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MÁRIO BESSA, MARIA JOANA TORRES, AND PAULO VARANDAS

A. In this article we approach some of the basic questions in topological dynamics, concern-

ing periodic points, transitivity, the shadowing and the gluing orbit properties, in the context of C0

incompressible flows generated by Lipschitz vector fields. We prove that a C0
-generic incompress-

ible and fixed-point free flow satisfies the periodic shadowing property, it is transitive and has a

dense set of periodic points in the non-wandering set. In particular, a C0
-generic fixed-point free

incompressible flow satisfies the reparametrized gluing orbit property. We also prove that C0
-generic

incompressible flows satisfy the general density theorem and the weak shadowing property, moreover

these are transitive.
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1. I

1.1. The Lipschitz vector fields. Dynamists are always keen to integrate a vector field into a flow

that can be understood from the dynamical point of view. It is well-known that, when working

with vector fields, and in order to have Picard-Lindelöf uniqueness of integrability into a flow,

Lipschitz continuity is enough. Nonetheless, if we weaken from Lipschitz to Hölder continuity

then we lose the uniqueness of integrability, as the simple example ẋ = 2

√
|x| with x(0) = 0

displaying two solutions x(t) = t2 and x(t) = 0, shows. Ultimately, Lipschitz continuity is in

the threshold with respect to the output of a dynamical system or not. Due to the success of

the Hyperbolic Dynamics theory - note this theory is established in the differential aspects of the

vector field namely in the use of properties of the first derivative to characterize local and global

dynamics - in the 1960’s the understanding of local and global aspects of flows lead to consider a

smooth setup instead of a Lipschitz one. Nowadays there is a vast literature on the behavior of Cr

(r ≥ 1) vector fields, not only from the Cr
stability focus but also from the Cr

generic perspective.

So it is natural to ask what can be said about the dynamics of flows derived from vector fields in

the broader Lipschitz regularity class and endowed with a coarser topology. Our direction clearly

points to a much larger world not only because Cr
vector fields are Lipschitz vector fields but

also grosser topologies can ‘reach’ more vector fields. Of course that there is no hope to obtain

an interesting C0
-stability theory. Indeed while topological stability has a C0

flavour, still good

properties are achieved under topological stability if we consider C1
-dynamics with some robust

properties.

As our goal is to understand properties like shadowing, transitivity, denseness of periodic points

and the gluing orbit property we can go a long way by considering a C0
approach. The space

of Lipschitz continuous vector fields with a uniformly bounded Lipschitz constant is complete

when endowed with the C0
-topology, hence a Baire space. In consequence, the space of Lipschitz

continuous vector fields is Baire although not complete.
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1.2. The incompressible setting. The study of flows which preserve a volume form is a central

object not only in applied mathematics such as classical, fluid, continuum and quantum mechanics

but also in pure aspects of mathematics like contact and symplectic geometry. We call such a flow

an incompressible flow or a volume-preserving flow. The vector fields associated to incompressible

flows are called divergence-free or solenoidal vector fields. Incompressible flows are free of friction

and keep an invariant volume form unchanged as they evolve in time and for this reason are

quite interesting from the ergodic theory perspective. Perturbations of incompressible flows within

general ones is a delicate issue because perturbations must keep the incompressible characteristic

of the flow which turn to be an additional difficulty.

1.3. The dynamical properties.

1.3.1. Chaotic flow. Throughout this paper, a flow is said to be chaotic if it has a dense set of

periodic orbits, it is transitive and satisfies the shadowing property. Under this terminology, a

chaotic flow satisfies the reparametrized gluing orbit property, which is a specification-like property

in the continuous-time setting (see [6, 11]). There are several concepts of chaotic dynamics, some of

which are related, including the presence of positive Lyapunov exponents, positive metric entropy,

positive topological entropy, expansiveness, Li-Yorke pairs, etc. If the dynamics is not minimal and

equicontinuous, then the gluing orbit property ensures that the dynamics has positive topological

entropy and strong recurrence properties (see [9, 38]).

1.3.2. Abundance of closed solutions. The search for periodic trajectories for flows associated with

systems of differential equations has been a central issue in dynamics since the work of Poincaré

on celestial mechanics more than a century ago. Smale conjectured that there could not be, in

compact spaces, dynamical systems (diffeomorphisms of dimension 2, or flows of dimension 3)

with infinite periodic points. He himself helped to refute this conjecture, building the ’Smale

horseshoe’ (dimension 2 diffeomorphism) based on Levinson’s suggestions about previous work by

Cartwright and Littlewood. We recall that Shilnikov exhibited a similar phenomenon for three-

dimensional flows. The abundance of periodic orbits on the manifold gives us information about

the dynamical complexity of the system. A major result is the general density theorem which is a

direct consequence of the combination of the closing lemma and the stability and persistence of

non-degenerated (e.g. hyperbolic) closed orbits. The general density theorem, first established in

the C1
-class by Pugh ([33]) in the late 1960’s and much later by Pugh and Robinson for volume-

preserving and symplectic diffeomorphisms as also for Hamiltonians (see [34]), gives us a residual

subset on which periodic orbits are dense in the non-wandering set.

1.3.3. Shadowing. In brief terms the shadowing property, which consists of a reconstruction of a

true orbit for the dynamics provided a set of points that form approximately an orbit, appears

in many offshoots on dynamics. This concept is often related with how complex the system is

(see [22]). Actually, the computational estimates, fitted with a certain small error allowed to the

orbits, are meaningless if they cannot be realized by real orbits of the given dynamical system.

The search for the genericity of shadowing is an old question in dynamics. Contrary to the case

of smooth dynamics, where C1
-generically the shadowing property is characterized in terms of

uniform hyperbolicity, a C0
-generic Lipschitz vector field satisfies the shadowing property (see [6]

and the references therein).

1.3.4. Transitivity. An incompressible flow is transitive if it displays a dense orbit in the whole

manifold. From the topological point of view, a transitive flow cannot be decomposed into more

than a single component. It is the topological counterpart of an ergodic flow and a property

explored since the classical work by Oxtoby and Ulam [31]. Nowadays we know that C1
-generic

incompressible flows are transitive and even topologically mixing (see [4, 7]) but our ambition is
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to go further under the C0
hypothesis, and investigate wether C0

-perturbations are sufficient to

create robust obstructions to transitivity. The main concept on which we proceed with our goal is

called gluing orbit property, which implies on a strong transitivity.

1.3.5. Gluing orbit property. The gluing orbit property is a weakening of the notion of specification

and briefly means that any finite pieces of orbits can be shadowed by a true orbit where the time lag

between the pieces of orbits is bounded above by a constant that depends only on the shadowing

distance. Such condition is embracing, as it is satisfied by transitive hyperbolic dynamics, minimal

rotations on compact abelian groups and certain classes of partially hyperbolic diffeomorphisms

[11, 10, 38]. Precise definitions will be given in the sequel. The gluing orbit property constitutes a

useful tool to describe the thermodynamic formalism, large deviations, recurrence and multifractal

analysis (see e.g. [9, 11, 12, 36, 39] and references therein). In the context of flows, one needs to

reparametrize true orbits of the dynamics that shadow the prescribed pieces of orbits.

1.4. Objectives of our study. Our main goal here is to study the abundance of transitivity-like

properties of C0
incompressible flows generated by Lipschitz vector fields and to establish a weaker

counterpart of Oxtoby-Ulam theorem: C0-generic flows are strongly transitive, generalizing [6] for

the conservative or volume-preserving context. We notice that Oxtoby and Ulam proved that

generic volume-preserving homeomorphisms are ergodic (see e.g. [1, 31]) and there is a gap in the

literature concerning the continuous-time counterpart.

In our approach, the C0
genericity of the gluing orbit property arises as a spinoff of a stronger

characterization for C0
-generic conservative Lipschitz flows. Like in [6] we begin by proving that

both the denseness of periodic orbits and the periodic shadowing property are C0
-generic among

conservative Lipschitz flows. It is quite interesting that these two properties altogether are enough

to assure that these flows satisfy a reparametrized gluing orbit property and, consequently, are

strongly transitive: the shortest hitting time from a ball to any other ball of the same radius is
uniformly bounded above by a constant depending only on the radius.

2. M      

2.1. Incompressible flows. Let M be a connected, closed and C∞ Riemannian manifold of di-

mension n ≥ 3. Since along this paper we only deal with divergence-free vector fields we assume

that M is also a volume-manifold with a volume-form ν. Furthermore, we equip M with an atlas

A = {(αi,Ui)i} of M (cf. [28]), such that (αi)∗ν = dx1 ∧ dx2 ∧ · · · ∧ dxn, where xi are the canonical

coordinates in the Euclidian space, αi : Ui → R
n

a local C∞ diffeomorphism and Ui an open subset

of M. The fact that M is compact enables that A can be taken finite, say A = {(αi,Ui)}ki=1
. We

call Lebesgue measure to the measure associated to ν and denote it by µ. More precisely, we let

µ(U) = µν(U) :=
∫
α(U)

να−1(x)(Dα
−1
1

x1, . . . ,Dα−1n xn) dx1 . . . dxn,

for some Borelian U ⊂ M. Let d(·, ·) stand for the metric associated to the Riemannian structure.

We say that a function F : M → R is Lipschitz (or Lipschitz continuous) if, there exists L > 0

such that |F(x) − F(y)| < L d(x, y) for all x, y ∈ M. A vector field X is a map X : M → T M where

T M stands for the tangent bundle. Let X be written in the coordinates associated to A such

that X =
∑n

i=1
Xi

∂
∂xi
. If, for every i = 1, . . . , n, each function Xi is Lipschitz, then X is said to

be a Lipschitz vector field. The integral family of curves, Xt : M → M, associated to X satisfies

Xt+s(x) = Xt(Xs(x)) and X0(x) = x for all t, s ∈ R and x ∈ M and is called the flow associated to

X. Picard’s theorem ensures that Lipschitz vector fields integrate Lipschitz flows, meaning that

Xt : M → M is a lipeomorphism (i.e. a Lipschitz map with Lipschitz inverse) for all t ∈ R.
3



Rademacher’s theorem ([16, Theorem 3.1.6]) yields that Lipschitz functions admit derivatives

µ-almost surely. Thus, the divergence of a Lipschitz vector field X, given by ∇ · X : M → R, where

∇ := ( ∂
∂x1

, . . . , ∂
∂xn

), is a well defined function on a µ-full measure subset of M.

We say that a Lipschitz vector field X is divergence-free (or incompressible) if ∇·X = 0 for µ-a.e.

x ∈ M. We denote this set by X
0,1
µ (M). More generally, X

k,α
µ (M) stands for the divergence-free Ck

vector fields whose kth
-derivative is α-Hölder continuous. The Hamiltonian and geodesic flows

are special but meager families of incompressible flows (see [7] and references therein).

2.2. Topologies. When dealing with vector fields it is natural to first consider the C0
Whitney

topology. When considering flows one usually uses the compact open topology which basically

measures the way points get apart when we evolve the flow in a compact set of time. For con-

tinuous flows generated by vector fields, both topologies are related by using Grönwall’s inequality

(see e.g. [32]) and standard continuity dependence arguments of differential equations: squeezing

the distance of vector fields we squeeze the distance of their flows. Hence, in this context the C0

Whitney topology is stronger than the compact-open topology.

2.3. Shadowing. In what follows we introduce the shadowing properties we will consider for

continuous flows on compact manifolds. Let us fix real numbers δ > 0 and T > 1. We say that

a pair of sequences [xi, ti]i∈Z, where xi ∈ M, ti ∈ R, 1 ≤ ti ≤ T , is a (δ,T )-pseudo-orbit of (Xt)t if

d(Xti(xi), xi+1) < δ for all i ∈ Z.
For the sequence (ti)i∈Z we write, σ(n) = t0 + t1 + . . . + tn−1 if n > 0, σ(n) = −(tn + . . . + t−2 + t−1)

if n < 0 and σ(0) = 0. Let x0 ? t denote a point on a (δ,T )-chain t units time from x0. More

precisely, for t ∈ R, x0 ? t = Xt−σ(i)(xi) if σ(i) ≤ t < σ(i + 1). By Rep we denote the set of

all increasing homeomorphisms τ : R → R, called reparametrizations, satisfying τ(0) = 0. Fixing

ε > 0, we define the set

Rep(ε) =

{
τ ∈ Rep :

∣∣∣∣∣τ(t) − τ(s)
t − s

− 1

∣∣∣∣∣ < ε, s, t ∈ R
}
,

of the reparametrizations ε-close to the identity. In rought terms, a reparametrization τ : R → R
belongs to Rep(ε) whenever its velocity at all points is ε-close to 1.

Definition 2.1. Let (Xt)t be a continuous flow on a compact manifold M.

The flow (Xt)t is said to have the shadowing property if, for any ε > 0 and T > 1 there exists

δ = δ(ε,T ) > 0 such that for any (δ,T )-pseudo-orbit [xi, ti]i∈Z there is x̃ ∈ M and a reparametrization

τ ∈ Rep(ε) such that

(2.1) d(Xτ(t)(x̃), x0 ? t) < ε, for every t ∈ R.

For simplicity reasons we will just say that the (δ,T )-pseudo-orbit [xi, ti]i∈Z is ε-shadowed by some

orbit of X if property (2.1) holds.

If, in addition, any (δ,T )-periodic pseudo-orbit [xi, ti]i∈Z (i.e. there exists n ∈ N so that (xi, ti) =

(xi+n, ti+n) for all i ∈ Z) is ε-shadowed by a periodic point then we say (Xt)t has the periodic
shadowing property.

Definition 2.2. We say that a continuous flow (Xt)t satisfies the weak shadowing property if for

any ε > 0 and T > 1 there exists δ > 0 so that for every (δ,T )-pseudo orbit [xi, ti]i∈Z there exists

x̃ ∈ M so that the pseudo-orbit is contained in the ε-neighorbood

⋃
t∈R B(Xt(x̃), ε) of the orbit of x̃.

2.4. Reparametrized gluing orbit property and strong transitivity. Given a continuous flow

(Xt)t on M, Poincaré’s recurrence theorem ensures that Lebesgue almost every x ∈ M is recurrent.

In particular M is the unique chain recurrent class for a volume-preserving flow (Xt)t (see e.g. [2]

for definitions).
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We are interested in much stronger notions of indecomposability. It is well known that C0
-

generic volume-preserving homeomorphisms satisfy both the shadowing and the specification

properties (see [18]). However, one cannot expect this result to extend for typical continuous flows,

due to the existence of the natural foliation by orbits of the flow and reparametrizations of the

dynamics. The following notion is more adequate to deal with continuous-time dynamics (see [11]

for a discussion).

Definition 2.3. Let (Xt)t be a continuous flow on M.

We say that (Xt)t has the reparametrized gluing orbit property if for any ε > 0 there ex-

ists K = K(ε) ∈ R+
such that for any points x0, x1, . . . , xk ∈ M and times t0, t1, . . . , tk ≥ 0

there are p0, p1, . . . , pk−1 ≤ K(ε), a reparametrization τ ∈ Rep(ε) and a point y ∈ M so that

d(Xτ(t)(y)), Xt(x0)) < ε for every t ∈ [0, t0] and also d(Xτ(t+
∑i−1

j=0
p j+t j)(y), Xt(xi)) < ε for every t ∈ [0, ti]

and 1 ≤ i ≤ k. If, in addition, the point y ∈ M can be chosen periodic satisfying Xτ(
∑k

j=0
p j+t j)(y) = y

for some pk ≤ K(ε) then we say that (Xt)t has the periodic reparametrized gluing orbit property.

The previous property implies on a strong form of transitivity for the flow (Xt)t.

Definition 2.4. Let (Xt)t be a continuous flow on a compact manifold M.

We say that (Xt)t is strongly transitive if for any ε > 0 there exists sε > 0 so that for any two

balls B1, B2 of radius ε there exists a point x ∈ M so that {Xt(x) : t ∈ [0, sε]} intersects both B1 and

B2.

2.5. Main results. As mentioned before we will address on topological aspects of the class of

volume-preserving flows generated by typical non-singular Lipschitz incompressible vector fields.

Let X
0,1
µ,∗(M) ⊂ X0,1

µ (M) denote the subset formed by all vector fields having no singularities. This

is clearly a C0
-open subset, although empty for some manifolds (e.g. M = S4). Our main result

says that typical flows are chaotic.

Theorem A. There exists a C0-generic subset R ⊂ X0,1
µ,∗(M) such that, if (Xt)t is the continuous flow

generated by a vector field X ∈ R, then:
(1) the set of periodic orbits of (Xt)t is dense in M;
(2) (Xt)t satisfies the periodic shadowing property;
(3) (Xt)t satisfies the gluing orbit property;
(4) (Xt)t is strongly transitive.

Using that both the general density theorem and the shadowing property are generic (i.e. items

(1) and (2) of Theorem A), and that there exists a unique chain recurrent class for volume-

preserving dynamics, we conclude that the reparametrized gluing orbit property holds C0
-generically

(the argument in [6, Theorem 1] just attends at the topological properties and is independent of

the class of flows). In consequence, a C0
-generic volume-preserving flow is strongly transitive.

Thus, it is enough to prove the first two items in the theorem. In §3 we prove the general density

theorem, and in §4 we prove that the shadowing property is C0
-generic.

We should also highlight that, by [9], the reparametrized gluing orbit property has non-trivial

implications on the space of invariant measures and recurrence for the dynamics. In particular,

as a direct consequence of [9, Theorem B] (whose proof only explores the gluing orbit property)

we obtain the following:

Corollary 1. There exists a C0-generic subset R ⊂ X
0,1
µ,∗(M) such that, if (Xt)t is the continuous

flow generated by a vector field X ∈ R, then the set of periodic measures is dense in the space of
(Xt)t-invariant probabilities.

We illustrate another application. Actually, the gluing orbit property can be also used as a

key tool in ergodic optimization. Let us recall some basic notions. For each X ∈ X0,1
µ,∗(M) denote
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by MX the simplex of (Xt)t-invariant probabilities. For each ϕ ∈ C(M,R), by continuity of the

function MX 3 µ 7→
∫
ϕ dµ (in the weak

∗
topology) one has that

M(ϕ) := sup
µ∈MX

∫
ϕ dµ = max

µ∈MX

∫
ϕ dµ.

Any probability attaining the previous maximum is called a ϕ-maximizing measure. Some of

the fundamental questions in ergodic optimization are to determine wether maximizing measures

are unique, full supported, have positive topological entropy or periodic measures, for typical

observables (we refer the reader to [23] for a survey on ergodic optimization). Building over

[26], Morro, Sant’Anna and the third named author [27] characterized maximizing measures for

typical continuous observables of dynamics with the gluing orbit property (cf. Theorem 2.5 in [27]).

Together with Theorem A, this has the following consequence.

Corollary 2. There exists a C0-generic subset R ⊂ X0,1
µ,∗(M)×C(M,R) such that for every (X, ϕ) ∈ R

there exists a unique (Xt)t-invariant and ϕ-maximizing measure. Moreover the unique maximizing
measure has full support and zero entropy.

Let us discuss the shadowing property in the case of vector fields with singularities. We recall

that Odani presented in [29] a quite direct strategy to obtain the C0
-genericity of shadowing

for dissipative homeomorphisms on nice manifolds, meaning those for which the space of C1
-

diffeomorphisms is C0
-dense in the space of homeomorphisms. His proof builds over Shub’s

C0
-density theorem [37], which says that structurally stable diffeomorphisms are C0

-dense in the

space of Cr
-diffeomorphisms (1 ≤ r ≤ +∞). It turns out that the continuous-time version of

Shub’s result also holds [30, 42] (see also [41, Section 9]). Moreover, as proved by Hayashi [19],

structurally stable flows are precisely those whose nonwandering set is hyperbolic and satisfies

the transversality condition. Then, it is not hard to follow the same lines as in [29] and conclude

the C0
-genericity of shadowing on X0,1(M). We notice this does not contradict the existence of

smooth flows displaying hyperbolic singularities (e.g. geometric Lorenz flows or more generally

singular-hyperbolic flows) which do not satisfy the shadowing property (see e.g. [40]). Indeed,

while these flows are C1
-persistent according to [25], they can be C0

-approximated by structurally

stable ones allowing to go ahead with Odani’s strategy. A version of the results in [30, 37, 42] for

incompressible vector fields is unknown and probably unlikely. For this reason we ask:

Question: Does the shadowing property hold C0
-generically on X

0,1
µ (M)?

While hyperbolicity is clearly a feature of smooth flows, the permanence of singularities and

their stable manifolds can be obtained through fixed point index and continuity arguments, re-

spectively. Notwithstanding, while it is unclear wether these obstructions can be made locally

C0
-generic (or even C0

-open), here we can prove a technical lemma concerning homogeneity

through incompressible vector fields (Lemma 5.1) which will allow to adapt the strategy in [24] to

the continuous-time setting and prove the following:

Theorem B. C0-generic vector fields in X0,1
µ (M) generate incompressible flows with the weak shad-

owing property, (hence are transitive) and have a dense set of periodic orbits.

3. T C0
-    X

0,1
µ (M)

3.1. Strategy of the proof. There is a long story concerning the general density theorem for

continuous maps, which culminated with a proof by Hurley (we refer the reader to [21] for the

proof and an historical account). Hurley’s proof uses that one can create a C0
-stable periodic sink
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by a small C0
-perturbation and Brouwer’s fixed point theorem guarantees a fixed point for every

C0
-close homeomorphism.

Daalderop and Fokkink overcomed the absence of sinks for volume-preserving homeomorphisms

and proved that the general density theorem holds for that systems [14].

In the present paper we mainly follow the arguments in [6], adapting them to the volume-

preserving flow framework.

The fundamental steps in the proof are the following:

1
st

Step We will notice, in §3.2, that any element in X
0,1
µ (M) can by C0

-approximated by a vector

field in X∞µ (M);
2
nd

Step Since the proof uses a topological fixed point index argument, in §3.3, and for the sake of

completeness we recall some basic definitions;

3
rd

Step In §3.5 we obtain a result (Lemma 3.3) which gives us a C0
-residual R ⊂ X0,1

µ (M) where the

periodic orbits are permanent. This guarantees that the map P defined by P(X) = Per(Xt)
for X ∈ X0,1

µ (M) is lower semicontinuous in R. In particular, the continuity points of P|R
form a residual subset of R;

4
th

Step In §3.6 we prove a C0
-closing lemma for Lipschitz vector fields (Corollary 3.10), which will

play a key role in the proof of item (1) in Theorem A.

5
th

Step Finally, the general density theorem will follow by a continuity argument involving the two

previous steps and the fact that the divergence-free Kupka-Smale vector fields are contained

in the continuity points of P.

3.2. A density theorem. Despite the fact that we are using the C0
topology which is unsuitable

for stability results, certain stability arguments will be used in the sequel. So, C0
-approximating a

Lipschtiz vector field by a C1
-smooth one will be a key step toward the proof of several results.

Theorem 3.1. The set X∞µ (M) is C0-dense in X0,1
µ (M).

Proof. The proof of this statement is contained in the proof of [5, Proposition 1]. �

3.3. Hopf degree and index for periodic orbits for continuous flows. In [6] we presented

with detail the basic concepts related to Hopf degree. Regardless, it is worth to recollect them

again to cover every aspect in a self contained way. Given a continuous map f on a compact

manifold M, we will recall the fixed point index used in [13]. Let B be an open ball on M whose

boundary ∂B is an embedded sphere and assume that either (i) f (B) ∩ B = ∅, or (ii) f (B) ∪ B is

contained in a single coordinate chart. If, in addition, f has no fixed points in ∂B then the fixed
point index ι f (B) is defined as follows:

(1) ι f (B) = 0, if f (B) ∩ B = ∅; and

(2) ι f (B) = deg(γ), in the case that f (B) ∪ B is contained in a single coordinate chart, where

deg(γ) denotes the Hopf degree of the map γ : ∂B ' S n−1 → S n−1
which is defined (after a

change of coordinates) by γ(x) =
f (x)−x
‖ f (x)−x‖ .

This notion is independent of the choice of local coordinates and it is locally constant in a small

neighborhood of the continuous mappping f (see e.g. [20]).

In the mid sixties, Fuller [17] introduced a notion of index for periodic orbits for continuous

flows in the same vein of the fixed point index for homeomorphisms. As in the discrete time

setting, an appropriate notion of index would be homotopy invariant, additive and if it is non-

zero then it should guarantee the existence of a periodic orbit. Some of the subtleties that arise

in the case of flows concern the fact that the (compact) periodic orbit can escape to infinity or

into a singularity by homotopy (see e.g. [17, Section 7]). For that reason, the index of periodic

orbits of vector fields or flows is defined for periodic orbits that are isolated in the sense that we
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describe below. Given a compact boundaryless manifold M and a vector field X ∈ X0(M), consider

the (closed) set

Π(X) = {(p, t) ∈ M × R+ : Xt(p) = p} ⊂ M × R+.

Given an open set Ω ⊂ M that does not contain any singularity of X, we say that the open set

Ω×]t1, t2[⊂ M × R+
is admissible for X if ∂(Ω×]t1, t2[) ∩Π(X) = ∅. In other words, the set Ω×]t1, t2[

is admissible for X if and only if the boundary of Ω contains no periodic orbits for X with period

t1 or t2.
Following [17], a periodic orbit γ with period π is isolated if is has an open neighborhood in

M×R+
where γ is the unique periodic orbit for X. Clearly, isolated periodic orbits admit admissible

neighborhoods. The Fuller index of an isolated periodic orbit γ of period q > 0 is defined by

i(X,Ω×]t1, t2[) =
ι(PX)

m
where m = q/p is the multiplicity (p is the least period of γ) and ι(PX) is the index of any Poincaré

return map at some point p of γ. We observe that although in its original paper Fuller [17] was

studying C∞-vector fields, the notion of index that was introduced is clearly independent of the

smoothness of the vector field.

First, we observe that since the usual index of fixed points is homotopy invariant then the later

is well defined and independent of the admissible neighborhood of γ. Second, up to a factor,

the index coincides essentially with the index of a Poincaré map PX : Σ → Σ where Σ is a local

cross-section to the flow passing though the point p ∈ γ. The most important property for our

purposes is that if i(X,Ω×]t1, t2[) , 0 then there exists a non-trivial periodic orbit with non-empty

intersection with Ω and a period in the range ]t1, t2[. By the later discussion, and when no

confusion is possible, we will refer to ι(PX) instead of the Fuller index. We refer the reader to

[17, 20] for the proofs and other properties of this index.

3.4. The flowbox theorem for Lipschitz incompressible flows. Given a regular orbit of a Cr

flow (r ≥ 1) it is always possible, using a change of coordinates, to straightening out all orbits in

a certain neighborhood of the orbit. This is a very simple, yet important result called the flowbox
theorem and its proof uses basically the inverse function theorem (see e.g. [32, pp. 40]). This

theorem describes completely the local behavior of the orbits in a neighborhood of a regular orbit

and shows that, locally, first integrals always exist. Nevertheless, since the change of coordinates

is given implicitly we are not sure that it preserves certain geometric invariants of the flow like,

for example, preservation of a volume form. Furthermore, when decreasing the smoothness of the

vector field some careful is needed to proceed with the proof of the flowbox theorem.

For performing local perturbations of vector fields in X
0,1
µ (M) will be of utmost importance to

use the flowbox theorem for divergence-free Lipschitz vector fields proved by the first author in

[5]. Let us introduce some definitions first. We say that two vector fields X1 : U1 → TU1 and

X2 : U2 → TU2 are locally topologically conjugate near p1 ∈ U1 and p2 ∈ U2 if there exist two open

neighborhoods Oi 3 pi (i = 1, 2) and a homeomorphism φ : O1 → O2 with φ(p1) = p2 such that for

any x ∈ O1 and a small interval I containing 0 the integral curve σx : I → O1 defined by σx(0) = x
and

d
dtσx(t) = X1(σx(t)) for all t ∈ I (i.e. defined by Xt

1
(x) for t ∈ I) is a solution associated to X1 if

and only if the integral curve φ◦σx : I → O2 is a solution associated to X2. The following flowbox

theorem corresponds to [5, Theorem 1].

Theorem 3.2. (Flowbox theorem for Lipschitz divergence-free vector fields)
Let be given X ∈ X0,1

µ (M), a non-singular point p1 ∈ M and the trivial vector field T (x̂1, x̂2, . . . , x̂n) =

(1, 0, . . . , 0) on canonical coordinates (x̂1, x̂2, . . . , x̂n) of Rn.
(i) Then, there exists an open neighborhood A of p and a lipeomorphism φ : A→ φ(A) onto an

open neighborhood of 0̂ that conjugates the vector fields X |A and T |φ(A).
8



(ii) Then, X and Tc = cT are locally topologically (volume-preserving) conjugate near p1 and
p2 = 0̂ for some c = c(X, p1) > 0. The homeomorphism Φ which gives the conjugacy is a
volume-preserving lipeomorphism.

A neighborhood A of p as above is called a flowbox chart at p.

3.5. Permanence of periodic orbits. We recall the notion of permanence from topological dy-

namics. Let X ∈ X0,1
µ (M) and let (Xt)t be the flow generated by X. We say that a closed orbit γ

of a flow (Xt)t is permanent if for any vector field Y ∈ X0,1
µ (M), C0

-arbitrarily close to X, the flow

(Y t)t has a periodic orbit γ̃ near γ. Let P(Xt) denote the set of all permanent closed orbits of

(Xt)t. We need some instrumental results.

Lemma 3.3. There exists a residual subset R of X0,1
µ (M) and with respect to the C0-Whitney

topology such that Per(Xt) = P(Xt), for any X ∈ R. Moreover, the residual subset R contains the
space of C1 Kupka-Smale divergence-free vector fields denoted by KS 1

µ(M).

Proof. The proof is similar to the one of [6, Lemma 5.1]. We make use of the denseness of

divergence-free Kupka-Smale vector fields as we now describe. Recall that KS 1

µ(M) is a C1
-

residual subset of the Baire space (X1

µ(M), ‖ · ‖C1) (see [35]), thus it is C1
-dense in X1

µ(M). In

consequence, KS 1

µ(M) is C0
-dense in X1

µ(M). Since, by Theorem 3.1, X1

µ(M) is C0
-dense in X

0,1
µ (M)

then we conclude that KS 1

µ(M) is C0
-dense in X

0,1
µ (M).

We proceed proving that there exists a C0
-residual R ⊂ X0,1

µ (M) such that any closed orbit of a

vector field in R is permanent. We begin by taking a countable base for the topology {Bi}i∈N of

M consisting of open balls whose boundaries are embedded spheres. The index of periodic orbits

will play a crucial role along the proof, since the existence of non-zero index on a set (which is a

C0
-open condition) assures the existence of a periodic orbit that intersects that set.

We define, for every i, n ∈ N, the disjoint C0
-subsets Fi,n,Ii,n of X

0,1
µ (M) in the following way:

(1) X ∈ Fi,n if Xt(x) , x for all x ∈ Bi and all t ∈]0, n];
(2) X ∈ Ii,n if there exists B j with diam(B j) < diam(Bi) and such that Xt(x) , x for all x ∈ ∂B j

and all t ∈]0, n], and i( X,Bi×]t1, t2[ ) , 0 for some 0 < t1 < t2 ≤ n.

By Gronwall’s inequality the map X
0,1
µ (M)×]0, t] 3 (X, s) 7→ Xs ∈ Homeoµ(M) is continuous and,

consequently, the sets Fi,n and Ii,n are C0
-open subsets of X

0,1
µ (M).

We claim that KS 1

µ(M) ⊂ Fi,n∪Ii,n and, in particular, Fi,n∪Ii,n is a C0
-open and dense subset

of X
0,1
µ (M) for all i, n ≥ 1. Indeed, given i, n ≥ 1 fixed and X ∈ KS 1

µ(M) either there are no periodic

orbits with period smaller or equal to n in Bi (in which case X ∈ Fi,n) or there are periodic orbits

with period smaller or equal to n in Bi. In the later case, since the periodic orbits are hyperbolic,

hence isolated, we have that X ∈ Ii,n.

Now we claim that the C0
-residual subset R :=

⋂
i,n≥1[Fi,n ∪ Ii,n] ⊂ X0,1

µ (M) satisfies the

requirements of the lemma. Let us show that Per(Xt) = P(Xt). Take X ∈ R and γ ∈ Per(Xt) of

period a and any Bi which intersects γ. Since X ∈ Fi,n ∪Ii,n and γ intersects Bi then there exist

n ∈ N and B j with diam(B j) < diam(Bi), such that Xt(x) , x for all x in the boundary of B j and

all t ∈]0, n], and the corresponding index is non-zero. Since this property is persistent for small

C0
-perturbations of the original vector field we get that γ is permanent. This finishes the proof of

the lemma. �

The next result is a kind of C0
-Pasting lemma restricted to a flowbox, and it combines two

perturbation results. First we use Theorem 3.2 to put ourselves into a smooth context. Second, [3,

Theorem 3.1] implies on the desired perturbation.
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Lemma 3.4. Given ε > 0, there exists δ > 0 such that if X ∈ X0,1
µ (M), K is a compact injective

flowbox of M and Y ∈ X0,1
µ (M) is δ-C0-close to X on a small neighborhood U of K, then there are

Z ∈ X0,1
µ (M), sets V and W such that K ⊂ V ⊂ U ⊂ W and V and K are close in the Hausdorff

distance, satisfying Z |V= Y , Z |int(Wc)= X and Z is ε-C0-close to X.

Proof. Fix ε > 0. By [3, Theorem 3.1] there exists δ̃ > 0 such that if X ∈ X0,1
µ (M) and φ is given

by Theorem 3.2, K̃ is a compact subset of M and φ(K̃) ⊂ Im(φ) (where Im(φ) is the image of φ) is

a compact subset of Rn
and Ỹ ∈ X2

µ(Rn) is δ̃-C1
-close to T = X on a small neighborhood Ũ of K̃,

then there exist Z̃ ∈ X2

µ(Rn) and Ṽ and W̃ such that K̃ ⊂ Ṽ ⊂ Ũ ⊂ W̃ ⊂ Im(φ) satisfying Z̃ |Ṽ= Ỹ ,

Z̃ |Ṽ= Ỹ , Z̃ |int(W̃c)= X̃ and Z̃ is ε-C0
-close to X̃. Now define δ = δ̃, V = φ−1(Ṽ), W = φ−1(W̃),

Ỹ = φ∗Y and Z̃ = φ∗Z. Clearly, Z |V= Y , Z |int(Wc)= X. If Z is not ε-C0
-close to X decrease δ̃

accordingly, reboot the proof until Z is ε-C0
-close to X. �

We should notice that [3, Theorem 3.1] provides sharper estimates as we deal with the C0
-

topology, instead of the space of C1
-vector fields and C1

-topology considered there.

Lemma 3.5. Assume that X ∈ X0,1
µ (M) and that γ is a periodic orbit. There exists an arbitrarily

small C0-perturbation Y ∈ X0,1
µ (M) of X such that γ is an isolated periodic orbit for (Yt)t, hence

permanent.

Proof. Let γ be a periodic orbit with prime period T (γ) > 0 for X ∈ X0,1
µ (M) and L be its Lipschitz

constant. Fix p ∈ γ and an arbitrary ε > 0. Covering each compact piece of orbit by trivializing

charts given by Theorem 3.2 we obtain a long tubular floxbox chart: for any ξ > 0 there exists

ζ > 0, an open neighborhood Uζ of p and a volume-preserving lipeomorphism ϕ : Uζ → [0,T (γ)−

ξ] × B(~0, ζ) so that T = ϕ∗X ≡ (1, 0, . . . , 0).
Let C > 0 be a Lipschitz constant for both ϕ and ϕ−1.

Consider the vector field Yδ ∈ X∞([0,T (γ) − ξ] × B(~0, ζ)) given by

Yδ
(
x1, x2, . . . , xn−1, xn

)
=

(
1, δx2, . . . , δxn−1,−δ(n − 1)xn

)
,

for some 0 < δ ≤ L
C .

This is a divergence-free vector field with Lipschitz constant bounded above by
L(n−1)

C . Moreover,

it generates an incompressible flow (Y t
δ)t, and the piece of orbit

Y t
δ(0, 0, . . . , 0) = (t, 0, . . . , 0), t ∈ [0, ξ]

has hyperbolic behavior. By the pasting lemma (see Lemma 3.4), there exists 0 < δ � L
C and

Z ∈ X0,1
µ (M) so that

Z |
[0,T (γ)−ξ]×B(~0,ζ/4)

≡ Y and Z |
[0,T (γ)−ξ]×B(~0,ζ)\B(~0,ζ/2)

≡ (1, 0, . . . , 0)

is C1
-close to the constant vector field. The resulting vector field W = (ϕ−1)∗Z ∈ X

0,1
µ (M) has

Lipschitz constant bounded by L(n − 1).
By construction, taking ξ > 0 small enough, we obtain that the orbit γ is preserved by (Zt)t and

it is an isolated periodic orbit.

�

3.6. The C0-closing lemma on X0,1
µ (M). If p is a non-singular point for X ∈ X0,1

µ (M), (Xt)t is

the flow generated by X and (T t)t is the trivial flow on R × Rn−1
generated by T defined by

T t(s, z) = (s + t, z), then Theorem 3.2 implies that there exist δ > 0, an open neighborhood Uδ of p

and a lipeomorphism ϕ : Uδ → [0, δ]×B(~0, δ) (here B(~0, δ) denotes the usual ball in Rn−1
) verifying

ϕ ◦ Xt(x) = T t ◦ ϕ(x) for every x ∈ Uδ and t ∈ R so that Xt(x) ∈ Uδ. Hence, given 0 < r < δ we
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will consider also the flowbow ‘cylinders’ FX,δ(B) := ϕ−1((0, δ) × B), for B ⊂ B(~0, δ)), and the local

cross-section Σp := ϕ−1({0} × B(~0, δ)) to the flow (Xt)t at p.
The proof of the closing lemma in our context (Corollary 3.10) will be crucial in the sequel.

This is the volume-preserving version of [6, Lemma 5.3] but its proof is completely different due

to the fact that our perturbation must be divergence-free. The proof will be performed in three

steps: Our aim will be to put ourselves in the setup of Pugh and Robinson perturbation arguments

in [34, Section 8 (c)] allowing to ‘lift’ points. So firstly, considering Theorem 3.2 we change

from X ∈ X0,1
µ (M) to a C∞ trivial vector field T displaying a trivial C∞ flow T t(s, z) = (s + t, z)

(here C1
would be enough). Secondly, we change again the coordinates in a conservative way

using Lemma 3.7 to transform a tubular neighborhood of a path connecting two points into a

ball neighborhood. Finally, we use the techniques from [34, Section 8 (c)] which construct the

volume form preserved by a flow performing our desired perturbation instead of constructing the

volume-preserving flow which preserves a given volume-form. Estimates here are simpler than in

[34] because we are only interested in C0
approximations. In overall, our work will be to prove

that vector fields in X
0,1
µ (M) satisfy the Lift Axiom (see [34, Figure 2]) which is the main content

of Lemma 3.9.

Next result, which is one of the main tools to perform conservative change of coordinates, will

be instrumental to prove Lemma 3.7.

Theorem 3.6. (Dacorogna and Moser [15, Theorem 1]) Let Ω = B(x, r) and f , g ∈ C1(Ω) two positive
functions. There exists a diffeomorphism ϕ with ϕ, ϕ−1 ∈ C2(Ω,Rn), where α < 1, satisfying

(3.1) g(ϕ(x)) det Dϕx = λ f (x),

for all x ∈ Ω where λ =
∫

g/
∫

f . We also have ϕ = Id at ∂Ω.

Theorem 3.2 trivialize flowboxes and the next result trivialize supports of perturbations. The

main goal will be to put us in the Pugh and Robinson hypothesis of liftability in the conservative

setting and so will play a fundamental part to obtain the C0
-closing lemma for X ∈ X0,1

µ (M).

Lemma 3.7. Let T be a trivial vector field with transversal section the hyperplane H defined by
x1 = 0, let p, q ∈ T ⊂ B ⊂ H where B is a ball and T a neighborhood of the points p and q with
smooth boundary. There exist r > 0, a volume-preserving map ψ : T → B(~0, r) such that B(~0, r) ⊂ H
and, consequently, a volume-preserving smooth change of coordinates Ψ from the flowbox with base
T into the flowbox with base B(~0, r).

Proof. First choose r > 0 such that T and B(~0, r) have the same volume. Take any smooth map

ψ0 : T → B(~0, r). We feed Theorem 3.6 with Ω = B(~0, r), g = 1 and f = det∇ψ−1
0

. Clearly, λ = 1.

Now, Theorem 3.6 gives ϕ satisfying (3.1), i.e. det Dϕ = det∇ψ−1
0

. Defining ψ = ϕ ◦ ψ0 we obtain

that: detψ = det(ϕ ◦ψ0) = detϕ detψ0 = 1 and that ψ
∣∣∣∣
∂T

= ϕ ◦ψ0

∣∣∣∣
∂T

= ψ0

∣∣∣∣
∂T

(see Figure 1). Finally,

the map Ψ(t, z) = (t, ψ(z)) defined in flowbox coordinates z ∈ T (base coordinate) and t > 0 (heigh

coordinate) is volume-preserving and can easily be extended in a neighborhood B of T . Indeed,

taking a ball B1 ⊃ B(~0, r) such that B1 and B have the same volume we can repeat the same

proceedure above this time constructing a volume-preserving diffeomorphism ψ̃ from B \ T into

B1 \ B(~0, r). Since ψ = ψ̃ = Id in the common boundary both diffeomorphisms glue continuously.

�

Remark 3.8. If, for i = 1, . . . , n, we have paths γi connecting pi and qi with tubular neighborhoods

Ti pairwise disjoint and inside B we can construct ψi and ψ̃ such that the union of these i + 1

diffeomorphisms transform conservatively Ti into B(si, ri) where B(si, ri) ⊂ B1.
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F . The regularization map ψ given by Dacorogna-Moser theorem. The ball

B(~0, r) and the set T have the same volume.

Lemma 3.9 (Lifting Lemma). Let X ∈ X0,1
µ (M), let p be a non-singular point, Σp be a local cross-

section through p and let Φ be the lipeomorphism given by Theorem 3.2 and Ψ be the diffeomorphism
given by Lemma 3.7. Assume there exists a C1-path γ : [0, δ] → Σp without self-intersections and
with constant speed ν (hence of length νδ) such that γ(0) = p and γ(δ) = q. Then there exists C > 0

so that for any η > νδ, any open tubular neighborhood T ⊂ Σp forming a narrow band around the
curve and of diameter smaller than η, and any ε > 0 there exist ζ = ζ(C, η, ε) > 0 (so that ζ → 0 when
η→ 0) and a vector field Z such that: (a) Z ∈ X0,1

µ (M); (b) Z is ζ-C0-close to X; (c) Zδ(p) = Xδ(q) and
(d) Z = X outside FX,δ(W) where W is arbitrarilly close to [−δ, δ]×T (w.r.t. the Hausdorff distance).

Proof. Assume that q , p otherwise the proof is trivial. The volume-preserving lipeomorphism

Φ conjugates (Xt)t with the trivial flow (T t)t. The volume-preserving diffeomorphism Ψ makes a

change of coordinates from the flowbox with base T into the flowbox with base B(~0, r). Hence,

we may assume that (Xt)t is the trivial flow on [−δ, δ] × B(~0, δ) in the flowbox coordinates (t, z) ∈
R×Rn−1

, given by Xs(t, z) = (t + s, z) and T is a ball B(~0, r) for a certain r ∈ (0, δ). Thus the result

will follow immediately if we prove the lemma on [−δ, δ] × B(~0, δ). Take C > 0 given by uniform

continuity of the lipeomorphism (Ψ ◦ Φ)−1.
Take an arbitrary η > νδ and T = B(~0, r) ⊂ Σp such that r < η

2
. Fix an open ball B(~0, r̂) (

B(~0, r̂) ( T containing γ and ε > 0. Now we are in conditions to apply the proficient volume-

preserving perturbative arguments from [34, Section 8 (c)] to find Y ∈ X0,1
µ (M) such that Yδ(p) =

Xδ(q) where the perturbation is performed in U = [−δ, δ] × B(~0, r̂) (cf. Figure 2). By Lemma 3.4

given ε > 0, there exists ∆ > 0 such that if X ∈ X0,1
µ (M), K is a compact injective flowbox of M

and Y ∈ X0,1
µ (M) is ∆-C0

-close to X on a small neighborhood U of K, then there exist Z ∈ X0,1
µ (M)

and V and W such that K ⊂ V ⊂ U ⊂ W satisfying Z |V= Y , Z |int(Wc)= X and Z is ε-C0
-close to X.

The items (a), (c) and (d) are trivially satisfied by construction. Moreover, we saw above that

Z is ε-C0
-close to X but we are considering ‘good’ coordinates which are affected of a distortion

factor bounded by C. Furthermore, the size of the flowbox W depends on its height and width

which is given by δ and the speed of perturbation is given by ν. Hence, the constant η is also

relevant when we estimate the C0
-distance from Z to X and (b) also holds. �

The C0
-closing lemma for flows generated by Lipschitz divergence-free vector fields (Corol-

lary 3.10) will play a crucial role in the proof of the general density theorem.
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F . The volume-preserving lifting lemma.

Corollary 3.10. (C0-closing lemma for Lipschitz divergence-free vector fields) Let X ∈ X0,1
µ (M) and

p ∈ M be a non-singular point. Then, for every ε > 0 there exists a vector field X ∈ X0,1
µ (M) which

is ε-C0-close to X, coincides with X outside of a small open neighborhood of p, and such that the
flow generated by Y has a periodic point p̃ so that d(p, p̃) < ε.

Proof. If p is periodic for (Xt)t we are done. Otherwise, since p ∈ M is a non-singular point,

for any 0 < r < δ and corresponding flowbow FX,δ(B(~0, r)) = ϕ−1((0, δ) × B(~0, r)) associated to p
there exists T > 0 such that XT (Σp) ∩ Σp , ∅ where Σp = ϕ−1({0} × B(~0, r)). Consequently, just

pick 0 < r < δ small (it is enough that 4Cr < ε) so that the perturbated vector field Y ∈ X0,1
µ (M)

obtained by Lemma 3.9 is ε-C0
-close to the vector field X and it admits a periodic orbit that

intersects FX,δ(B(~0, r)). This proves the corollary. �

3.7. Proof of the General Density Theorem. Now we prove item (1) in Theorem A. Let M?
be

the set of compact subsets of M endowed with the Hausdorff topology. We need the following

semicontinuity result.

Lemma 3.11. Let X0,1
µ (M) be endowed with the C0-topology. Then the map

P : X
0,1
µ (M) → M?

X 7→ Per(Xt)

is lower semicontinuous on the residual R given by Lemma 3.3.

Proof. We must prove that for any X ∈ R, and any ε > 0 there exists a neighborhood V of X
such that P(Y) ⊆ Bε(P(X)) for all Y ∈ V , or in other words there are no implosions of the set

of closed orbits when we C0
-perturb X. But Lemma 3.3 says that Per(Xt) = P(Xt) and the proof

follows immediately from the definition of permanent closed orbits. �

We are now in a position to prove item (1) of Theorem A, that is the General Density Theorem

for Lipschitz divergence-free vector fields equipped with the C0
-Whitney topology. Since the map

P : X0,1
µ (M)→ M?

defined by P(X) = Per(Xt) is lower semicontinuous on R (by Lemma 3.11) then

the continuity points of P|R form a residual subset R1 ⊂ R.

Recall that by the Poincaré recurrence theorem the non-wandering set of a incompressible flow

is the whole manifold.
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Thus, to prove the theorem it is enough to show that M = Per(Xt) for every vector field X ∈ R1.

Assume, by contradiction, that there exists a vector field X ∈ R1 such that M \Per(Xt) , ∅ and take

p ∈ M \ Per(Xt). Now, the closing lemma (Corollary 3.10) implies that X can be C0
-approximated

by a vector field Y1 ∈ X
0,1
µ (M) so that p ∈ Per(Y t

1
). By Lemma 3.5, one can perform a C0

-small

perturbation of Y1 so that p becomes a permanent periodic point for the resulting vector field

Y2 ∈ X
0,1
µ (M). Since the set of C1

Kupka-Smale divergence-free vector fields is contained in R (cf.

Lemma 3.11) and is also C0
-dense in X

0,1
µ (M) (cf. Theorem 3.1), we conclude that the permanence

of the periodic point p guarantees that Y2 can be arbitrarily C0
-approximated by some C1

Kupka-

Smale divergence-free vector field Y3 ∈ R with a periodic point p̃ arbitrarily close to p. Altogether,

we conclude that X is C0
-approximated by vector fields in R with periodic points arbitrarily close

to p, which is in contradiction to the fact that X is a continuity point of P |R . This proves that

M = Per(Xt) and completes the proof of (1) of Theorem A.

4. P   C0
-  X

0,1
µ,∗(M)

Unless stated to the contrary we let M be a compact Riemmanian manifold of dimension ≥ 3.

4.1. Realization of covering relations. We begin by considering a very useful simple version of

a result by Zgliczynski and Gidea [43] which we apply to Poincaré maps of a Lipschitz continuous

flow. Let us first present some notation. We say that N = (|N |,N`,Nr) is a h-set in Rn−1
if

|N| = [a, b] × Dn−2
r , N` = (−∞, a] × Rn−2

and Nr = [b,∞) × Rn−2
for some a, b ∈ R. We consider the

left and right edges N`e = |N| ∩ N`
and Nre = |N| ∩ Nr

, respectivelly. Given two h-sets N, M and a

continuous map h : |N | → |M| ⊂ Rn−1
, we say that N h-covers M if:

(A) h(|N |) ⊂ Int|M| ∪ M` ∪ Mr
, and either h(N`e) ⊂ IntM`

and h(N`r) ⊂ IntMr
or else h(N`e) ⊂

IntMr
and h(N`r) ⊂ IntM`

; or

(B) h(|N |) ⊂ Int|M|.

The covering relation of type (A) is denoted by N
h

=⇒ M and the covering relation of type (B)

is denoted by N
h,0
=⇒ M. Notice that if h is a homeomorphism obtained as Poincaré first hitting

time map from a local smooth cross section N onto a cross-section M and |N | and |M| have the

same volume then h may display only the covering relation of type (A).

Theorem 4.1. (Zgliczynski and Gidea, [43, Theorem 4]) If

N0

h1

=⇒ N1

h2

=⇒ N2

h3

=⇒ . . .
hk

=⇒ Nk

then there exists x ∈ Int|N0| such that (hi ◦ · · · ◦ h2 ◦ h1)(x) ∈ Int|Ni| for all i ∈ {1, . . . , k}.

We are going to modify the strategy in [6, 18] to prove the C0
-genericity of periodic shadowing

for volume-preserving Lipschitz flows.

The idea in [18] is to consider suitable partitions and to perform small C0
-perturbations of

a given volume-preserving homeomorphism so that the resulting homeomorphism satisfies the

covering relations of Theorem 4.1 thus obtaining the C0
-denseness of the setup of Theorem 4.1.

In the argument we will make C0
perturbations of the original Lipschitz vector field yielding

a smooth vector field with the desired covering relations (to be defined below). For that purpose,

the next result is a key step.

Lemma 4.2 (C0
-Realization of smooth Poincaré maps on flowboxes). Let X ∈ X1

µ(M), let A ⊂ M be
an open set and let φ : A→ [0, 1] × B(~0,∆0) be a flowbox chart that conjugates the vector fields X |A
and T |[0,1]×B(~0,∆0), for some ∆0 > 0. If Σ0 := φ−1({0} × B(~0,∆0)) and Σ1 := φ−1({1} × B(~0,∆0)) there
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exists C > 0 so that for any volume-preserving diffeomorphism isotopic to the identity h : Σ1 → Σ1

which coincides with the identity in the complement of a ball B∆ ⊂ Σ1 of radius 0 < ∆ < ∆0 then
there exists a vector field Y ∈ X1

µ(M) such that:

(a) Y is C∆-C0-close to X;
(b) Y = X outside the tubular set φ−1([0, 1] × [B(~0,∆0) \ B∆]);
(c) PY (z) = h ◦ PX(z) for all z ∈ Σ0, where PZ = Z1

∣∣∣∣
Σ0

is the time-1 Poincaré map of Z ∈ X1

µ(M).

Proof. Using the flowbox theorem for smooth volume preserving flows ([8, Lemma 2.1]), we use

trivial coordinates to make our computations clearer. Observe that such volume-preserving change

of coordinates keeps the assumption of being isotopic to the identity unaltered for the diffeomor-

phism in the arrival cross-section. In overall, we let T s(t, z) = (t + s, z) be the trivialized flow and

Pt
T = Id its Poincaré map (after the identification between the fibered disks in the cross sections

Σ0 := φ−1({0} × B(~0,∆)) and Σ1). Consider also Σs to be the hyperplane t = s.
As h is a volume-preserving diffeomorphism isotopic to the identity, and all fibers are identified

through a projection Π onto Σ1, there exists a smooth family ht : Σ0 → Σt so that Π ◦ ht is an

isotopy between Id and h in Σ1. We claim that the vector field defined, for s ∈ [0, 1] and z ∈ Σs, by

(4.1) Y(s, z) = (1, ḣs ◦ h−1s (z))

satisfies our demands. Observe that the map h−1s (z) in (4.1) should be seen as a map h−1s : Σs → Σs
taking into account the identifications we did. After that, the infinitesimal generator of the isotopy

ḣs is applied accordingly. Note that, for allowed t, we get

(4.2) Y t(s, z) =
(
t + s,Pt

Y (z)
)

:=
(
t + s, z +

∫ t

0

ḣr ◦ h−1r ◦ P
r
Y (z) dr

)
.

Item (a) just depends on the thickness of W and so is easily controlled. Item (b) follows by pasting

considerations of Lemma 3.4. We need to prove that (c) holds i.e. PY (z) = h ◦ PT (z). Notice that

h ◦PT (z) = h hence we will show that PY (z) = h or, more generally, Pt
Y (z) = ht. But this is a direct

consequence of (4.2) since

Pt
Y (z) = z +

∫ t

0

ḣr ◦ h−1r ◦ P
r
Y (z) dr = z +

∫ t

0

ḣr(z) dr = z + ht(z) − h0(z) = ht(z).

We are left to check that Y is divergence-free. Observe that Pt
Y = DPt

Y (z) = Dht and so

det Pt
Y = det Dht = 1. In overall, we have

det DY t(s, z) = det
(

1 0

Ṗt
Y Pt

Y

)
= det Pt

Y = det Dht = 1,

which by Abel-Jacobi-Liouville formula allow us to conclude that Y is divergence-free.

�

Remark 4.3. Although Lemma 4.2 is stated for a time-1 flowbox chart, it can be obtained for

any flowbox chart defined in time [0, s]. Moreover, the constant C > 0 is not affected by time-

reparameterization because we are dealing with the C0
-topology instead of the C1

-topology.

Hence, the previous lemma ensures that if a finite number of cross-sections is fixed there exists

a constant CX > 0 so that any smooth perturbation of the Poincaré map supported in a ∆-ball can

be realized by a CX∆-C0
-small perturbation of the smooth vector field.
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4.2. Fixed point free flows. We now complete the proof of item (2) of Theorem A. Let X
0,1
µ,∗(M)

be the set of Lipschitz continuous incompressible vector fields having no singularities.

Given ε > 0, let Rε,∗ ⊂ X
0,1
µ,∗(M) be the space of vector fields for which there exists a finite set

S = (Σi)i formed by smooth local cross-sections to X, each of these with diameter smaller than

ε > 0 and there is r ∈ (0, 1) such that the following properties hold:

(P0) Σ :=
⋃

1≤i≤n Σi is a global cross-section for the flow (Xt)t, with Poincaré first return map

PX : Σ→ Σ given by PX(x) = Xτ(x)(x),

where τ : Σ→ (0,+∞) is given by τ(x) = inf{t > 0 : Xt(x) ∈ Σ};

(P1) for all Σi,Σ j ∈ S either PX(Σi) ∩ Σ j = ∅ or PX(Int(Σi)) ∩ Int(Σ j) , ∅;
(P2) for every Σi,Σ j ∈ S so that the intersection PX(Σi) ∩ Σ j has non-empty interior there exists

a sectional rectangle V = [a, b] × Dn−2
r ⊂ Int(Σi), for some [a, b] ⊂ [−r, r], so that

V
PX

=⇒ [−r, r] × Dn−2
r ⊂ Int(Σ j) or V

PX ,0
=⇒ [−r, r] × Dn−2

r ⊂ Int(Σ j)

where Dd
r denotes the d-dimensional closed ball with radius r.

As it will be clear from the proof, the choice of Σ depends on the vector field and its diameter

is usually much smaller than ε, with no uniform lower bound. We also observe that a direct

application of Gronwall’s inequality implies that the time-1 map of a flow varies continuously

with respect to the underlying generating vector field. In particular, it is easy to check that for

any ε > 0 the set Rε,∗ is C0
-open in X

0,1
µ,∗(M). We now prove its denseness.

We will make use of the following consequence of Lemma 4.2 and Remark 4.3.

Lemma 4.4. (Realization of covering relations) Given X ∈ X1

µ(M), two smooth local cross-sections
Σ̂1, Σ̂2 ⊂ M to the flow and the Poincaré map PX : D ⊂ Σ̂1 → P(Σ̂1) ∩ Σ̂2, let ∆ > 0 be so that
the ∆-sectional rectangles around the point x ∈ Σ̂1 and its image PX(x) ∈ Σ̂2 are contained in
the corresponding cross-sections. There exists a constant LX > 0 so that the following holds: if
0 < r � ∆ and V = [a, b]×Dn−2

r ⊂ D is a sectional rectangle centered at x and W = [−r, r]×Dn−2
r ⊂ Σ̂2

is a sectional rectangle centered at PX(x) then there exists a vector field Y ∈ X1

µ(M) satisfying
(a) Y is LXr-C0-close to X;
(b) Y = X outside an r-tubular neighborhood of a compact piece of orbit of x;

(c) V
PY

=⇒ [−r, r] × Dn−2
r ⊂ Σ̂2.

In particular, Y satisfies the covering relation (P2) between the cross-sections Σ̂1 and Σ̂2.

Proof. The argument is a simple consequence of Lemma 4.2. We give details for completeness.

Let CX > 0 be the constant determined by Lemma 4.2 and Remark 4.3 for X, and consider the

cross sections Σ̂1 and Σ̂2. Since the covering relation can be adapted to any cross section in the

flowbox chart by displacement along the flow direction (observe the cross-sections Σ̃2 and Ψ(Σ̂2) in

Figure 3) we shall assume that the hitting time between the cross sections D ⊂ Σ̂1 and PX(D) ⊂ Σ̂2

is constant to s > 0, and that these are initial and final cross-sections of a flowbox chart.

We proceed as follows. If r > 0 is small then PX(V) is contained in Σ̂1. Moreover, Gronwall’s

inequality ensures that the diameter of PX(V) is bounded above by es‖X‖∞r. Moreover, the image

PX(V) is isotopic to a subset W0 which intersects W according to the covering relation (A) (see

Figure 3). Thus, using the perturbative Lemma 4.2 on the tubular neighborhood of radius es‖X‖∞r
we conclude that there exists a vector field Y ∈ X1

µ(M) which is CXes‖X‖∞r-C0
-close to X and so

that PY (V) = W0, hence satisfying the covering relation. �

The previous result put us in a position to prove the following:

Lemma 4.5. For any ε ∈ Q+ the set Rε,∗ is C0-dense in X0,1
µ,∗(M).
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F . Perturbation supported in the flowbox between Σ̃1 and Σ̃2, leading to

covering relations on Σ̃2 and ψ(̂Σ2).

Proof. Fix X ∈ X0,1
µ,∗(M) and ε ∈ Q+. Up to an arbitrary small C0

-perturbation we may assume

that X is C∞ smooth (cf. Theorem 3.1). For any 0 < ζ � ε we proceed to obtain Z ∈ Rε,∗ so that

‖X − Z‖C0 < ζ. Since 0 < ζ � ε, the vector field X has no singularities and M is compact, one can

cover M by a finite number of Lipschitz flowbox charts (Ai)1≤i≤n, given by Theorem 3.2. Moreover,

we can choose these flowbox charts in such a way that:

(i) all pieces of orbits in Ai have length one for (Xt)t; and

(ii) on each flowbox chart Ai there exists a smooth global cross-section Σi ⊂ Ai for the vector

field X |Ai so that the Poincaré first return time to Σ :=
⋃n

i=1
Σi lies in the interval [ 1

2
, 2]

and diam Σi <
ζ

100
for every 1 ≤ i ≤ n.

Let S denote the previous family of cross-sections. Changing the flowbox charts slightly, if

necessary, we may assume that property (P1) above holds for X. Moreover, since Σ is a global

cross-section to any vector field Y ∈ X0,1
µ,∗(M) that is C0

-close to X and the intersections of the

image of the sections persist by C0
-perturbation of the vector field, then property (P1) holds for

the Poincaré map PY : Σ → Σ associated to any vector field Y that is C0
-close to X. It suffices to

prove that (P2) can also be attained by a small C0
-perturbation of X.

While the Poincaré maps are piecewise continuous (except in the case that Σ = Σ1 is a smooth

global cross-section to X, where the Poincaré map is continuous), the perturbations will be per-

formed in the space of Lipschitz continuous vector fields. Given any pair Σi,Σ j ∈ S of local

cross-sections for X so that PX(Σi) ∩ Σ j has non-empty interior, a perturbation identical to the

one used in the proof of Lemma 3.1 in [18] ensures that there exist a segment [a, b] ⊂ [−r, r], a

sectional cube V = [a, b] × Dn−2
r ⊂ Int(Σi) and a volume-preserving homeomorphism h : Σ j → Σ j,

homotopic to the identity, so that dC0(h, id) ≤ diam(Σ j) < ζ and

(4.3) V
h◦PX
=⇒ [−r, r] × Dn−2

r .

The Realization of covering relations on Lemma 4.4 ensures that there exists a vector field

Y ∈ X1

µ,∗(M) that is C0
-close to X and such that PY = h ◦ PX , hence the covering relation

V
PY

=⇒ [−r, r] × Dn−2
r

holds. Since there are finitely many pairs of elements Σi,Σ j ∈ S, we conclude that property

(2) holds for a vector field Z ∈ X1

µ,∗(M) obtained from X by a finite number of arbitrary small

C0
-perturbations with disjoint supports. This proves the lemma. �
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Consider the C0
-generic subset

(4.4) R∗ =
⋂
ε∈Q+

Rε,∗ ⊂ X
0,1
µ,∗(M).

We are now in a position to prove that the periodic shadowing property is C0
-generic on X

0,1
µ,∗(M).

Lemma 4.6. Every vector field X ∈ R∗ satisfies the periodic shadowing property.

Proof. Fix X ∈ R∗ and let ε > 0, T > 1 be arbitrary. By compactness of the ambient space it

is enough to prove finite shadowing and we shall do so. Given j ≥ 1 we will prove that the

shadowing property holds for all pseudo-orbits with j pieces of orbits.

As X ∈ Rε,∗, there exists a finite set S = (Σi)i formed by smooth local cross-sections to X, each

of these with diameter smaller than ε > 0 and there is r ∈ (0, 1) so that properties (P0), (P1) and

(P2) above hold.

Let δ = δ(ε,S) > 0 be smaller than the minimum of the inner diameter of the sets PX(Σi) ∩ Σ j
(here the minimum is taken over all pairs of local cross sections Σi,Σ j ∈ S (1 ≤ i, j ≤ n) so that the

previous intersection is non-empty). By construction, the constant δ is independent of the size of

the pieces of orbits ti and the number of jumps in pseudo-orbits. Furthermore, by construction

M =
⋃

1≤i≤n

[ ⋃
t∈[0,1]

Xt(Σi)
]
,

is a union of flowboxes. Since we consider subsets of flowbox charts, it is important to estimate

how much the time fluctuates on these sets. If L > 0 denotes the Lipschitz constant of X then any

two points x, y ∈ Σi so that PX(x) and PX(y) belong to the same local cross-section in S satisfy

‖Xt(x) − Xt(y)‖ ≤ eLt‖x − y‖ for all t ∈
[
1

2
, 2

]
(using a lipeomorphism, local coordinates in Rd

and

Gronwall’s inequality). Thus, as PX(·) = Xτ(·)(·),

‖PX(x) − Xτ(x)−τ(y)(PX(y))‖ ≤ eLτ(x)‖x − y‖ ≤ eLε

and, by triangular inequality,

‖PX(y) − Xτ(x)−τ(y)(PX(y))‖ ≤ eLε + ‖PX(y) − PX(x)‖ ≤ (eL + 1) ε.

Since the vector field X has no singularities, this together with Gronwall inequality implies that

|τ(x) − τ(y)| . Cε.
Reduce δ > 0 if necessary, so that it becomes smaller than the Lebesgue number of the finite

covering

{⋃
t∈(0,1) Xt(Σi) : 1 ≤ i ≤ n

}
of M by flowbox charts. With this choice of δ, the jumps in

any (δ,T )-pseudo orbit will lie in the same flowbox chart. Now we claim that every (δ,T )-pseudo

orbit is ε-shadowed by a true orbit. Consider a (δ,T )-pseudo orbit [x`, t`]
j
`=1

. The choice of δ > 0

and uniform continuity of the flow on the time interval [0, 1] implies that the sequence

(4.5)

{
y` := PX(x`) : 1 ≤ ` ≤ j

}
⊂ Σ

is a δ-pseudo-orbit for the Poincaré map PX . In (4.5), by some abuse of notation, we keep denoting

by PX : M → Σ the first hitting time map, and let

(4.6) si = κ(xi) := inf
{
s ≥ 0 : Xs(xi) ∈ Σ

}
denote the corresponding first hitting times.

By the choice of δ, the points PX(y`) and y`+1 belong to the same local cross-section Σi` ∈ S,

for every 1 ≤ ` ≤ j, on which there are the covering relations defined by item (P2) above. Then,

Theorem 4.1 guarantees that there exists y ∈ Σi1 so that

d(P`X(y), y`+1) < ε for every 0 ≤ ` ≤ j − 1.
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If, in addition, the pseudo-orbit is periodic then the point y can be chosen periodic for the

composition of the Poincaré maps.

Take x = X−s1(y). We claim that there exists a reparametrization τ ∈ Rep(Cε) such that

d(Xτ(t)(x), x0 ? t) < 2ε, for every t ∈ [0, σ( j)].

Remark 4.7. Using that 1 ≤ ti ≤ T for all 1 ≤ i ≤ n and the uniform continuity of [0,T ] × M 3
(t, x) 7→ Xt(x) we can reduce δ = δ(ε,T ) > 0, if necessary, to ensure that the trajectory of the

point X
∑`−1

j=0
κ(P j

X(y))(y) and y`+1 remain 2ε-close for time [0,T ]. Even though we are considering

flowbox charts, where orbits travel at constant speed, this is not immediate from the discrete-time

shadowing on local cross-sections because of an eventual slide overlaping (see Figure 4 below).

F . Allowing some reparametrization ε-close to identity implied by an even-

tual δ-slide overlaping.

Recall that, by construction, the jumps in the (δ,T )-pseudo orbit [x`, t`]
j
`=1

lie in the same

flowbox chart. Hence, the reparametrization τ is built recursively using the flowbox charts. More

precisely, by (4.5), y1 = PX(x1) ∈ Σi1 andy2 = PX(x2) ∈ Σi2

PX(Xt1(x1)) = Xt1+s1(x1) ∈ Σi2 .

Since any two points are in the same flowbox chart, up to a conjugation lipeomorphism ϕ, these can

be identified with points in a rectangle [0, 1]×Di1 for some disk Di1 ⊂ R
n−1

, and up to this change

of coordinates, we say that p ≺ q if π1(ϕ(p)) < π1(ϕ(q)). While there are several cases to consider,

according to the relative position of initial and end points of pseudo-orbits, assume that j = 2 and

Xt1(x1) ≺ x2 (the other cases are analogous). In this case, if 0 < δ1 := π1(ϕ(x2)) − π1(ϕ(Xt1(x1))) < δ
the reparametrization τ is given by

τ(t) =

 t , t ∈ [0, t1]
t2+δ1

t2
(t − t1) + t1 , t ∈ (t1, t1 + t2].

It is clear that τ(t) − τ(s) is maximized whenever s < t1 < t hence

τ(t) − τ(s) ≤
t2 + δ1

t2
(t − t1) + t1 − s =

(
t2 + δ1

t2
− 1

)
(t − t1) + t − s ≤

t2 + δ1
t2

(t − s) ≤ (1 + δ)(t − s)

or, equivalently,

τ(t) − τ(s)
t − s

− 1 ≤ δ < ε ∀t, s ∈ [0, t1 + t2].

The reasoning for periodic (δ,T )-pseudo orbits is entirely analogous. Finally, as ε can be chosen

arbitrary, the latter completes the proof of the lemma. �
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5. I    

This section is devoted to the proof of Theorem B. The argument for the general density theorem

is completely analogous to the one in Section 3.7. Hence it remains to prove that C0
-generic

incompressible vector fields satisfy the weak shadowing property. The homogeneity property on

a given compact boundaryless manifold M endowed with a metric d of dimension n ≥ 2 was

caracterized in [1, Proposition 2] on which was proved that given any η > 0, there exists δ > 0

such that if {(xi, yi)}ni=1
are n pairs of distinct points such that d(xi, yi) < δ for every i = 1, ..., n,

then there exists a family of n pairwise disjoint topological balls {Bi}
n
i=1

in the interior of M,

with diam(Bi) < η and so that xi, yi ∈ Bi, for every i = 1, . . . , n. The following result proves the

much stronger result, that in dimension larger than two such homotopies can be performed using

incompressible flows.

Lemma 5.1 (Homogeneity property by incompressible Lipschitz vector fields). Let M be a compact
boundaryless manifold of dimension n > 2. Given β > 0 there exists α > 0 so that for any given
n ≥ 1 and pairs of distinct points {(xi, yi)}ni=1

satisfying d(xi, yi) < α for all i = 1, . . . , n there exists a
vector field Z ∈ X0,1

µ (M) avoiding any finite number of curves such that ‖Z‖0 < β and Zα(xi) = yi, for
every i = 1, . . . , n.

Proof. By homogeneity, given ε > 0 there exists α > 0 so that for any given n ≥ 1 and pairs of

distinct points {(xi, yi)}ni=1
satisfying d(xi, yi) < α for all i = 1, . . . , n there exist n pairwise disjoint

paths γi of length bounded above by α and connecting the points xi to yi. These can be chosen

to avoid any finite number of curves in M as it has dimension at least 3. In particular one

can choose n narrow bands Ti (1 ≤ i ≤ n) with pairwise disjoint closures and smooth boundary,

diffeomorphic to disjoint balls. The lemma follows by applying Lemma 3.9 in finitely many disjoint

domains. �

Now, given the main technical Lemma 5.1, the proof of Theorem B can now be obtained

by a rather simple modification of the argument used by Mazur [24, Theorem 1] for dissipative

homeomorphisms. For each ε > 0 let (Uε
i )1≤i≤kε be a finite open covering of M by sets with

diameter smaller than ε. Given a vector field X ∈ X0,1
µ consider the set

I
ε
X =

{
{U j1 ,U j2 , . . . ,U jt } ∈ 2

{1,2,...,kε} : ∃x ∈ M s.t. {Xt(x) : t ∈ R} ∩ U j` , ∅, ∀1 ≤ ` ≤ t
}

of configurations that are realized by a true orbit of the flow, independently of the order. By

Grownall’s inequality it is clear that the itinerary map

X
0,1
µ 3 X 7→ IεX

is strongly lower-semicontinuous: for every X ∈ X0,1
µ (M) there exists a C0

-open neighborhood V

of X such that IεX ⊂ I
ε
Y for every Y ∈ V.

Consider the set Sε ⊂ X
0,1
µ (M) of vector fields with stable ε-itinerary, meaning that for each

X ∈ S there exists a C0
-open neighborhood VX of X so that IεX = IεY for every Y ∈ VX . This is

also a C0
-dense set because of the previous lower-semicontinuity and the fact that, by finitude of

set 2
{1,2,...,kε}

, in any C0
-open set in X

0,1
µ (M) there exists a vector field X whose itinerary IεX is a

maximal element (with respect to inclusion). Therefore, R :=
⋂

n≥1 S 1

n
is a C0

-generic subset of

X
0,1
µ (M).
We claim that every vector field X ∈ R generates a flow (Xt)t with the weak shadowing property.

Fix ε > 0 and n > 1

ε . As X ∈ S 1

n
, there exists δ0 > 0 so that I

1

n
X = I

1

n
Y for every Y ∈ X0,1

µ (M) such

that ‖Y −X‖C0 < δ0. Let δ = α
2
> 0 where α is given by Lemma 5.1 when β = δ0 > 0. Fix T > 1 and

consider any (δ,T )-pseudo orbit [(xi, ti)]i∈Z. By compactness of M, there exists ` ≥ 1 such that the
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latter is ε-shadowed by the finite (δ,T )-pseudo orbit [(xi, ti)]−`≤i≤`. Moreover, since M is a manifold,

changing the points xi slightly, if necessary, we produce a (2δ,T )-pseudo orbit [(xi, ti)]−`≤i≤` such

that all pieces of orbits {X[0,ti](xi) : − ` ≤ i ≤ `} are pairwise disjoint. By Lemma 5.1 there exists

a vector field Y ∈ X0,1
µ (M) that is

1

n -C
0
-close to X so that X[0,ti](xi) = Y [0,ti](xi), ∀ − ` ≤ i ≤ `

and Yα(Xti(xi)) = xi+1 for all i. In particular, as I
1

n
X = I

1

n
Y , there exists x ∈ M so that the orbit

{Xt(x) : t ∈ R} intersects all elements in I
1

n
X . Altogether this ensures that every (δ,T )-pseudo orbit

[(xi, ti)]i∈Z is 3ε-weakly shadowed by a true orbit of the flow (Xt)t. Since ε was chosen arbitrary,

this proves that (Xt)t satisfies the weak shadowing property. Finally, it is clear that in the case of

incompressible vector fields the weak shadowing property implies on transitivity. This completes

the proof of the theorem.
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