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Abstract

Given the recent interest in the fragment of system F where universal instanti-
ation is restricted to atomic formulas, a fragment nowadays named system Fat, we
study directly in system F new conversions whose purpose is to enforce that re-
striction. We show some benefits of these new atomization conversions: (1) They
help achieving strict simulation of proof reduction by means of the Russell-Prawitz
embedding of IPC into system F; (2) They are not stronger than a certain “dinat-
urality” conversion known to generate a consistent equality of proofs; (3) They
provide the bridge between the Russell-Prawitz embedding and another transla-
tion, due to the authors, of IPC directly into system Fat; (4) They give means for
explaining why the Russell-Prawitz translation achieves strict simulation whereas
the translation into Fat does not.

Keywords: Intuitionistic propositional calculus, system F, predicative polymorphism,
Russell-Prawitz translation, proof reduction.

1 Introduction
The Russell-Prawitz translation of the intuitionistic propositional calculus IPC into
second-order intuitionistic propositional calculus NI2, the latter based on the language
only containing implication, conjunction and the second-order universal quantifier,
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rests on the following encoding of disjunction and absurdity A ∨ B := ∀X.((A ⊃
X) ∧ (B ⊃ X)) ⊃ X and ⊥:= ∀X.X . This encoding is due to Prawitz but its idea
goes back to Russell [10]. Under the Curry-Howard correspondence, the target of the
translation can be taken to be Girard’s polymorphic system F [7].

At the level of proofs, while the translation of the introduction rule for disjunction is
straightforward, there are several alternatives for the translation of the elimination rules
for the encoded connectives. The most direct one makes full use of the elimination rule
for the second order quantifier. For instance, given in F a “foreign” formula C and
proofs of A ⊃ C and B ⊃ C, it is immediate to obtain a proof of C from a proof of
A ∨ B as defined above, starting by an instantiation of the quantifier to the formula
C. This idea is implicit in [10] - we will confirm this later on in this paper. Following
[1, 6, 11], we are calling Russell-Prawitz translation the translation of IPC into system
F based on this translations of proofs.

There are alternative translations of IPC proofs, still employing the Russell-Prawitz
translation of formulas, which make a restricted use of the elimination rule for the sec-
ond order quantifier, only requiring instantiation by atomic formulas. One such trans-
lation is based on the idea of “instantiation overflow” [4, 5] - the observation that full
instantiation of the quantifiers in formulas of the formA∨B or⊥ as above is derivable
in system Fat – the restriction of system F to atomic universal instantiations. Another
translation of IPC into Fat, always with the same translation of formulas, was pro-
posed recently by the authors [3] and is based on the observation that the elimination
rules for the defined connectives are derivable in Fat.

There are several reasons to study embeddings of IPC into Fat, the foremost being
that Fat is a predicative fragment of F. Another reason has to do with preservation of
proof identities generated in IPC by commuting conversions or η-reductions: the var-
ious embeddings into Fat achieve that preservation [5, 6, 3], while the Russell-Prawitz
translation into F does not [7, 12, 5, 6, 11]. This seems an indication that other con-
version principles are missing in F, besides the βη ones. Indeed, a general commuting
principle, expressing “naturality” in the categorial semantics of F, was suggested in
[11], with good results for the problem of preservation of identity of proofs.

Given the interest in system Fat, we study in system F other conversions whose
purpose is to enforce the restriction to atomic universal instantiation, with the goal of
shedding light, not only on the problem of preservation of proof identity, but also on the
existence of alternative embeddings of IPC into F and Fat. We show that, when F is
equipped with these atomization conversions, the Russell-Prawitz translation achieves
a strict simulation of proof reduction. Moreover, those conversions connect the Russell-
Prawitz translation into system F and the translation into system Fat introduced by the
authors. First, it is easy to establish a strong relation between the two translations at the
level of proofs: given an IPC proof, its translation into Fat is the normal form of its
translation into F w.r.t. the atomization conversions. Second, a more laborious connec-
tion at the level of proof reduction is worked out, providing a comprehensive, detailed
and clear picture of the problem of preservation of proof identity/reduction: indeed, as
discussed in the final section of this paper, the key to the stronger preservation of proof
reduction is the timing of atomization.

Of course, one has to be sure that adding those atomization conversions to system
F does not collapse proof identity. A similar problem was faced in [11], where a
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“naturality” conversion was added to system F. In that paper the following argument of
consistency is outlined: the equality generated by adding the “naturality” conversions
is contained in the equality generated by adding a stronger “dinaturality” conversion,
and the latter equality is known to have models. Here we follow the same strategy to
show with considerable detail that adding atomization conversions to system F will not
entail that any two terms are inter-convertible.

Plan of the paper. Section 2 recalls IPC and systems F and Fat. Section 3
recalls the Russell-Prawitz translation, recasting it as a translation between typed λ-
calculi. Section 4 introduces atomization conversions, relates them to other commuting
conversions in system F, and proves strict simulation by the Russell-Prawitz transla-
tion. Section 5 considers the Russell-Prawitz translation together with the embedding
into Fat due to the authors, relating them at the levels of proofs and proof reduction,
through the atomization conversions. Section 6 rounds up the paper with a discussion.

2 Background
We present the systems we will use in the paper (IPC, F and Fat).

System IPC

Throughout this work the interpreted system is the Intuitionistic Propositional Calculus
(IPC), which we now recall.

The types/formulas in IPC are given by

A,B,C ::= X | ⊥ |A ⊃ B |A ∧B |A ∨B

We define ¬A := A ⊃⊥.
The proof terms M,N,P,Q are inductively generated as follows:

M ::= x (assumption)
| λxA.M |MN (implication)
| 〈M,N〉 |M1 |M2 (conjunction)
| in1(M,A,B) | in2(N,A,B) | case(M,xA.P, yB .Q,C) (disjunction)
| abort(M,A) (absurdity)

We work modulo α-equivalence, in particular we assume the name of the bound vari-
ables is always appropriately chosen.

Sometimes, when clear from the context or not relevant, the type annotations in
the proof terms will be omitted. This applies to type annotations in binders, or for the
last type parameter in case(M,xA.P, yB .Q,C) and abort(M,A)1. When possible and
convenient, we write 〈P1, P2〉 as 〈Pi〉i=1,2.

The typing/inference rules are in Fig. 1. A sequent is an expression Γ ` M : A.
An environment Γ is a set of declarations x : A such that each variable is declared at

1Of course, one can define a version of proof terms for IPC without the last type parameter in
case(M,xA.P, yB .Q,C) and abort(M,A). But, as in [3], that last type parameter makes it possible
to define proof translations directly on proof terms. This happened in op. cit. with a translation into Fat,
and will happen in this paper with the Russell-Prawitz translation into F.
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Figure 1: Typing/inference rules of IPC

Γ, x : A ` x : A
Ass

Γ, x : A `M : B

Γ ` λxA.M : A ⊃ B
⊃I Γ `M : A ⊃ B Γ ` N : A

Γ `MN : B
⊃E

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B ∧I Γ `M : A ∧B

Γ `M1 : A
∧E1

Γ `M : A ∧B
Γ `M2 : B

∧E2

Γ `M : A
Γ ` in1(M,A,B) : A ∨B ∨I1

Γ ` N : B
Γ ` in2(N,A,B) : A ∨B ∨I2

Γ `M : A ∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` case(M,xA.P, yB .Q,C) : C
∨E

Γ `M :⊥
Γ ` abort(M,A) : A

⊥E

most one time in Γ. Given Γ and A, M has type A in Γ if Γ ` M : A is derivable;
given Γ, M is typable in Γ if, for some A, M has type A in Γ; and M is typable if M
is typable in some Γ.

For the purpose of discussing some reduction rules and defining the translation of
proof terms, it is convenient to arrange the syntax of the system in a different way:

(Terms) M ::= V | E [M ]
(Values) V ::= x |λx.M | 〈M,N〉 | in1(M,A,B) | in2(N,A,B)

(Elim. contexts) E ::= [ ]N | [ ]1 | [ ]2
| case([ ], x.P, y.Q,C) | abort([ ], A)

A value V ranges over terms representing assumptions or introduction inferences. E
stands for an elimination context, which is a term representing an elimination inference,
but with a “hole” in the position of the main premiss. E [M ] denotes the term resulting
from filling the hole of E with M .

In Fig. 2 one finds the typing rules for elimination contexts. In a sequent Γ|A `
E : B, the type A is the type of the hole of E and B is the type of the term obtained by
filling the hole of E with a term of type A. If the sequent Γ|A ` E : B is derivable, we
say E has type B and hole of type A in Γ.

The reduction rules are given in Fig. 3. We let β := β⊃ ∪ β∧ ∪ β∨ and similarly
for η; and we let π := π⊃ ∪ π∧ ∪ π∨ ∪ π⊥ and similarly for $.

Given a reduction ruleR of IPC, we employ the usual notations concerning reduc-
tion relations generated by R: the compatible closure2 of R is denoted→R; and→+

R,

2A relation R on the proof terms is compatible if it is compatible with each proof-term constructor.
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Figure 2: Typing rules for elimination contexts

Γ| ⊥ ` abort([ ], A) : A Γ|A1 ∧A2 ` [ ]i : Ai
(i = 1, 2)

Γ ` N : A
Γ|A ⊃ B ` [ ]N : B

Γ, x : A ` P : C Γ, y : B ` Q : C

Γ|A ∨B ` case([ ], x.P, y.Q,C) : C

Γ `M : A Γ|A ` E : B

Γ ` E [M ] : B

→∗R, =R denote respectively the transitive closure, the reflexive-transitive closure, and
the reflexive-symmetric-transitive closure of→R. If R = R1 ∪R2, then we may omit
“∪” in our notation and write→R1R2 , etc. The same notations apply to systems F and
Fat below.

For every reduction rule R of IPC,→R has the subject reduction property, that is:
if M →R N and M has type A in Γ, then N has type A in Γ.

Notice π is contained in the following reduction rule:

E [case(M,xA.P, yB .Q,C)]→ case(M,xA.E [P ], yB .E [Q], D) (1)

But the rules are not equivalent, as witnessed by the fact that the latter rule generates a
reduction relation→ that does not enjoy subject reduction. This is caused by the fact
that types C and D are unconstrained in (1), and so the connections that the various
π-rules establish between the types C and D are not imposed in (1). For instance, in
rule π⊃, C is an implication E ⊃ F , say, and D is F . But, in (1), when E = [ ]N ,
even if we know that the redex has type F in Γ, and hence C = E ⊃ F , for some E,
D need not be F , in which case the contractum would not have type F in Γ.

If we wanted to constrain (1) to become equal to π, we would define it only for
certain pairs (E , C), with D = D(E , C) determined by (E , C) as follows:

• D([ ]N,E ⊃ F ) = F ;

• D([ ]i, C1 ∧ C2) = Ci, for i = 1, 2;

• D(case([ ], xA.P, yB .Q,E), A ∨B) = E;

• D(abort([ ], E),⊥) = E.3

Similar remarks apply to $ versus E [abort(M,C)]→ abort(M,D).

For instance, R is compatible with the application constructor if M RM ′ implies (MN)R (M ′N), and
N RN ′ implies (MN)R (MN ′).

3Curiously, if the proof terms had been defined without the last type parameter in case- and abort-
expressions, then the version of (1) without C and D would determine a reduction relation → enjoying
subject reduction.
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Figure 3: Reduction rules
Detour conversion rules:

(β⊃) (λx.M)N → [N/x]M
(β∧) 〈M1,M2〉i → Mi (i = 1, 2)
(β∨) case(ini(M,A1, A2), xA1

1 .P1, x
A2
2 .P2) → [M/xi]Pi (i = 1, 2)

Commutative conversion rules for disjunction (in the 2nd rule, i ∈ {1, 2}):

(π⊃) (case(M,x.P, y.Q,C ⊃ D))N → case(M,x.PN, y.QN,D)
(π∧) (case(M,x.P, y.Q,C1 ∧ C2))i → case(M,x.P i, y.Qi, Ci)
(π∨)
case(case(M,x′.P ′, y′.Q′, C ∨D), xC .P, yD.Q,E) →

case(M,x′.case(P ′, xC .P, yD.Q,E), y′.case(Q′, xC .P, yD.Q,E), E)
(π⊥) abort(case(M,x.P, y.Q,⊥), C) →

case(M,x.abort(P,C), y.abort(Q,C), C)

Commutative conversion rules for absurdity (in the 2nd rule, i ∈ {1, 2}):

($⊃) (abort(M,C ⊃ D))N → abort(M,D)
($∧) (abort(M,C1 ∧ C2))i → abort(M,Ci)
($∨) case(abort(M,C ∨D), xC .P, yD.Q,E) → abort(M,E)
($⊥) abort(abort(M,⊥), C) → abort(M,C)

η-rules:

(η⊃) λx.Mx → M (x /∈M)
(η∧) 〈M1,M2〉 → M
(η∨) case(M,xA.in1(x,A,B), yB .in2(y,A,B), A ∨B) → M

System F

We give a precise definition of the polymorphic system F by saying what changes
relatively to IPC (for an introduction to system F, see [7]). In the spirit of the Curry-
Howard correspondence, we sometimes refer to F as the natural deduction system
NI2.

Regarding formulas, ⊥ and A∨B are dropped, and the new form ∀X.A is adopted
(hence conjunction is taken as primitive in system F). The quantifier ∀X binds free
occurrences of X , inducing the obvious concept of free occurrence of a type variable
in a type. Concerning α-equivalence, we deal with type variables as we deal with term
variables, relying on silent α-renaming. We write X /∈ A to say that X does not occur
free in A; given the silent α-renaming in A, we may assume X does not occur bound
in A either. Another novelty, distinctive of system F, is type substitution in types,
[B/X]A, meaning: substitution in A of each free occurrence of X by the type B.

Regarding proof terms, the constructions relative to ⊥ and A∨B are dropped, and
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the new forms ΛX.M and MB, with B a type, are added. The latter gives rise to a
new form of evaluation contexts: E ::= [ ]B.

Regarding typing rules, those relative to ⊥ and A ∨ B are dropped, and two rules
relative to ∀X.A are adopted:

Γ `M : A
Γ ` ΛX.M : ∀X.A ∀I

Γ `M : ∀X.A
Γ `MB : [B/X]A

∀E

where the proviso for ∀I is: X occurs free in no type in Γ. Due to rule ∀E, the
construction MB is called universal instantiation.

The new form of elimination contexts E∀ is typed with:

Γ|∀X.A ` [ ]B : [B/X]A

Regarding reduction rules, we drop commuting conversion rules (since they are
relative to ∨ and ⊥). What remains are the β and η-rules (but we drop those relative to
disjunction). For ∀, these are:

(β∀) (ΛX.M)B → [B/X]M
(η∀) ΛX.MX → M (X /∈M)

We let β := β⊃ ∪ β∧ ∪ β∀. Similarly for η.

System Fat

The atomic polymorphic system Fat, is the fragment of system F induced by restrict-
ing to atomic instances the elimination inference rule for ∀, and the corresponding
proof term constructor.

Thus the types/formulas of Fat are exactly the types of F with type substitution in
types only required in the atomic form [Y/X]A and the proof terms of Fat only differ
from the proof terms of F in the construction relatively to ∀E being MB replaced by
MX which gives rise to E∀ ::= [ ]X .

The typing rules relatively to ∀X.A are:

Γ `M : A
Γ ` ΛX.M : ∀X.A ∀I

Γ `M : ∀X.A
Γ `MY : [Y/X]A

∀Eat

where the proviso for ∀I is: X occurs free in no type in Γ. The new form of elimination
contexts E∀ is typed with:

Γ|∀X.A ` [ ]Y : [Y/X]A

The reduction rules for ∀ are:

(β∀) (ΛX.M)Y → [Y/X]M
(η∀) ΛX.MX → M (X /∈M)

7



3 The Russell-Prawitz embedding
We recall the Russell-Prawitz translation of IPC into F. The treatment is by means
of proof terms rather than derivations. In this section we just define the translation,
observe type soundness, and revisit [10] to justify the designation “Russell-Prawitz”.
The matter of preservation of proof reduction is postponed to the next section.

Definition 1. In F (and in Fat):

1. A∨B := ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X , with X /∈ A,B.

2. ⊥ := ∀X.X .

We define the Russell-Prawitz translation of formulas. Using the abbreviations just
introduced, the definition can be given in a homomorphic fashion:

X• = X
⊥• = ⊥

(A ⊃ B)• = A• ⊃ B•
(A ∧B)• = A• ∧B•
(A ∨B)• = A•∨B•

The translation of proof terms will rely on the following definition:

Definition 2. In F:

1. Given M,A,B, given i ∈ {1, 2}, we define

INi(M,A,B) := ΛX.λw(A⊃X)∧(B⊃X).wiM ,

where the bound variable X is chosen so that X /∈M,A,B.

2. Given M,P,Q,A,B,C, we define

CASE(M,xA.P, yB .Q,C) := MC〈λxA.P, λyB .Q〉

3. Given M,A, we define ABORT(M,A) := MA

It is straightforward to see that the typing rules in Fig. 4 - that is, the inference rules
for disjunction and absurdity - are derivable in F.

The following result is also straightforward:

Lemma 1. Let R be a relation compatible in the proof-terms of F. Then the compati-
bility rules in Fig. 5 are derivable in F.

Due to Definition 2, the translation of proof terms can be given in a purely homo-
morphic fashion:

Definition 3. Given M ∈ IPC, M• is defined by recursion on M as in Fig. 6.
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Figure 4: Derivable typing rules of F

Γ `M : Ai
Γ ` INi(M,A1, A2) : A1∨A2

(i = 1, 2)

Γ `M : A∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` CASE(M,xA.P, yB .Q,C) : C

Γ `M : ⊥
Γ ` ABORT(M,C) : C

Figure 5: Derivable compatibility rules of F

M RM ′

INi(M,A,B)R INi(M
′, A,B)

M RM ′

CASE(M,x.P, y.Q,C)R CASE(M ′, x.P, y.Q,C)

P RP ′

CASE(M,x.P, y.Q,C)R CASE(M,x.P ′, y.Q,C)

QRQ′

CASE(M,x.P, y.Q,C)R CASE(M,x.P, y.Q′, C)

M RM ′

ABORT(M,C)R ABORT(M ′, C)

Notice that (MN)• = M•N• and (Mi)• = M•i.
Observe the use of the type information provided by the last argument of case- and

abort-expressions: from C in case(M,xA.P, yB .Q,C) we determine the argument C•

required by CASE; from A in abort(M,A) we determine the argument A• for ABORT.4

Proposition 1 (Type soundness). If Γ `M : A in IPC, then Γ• `M• : A• in F.

The easy proof of this proposition determines a transformation of derivations in
IPC into derivations in F, a transformation defined by recursion on the given deriva-
tion in IPC, based on the derivability in F of each inference rule of IPC.

We now argue that such a transformation is already implicit in [10]. For this dis-
cussion, let disjunction be a primitive connective of NI2 (here, contrary to [10], we
will ignore the second-order existential quantifier). This corresponds to extending sys-
tem F with the type former A ∨ B and the constructions ini(M,A,B) (i = 1, 2) and

4If the proof terms of IPC had been defined without the last type parameter in case- and abort-
expressions, instead of a translation of proof terms, we would have a translation of typing derivations.
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Figure 6: The Russell-Prawitz translation of proof expressions

x• = x

(λxA.M)• = λxA
•
.M•

〈M,N〉• = 〈M•, N•〉
(ini(M,A,B))• = INi(M

•, A•, B•) (i = 1, 2)
(E [M ])• = E•[M•]

(case(M,xA.P, yB .Q,C))• = CASE(M•, xA
•
.P •, yB

•
.Q•, C•)

(abort(M,A))• = ABORT(M•, A•)

([ ]N)• = [ ]N•

([ ]i)• = [ ]i

case(M,xA.P, yB .Q,C). Prawitz [10] shows that in NI2 the connectives ∧, ∨ and
⊥ are definable operations. For instance, in the case of disjunction, this means that
(A1 ∨A2) ⊃ (A1∨A2) and (A1∨A2) ⊃ (A1 ∨A2) are theorems of NI2. The proof in
[10], in terms of the extended system F, amounts to the following derivable sequents:

y : A1 ∨A2 ` ΛXλw(A1⊃X)∧(A2⊃X).case(y, x1.w1x1, x2.x2, w2x2) : A1∨A2 (2)

z : A1∨A2 ` z(A1 ∨A2)〈λx1.in1(x1, A1, A2), λx2.in2(x2, A1, A2)〉 : A1 ∨A2 (3)

This is very close to show the admissibility of the introduction and elimination rules
for A1 ∨A2 (the first two rules of Fig. 4). Given Γ `M : Ai, from (2) we get

Γ ` ΛXλw(A1⊃X)∧(A2⊃X).case(ini(M,A1, A2), x1.w1x1, x2.x2, w2x2) : A1∨A2

Applying β∨, the term reduces to ΛXλw(A1⊃X)∧(A2⊃X).wiM . On the other hand,
given Γ, xi : Ai ` Pi : C, for i = 1, 2, a variation of (3) gives

Γ, z : A1∨A2 ` zC〈λx1.P1, λx2.P2〉 : C

So, if we are further given Γ `M : A1∨A2, we obtain

Γ `MC〈λx1.P1, λx2.P2〉 : C

4 Atomization of universal instantiation
In this section we add to system F extra conversions % and ρ which promote the at-
omization of universal instantiation. We show that typable terms have unique “atomic”
normal forms. We also propose new conversions ε and ε, which postulate the com-
muting principles for the derived connectives of disjunction and absurdity, and which
are simple variants of a general commuting principle introduced in [11]5. The latter

5Notice, however, that here, contrary to [11], in the formulation of the commuting principles ε and ε, we
do not constraint ourselves to formulas obeying certain restrictions in the polarity of the occurrences of type
variables.
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principle adds “naturality” to natural deduction, according to [11]. Here we work out
in detail the relationship of ε and ε with a more general “dinaturality” principle. The
relationship between %, ρ and ε, ε is also worked put. Since it has been proved that
adding the dinaturality principle to system F does not make the system inconsistent
[2], the same follows with respect to ε and ε. We profit from the relationship among all
the new conversions to prove that extending system F with % and ρ does not bring in-
consistency. We also show the simulation theorem for the Russell-Prawitz translation,
which makes use of the atomization conversions.

4.1 New conversions for system F

The %- and ρ-redexes are terms of the form CASE(M,x.P, y.Q,C) and ABORT(M,C),
respectively, where C is not atomic. Therefore, such redexes include a universal in-
stantiation with a non-atomic formula C. The common purpose of each of the %- and
ρ-conversion rules is to replace one such instantiation by another with a sub-formula
of C. Since there is a common purpose, the two conversion rules are denoted with
symbols “%” and “ρ” which are variant of each other.

Definition 4 (Atomization conversion rules in F). 1. A %-redex is a term of the form
MC〈λxA.P, λyB .Q〉, whereC is not atomic. There are three %-conversion rules
for this redex, depending on the form of C:

M(C1 ⊃ C2)〈λxA.P, λyB .Q〉 → λzC1 .MC2〈λxA.P z, λyB .Qz〉
M(C1 ∧ C2)〈λxA.P, λyB .Q〉 → 〈MCi〈λxA.P i, λyB .Qi〉〉i=1,2

M(∀Y.D)〈λxA.P, λyB .Q〉 → ΛY.MD〈λxA.PY, λyB .QY 〉

where z 6= x, z 6= y, z /∈ P,Q,M ; and Y /∈ P,Q,M,A,B.

2. A ρ-redex is a term of the form MC, where C is not atomic. There are three
ρ-conversion rules for this redex, depending on the form of C:

M(C1 ⊃ C2) → λzC1 .MC2

M(C1 ∧ C2) → 〈MCi〉i=1,2

M(∀Y.D) → ΛY.MD

where z /∈M ; and Y /∈M .

For now, a %-redex always contains a ρ-redex. Typing constraints will later forbid
this situation. However, typing considerations for these rules and the discussion of
subject reduction are postponed to Subsection 4.3.

We now introduce a variant of the atomization conversion %.

Definition 5. The δ-conversion rules are as follows:

M(C1 ⊃ C2)〈λxAλzC1 .P, λyBλzC1 .Q〉 → λzC1 .MC2〈λxA.P, λyB .Q〉
M(C1 ∧ C2)〈λxA.〈Pi〉i=1,2, λy

B .〈Qi〉i=1,2〉 → 〈MCi〈λxA.Pi, λyB .Qi〉〉i=1,2

M(∀Y.D)〈λxAΛY.P, λyBΛY.Q〉 → ΛY.MD〈λxA.P, λyB .Q〉
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A δ-redex is a particular form of %-redex which, if reduced by %, generates two
β-redexes (actually four, in the case of conjunction). If these are reduced away imme-
diately, we obtain the effect of δ-reduction. Conversely, a %-redex, if η-expanded, can
be reduced with δ instead of %. So, δ and % are related via βη-conversions, as the next
result shows.

Proposition 2 (Variants of atomization). Let M,N ∈ F.

1. If M →δ N then M →+
%β N .

2. If M →% N then M =δη N .

Proof. We have to do an induction on M →δ N and another on M →% N . In both
proofs, the inductive cases are routine because the relations→+

%β and =δη are compat-
ible. In each proof there are 3 base cases. We just illustrate with two base cases for the
first assertion and one for the second.

M(C ⊃ D)〈λxAλzC .P, λyBλzC .Q〉
→% λwC .MD〈λxA.(λzC .P )w, λyB .(λzC .Q)w〉
→2
β λwC .MD〈λxA.[w/z]P, λyB .[w/z]Q〉

= λzC .MD〈λxA.P, λyB .Q〉

M(∀Y.D)〈λxAΛY.P, λyBΛY.Q〉
= M(∀Y.D)〈λxAΛZ.[Z/Y ]P, λyBΛZ.[Z/Y ]Q〉
→% ΛY.MD〈λxA.(ΛZ.[Z/Y ]P )Y, λyB .(ΛZ.[Z/Y ]Q)Y 〉
→2
β ΛY.MD〈λxA.P, λyB .Q〉

M(C1 ∧ C2)〈λxA.P, λyB .Q〉
←η M(C1 ∧ C2)〈λxA.〈Pi〉i=1,2, λy

B .〈Qi〉i=1,2〉
→δ 〈MCi〈λxA.P i, λyB .Qi〉〉i=1,2

According to the previous result, a δ-reduction step can be broken into a %β-
reduction sequence, but a %-reduction step can be derived only as a δη-equality. Given
our insistence on reduction, rather than mere equality, in the main results to be shown
below, the previous result is an argument to take the %-conversion rules as primitive,
instead of the δ-conversion rules.

The δ-conversions pull down an introduction inference with which the two branches
P and Q of a CASE(M,x.P, y.Q,C) end. Dually, a commuting conversion pushes up
to the two branches P and Q of a CASE(M,x.P, y.Q,C) an elimination inference of
which the mentioned CASE is main premiss.

Definition 6 (Commuting conversion rules in F).

1. The ε-conversion rules are as follows:

M(C1 ⊃ C2)〈λxA.P, λyB .Q〉N → MC2〈λxA.PN, λyB .QN〉
M(C1 ∧ C2)〈λxA.P, λyB .Q〉i → MCi〈λxA.P i, λyB .Qi〉
M(∀Y.C ′)〈λxA.P, λyB .Q〉C ′′ → M([C ′′/Y ]C ′)〈λxA.PC ′′, λyB .QC ′′〉
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2. The ε-conversion rules are as follows:

M(C1 ⊃ C2)N → MC2

M(C1 ∧ C2)i → MCi
M(∀Y.C ′)C ′′ → M([C ′′/Y ]C ′)

We leave it to the reader to rewrite these rules in terms of CASE and ABORT.
Recall the discussion on how to define commutative conversions in IPC. In F, ε

is stricty contained in the following auxiliary rule:

(ε′) E [CASE(M,xA.P, yB .Q,C)]→ CASE(M,xA.E [P ], yB .E [Q], D) .

The two rules are not the same due to the fact that in ε′ no connections is imposed on
C and D. If we wanted to constrain this rule to become equal to ε, we would define it
only for certain pairs (E , C), with D = D(E , C) determined by (E , C) as follows:

D([ ]N,E ⊃ F ) = F
D([ ]i, C1 ∧ C2) = Ci (i = 1, 2)
D([ ]E,∀X.C0) = [E/X]C0

(4)

Similar remarks apply to ε versus the auxiliary rule

(ε′) E [ABORT(M,C)]→ ABORT(M,D) .

Commutative conversions rules are named with symbols “ε” and “ε”, which are a
variant of each other, again as a reminder that they express related commuting prin-
ciples. That relation will be even more evident when reducing typable terms; but, as
before with atomization and δ, we postpone to Subsection 4.3 all considerations about
subject reduction and typing in connection with commutative conversions.

In all cases of the ε- and ε-conversion rules, a universal instantiation with formula
C is replaced by another with some formula D, and in all cases D is a sub-formula of
C, except when C = ∀Y.C ′ and E = [ ]C ′′, for some formulas C ′ and C ′′, in which
case D = [C ′′/Y ]C ′. Let us compare % with ε in this situation:

CASE(M,x.P, y.Q, ∀Y.C ′) →% ΛY.CASE(M,x.PY, y.QY,C ′)
CASE(M,x.P, y.Q, ∀Y.C ′)C ′′ →ε CASE(M,x.PC ′′, y.QC ′′, [C ′′/Y ]C ′)

Starting from the ε-redex, an obvious alternative is to apply, not rule ε, but rule %
instead, to reach the intermediate term (ΛY.CASE(M,x.PY, y.QY,C ′))C ′′. The effect
of ε-reduction is obtained by a further β-reduction step. In fact, each ε- and ε-reduction
step has a similar decomposition, as the first two items of the next result show.

Proposition 3 (Atomization vs commuting conversion). Let M,N ∈ F.

1. If M →ε N then M →2
%β N .

2. If M →ε N then M →2
ρβ N .

3. If M →% N then M =εη N .
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4. If M →ρ N then M =εη N .

Proof. We give four proofs by induction. We never show the inductive cases, which
are routine.

The first assertion is proved by induction on M →ε N . There are three cases to
consider, where the third corresponds to the discussion just before this propostition.

M(C1 ⊃ C2)〈λxA.P, λyB .Q〉N →% (λzC1 .MC2〈λxA.P z, λyB .Qz〉)N
→β MC2〈λxA.PN, λyB .QN〉

M(C1 ∧ C2)〈λxA.P, λyB .Q〉i →% (〈MCj〈λxA.P j, λyB .Qj〉〉j=1,2)i
→β MCi〈λxA.P i, λyB .Qi〉

M(∀Y.C ′)〈λxA.P, λyB .Q〉C ′′ →% (ΛY.MC ′〈λxA.PY, λyB .QY 〉)C ′′
→β M([C ′′/Y ]C ′)〈λxA.PC ′′, λyB .QC ′′〉

For the second assertion, we proceed by induction on M →ρ N . The three cases
of the base are proved by simple calculations.

M(C1 ⊃ C2)N →ρ (λzC1 .MC2)N →β MC2

M(C1 ∧ C2)i →ρ (〈MCj〉j=1,2)i →β MCi
M(∀Y.C ′)C ′′ →ρ (ΛY.MC ′)C ′′ →β M([C ′′/Y ]C ′)

The third assertion is proved by induction onM →% N . There are three base cases.

M(C1 ⊃ C2)〈λxA.P, λyB .Q〉 ←η λzC1 .(M(C1 ⊃ C2)〈λxA.P, λyB .Q〉)z
→ε λzC1 .MC2〈λxA.P z, λyB .Qz〉

M(C1 ∧ C2)〈λxA.P, λyB .Q〉
←η 〈(M(C1 ∧ C2)〈λxA.P, λyB .Q〉)1, (M(C1 ∧ C2)〈λxA.P, λyB .Q〉)2〉
→2
ε 〈MC1〈λxA.P1, λyB .Q1〉,MC2〈λxA.P2, λyB .Q2〉〉

= 〈MCi〈λxA.P i, λyB .Qi〉〉i=1,2

M(∀Y.C0)〈λxA.P, λyB .Q〉 ←η ΛX.(M(∀Y.C0)〈λxA.P, λyB .Q〉)X
→ε ΛX.M([X/Y ]C0)〈λxA.PX, λyB .QX〉
= ΛY.MC0〈λxA.PY, λyB .QY 〉

For the fourth assertion, the calculations of the base of the proof by induction on
M →ρ N are as follows.

M(C ⊃ D) ←η λzC .(M(C ⊃ D))z →ε λzC .MD
M(C1 ∧ C2) ←η 〈(M(C1 ∧ C2))1, (M(C1 ∧ C2))2〉 →2

ε 〈MC1,MC2〉
M(∀Y.C0) ←η ΛX.(M(∀Y.C0))X →ε ΛX.M [X/Y ]C0

Notice ΛX.M [X/Y ]C0 = ΛY.MC0 as required.

In the same way as Prop. 2 is an argument to take %-conversion rules as primitive,
instead of the δ-conversion rules, Prop. 3 is an argument to take the %-conversion rules
(respectively the ρ-conversion rules) as primitive instead of the ε-conversion rules (re-
spectively the ε-conversion rules). As a consequence, we may state below results in
terms of εεδ-reduction, knowing that they may be immediately restated in terms of
%ρ-reduction, in view of Props. 2 and 3 – see for instance Theorem 1 below.
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4.2 Strict simulation
It has been observed [5, 11] that the Russell-Prawitz translation does not yield a simu-
lation of proof reduction. Next we show that, once F is added %ρ-conversions, a sim-
ulation of proof reduction occurs. The simulation is even strict, in the sense that each
reduction step in IPC is mapped to a non-empty reduction sequence in the enriched
system F.

Theorem 1 (Strict simulation). If M1 → M2 in IPC then M•1 →+
βηεεδ M

•
2 in F

(hence M•1 →+
βη%ρ M

•
2 in F). More precisely:

• Case R ∈ {β⊃, η⊃, β∧, η∧}. If M1 →R M2 in IPC then M•1 →R M
•
2 in F.

• Case R = β∨. If M1 →R M2 in IPC then M•1 →+
β M

•
2 in F.

• Case R = η∨. If M1 →R M2 in IPC then M•1 →+
ηδ M

•
2 in F.

• Case R ∈ {π⊃, π∧, π∨, π⊥}. If M1 →R M2 in IPC then M•1 →+
ε M

•
2 in F.

• Case R ∈ {$⊃, $∧, $∨, $⊥}. If M1 →R M2 in IPC then M•1 →+
ε M

•
2 in F.

Proof. For each rule R of IPC, one does an induction on M1 →R M2. In each
proof, the inductive cases follow routinely by induction hypothesis, since the various
relations →S and →+

S in F, with S ∈ {β, η, ε, ε, ηδ}, are compatible; and the base
case corresponds to the reduction rule R. The base cases relative to reduction rules
pertaining to ⊃ and ∧ are trivial because (·)• maps the constructions pertaining to
these connectives in homomorphic fashion, and because ([N/x]M)• = [N•/x]M•.
We detail the base cases relative to reduction rules pertaining to ∨ and ⊥.

Case β∨: We prove that CASE(INi(N,A1, A2), xA1
1 .P1, x

A2
2 .P2, C)→+

β [N/xi]Pi
in F.

LHS

= (ΛX.λw(A1⊃X)∧(A2⊃X).wiN)C〈λxA1
1 .P1, λx

A2
2 .P2〉

→β∀ (λw(A1⊃C)∧(A2⊃C)wiN)〈λxA1
1 .P1, λx

A2
2 .P2〉

→β⊃ 〈λxA1
1 .P1, λx

A2
2 .P2〉iN

→β∧ (λxAi
i .Pi)N

→β⊃ [N/xi]Pi

The first equality is justified by the definitions of CASE and IN. To conclude the proof
in this case, we need again the commutation of ( )• with substitution.

Case η∨: We prove that CASE(M,xA.IN1(x,A,B), yB .IN2(y,A,B), A∨B) →+
δη

M in F.

LHS
= M(A∨B)〈λxAΛXλw(A⊃X)∧(B⊃X).w1x, λyBΛXλw(A⊃X)∧(B⊃X).w2y〉
→δ ΛX.M(((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)〈λxA.λw.w1x, λyBλw.w2y〉
→δ ΛX.λw.MX〈λxA.w1x, λyB .w2y〉
→2
η⊃ ΛX.λw.MX〈w1, w2〉
→η∧ ΛX.λw.MXw
→η⊃ ΛX.MX
→η∀ M
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The first equality is justified by the definitions of CASE and IN.
Cases π⊃ and π∧ follow immediately from a single application of ε. Just notice

that, in F, (CASE(M,xA.P, yB .Q,C ⊃ D))N →ε CASE(M,xA.PN, yB .QN,D)
and CASE(M,xA.P, yB .Q,C1 ∧ C2)i→ε CASE(M,xA.P i, yB .Qi, Ci).

Case π∨: We prove that, in F,

CASE(CASE(M,xA1
1 .P1, x

A2
2 .P2, B1∨B2), yB1

1 .Q1, y
B2
2 .Q2, C)→+

ε

CASE(M,xA1
1 .CASE(P1, y

B1
1 .Q1, y

B2
2 .Q2, C), xA2

2 .CASE(P2, y
B1
1 .Q1, y

B2
2 .Q2, C), C).

LHS

= (M(B1∨B2)〈λxA1
1 .P1, λx

A2
2 .P2〉)C〈λyB1

1 .Q1, λy
B2
2 .Q2〉

→ε M(((B1 ⊃ C) ∧ (B2 ⊂ C)) ⊃ C)〈λxA1
1 .P1C, λx

A2
2 .P2C〉〈λyB1

1 .Q1, λy
B2
2 .Q2〉

→ε MC〈λxA1
1 .P1C〈λyB1

1 .Q1, λy
B2
2 .Q2〉, λxA2

2 .P2C〈λyB1
1 .Q1, λy

B2
2 .Q2〉〉

= RHS

The definition of CASE justifies the equalities above.
Case π⊥: In F, we have that

ABORT(CASE(M,xA.P, yB .Q,⊥), C)→ε CASE(M,xA.ABORT(P,C), yB .ABORT(Q,C), C) .

Indeed:

LHS = (M⊥〈λxA.P, λyB .Q〉)C →ε MC〈λxA.PC, λyB .QC〉 = RHS ,

where the two equalities are by definition of CASE and ABORT.
Cases $⊃ and $∧ follow immediately from a single application of ε. Just no-

tice that (ABORT(M,A ⊃ B))N →ε ABORT(M,B) and ABORT(M,C1 ∧ C2)i →ε

ABORT(M,Ci).
Case $∨: We prove that, in F,

CASE(ABORT(M,A∨B), xA.P, yB .Q,C)→+
ε ABORT(M,C) .

LHS
= M(A∨B)C〈λxA.P, λyB .Q〉 (by def. of CASE and ABORT)
→ε M((A ⊃ C) ∧ (B ⊃ C)) ⊃ C)〈λxA.P, λyB .Q〉
→ε MC
= RHS (by def. of ABORT)

Case $⊥: We prove, in F,

ABORT(ABORT(M,⊥), A)→ε ABORT(M,A) .

Observe that
LHS = M⊥A→ε MA = RHS ,

where the two equalities are by definition of ABORT.
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Now suppose M1 → M2 in IPC and M1 is typable in Γ. By subject reduction,
M1 and M2 have the same type (A, say) in Γ, M1 and M2 can be seen as proofs of
A, and the reduction step M1 → M2 can be seen as a normalization step between the
proofsM1 andM2. Moreover, we knowM•1 andM•2 have typeA• in Γ•, and the strict
simulation theorem gives M•1 →+

βη%ρ M
•
2 in F: but does this reduction correspond to

a sequence of normalization and atomization steps between successive proofs of A•?
To answer to this question, we have to investigate the typing of atomization (and δ, and
commutative) conversions.

4.3 Properties of typable atomization
We investigate atomization in connection with typing. Recall for instance the %-conversion
rule with C = C1 ⊃ C2:

M(C1 ⊃ C2)〈λxA.P, λyB .Q〉 → λzC1 .MC2〈λxA.P z, λyB .Qz〉 (∗)

From the assumption that the redex of (∗) has type D in Γ, say, we cannot infer that
the contractum has the same type in Γ. That is, the subject-reduction property fails, if
the conversion rule is formulated solely as (∗). The preservation of type from redex to
contractum is guaranteed if, additionaly, we demand that M has type A∨B in Γ.

Now, the ammended rule is not to take (∗) together with the requirement that, for
some Γ, the redex has a type and M has type A∨B. Such rule (let alone its compatible
closure) would still fail the subject-reduction test, because we could be given another
Γ′ in which the redex had some type, and again, in the case Γ′ was not Γ, no guarantee
would exist that the contractum had in Γ′ the same type as the redex.

The ammended rule is to take (∗) as defining a ternary relation, consisting of tuples
(N,N ′,Γ) where N and N ′ are, respectively, a redex and its contractum according to
(∗), and Γ is an environment in which M has type A∨B. But, then, how to define the
compatible closure of such ternary relation? We cannot simply close the pairs (N,N ′)
under the term-forming operations, because the Γ may vary as we form new pairs - so
the closure rules have to deal with Γ as well. In the end, we will have another set of
tuples (N,N ′,Γ), whose intuition is: N → N ′ is fine in Γ. The preservation of type
from redex to contractum, guaranteed above for the rule (∗), will hold now from N to
N ′ - but only because the type is given in a fine Γ, not an arbitrary Γ′.

Definition 7 (Fine Atomization). Let Γ be an environment.

1. A %-redex MC〈λxA.P, λyB .Q〉 is fine in Γ if M has type A∨B in Γ.

2. A ρ-redex MC is fine in Γ if M has type ⊥ in Γ.

3. A root %ρ-reduction (an instance of the %ρ-conversion rules) is fine in Γ if the
redex is fine in Γ.

4. Let R ∈ {%, ρ, %ρ}. The fine root R-reductions define a ternary relation, namely

R := {(M,M ′,Γ)|M →M ′ is a root R-reduction fine in Γ} .
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Figure 7: Fine compatible closure rules

(i) If M →M ′ is fine in x : A,Γ, then λxA.M → λxA.M ′ is fine in Γ.

(ii) If M →M ′ is fine in Γ, then MN →M ′N is fine in Γ.

(iii) If N → N ′ is fine in Γ, then MN →MN ′ is fine in Γ.

(iv) If M →M ′ is fine in Γ, then 〈M,N〉 → 〈M ′, N〉 is fine in Γ.

(v) If N → N ′ is fine in Γ, then 〈M,N〉 → 〈M,N ′〉 is fine in Γ.

(vi) If M →M ′ is fine in Γ, then Mi→M ′i is fine in Γ.

(vii) If M →M ′ is fine in Γ, then ΛX.M → ΛX.M ′ is fine in Γ.

(viii) If M →M ′ is fine in Γ, then MB →M ′B is fine in Γ.

If (M,M ′,Γ) ∈ R, we write “M RM ′ is fine in Γ”. We now want to define
the “compatible closure” of R, that will be written “M →R M ′ is fine in Γ”:
it is another ternary relation defined inductively by closing R under the closure
rules in Fig. 7.

5. M is a fine %ρ-normal form in Γ if M →%ρ M
′ is fine in Γ for no M ′.

6. The closures

• “M →+
R M ′ is fine in Γ”,

• “M →∗R M ′ is fine in Γ” (fine R-reduction in Γ),

• “M =R M ′ is fine in Γ” (fine R-equality in Γ),

of “M →R M ′ is fine in Γ” are obtained by closing the latter under the appro-
priate closure rules from the following list:

(a) M →M is fine in Γ (fine reflexivity).

(b) If M →M ′ is fine in Γ, then M ′ →M is fine in Γ (fine symmetry).

(c) If M →M ′ is fine in Γ and M ′ →M ′′ is fine in Γ, then M →M ′′ is fine
in Γ (fine transitivity).

If we erase the Γ’s from the rules in Fig. 7, then we obtain the ordinary closure rules
defining the compatible closure. Therefore, ifM →R M

′ is fine in Γ, thenM →R M
′.

In addition, we know that the R-redex contracted in this reduction step is fine in some
Γ′ containing Γ (the extra declarations in Γ′ are those relative to the λ-abstractions
crossed when going from the root of M to the root of the contracted redex).

Proposition 4 (Fine subject reduction). If M →%ρ M
′ is fine in Γ and M has type A

in Γ, then M ′ has type A in Γ.
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Proof. By induction on M →%ρ M
′ fine in Γ. For the base cases, going through the

%-rules, we check that, if a %-redex MC〈λxA.P, λyB .Q〉 is fine and has a type in Γ,
then that type is C, and C is also the type of its contractum. Similarly for the ρ-rules.
The inductive cases are routine.

Proposition 5 (Fine termination). Fine %ρ-reduction in Γ starting from a typable term
in Γ is terminating.

Proof. First, given a type C, its size |C| is defined by: |X| = 0; |A ⊃ B| = 2|B|2 +
3|B|+ 1; |A ∧B| = 1 + |A|+ |B|; |∀X.A| = 1 + |A|.

Next, we define a pre-redex to be a term of the forms MCQ or MC, where C is
not atomic. In the first case, the pre-redex is a generalization of a %-redex; and in the
second case the pre-redex is exactly a ρ-redex. Pre-redexes are ranged over by r. We
say a pre-redex MCQ is fine in Γ if, for some types A and B, M has type A∨B in Γ;
and say the pre-redex MC is fine in Γ if M has type ⊥ in Γ. If the pre-redex MCQ is
fine in Γ, MC is not another pre-redex fine in Γ (because the type of M in Γ is not ⊥).

Given M typable in Γ with type A, say, and given an occurrence of a subterm N of
M , this occurrence, together with the unique typing derivation of Γ `M : A determine
a Γ′ such that N is typable in Γ′: such an occurrence is called a pre-redex occurrence
in M (according to Γ) if N is a pre-redex fine in the determined Γ′. Each pre-redex
occurrence in M is thus the occurrence of some pre-redex r and has an associated
environment Γ′. Different pre-redex occurrences in M will be denoted r1, r2, etc.
When we write ri, we mean an occurrence of pre-redex r, and the related environment
is denoted Γri . LetR be the set of pre-redex occurrences in M . Define

W (M ; Γ) :=
∑
ri∈R

w(r; Γri) ,

where w(r; Γ′) is defined as follows:

• if r = PCQ, then w(r; Γ′) = |C|(1 +W (P ; Γ′) +W (Q; Γ′));

• if r = PC, then w(r; Γ′) = |C|(1 +W (P ; Γ′)).

Now suppose M is itself a pre-redex r fine in Γ. Let us calculate W (r; Γ):

• if r = PCQ, then W (r; Γ) = w(r; Γ) +W (P ; Γ) +W (Q; Γ), hence

W (r; Γ) = (|C|+ 1)(W (P ; Γ) +W (Q; Γ)) + |C| (∗)

• if r = PC, then W (r; Γ) = w(r; Γ) +W (P ; Γ), hence

W (r; Γ) = (|C|+ 1)(W (P ; Γ)) + |C| (∗∗)

Notice how, in these calculations, we do not make use of the concrete definition of
|C|. The same is true of the recursive definition of W we give next, which relies on the
previous calculations.
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The easy cases read:

W (x; Γ) = 0
W (λxA.M ; Γ) = W (M ; Γ, x : A)

W (〈M1,M2〉; Γ) = W (M1; Γ) +W (M2; Γ)
W (Mi; Γ) = W (M ; Γ)

W (ΛX.M ; Γ) = W (M ; Γ)

As toW (MC; Γ): ifMC is not a pre-redex fine in Γ, thenW (MC; Γ) = W (M ; Γ);
otherwise, W (MC; Γ) = (|C| + 1)W (M ; Γ) + |C|, due to (∗∗) above. Notice that,
when C is atomic (hence MC is not a pre-redex and |C| = 0), (|C| + 1)W (M ; Γ) +
|C| = W (M ; Γ), so it does not matter which branch of the definition we use to calcu-
late.

As to W (MN ; Γ): if MN is not a pre-redex fine in Γ, then W (MN ; Γ) =
W (M ; Γ) + W (N ; Γ); otherwise MN = PCN , M = PC is not a pre-redex fine
in Γ (because the type of P in Γ is not ⊥), hence W (M ; Γ) = W (P ; Γ), and therefore
W (MN ; Γ) = (|C|+ 1)(W (M ; Γ) +W (N ; Γ)) + |C|, due to (∗) above. Notice that,
when M = PC with C atomic (hence MN = PCN is not a pre-redex and |C| = 0),
it does not matter again which branch of the definition we use to calculate, because
(|C|+ 1)(W (M ; Γ) +W (N ; Γ)) + |C| = W (M ; Γ) +W (N ; Γ).

All is in place to prove:

If M →%ρ N is fine in Γ, then W (M ; Γ) > W (N ; Γ). (∗ ∗ ∗)

If M is typable in Γ, termination of fine %ρ-reduction in Γ starting from M follows
from (∗ ∗ ∗) and the fact that N is also typable in Γ (due to fine subject reduction) .

The proof of (∗ ∗ ∗) is by induction on M →%ρ N fine in Γ, and we will make use
of the recursive definition of W .

For the base cases, we have to check each conversion rule in Def. 4. The rules when
C = C1 ∧ C2 are challenging, because they cause duplication of terms. But, since
measure W is weighting pre-redexes, the %-rule when C = C1 ⊃ C2 is challenging as
well, since it generates new pre-redexes in some cases. The concrete definition of |C|
is important in proving the base cases.

CaseLHS := M(C1 ⊃ C2)〈λxA.P, λyB .Q〉 →% λz
C1MC2〈λxA.P z, λyB .Qz〉 =:

RHS. Since z /∈ FV (M), W (M ; Γ, z : C1) = W (M ; Γ), so we just write W (M).
Similarly for P and Q. The most favorable case, the case when W (RHS) is smaller,
is when neither Pz nor Qz is a new pre-redex. Then, W (Pz) = W (P ) and W (Qz) =
W (Q), and we calculate:

W (LHS)
= (|C1 ⊃ C2|+ 1)(W (M) +W (P ) +W (Q)) + |C1 ⊃ C2|
≥ (|C2|+ 1)(W (M) +W (P ) +W (Q)) + |C1 ⊃ C2|
> (|C2|+ 1)(W (M) +W (P ) +W (Q)) + |C2|
= (|C2|+ 1)(W (M) +W (Pz) +W (Qz)) + |C2|
= W (RHS)

We jump immediately to the less favorable case, when both Pz andQz are pre-redexes.
This means that P = P ′C2, Q = Q′C2, P ′ and Q′ have type A′∨B′, and C1 = (A′ ⊃
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C2)∧(B′ ⊃ C2), for some P ′,Q′,A′ andB′. In this case,W (P ) = W (P ′),W (Q) =
W (Q′), W (Pz) = (|C2|+ 1)W (P ′) + |C2| and W (Qz) = (|C2|+ 1)W (Q′) + |C2|.
Then

W (RHS)
= (|C2|+ 1)(W (M) +W (Pz) +W (Qz)) + |C2|
= (|C2|+ 1)W (M) + (|C2|+ 1)2W (P ′) + (|C2|+ 1)2W (Q′) + 2|C2|2 + 3|C2|
≤ (|C2|+ 1)2(W (M) +W (P ′) +W (Q′)) + 2|C2|2 + 3|C2|
≤ (|C1 ⊃ C2|+ 1)(W (M) +W (P ′) +W (Q′)) + 2|C2|2 + 3|C2|
= (|C1 ⊃ C2|+ 1)(W (M) +W (P ) +W (Q)) + 2|C2|2 + 3|C2|
< (|C1 ⊃ C2|+ 1)(W (M) +W (P ) +W (Q)) + 2|C2|2 + 3|C2|+ 1
= (|C1 ⊃ C2|+ 1)(W (M) +W (P ) +W (Q)) + |C1 ⊃ C2|
= W (LHS)

CaseLHS := M(C1∧C2)〈λxA.P, λyB .Q〉 →% 〈MCi〈λxA.P i, λyB .Qi〉〉i=1,2 =:
RHS. We calculate, omitting the fixed argument Γ of W :

W (LHS)
= (|C1|+ |C2|+ 2)(W (M) +W (P ) +W (Q)) + |C1|+ |C2|+ 1
= (|C1|+ 1)(W (M) +W (P ) +W (Q)) + |C1|+

+(|C2|+ 1)(W (M) +W (P ) +W (Q)) + |C2|+ 1
= W (MC1〈λxA.P1, λyB .Q1〉) +W (MC2〈λxA.P2, λyB .Q2〉) + 1
= W (RHS) + 1

Case LHS := M(C1 ∧ C2)→ρ 〈MCi〉i=1,2 =: RHS. We calculate:

W (LHS)
= (|C1|+ |C2|+ 2)W (M) + |C1|+ |C2|+ 1
= (|C1|+ 1)W (M) + |C1|+ (|C2|+ 1)W (M) + |C2|+ 1
= W (MC1) +W (MC2) + 1
= W (RHS) + 1

Case M = λxA.M ′ →%ρ λx
A.N ′ = N , with M ′ →%ρ N

′ fine in Γ, x : A. By
IH, W (M ′; Γ, x : A) > W (N ′; Γ, x : A). Hence W (M ; Γ) > W (N ; Γ), because
W (M ; Γ) = W (M ′; Γ, x : A) and W (N ; Γ) = W (N ′; Γ, x : A).

Equally easy are: the case M = ΛX.M ′ →%ρ ΛX.N ′ = N , with M ′ →%ρ N
′

fine in Γ; the case M = 〈M1,M2〉 →%ρ 〈N1,M2〉 = N , with M1 →%ρ N1 fine in Γ;
the case M = 〈M1,M2〉 →%ρ 〈M1, N2〉 = N , with M2 →%ρ N2 fine in Γ; and the
case M = M ′i→%ρ N

′i = N , with M ′ →%ρ N
′ fine in Γ. They all follow by IH and

application of the recursive definition of W .
Case M = M1M2 →%ρ N1M2 = N with M1 →%ρ N1 fine in Γ. By IH,

W (M1; Γ) > W (N1; Γ). First, we prove this important remark: M is a pre-redex fine
in Γ iff N is a pre-redex fine in Γ. The “only if” implication is easy to see. The “if”
implication is slightly more involved: if N is a pre-redex, then N1 = N ′1C, for some
N ′1, C, and the circumstance M1 →%ρ N1 implies that M1 = M ′1C and M ′1 →%ρ N

′
1,

since no root %ρ-reduction can produce the instantiation N ′1C. Both implications use
fine subject reduction. Now that the remark is proved, we continue:
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• First sub-case: M is a pre-redex. Then N is a pre-redex, W (M ; Γ) = (|C| +
1)(W (M1; Γ) + W (M2; Γ)) + |C|, and W (N ; Γ) = (|C| + 1)(W (N1; Γ) +
W (M2; Γ)) + |C|. So W (M ; Γ) > W (N ; Γ) follows from W (M1; Γ) >
W (N1; Γ).

• Second sub-case: M is not a pre-redex. Then N is not a pre-redex, W (M ; Γ) =
W (M1; Γ)+W (M2; Γ), andW (N ; Γ) = W (N1; Γ)+W (M2; Γ). SoW (M ; Γ) >
W (N ; Γ) follows again from W (M1; Γ) > W (N1; Γ).

The remaining two cases are proved similarly, each with the help of an “important
remark”, saying that M is a pre-redex fine in Γ iff N is a pre-redex fine in Γ, and very
easy to prove, using fine subject reduction. There is the case of M = M1M2 →%ρ

M1N2 = N with M2 →%ρ N2 fine in Γ: its proof finished off very similarly to the
previous case, by IH, the important remark and the recursive definition of W . The last
case is M = M ′C →%ρ N

′C = N with M ′ →%ρ N
′ fine in Γ: its proof is finished off

in the same way.

Proposition 6 (Atomic normal form). If M is typable in Γ, then M has a unique fine
%ρ-normal form in Γ (which we call the atomic normal form of M in Γ).

Proof. Fine termination guarantees the existence of normal forms. As to uniqueness,
we need to prove that fine %ρ-reduction in Γ is confluent. By Newman’s Lemma [12], it
suffices to show local confluence. Suppose thatM →%ρ N1 andM →%ρ N2 are fine in
Γ. The two redexes contracted in these two steps can only overlap trivially (otherwise,
in some Γ′, some M ′C would be a fine ρ-redex and, at the same time, part of a fine
%-redexM ′CQ, and henceM ′ would have two different types in Γ′); but then it is easy
to joint N1 and N2 in a common %ρ-reduct.

This concludes the investigation of typable atomization. We turn briefly to δ and
commutative conversions. The problem with subject reduction observed in the begin-
ning of this subsection with % is observed again with the δ-rules in Def. 5 and the
ε-rules (resp. ε-rules) in Def. 6. If we are given Γ where the redex is typable, the corre-
sponding contractum is typable only if, additionally, M has type A∨B (resp. type ⊥)
in Γ. This determines what it means to be a δ-, ε- or ε-redex fine in Γ, and therefore
what it means, for a root δ-, ε- or ε-reduction, to be fine in Γ.

A root βη-reduction is always fine in Γ. Hence, given R any combination of
β, η, δ, ε, ε, %, ρ, we know what it means to be a root R-reduction fine in Γ. Following
the path in Def. 7, we define the versions of→R,→+

R,→∗R and =R fine in Γ.
Now we have the tools to answer the question at the end of Subsection 4.2, by pro-

viding an addendum to the strict simulation theorem.

Theorem 1 (full version): If M1 → M2 in IPC, then M•1 →+
βηεεδ M•2 and

M•1 →+
βη%ρ M

•
2 in F; moreover, these reductions are fine in Γ•, if M1 is typable in Γ.

Proof. We have to go through all the cases in the proof of Theorem 1 and check the ex-
tra statement. Let us start with the base cases. Again, reduction rules that just generate
βη-steps in the target are no trouble, since βη-reduction is always fine in any envi-
ronment. So we have to check rule η∨, the various π-rules, and the various $-rules.
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From the assumption that the redex is typable in Γ, a term M has type A ∨ B or ⊥ as
expected, and so M• has type A•∨B• or ⊥ as required to make all the δ, ε or ε-steps
in the shown simulation be fine in Γ•. As to the inductive cases, they become routine,
as soon as we realize that, for S ∈ {β, η, ε, ε, ηδ}, the relations “N →S N

′ is fine in
∆” and “N →+

S N ′ is fine in ∆” not only enjoy the fine closure rules of Fig. 7, but
also another set of rules, the derivable rules that are the fine versions of those in Fig. 5,
and which we refrain to write down.

In a similar way we can go again through the proof of Prop. 3, to conclude, in
particular: if M →%ρ N is fine in Γ, then M =εεη N is fine in Γ. We note a further
consequence, to be used in the next subsection:

If M =%ρ N is fine in Γ, then M =εεη N is fine in Γ. (5)

We finish this subsection with a final comments on ε and ε. Consider again rule ε′

E [CASE(M,xA.P, yB .Q,C)]→ CASE(M,xA.E [P ], yB .E [Q], D) ,

and say this root reduction is fine in Γ if M has type A∨B in Γ and, furthermore, E
has type D and hole of type C in Γ. Then, the connections between C and D, spelled
out in (4), are guaranteed by the typing rules for elimination contexts. So, such root
reduction, when fine in Γ, is a root ε-reduction fine in Γ. The inverse is not necessarily
true: in the case of E = [ ]N , the typing rules give the bonus of N typable in Γ, which
is not necessarily the case in a fine root ε-reduction. The perfect match is obtained
when the redex is typable: if M is typable in Γ, then M → N is a fine root ε-reduction
in Γ iff M → N is a fine root ε′-reduction in Γ. Expressing ε as the single rule ε′ will
be used in the next subsection.

Similarly for root ε-reduction and the ε′-rule E [ABORT(M,C)]→ ABORT(M,D).

4.4 Connection with dinaturality conversions
In this subsection we prove that adding fine atomization conversions to system F does
not cause the system to become inconsistent. In view of (5), it suffices to show the
same for the addition of commutative conversions ε and ε. The strategy of the proof
is the one that is implicit in [11] in the informal justification that some general form
of commutative conversions does not break consistency: one shows that the equality
generated by adding the commutative conversions is contained in a bigger equality
which is known to be consistent. Here, for the latter, we take the equality obtained by
adding to system F a dinaturality conversion, which we denote ν.

The full formalization of ν would require bringing here the machinery of [8]. We
refrain from doing that and just give a brief indication. Given formulas A,C+, C−

and a type variable X , the formula that results from substituting C+ (resp. C−) for
the positive (resp. negative) occurrences of X in A is denoted [(C−, C+)/X]A. No-
tice [(C,C)/X]A = [C/X]A. Let F be the free category generated from system F
(the “syntactic” category) by the usual method of categorical logic. Then, each A de-
termines a functor [( , )/X]A : Fop × F → F . We refer the reader to [8] for the
definition [(f−, f+)/X]A, for morphism f−, f+.
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Let x : A1 ` t : A2. The family of morphisms [C/X]t : [(C,C)/X]A1 →
[(C,C)/X]A2 over C is a dinatural transformation between the functors [( , )/X]A1

and [( , )/X]A2 if, for every morphism u : C → D, a certain diagram commutes,
which means that certain two terms, determined by the given data, namely

[(u, 1C)/X]A1; [C/X]t; [(1C , u)/X]A2

and
[(1D, u)/X]A1; [D/X]t; [(u, 1D)/X]A2 ,

are βη-equal in system F. In [8] a characterization is given of the terms t which
determine dinatural transformations. Conversion ν states that the referred diagram
always commutes, that is, the above two terms are always equal. Hence, in system F
plus ν, every typable term determines a dinatural transformation.

We now show that ε′ ⊆=βην (more precisely, a root ε′-reduction step fine in Γ is
contained in =βην). Let M be such that Γ ` M : A∨B. Let X be a type variable not
free in M , and P, P ′ be of type C, and Γ|C ` E : D. For the purpose of matching
the following calculation with the notation in the previous paragraphs, it is useful to
put t := MX〈x, x′〉. Then Γ, x : A ⊃ X,x′ : B ⊃ X ` t : X , so we may put
A1 := (A ⊃ X) ∧ (B ⊃ X) and A2 := X . Then:

E [MC〈λzA.P, λz′B .P ′〉] =η E [MC〈λy.(λzA.P )y, λy′.(λz′
B
.P ′)y′〉]

= [λz.P/x][λz′.P ′/x′](E [MC〈λy.xy, λy′.x′y′〉])
=ν [λz.P/x][λz′.P ′/x′](MC〈λy.E [xy], λy′.E [x′y′]〉)
= MC〈λy.E [(λz.P )y], λy′.E [(λz′.P ′)y′]〉
=β MC〈λy.E [[y/z]P ], λy′.E [[y′/z′]P ′]〉
= MC〈λz.E [P ], λz′.E [P ′]〉

The ν-conversion in this calculation is justified as follows. Before the conversion, we
find the termMC〈λy.xy, λy′.x′y′〉, which is [N/x][N ′/x′][C/X]t, whereN = λy.xy
is [(E , 1C)/X](A ⊃ X) and N ′ = λy′.x′y′ is [(E , 1C)/X](B ⊃ X). Since A2 = X ,
[(1C , E)/X]A2 = E . After the conversion, notice that λy.E [xy] is [(1D, E)/X](A ⊃
X) and λy′.E [x′y′] is [(1D, E)/X](B ⊃ X). Since A2 = X , [(u, 1D)/X]A2 = 1D.

As to ε, it turns out that ε′ ⊆=ν . Let M be such that Γ ` M : ⊥. Let X be a type
variable not free in M , and C ` E : D. For the purpose of recognizing a ν-conversion,
it is useful to put t := MX and allow a type 1. Then Γ, x : 1 ` t : X , so we may put
A1 := 1 and A2 := X . From type 1 we just require that X does not occur in 1, and
that [(f−, f+)/X]1 is the identity 11, that is 1 as a trivial derivation. Then:

E [MC] =ν MD .

Indeed, MC = [C/X]t and pre-composition with [(E , idC)/]1, since the latter is an
identity; and [(1C , E)/X]A2 = E , since A2 = X . After the conversion, MD =
[D/X]t, and the pre-composition with [(idD, E)/X]1 has no effect since the latter
is an identity; derivation E vanishes since [(1D, E)/X]1 is a trivial derivation; and
[(u, 1D)/X]A2 = 1D, since A2 = X .

Theorem 2 (Consistency). In system F there are terms M,N typable in Γ such that
M =βη%ρ N is not fine in Γ.
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Proof. Having in mind (5) and the calculations above, we conclude: for all M,N
typable in Γ, if M =βη%ρ N is fine in Γ, then M =βην N . To complete the proof,
we just invoke the consistency of =βην , which guarantees the existence of M and N
typable in Γ such that M =βην N does not hold. The consistency of =βην , in turn,
follows from the results in [2], where models of system F (with product types) are
given such that every typable term in F is interpreted by a dinatural transformation,
hence validating the dinatural conversion ν.

5 Comparison of embeddings
We recall the optimized translation of IPC into Fat, introduced by the authors in [3],
and denoted (·)◦. It comprises a translation of formulas, which is the same as in the
Russell-Prawitz translation, so A◦ = A•; and comprises a translation of proof-terms
(which induces a translation of derivations).

The translation of proof terms will rely on the following definition, taken from [3]:

Definition 8. In Fat:

1. Given M,A,B, given i ∈ {1, 2}, we define

ini(M,A,B) := ΛX.λw(A⊃X)∧(B⊃X).wiM ,

where the bound variable X is chosen so that X /∈M,A,B.

2. Given M,P,Q,A,B,C, we define case(M,xA.P, yB .Q,C) by recursion on C
as follows:

case(M,xA.P, yB .Q,X) = MX〈λxA.P, λyB .Q〉
case(M,xA.P, yB .Q,C1 ∧ C2) = 〈case(M,xA.P i, yB .Qi, Ci)〉i=1,2

case(M,xA.P, yB .Q,C ⊃ D) = λzC .case(M,xA.P z, yB .Qz,D)
case(M,xA.P, yB .Q,∀X.C) = ΛX.case(M,xA.PX, yB .QX,C)

where, in the third clause, the bound variable z is chosen so that z 6= x, z 6= y
and z /∈ M,P,Q; and in the fourth clause, the bound variable X is chosen so
that X /∈M,P,Q,A,B.

3. Given M,A, we define abort(M,A) by recursion on A as follows:

abort(M,X) = MX
abort(M,A1 ∧A2) = 〈abort(M,A1), abort(M,A2)〉
abort(M,B ⊃ C) = λzB .abort(M,C)
abort(M,∀X.A) = ΛX.abort(M,A)

where, in the third clause, the bound variable z is chosen so that z /∈M ; and in
the fourth clause, the bound variable X is chosen so that X /∈M .

If we take the typing rules in Fig. 4 and replace IN, CASE, and ABORT by in, case,
and abort, respectively, we obtain admissible typing rules in Fat. Similarly, if we do
the same replacements in Fig. 5, we obtain admissible compatibility rules in Fat. Such
admissible rules in Fat have been observed in [3].
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Definition 9. Given M ∈ IPC, M◦ is defined by recursion on M exactly as in Fig. 6,
except for the translation of in, case and abort, which now reads:

(ini(M,A,B))◦ = ini(M
◦, A◦, B◦) (i = 1, 2)

(case(M,xA.P, yB .Q,C))◦ = case(M◦, xA
◦
.P ◦, yB

◦
.Q◦, C◦)

(abort(M,A))◦ = abort(M◦, A◦)

Proposition 7 (Type soundness). If Γ `M : A in IPC, then Γ◦ `M◦ : A◦ in Fat.

To compare how the maps (·)• and (·)◦ translate proof terms amounts to compare
IN, CASE, and ABORT, on the one hand, with in, case, and abort, on the other hand.
INi(M,A,B) and ini(M,A,B) are defined in the same way, the repetition is due to
stylistic reasons. The other comparisons use atomization conversions.

Lemma 2. In F: CASE(M,xA.P, yB .Q,C)→∗% case(M,xA.P, yB .Q,C); addition-
ally, this reduction is fine in Γ, if M has type A∨B in Γ.

Proof. The proof is by induction on C. We first check the first statement.
Case C = X . We calculate: LHS = MX〈λxA.P, λyB .Q〉 = RHS, using twice

the definition of CASE.
Case C = C1 ⊃ C2.

LHS = M(C1 ⊃ C2)〈λxA.P, λyB .Q〉 (by def. of CASE)
→% λzC1 .MC2〈λxA.P z, λyB .Qz〉
= λzC1 .CASE(M,xA.P z, yB .Qz, C2)
→∗% λzC1 .case(M,xA.P z, yB .Qz, C2) (by IH)
= RHS (by def. of case)

Case C = C1 ∧ C2.

LHS = M(C1 ∧ C2)〈λxA.P, λyB .Q〉 (by def. of CASE)
→% 〈MCi〈λxA.P i, λyB .Qi〉〉i=1,2

= 〈CASE(M,xA.P i, yB .Qi, Ci)〉i=1,2

→∗% 〈case(M,xA.P i, yB .Qi, Ci)〉i=1,2 (by IH)
= RHS (by def. of case)

Case C = ∀X.C0.

LHS = M(∀X.C0)〈λxA.P, λyB .Q〉 (by def. of CASE)
→% ΛX.MC0〈λxA.PX, λyB .QX〉
= ΛX.CASE(M,xA.PX, yB .QX,C0)
→∗% ΛX.case(M,xA.PX, yB .QX,C0) (by IH)
= RHS (by def. of case)

Now the additional statement. In the case C = X , there is nothing to check (by
definition of fine reflexivity, LHS →∗% LHS in any Γ).

Case C = C1 ⊃ C2. If M has type A∨B in Γ, the first %-reduction step in the
calculation is, by definition, a fine root step in Γ. Given that z /∈M , M has type A∨B
in ∆ := Γ, z : C1. By IH, the reduction under λz is fine in ∆. Given that the relation
“N →∗% N ′ is fine in ∆” enjoys the fine closure rules of Fig. 7, we conclude that the
second reduction in the calculation is fine in Γ.

The remaining cases are similar to, but simpler than this one.
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Lemma 3. In F, ABORT(M,C)→∗ρ abort(M,C); additionally, this reduction is fine
in Γ, if M has type ⊥ in Γ.

Proof. The proof is by induction on C. We check first the first statement.
Case C = X . Then LHS = MX = RHS, using twice the definition of ABORT.
Case C = C1 ⊃ C2.

LHS = M(C1 ⊃ C2) (by def. of ABORT)
→ρ λzC1 .MC2

= λzC1 .ABORT(M,C2)
→∗ρ λzC1 .abort(M,C2) (by IH)
= RHS (by def. of abort)

Case C = C1 ∧ C2.

LHS = M(C1 ∧ C2) (by def. of ABORT)
→ρ 〈MC1,MC2〉
= 〈ABORT(M,C1), ABORT(M,C2)〉
→∗ρ 〈abort(M,C1), abort(M,C2)〉 (by IH)
= RHS (by def. of abort)

Case C = ∀X.C0.

LHS = M(∀X.C0) (by def. of ABORT)
→ρ ΛX.MC0

= ΛX.ABORT(M,C0)
→∗ρ ΛX.abort(M,C0) (by IH)
= RHS (by def. of case)

The justification of the additional statement in each case of the proof is similar to
what was done in the proof of the previous lemma.

Proposition 8 (Comparison of maps: proofs). For all M ∈ IPC, M• →∗%ρ M◦;
additionally, this relation is fine in Γ•, if M is typable in Γ. Hence if M is typable in
Γ, M◦ is the atomic normal form of M• in Γ• (=Γ◦).

Proof. By induction on M . There are only two interesting cases, which follow by
Lemmas 2 and 3. Notice M◦ is a fine %ρ-normal form, because M◦ ∈ Fat. Hence, by
Proposition 6, M◦ is the unique %ρ-normal form of M• in Γ•.

We now want to compare how the maps (·)• and (·)◦ translate proof-reduction
steps. Obviously, R-reduction steps, with R ∈ {β⊃, β∧, η⊃, η∧}, are translated in
the same way by the two maps. Only the R-reduction steps, for R a reduction rule
pertaining to ∨ or ⊥, are pertinent for the comparison, and so we concentrate on these
from now on. The translation of such steps by (·)• was detailed in Theorem 1, whereas
the translation by (·)◦ was detailed in [3]. We want to see how the two pictures merge.
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Let R ∈ {β∨, π⊃, π∧, $⊃, $∧, $∨, $⊥}. A reduction step M →R N in IPC
gives rise to the diagram:

M M◦ ��
%ρ

M•

N

R
?

N◦

βη ??
��

%ρ
N•

βηεε??
(6)

This follows from Theorem 1 above, and also from Theorem 1 in [3], which guarantees
M◦ →+

βη N
◦, whenever M →R N in IPC. The %ρ-reductions that bridges the two

translations come from Proposition 8.
This picture has to be generalized, in order to accommodate the remaining cases

R ∈ {η∨, π∨, π⊥}. In these cases, the interaction between the terms translated with
(·)• and those translated with (·)◦ will be richer than what can be expressed with Propo-
sition 8. For this reason, we have to revisit Lemmas 6, 11 and 12 in [3], dedicated to
η∨, π∨ and π⊥, respectively. We do this next, but put the proofs in the appendix, since
they are, to some extent, a repetition of the proofs already given in [3].

Lemma 4 (Rule η∨). Let M ∈ Fat and M ′ ∈ F such that M ′ →∗%ρ M . Let

LHS = case(M,xA.in1(x,A,B), yB .in2(y,A,B), A∨B)
LHS′ = CASE(M ′, xA.in1(x,A,B), yB .in2(y,A,B), A∨B)
RHS = M

Then there is Q ∈ Fat such that

LHS ��
%ρ

LHS′

Q
�� δ%

ρβ --

RHS
�� η

Proof. Lemma 6 in [3] just states LHS →+
βη RHS. The proof is a direct calculation.

See the appendix for details.

Lemma 5 (Rule π∨). Let M,P1, P2, Q1, Q2 ∈ Fat and M ′, P ′1, P
′
2, Q

′
1, Q

′
2 ∈ F. Let

LHS = case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1, y2.Q2, C)
RHS = case(M,x1.case(P1, y1.Q1, y2.Q2, C), x2.case(P2, y1.Q1, y2.Q2, C), C)
RHS′ = CASE(M ′, x1.CASE(P ′1, y1.Q

′
1, y2.Q

′
2, C), x2.CASE(P ′2, y1.Q

′
1, y2.Q

′
2, C), C)
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Suppose T ′ →∗%ρ T , for T = M,P1, P2, Q1, Q2. Then, there is Q ∈ Fat such that

LHS

Q

β --

RHS ��
%ρ

β
--

RHS′

��ε%ρ

Proof. For typographic reasons, we do not write the types of bound variables. Variables
y1 and y2 have type B1 and B2, respectively. Variables x1 and x2 have type A1 and
A2, where A1∨A2 is the type of M . These types stay unchanged throughout the proof.

Lemma 11 in [3] just states LHS =β RHS. The proof of the present lemma is by
induction on C. See the appendix for details.

Lemma 6 (Rule π⊥). Let M,P,Q ∈ Fat and M ′, P ′, Q′ ∈ F. Let

LHS = abort(case(M,xA.P, yB .Q,⊥), C)
RHS = case(M,xA.abort(P,C), yB .abort(Q,C), C)
RHS′ = CASE(M ′, xA.ABORT(P ′, C), yB .ABORT(Q′, C), C)

Suppose T ′ →∗%ρ T , for T = M,P,Q. Then, there is Q ∈ Fat such that

LHS

Q

β --

RHS ��
%ρ

β
--

RHS′

�� ε%ρ

Proof. Lemma 12 in [3] just states LHS =β RHS. The proof is by induction on C.
See the appendix for details.

In order to avoid overloading too much the paper, we refrained from stating the full
version of Lemmas 4, 5, and 6. But the missing bits say the reduction from LHS′ or
RHS′ to Q is fine in Γ, provided M has type A∨B or A1∨A2 in Γ, and P1 has type
B1∨B2 or ⊥ in Γ, x : A1 and similarly for P2.

For each R ∈ {η∨, π∨, π⊥}, we now show, using Lemmas 4, 5 and 6, a diagram
in the style of (6), with a left half in IPC and a right half in F. For instance, for
R = η∨, the left half is M →η∨ N and the right half has the shape of the diagram
in the statement of Lemma 4, with LHS, RHS and LHS′ replaced by M◦, N◦ and
M•, respectively. One should complete the diagram by adding N• (in the place of the
missing RHS′) and drawing the reductions N• →∗%ρ N◦ and M• →+

ηδ N
• (coming
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respectively from Proposition 8 and Theorem 1). We do the same for R = π∨ and
R = π⊥, obtaining their respective diagrams.

One last thing. In the diagrams just obtained for η∨, π∨, and π⊥, some reduction
steps in the right half are administrative, that is, they reduce redexes that do not corre-
spond to redexes in the source terms M,N ∈ IPC, but are redexes that were created
by the translation ( )◦ itself. This question was analyzed in detail in [3], specifically
how some reduction steps in Fat stated by Lemmas 6, 11 and 12 of [3] can be classi-
fied as administrative, when they contribute to bridgeM◦ andN◦. The analysis carries
over to reduction steps in Fat stated by Lemmas 4, 5 and 6, again when they contribute
to bridge M◦ and N◦ - which is what happens in the diagrams just obtained for η∨,
π∨, and π⊥. That analysis allows us to say that: in the diagram for η∨, the β-reduction
steps from LHS = M◦ to Q are administrative; in the diagrams for π∨ and π⊥, the
β-reduction steps from RHS = N◦ to Q are administrative.

We now have diagrams in the style of (6) for every reduction rule R of IPC per-
taining to disjunction or absurdity. The diagrams for η∨, π∨, and π⊥ are slightly more
complex, because they have a central term Q, and some reductions are classified as
administrative. But we can define a general pattern that comprehends all of these dia-
grams, and thus explains the translation of any reduction steps M →R N in IPC:

Theorem 3 (Comparison of maps: reduction). For M →R N in IPC, with R a
reduction rule pertaining to disjunction or absurdity, the reductions in Fig. 8 hold.
Moreover, if M is typable in Γ, then all reductions in Fig. 8 starting from M• or N•

are fine in Γ•.

Proof. For the second statement, we have to invoke the subject reduction property of
→R in IPC, the full version of Theorem 1, Proposition 8, and the full version of
Lemmas 4, 5, and 6.

6 Discussion
We summarize our contribution. We proposed new conversions for system F whose
purpose is to enforce atomic use of the universal instantiation. Such conversions ex-
plain the connection between the Russell-Prawitz translation and the translation into
Fat introduced by the authors [3], at the level of proofs (Proposition 8) and at the level
of proof reduction (Theorem 3). In addition, only when system F is thus equipped
does the Russell-Prawitz translation preserve proof reduction (Theorem 1) - and this
without collapsing proof identity in system F (Theorem 2), because the atomization
conversions are not stronger than a certain “dinaturality” conversion known to preserve
the consistency of equality.

Like the present paper, the recent article [11] aims at finding new conversions for
NI2 which allow to establish the preservation of proof identity by the Russell-Prawitz
translation. In addition to the fact that we employ λ-terms, thereby making explicit the
algorithmic aspect of the development, we see three main differences/improvements
the present paper offers w.r.t. the work cited. First, we study the Russell-Prawitz
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Figure 8: Translation of a R-reduction step in IPC, for R a reduction rule pertaining
to disjunction or absurdity. Terms M and N are in IPC. Terms M◦, N◦, Q1 and Q2

are in Fat. TermsM• andN• are in F. IfM◦ = Q1, then the reductionM• →∗δ%ρ Q1

is actually the reduction M• →∗%ρ M◦. If N◦ = Q2, then the reduction N• →∗εε%ρ
Q2 is actually the reduction N• →∗%ρ N◦. Notice that, due to Propositions 2 and 3,
M• →∗βηρ% N•.

M M◦ ��
%ρ

M•

Q1

��

δ%
ρ

adm
inβ
--

Q2

βη

??

N

R

?
N◦ ��

%ρ

ad
m
in

β

--

N•

βηεεδ

??

��
εε%ρ
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embedding into F side-by-side with another embedding into Fat. This comprehen-
siveness is opportune because the translation into Fat was perceived initially [5] as a
progress in the matter of preservation of proof identity, our Theorem 3 bringing now
a full clarification of the issue. Second, as opposed to the new conversion of [11],
expressing “naturality” in the categorical sense, we propose a much simpler new con-
version which, despite being connected to a very simple variant of the “naturality”
conversion (namely conversions ε and ε), has a self-contained motivation (atomization
of the uses of universal instantiation), and moreover not only delivers preservation of
proof identity, but also makes a bridge between the Russell-Prawitz embedding and
the embedding into Fat. Third, we obtained preservation of proof reduction by the
Russell-Prawitz embedding, while [11] is only concerned with proof identity.

One wonders whether the results in [11], although stated in terms of proof identity,
do establish (or could be modified to establish) results about proof reduction. But,
with a single exception (Proposition 4.7. in [11]), the answer is “no”: (i) the results
about “m-closed” instances of π∨ or η∨ rely essentially on an argument (see the proofs
of Propositions 2.5 and 2.6 in [11]) that starts with the β-normalization of a π∨ or
η∨ contractum - hence this β-normalization goes in the “wrong direction”, does not
preserve the direction of reduction; (ii) in the proof of Proposition 4.9 of [11], on
preservation of η∨-equality, the Russell-Prawitz translation of the redex starts doing
some steps of η-expansion, which again go in the “wrong direction”.

Regarding the various embeddings of IPC into system Fat, it can be argued that
the embedding ( )◦ previously introduced by the authors [3] has advantages over the
original embedding based on instantiation overflow [4, 5], in that shorter translations
of proofs and of reduction sequences are obtained. In a recent paper in arXiv [9], Pis-
tone, Tranchini and Petrolo independently establish a connection between the Russell-
Prawitz translation and yet another translation of IPC directly into system Fat, show-
ing that they are equivalent modulo an extended equational theory for System F. The
translation into Fat in [9] is not more “economic” than ( )◦, but the exact comparison
between the two deserve further investigation. However, the naturalness of the connec-
tion between ( )◦ and the Russell-Prawitz translation established in the present paper,
with M◦ being the %ρ-normal form of M•, seems to the authors a strong indication of
the special place occupied by the embedding ( )◦ into system Fat.

Since M◦ is the atomic normal form of M•, the embedding ( )◦ makes full use
of atomization at compile time. But, for the purpose of simulation, what one needs
is a judicious use of atomization at run time. As observed in Fig. 8, a reduction from
M◦ to N◦ is still missing, for some cases of reduction M → N in IPC, while a
reduction always exists between the Russell-Prawitz translations M• and N•. Such
reduction sometimes contains atomization steps - those hidden in the εεδ-reduction
steps pertaining to the reduction. So the simulation in system F by the Russell-Prawitz
translation makes a controlled (not full) use of atomization depending on the source
IPC reduction step M → N , while such a resource is not available in system Fat,
because in system Fat we must stay fully atomized.
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A Some proofs
In this appendix we collect the proofs of Lemmas 4, 5 and 6.

Lemma 4. Let M ∈ Fat and M ′ ∈ F such that M ′ →∗%ρ M .

LHS = case(M,xA.in1(x,A,B), yB .in2(y,A,B), A∨B)
LHS′ = CASE(M ′, xA.in1(x,A,B), yB .in2(y,A,B), A∨B)
RHS = M

Then there is Q ∈ Fat such that

LHS ��
%ρ

LHS′

Q
�� δ%

ρ

adm
inβ --

RHS
�� η

Proof. LHS′ →∗%ρ LHS by M ′ →∗%ρ M and Lemma 2. LHS is

ΛX.case(M,x.(ΛY λz.z1x)X, y.(ΛY λz.z2y)X, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)

From the proof of Lemma 6 in [3] we copy the following calculation, where we identify
the term Q:

LHS
→2
β∀

ΛX.case(M,x.λz.z1x, y.λz.z2y, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)

= ΛXλw.case(M,x.(λz.z1x)w, y.(λz.z2y)w,X)
→2
β⊃

ΛXλw.case(M,x.w1x, y.w2y,X)

= ΛXλw.MX〈λx.w1x, λy.w2y〉 =: Q
→2
η⊃ ΛXλw.MX〈w1, w2〉
→η∧ ΛXλw.MXw
→η⊃ ΛX.MX
→η∀ M

= RHS

We conclude as follows:

LHS′

= M ′(A∨B)〈λxAΛXλw.w1x, λyBΛXλw.w2y〉
→∗%ρ M(A∨B)〈λxAΛXλw.w1x, λyBΛXλw.w2y〉
→δ ΛX.M(((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)〈λxAλw.w1x, λyBλw.w2y〉
→δ ΛXλw.MX〈λx.w1x, λy.w2y〉
= Q
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Lemma 5. Let M,P1, P2, Q1, Q2 ∈ Fat and M ′, P ′1, P
′
2, Q

′
1, Q

′
2 ∈ F. Let

LHS = case(case(M,xA1
1 .P1, x

A2
2 .P2, B1∨B2), yB1

1 .Q1, y
B2
2 .Q2, C)

RHS = case(M,x1.case(P1, y1.Q1, y2.Q2, C), x2.case(P2, y1.Q1, y2.Q2, C), C)
RHS′ = CASE(M ′, x1.CASE(P ′1, y1.Q

′
1, y2.Q

′
2, C), x2.CASE(P ′2, y1.Q

′
1, y2.Q

′
2, C), C)

Suppose T ′ →∗%ρ T , for T = M,P1, P2, Q1, Q2. Then, there is Q ∈ Fat such that

LHS

Q

β --

RHS ��
%ρ

ad
m
in

β
--

RHS′

��ε%ρ

Proof. RHS′ →∗%ρ RHS by the assumed reductions and Lemma 2. The remainder of
the diagram is proved by induction on C.

Case C = Y . LHS is, by definition of case,

(ΛX.λw(B1⊃X)∧(B2⊃X).MX〈λx1.P1Xw, λx2.P2Xw〉)Y 〈λy1.Q1, λy2.Q2〉 ,

which, after one β∀-reduction step, becomes

(λw(B1⊃Y )∧(B2⊃Y ).MY 〈λxA1
1 .P1Y w, λx

A2
2 .P2Y w〉)〈λyB1

1 .Q1, λy
B2
2 .Q2〉 ,

because X /∈ M,P1, P2, A1, A2, B1, B2. This term, in turn, yields, after one β⊃-
reduction step,

MY 〈λxA1
1 .P1Y 〈λy1.Q1, λy2.Q2〉, λxA2

2 .P2Y 〈λyB1
1 .Q1, λy

B2
2 .Q2〉〉 .

This is RHS by definition of case. This calculation comes from the proof of Lemma
11 in [3]. Now we add: put Q := RHS. The reduction RHS′ →∗ε%ρ Q holds due to
RHS′ →∗%ρ RHS.

Case C = C1 ⊃ C2. By definition of case, LHS is λzC1 .LHS0, where

LHS0 = case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1z, y2.Q2z, C2) .

On the other hand, RHS is, by definition of case,

λzC1 .case(M,x1.N3, x2.N4, C2) ,

with N3 = (case(P1, y1.Q1, y2.Q2, C))z, N4 = (case(P2, y1.Q1, y2.Q2, C))z. As
argued in the proof of Lemma 11 in [3], RHS does two administrative β⊃-reduction
steps (in the “wrong” direction), yielding λzC1 .RHS0, where

RHS0 = case(M,x1.N1, x2.N2, C2) ,
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with N1 = case(P1, y1.Q1z, y2.Q2z, C2), N2 = case(P2, y1.Q1z, y2.Q2z, C2).
Now RHS′ is the term

M ′(C1 ⊃ C2)〈λx1.P ′1(C1 ⊃ C2)〈λy1.Q′1, λy2.Q′2〉, λx2.P ′2(C1 ⊃ C2)〈λy1.Q′1, λy2.Q′2〉〉

which, after one %-reduction step, becomes

λzC1 .M ′C2〈λx1.(P ′1(C1 ⊃ C2)〈λy1.Q′1, λy2.Q′2〉)z, λx2.(P ′2(C1 ⊃ C2)〈λy1.Q′1, λy2.Q′2〉)z〉

After two ε-reduction steps one obtains

λzC1 .M ′C2〈λx1.P ′1C2〈λy1.Q′1z, λy2.Q′2z〉, λx2.P ′2C2〈λy1.Q′1z, λy2.Q′2z〉〉

The latter term is λzC1 .RHS′0, where RHS′0 is

CASE(M ′, x1.CASE(P ′1, y1.Q
′
1z, y2.Q

′
2z, C2), x2.CASE(P ′2, y1.Q

′
1z, y2.Q

′
2z, C2), C2)

By IH, applied to the terms LHS0, RHS0 and RHS′0, one obtains a term Q0

“in the middle” of three reduction sequences, as in the diagram above. The reduction
relations involved are closed under the rule: T → T ′ ⇒ λzC1 .T → λzC1 .T ′. So if we
prefix the terms LHS0, RHS0, RHS′0 and Q0 with λzC1 , the same reductions hold.
We take Q := λzC1 .Q0 and we are done.

Case C = C1 ∧ C2. By definition of case, LHS is 〈LHS0i〉i=1,2, where

LHS0i = case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1i, y2.Q2i, Ci) .

On the other hand, RHS is, by definition of case,

〈case(M,x1.N3, x2.N4, Ci)〉i=1,2 ,

with N3 = case(P1, y1.Q1, y2.Q2, C)i and N4 = case(P2, y1.Q1, y2.Q2, C)i. As
argued in the proof of Lemma 11 and in the comments on Theorem 1 in [3], RHS
does four administrative β∧-reduction steps (in the “wrong” direction), yielding the
term 〈RHS0i〉i=1,2, where

RHS0i = case(M,x1.N1, x2.N2, Ci) ,

with N1 = case(P1, y1.Q1i, y2.Q2i, Ci) and N2 = case(P2, y1.Q1i, y2.Q2i, Ci).
Now RHS′ is the term

M ′(C1∧C2)〈λx1.P ′1(C1∧C2)〈λy1.Q′1, λy2.Q′2〉, λx2.P ′2(C1∧C2)〈λy1.Q′1, λy2.Q′2〉〉

which, after one %-reduction step, becomes

〈M ′Ci〈λx1.(P ′1(C1∧C2)〈λy1.Q′1, λy2.Q′2〉)i, λx2.(P ′2(C1∧C2)〈λy1.Q′1, λy2.Q′2〉)i〉〉i=1,2

After four ε-reduction steps, one obtains

〈M ′Ci〈λx1.P ′1Ci〈λy1.Q′1i, λy2.Q′2i〉, λx2.P ′2Ci〈λy1.Q′1i, λy2.Q′2i〉〉〉i=1,2
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The latter term is 〈RHS′0i〉i=1,2, where RHS′0i is

CASE(M ′, x1.CASE(P ′1, y1.Q
′
1i, y2.Q

′
2i, Ci), x2.CASE(P ′2, y1.Q

′
1i, y2.Q

′
2i, Ci), Ci)

For each i = 1, 2, and by IH, applied to the terms LHS0i, RHS0i and RHS′0i,
one obtains a term Q0i “in the middle” of three reduction sequences, as in the di-
agram above. The reduction relations involved are closed under the rule: T1 →
T ′1 and T2 → T ′2 ⇒ 〈T1, T2〉 → 〈T ′1, T ′2〉. So if we form the pairs 〈LHS01, LHS02〉,
〈RHS01, RHS02〉, 〈RHS′01, RHS′02〉 and 〈Q01, Q02〉, the same reductions hold. We
take Q := 〈Q01, Q02〉 and we are done.

Case C = ∀Y.D. By definition of case, LHS is ΛY.LHS0, where

LHS0 = case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1Y, y2.Q2Y,D)

On the other hand, RHS is, by definition of case,

ΛY.case(M,x1.N3, x2.N4, D) ,

with N3 = (case(P1, y1.Q1, y2.Q2, C))Y , N4 = (case(P2, y1.Q1, y2.Q2, C))Y . As
argued in the proof of Lemma 11 in [3], RHS does two administrative β∀-reduction
steps (in the “wrong” direction), yielding the term ΛY.RHS0, where

RHS0 = case(M,x1.N1, x2.N2, D) ,

with N1 = case(P1, y1.Q1Y, y2.Q2Y,D), N2 = case(P2, y1.Q1Y, y2.Q2Y,D).
Now RHS′ is

M ′(∀Y.D)〈λx1.P ′1(∀Y.D)〈λy1.Q′1, λy2.Q′2〉, λx2.P ′2(∀Y.D)〈λy1.Q′1, λy2.Q′2〉〉

which, after a %-reduction step, becomes

ΛY.M ′D〈λx1.(P ′1(∀Y.D)〈λy1.Q′1, λy2.Q′2〉)Y, λx2.(P ′2(∀Y.D)〈λy1.Q′1, λy2.Q′2〉)Y 〉

After two ε-reduction steps, one obtains

ΛY.M ′D〈λx1.P ′1D〈λy1.Q′1Y, λy2.Q′2Y 〉, λx2.P ′2D〈λy1.Q′1Y, λy2.Q′2Y 〉〉

The latter term is ΛY.RHS′0, where RHS′0 is

CASE(M ′, x1.CASE(P ′1, y1.Q
′
1Y, y2.Q

′
2Y,D), x2.CASE(P ′2, y1.Q

′
1Y, y2.Q

′
2Y,D), D)

By IH, applied to the terms LHS0, RHS0 and RHS′0, one obtains a term Q0 “in the
middle” of three reduction sequences, as in the diagram above. The reduction relations
involved are closed under the rule: T → T ′ ⇒ ΛY.T → ΛY.T ′. So if we prefix
the terms LHS0, RHS0, RHS′0 and Q0 with ΛY , the same reductions hold. We take
Q := ΛY.Q0 and we are done.

Lemma 6. Let M,P1, P2 ∈ Fat and M ′, P ′1, P
′
2 ∈ F. Let

LHS = abort(case(M,xA1
1 .P1, x

A2
2 .P2,⊥), C)

RHS = case(M,xA1
1 .abort(P1, C), xA2

2 .abort(P2, C), C)

RHS′ = CASE(M ′, xA1
1 .ABORT(P ′1, C), xA2

2 .ABORT(P ′2, C), C)
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Suppose T ′ →∗%ρ T , for T = M,P1, P2. Then, there is Q ∈ Fat such that

LHS

Q

β --

RHS �
%ρ

ad
m
in

β
--

RHS′

�� ε%ρ

Proof. RHS′ →∗%ρ RHS by the assumed reductions and Lemmas 2 and 3. The re-
mainder of the diagram is proved by induction on C.

Case C = Y . LHS is, by definition of abort and case,

(ΛX.MX〈λxA1
1 .P1X,λx

A2
2 .P2X〉)Y ,

which, after one β∀-reduction step, becomes

MY 〈λxA1
1 .P1Y, λx

A2
2 .P2Y 〉) ,

because X /∈M,P1, P2, A1, A2.
This is RHS by definition of abort and case. This calculation comes from the

proof of Lemma 12 in [3]. Now we add: put Q := RHS. The reduction RHS′ →∗ε%ρ
Q holds due to RHS′ →∗%ρ RHS.

Case C = C1 ⊃ C2. By definition of abort, LHS is λzC1 .LHS0, where

LHS0 = abort(case(M,x1.P1, x2.P2,⊥), C2) .

On the other hand, RHS is, by definition of case,

λzC1 .case(M,x1.abort(P1, C1 ⊃ C2)z, x2.abort(P2, C1 ⊃ C2)z, C2) .

As argued in the proof of Lemma 12 and in the comments on Theorem 1 in [3],
RHS does two administrative β⊃-reduction steps (in the “wrong” direction), yield-
ing λzC1 .RHS0, where

RHS0 = case(M,x1.abort(P1, C2), x2.abort(P2, C2), C2) .

Now RHS′ is the term

M ′(C1 ⊃ C2)〈λx1.P ′1(C1 ⊃ C2), λx2.P
′
2(C1 ⊃ C2)〉

which, after one %-reduction step, becomes

λzC1 .M ′C2〈λx1.P ′1(C1 ⊃ C2)z, λx2.P
′
2(C1 ⊃ C2)z〉.

After two ε-reduction steps one obtains

λzC1 .M ′C2〈λx1.P ′1C2, λx2.P
′
2C2〉.
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The latter term is λzC1 .RHS′0, where RHS′0 is

CASE(M ′, x1.ABORT(P ′1, C2), x2.ABORT(P ′2, C2), C2).

By IH, applied to the terms LHS0, RHS0 and RHS′0, one obtains a term Q0

“in the middle” of three reduction sequences, as in the diagram above. The reduction
relations involved are closed under the rule: T → T ′ ⇒ λzC1 .T → λzC1 .T ′. So if we
prefix the terms LHS0, RHS0, RHS′0 and Q0 with λzC1 , the same reductions hold.
We take Q := λzC1 .Q0 and we are done.

Case C = C1 ∧ C2. By definition of abort, LHS is 〈LHS0i〉i=1,2, where

LHS0i = abort(case(M,x1.P1, x2.P2,⊥), Ci) .

On the other hand, RHS is, by definition of case,

〈case(M,x1.abort(P1, C1 ∧ C2)i, x2.abort(P2, C1 ∧ C2)i, Ci)〉i=1,2 .

As argued in the proof of Lemma 12 and in the comments on Theorem 1 in [3], RHS
does two administrative β∧-reduction steps (in the “wrong” direction), yielding the
term 〈RHS0i〉i=1,2, where

RHS0i = case(M,x1.abort(P1, Ci), x2.abort(P2, Ci), Ci) .

Now RHS′ is the term

M ′(C1 ∧ C2)〈λx1.P ′1(C1 ∧ C2), λx2.P
′
2(C1 ∧ C2)〉

which, after one %-reduction step, becomes

〈M ′Ci〈λx1.P ′1(C1 ∧ C2)i, λx2.P
′
2(C1 ∧ C2)i〉〉i=1,2.

After two ε-reduction steps one obtains

〈M ′Ci〈λx1.P ′1Ci, λx2.P ′2Ci〉〉i=1,2.

The latter term is 〈RHS′0i〉i=1,2, where RHS′0i is

CASE(M ′, x1.ABORT(P ′1, Ci), x2.ABORT(P ′2, Ci), Ci).

For each i = 1, 2, and by IH, applied to the terms LHS0i, RHS0i and RHS′0i,
one obtains a term Q0i “in the middle” of three reduction sequences, as in the di-
agram above. The reduction relations involved are closed under the rule: T1 →
T ′1 and T2 → T ′2 ⇒ 〈T1, T2〉 → 〈T ′1, T ′2〉. So if we form the pairs 〈LHS01, LHS02〉,
〈RHS01, RHS02〉, 〈RHS′01, RHS′02〉 and 〈Q01, Q02〉, the same reductions hold. We
take Q := 〈Q01, Q02〉 and we are done.

Case C = ∀Y.D. By definition of abort, LHS is ΛY.LHS0, where

LHS0 = abort(case(M,x1.P1, x2.P2,⊥), D).
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On the other hand, RHS is, by definition of case,

ΛY.case(M,x1.abort(P1,∀Y.D)Y, x2.abort(P2,∀Y.D)Y,D) .

As argued in the proof of Lemma 12 in [3],RHS does two administrative β∀-reduction
steps (in the “wrong” direction), yielding the term ΛY.RHS0, where

RHS0 = case(M,x1.abort(P1, D), x2.abort(P2, D), D) .

Now RHS′ is

M ′(∀Y.D)〈λx1.P ′1(∀Y.D), λx2.P
′
2(∀Y.D)〉

which, after a %-reduction step, becomes

ΛY.M ′D〈λx1.(P ′1(∀Y.D))Y, λx2.(P
′
2(∀Y.D))Y 〉.

After two ε-reduction steps, one obtains

ΛY.M ′D〈λx1.P ′1D,λx2.P ′2D〉.

The latter term is ΛY.RHS′0, where RHS′0 is

CASE(M ′, x1.ABORT(P ′1, D), x2.ABORT(P ′2, D), D).

By IH, applied to the terms LHS0, RHS0 and RHS′0, one obtains a term Q0 “in the
middle” of three reduction sequences, as in the diagram above. The reduction relations
involved are closed under the rule: T → T ′ ⇒ ΛY.T → ΛY.T ′. So if we prefix
the terms LHS0, RHS0, RHS′0 and Q0 with ΛY , the same reductions hold. We take
Q := ΛY.Q0 and we are done.
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