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A. We say that a convex planar billiard table B is C2
-stably expansive on a fixed open

subset U of the phase space if its billiard map fB is expansive on the maximal invariant set ΛB,U =⋂
n∈Z f n

B (U), and this property holds under C2
-perturbations of the billiard table. In this note we

prove for such billiards that the closure of the set of periodic points of fB in ΛB,U is uniformly

hyperbolic. In addition we show that this property also holds for a generic choice among billiards

which are expansive.
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1. I

In a few words, a dynamical system is expansive if whenever two points stay near for for-

ward and backward iterates, they actually coincide. This notion was first developed in the 1950’s

(see [25]) related to the fact that these systems exhibit sensitivity to the initial conditions. Uni-

form hyperbolicity implies expansivity as it was understood in the first half of the 1970’s [8, 16].

In particular, Anosov maps (global hyperbolicity) and Axiom A maps (local hyperbolicity) are

expansive.

It is well known that in certain classes of conservative dynamical systems, the robusteness of

certain properties ensures some kind of hyperbolicity. Examples include expansiveness [20], er-

godicity [24], transitivity [2], shadowing [4, 5, 6], weak shadowing [4] and topological stability [4].

Here we are interested in the class of expansive convex planar billiards for which there are few

related results. We propose to answer the following questions. How does a robust expansive-

ness property lead to hyperbolicity? What distinguishes hyperbolicity from expansiveness, from a

generic point of view?

Related to the questions above, we recall the works for geodesic flows of Ruggiero on the stabil-

ity of expansiveness [20], and of the first author on the generic characterization of expansiveness

and non-trivial hyperbolic basic sets [1].

Finally, it is worth observing that there are (degenerate) examples of non-hyperbolic fixed points

for expansive area-preserving maps (cf. [4, Figure 1]). However those examples are not robust.

Notice also that, contrary to what happens for geodesic flows, there is no global hyperbolicity for

sufficiently smooth convex billiards. Hence, in the present setting we consider a local approach

related to a fixed set U in phase space. It is of course known that nontrivial hyperbolic sets can

exist in a local setting for convex billiards (see for example [14]).

1.1. Statement of the results. As detailed in §2.1, a C2
billiard table B generates a C1

symplec-

tomorphism fB called the billiard map. In the following, whenever there is no ambiguity, we refer

to B being C2
and fB being C1

indistinctly.
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Consider a convex billiard B and the corresponding phase space M with a metric d. Let U be

an open subset of M.

Definition 1.1. The billiard map fB : M → M is called expansive on Λ ⊂ U if there is e > 0 (the
expansive constant) such that given x ∈ Λ and y ∈ M if d( f n

B(x), f n
B(y)) ≤ e for all n ∈ Z, then x = y

(cf. [22, Definition 7.3]). When Λ = M, we say that fB is expansive. Moreover, B is C2-stably
expansive on U if fB is expansive on the maximal invariant set

ΛB,U = ∩n∈Z f n
B(U),

and for any B̃ sufficiently C2-close to B the map fB̃ is also expansive on ΛB̃,U .

Our first result shows that the C2
-stably expansive topological property implies hyperbolicity.

We denote by Per( fB) the set of periodic points of fB.

Theorem 1. Let U ⊂ M be open. If B is C2-stably expansive on U, then Per( fB)∩ΛB,U is uniformly
hyperbolic.

Remark 1.1. Under the conditions of the previous theorem, it follows from standard arguments in
hyperbolic dynamics (see e.g. proof of [13, Theorem D]) that if the number of periodic points in ΛB,U

is infinite, then Per( fB) ∩ ΛB,U is a non-trivial hyperbolic basic set.

The strategy of the proof of Theorem 1 relies on the combination of several results on billiard

and area-preserving maps dynamics. We highlight in particular the following three recent results:

(1) The Mañé dichotomy (Theorem 2.2) is an abstract cocycle formulation. It decomposes

closed orbits on U in either hyperbolic ones or else in orbits that can be perturbed to

parabolic.

(2) The Visscher’s version of Franks’ lemma for planar billiards (Theorem 2.1) permits the

application of the abstract formulation of Mañé’s dichotomy to billiard maps.

(3) The Bunimovich and Grigo’s technical theorem (Theorem 2.3) allows us to perturb the

billiard table preserving the expansiveness hypothesis and simultaneously transforming a

parabolic or elliptic point into a Moser stable elliptic point
1
. This is crucial in obtaining a

contradiction to the expansiveness hypothesis.

We emphasize the restriction to the C2
-topology for convex billiard tables (i.e. to the C1

-topology

for the billiard map) since the above results are proved only for this topology (see §3).

Consider the residual subset R of convex planar billiards given in [15, 27]. It corresponds to

maps that verify the property that all closed orbits are hyperbolic or irrationally elliptic. KAM-type

arguments applied to a sufficiently smooth billiard table B satisfying the expansiveness property

imply that there are no irrationally elliptic closed orbits. Therefore, a generic expansive map on

ΛB,U has all its closed orbits of hyperbolic type. A much more demanding question is whether the

closure of the hyperbolic closed orbits in ΛB,U is a uniformly hyperbolic set. An answer is given

in Theorem 2 by showing that seemingly different concepts like expansiveness and hyperbolicity

are equivalent from a generic point of view.

Theorem 2. Let U ⊂ M be open. There exists a C2-residual subset R of the set of C2 convex
billiard tables such that if B ∈ R, then fB is expansive on Per( fB)∩ΛB,U if and only if Per( fB)∩ΛB,U
is uniformly hyperbolic.

The proof is contained in §4. In §2 we present the basic definitions to understand the formal

statements of the results.

1
A periodic point is Moser stable if it is surrounded by toric invariant curves in arbitrarily small neighborhoods.

Moreover, each of these toric fB-invariant curves γ is such that fB

∣∣∣∣
γ

is transitive, in the sense it contains a dense orbit.
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2. P

2.1. Convex billiard tables and maps. A billiard table B is a bounded, open and connected

domain of R2
with boundary ∂B. The flow on its unit tangent bundle S B generated by the motion

of a free point-particle in B with specular reflection at ∂B (the angle of reflection equals the angle

of incidence) is called the billiard flow. Let the phase space M ⊂ S (∂B) be the set of unit tangent

vectors at each point in ∂B that are pointing inside the billiard table B. The billiard map fB is the

first return map on M of the billiard flow (cf. [12]).

We are interested in convex billiard tables with a Ck
-boundary ∂B, k ≥ 2. This implies that fB is

a Ck−1
diffeomorphism on M. It is convenient to use coordinates on M. By writing α : R/lZ→ R2

as the arc-length parametrization of ∂B, where l is the length of ∂B, each x ∈ M can be simply

written as x = (s, ϕ). Here s is the arc-length parameter of ∂B of the base point of x, and ϕ is the

angle between x and the positively oriented tangent to ∂B at α(s) (the reflected angle). So,

(s, ϕ) ∈ M = [0, l[ / ∼ × [0, π]

where s ∼ s′ if s = s′ mod l. Moreover, the derivative of fB (see [12]) is given by:

D fB(s, ϕ) = −
1

cosϕ1

[
τK + cosϕ τ

τKK1 + K cosϕ1 + K1 cosϕ τK1 + cosϕ1

]
,

where (s1, ϕ1) = fB(s, ϕ), K and K1 are the curvatures of ∂B at α(s) and α(s1), respectively,

τ = ‖α(s)−α(s1)‖ and ‖ · ‖ denotes the Euclidean norm on R2
. The map fB preserves the measure µ

given by dµ = cosϕ dϕ ds. Notice that det D fB(s, ϕ) = cosϕ/ cosϕ1. Therefore, for a periodic point

p = (s, ϕ) with period `, we have det D f `B(p) = 1.

Each billiard table B is identified with its boundary Ck
-curve ∂B, which in turn can be described

up to reparametrization by a Ck
-embedding α : S 1 → ∂B, where S 1 = R/Z. Recall that at each

point α(s) there is a unit normal vector n(s) to the curve, and s 7→ n(s) can be chosen to be

C1
. Moreover, the dynamics associated to a billiard table is clearly preserved by isometries and

homotheties of the plane. So, we will consider the space of convex billiard tables B as the set of

embeddings modulo those transformations and reparametrizations.

Given ε > 0 we say the C2
-embeddings α : S 1 → R2

and β : S 1 → R2
are ε-C2

-close if there is a

C2
map λ : S 1 → R2

such that

‖λ‖C2 < ε and β(s) = α(s) + λ(s)nα(s), s ∈ S 1,

where nα(s) is the unit normal vector of the curve α(S 1) at α(s). Notice that the same is true if

we consider instead a unit normal vector to β.
The above is used to define close billiard tables in B. We say that two equivalent classes

[α], [β] ∈ B are ε-C2
-close if there are representatives α ∈ [α] and β ∈ [β] which are ε-C2

-close.

As a result B is a Baire space [11].

2.2. Hyperbolic, elliptic and parabolic period points.

2.2.1. Uniform hyperbolicity and periodic points. Let Λ ⊂ M be fB-invariant. The D fB-invariant

splitting E1 ⊕ E2
of the tangent bundle TΛ into 1-dimensional bundles E1

and E2
is said to be

uniformly hyperbolic if there exists σ ∈ (0, 1) such that for any point x ∈ Λ we have ‖D fB(x)|E1

x
‖ ≤ σ

and ‖D f −1B (x)|E2

x
‖ ≤ σ. Equivalently, we can choose σ = 1

2
and allow to iterate m times to get

‖D f m
B (x)|E1

x
‖ ≤ 1

2
and ‖D f −m

B (x)|E2

x
‖ ≤ 1

2
for some m ∈ N. In this last formulation we say that fB

on Λ is m-uniformly hyperbolic. The angle between E1
and E2

, denoted by ](E1, E2), is bounded

away from zero on uniform hyperbolic sets.

Given a periodic point p of period `, the eigenvalues λ, λ−1 of D f `B(p) determine the type of

local dynamics. The periodic point is
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• elliptic if |λ| = 1 and λ ∈ C \ R,
• parabolic if |λ| = 1 and λ ∈ R,
• hyperbolic if |λ| , 1 and λ ∈ R.

2.2.2. Periodic points of bounded fixed period. Notice that all periodic points of period two are in

{ϕ = π/2}, since the reflections are normal to ∂B.

If there are infinitely many periodic points of period two, then, by continuity of the map, they

form a sequence with at least two accumulation points which are also periodic with period two.

Write xk ∈ M for a subsequence converging to one of the accumulation points, say x. Notice also

that fB(xk)→ fB(x) as k → +∞. So, for any choice of e > 0 there is a large enough k ∈ N so that

max
i=0,1

d( f i
B(xk), f i

B(x)) < e.

By the fact that they are period two orbits, there is no expansivity in this situation. Notice that

the same reasoning holds for orbits of any other fixed period.

2.3. Main tools. The following theorem is a planar billiard version of the well-known Franks’

lemma. We denote by Sp(2) the set of 2 × 2 symplectic real-valued matrices.

Theorem 2.1 (Visscher [21]). There exists a residual set R of Ck convex billiards with k ≥ 2 or
k = ∞, such that for B ∈ R, a periodic point p of period ` ≥ 3, and a neighborhood U of B in Ck for
the C2-topology, there exists an open ball B ⊂ Sp(2) around D f `B(p) such that any element of B is
realizable as D f `

B̃
(p) for some B̃ ∈ U. Moreover, the perturbation can be supported in an arbitrarily

small neighbourhood of three sequential points in the orbit of p on the boundary of the table.

We point out that the perturbations whose existence is guaranteed by Theorem 2.1 are, of course,

only C2
-small, despite the improvement in topology of the residual set. The above statement is

actually a simple improvement of the result in [21] by noting that the residual set can be taken

to be in the Ck
topology by the works of Stojanov and Petkov [17, 18, 19, 23]. Moreover, the

perturbation is obtained through smooth bump functions and has therefore the same regularity of

the original billiard.

We observe that the constraint on Theorem 2.1 about the size of the closed orbit γ will be

innocuous in the proof of Theorem 1.

The next result is in the spirit of the Mañé dichotomies on closed orbits: the dominated splitting

is the sole obstruction to obtain trivial spectrum on closed orbits. The abstract general result for

dissipative systems was obtained in [7, Corollary 2.19]. For Hamiltonian and geodesic flows see [3,

section 3.1], [13, section 8] and [5]. In brief terms, assuming the non-dominance hypothesis, we

can rotate the solutions along the closed orbits in order to mix different expansion rates. Since

we have symmetry of the symplectic spectrum, these rates annihilate each other. Finally, as many

rotations may be needed, the period of the closed orbits should be large enough.

Theorem 2.2 (Mañé dichotomy). Let B ∈ R where R was obtained in Theorem 2.1. For any η > 0

there are m ∈ N and n ≥ 3 such that for any periodic point p of fB with period ` ≥ n, either
(i) D f `B(p) admits an m-uniformly hyperbolic splitting2, or else
(ii) for any neighbourhood V ⊂ M of the orbit of p, there exists a C∞ billiard table B̃ η-C2-close

to B such that fB̃ = fB outside V and p is a parabolic periodic point of fB̃.

We now recall a result due to Bunimovich and Grigo that will allow us to turn a parabolic or

elliptic periodic orbit into Moser stable under a small C5
-perturbation.

2
The original statement is m-uniformly dominated splitting. In the symplectic case can be specified as m-uniformly

partial hyperbolic splitting, and in our 2-dimensional case, m-uniformly hyperbolic splitting.
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Theorem 2.3. Let B be a C5 convex billiard table and p an irrationally elliptic periodic point. Then,
there is a C5-close convex billiard B̂ for which the orbit of p is preserved and it is Moser stable.

Proof. This is an immediate consequence of [9, Theorem 4].

Proposition 2.4. If p ∈ U is an elliptic or parabolic periodic point of a C2 convex billiard table B,
then B is not C2-stably expansive on U.

Proof. By taking a C2-close smooth billiard and then using Theorem 2.1, we obtain a C2-perturbed
smooth billiard with an irrationally elliptic periodic point. Then, Theorem 2.3 allows us to make p
Moser stable for a nearby billiard table B̂. Given any e > 0 we can always find an invariant curve
C surrounding p such that max1≤n≤` maxy∈C d( f n

B̂
(y), f n

B̂
(p)) ≤ e. This means that B̂ is not expansive

and B is not C2-stably expansive.

3. P  T 

The hypothesis on the C2
-stability of the expansiveness property is incompatible with assertion

(ii) of Theorem 2.2 and this will imply the proof of Theorem 1.

We start by showing that Per( fB) restricted to ΛB,U is uniformly hyperbolic. Suppose, by

contradiction, that (s, θ) = p ∈ U is an elliptic, parabolic or a hyperbolic periodic point with very

weak hyperbolicity. Being elliptic or parabolic is immediately excluded by Proposition 2.4.

Let ` be the period of p and let n,m be given by Theorem 2.2.

(1) (2 ≤ ` < n) If there are a finite number of those hyperbolic periodic points, then, as a

set, it is uniformly hyperbolic. If there are an infinite number of these hyperbolic periodic

points, then by the arguments in §2.2.2 we get a contradiction with the fact that we have

expansivity.

(2) (` ≥ n) Since the spectral objects depend continuously on B we get that D fB(p) admits

an m̂-uniformly hyperbolic splitting (eventually m̂ > m). This follows because item (ii) of

Theorem 2.2 is excluded since we are considering that B is C2
-stably expansive on U and

we are also using Theorem 2.1 to perform the perturbations.

In conclusion, we obtain that Per( fB) restricted to ΛB,U is a uniformly hyperbolic set. The

hyperbolicity condition implies the continuity of the splitting in Per( fB) [19, Proposition 6.4.4].

Then the splitting extends continuously to Per( fB) and the extension is also hyperbolic.

4. P  T 

Since it is well-known from classic hyperbolic dynamics theory that uniform hyperbolicity

implies expansiveness, we focus on the direct implication of Theorem 2. We begin by proving the

following preliminary result.

Lemma 4.1. Let B be a C2 convex billiard. If fB has a non-hyperbolic periodic point p of period `,
then for all ε, ν > 0 there exists B̂ such that:

(1) B̂ is ε-C2-close to B,
(2) fB̂ has two hyperbolic periodic points p1 and p2 (not belonging to the same orbit) with equal

period and
(3) max1≤n≤` d

(
f n
B̂

(p1), f n
B̂

(p2)
)
< ν.

Proof. By Lazutkin’s theorem [15] (see also [27]) C∞ generically, every periodic point is either
hyperbolic or elliptic with irrational rotation number. Hence, using also Theorem 2.3, B can be
perturbed in order to obtain an elliptic periodic point of period ` arbitrarily near p which is Moser
stable. A C2-perturbation as in [14] guarantees also the existence of transverse homoclinic points
arbitrarily close to the elliptic periodic point (cf. [26, 10] since convex billiard maps are area-preserving
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twist maps). Hence, there are invariant sets (Smale horseshoes) which are topologically equivalent
to the full shift in every neighborhood of the elliptic point. In particular we can find hyperbolic
periodic points fulfilling (2). Both hyperbolic periodic points and their iterates are inside a union of
‘trapping regions’ (each surrounded by an invariant curve due to Moser stability) of small enough
diameters < ν and so accomplishing (3).

Let U ⊂ M be open. Consider the subset F 2(U), the so-called Mañé star systems in U,

consisting of convex billiards B such that all periodic orbits in Per( fB̂) ∩ ΛB̂,U are hyperbolic for

any convex billiard B̂ C2
-sufficiently close to B.

Proposition 4.2. Let U ⊂ M be open. There exists a C2-residual subset R of the set of C2 convex
billiard tables, such that if B ∈ F 2(U) ∩ R, then Per( fB) ∩ ΛB,U is uniformly hyperbolic.

Proof. From [15] we know that in a residual set of convex billiards there is a finite number of
periodic points of period less than a given n. We intersect this residual with the one in Theorem 2.1
to get R. Since B ∈ F 2(U) we have that item (ii) of Theorem 2.2 is excluded. Hence, the set P1 of
periodic points with large period admits an m1-uniformly hyperbolic splitting. On the other hand, as
the set P2 of periodic points in U with small period is finite, it also admits an m2-uniformly hyperbolic
splitting.

Lemma 4.3. Let U ⊂ M be open. There exists a residual subset R of C2 convex billiards, such that
for any B ∈ R \F 2(U), fB has two sequences of periodic points {pn}n∈N and {qn}n∈N in U such that
for each n, pn and qn have distinct orbits and

lim
n→+∞

sup
k∈Z

d
(

f k
B(pn), f k

B(qn)
)

= 0.

Proof. For each n ∈ N, we denote by Nn the subset of convex billiard tables such that any B ∈ Nn
has a C2-neighborhoodU with the following C2-open property: for every B̂ ∈ U, there are hyperbolic
periodic points pn, qn of fB̂ having distinct orbits such that

sup
k∈Z

d
(

f k
B̂

(pn), f k
B̂

(qn)
)
<

1

n
.

Let On be the complement of the C2-closure of Nn in the set of C2 convex billiards. Clearly,
Nn ∪On is C2-open and C2-dense in the convex billiard tables set. We define the C2-residual subset
in the statement of the lemma by:

R =
⋂
n∈N

(On ∪Nn) .

If B ∈ R \F 2(U), then there is a sequence of convex billiard tables B j converging to B in the
C2-sense and a sequence of non-hyperbolic periodic points p̃ j of fB j in U. Then, for any n ∈ N, by
Lemma 4.1, we have that B ∈ Nn, proving the claim.

From Lemma 4.3, we know that if B belongs to the residual subset R ∩ R and it satisfies

the expansiveness property on Per( fB) ∩ ΛB,U , then it must be in F 2(U). By Proposition 4.2,

Per( fB) ∩ ΛB,U is uniformly hyperbolic. This completes the proof of Theorem 2.
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[16] R. Mãné, Expansive diffeomorphisms, Lecture Notes in Mathematics, Springer, 468 (1975), 162–174.

[17] V. Petkov and L. Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math. 109

(1987), 619–668.
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P.

Email address: bessa@ubi.pt

D  M́, CEMAPRE  REM, ISEG, U  L, R  Q , -

L, P

Email address: jldias@iseg.ulisboa.pt

CMAT  D  M́, U  M, C  G, - B, P

Email address: jtorres@math.uminho.pt

7


	1. Introduction
	1.1. Statement of the results

	2. Preliminaries
	2.1. Convex billiard tables and maps
	2.2. Hyperbolic, elliptic and parabolic period points
	2.3. Main tools

	3. Proof of Theorem 1
	4. Proof of Theorem 2
	Acknowledgements
	References

