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1. Introduction 
 
Non-Newtonian fluid suspensions are widely used in several areas of our daily life, 
e.g., to produce bags, toys, car components, textiles, etc., and they are also 
commonly encountered in many advanced manufacturing and industrial operations, 
such as processing of battery slurries or hydraulic fracturing operations. However, 
an efficient numerical solver capable of simulating such processes is still missing in 
the scientific literature. For this purpose, a 3D CFD-DEM viscoelastic solver is 
developed in this work to handle particle-laden viscoelastic flows using a new 
approach, based on machine learning and deep learning models [1-3], to compute a 
particulate-phase drag model valid for a wide range of material parameters.  
 
2. Governing equations 
 
The basic equations governing transient, incompressible and isothermal laminar 
flows of viscoelastic fluids are the continuity, momentum and constitutive equations. 
The continuity and momentum equations read: 
 

∇ ⋅ (𝜌𝜌𝐮𝐮) =  0, 
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𝜕𝜕(𝜌𝜌𝐮𝐮) 𝜕𝜕𝜕𝜕⁄ + ∇ ⋅ (𝜌𝜌𝐮𝐮𝐮𝐮) + ∇ ⋅ (𝑝𝑝𝐈𝐈) − ∇ ⋅ 𝛕𝛕 = 0, 
 

where 𝜌𝜌 is the fluid density, 𝐮𝐮 is the velocity vector, 𝑡𝑡 is the time, 𝑝𝑝 is the pressure, 𝐈𝐈 
is the identity tensor and 𝛕𝛕 is the total extra-stress tensor, which is split into solvent 
𝛕𝛕𝑆𝑆 and polymeric 𝛕𝛕𝑃𝑃 contributions, such that 𝛕𝛕 = 𝛕𝛕𝑆𝑆 + 𝛕𝛕𝑃𝑃. Both stress terms are 
obtained by the following equations, which form the constitutive model, 
 

𝛕𝛕𝑆𝑆 = ηS(∇𝐮𝐮 + ∇𝐮𝐮𝑇𝑇), 
 

𝜆𝜆𝛕𝛕
∇
𝑃𝑃 + 𝛕𝛕𝑃𝑃 + 𝛼𝛼𝛼𝛼 𝜂𝜂𝑃𝑃⁄ 𝛕𝛕𝑃𝑃 ⋅ 𝛕𝛕𝑃𝑃 = 𝜂𝜂𝑃𝑃 (𝛻𝛻𝒖𝒖 + 𝛻𝛻𝒖𝒖𝑻𝑻), 

 
where 𝜂𝜂𝑆𝑆 and 𝜂𝜂𝑃𝑃 are the solvent and polymeric viscosities, respectively, 𝜆𝜆 is the fluid 
relaxation time, 𝛼𝛼 is the mobility parameter and 𝛕𝛕

∇
𝑃𝑃 indicates the upper-convective 

time derivative of the polymeric extra-stress tensor defined as 
 

𝛕𝛕
∇
𝑃𝑃 ≡ 𝜕𝜕𝛕𝛕𝑃𝑃 𝜕𝜕𝜕𝜕⁄ + 𝐮𝐮 ⋅ ∇𝛕𝛕𝑃𝑃 − 𝛕𝛕𝑃𝑃 ⋅ ∇𝐮𝐮 − ∇𝐮𝐮T ⋅ 𝛕𝛕𝑃𝑃. 

 
For this model, a characteristic (polymeric) viscosity ratio can be defined by 𝜁𝜁 =
𝜂𝜂𝑃𝑃 (𝜂𝜂𝑆𝑆 + 𝜂𝜂𝑃𝑃)⁄ = 𝜂𝜂𝑃𝑃/𝜂𝜂0, known as retardation ratio, where 𝜂𝜂0 is the total viscosity in the 
limit of vanishing shear rate. 

 
 
 
3. Case studies 
 
In order to develop an approximate model, based in ML predictions, for the drag 
coefficient of a spherical particle suspended in a shear-thinning viscoelastic fluid, 
we performed intensive DNS for the generation of datasets to be used for training 
the ML model. 
 
3.1. Case Study 1: Validation of the machine learning models with the closure 

drag model for the viscoelastic Oldroyd-B fluid 
 
The approximate closure model for the drag coefficient of a sphere translating in a 
viscoelastic fluid described by the quasi-linear Oldroyd-B model developed by Salah 
et al. (2019) [4] was employed to generate a dataset to train and test ML models. 
 
In Fig. 1 we show the residuals plot for each one of the ML models employed in this 
work. The residuals, i.e., the prediction errors, are computed as the difference 
between the actual value and the predicted value by the ML model. 
 



 
Figure 1. Residuals plot obtained when using the ML algorithms (a) Neural Network 
(b) Random Forrest and (c) XGBoost to predict the drag coefficient of a sphere 
suspended in the quasi-linear Oldroyd-B matrix-based viscoelastic fluid and (d) 
Cook's distance to evaluate data outliers. 
 

 
3.2. Case Study 2: Meta-model for the prediction of the drag coefficient correction 

of a sphere translating in the shear-thinning viscoelastic Giesekus fluid 
 
Direct numerical simulations were performed in this work to obtain the drag 
coefficient correction of a sphere translating in the shear-thinning viscoelastic 
Giesekus fluid under a wide range of dimensionless kinematic conditions, specifically  
0 < 𝜁𝜁 < 1, 0 < 𝑅𝑅𝑒𝑒 < 50, 0 < 𝑊𝑊𝑊𝑊 < 5 and 0 < 𝛼𝛼 < 1. A total of 2700 numerical 
simulations of the unbounded flow of the shear-thinning viscoelastic Giesekus fluid 
past a sphere were performed.  
 
In Fig. 2 we show the residuals plot for each ML model, which presents the 
calculated difference between the actual value and the predicted value by the ML 
algorithm, i.e., the prediction error. Now it is for the Deep Neural Network model that 
the data points are more scattered around the horizontal axis, and for that reason the 
regression fit is better for this ML model, as shown in Fig. 2(a). 



 
Figure 2. Residuals plot obtained when using the ML algorithms (a) Neural Network 
(b) Random Forrest and (c) XGBoost to predict the drag coefficient of a sphere 
suspended in the shear-thinning Giesekus matrix-based viscoelastic fluid and (d) 
Cook's distance to evaluate data outliers. 

 
 
 

4. Conclusions 
 

A total of approximately 3000 DNS were performed and the results obtained enable 
the development and validation of deep learning models which relate the input data 
(specifically Re, De, ζ and α) to the output (response) variable, here the 
dimensionless drag coefficient on the particle. A number of different learning 
algorithms are considered, including the Random Forest, Gradient Extreme Boosting 
and Deep Neural Network.  These physics-based data-driven model can then be 
integrated into a 3D CFD-DEM viscoelastic solver to enable simulations of particle 
laden viscoelastic suspensions in more complex flow fields.  
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