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Abstract In this paper we propose a new strategy, based on
anomaly detection methods, to search for new physics phe-
nomena at colliders independently of the details of such new
events. For this purpose, machine learning techniques are
trained using Standard Model events, with the correspond-
ing outputs being sensitive to physics beyond it. We explore
three novel AD methods in HEP: Isolation Forest, Histogram-
Based Outlier Detection, and Deep Support Vector Data
Description; alongside the most customary Autoencoder. In
order to evaluate the sensitivity of the proposed approach,
predictions from specific new physics models are considered
and compared to those achieved when using fully supervised
deep neural networks. A comparison between shallow and
deep anomaly detection techniques is also presented. Our
results demonstrate the potential of semi-supervised anomaly
detection techniques to extensively explore the present and
future hadron colliders’ data.

1 Introduction

While the Standard Model of particle physics (SM) has been
extremely successful in describing the experimental data
accumulated so far, a significant number of open questions
remains [1] and thus the search for new phenomena is a key
aspect of the physics programme of present and future col-
liders. Given the practical difficulty of performing dedicated
searches for all possible models and event topologies, inclu-
sive searches and model-independent approaches are popu-
lar strategies to find a compromise between sensitivity and
model independence of the experimental analyses. In fact,
generic model-unspecific searches were conducted in the past
by the D0 [2,3], CDF [4,5] and H1 [6,7] experiments at the
Tevatron and HERA, respectively, and are also performed
nowadays by the ATLAS [8] and CMS [9] Collaborations
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of the Large Hadron Collider. Nonetheless, there is always
the concern that a possible signal beyond the SM (BSM) is
missed simply because the adopted strategy is not sensitive
to it. In a previous work [10] we demonstrated that a possible
direction to improve the sensitivity to BSM events without
depending too much on the details of the considered signals
is the supervised training of deep neural networks (DNN)
since the performance of these networks does not signifi-
cantly degrade when they are applied to another signal than
the one used for training, as long as these signals are not very
different from a topological point of view. A step forward in
this direction is the use of anomaly detection (AD) methods,
where only SM events are used in the training of the machine
learning algorithm, allowing to isolate any BSM signal with-
out knowing their details, avoiding any prior dependence and
bias on the new physics that we are trying to discover.

The AD approach relies on identifying abnormal events
in a data sample consisting, in the majority or completely,
of normal events belonging to the same class. The problem
is usually addressed by unsupervised learning with classical
shallow algorithms running to identify the outlier events. In
deep learning, Artificial Neural Networks such as Autoen-
coders (AE) have found their use as anomaly detectors since
the error on the reconstruction of the inputs given by a model
trained exclusively on normal events can be interpreted as
an anomaly score. A known drawback of typical shallow
methods, such as One-Class Support Vector Machines (OC-
SVM), is the failure for high-dimensional data with many
entries. This leads to a need for substantial feature engineer-
ing and dimensionality reduction before their application. On
the other hand, the deep learning architecture of the AE fam-
ily deals well with high-dimensional data and performs in
anomaly detection despite not being trained specifically for
discerning outlier events in the data.

The potential to isolate any unexpected signal from the
SM prediction, commonly referred to as background, has
motivated a growing interest for AD in HEP. For exam-
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ple, in Ref. [11], an unsupervised bump hunting approach
using CWoLa [12] is proposed, while in Ref. [13], a Machine
Learning (ML) model based on k-Nearest Neighbours is used
to estimate event densities and assess how likely a new event
is. Ref. [14] employs Neural Networks to compare the distri-
bution of two samples and derive statistical tests to evaluate
if any new physics is present. In Refs. [15–17] three different
AE produce distributions of reconstruction errors to be used
as anomaly scores, whereas [18] conjugates an AE with a lin-
ear outlier factor. More recently, in [19,20], novel non-ML
approaches using density estimates are employed. On top of
these examples, we also refer to the growing literature on
the application of unsupervised or weakly supervised meth-
ods used to further understand the data generated at colliders
[21–29].

The search for outlier events using anomaly detection
techniques has a vast potential in the search for new phe-
nomena in colliders, both at trigger (i.e. online) and anal-
ysis (i.e. offline) levels. Both applications have particular
challenges and require dedicated efforts, namely in terms of
the background modeling, event rates and statistical inter-
pretation of the results. In this paper, we present three new
unsupervised ML models for AD in the context of the offline
analysis of HEP collisions, in addition to an AE, contributing
to the path towards the use of such techniques by the experi-
mental collaborations. In order to test their sensitivity to dif-
ferent BSM signals, the signals considered in [10] are used
as benchmarks to access the performance of the proposed
approach by comparing it with supervised DNN classifiers
trained on the same signals. In this way, we compare the per-
formance of the AD methods to supervised DNNs. As such,
we further contribute to the ongoing effort – see for example
[15,29] – to systematically compare different unsupervised
AD methods in searches for new physics.

2 Methods for anomaly detection

We use shallow and deep learning techniques trained on a data
sample of Standard Model simulated events and test the abil-
ity of each model to identify new physics events with bench-
mark signals unseen during the training phase. Histogram-
Based Outlier Detection (HBOS) [30] and Isolation Forest
(iForest) [31] are the shallow models explored. These meth-
ods are guided to isolate instances of the data in the tails of
the feature distributions and, unlike OC-SVM, are fast and
scalable to high-dimensional data with many instances. As a
deep model, we analyse the recently proposed Deep Support
Vector Data Description (Deep SVDD) [32]. Contrary to an
AE, the Deep SVDD is designed for outlier discovery. AEs,
popularly used in AD tasks, are also explored.

2.1 Histogram-based outlier detection

In HBOS, a histogram is computed for each input feature
and an anomaly score is derived based on how populated the
bins where an instance falls on are. In the training phase,
the predicted SM yields are used to construct the bins. On
the test phase, the score of a new instance is computed as
follows. For each of its features, we see in what bin of the
histogram its value falls on, and assign an associated score
of log2(Hist), with Hist being the density of the histogram
where the instance value of the feature is, i.e. the height of
the bin that contains that value. The total anomaly score is
the sum across all features.

2.2 Isolation forest

The iForest algorithm randomly selects an input feature and
a split value within the feature boundaries to recursively par-
tition the data. The idea is that outliers are easier to isolate
than normal instances of the data and the number of data
splits can be used as a base for an anomaly score. In the
training phase, the iForest model learns the feature bound-
aries from the training sample and on the test phase each
event is isolated and its outlyingness is obtained.

2.3 Deep autoencoder

Deep AE is a deep architecture that learns to compress
(encode) and then decompress (decode) data through a bot-
tleneck intermediate layer that has a smaller dimensionality
than the data. The AE is trained by minimising the recon-
struction error, i.e. how different a decoded instance is from
the original, through the training objective:

min
W

1

n

∑

i

||AE(xi ,W) − xi ||2, (1)

whereW are the weights of the AE,xi the feature vector of the
i th event and n the total number of events. Since uncommon
events will, in principle, be harder to reconstruct than more
common ones, the reconstruction error can then be used as
an anomaly score.

2.4 Deep support vector data description

The Deep SVDD architecture is designed in analogy to
its shallow counterpart, the support vector data description,
which in turn is closely related to OC-SVM. In SVDD, the
data is mapped into an abstract feature space and, during
training, we minimise the mean distance of data points to
the centre of the data distribution in this space. In the deep
version, this is implemented as follows. We initialise a DNN
and calculate the average position of its outputs given the
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training set. This will give us the centre of the distribution of
the data in the space defined by the last layer of the DNN.
Training is then performed as to minimise the distance of all
points of the training set to this centre and can be expressed
through the training objective:

min
W

1

n

∑

i

||DNN(xi ,W) − c||2 , (2)

where W are the weights of the DNN, c the centre of the
distribution in the output space, xi the feature vector of the
i th event. In order to prevent pathological behaviours arising
from trivial solutions associated with collapses of the whole
distribution to c, the DNN must have non-saturated activation
functions, it must not have bias terms, and c can be neither
the origin of the output space nor a learnable parameter. The
anomaly score of an event in a Deep SVDD is then deduced
from how far from the centre, c, the event lies.

2.5 Supervised classifier

In addition, we trained a supervised classifier, based on deep
neural networks, for each benchmark signal (c.f. Sect. 3).
This will provide us with a baseline with which to compare
the AD algorithms performance.

3 Simulated datasets

We tested the different AD methods in the context of collider
searches and our dataset is composed of simulated proton-
proton collision events. The samples were generated with
MADGRAPH5_MCATNLO 2.6.5 [33] at leading order with
a collision centre-of-mass energy of 13 TeV. Pythia 8.2 [34]
was employed to simulate the parton shower and hadronisa-
tion, with the CMS CUETP8M1 [35] underlying event tuning
and the NNPDF 2.3 [36] parton distribution functions. The
detection of the collision products was accomplished with a
multipurpose detector simulator, Delphes 3 [37]. The con-
figuration of Delphes was kept to the default, matching the
parameters of the CMS detector. Jets and large-radius jets are
reconstructed using the anti-κt algorithm [38] with a radius
parameter of R = 0.5 and 0.8, respectively.

One of our goals is to compare the AD performance to
the one obtained with dedicated supervised deep learning,
which we explored previously [10]. For this reason, we stud-
ied the same BSM signals, namely the pair production of
vector-like T -quarks (either produced via SM gluons [39]
or BSM heavy gluons [40]) and t Z production through a
flavour changing neutral current (FCNC) vertex [41]. In
total, seven benchmark signals were generated: T T̄ with
mT = 1.0, 1.2, 1.4 TeV produced via SM gluon or a massive
3 TeV gluon, and t Z FCNC production.

We preselected events broadly compatible with the signal
topologies commonly considered by the ATLAS and CMS
experiments [42–45]: at least two final state leptons (i.e. elec-
trons or muons), at least one b-tagged jet, and large scalar
sum of transverse momentum (pT ) of all reconstructed parti-
cles in the event (HT > 500 GeV).1 The most important SM
processes compatible with the event selection topology are
Z+jets, top pair (t t̄) production and dibosons (WW , WZ and
Z Z ). The generation of each of these processes was sampled
in kinematic regions to ensure a good statistical representa-
tion across the entire phase space, and especially in the tails
of the distributions, where anomalous events are particularly
expected. This sampling employed event generation filters at
parton level according to:

• The top/anti-top pT (ptopT ) for t t̄ : ptopT < 100 GeV,
ptopT ∈ [100, 250] GeV, ptopT > 250 GeV;

• The scalar sum of the pT of the hard-scatter outgoing par-
ticles for Z+jets: ST < 250 GeV, ST ∈ [250, 500] GeV,
ST > 500 GeV;

• W/Z pT (pW/Z
T ) for dibosons: pW/Z

T < 250 GeV,

pW/Z
T ∈ [250, 500] GeV, pW/Z

T > 500 GeV.

In order to ensure a reasonable statistics across the relevant
phase space, the Z+jets simulation was further split into the
jet flavour as Z j j and Zbb. Over 18 M events were simulated:
500 k per signal sample, 8 M for Z+jets, 3 M for t t̄ and 1.5 M
per diboson sample.

Furthermore, the generated events were also hadronised
with Herwig 7 [46,47], employing NNPDF 2.3 [36] parton
distribution functions, in order to produce an alternative set
of samples to test the robustness of AD techniques against
uncertainties on the parton shower and hadronisation mod-
elling.

The SM cocktail used to train the AD methods is com-
posed of the SM simulated samples, each normalised to the
expected yield after selection using the generation cross-
section at leading order, computed with MADGRAPH5, and
matched to a target luminosity of 150 fb−1. This normalisa-
tion is parsed as a form of event weights to the AD method.
The data features correspond to basic information consti-
tuted of the four-momenta of the reconstructed particles as
provided by the Delphes simulation:

• (η, φ, pT ,m) of the 5 leading jets and large-radius jets;
• (η, φ, pT ) of the 2 leading electrons and muons;
• multiplicity of jets, large-radius jets, electrons and

muons;
• (ET , φ) of the missing transverse energy.

1 The transverse plane is defined with respect to the proton colliding
beams.
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Some of these features manifest an accumulation of den-
sity at the origin. This happens for objects that might not have
been reconstructed, such as sub-leading large-radius jets or
flavour-explicit leptons. This will produce density functions
for these features, which are not continuous and can hinder
the performance of deep learning models. In light of Univer-
sal Approximation Theorems for neural networks [48–51],
we know that neural networks are only guaranteed to approx-
imate any continuous function when given enough capacity,
i.e. enough width and/or units. Therefore, it is only reason-
able to assume that when the features are described by non-
continuous densities, a neural network will have to learn a
non-continuous function during training that will be difficult
to learn as it is not guaranteed that it can be approximated.
Consequently, we prepared the data with a second set of fea-
tures that aims to mitigate this. This second set of features,
which we refer to as sanitised, retains only the events with one
large-radius jet while dropping the features of all sub-leading
large-radius jets. In addition, we keep only the two leading
leptons regardless of the flavour, dropping the remainder.

4 Implementation details and training

The data were split into train, validation and test sets with
equal proportions to guarantee similar statistical representa-
tivity at each stage. When hyperparameters were tuned, the
metrics used to help choosing the best configuration were
computed on the validation set. A statistically independent
test set was used to evaluate the performance of the AD meth-
ods in isolating BSM signals.

4.1 Shallow methods

We implemented the HBOS algorithm based on the pyod
Python toolkit [52], but we changed the code to take sam-
ple normalisation weights into account when computing the
histograms. For the iForest, we based our implementation on
the Scikit-Learn [53] through the pyod wrapper [52].

For both the HBOS and the iForest implementations the
data was preprocessed by a standardisation step, which sets
all the features means to 0 and their standard deviation to
unity, followed by a principal component rotation, where we
retained the full dimensionality of the feature space. The pur-
pose of this rotation is to remove linear correlations between
the features, an assumption that is required by these methods.
The preprocessing steps were implemented with Scikit-Learn
[53].

4.2 Deep methods

We implemented the deep models in TensorFlow 2.3 [54]. In
order to find the best hyperparameters for the deep architec-

tures, we implemented a bayesian hyperparameter optimisa-
tion step using the Python package optuna [55]. The hyper-
parameter optimisation step made use of theoptunabuilt-in
tree-structured parzen estimator [56] to suggest new hyper-
parameter combinations, over a loop of increasing number
of maximum epochs to improve search efficiency. In addi-
tion, manually discovered promising hyperparameter com-
binations were added to the evaluation queue.

A crucial hyperparameter to be fixed before the hyperpa-
rameter optimisation loop is that of the dimensionality of the
latent space of the AE and the embedding space of the Deep
SVDD. The reason to fix it is twofold: on the one hand an AE
hyperparameter optimisation step will always prefer a large
latent space, which will fix it to the highest value possible
during search; on the other hand, it is difficult to compare
distributions of distances on different dimensions, making
model comparison and selection for the Deep SVDD chal-
lenging. In [32] the second problem was circumvented by
reusing the AE encoder as a pre-trained Deep SVDD. In this
work, we let the Deep SVDD to be trained from scratch, but
fixed the embedding dimension to be the same as of the latent
space of the AE. We did not use the encoder of a trained AE
as we observed that this led to instabilities during training
and difficulties in reproducing the same results. Instead, we
fixed the embedding dimension and optimised the remainder
hyperparameters of the Deep SVDD using the same Bayesian
search. The latent space dimension of the AE and the embed-
ding space dimension of the Deep SVDD was set to 16, as it
is roughly a quarter of the input dimensionality.

For the Deep SVDD, the vector c, which represents the
centre of the distribution of the data in the embedding space,
was calculated as follows. First, we defined the model and ini-
tialise all its learning parameteres. Next, and before any opti-
miser step, we forward pass the whole training set through
this network and calculate the weighted average of the out-
puts. This will then be the centre of mass of the distribution
in the embedding space and therefore sets c.

All deep models were trained with a custom cosine-
cyclical learning rate with warmup. The warmup phase was
set to a 25 epochs period, where the learning rate linearly
increased from an initial value, Initial LR, to its maxi-
mum value, Max LR, both to be optimised during the optuna
loop. The cycle was set with a period of 50 epochs, during
each period the learning rate oscillates between the maxi-
mum learning rate down to an order of magnitude lower.
During the cycle phase, the maximum learning rate was
multiplied by a factor, gamma, at the end of each epoch,
exponentially decreasing it, which was optimised during the
bayesian optimisation loop. We found this type of learning
rate to significantly improve the converge speed of both AE
and Deep SVDD, as well as to improve the training stability
in terms of reproducibility of the final outcome. The training
was stopped if no improvement of the loss on the validation
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Table 1 Hyperparameter search
spaces. The sampling for
Initial LR and Max LR
was performed logarithmically.
For the AE the number of layers
corresponds to both the number
of encoder and decoder layers

Hyperparameter Possible values

Number of Layers [1, 5]
Number of Units [32, 256]
Initial LR [10−8, 10−3]
Max LR [10−3, 10−1]
Gamma [0.95, 0.999] in steps of 0.001

Weight Decay {0, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3}
Clipnorm {None, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0}

Table 2 Best hyperparameter
configurations for both deep AD
models on both feature sets

AE Deep SVDD

Hyperparameter Full features Sanitised features Full features Sanitised features

Number of layers 5 3 2 1

Number of Units 171 93 47 128

Initial LR 7 × 10−6 4.487459 × 10−7 5.834093 × 10−8 10−6

Max LR 0.023328 0.063960 0.005186 0.02

Gamma 0.998 0.992 0.971 0.995

Weight Decay 10−6 0.0 10−9 10−8

Clipnorm 0.10 100.0 100.0 None

set was observed for 200 epochs for the AE, 300 for the Deep
SVDD, and 100 for the supervised classifiers, after which the
weights of the best epoch were kept, persisting the best mod-
els at every stage.2 The AE was trained using mini-batches
of size 4096, while the Deep SVDD and the supervised clas-
sifiers were trained in mini-batches of size 1024. All hidden
layers activation functions were set to LeakyReLu.

In addition, all models were trained with the Adam opti-
miser [57], through the weight-decay wrapper provided by
Tensorflow-Addons in order to implement weight-decay
regularisation compatible with Adam [58]. The value of
the weight-decay was optimised during the hyperparame-
ter search loop. Furthermore, since the Deep-SVDD cannot
have non-homogeneous learnable parameters, i.e. biases, we
implemented a non-trainable Batch Normalisation or other-
wise the learnable mean would effectively behave as a bias
term and lead to trivial collapse solutions. Since preventing
trivial solutions requires not using saturating activation func-
tions and learnable batch normalisation layers, one would
expect only shallower networks to be successfully trained in
order to avoid vanishing and exploding gradients. To miti-
gate this, we allowed for the gradients to be norm-clipped to
a value to be optimised.

The hyperparameter optimisation loop details can be
found in Table 1. The best combinations were chosen by
minimising validation loss, and the final configurations for

2 We allowed a larger patience for the Deep SVDD early stop criteria
as we observed the loss to oscillate significantly at early stages.

the AD models for both feature sets can be seen in Table 2. We
do not present the best hyperparameters for the supervised
classifiers for brevity.

For both the AE and the Deep SVDD methods, the
anomaly score was derived from the loss, i.e. Eqs. 1 and
2, by taking the base 10 logarithm of the values and scaling
them as to fall in the interval [0, 1]. It is also important to
reiterate that the signals samples were not used at any stage
of both hyperparameters selection and AD model training.

4.3 Feature impact on reconstructions

When using the full feature set, which includes events with
missing reconstructed objects, we observed that for features
with pronounced accumulations at the origin, the reconstruc-
tion was degraded. In Fig. 1 we highlight this behaviour for
three different features. For the mass of the leading large-
radius jet, we notice how the accumulation in zero impacts
the reconstruction of the rest of the spectrum. In the sec-
ond case, concerning the η of the leading large-radius jet,
we notice that for the case with zero accumulation the AE
struggles to reconstruct values away from the mean, i.e. the
origin. Removing the events without a leading large-radius
jet has mitigated this problem. Finally, a similar behaviour
as that of the large-radius jet is observed for the leading elec-
tron in the third case. Retaining only the two reconstructed
leptons required at event pre-selection level provides a better
result for the sanitised feature set.
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Fig. 1 Distribution of some of
the real input features and their
reconstruction by the
Autoencoder on the validation
set. Left: Using all features set.
Right: Using sanitised features
set

Furthermore, as seen in the η of the same large-radius
jet distributions, removing the excess density around zero
did not completely solve the reconstruction challenges of
this variable. Indeed, we noticed that η and φ variables were
always difficult to reconstruct in our working methodology,
even after the hyperparameter optimisation step. We also note
that transforming the 4-momenta variables to the cartesian
coordinates did not resolve this issue. This problem high-
lights the challenges that DNN encounter when presented
with inputs which would be better represented in varying
length, such as recurrent neural networks and graph neural
networks, which have been finding their way into HEP appli-
cations [59,60]. However, systematically study the best data
representation and corresponding neural network architec-
ture in order to provide optimal reconstruction of features
using a deterministic AE is beyond the scope of this work
and as such we defer such concerns to future work.

4.4 Anomaly scores for training and validation samples

The anomaly score distributions for each of the four AD
methods are presented in Fig. 2 for the training, validation,
and test samples and both feature sets. We notice that for
the full features set both the deep AD models manifest a
more pronounced difference between the training and vali-
dation sample distributions, with a significant difference in
the AE case. However, we also observe that the validation
sample follows same distribution as the test sample, where
the upper limits on signal strength, i.e. the physical applica-
tion, will be calculated. This provides some confidence that,
even though these methods are overfitting to the training data,
the observed behaviour for the validation set is expected to
carry to the test set.

In Fig. 3 we show the distributions of four example fea-
tures for the 10% most anomalous events under each AD
method score – i.e. the events whose score lies in the 10% out-
lier quantile calculated on the validation distribution shown
in Fig. 2, using the sanitised feature set. The figure shows
that the AD algorithms are capturing the tails of distribu-
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Fig. 2 Anomaly score for the
different AD methods (HBOS,
iForest, Autoencoder, Deep
SVDD) for training, validation,
and test data. The distributions
are normalised to the unit area.
Left: Using all features set.
Right: Using sanitised features
set

tions. However, we can see from the Jet Multiplicity distri-
bution that the Deep SVDD seems to be capturing different
events than the remaining AD methods, manifesting that the
anomaly/outlyingness of an event can be very much depen-
dent of the type of AD algorithm.

In Figs. 4 and 5 we present the distributions and the scatter
plots of the anomaly scores for each process of the SM cock-
tail used in the AD model training. The correlation trends are
similar across the individual SM processes. We notice how
the shallow methods are highly related between each other
for both feature sets over the validation sample. In contrast,
both deep models show looser relation between their predic-

tions and the shallow predictions, and amongst themselves,
for both feature sets. More interestingly, we notice how the
Deep SVDD and the AE have a small correlation in the sani-
tised set. Again, these results point to the fact that different
AD algorithms will be capturing different anomalous events.

5 Comparison of the AD methods for benchmark
signals

In this section, we assess the performance of the trained AD
models to discriminate signals from new physics, not present
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Fig. 3 Distribution of some of
the input features for the full
validation set and for the 10%
outlier quantile according to the
anomaly score for the different
AD methods using sanitised
features. All distributions are
normalised to the unit area

Fig. 4 Two-dimensional
distribution of the anomaly
scores for the different AD
methods per SM process – t t̄ ,
Z+jets and diboson – using all
features set. Diagonal:
Distribution of the anomaly
score per SM process

123



Eur. Phys. J. C (2021) 81 :27 Page 9 of 14 27

Fig. 5 Two-dimensional
distribution of the anomaly
scores for the different AD
methods per SM process – t t̄ ,
Z+jets and diboson – using
sanitised features set. Diagonal:
Distribution of the anomaly
score per SM process

in the SM cocktail used for their development. The perfor-
mance metric is based on the 95% confidence level (CL)
upper limit on the signal strength μ, defined as the ratio
between the expected upper limit on the signal cross-section,
normalised to the corresponding theory prediction, computed
at leading order. Such limits were obtained by fitting the AD
score distribution of the test data set and were computed using
the CLs method [61], as implemented in OpTHyLiC [62].
Poissonian statistical uncertainties on each bin of the distri-
butions were included in the limit computation, assuming an
integrated luminosity of 150 fb−1.

5.1 Anomaly score distributions

In Fig. 6 we present the output distributions of the four AD
models trained on both feature sets, for the SM prediction and
each benchmark signal. We observe that the shallow methods
have similar behaviour for both feature sets, and in each of
them, the FCNC signal follows a distribution that is very
close to the one followed by the SM processes. In contrast,
the vector-likeT -quarks are being assigned on average higher
anomaly scores.

For the deep models, we observe a significant difference
in distribution shapes when we switch from the full feature
set to the sanitised feature set. In particular, we notice how
the Deep SVDD provides significant better capacity to iso-
late signal with the sanitised feature set. For the AE, the
FCNC distribution becomes more similar to the SM back-
ground when using the sanitised feature set, as it happens
to the shallow methods. In both cases, the anomaly score
distributions for the signals have their mass shifted to the
right, meaning that on average abnormal signals have higher
anomaly scores than the SM events and that this behaviour
is more noticeable in the deep models.

5.2 Expected upper limits

We fit the distributions presented in Fig. 6, to determine
upper limits on the signal strength. In Table 3 we show the
central values of the upper limit on μ and the associated
statistical uncertainties. In Fig. 7 are presented the same cen-
tral values but normalised to the first line, i.e. to the super-
vised DNN using the full feature set. We observe that the
deep models, both AD and supervised, had significant per-

123



27 Page 10 of 14 Eur. Phys. J. C (2021) 81 :27

Fig. 6 Distribution of the AD
discriminant for the SM
prediction and each signal type:
t Z production by FCNC, T T̄
production via heavy gluon or
without heavy gluon for
mT = {1.0, 1.2, 1.4} TeV. The
distributions are normalised to
the generation cross-section and
to an integrated luminosity of
150 fb−1. Left: Using all
features set. Right: Using
sanitised features set
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formance impact by switching the feature set. In particular,
we noticed how the Deep SVDD significantly improved when
using the sanitised features for all cases. Furthermore, the AE
has a sensitivity similar to supervised DNN for signals with
vector-like quarks. On the other hand, the shallow models
retained the same discriminating power when changing the
features.

Another relevant result that we observe is how, with sani-
tised features, the AE seems to focus more strongly on the
out tails of the distributions and therefore provides upper lim-
its that are competitive to those derived using a supervised

discriminant. On a different direction, the Deep SVDD pro-
duced similar discriminant power for all signals, including
the FCNC, which is far more similar to the SM distribution
than the signals with VLQ. This reinforces the idea that dif-
ferent AD algorithms are capturing outliers differently and
might indicate, for instance, that although having worst per-
formance when compared to AE, Deep SVDD might be inter-
esting in searches for signals of new physics implying small
deviations of the SM. A more detailed study of this behaviour,
as well as of the propagation of systematic sources of uncer-
tainties through these methods is left for a future study.
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Table 3 95% CL upper limit on the signal strength μ of each bench-
mark signal for the different AD methods using the full feature set and
the sanitised set and for a dedicated supervised DNN model trained

on the full feature set. The statistical uncertainties, including the effect
from limited statistics in the simulated datasets, are also shown

Model Benchmark signal

FCNC HG No HG

1.0 TeV 1.2 TeV 1.4 TeV 1.0 TeV 1.2 TeV 1.4 TeV
Full features

Supervised DNN 7+3
−2 0.05+0.06

−0.03 0.019+0.010
−0.007 0.013+0.008

−0.004 0.03+0.02
−0.01 0.12+0.06

−0.04 0.4+0.2
−0.2

HT 100+60
−20 0.14+0.07

−0.05 0.16+0.08
−0.06 0.16+0.08

−0.05 0.4+0.3
−0.1 1.0+0.5

−0.3 1.8+0.9
−0.6

Deep SVDD 10+8
−1 0.15+0.07

−0.04 0.17+0.08
−0.05 0.21+0.09

−0.07 0.3+0.2
−0.1 1.1+0.5

−0.3 3.1+1.4
−0.9

AE 30+20
−8 0.029+0.014

−0.009 0.03+0.02
−0.01 0.04+0.02

−0.01 0.06+0.03
−0.02 0.21+0.10

−0.07 0.6+0.3
−0.2

HBOS 100+60
−20 0.15+0.07

−0.05 0.17+0.08
−0.05 0.19+0.09

−0.06 0.4+0.1
−0.1 1.0+0.5

−0.3 2.7+1.3
−0.9

iForest 100+100
−3 0.19+0.10

−0.06 0.23+0.12
−0.08 0.26+0.14

−0.09 0.5+0.2
−0.2 1.4+0.7

−0.5 4+2
−2

Sanitised features

Supervised DNN 6+3
−2 0.008+0.004

−0.003 0.009+0.005
−0.003 0.006+0.003

−0.001 0.009+0.005
−0.003 0.04+0.03

−0.01 0.3+0.2
−0.1

HT 100+50
−30 0.14+0.07

−0.05 0.16+0.08
−0.06 0.16+0.08

−0.05 0.4+0.3
−0.1 1.0+0.5

−0.3 1.8+0.9
−0.6

Deep SVDD 10+7
−2 0.08+0.04

−0.02 0.08+0.04
−0.02 0.09+0.04

−0.02 0.15+0.06
−0.04 0.5+0.2

−0.1 1.4+0.6
−0.4

AE 100+100
−1 0.0053+0.0006

−0.0005 0.0068+0.0006
−0.0006 0.0089+0.0007

−0.0008 0.0104+0.0009
−0.0012 0.042+0.004

−0.004 0.15+0.02
−0.01

HBOS 100+60
−20 0.19+0.11

−0.06 0.21+0.13
−0.07 0.22+0.14

−0.07 0.4+0.2
−0.1 1.1+0.6

−0.4 2.7+1.7
−0.9

iForest 100+100
−5 0.18+0.09

−0.06 0.19+0.09
−0.07 0.19+0.09

−0.07 0.4+0.3
−0.1 1.0+0.6

−0.3 2.4+1.2
−0.8

For comparison, Table 3 also shows the limits for each sig-
nal type obtained by fitting the distribution of the scalar sum
of transverse momentum (pT ) of all reconstructed particles
in the event (HT ) as a simpler, but commonly used [42], alter-
native to the use of ML methods. While the shallow methods
are always worst than a simple HT fitting, the AE performs
significantly better for all the benchmark signals, with the
exception of the FCNC case, when the sanitized features are
used.

The results show that these unsupervised AD algorithms
are reasonably sensitive to new signals, with a maximum
degradation relative to the supervised DNN of around an
order of magnitude on the μ exclusion limits, for the worst
cases, and no significant impact for the best ones. Interest-
ingly, in previous work where DNN trained on different mod-
els were used to discriminate between the background and
other signals [10], we observed similar trends when training
deep neural networks on signals different from those used
for the classification.

6 Robustness of the anomaly detection methods

In order to study the robustness of the presented models
against background mismodelling we performed two sim-
ple experiments. In the first experiment, we smeared the pT
of all objects with a Gaussian noise with standard deviation

of 0.1. For the second experiment, we switch the hadroniser
from Phytia to Herwig, whilst maintaining everything else
the same. The outputs of the AD models trained on the orig-
inal Pythia sample with the sanitised features for both cases
are presented in Fig. 8.

For the pT smeared test, we observe that the mass of the
output distribution of each AD model is shifted to the right,
meaning that the new sample is deemed more anomalous than
the original Pythia sample. More interestingly, we observe a
considerable change in shape of the output distribution for
the AE, suggesting that this method is specially sensitive to
mismodelling of the pT . On the other hand, the Deep SVDD
seems more robust to this smear, although it pushes some
background to the region where one would expect signal.
Finally, we notice that the shallow methods, being simpler,
are clearly more robust against pT smearing. In addition, we
derived the expected upper limits with the smeared pT using
the AD models trained on the original sample. We observed
that the shallow methods produced values of μ compatible
with those presented in Table 3 within the statistical uncer-
tainty, while the results for deeper models got worse. The
central values for μ for the Deep SVDD increased on aver-
age 2 to 3 times, while still maintaining exclusion power. For
the AE, however, the limits worsen by two orders of magni-
tude, as one would expect from Fig. 8.

For the Herwig sample we notice, once again, that the
output distributions for the shallow methods are considerably
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Fig. 8 Anomaly score for the
different AD methods (HBOS,
iForest, Autoencoder,
DeepSVDD) for the sanitised
features on the test data of the
original sample (Pythia), pT
smeared sample (Smeared), and
Herwig sample (Herwig). The
distributions are normalised to
the unit area

Fig. 7 95% CL upper limits on μ normalised to the limit obtained for
the supervised DNN model

less modified, while they differ from the expected Pythia out-
put distributions for the deep methods. For the deep methods
we observe different effects. While for the Deep SVDD the
distribution moves to the right, for the AE it seems to move
to the left. As before, we produced expected upper limits
using the Herwig samples and compared them to the ones
obtained using the original Pythia sample in Table 3. Just

like with the pT smeared case, the shallow methods proved
to be the more robust with μ values compatible with the ones
derived with the Pythia sample. For the deep methods, the
Deep SVDD produced limits around twice as large as for the
Pythia sample, but still with smaller degradation than those
obtained with the pT smeared case. For the AE we observed
a degradation as severe as with the pT smeared case, with
the limits worsening by two orders of magnitude.

These two tests suggest that the methods presented in this
work can be sensitive to mismodelling, and point to the need
for a thorough study of the impact of systematic uncertainties
and how to mitigate the effect of such uncertainties on the
sensitivity to new phenomena beyond the Standard Model.
Such comprehensive study is outside the scope of the pre-
sented work.

7 Conclusions

In this work, we studied four distinct unsupervised AD algo-
rithms, two shallow and two deep, which were trained on
simulated SM events. The resulting trained models provided
us with an anomaly score that was then used to perform
upper bounds on seven benchmark signals covering three
classes of new physics: FCNC interaction, SM gluon VLQ
production, and heavy gluon VLQ production. Even though
all algorithms eventually targeted events at the tails of the
original SM distributions, they capture different events and
are therefore learning different notions of outlyingness. This
was clearly observed on how the Deep SVDD and the AE
performed between VLQ and FCNC signals. Upper limits
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on the signal strength were obtained by fitting the output
distributions of each AD model using the CLs method. We
showed that the deep models outperform the shallow ones,
and each deep model performed differently depending on
the broader class of signals being tested. This result suggests
that different AD algorithms are suitable to isolate different
types of BSM physics and are complementary to each other
in unsupervised generic searches for new physics.

Acknowledgements We thank Guilherme Milhano, Maria Ramos and
Guilherme Guedes for the careful reading of the manuscript and for
the useful discussions. We also thank Ana Peixoto and Tiago Vale for
providing the MadGraph cards used for the simulation of the beyond
the Standard Model samples. We acknowledge the support from FCT
Portugal, Lisboa2020, Compete2020, Portugal2020 and FEDER under
project PTDC/FIS-PAR/29147/2017. The computational part of this
work was supported by INCD (funded by FCT and FEDER under the
project 01/SAICT/2016 nr. 022153) and by the Minho Advanced Com-
puting Center (MACC). The Titan Xp GPU card used for the training
of the Deep Neural Networks developed for this project was kindly
donated by the NVIDIA Corporation.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: The simulated data
used in this work was obtained using publicly available software and
all the required technical details to reproduce it are given in the paper.
The obtained results should also be reproducible from the provided
information. The authors are available to provide any information the
readers might need.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J. Ellis, Outstanding questions: physics beyond the Standard
Model. Philos. Trans. R. Soc. Lond. A 370, 818–830 (2012)

2. V.M. Abazov et al., A Quasi model independent search for new
physics at large transverse momentum. Phys. Rev. D 64, 012004
(2001)

3. D0 Collaboration, Quasi-model-independent search for new high
ptphysics at d0. Phys. Rev. Lett. 86(17), 3712–3717 (2001)

4. CDF Collaboration, Model-independent and quasi-model-
independent search for new physics at cdf. Phys. Rev. D 78(1),
012002 (2008)

5. CDF Collaboration, Global search for new physics with 2.0 fb−1

at cdf. Phys. Rev. D 79(1), 011101 (2009)
6. H1 Collaboration, A General search for new phenomena in ep scat-

tering at HERA. Phys. Lett. B 602, 14–30 (2004)

7. H1 Collaboration, A General Search for New Phenomena at HERA.
Phys. Lett. B 674, 257–268 (2009)

8. ATLAS Collaboration, A strategy for a general search for new
phenomena using data-derived signal regions and its application
within the atlas experiment. Eur. Phys. J. C 79(2), 120 (2019)

9. CMS Collaboration, Music: a model unspecific search for new
physics in proton–proton collisions at

√
s = 13 TeV (2020).

arXiv:2010.02984
10. M. Rom ao Crispim, N.F. Castro, R. Pedro, T. Vale, Transferability

of deep learning models in searches for new physics at colliders.
Phys. Rev. D 101(3), 035042 (2020)

11. J. Collins, K. Howe, B. Nachman, Anomaly detection for reso-
nant new physics with machine learning. Phys. Rev. Lett. 121(24),
241803 (2018)

12. E.M. Metodiev, B. Nachman, J. Thaler, Classification without
labels: learning from mixed samples in high energy physics. J.
High Energy Phys. 2017(10), 174 (2017)

13. A. De Simone, T. Jacques, Guiding new physics searches with
unsupervised learning. Eur. Phys. J. C 79(4), 1–15 (2019)

14. R.T. D’Agnolo, A. Wulzer, Learning new physics from a machine.
Phys. Rev. D 99(1), (2019)

15. O. Cerri, T.Q. Nguyen, M. Pierini, M. Spiropulu, J.R. Vlimant,
Variational autoencoders for new physics mining at the large hadron
collider. J. High Energy Phys. 2019(5), (2019)

16. M. Farina, Y. Nakai, D. Shih, Searching for new physics with deep
autoencoders. Phys. Rev. D 101(7), (2020)

17. A. Blance, M. Spannowsky, P. Waite, Adversarially-trained autoen-
coders for robust unsupervised new physics searches. J. High
Energy Phys. 2019(10), (2019)

18. J. Hajer, Y. Li, T. Liu, H. Wang, Novelty detection meets collider
physics. Phys. Rev. D 101(7), (2020)

19. B. Nachman, D. Shih, Anomaly detection with density estimation.
Phys. Rev. D 101(7), (2020)

20. A. Andreassen, B. Nachman, D. Shih, Simulation assisted
likelihood-free anomaly detection. Phys. Rev. D 101(9), (2020)

21. J.A. Aguilar-Saavedra, J. Collins, R.K. Mishra, A generic anti-
QCD jet tagger. J. High Energy Phys. 2017(11), 163 (2017)

22. T. Heimel, G. Kasieczka, T. Plehn, J.M. Thompson, QCD or what.
Sci. Post Phys. 6(030), 1808–08979 (2019)

23. B.M. Dillon, D.A. Faroughy, J.F. Kamenik, Uncovering latent jet
substructure. Phys. Rev. D 100(5), 056002 (2019)

24. R.T. d’Agnolo, G. Grosso, M. Pierini, A. Wulzer, M. Zanetti, Learn-
ing multivariate new physics (2019). arXiv:1912.12155

25. J.H. Collins, K. Howe, B. Nachman, Extending the bump hunt with
machine learning (2019). arXiv:1902.02634

26. O. Amram, C.M. Suarez, Tag n’train: a technique to train improved
classifiers on unlabeled data (2020). arXiv:2002.12376

27. B.M. Dillon, D.A. Faroughy, J.F. Kamenik, M. Szewc, Learning
the latent structure of collider events (2020). arXiv:2005.12319

28. ATLAS Collaboration, G Aad, et al. Dijet resonance search with
weak supervision using sqrt(s)= 13 tev pp collisions in the atlas
detector. Phys. Rev. Lett. 125(13):131801 (2020). https://doi.org/
10.1103/PhysRevLett.125.131801

29. O. Knapp, G. Dissertori, O. Cerri, T.Q. Nguyen, J.-R. Vlimant, M.
Pierini, Adversarially learned anomaly detection on cms open data:
re-discovering the top quark (2020). arXiv:2005.01598

30. M. Goldstein, A. Dengel, Histogram-based outlier score (hbos): a
fast unsupervised anomaly detection algorithm (2012)

31. F.T. Liu, K. M. Ting, Z. Zhou, Isolation forest. In Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining,
ICDM ’08 (IEEE Computer Society, 2008), pp. 413–422

32. L. Ruff et al. Deep one-class classification. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research (Stockholmsmässan, Stockholm,
2018), pp. 4393–4402

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2010.02984
http://arxiv.org/abs/1912.12155
http://arxiv.org/abs/1902.02634
http://arxiv.org/abs/2002.12376
http://arxiv.org/abs/2005.12319
https://doi.org/10.1103/PhysRevLett.125.131801
https://doi.org/10.1103/PhysRevLett.125.131801
http://arxiv.org/abs/2005.01598


27 Page 14 of 14 Eur. Phys. J. C (2021) 81 :27

33. J. Alwall et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to
parton shower simulations. JHEP 07, 079 (2014)

34. T. Sjöstrand et al., An Introduction to PYTHIA 8.2. Comput. Phys.
Commun. 191, 159–177 (2015)

35. CMS Collaboration, Event generator tunes obtained from underly-
ing event and multiparton scattering measurements. Eur. Phys. J.
C 76(3), 155 (2016)

36. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B
867, 244–289 (2013)

37. J. de Favereau et al., DELPHES 3, a modular framework for fast
simulation of a generic collider experiment. JHEP 02, 057 (2014)

38. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algo-
rithm. JHEP 04, 063 (2008)

39. J.A. Aguilar-Saavedra, Identifying top partners at LHC. JHEP 11,
030 (2009)

40. J.P. Araque, N.F. Castro, J. Santiago, Interpretation of Vector-like
Quark Searches: heavy Gluons in Composite Higgs Models. JHEP
11, 120 (2015)

41. G. Durieux, F. Maltoni, C. Zhang, Global approach to top-quark
flavor-changing interactions. Phys. Rev. D 91(7), 074017 (2015)

42. ATLAS Collaboration, Search for pair and single production of
vectorlike quarks in final states with at least one z boson decaying
into a pair of electrons or muons in pp collision data collected with
the atlas detector at

√
s = 13TeV. Phys Rev D 98, 112010 (2018)

43. CMS Collaboration, Search for vector-like quarks in events with
two oppositely charged leptons and jets in proton-proton collisions
at

√
s = 13 tev. Eur. Phys. J. C 79(4), 364 (2019)

44. ATLAS collaboration, Search for flavour-changing neutral current
top-quark decays t → qz in proton-proton collisions at

√
s = 13

tev with the atlas detector. JHEP 2018(7), 176 (2018)
45. CMS Collaboration, Search for associated production of a Z boson

with a single top quark and for tZ flavour-changing interactions in
pp collisions at

√
s = 8 TeV. JHEP 07, 003 (2017)

46. M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58,
639–707 (2008)

47. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys.
J. C 76(4), 196 (2016)

48. K. Hornik, M. Stinchcombe, H. White et al., Multilayer feedfor-
ward networks are universal approximators. Neural Netw. 2(5),
359–366 (1989)

49. G. Cybenko, Approximation by superpositions of a sigmoidal func-
tion. Math. Control Signals Syst. 2(4), 303–314 (1989)

50. K. Hornik, Approximation capabilities of multilayer feedforward
networks. Neural Netw. 4(2), 251–257 (1991)

51. Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of
neural networks: A view from the width. In Advances in neural
information processing systems, pp. 6231–6239 (2017)

52. Y. Zhao, Z. Nasrullah, Z. Li, Pyod: a python toolbox for scalable
outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019)

53. F. Pedregosa et al., Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011)

54. M. Abadi et al., TensorFlow: large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org
(20150

55. T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: a
next-generation hyperparameter optimization framework. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

56. J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for
hyper-parameter optimization. Adv. Neural Inf. Process. Syst.,
2546–2554 (2011)

57. D.P. Kingma, J.Ba, Adam: a method for stochastic optimization
(2014). arXiv:1412.6980

58. I. Loshchilov, F. Hutter, Decoupled weight decay regularization
(2017). arXiv:1711.05101

59. J. Shlomi, P. Battaglia, J.-R. Vlimant, Graph neural networks in
particle physics (2020). arXiv:2007.13681

60. D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban, D. Whiteson,
Jet flavor classification in high-energy physics with deep neural
networks. Phys. Rev. D 94(11), 112002 (2016)

61. A.L. Read, Presentation of search results: The CL(s) technique. J.
Phys. G 28, 2693–2704 (2002)

62. E. Busato, D. Calvet, T. Theveneaux-Pelzer, OpTHyLiC: an opti-
mised tool for hybrid limits computation. Comput. Phys. Commun.
226, 136–150 (2018)

123

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2007.13681

	Finding new physics without learning about it: anomaly detection as a tool for searches at colliders
	Abstract 
	1 Introduction
	2 Methods for anomaly detection
	2.1 Histogram-based outlier detection
	2.2 Isolation forest
	2.3 Deep autoencoder
	2.4 Deep support vector data description
	2.5 Supervised classifier

	3 Simulated datasets
	4 Implementation details and training
	4.1 Shallow methods
	4.2 Deep methods
	4.3 Feature impact on reconstructions
	4.4 Anomaly scores for training and validation samples

	5 Comparison of the AD methods for benchmark signals
	5.1 Anomaly score distributions
	5.2 Expected upper limits

	6 Robustness of the anomaly detection methods
	7 Conclusions
	Acknowledgements
	References




