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Abstract. This article is a follow up of our recent works [7, 8], and here we
discuss the relation between the gluing orbit property and partial hyperbolicity.
First we prove that a partially hyperbolic diffeomorphism with two saddles with
different index, and such that the stable manifold of one of these saddles coin-
cides with the strongly stable leaf does not satisfy the gluing orbit property. In
particular, the examples of C1-robustly transitive diffeomorphisms introduced by
Mañé [20] do not satisfy the gluing orbit property. We also construct some fam-
ilies of partially hyperbolic skew-products satisfying the gluing orbit property
and derive some estimates on their quantitative recurrence.
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1. Introduction

The concept of reconstruction of orbits in topological dynamics and ergodic the-
ory gained substantial importance for its wide range of applications. Among these
properties of reconstruction of true orbits from approximate orbits (also called
pseudo-orbits) and finite pieces of orbits one can refer the shadowing and the spec-
ification properties. On the one hand, in brief terms a dynamical system satisfies
the shadowing property whenever any pseudo-orbit can be approximated by true
orbits. On the other hand, the specification property, introduced by Bowen [11],
roughly means that an arbitrary number of finite pieces of orbits can be “glued to-
gether” to obtain a real orbit that shadows the previous ones with a prefixed number
of iterates in between. Dynamical systems having either of these properties have
a rich dynamical structure (see e.g. [5, 25, 33] and references therein). However,
soon it became clear the existence of a strong relation between the previous proper-
ties and uniform hyperbolicity in the case of C1-diffeomorphisms. More precisely,
a C1-generic tame diffeomorphism with the shadowing property is Axiom A with-
out cycles [2] and a C1-generic diffeomorphism with the specification property
is a transitive Anosov diffeomorphism [21]. Related results, on the characteriza-
tion of the C1-interior of diffeomorphisms satisfying any of the previous proper-
ties, include [23, 24]. However, most dramatically, if one considers the space of
Cr-diffeomorphisms, r ≥ 1, these two properties seldom occur in the absence of
uniform hyperbolicity as proved in [9, 27, 28].

The large amount of dynamical consequences which can be obtained for dynam-
ical systems with shadowing or specification soon inspired many authors to pursue
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weakenings of the latter topological invariant (we refer the reader to [19] for an ex-
cellent overview of some of these notions). Here we will continue the investigation
of the notion of gluing orbit property, introduced in [7, 8]. The underlying notion
of the gluing orbit property can be traced also to [13, 29], in the context of differen-
tiable dynamics. The gluing orbit property is much weaker than specification, and
it bridges between hyperbolic and completely non-hyperbolic behavior. Indeed,
this property is satisfied by both transitive hyperbolic dynamics and by partially
hyperbolic diffeomorphisms obtained as time-1 maps of Anosov flows [7], and
by zero entropy, minimal and equicontinuous dynamics [8, 30]. Given this wider
range of dynamical systems it is quite natural to address the following questions
concerning the gluing orbit property:

(1) how common is this property in the space of dynamical systems?
(2) can one characterize dynamical systems with this property?
(3) what is the dynamical richness of such dynamical systems?

As usual, an answer to the first question depends strongly on the topology in the
space of dynamical systems. On the one hand, the gluing orbit property holds
at every chain recurrent class of a C0-generic dynamics (cf. [6]). On the other
hand, C1-generic diffeomorphisms with the gluing orbit property are uniformly
hyperbolic (see [7] for the precise statement). Given this fact, and inspired by some
results on the thermodynamic formalism of partially hyperbolic diffeomorphisms,
our aim here is to provide partial answers to questions (1) - (3) in the context of
partially hyperbolic dynamics.

As a first step, building over [27], we prove that the existence of hyperbolic pe-
riodic points with different index is still an obstruction for the gluing orbit property
even for partially hyperbolic diffeomorphisms (we refer the reader to Theorem A
for the precise statement). As a consequence, there exist C1 open and dense sub-
set of the space of robustly transitive and partially hyperbolic diffeomorphisms on
a three-dimensional manifold formed by diffeomorphisms that do not satisfy the
gluing orbit property (cf. Corollary 2). One other consequence concerns an impor-
tant class of partially hyperbolic diffeomorphisms on the three-dimensional torus
introduced by Mañé [20] known as DA-maps (derived from Anosov). These are
C1-robustly transitive and partially hyperbolic diffeomorphisms, obtained by de-
formations of Anosov diffeomorphisms by isotopy exhibiting periodic points of
different index. In this case we will deduce that the Mañé examples do not satisfy
the gluing orbit property. These results provide partial answers to question (1) in
the context of partially hyperbolic diffeomorphisms.

Despite the previous results, on the negative, questions (2) and (3) inspired us
to pursue the characterization of the three-dimensional partially hyperbolic dif-
feomorphisms with compact center leaves which satisfy the gluing orbit property
(and fail to satisfy specification). This can be made concrete by two different con-
structions, using skew-products involving either Anosov diffeomorphisms or shift
dynamics, and rotations (Theorems B, C and D). While one of such models can be
definitely studied using non-autonomous dynamical systems, for the other it seems
to exist a dichotomy involving the presence or absence of the gluing orbit prop-
erty which explores a synchronization on the circle dynamics. This yields some
topological and ergodic consequences for the dynamics including quantitative re-
currence estimates for some partially hyperbolic dynamics (cf. Corollary 3).
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This article is organized as follows. In Section 2 we recall the concepts of partial
hyperbolicity and robustly transitive diffeomorphisms and state our main results.
Some preliminary results on sequential dynamical systems, gluing orbit properties
and partial hyperbolicity are given in Section 3. The proofs of the main results will
be given in Subsections 4.1 to 4.4.

2. Statement of the main results

Setting. Throughout, let M be a C∞ closed manifold with dim M ≥ 3, where
dim E denotes the dimension of E, and let Diff r(M) denote the space of Cr diffeo-
morphisms on M endowed with the Cr-topology, r ≥ 1. Given f ∈ Diff 1(M), a
D f -invariant splitting T M = E ⊕ F is dominated if there is an integer k ∈ N such
that

‖Dx f k(u)‖
‖Dx f k(w)‖

<
1
2
,

for every x ∈ M and every pair of unitary vectors u ∈ E(x) and w ∈ F(x). Generally,
a D f -invariant splitting T M = E1 ⊕ · · · ⊕ Ek is dominated if for any 1 ≤ l ≤ k − 1,
(E1⊕· · ·⊕El)⊕(El+1⊕· · ·⊕Ek) is dominated. A D f -invariant bundle E is uniformly
contracting (resp. expanding) if there are C > 0 and 0 < λ < 1 such that for every
n > 0 one has ‖Dx f n(v)‖ ≤ Cλn‖v‖ (resp. ‖Dx f −n(v)‖ ≤ Cλn‖v‖) for all x ∈ M and
v ∈ E(x). We say that a diffeomorphism f is partially hyperbolic (resp. strongly
partially hyperbolic) if there is a D f -invariant splitting T M = Es ⊕ Ec ⊕ Eu such
that Es and Eu are uniformly contracting and uniformly expanding respectively,
and at least one of them is (resp. both of them are) not trivial. A diffeomorphism is
hyperbolic if it is strongly partially hyperbolic and Ec is trivial. We say that Ec is
the central direction of the splitting. We say that f ∈ Diff 1(M) is transitive if there
is x ∈ M whose orbit is dense in M. A diffeomorphism f is robustly transitive
if there is a C1-neighborhood U( f ) of f in Diff 1(M) such that any g ∈ U( f )
is transitive. Denote by RNT the set of robustly non-hyperbolic and transitive
diffeomorphisms in Diff 1(M), that is, the set of diffeomorphisms f having a C1-
neighborhoodU( f ) of f such that every g ∈ U( f ) is non-hyperbolic and transitive.

Statement of the main results. Our main results concern the relation of partially
hyperbolicity with gluing orbit properties and some of its topological and ergodic
consequences. The starting point is the following:

Theorem A. Let f : M → M be a C1-diffeomorphism admitting a partially hy-
perbolic splitting Es ⊕ Ec ⊕ Eu. Assume that there are two hyperbolic periodic
points p and q such that either dim Eu = dim Wu(p) < dim Wu(q) or dim Es =

dimWs(q) < dimWs(p). Then f does not satisfy the gluing orbit property. More-
over, if dim M = 3 then there is a C1-dense open subset P in RNT so that every
f ∈ P does not satisfy the gluing orbit property.

HereWu(p) (resp. Ws(p)) denotes the unstable (resp. stable) manifold of the
point p defined as usual. The previous result can be understood as an extension of
[27, Theorem A] where, analogously, the holonomy map along the strong unstable
foliation plays a key role in the proof. In particular, a counterpart of this result for
partially hyperbolic flows is expected to hold, in the spirit of [28].

We shall now deduce some implications of Theorem A on the space of robustly
transitive diffeomorphisms. Denote by SPH1(M) ⊂ Diff 1(M) the C1-open set of
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strongly partially hyperbolic diffeomorphisms with one-dimensional central direc-
tion. In [20], Mañé introduced a class of robustly transitive, non-hyperbolic and
strong partially hyperbolic diffeomorphisms, which are nowadays known as Mañé
diffeomorphisms. In the case that the central direction Ec is one dimensional, any
two hyperbolic periodic points with different index verify the assumptions of The-
orem A. We obtain the following immediate consequence.

Corollary 1. If f ∈ SPH1(M) admits two hyperbolic periodic points p, q with
different index then f does not satisfy the gluing orbit property. In particular,
Mañé diffeomorphisms do not satisfy the gluing orbit property.

We recall that any hyperbolic measure µ that is invariant by a C1+α diffeomor-
phism is weak∗ approximated by invariant probabilities supported on hyperbolic
periodic points with the same index of the hyperbolic splitting determined by µ
(cf. [16]). Hence, the conclusion of Corollary 1 is satisfied by any strongly par-
tially hyperbolic C1+α-diffeomorphism on a three-dimensional compact manifold
having two ergodic probabilities with central Lyapunov exponent of different sign.

Theorem A has also consequences on the set of robustly transitive and non-
hyperbolic diffeomorphisms. Indeed, [2, Theorem 3.1] ensures that there is an
open and dense subset P′ in RNT such that every diffeomorphism in P′ has two
saddles with different index. Thus, we deduce the following:

Corollary 2. There is a C1-open and dense set P ⊂ RNT ∩ SPH1(M) such that
every f ∈ P does not satisfy the gluing orbit property.

It is clear from Theorem A and Corollaries 1 and 2, that the set of partially hy-
perbolic diffeomorphisms satisfying the gluing orbit property is often a meager set.
Moreover, in [30, 31], Sun characterized the set of zero-entropy maps with the glu-
ing orbit property (these are minimal and equicontinuous) and proved that any pos-
itive entropy map with the gluing orbit property is not minimal. Both results lead
us to propose the construction of (non-trivial) partially hyperbolic skew-products
(clearly the product map of one transformation with the gluing orbit property and
other with the specification property satisfies the gluing orbit property, cf. [8]).

Now, we construct some classes of non-trivial partially hyperbolic skew-products
with the gluing orbit property. We endow S1 × M with the distance

d((x1, y1), (x2, y2)) = max
{
|x1 − x2| , dM(y1, y2)

}
(2.1)

where | · | denotes the usual distance in the circle and dM denotes the distance on M
inherited by the Riemann structure.

Theorem B. Let f ∈ Diff 2(M) be a transitive Anosov diffeomorphism. There exists
a C2-open neighborhoodV of f such that, for any α < Q and any C2-smooth family
of Anosov diffeomorphisms ( fx)x∈S1 inV the map

F : S1 × M −→ S1 × M
(x, y) 7→ ( x + α ( mod1 ), fx(y) ) (2.2)

is a C2-partially hyperbolic diffeomorphism satisfying the gluing orbit property.

We note that all partially hyperbolic diffeomorphisms in Theorem B do not sat-
isfy the specification property. Indeed, the previous construction enjoys the fact
that the central direction is at all points driven by a fixed rotation of irrational an-
gle, hence the resulting diffeomorphism is not topologically mixing.
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There are few known results on the quantitative recurrence of partially hyper-
bolic dynamics. While such a description is nowadays very well known for hyper-
bolic dynamical systems the situation in very much the opposite beyond the context
of uniform hyperbolicity, where even the construction of equilibrium states for par-
tially hyperbolic dynamics faces non-trivial challenges in general.

In what follows we describe some quantitative recurrence results for the partially
hyperbolic skew-products described in Theorem B. Given (x, y) ∈ S1 × M, set

τn((x, y), ε) := inf
{

k ≥ 1: F−k(Bn((x, y), ε)) ∩ Bn((x, y), ε) , ∅
}

as the return time of the dynamical ball Bn((x, y), ε) to itself. Analogously, let

τ(B((x, y), ε)) := inf
{

k ≥ 1: F−k(B((x, y), ε)) ∩ B((x, y), ε) , ∅
}

denote the minimal return time of the ball B((x, y), ε) to itself. Poincaré’s recur-
rence theorem ensures that the latter quantities, usualy known as short return times
are almost everywhere finite with respect to any F-invariant probability measure
(see e.g. [1] and references therein). While some sort of hyperbolicity is generally
associated to the fact that the first quantity grows linearly with n and that the second
reflects the Lyapunov exponents of the invariant measure (see e.g. [4] and refer-
ences therein), the situation changes drastically for circle rotations (see e.g. [17]).
For that reason, it seemed hopeless to combine these different methods to deal with
the previously defined skew-products. Nevertheless we prove the following:

Corollary 3. The following properties hold:
(1) F has super-linear lower asymptotic mixing rates on the family of balls;
(2) F has positive lower frequency of visits to balls; and
(3) every point (x, y) ∈ S1 × M is an entropy point for F.

Moreover, if µ is F-invariant and ergodic then:
(4)

lim
ε→0

lim inf
n→∞

τn(x, ε)
n

= lim
ε→0

lim sup
n→∞

τn(x, ε)
n

= 1 and

(5)

0 <
1

λ+(µ)
≤ lim inf

ε→0

τ(B(x, ε))
− log ε

for µ-a.e. x, where λ+(µ) denotes the largest Lyapunov exponent for µ.

This corollary gives first results on quantitative recurrence for families of par-
tially hyperbolic dynamics. Items (1)-(3) in Corollary 3 can be easily read from the
proofs of [8, Theorems A and B] (which consider flows with reparametrized gluing
orbit property, and whose proofs become simpler in the case of maps), while the
proofs of items (4) and (5) carry almost without change from the proofs of [32,
Theorem B and Proposition A] (replacing the role of specification property by the
gluing orbit property).

In what follows we consider families of skew-products with partial hyperbolic
behavior of a dual nature, modeled by means of iterated function systems on the
circle over shift spaces. By some abuse of notation, we still refer to these as par-
tially hyperbolic dynamics. We say that a family ( fi)0≤i≤d−1 of circle homeomor-
phisms is jointly equicontinuous if { f ±1

i }0≤i≤d−1 is jointly equicontinuous, meaning
that for every ε > 0 there is δ > 0 such that if |y1 − y2| < δ and ` ≥ 1 then
|gi` ◦ · · · ◦ gi1(y1)− gi` ◦ · · · ◦ gi1(y2)| < ε, where gi j ∈ { f

±1
i : 0 ≤ i ≤ d − 1} for every
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1 ≤ j ≤ `. Set Σ := {0, 1, . . . , d − 1}Z, let σ : Σ→ Σ be the shift map and denote by
ω = (. . . , ω−1, ω0, ω1, . . .) the elements in Σ. Consider also the metric

d((ω, y), (ω̃, ỹ)) = max
{

dΣ(ω, ω̃) , |y − ỹ|
}

on Σ × S1, where dΣ(ω, ω̃) =
∑

n∈Z 2−|n||ωn − ω̃n|. The next result shows that joint
equicontinuity and a sort of equidistribution of some fiber dynamics are sufficient
conditions for locally constant circle extensions to satisfy the gluing orbit property.
In other words:

Theorem C. Let ( fi)0≤i≤d−1 be a jointly equicontinuous family of homeomorphisms
on the circle S1. If there exists 0 ≤ j ≤ d− 1 such that f j is minimal, then the skew-
product F : Σ × S1 → Σ × S1 given by F(ω, y) = (σ(ω), fω0(y)) satisfies the gluing
orbit property.

The equicontinuity assumption is natural in the context of non-stationary dy-
namics and if often necessary in order to recover properties on the entropy and
stability of classical dynamical systems (see e.g. [12, 18] and references therein).
Since equicontinuity is satisfied by families of circle rotations and irrational rota-
tions are minimal, as a direct consequence of Theorem C, the gluing orbit property
is prevalent for circle extensions over the shift, in the following sense:

Corollary 4. There exists a Baire residual and full Lebesgue measure subset A ⊆
Rd so that the skew-product F : (ω, y) 7→ (σ(ω), y + αω0) has the gluing orbit
property, for every (α0, α1, . . . , αd−1) ∈ A.

The general construction of non-locally constant circle extensions satisfying the
gluing orbit property seems to face enormous difficulties, even if the dynamical
system is more regular, e.g. Hölder continuous. Despite that, we can build such an
example, as described below.

Theorem D. The skew-product F : {0, 1}Z × S1 → {0, 1}Z × S1 given by

F(ω, y) = (σ(ω), y + α(ω)),

where α(ω) = e−(`(ω)+1) and `(ω) = inf{k ≥ 0 : ωk = 1 or ω−k = 1}, satisfies the
gluing orbit property.

Altogether, the previous results support the conjecture that the majority of the
neutral circle extensions with a unique measure of maximal entropy satisfy the
gluing orbit property.

3. Preliminaries

3.1. Sequential dynamics. In this subsection we collect some necessary defini-
tions and results for sequential dynamics (we refer the reader to [12] and references
therein for more details and proofs). A sequential dynamical system is a collection
F = { fn}n∈Z of continuous maps fn : M → M, where (M, d) is a complete metric
space and n ∈ Z.

Throughout, we will assume that M is a compact Riemannian manifold. Given
r ≥ 0, let Sr(M) denote the space of sequences F = { fn}n∈Z of Cr-differentiable
maps. Given sequences F ,G ∈ Sr(M), define the normalized distance |‖F −G‖| :=
supn∈Z dCr ( fn, gn), where dCr ( f , g) = min{1, ‖ f − g‖r} and ‖ · ‖r denotes the usual
Cr-norm between f and g. Given n ≥ 1 set Fn = fn−1 ◦ . . . f2 ◦ f1 ◦ f0. As usual the
symbol F0 will stand for the identity on M.
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The (positive) orbit of x ∈ M is the set O+
F

(x) = {Fn(x) : n ∈ Z+}. If each
element of F is invertible then the orbit of x ∈ M is the set OF (x) = {Fn(x) : n ∈
Z}, where F−n = f −1

−n ◦ · · · ◦ f −1
−2 ◦ f −1

−1 for every n ∈ Z+.
In the sequel, for notational simplicity, we represent all metrics dn by d. Assume

that F = { fn}n∈Z is a sequence of Anosov diffeomorphisms on M that preserves
common stable and unstable cone fields (see e.g. [12] for the definition) and set
F (k) = { fk+n}n∈Z, F(k)

−n = f −1
k−n ◦ · · · ◦ f −1

k−2 ◦ f −1
k−1 and F(k)

n = fn+k−1 ◦ · · · ◦ fk+1 ◦ fk, for
all k, n ∈ Z. The existence of invariant cone fields with uniform expansion (λ−1

n )
and contraction (λn) imply on the following properties:

(1) there exists a > 0 such that for every k ∈ Z and x ∈ M, the subspaces

Eu
F (k)(x) :=

⋂
n≥0

DF(k−n)
n (F(k)

−n(x)) Cu
a,k−n(F(k)

−n(x)) ⊂ TxM

and

Es
F (k)(x) :=

⋂
n≥0

DF(k+n)
−n (F(k)

n (x)) Cs
a,k+n(F(k)

n (x)) ⊂ TxM

satisfy D fk(x)E∗
F (k)(x) = E∗

F (k+1)( fk(x)) for ∗ ∈ {s, u}.
(2) there are constants C > 0, δ1 > 0 and λ̃ ∈ (λ, 1), where λ := supn∈Z λn,

so that, for any x ∈ M, k ∈ Z and ∗ ∈ {s, u} there exists a unique smooth
submanifoldW∗

F (k),δ1
(x) of M (of size δ1) that is tangent to the subbundle

E∗
F (k)(x) at x, in such a way that:
(i) fk(W∗

F (k),δ1
(x)) =W∗

F (k+1),δ1
( fk(x))

(ii) dWs( fk(y), fk(z)) ≤ λ̃ dWs(y, z) for all y, z ∈ Ws
F (k),δ1

(x)
(iii) dWu( f −1

k (y), f −1
k (z)) ≤ λ̃ dWu(y, z) for all y, z ∈ Wu

F (k+1),δ1
(x)

(iv) the angles between stable and unstable bundles Es
F (k)(x) and Eu

F (k)(x)
is bounded away from zero by some constant θk > 0

(v) for any 0 < ε < δ1 there exists δk > 0 so that for any x, y ∈ M
with d(x, y) < 2δk the transverse intersectionWs

F (k),ε
(x) tWu

F (k),ε
(y)

consists of a unique point in M
(vi) Ws

F (k),ε
(x) = {y ∈ M : d(F(k)

n (y), F(k)
n (x)) ≤ ε for every n ≥ 0} and

Wu
F (k),ε

(x) = {y ∈ M : d(F(k)
−n(y), F(k)

−n(x)) ≤ ε for every n ≥ 0}

Here we opted to write the invariant manifolds asW∗

F (k) (∗ ∈ {s, u}) to specify the
shifted sequence F (k) with respect to which the uniform contracting or expanding
behavior holds.

In the case that f ∈ Diff 1(M) is an Anosov diffeomorphism there exists a C1-
small open neighborhood U of f so that the cone fields Cu

a0
and Cs

a0
(determined

by f ) are Dg-invariant for all g ∈ U, and λ := supg∈U λg < 1. Reducing U
if necessary we may take constants θ, δ, ε > 0 (depending only on f and U) so
that θ < θn, δ < δn and ε < εn for all n, for any sequence F = { fn}n∈Z formed
by elements of U. In other words, both the angles between stable and unstable
subspaces and the sizes given by local product structure are uniformly bounded
away from zero, and the sequence F is δ1-expansive: if d(Fn(x), Fn(y)) < ε for
all n ∈ Z then x ∈ Ws

F ,δ1
(y) ∩Wu

F ,δ1
(y) = {y}. We refer the reader e.g. to [12])

for more details. Let us recall the stability of non-autonomous sequences of C1-
Anosov diffeomorphisms:
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Theorem 3.1. [12, Theorem 2.4] Let M be a compact Riemannian manifold and
f ∈ Diff1(M) be a transitive C1 Anosov diffeomorphism on M. There exist K > 0
and ε > 0 so that if F = { fn}n∈Z is a sequence with ‖ fn − f ‖C1 < ε for all n ∈ Z
then there exists a unique sequence (hn)n∈Z+

0
of homeomorphisms on M so that

fn−1 ◦ · · · ◦ f1 ◦ f0 = h−1
n ◦ f n ◦ h0 for every n ∈ Z+

0 . (3.1)

Moreover, ‖hn − Id‖C0 ≤ K supk≥n ‖ fk − gk‖C1 for every n ≥ 0.

Remark 3.2. Although we believe that the sequence of conjugacies (hn)n∈Z+
0

may
fail to be equicontinuous in general, there are at least two cases where this occurs.
First, if the sequence ( fn)n in Theorem 3.1 is C1-convergent to some diffeomor-
phism f ∈ U then the sequence of homeomorphisms (hn)n is equicontinuous [12,
Remark 4.7]. This is also the case whenever the diffeomorphisms are C2-smooth
[3, Theorem 7.6].

3.2. Gluing orbit properties. Let X be a compact metric space and let f : X → X
be a continuous map. Given x ∈ X, ε > 0 and an initial time n0 ∈ Z, we define the
dynamical ball of length n − n0, with initial time n0 and size ε centered at x, by

B(x, n, n0, ε) = {y ∈ X : d( f j(y), f j(x)) ≤ ε, ∀ n0 ≤ j ≤ n}.

When no confusion is possible, set Bn(x, ε) = B(x, n, 0, ε) and B−n(x, ε) = B(x, 0,−n, ε).
In particular, B(x, ε) = B0(x, ε) stands for the closed ball of radius ε around x.

Definition 3.3. We say that a continuous map f : X → X satisfies the gluing
orbit property if: given ε > 0 there exists a positive integer N = N(ε) ≥ 1 such
that for any points x1, . . . , xk ∈ X and times n1, . . . , nk ≥ 0 there exist gluing
times 0 ≤ p1, . . . , pk−1 ≤ N(ε) and a point z ∈ X so that d( f n(z), f n(x1)) < ε for
every n = 0 . . . n1 and d( f n+

∑
1≤i< j(pi+ni)(z), f n(x j)) < ε for every j = 2 . . . k and

n = 0 . . . n j. Alternatively (to be used in the sequel), using the dynamical balls,
there exist gluing times 0 ≤ p1, . . . , pk−1 ≤ N(ε) so that

k⋂
j=1

f −
∑

1≤i< j(pi+ni)(Bn j(x j, ε)) , ∅. (3.2)

Remark 3.4. In the case that p is a hyperbolic periodic point for a diffeomorphism
f , there exists ε > 0 small so that the local unstable set Wu

ε (p) =
⋂

n≥0 B−n(p, ε)
is the local unstable manifold at p with size ε. Analogously, the local stable set
W s
ε(p) =

⋂
n≥0 Bn(p, ε) is the local stable manifold for some ε > 0 (see e.g. [26]).

Now, inspired by the concept of orbital specification from [22], we introduce a
concept of specification for non-stationary dynamics.

Definition 3.5. Let X be a compact metric space and let F = { fn}n∈Z be a sequence
of continuous maps fn : X → X, where Z = Z+ or Z. We say that F satisfies the
specification property if for any ε > 0 there exists T (ε) ≥ 1 such that for any points
x1, . . . , xk ∈ X, any positive integers n1, . . . , nk and any p j ≥ T (ε) there exists z ∈ X
so that d(F`(z), F`(x1)) < ε for every ` = 0 . . . n1 and

d( F`+p j−1+n j−1+···+p1+n1(z), F(p j−1+n j−1+···+p1+n1)
`

(x j) ) < ε

for every j = 2 . . . k and ` = 0 . . . n1.

Although the previous condition seems very rigid, it is satisfied by all sequences
of Ruelle expanding maps and certain sequences of Anosov diffeomorphisms (cf.
[22] and Proposition 4.5 below).
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4. Proofs

4.1. Proof of Theorem A. Although the concept of gluing orbit property is much
more embracing than specification (recall the discussion at the introduction) from
the technical point of view, the proof of Theorem A is a not so hard modification
of the arguments in [27]. For that reason we will indicate the key modifications.

Lemma 4.1. Suppose that f ∈ Diff 1(M) satisfies the gluing orbit property. Then
for every hyperbolic periodic point p both the stable and unstable manifoldsWs(p)
andWu(p) are dense in M.

Proof. We will prove the denseness in M of the unstable manifold Wu(p) (the
proof for the stable manifold Ws(p) is analogous). For notational simplicity we
assume that p is a fixed point (if not just consider f k where k is the period of p).

Given any point x ∈ M and ε0 > 0, we claim that there is a point y ∈ M such
that y ∈ Wu(p) and d(x, y) ≤ ε0. For some ε1 > 0, we denote byWu

ε1
(p) the local

unstable manifold of size ε1. Set ε := 1
2 min{ε0, ε1} and let N(ε) ≥ 1 be given by

the gluing orbit property. Then, for any n ≥ 1 there exists 0 ≤ kn ≤ N(ε) such that

f κn(B−n(p, ε)) ∩ B(x, ε) , ∅ .

By the pigeonhole principle, there exists an increasing subsequence ni → ∞ so
that (κni)i≥1 is constant to 0 ≤ κ ≤ N(ε). Notice that ( f κ(B−ni(p, ε)) ∩ B(x, ε))i≥1 is
a nested decreasing family of closed non-empty sets. Thus, the compactness of M
ensures that there exists a point

y ∈
∞⋂

i=1

f κ(B−ni(p, ε)) ∩ B(x, ε).

Reformulating, the point y ∈ M satisfies

d(y, x) ≤ ε0 and d( f −ni( f −κ(y)), f −ni(p)) ≤ ε1 for all i ≥ 1.

The decreasing nature of the sequence of dynamical balls (B−n(p, ε))n implies that
y ∈ f κ(Wu

ε1
(p)) = f κ(Wu

ε1
( f −κ(p))). Consequently, y ∈ Wu(p) and d(x, y) ≤ ε0,

which shows the claim and completes the proof of the lemma.
�

Remark 4.2. The previous lemma quantities the denseness of stable and unsta-
ble manifolds. Indeed, if p is a hyperbolic periodic point and ε > 0 then both
f −N(ε)(Ws

ε(p)) and f N(ε)(Wu
ε(p)) are ε-dense.

Proof of Theorem A. Consider f ∈ Diff 1(M) admitting a partially hyperbolic split-
ting Es ⊕ Ec ⊕ Eu. Let p and q be hyperbolic periodic points for f for which
dim Eu = dim Wu(p) < dim Wu(q) (the case dim Es = dim Ws(q) <
dimWs(p) is analogous).

We assume, by contradiction, that f satisfies the gluing orbit property. Then
f is topologically transitive, thus it has neither sinks nor sources. In particular, as
dim Eu = dimWu(p) > 0, the sub-bundle Eu is not trivial. We will make use of an
intrumental result on the location of the shadowing point in unstable disks proved
in [9]. Given x ∈ Wu(p) and η > 0, let γu

η(x) := {z ∈ Wu(p) : du(x, z) ≤ η} be the
local unstable disk around x in Wu(p), where du denotes the distance in Wu(p)
induced by the Riemannian metric.
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Proposition 4.3. [9, Proposition 3] There exists a small positive constant ε0 such
that for any ε ∈ (0, ε0) the following holds: if x ∈ Wu(p) and d( f −n(z), f −n(x)) ≤ ε
for any n ≥ 1, then z ∈ γu

4ε(x).

The next result, obtained as a modification of [27, Proposition 2.3], reflects the
similarities and differences between specification and the more flexible gluing orbit
property. In the case of dynamics with the gluing orbit property, the time needed
for the shadowing of finite pieces of orbits may be variable. Therefore, creating
obstructions for this property is more demanding than for specification. This idea
is formalized by equation (4.1) below.

Proposition 4.4. Let ε0 be given by Proposition 4.3. There exist η > 0 and ε ∈
(0, ε0) with 4ε < η such that for all N ≥ 1 there is x ∈ Wu(p) satisfying

N⋃
j=1

f j(γu
η(x)) ∩W s

η(q) = ∅ . (4.1)

Proof. Since the sub-bundle Eu is not trivial, there exists a foliation F u which is
tangent to Eu (see [15]). We denote by F u(x) the leaf of the foliation F u containing
the point x and given any η > 0, we define

F u
η (x) := {w ∈ F u(x) : du(x,w) ≤ η},

where du is the distance inF u(x) induced by the Riemannian metric. By Lemma 4.1,
the unstable manifold Wu(p) is dense in M. Given r > 0, we shall consider the
following family of unstable disks

L(p) = {V(w) : w ∈ B(p, r)},

where V(w) is the connected component of F u(w)∩ B(p, r) that contains w. Select
a local disk D′0 and η > 0 small enough so that D′0 is transverse to the family L(p),
p ∈ D′0 and such that A(U) :=

⋃
z∈U F

u
η (z) is homeomorphic to U × [−η, η]dim Eu

,
for any open disk U contained in D′0.

Set ε := min{η/5, ε0/2}. Now, we take a compact disk K transverse to Eu and
such that K ⊃ W s

η(q). Let N ≥ 1 and fix 1 ≤ j ≤ N. Since K is transverse to Eu

then K ∩ f j(γu
η(p)) is formed by a finite set of points {x j1 , x j2 , · · · , x jk j

}. Choose an
open subdisk D j,0 ⊂ D′0 containing p such that K j,i ∩ K j,i′ = ∅ if i , i′, where K j,i

is a connected component of K ∩ f j(A(D j,0)) containing x ji , for 1 ≤ i ≤ k j. For
each 1 ≤ i ≤ k j, let D j,i = f − j(K j,i) and consider the holonomy map

π j,i : D j,i → D j,0
w 7→ v

where v = π j,i(w) is the unique point such that D j,i ∩ F
u(v) = {w}.

Each holonomy map π j,i is a homeomorphism, by our choice of the open disks
D j,0 and D j,i, 1 ≤ i ≤ k j. Since W s

η(q) is a closed submanifold with dim W s
η(q) <

dim K j,i, K j,i \W s
η(q) is open and dense in K j,i. Taking γs

j,i := π j,i ◦ f − j(W s
η(q)), we

have that D j,0 \ (
⋃k j

i=1 γ
s
j,i) is open and dense in D j,0. Now let D0 := ∪N

j=1D j,0. The
latter implies that

D0 \

( N⋃
j=1

k j⋃
i=1

γs
j,i

)
is open and dense in D0.
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Consequently, we can choose an open subdisk U ⊂ D0 \ (
⋃N

j=1
⋃k j

i=1 γ
s
j,i). Since

A(U) is homeomorphic to U × [−η, η]dim Eu
andWu(p) is dense in M, there exists

a point z′ ∈ A(U) ∩Wu(p). In other words, there exists a point x ∈ U such that
z′ ∈ F u

η (x). The choice of ε implies that not only x ∈ Wu(p) as F u
η (x) = γu

η(x).
Moreover, the property

⋃N
j=1 f j(γu

η(x)) ∩ W s
η(q) = ∅ is now a consequence of the

choice of U. We have proved the proposition. �

Proceeding with the proof of the theorem, for each ε > 0 let N = N(ε) ≥ 1 be
given by the gluing orbit property. Proposition 4.4 assures that there are η > 0,
ε ∈ (0, ε0) with 4ε < η and a point x ∈ Wu(p) satisfying

N⋃
j=1

f j(γu
η(x)) ∩W s

η(q) = ∅.

On the other hand, the gluing orbit property implies that for any n ≥ 1 there is
0 ≤ kn ≤ N such that f kn(B−n(x, ε))∩Bn(q, ε) , ∅. Pick an increasing subsequence
ni → ∞ so that (kni)i≥1 is constant to κ (≤ N). As before, the compactness of M
ensures that there exists a point z ∈ M such that

z ∈
∞⋂

i=1

f κ(B−ni(x, ε)) ∩ Bni(q, ε).

Once again, because the sequences of dynamical balls (B−n(x, ε))n and (Bn(q, ε))n
are decreasing, the latter implies that d( f −n( f −κ(z)), f −n(x)) ≤ ε and d( f n(z), f n(q)) ≤
ε for any n ≥ 0. Thus, it follows from Proposition 4.3 that z ∈ f κ(γu

η(x)) ∩W s
η(q)

(κ ≤ N). Hence, z ∈
⋃N

j=1 f j(γu
η(x)) ∩ W s

η(q), which is a contradiction. Thus, f
does not satisfy the gluing orbit property.

Now suppose that dim M = 3. Then it follows from [2, Theorem 3.1] that there
is a C1-dense open subset P in RNT such that any diffeomorphism f ∈ P has two
saddles with different index.

Since f ∈ P is robustly transitive, it follows from [14] that f has a partially
hyperbolic splitting Eu ⊕Ec ⊕Es. Thus, the existence of two saddles with different
index, imply that f ∈ P does not satisfy the gluing orbit property. This completes
the proof of Theorem A.

4.2. Proof of Theorem B. Let f ∈ Diff 2(M) be a transitive Anosov diffeomor-
phism, letV be a C2-small open neighborhood of f , let α < Q and consider the C2

skew-product

F : S1 × M −→ S1 × M
(x, y) 7→ ( x + α ( mod1 ), fx(y) ) (4.2)

where fx ∈ V for all x ∈ S1. Since f is a transitive Anosov diffeomorphism, by
spectral decomposition it is topologically mixing and, by Bowen [10], is satisfies
the specification property.

The proof of the theorem has two steps. First we explore the non-autonomous
dynamics generated by C2-close Anosov diffeomorphisms and prove that this sat-
isfies the gluing orbit property (independently of the base dynamics of the skew-
product). This is only possible after [3, 12]. Second, we combine the latter with
the fact that an irrational rotation on the circle satisfies the gluing orbit property.
The first ingredient can be read as follows:
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Proposition 4.5. If f is a C2 Anosov diffeomorphism then there exists a C2-open
neighborhood V of f such that, for any sequence F = { fn}n∈Z with fn ∈ V and
any ε > 0 there exists T = T (ε) > 0 so thatWs

F ,ε
(z) ∩Wu

F ,T (ε)(y) , ∅ for every
y, z ∈ M. In particular, the sequence F satisfies the specification property.

Proof. Since f is a topologically mixing Anosov diffeomorphism thenWu
f is min-

imal (i.e. all unstable leaves are dense). Using f −1 instead of f we have that the
stable foliation Ws

f is also minimal. Thus, by compactness of M and continu-
ity of unstable leaves on compact parts, for every ε > 0 there exists L(ε) > 0
so that Wu

f ,L(ε)(x) is ε-dense in M for every x ∈ M. Taking F = { fn}n and
G = { f }n, Theorem 3.1 and Remark 3.2 ensures that there is a equicontinuous se-
quence of homeomorphisms (hn)n where hn = hF (n),G(n) satisfy ‖hF (n),G(n) − Id‖C0 ≤

K sup`≥n ‖ fk+` − gk+`‖C1 for every n ≥ 0, and

Fn = h−1
F (n),G(n) ◦ f n ◦ hF ,G ∀n ∈ Z+. (4.3)

Equation (4.3) implies that for any k ≥ 0, the shifted sequences G(k) and F (k) are
such that

F(k)
n = h−1

F (k+n),G(k+n) ◦ f n ◦ hF (k),G(k) ∀n ∈ Z+ (4.4)

and, consequently,

h0(W∗
F

(z)) =W∗
f (h0(z)) and hn(W∗

F (n)(z)) =W∗
f (hn(z))

for every z ∈ M, for every n and ∗ ∈ {s, u}. This, together with the fact that {hn : n ∈
Z} is equicontinuous, guarantees that for every ε > 0 there exists T (ε) ≥ L(ε)
such thatW∗

F ,T (ε)(z) is ε-dense for every z ∈ M and ∗ ∈ {s, u}. The transversality
statement in Subsection 3.1 implies that

Ws
F ,ε(z) ∩Wu

F ,T (ε)(y) , ∅ for every y, z ∈ M. (4.5)

This proves the first assertion in the proposition.
We now proceed to prove that F has the specification property. Using (4.4) and

the fact that the sequence (h−1
n )n is equicontinuous, given ε > 0 take 0 < ε̂ ≤ ε so

that ||h−1
n (x) − h−1

n (y)|| < ε for all x ∈ B(y, ε̂) and n ∈ Z+. Let N(ε̂) ≥ 1 be given by
the specification property associated to f . Fix x1, . . . , xk ∈ M and n1, . . . , nk ∈ Z+

and time lags p1, . . . , pk−1 ≥ N(ε̂). Applying the specification of f to the points
x̂1 = h0(x1), . . . , x̂k = h∑

1≤ j<k(n j+p j)(xk), times n1, . . . , nk and the scale ε̂, there exists
y ∈ M so that

y ∈
k⋂

j=1

f −
∑

1≤i< j(pi+ni)(Bn j(x̂ j, ε̂)) , ∅, (4.6)

where the dynamical balls are with respect the map f . Take z := h−1
0 (y). By the

choice of ε̂ we have that

dM(F`(z), F`(x1)) = dM
(
h−1
` ◦ f ` ◦ h0 ◦ h−1

0 (y), h−1
` ◦ f ` ◦ h0(x1)

)
= dM

(
h−1
` ◦ f `(y), h−1

` ◦ f ` ◦ h0(x1)
)
< ε

(4.7)
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for every ` = 1 . . . n1 and, using (4.4) once more,

dM(F`+
∑

1≤i< j(pi+ni)(z), F
(
∑

1≤i< j(pi+ni))
`

(x j) )

= dM
(
h−1
`+

∑
1≤i< j(pi+ni) ◦ f `+

∑
1≤i< j(pi+ni) ◦ h0 ◦ h−1

0 (y), h−1
`+

∑
1≤i< j(pi+ni) ◦ f ` ◦ h∑

1≤i< j(pi+ni)(x j)
)

= dM
(
h−1
`+

∑
1≤i< j(pi+ni) ◦ f `+

∑
1≤i< j(pi+ni)(y), h−1

`+
∑

1≤i< j(pi+ni) ◦ f ` ◦ h∑
1≤i< j(pi+ni)(x j)

)
< ε

(4.8)

for every j = 2 . . . k and ` = 1 . . . n j. This proves the specification property for F
and completes the proof of the proposition. �

We are now in a position to complete the proof of Theorem B. Observe first that
for any x ∈ S1, the sequence of Anosov diffeomorphisms Fx = { fn}n∈Z determined
by fn := fx+nα(mod1), for every n ∈ Z, satisfies the requirements of Proposition 4.5.

Now, note that the constant T (ε) > 0 given by the specification property ob-
tained for Fx in Proposition 4.5 can be taken uniform in a small open neighborhood
of f . Thus, given ε > 0, let T1(ε) ≥ 1 be given by the gluing orbit property for
the irrational rotation x 7→ x + α(mod1) (cf. [8]) and let T2(ε) ≥ 1 be given by the
specification property for the sequence Fx given in the statement of Proposition 4.5
(this is independent of x).

Set T (ε) = T1(ε) + T2(ε) ≥ 1 and take arbitrary (x1, y1), . . . , (xk, yk) ∈ S1 × M
and integers n1, . . . , nk ≥ 0. Since the irrational rotation Rα has the gluing orbit
property, there exists z ∈ S1 and 0 ≤ p1, . . . , pk−1 ≤ T1(ε) so that

|Rn
α(z)) − Rn

α(x1)| < ε for every 0 ≤ n ≤ n1 + T2(ε)

and

|R
n+

∑
1≤i< j(pi+ni)

α (z) − Rn
α(x j)| < ε for every 0 ≤ n ≤ n j + T2(ε)

for every 2 ≤ j ≤ k (in other words, z shadows the piece of orbit of x j during
n j + T2(ε) iterates).

Fix z ∈ S1 as above and let F ≡ Fz. The specification property for the family
F (choosing the points y1, y2, . . . , yk ∈ M, positive integers n j and time lags p̃ j =

p j + T2(ε) ≥ T2(ε)) ensures that there exists y ∈ M so that dM(F`(y), F`(y1)) < ε
for every ` = 1 . . . n1 and

dM( F`+ p̃ j−1+n j−1+···+ p̃1+n1(y), F( p̃ j−1+n j−1+···+ p̃1+n1)
`

(y j) ) < ε

for every j = 2 . . . k and ` = 0 . . . n j. Finally, since the skew-product F in (4.2)
satisfies Fk(x, y) = ( Rkα(x), Fk

x(y) ), the gluing orbit property follows from the
previously specified shadowing of orbits expressed in both coordinates and the
choice of the metric d in (2.1). This proves the theorem.

4.3. Proof of Theorem C. Let ε > 0 and take points (ω1, y1), . . . , (ωk, yk) ∈ Σ×S1

and times n1, . . . , nk ≥ 0. Since the shift map σ : Σ → Σ satisfies the speci-
fication property, the choice of the metric d implies that we only need to deal
with the fiber direction. We assume k = 2 (the general case is similar). Let
ω1 = (. . . , ω1

0, ω
1
1, ω

1
2, . . .) and ω2 = (. . . , ω2

0, ω
2
1, ω

2
2, . . .). We claim there exists

δ = δε > 0 such that

Bni((ωi, yi), ε) ⊇ Bni(ωi, ε) × B(yi, δε) (4.9)
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for i = 1, 2. Indeed, since F is locally constant on fibers, the dynamic ball
Bni((ωi, yi), ε) coincides with

Bni(ωi, ε) × {y ∈ S1 :
∣∣∣ fωi

ni−1
◦ · · · ◦ fωi

1
◦ fωi

0
(y) − fωi

ni−1
◦ · · · ◦ fωi

1
◦ fωi

0
(yi)

∣∣∣ < ε } .
Now, using that { f ±1

i }0≤i≤d−1 is jointly equicontinuous, we obtain that there exists
δε > 0 such that Bni((ωi, yi), ε) ⊇ Bni(ωi, ε) × B(yi, δε) , as claimed. The theorem
will follow once we prove there exists N(ε) ≥ 1 and 0 ≤ ` ≤ N(ε) and z` ∈
Bn1(ω1, ε) such that

Fn1+`
z` (B(y1, δε)) ∩ B(y2, δε) , ∅,

where Fω(·) = F(ω, ·) : S1 → S1 and Fk
ω = Fσk−1(ω) ◦ · · · ◦Fσ(ω) ◦Fω. Observe first

that there exists K(ε) ≥ 1 such that

Bs(ω, ε) ⊆ [ω−s−K(ε) · · ·ω−1ω0 ω1 · · · ωs+K(ε)] ⊆ Bs(ω, 2 ε) ,

for every ω ∈ Σ and all s ≥ 1, where [ω−m1 · · ·ω−1ω0 ω1 · · · ωm2] denotes the
cylinder set {(xn) ∈ Σ : xi = ωi for all − m1 ≤ i ≤ m2} with 0th position ω0. On
the other hand, given ω = (ωn) ∈ Σ, y1 ∈ S

1, k ∈ N and ε > 0 denote the set
{y ∈ S1 :

∣∣∣ fωk−1 ◦ · · · fω1 ◦ fω0(y) − fωk−1 ◦ · · · ◦ fω1 ◦ fω0(y1)
∣∣∣ < ε } by Bω (y1, k, ε).

Then
Fk
ω (Bω (y1, k, ε)) ⊇ B

(
Fk
ω(y1), δε

)
for every ω ∈ Σ and every k ≥ 1 (otherwise, the inverse dynamics F−n1

ω1 would not
be equicontinuous). In particular we deduce that

Fn1+K(ε)
ω (Bω (y1, n1 + K(ε), ε)) ⊇ B

(
Fn1+K(ε)
ω (y1), δε

)
for every ω ∈ [ω1

−n1−K(ε) · · ·ω
1
−1ω

1
0 ω

1
1 · · · ω

1
n1+K(ε)]. Given any ` ≥ 1, we pick z`

in the cylinder set

[ω1
−n1−K(ε) · · ·ω

1
0 · · · ω

1
n1
· · · ω1

n1+K(ε) j · · · j︸︷︷︸
`

ω2
−n2−K(ε) · · ·ω

2
0 · · · ω

2
n2
· · · ω2

n2+K(ε)].

We are reduced to prove that there exists N(ε) ≥ 1 such that for any J1, I1 ⊆ S
1 with

|J1| > δε there is 0 ≤ ` ≤ N(ε) such that F`
σn1+K(ε)(z`)

(J1) ∩ I1 , ∅ . By construction,

F`
σn1+K(ε)(z`)

= f j ◦ · · · f j ◦ f j︸           ︷︷           ︸
`

= f `j .

Since f j is minimal, there exists N(ε) ≥ 1 so that
⋃N(ε)
`=0 f `j (J1) = S1 . Then just

choose ` ∈ [0,N(ε)] such that f `j (J1) ∩ I1 , ∅ . This completes the proof.

4.4. Proof of Theorem D. We first observe that Fn(ω, y) =
(
σn(ω), y + S nα(ω)

)
,

where S nα(ω) :=
∑n−1

j=0 α(σ j(ω)). Fix 0 < ε < 1 and choose N ∈ N so that
2−(N−1) < ε ≤ 2−(N−2). Take arbitrary points (ω1, y1), . . . , (ωk, yk) ∈ Σ × S1, where
ωi = (. . . , ωi

0, ω
i
1, ω

i
2, . . .) for every 1 ≤ i ≤ k, and positive integers n1, . . . , nk ≥ 0.

We assume k = 2 (the general case is similar). Now, for every 1 ≤ i ≤ 2 define

ω̄i = (. . . , 1, 1, ωi
−N−2, . . . , ω

i
0, ω

i
1, . . . , ω

i
ni+N+2, 1, 1, . . .).

We will need the following estimate from [8] (using that the irrational rotation
R 1

e
: S1 → S1 has the gluing orbit property and is a minimal isometry):

Claim: There exists N(ε) ≥ 1 such that for any b1, b2 ∈ S
1 there exists a gluing

time 0 ≤ m ≤ N(ε) so that
∣∣∣∣b1 + m

e − b2

∣∣∣∣ < 1
2N+1 .
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Taking b1 = y1 + S n1+N+2 α(ω̄1) and b2 = y2 − S N+2α
(
σ−N−2(ω̄1)

)
in the claim,

there exists 0 ≤ m ≤ N(ε) such that∣∣∣∣y1 + S n1+N+2 α(ω̄1) +
m
e

+ S N+2α
(
σ−N−2(ω̄2)

)
− y2

∣∣∣∣ < 1
2N+1 . (4.10)

The positive integer m will be used below to define the gluing time. Choose

z =(. . . , 1, 1, ω1
−N−2, . . . , ω

1
0, ω

1
1, . . . , ω

1
n1+N+2,

1, · · · , 1︸   ︷︷   ︸
m

, ω2
−N−2, . . . , ω

2
0, ω

2
1, . . . , ω

2
n2+N+2, 1, 1, . . .).

By construction, z and ω̄1 belong to [ω1
−N−2, . . . , ω

1
0, ω

1
1, . . . , ω

1
n1+N+2]. Therefore

S nα(z) = S nα(ω̄1) for every 0 ≤ n ≤ n1 + N + 2 + m. Moreover, it is not hard to
check that

|α(σn(ω1)) − α(σn(ω̄1))| ≤ e−(N+2+n) for every 0 ≤ n ≤ n1.

In consequence,

d
(
Fn(ω1, y1), Fn(z, y1)

)
= max

{
dΣ(σn(ω1), σn(z)) , |S nα(ω1) − S nα(z)|

}
≤ max

{ 1
2N+2 , |S nα(ω1) − S nα(ω̄1)|

}
< ε

for every 0 ≤ n ≤ n1. Take the gluing time p := m + 2(N + 2) ≤ N(ε) + 2(4 − ln ε
ln 2 ).

If 0 ≤ n ≤ n2. Observe also that σn1+2(N+2)+m(z) and ω̄2 coincide in 2(N + 2) + 1
coordinates and

S n+n1+pα(z) = S n1+N+2 α(z) +
m
e

+ S N+2α(σn1+N+2+m(z)) + S nα(σn1+2(N+2)+m(z))

= S n1+N+2α(ω̄1) +
m
e

+ S N+2α(σn1+N+2+m(z)) + S nα(ω̄2). (4.11)

The equalities (4.11) and S N+2α(σn1+N+2+m(z)) = S N+2α
(
σ−N−2(ω̄2)

)
, together

with equation (4.10) and the triangular inequality yield that∣∣∣∣y1 + S n+n1+pα(z) − y2 − S nα(ω2)
∣∣∣∣ ≤ 1

2N+1 + |S nα(ω̄2) − S nα(ω2)|.

As before, |S nα(ω̄2) − S nα(ω2)| ≤ 1
2N+1 and, in conclusion,

d
(
Fn(ω2, y2), Fn+n1+p(z, y1)

)
≤ max

{
dΣ

(
σn(ω2), σn+n1+p(z)

)
,∣∣∣y2 + S nα(ω2) − y1 − S n+n1+pα(z)

∣∣∣ }
which is bounded above by 1

2N ≤ ε. This proves that F satisfies the gluing orbit
property.
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