECT Method for GO 11

Coord_D) [I17] and the results are from the variant “hscore_w” with success rates of
100%. We may conclude that both variants of the Algorithm 2]outperform the three
selected algorithms. Only for the problem SHU, DTS,pg reaches the solution with
the required accuracy in fewer function evaluations than our variants.

Table 2 Number of function evaluations required by the algorithms, with T as shown in each row

Algorithm T S5 S7 S10  H3 H6 BR GP Co6 SHU

Variant V_1 IE—04 256 173 171 141 488 145 129 190 2093
IE—06 329 538 580 1140 6908 258 208 362 2684
Variant V_2 IE—04 201 170 171 137 454 147 127 179 2409
IE—06 704 430 480 1027 5587 246 209 317 2567
RDIRECT-b* 1E—04 159 157 157 173 559 181 175 115 3501
IE—06 251 325 325 853 1209 287 373 115 4259
DIRECT? 1E—04 155 145 145 199 571 195 191 145 2967
1E—06 255 4879 4939 751 182623 377 305 211 3867
DIRECT-GLY 1E—04 1227 1141 1151 379 4793 333 223 - 425
mDIRECT® IE—04 155 145 145 199 571 259 191 285 3663
DISIMPL-V/  1E—04 2454 723 750 261 6799 242 17 337 4509
DISIMPL-C/ 1E—04 90948 (fail) (fail) 334 25334 292 180 308 518

DTS4ps® 1E—-04 819 812 828 438 1787 212 230 - 274
(% succ) (75) (65) (52) (100) (83) (100) (100) - 92)

m-AFSA" 1E—04 1183 1103 1586 1891 2580 475 417 247 -

St-Coord D' 1E—-04 - - - - - 239 1564 512 -

¢ Results reported in [9]; b Results reported in [9], for both values of 7;

¢ Different from result in [1]] (285) for T = 1E — 04; ¢ Results in [§]; — Not available;
¢ Results in [14] (with a modified update to @); f Results reported in [10];

& Results reported in [I3]]; ” Results reported in [16]; ’ Results reported in [17].

With Fig.[3(a)] we aim to illustrate the influence of the heuristic coupled DIRECT
on the selected candidate hyperrectangles and the POH, at iteration 8 of the global
phase, when solving the problem BR, a two-dimensional problem with three global
minima. As previously reported the ‘green’ circles correspond to the selected can-
didate hyperrectangles from the set I°, the ‘magenta’ diamonds are from 12, and the
‘blue’ “*’ are from I'. The ‘black’ squares mark the identified POH. Figure
displays the progress of fin as the number of function evaluations increases, when
solving the problem BR by Algorithm@ with Gyax = 10 and Ly,x = 10. The value
of fiin rapidly drops (after 20 function evaluations) to a value near the global mini-
mum (0.398).

Figure [d(a)| shows the center points of the hyperrectangles generated at iteration
9 when Algorithm |z| uses Gpax = 10 and Ly,x = 10 (corresponding to the Variant
V_1) to solve the problem BR. Figure [4(b)| shows the center points at the final iter-
ation where the reported solution is within 0.01% of the global minimum (shown
by a ‘black’ full circle). Similar information is shown in Figs. [5(a)] and [5(b)] but
now Gpax = 10 and Ly, = 5 (Variant V_2) are used instead. Finally, Figs. @
and [6(b)| show the center points of the generated hyperrectangles when Gmax = 5
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Fig. 3 Solving the problem BR by Algorithm |2} a Center points of generated hyperrectangles,
selected candidate hyperrectangles and identified POH. b Progress of fiin

(a) (b)

Fig. 4 Generated hyperrectangles when solving the problem BR by Variant V_1 of Algorithm a
Iteration 9 (55 function evaluations). b Final iteration (131 function evaluations)

and Lyax = 10 (Variant V_3). It can be seen that the points cluster around the three
global solutions, being Variant V_2 the one that concentrates the search the most.
After exploring the feasible region looking for promising regions, the Variant V_2
gathers around one of the global solutions instead of jumping and gathering around
the other global optima.

4.3 Experiments with Larger Dimensional Problems

Another set of six larger dimensional benchmark problems from the Hedar test set
[18] is also used for comparative purposes: Griewank (GW), Levy (L), Rastrigin
(RG), Sphere (S), Sum squares (SS), Trid (T) (also available in [19]). We note that
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(2 (®)

Fig. 5 Generated hyperrectangles when solving the problem BR by Variant V_2 of Algorithm a
Iteration 9 (51 function evaluations). b Final iteration (137 function evaluations)

(@) (d)

Fig. 6 Generated hyperrectangles when solving the problem BR by Variant V_3 of Algorithm a
Iteration 9 (69 function evaluations). b Final iteration (163 function evaluations)

the search domain (S. Domain) was modified for some problems in order to avoid
that the global minimum lies in the centroid of the feasible region [8, O].

First, the problem SS is used to analyze the performance of the Variants V_1
and V_2 of the Algorithm [2] when compared to other DIRECT-type methods, as
the number of variables increases. The maximum number of function evaluations
is now set to 1E + 06 and 7 = 1E — 04 in the stopping condition (&). See Table [3|
The results are compared to those reported in [§]], DIRECT, DIRECT-G (DIRECT
with a strategy that globally enhances the set of POH), DIRECT-GL (DIRECT with
strategies that globally and locally enhance the set of POH). Since numerical data
for this problem are not available in [9]], a direct comparison is not possible (marked
as ‘-’ in the table). (The authors use performance profiles to compare four DIRECT-
type methods.) Between Variants V_1 and V_2, the latter is more efficient and from
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the results it can be concluded that the S. Domain affects the performance of the
algorithm, in particular for the largest problem.

Table 3 Number of function evaluations required by Variants V_1 and V_2 to solve problem SS

Problem S. Domain Variant V_1 Variant V.2 DIRECT* DIRECT-G* DIRECT-GL?

SSn=2 [-10,15]" 84 86 107 143 191
SSn=35 2546 1765 833 1951 2919
SSn=10 86122 29861 7795 16523 24763
SSn=2 [-8, 12.5]" 136 133 - - -
SSn=5 3209 3135 - - -
SSn=10 7695 5710 - - -

¢ Results reported in [8].

The number of function evaluations achieved by Variants V_1 and V_2 of Algo-
rithm |Z| when solving the problems GW, L, RG, S and T for n = 10 are shown in
Table E[ Between the two tested variants, V_2 outperforms V_1 since it solves the
largest problems in general with less function evaluations.

Table 4 Number of function evaluations of Variants V_1 and V_2 (problems with n = 10)

Problem S. Domain Variant V_1 Variant V.2 DIRECT* DIRECT-G* DIRECT-GL*

GW [-480, 750110 14475 10389 - - -

L [-10, 10710 70437 34067 5589 11149 16179
RG [-4.1,6.4)'0 524921 605391 - - -

S [-4.1,6.41'0 192140 63155 - - -

T [-100, 100110 77653 27075 >1E+06 >1E+06 115073

¢ Results reported in [8]]; ‘-’ Not available.

5 Conclusions

The DIRECT method is coupled with a heuristic aiming to divide the region of
promising hyperrectangles into three subregions for a discerned selection of a re-
duced number of hyperrectangles. Furthermore, a two-phase strategy that aims to
cyclically encourage the global search capabilities (first phase) and enhance the lo-
cal search (second phase) is implemented.

During the first phase, the heuristic DIRECT avoids the selection of the hyper-
rectangles that were mostly divided and chooses all the hyperrectangles with largest
sizes. Conversely, during the second phase, the hyperrectangles with largest sizes
are mostly avoided and the ones with smallest sizes are all included in the selection.
The numerical experiments carried out until now show that a cycle of a global search
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phase of ten iterations and a local search phase of five iterations provides in general
a more efficient process even when solving the largest dimensional problems.
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