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Abstract. Current networks need to host an array of heterogeneous
devices with different resource requirements and traffic outputs while
maintaining acceptable QoS. To meet these requirements, networks have
become increasingly more complex and difficult to manage, configure
and monitor. To make networks more easily manageable and control-
lable, researchers and operators proposed to use software programs that
can monitor the network and configure it on-demand automatically. With
Software-Defined Networks, we can build programs to efficiently manage
the network through intelligent algorithms. In this study we conducted
a systematic analysis focused on the use of AI/ML algorithms to im-
prove SDN functions. We used a snowballing approach to organize and
select articles to review. Following the analysis of 1200 articles (and the
acceptance of 38), we present an overview of the state-of-the-art.
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1 Introduction

The increased service heterogeneity and consumption reveal the need for new and
efficient network architectures. Current networks are configured with complex
static rules to satisfy Service-Level Agreements (SLAs) and maintain quality of
service (QoS). In multi-vendor environments, the management and configuration
operations tend to increase in complexity. Traditional network-centric architec-
tures are unable to solve these challenges. Hence, the network-centric gives way
to application-centric paradigms with Software-Defined Networks (SDN) and
network programmability and automation [14].

The SDN architecture consists of removing the control plane functions from
the standard networking devices and transferring them to a centralized con-
troller. The SDN controller hosts APIs to provide access and to program the
network resources. However, through these APIs the programs must efficiently
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optimize network performance and security, and artificial intelligence (AI) and
machine learning (ML) algorithms can help achieve this goal.

Researchers and industry experts have carried out multiple systematic re-
views of SDN studies. The authors in [7] report on various techniques used in
SDN to ensure load balancing, some of which include AI algorithms. In [30],
Ray et al. present a study of IoT devices in SDN architectures. Also discussed
in [36] is the challenge of implementing AI/ML in SDNs, presenting articles that
explore this theme and creating an overview of what they try to propose and
explain.

Although these reviews present very interesting perspectives and a deep anal-
ysis on the topic, none address the application of AI/ML to SDNs as a whole,
focusing only on specific aspects such as intrusion detection systems and load
balancing. Moreover, no articles were found that followed a systematic litera-
ture review approach with a strict and transparent selection system such as the
snowballing approach. Hence, the current study mainly attempts to (i) apply the
snowballing approach and collect a set of articles with a rigorous process; (ii)
discuss how AI/ML can improve performance and solve certain issues in SDNs.

In Section II we describe the methodology of the study, encompassing the
main research questions and considered criteria. We present the results in Section
III and discuss them in view of the questions. Section IV closes the paper with
some final remarks.

2 Methodology

The goal of this study is to gather a set of articles and review them to answer
multiple research questions. The posed research questions are:
RQ1. What kind of AI/ML mechanisms are applied to SDN?
RQ2. Does AI/ML positively influence the performance of SDNs?
RQ3. What are the main limitations of using AI/ML in SDNs?

We used the snowballing method [40] to collect a set of papers to review.
The process starts with a set of initial papers that are analyzed following inclu-
sion/exclusion criteria. From those included, their references and citing articles
are gathered and analyzed in a following iteration. The snowballing process is
complete when no article is accepted in an iteration.

To select an appropriate start set, the terms used in our search were Software-
Defined Networks, Artificial Intelligence, Machine Learning, and the respective
acronyms: (”SDN” OR ”Software Defined Network”) AND (”Artificial Intelli-
gence” OR ”AI” OR ”Machine Learning” OR ”ML”)

2.1 Start Set and Criteria

To construct the start set we introduced the search string in the Google Scholar,
Core, and IEEE Xplore search engines. We then chose the first five papers from
each.

Before analyzing the papers, we defined the following acceptance criteria:
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– Publish date between 2011 and 2020 (release date of OpenFlow);
– Written in English;
– Peer-reviewed and published in first or second-quartile journals (Scimago

ranking);
– Report directly to the topics at hand, i.e., AI/ML applied to SDN;
– Articles to which the authors have been granted access.

With the acceptance criteria, we selected a set of articles from reliable sources
and that directly explore AI/ML in SDNs. Ultimately, from the fifteen articles
of the candidate starting set, only six respected the criteria: [41, 11, 29, 22, 27,
36].

2.2 Iterations

Table 1 illustrates the snowballing process by presenting the number of analysed
and accepted papers in each phase. In total, 259 were excluded based on year
of publishing, 88 were not published in sufficiently high ranked journals or con-
ferences, 9 were inaccessible, 284 were duplicates, 1 was not an article, and 576
did not report directly to the topics at hand.

From this process, carried out between November and December 2020, we
selected a total of 38 articles.

Table 1. Iteration results with number of analysed and accepted papers for each
snowballing step.

Start
Set

First Second Third

Backward Forward Backward Forward Backward Forward

Analysed 15 412 212 253 161 129 60
Accepted 6 20 4 2 6 0 0

3 Discussion

This section focuses on presenting and discussing our findings, and giving an
overview over current and future trends.

3.1 Applied AI/ML algorithms

Table 2 shows the use of AI/ML algorithms by the articles. The classification
demonstrates that neural networks (NNs) algorithms are the most popular, fol-
lowed by other supervised learning algorithms. Other mechanisms have been
presented in several studies, however, they were not as widely used, such as the
self-organising maps.

The dominance of supervised learning methods over the rest can be explained
by the popularity of deep learning and neural networks, as well as DT and
RF algorithms. Supervised learning requires labelled data to optimize model
parameters, while unsupervised learning learns patterns from unlabelled data.
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Table 2. AI/ML algorithms found in the accepted papers.

AI/ML Algorithm Articles

K-Nearest Neighbours (KNN) [41, 11, 22, 27, 1, 39, 37, 26, 38, 28, 2]
Decision Tree (DT) [41, 29, 22, 27, 38, 28, 1, 2, 8, 17, 16, 4, 21]
Random Forest (RF) [36, 41, 22, 28, 2, 4, 3, 20, 9]

Neural
Network
(NN)

General [41, 22, 26, 38, 2, 8, 17, 4, 20, 23, 32, 25, 6]
[31, 15, 34, 35, 13, 42, 33]

Deep NN [41, 22, 1, 38, 3, 23, 31, 13, 10]
Convolutional NN [36, 41, 22, 9, 5, 24]
Recurrent NN [41, 22, 20, 9, 6]

Reinforcement
Learning (RL)

General [41, 22, 20, 18]
Deep RL [41, 22, 1, 15, 13, 42, 33, 24, 19]
RL-Based Game Theory [41]

Self-Organising Map [36, 41, 22]

In this sense, supervised learning also seems to be more easily applied to improve
network decision making in, e.g., routing and QoS.

Figure 1, depicts the use of AI/ML algorithms per year, to demonstrate the
evolution in research trends. Again supervised learning algorithms prevail over
both unsupervised and RL, being characterized by a peak on 2017 and a variable
decline in following years. Interestingly, RL has seen a slow and steady increase.
This reveals a promising prospect for the use of SDNs in IoT, vehicular network-
ing, and 5G access networks, which constitute dynamic environments where RL
is known to outperform supervised and unsupervised learning approaches. The
use of RL to teach the network and SDN controllers how to adapt to changes
in traffic and resource demand is expected to increase based on these results,
specially with the introduction of SDNs in more complex networks.

Fig. 1. Types of AI/ML algorithms by article’s year of publication.
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3.2 Impact of AI/ML on SDNs

Table 3 outlines the effect of AI/ML in SDNs: AI helps to improve QoS, enhances
autonomous network managing and controller, enables intelligent optimization
of resources, and increases security. Although most mechanisms are proof of
concepts, they clearly demonstrate the functionality gain of AI/ML, particularly
in managing QoS and QoE, and network automation.

These findings suggest that AI/ML algorithms can be successfully applied to
SDNs with potential to accommodate current and future service requirements.

Table 3. Impact of AI/ML algorithms in the accepted papers.

Use Cases Articles

Optimise network resource usage [2, 3, 8, 9, 12, 16, 19, 23, 41]
Enhance autonomous network
management and configuration

[3, 5, 8, 11–13, 15, 18, 17, 20, 22, 23, 25, 24, 31–34, 37, 42]

Monitor load balancing [11, 22, 38, 17]
Improve network security [36, 29, 22, 27, 26, 6, 35, 10]
Guarantee Quality of Service [39, 37, 28, 16, 4, 21, 9]

3.3 Limitations of applying AI/ML in SDNs

Although AI/ML methods help in many fields, there is a greater truth: there
is no free lunch. In SDNs the same axiom applies, as illustrated in Table 4.
A large percentage of studies report difficulties in the implementation of the
AI/ML mechanisms (71%) and there’s definitely room for improvement. The
main difficulties are (i) learning distortion, (ii) difficulty in finding good training
sets, (iii) and processing of high data flows without sampling.

Table 4. Limitations of AI/ML algorithms in SDN environments.

AI/ML Limitations Articles

Obtaining high-quality labelled data [41, 22, 27, 38, 23, 25, 42, 18, 12]
Distorted learning [11, 22, 39, 26, 21, 20, 25, 34, 24]
Difficulty in collecting high-speed traffic [36, 37, 2, 3, 9, 31, 15, 13, 5, 19]
Implementation cost and expertise [36, 2]
Change of mindset by engineers and IT professionals [25]

4 Conclusion

We reviewed 38 articles (from a pool of 1200) to study the use of AI/ML tech-
niques in SDNs. The results suggest that supervised learning strongly prevails
over unsupervised learning and reinforcement learning algorithms. Most studies
find that NNs are the best solution to optimise SDNs and enhance intelligence.
However, RL has seen a slight increase in adherence and may start to see a greater
increase in solving SDN problems in environments where multiple heterogeneous
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devices compete for network resources (e.g., 5G networks). Both supervised and
reinforcement learning improve network management, automation, network per-
formance and QoS. Although the lack of quality datasets and learning distortion
are concerning aspects, these are certain to improve with future research.

The exploitation of AI/ML in SDN applications improves these architec-
ture’s potential and value in the academia and industry. We predict that future
trends will focus even more upon AI/ML techniques since they introduce con-
siderable performance gains; studies will move from proof-of-concept designs to
solid real-world setups as researchers and industry experts turn from design to
implementation.
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