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Abstract 

Flax fibers represent an ecological alternative for glass and carbon fiber reinforced plastics (FRP). 

Although flax fibers have valuable properties for applications in FRP, they are currently not fully exploited. 

Today, flax FRP are mostly used in components with low-mechanical loads. This research presents a 

solution that could enable the application of flax fiber in the FRP industry for structural components. The 

solution presented here is the production of a multiaxial fabric reinforcement out of untwisted flax fiber 

slivers. This fabric allows to maximize the potential of flax fibers, exploiting the mechanical properties of 

flax fibers and skipping the spinning process that is expensive and has an important ecological footprint. 

However, in order to process the untwisted flax slivers into a multiaxial fabric, the multiaxial warp-knitting 

machine has to be adapted. The aim of this work is the investigation and validation of a new weft-insertion 

system, adapted for the processing of untwisted flax slivers. Untwisted flax slivers are hard to handle, 

they tend to get loose or break during production. In this research, different guiding and spreading 

systems are presented and evaluated. After evaluating all the solutions on the basis of implementability, 

costs and installation space, a system with guiding rollers and an air spreading device method were 

selected for further testing. A test stand was constructed, allowing to validate the solution and to 

determine the influencing parameters of the guiding and spreading of the slivers. After a kinematic study 

of the multiaxial warp-knitting machine, the construction of the new system was initiated. But the new 

system could not be incorporated to the machine over the project period, as the construction took longer 

than planned. It was therefore not possible to produce the multiaxial flax fabric. 
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Resumo 

As fibras de linho representam uma alternativa ecológica para compósitos com fibra de vidro e carbono. 

Embora as fibras de linho tenham propriedades valiosas para aplicações em compósitos, elas atualmente 

não são totalmente aproveitadas. Hoje, compósitos de linho são usados principalmente em componentes 

com baixa carga mecânica. Esta pesquisa apresenta uma solução que poderia permitir o emprego de 

fibra de linho na indústria de compósitos para componentes estruturais. A solução apresentada aqui é a 

produção de um reforço de tecido multiaxial a partir de fitas de linho sem torção. Este tecido permite 

maximizar o potencial das fibras de linho, explorando as propriedades mecânicas da fibra e evitando o 

processo de fiação que é caro e tem um importante ônus ecológico. No entanto, a fim de processar as 

fitas de linho sem torção em um tecido multiaxial, a máquina de produção destes tecidos tem de ser 

adaptada. O objetivo deste trabalho é a investigação e validação de um novo sistema de inserção de 

trama, adaptado para o processamento de fitas de linho sem torção. Fitas de linho sem torção são difíceis 

de manusear, elas tendem a quebrar durante a produção. Nesta pesquisa, diferentes sistemas de 

condução e espalhamento são apresentados e avaliados. Depois de avaliar todas as soluções com base 

na viabilidade, custos e espaço de instalação, um sistema de rolos de condução e um dispositivo de 

espalhamento de ar foram selecionados para testes adicionais. Uma bancada de testes foi construída, 

permitindo validar a solução e determinar os parâmetros de influência de condução e espalhamento das 

fitas. Depois de um estudo cinemático da máquina de tecido multiaxial, a construção do novo sistema 

foi iniciada. Mas o novo sistema não pôde ser incorporado à máquina durante o período do projeto, pois 

a construção levou mais tempo do que o planejado. Portanto, não foi possível produzir o tecido de linho 

multiaxial. 
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1 Introduction 

Due to global warming, there is an increasing interest towards reducing CO2 emissions and improving 

resource efficiency (Ruth Heuss et al., 2012). Legislation is increasingly being introduced to drive 

industries to aim for energy and CO2 reduction. For example, in 2016, the EU set mandatory emission 

reduction targets. By 2016, the average car emission should be of 118,1 g of CO2/km travelled and the 

target keeps increasing, as the average car emission targeted for 2021 is of 95 g of CO2/km travelled 

(EC (European Commission), 2009). If the average CO2 emissions exceed the limit value, the 

manufacturer has to pay a penalty according to the excess of emission. To respond to those restrictions, 

industries are in quest of solutions. For example, the transportation sector is increasingly looking for ways 

to reduce weight, as it decreases the fuel consumption. In fact, a weight reduction of 10 kg for a car 

means a reduction of 1 g of CO2/km travelled (Faurecia, 2016). 

A promising approach for weight reduction lies in the application of fiber reinforced plastics 

(FRP)(ICICI, 2015), which can be lighter and have similar or even better mechanical properties than 

conventional materials such as steel or aluminum (JEC, 2012).  Carbon fiber reinforced plastics (CFRP) 

for example can save up to 60 % of weight compared to steel and 30 % compared to aluminum (Robert 

Crow, 2015). Nevertheless, the production of conventional reinforcement fibers such as carbon or glass 

fibers requires high amounts of energy, which in return leads to high CO2 emissions, when using fossil 

fuels (Deng and Tian, 2015).  

By using natural fiber reinforced plastics (NFRP), energy savings of approx. 40 % can be achieved 

compared to glass fiber reinforced plastics (GFRP). Also, natural fibers, compared to glass fibers, have 

the advantage of being renewable, recyclable, bio-degradable and nontoxic, they have lower density and 

better specific stiffness properties (see  Figure 1) (JEC, 2012; Shah, Schubel and Clifford, 2013). 

 

 Figure 1 Comparison of carbon, glass and flax fiber energy for production and specific stiffness (JEC, 2012)   
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Despite its promising properties, NFRP are mainly used for non-structural components with low 

mechanical properties. This is due to the fact that the potential of the natural fiber is currently not being 

fully exploited. Conventional reinforcement fabrics are generally produced on the basis of twisted yarns. 

The twisting, however, does not allow the fibers to be fully aligned in the load direction, which reduces 

the mechanical properties of the composite.  

One solution for improving the mechanical properties, is the production of reinforcement fabrics out 

of untwisted natural fiber slivers (Figure 2). At the same time, the cost and time intensive spinning process 

can be saved, making the process more efficient (Dissanayake et al., 2009).  

 

 

Figure 2 Focus point of master thesis  

When working with slivers, the most adapted reinforcement architecture is the multiaxial fabric  

(Cherif, 2015). However, conventional machines to produce multiaxial fabrics are only adapted for the 

processing of yarns or continuous fibers – such as carbon, glass, etc. Within the scope of this master 

thesis, the focus lies on the analysis of the potential of NFRP in substituting GFRP and, hence, the 

identification of an adapted lay-up concept for the processing of untwisted flax slivers. 

The first step of the following work is a comprehensive state of the art regarding FRP, especially CFRP 

and GFRP, in order to identify the deficits of the FRP market. The second step is an investigation of the 

potential of NFRP and how they could respond the deficits of the market. The investigated solution is the 
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Guidelines VDI 2221 (Systematic approach to the development and design of technical systems and 

products with the realization). Primarily, a requirements list is set up, and from it, derives a function 

structure to ponder possible solutions. Once the possible solutions for the weft-insertion system are 

explored and combined, by means of a morphological box, the solution concepts are further elaborated 

and evaluated until the most practical concept is selected. A test stand of the concept is built and tested 

for validation and the project is concluded with the reached objectives.  
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2 State of the art 

2.1 Fiber Reinforced Plastics 

Over the past few years, FRP have gradually taken a huge importance in the industry, mostly in the 

replacement of steel reinforcements. In fact, although FRP are pricier than steel, they present many 

advantages such as lightness, insensitiveness to corrosion, high strength and other advantages, which 

will vary accordingly to the nature of FRP (Nad, Kolleger and Horvatits, 2007). 

Fiber reinforced plastics are composites. A composite material is a material which is composed of at least 

two distinct phases, with different properties. In the case of FRP, those phases correspond to the polymer 

matrix and the fiber reinforcement, illustrated in Figure 3 (Autar K. Kaw, 2006): 

• Polymer matrix: The matrix transmits the forces to the fiber reinforcement and protects it. It 

also defines the shape of the composite part (Autar K. Kaw, 2006); 

• Fiber reinforcement: The reinforcement is responsible for the mechanical properties of the 

material; including stiffness and strength (Autar K. Kaw, 2006).  

 

 

Figure 3 Composite structure 

 

FRP have also a third important phase to consider: the interphase. Given the presence of different 

phases with different properties, a good junction between the phases is essential to ensure good 

mechanical characteristics for the composite material (Soulat, 2015). 

 

The type of reinforcing fiber is decisive for the mechanical performances of the composite part. When 

selecting the fiber, the mechanical properties of the fibers are not the only factor to take into consideration, 

as it is also important to consider the cost and disposability of the fiber. 
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The most common fibers in composites for structural applications are carbon fibers and glass fibers: 

• Carbon fibers are the second most used fibers within the composite industry, with a global 

demand, in 2015, of 91 thousand tones (Kühnel and Kraus, 2015). They have very good 

mechanical properties but are expensive and therefore are mostly used for 'high-end' applications 

(ex: aerospace industry); 

• Glass fibers represent 95 % of the total volume of composites production, with a global demand, 

in 2016, of more than 4,5 million tones (Mazumdar et al., no date; Dr Elmar Witten, 2014). They 

are used for applications in which the mechanical loading is moderate and when the cost of 

product must be limited. 

Both reinforcements are further described in the following parts of the work. 

 

2.2 Carbon fiber reinforced plastics 

Carbon fibers first patent was deposited in 1877, by Thomas Alva Edison, who used carbon fibers in 

electric lamps. By then, carbon fiber had poor mechanical properties. It was only around 1950 that the 

mechanical properties were highly improved and that the first applications were found in the composite 

industry (NPTEL, 2013b). Carbon fibers can be classified in three different groups of properties; Standard 

Modulus, Intermediate Modulus and High Modulus, shown in Table 1. Standard modulus carbon fibers 

are the most produced ones (representing 80-90 % of the market) (Das et al., 2016).  

Table 1 Carbon Fiber Types (Das et al., 2016) 

 

CFRP are very durable. They have very good mechanical properties (high specific strength, high specific 

stiffness). They possess a good strength to weight ratio. Also, they have good chemical stability, low 

thermal expansion and high vibration resistance (NPTEL, 2013b), (University of Arkansas, 2016), (Barnes 

and Composites World, 2016). 

 

Type Modulus 
(Gpa)

Strength 
(Mpa)

Tow Size 
(K)

Standard Modulus 230 3500 12 – 50

Intermediate Modulus 400 5000 3 – 24

High Modulus 500 3500 1 – 12
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2.2.1 Carbon fiber production 

Carbon fibers are made out of precursors, mainly polyacrylonitrile (PAN), by 90 %, and petroleum pitch 

precursors. Precursors are organic polymers that form long strings of molecules bounded by carbon 

atoms. The composition of the precursor is very diverse, each company having their own composition 

(ZOLTEK, 2018).  To manufacture the carbon fiber, there are six main process steps (Figure 4): 

 

Figure 4 Carbon fiber production 

• Polymerization: The chemical polymerization of the precursor material;  

• Spinning: The production of the precursor, generally by a wet spinning process (Energetics 

Incorporated, 2016);  

• Stabilization: The chemical preparation of the precursors before the carbonization, in order to 

thermally stabilize the linear atomic bonds. The fibers are heated in air to about 200-300 ºC for 

30-120 minutes, causing the fibers to react with oxygen molecules and allowing a rearrangement 

of the atomic bonds (ZOLTEK, 2018); 

• Carbonization: The burn off of non-carbon atoms. The fibers are heated within furnaces, in an 

oxygen-free atmosphere, to about 1000-3000 ºC for several minutes. When the non-carbon 

atoms are burned off, the remaining carbon atoms are tightly bonded, forming carbon crystals 

aligned along the fiber axis (McConnell, 2008; Energetics Incorporated, 2016; ZOLTEK, 2018).  

• Oxidation: The addition of oxygen atoms to the surface of the fiber in order to give better bonding 

properties to the fibers. The fibers are immersed in several gases; air, carbon dioxide or ozone. 

The resulting PAN fiber is composed of 50-65 % of carbon molecules and the rest is hydrogen, 

nitrogen and oxygen molecules (McConnell, 2008; ZOLTEK, 2018). 

• Finishing (Sizing): The fibers are coated to protect them from eventual damage during 

processing and to enhance the fibers bonding properties. The coating materials are chosen 

according to the resin material used for the composite. The coats can be made out of epoxy, 

polyester, nylon, urethane and other materials (Energetics Incorporated, 2016; ZOLTEK, 2018). 
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2.2.2 Current applications 

CFRP can be found in various applications in the industry. Due to the very high mechanical properties, 

they are mainly used for structural high-end applications.  According to the mechanical properties of the 

carbon fibers, CFRP can be found in different applications (Table 2). 

Table 2 Carbon fiber types by application (Das et al., 2016) 

 

They are mainly found in aerospace and defense applications, representing 30 % of the CFRP market 

(Figure 5), but also in automotive, marine, sports goods, civils constructions, biomedical applications and 

others (NPTEL, 2013b).  

 

Figure 5 CFRP demand by application (Kühnel and Kraus, 2015) 

 
2.3 Glass fiber reinforced plastics 

The patent on glass fiber was deposited in 1933 by employees of Owens-Illinois Glass Co. (Tuf-Bar, 

2018b) and since then, glass fibers have grown rapidly in the FRP market, representing 95 % of the total 

volume of composites production in the world (Dr Elmar Witten, 2014).  

Type Application

Standard Modulus Automotive, Aerospace

Intermediate Modulus Pressure Vessels, Wind Turbine Blades, Aerospace

High Modulus Aerospace

Aerospace and 
Desfence

30%

Automotive
22%

Wind Turbines
13%

Sport and 
Leisure

12%

Civil Engineering
5%

Marine
1% Others

17%
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Glass fibers can present different characteristics, accordingly to the type of glass fiber (Table 3). E-Glass 

fibers are the most exploited (90 % of the GFRP market) (Wallenberger, Watson and Hong, 2001).  

Table 3 Glass Fiber Types (Wallenberger, Watson and Hong, 2001) (NPTEL, 2013a) 

 

 

GFRP are light and have good mechanical properties (high flexural strength, high tensile strength, high 

compressive strength).  They present resistance to most chemicals and are non-conductive. GFRP are 

cost-effective, they need low maintenance and are durable (Stromberg, 2012; Antop Global Technology 

Co., 2017; Tuf-Bar, 2018a).  

 

2.3.1 Glass fiber production 

Glass fibers are made from Silica (SiO2) sand which is melted at 1720 ºC. When heated at higher 

temperatures then 1200 ºC, SiO2 crystalizes and becomes quartz. To prevent this from happening, SiO2 

is heated to 1720 ºC and cooled quickly, producing an amorphous and randomly orientated atomic 

structure that becomes glass (Composites World, 2009). 

In order to manufacture glass fiber, there are five main process steps, illustrated by Figure 6 :  

 

 

Figure 6 Glass fiber production process (Composites World, 2009; NPTEL, 2013a; Saint-Gobain, 2018) 

Type Property/Characteristic

E-Glass Low electrical conductivity

S-Glass High strength

C-Glass High chemical durability

M-Glass High stiffness

A-Glass High alkali or soda lime glass

D-Glass Low dielectric constant

b %Al2O3

a %SiO2

c %MgO

d %Na2O

e %...
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• Batching: The batch is composed of SiO2 with a mixture of different materials. By adding 

additives, the process can be done at lower temperatures. The additives are selected in order to 

facilitate the processing or to give a specific characteristic to the fiber. For example, for E-Glass, 

Boron Oxide (B2O3) can be added to prevent clogging of the nozzles during the spinning. For S-

Glass, a mixture of SiO2-AI2O3-MgO with a high percentage of SiO2 is formulated in order to increase 

the tensile strength of the resulting glass fiber (Composites World, 2009); 

• Melting: The mixture from the batch is melted in furnaces at high temperatures, approx. 1400 

ºC. The molten glass goes into the refiner at lower temperature, approx. 1370 ºC  (Composites 

World, 2009); 

• Spinning: The molten glass is extruded through a platinum/rhodium alloy with 200 to 8000 

orifices. The temperature is controlled to maintain glass viscosity constant. The filaments are 

cooled down by water jets at the exit. The extruded molten glass is then mechanically drawn by 

a high-speed winder, into filaments with a diameter ranging from 4 μm to 34 μm  (Composites 

World, 2009).  

• Coating: The fibrous elements are sized by lubricants, binders and/or coupling agents. 

Lubricants protect the fibers from eventual damage during the process. Coupling agents enhance 

the fibers compatibility with certain resins (Composites World, 2009).  

• Drying/Packaging: The filaments are collected, forming a glass strand of 51 to 1624 filaments. 

They are dried in an oven and are processed into chopped fiber, roving or yarn (Composites 

World, 2009).  

 

2.3.1 Current applications 

GFRP are used for applications in which the mechanical stress is moderate and when the product costs 

must be limited. They can be found in many sectors such as in the automotive industry, in car motors, 

rubber tires, structural parts - such as the chassis (NPTEL, 2013a). Also, in civil engineering, in highway 

applications (bridges, overpasses, …), mining and tunneling, marine applications (seawalls, retaining 

walls, …) and transport structures (bus stops, runways, …) (Tuf-Bar, 2018b). 
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2.4 Disadvantages 

2.4.1 Carbon fiber reinforced plastics 

The manufacturing process for CFRP is very wasteful. CFRP are hard to recycle and approximately a third 

of the production ends up in landfill. The processes for recycling CFRP are expensive and recent (ELG 

Carbon Fibre Ltd, 2018). Also, CFRP are very expensive. Carbon fiber can cost more than 10 €/kg 

(Laboratory, 2012) - 10 times more expensive than glass fiber. Carbon fibers require high amounts of 

energy to produce. In fact, the total energy consumption to produce carbon fiber (from PAN precursor), 

can vary from 286 MJ/kg, for standard-modulus carbon fibers, to 1134 MJ/kg, for high-modulus 

carbon fibers  (Suzuki and Takahashi, 2005; Song, Youn and Gutowski, 2009; Das and Warren, 2014; 

Sunter et al., 2015; Energetics Incorporated, 2016).  

The most energy consuming process is the oxidation and carbonization, as illustrated in Figure 7. 

 

 

Figure 7 Energy consumption by sup-process for carbon fiber production (Energetics Incorporated, 2016) 

 

2.4.2 Glass fiber reinforced plastics  

Glass fibers require high amounts of energy and CO2 to produce. In fact, the total amount of energy 

consumption can vary from 10,74 to 25,80 MJ/kg (Table 4). The most energy consuming process is 

melting and refining.  

Polymerization
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Spinning
24%Oxidation/Carbonization
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Table 4 Energy consumption for E-glass fiber production (MJ/Kg) (Ruth, 1997; Diener and Siehler, 1999; DOE, 2002; Rue et al., 2007; 

Worrell et al., 2008; Song, Youn and Gutowski, 2009; Dai et al., 2015) 

 

 

2.4.3 Alternative 

With the increasing concern of the industries in improving the environmental impact of their products by 

reducing energy and CO2 emissions, CFRP and GFRP present relevant solutions: They are light, very 

performant and can replace steel or aluminum in many applications. But both need a lot of energy and 

CO2 to produce, they are hard to recycle and are produced from non-renewable sources. Also, in 2005, 

the EU set a directive that automotive components should be recycled and reused by at least 85 % by 

2015 (JEC, 2012). 

Natural fibers seem to respond to the composite market needs (Autar K. Kaw, 2006).  They need less 

energy and CO2 to produce, they are renewable, recyclable, bio-degradable, nontoxic and have good 

mechanical properties, equivalent to glass fibers in stiffness for example (JEC, 2012; Shah, Schubel and 

Clifford, 2013). In the following part of this thesis, the potential of NFRP in the composite industry is 

analyzed.   

Energy consumption for E-glass fiber production (MJ/Kg)

Processing steps
Ruth, 
1997

Worrell, 2008
DOE, 
2002

Diener, 
1999

Young, 
2009

Rue, 
2007

Batch preparation 1,21 1,16 1,16 0,72 --- --- 0,72
Melting and refining 10,43 5,91 11,08 8,86 --- --- 6,86
Forming 7,64 2,64 5,28 7,60 --- --- 1,58
Post-forming 2,89 3,48 3,48 4,11 --- --- 1,58

Total 22,18 13,19 21,00 21,29 25,80 13-32 10,74
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3 Analysis of the potential of natural fiber reinforced plastics 

Natural fibers have already been used as composites not less than one century ago, some airplanes seats 

and fuel tanks were made with natural fibers and polymeric binders (Bledzki and Gassan, 1999; Sparnins, 

2006). However, the industry has not given as much interest to natural fibers as to glass fibers, which 

presents many benefits, such as lower costs and larger-scale production. Yet, interest in natural fibers 

has recently aroused, due to the potential regarding weight saving, low raw material price and ecological 

advantages (FlexForm Technologies, 2013). The market for NFRP is forecasted to hugely grow from 2015 

to 2024 (Figure 8) (Grand View Research, 2016).  

 

Figure 8 Global NFRP market revenue forecast (Grand View Research, 2016) 

3.1 Natural fibers 

To examine the potential of natural fibers in composites structures, it is important to analyze their 

mechanical properties. Some properties of natural fibers are regrouped in Table 5. 

Table 5 Natural fibers mechanical properties [50] 
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Tensile 

Strength (MPa)

Young’s 

Modulus 

(GPa)

Specific 

strength 

(MPa/g/cm3)

Elongation 

at break (%)

Flax 1,52 40 - 600 345 - 1500 27,6-85 227 - 986,8 2,7 - 3,2

Hemp 1,51 25 - 500 690 70 457 1,6

Ramie 1,55 / 400 - 938 61 - 128 258,1 - 605,2 1,2 - 3,8

Coir 1,1 - 1,46 100 - 460 131 - 220 4 - 6 119,1 - 150,7 15 - 40

Cotton 1,5 - 1,6 12 - 38 287 - 800 5,5 - 12,6 191,3 - 500 7 - 8
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The most relevant fiber to work with is flax fiber. It has in average, the best tensile strength and specific 

strength and has good elastic modulus (Young modulus). In the following parts of the work, flax fiber will 

be the main focus of study and will be further analyzed.  

3.2 Flax fibers 

Flax fiber is considered as an eco-friendly natural fiber. It needs less water and energy to produce than 

cotton for example. Also, the whole plant can be used, there is no waste or residual product. Long fibers 

are used for fabrics, short fibers for non-woven fabrics, straws for agricultural harvesting, seeds for paint 

or resin oils and bagasse for feeding animals (Groupement National Interprofessionnel des Semences 

(GNIS), 2006).  

 

3.2.1 Fiber production 

Flax is a plant, member of the Linaceae family. It is generally cultivated in temperate climate with slight 

humidity. In Europe, it grows from April to June and reaches maturity by August. It can reach 1,2 m in 

height and has a thin stem of 1 to 3 mm thickness. Once the plant is fully matured, the plant is pulled 

out, not cut, allowing to exploit the whole plant length (Mosiniak and Prat, 2005).  

To exploit the fibrous parts of the plant, the woody parts of the plant stems must be separated from the 

fibrous parts. To do so, the following operations are held: 

• Retting: Dissolving or rotting of the cellular tissues and pectins surrounding the bast-fiber 

bundles, by means of micro-organisms and moisture. The main method for retting is “water 

retting”. The flax is submerged in water, which swells the inner cells and thus increases the 

moisture absorption and decay (by producing bacteria in the flax). It helps the future separation 

of the woody part from the fibrous part (‘Retting’, 2009). 

• Scutching:  Separation of the impurities (ex: woody part), from the fibers. There are two 

methods for scutching; hand scutching (the flax is scraped by a knife) and machine scutching 

(the stalks are crushed between two metal rollers) (‘Scutch’, 1989). 

• Combing (or Heckling): Splitting and straightening of the fibers, removing the remaining 

impurities and separates the short fibers to the long fibers (‘Heckle’, 1989). The flax is drawn 

through heckling combs, which allows to straighten and clean the fibers and forms slivers. The 

short fibers form tows that are used for low grade yarns and the long fibers are used for high 

quality yarn. 
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• Draw frame: After the combing operation, in order to prepare the sliver to be spun, the slivers 

need to be drafted. The drafting step is the main influencer of the yarn quality. It allows to improve 

the fiber orientation, evenness and reduces the cross-section of the sliver. The most common 

process for drafting is: the roller drafting (Lord, 2003). It is executed by fixing the fibers to a series 

of roller pairs, with steel bottom rollers and coated top rollers (Figure 9). The speed of the roller 

pairs increases from roller pair to roller pair, ensuing that the fibers slide from each other and 

are drawn apart. In Figure 9, the zone (B) is the break draft zone, which prepares and straighten 

the fibers for the main draft zone (A). 

 

Figure 9 Roller drafting arrangement  (Klein, 2016a) 

• Coiling: The slivers coming from the drafting system pass through a condenser that produces 

lateral fiber migration and enhances the sliver cohesion. The sliver passes through a trumpet, 

which further condenses the sliver. Take-up rolls discharge the sliver into a can, in a determined 

pattern (Lord, 2003). The staple fiber slivers are usually stored in delivery cans and later spun.  

 

Figure 10 Sliver coiling 

• Roving frame: Attenuates the sliver by drafting the sliver between 5 to 30 times. The resulting 

strand has low coherence and twist is applied, from 25 to 70 turns per meter (Klein, 2016a).    
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• Spinning: draws the roving until the required count, twists the bundle of fibers to give tenacity 

and winds up the yarn for storage and future processing (Klein and Rieter Machine Works, 2008). 

 

3.2.2 Advantages of flax fibers 

Flax fibers have very competitive mechanical properties compared to synthetic fibers (Delft University, 

2001; JEC, 2012);   

• The density of flax fiber is of 1.4 g/cm3 and glass fiber is of 2.55 g/cm3. 

• For stiffness, flax fibers are almost equivalent to glass fibers. 

• For the specific stiffness in tension, flax fibers are better than glass fibers.  

• For the specific stiffness in bending, flax fibers almost reach carbon fibers performance. 

• For the strength performance, flax fibers are 1/2 that glass fibers and 1/3 that of carbon fibers. 

However, when considering the density of flax fibers, the specific properties compare well with 

those of glass fibers. 

The mechanical properties of flax, glass and carbon fibers are given in Table 6: 

Table 6 Comparison mechanical properties flax, glass and carbon fibers (Kozlowski, 2012) 

 

 

Flax fibers have higher vibration damping properties than glass fiber, thus allowing to minimize 

noise in the car interior, for example, and consequently creating comfort zones. They have also good 

natural optics characteristics, thus optically upgrading visible components and increasing 

environmental awareness. Furthermore, compared to glass fibers, flax fibers present the advantage of 

not being abrasive, safe to handle and having low tendency to splinter in the composite (Rinberg, 2012; 

Verpoest, 2012; Pico, D.; Wilms, C.; Seide, G.; Gries, T.; Tiesler, H.; Kleinholz, 2016). 

Consequently, flax fibers have huge potential for replacing glass fibers as they are relatively similar and 

better properties. 
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break (%)

Flax 1,52 40-600 345-1500 27,6-85 227-986,8 2,7-3,2

E-Glass 2,55 <17 3400 73 1333,3 2,5

Carbon 1,78 5-7 4000 230-240 2247,2 1,4-1,8
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3.2.3 Energy Consumption 

Giving the importance of energy and CO2 emission for producing carbon fibers and glass fibers, natural 

fibers are seen as a solution to lower the consumption rate of the composite industry.  

Many different studies can be found concerning the data for energy consumption for the flax fiber 

production. The energy consumption varies between 6,5 to 12,21 MJ/kg, (Turunen and Van der Werf, 

2008; Dissanayake et al., 2009; Song, Youn and Gutowski, 2009).  

Table 7 Energy consumption for flax fiber and yarn production [MJ/kg] (Turunen and Van der Werf, 2008; Dissanayake et al., 2009; Song, 
Youn and Gutowski, 2009) 

 

 

The wet spinning process represents 66 % of the total energy consumption for the production of a flax 

yarn (Figure 11). 

 

Figure 11 Energy consumption for a flax yarn by sub-process 

 

NFRP have therefore, huge potential, but today, they are mainly used for non-structural components with 

low mechanical loads. The following part covers the current applications of NFRP. 

  

Energy consumption for flax fiber and yarn production (MJ/Kg)

Turunen, 2008 Young, 2009

Warm water retting 0,59 ---

Scutching 9,39 ---

Hackling 2,23 ---

Total fiber 12,21 6,5

Spinning 23,90 ---

Total yarn 36,11 ---

Warm water 
retting

2%
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26%
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Spinning
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3.3 Current applications of natural fiber reinforced plastics  

The NFRP market is rapidly growing and many projects aiming to integrate NFRP in the composite industry 

and different applications can be found today. NFRP are employed in the automotive industry (Figure 12), 

in personal equipment (such as glasses), home improvement and decoration items (such as chairs or 

tables), in sports goods (such as helmets or skis) (Ticoalu, Aravinthan and Cardona, 2010; JEC, 2014; 

Sanjay et al., 2016). 

 

 

Figure 12 Example of NFRP applications in the automotive industry (JEC, 2014) 

NFRP can be found in interior hidden parts of cars, such as door panels, roof, seat shells, dashboards. 

The most used reinforcement structure for NFRP are non-woven mats, with low weight and moderate 

mechanical properties.  

For structural components, the applications are low, they can be found in prototypes and research 

projects for the industry. Recently, Jaguar integrated NFRP in the floor of one of its cars, the F-Type 

convertible, by using a “100 % renewably sourced panel consisting of a honeycomb paper core with skin 

layers of non-woven flax mats that were pre-impregnated with a sugar-based thermoset resin” (JEC, 

2014). Alternatively, a chassis prototype for cars was made out of a UD flax fiber composite (JEC, 2014).  
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3.4 Disadvantages of natural fibers 

Natural fibers are incompatible with synthetic polymers, therefore an additional chemical treatment is 

needed during manufacture - such as acetylation, bleaching, mercerization, oxidation and others (Ahmad, 

Choi and Park, 2015) (Summerscales and Grove, 2014).  Secondly, the conditions of processing are 

restricted because of the natural fibers sensitivity to temperature. Natural fibers are therefore mostly used 

in combination with thermoplastics, but, the choice of polymers remains limited (Summerscales and 

Grove, 2014). Existing studies are looking to improve the incorporation of natural fibers at higher 

temperatures by either improving the thermal resistance of the fibers or by reducing the melting point of 

the resin, but overall, there’s still a need for further research (Leong et al., 2014). 

Also, the production capacity of flax fiber is small compared to glass fiber production. In fact, in 2016, 

the flax fiber production was of 800 thousand tonnes whereas the glass fiber was of more the 5 million 

tonnes (Food and Agriculture Organization of the United Nations, 2016; Statista, 2018). 

In spite of the limitations mentioned above, there is one major limitation for natural fiber integration in 

composite applications (with the existing production technologies) (Ramaswamy, R.; Aslan, B.; Raina, M.; 

Gries, 2012) : The negative influence of twist. 

Because natural fibers are staple fibers, the fibers need to be processed in the form of yarns so that they 

have enough cohesion and tensile strength for being processed. However, while twist is necessary for 

processing, it has negatives effects on the final characteristics of the composite.  

In fact, for the reinforcement, twisted yarns are source of obliquity and misalignment from which results 

stress concentrations and therefore affects the mechanical properties of the composite. The higher the 

twist angle of the yarn, the lower is the stiffness of the resulting composite, as shown in Figure 13. 

 

 

Figure 13 Influence of the twist angles on the stiffness of a uni-directional (UD) composite with flax yarn reinforcement (JEC, 2012) 
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Besides affecting the mechanical properties, twisted yarns increase the density of the fabric, reducing the 

permeability and therefore affecting the impregnation of the reinforcement. The higher the angle of the 

twist the worse is the impregnation, leading to an increase of process time and weakening the composite 

properties (Goutianos et al., 2006; Shah DU, Schubel PJ, Clifford MJ, 2011; Lomov, S. V.; Baets, 2012; 

Verpoest, 2012). Lastly, spinning natural fibers is a very costly and energy consuming process 

(Dissanayake NPJ, 2009). In fact, the price of flax fabric production can reach more than 15 €/kg (Lewin 

M., 2007). The spinning process is the main cost driver for the conventional manufacturing, representing 

48 % of the total cost of production of a natural fiber yarn (International Textile Manufacturers Federation 

(Hrsg.), 2012; Shah, Schubel and Clifford, 2013). Natural fibers are therefore not competitive enough to 

substitute glass fibers fabrics with a production cost of approx. 7,3 €/kg. 
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3.5 Solution approach 

As enlightened in the previous parts, natural fibers have huge potential in the composite industry. In Table 

8, a review of the main properties of interest for FRP, for natural fibers and synthetic fibers is presented. 

Table 8 Potential of natural fibers in FRP applications (Sanjay et al., 2016) 

 

Currently, the application of NFRP is limited to components with low mechanical stress, such as door 

inner linings in automobiles (Shah, Schubel and Clifford, 2013; Steuernagel, 2014). In their unprocessed 

state, flax fiber have the potential to be used in highly stressed components thanks to their higher specific 

rigidity and comparable specific strength to glass fibers (Shah, Schubel and Clifford, 2013).  

Working with non-twisted flax sliver compared to flax yarn seems to be the most relevant solution (Song, 

Youn and Gutowski, 2009; JEC, 2012; Cherif, 2015): 

• Better mechanical properties of the composite with non-twisted fibers; 

• Shorter process time for processing; 

• Lower production cost; 

• Low energy and CO2 emission consumption. 

Untwisted flax slivers are complicated to handle because of the low-cohesion of the fibers. Braiding, 

knitting or weaving is therefore not possible, since those systems are high-stress processes.  In order to 

work with flax slivers, the most adapted reinforcements to work with are UD prepregs or multiaxial fabrics 

(Cherif, 2015).  The following parts of the work will focus on the production of a multiaxial fabric 

reinforcement out of untwisted flax sliver.   

 

  

Properties Natural fibers Synthetic fibers

Technical
Density
Mechanical properties
Moisture sensitivity
Thermal sensitivity

Low
Moderate

High
High

Moderate
High
Low
Low

Environmental
Production, energy
Resource, sustainability
Health aspects
Recyclability

Low
Infinite
Good
Good

High
Limited

Moderate
Moderate
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4 Analysis of the multiaxial fabric production process 

4.1 Multiaxial fabrics 

According to the European Standard EN 13473 a multiaxial fabric (Figure 14) is defined as “a textile 

structure constructed out of one or more laid parallel non-crimped not-woven thread plies with the 

possibility of different orientations, different thread densities of the single thread plies and possible 

integration of the fiber fleeces, films, foams or other materials, fixed by loop systems or by chemical 

binding systems. The threads can be orientated parallel or alternating crosswise. These products can be 

produced on machines with insertion devices (parallel-weft or cross-weft) and warp-knitting machines or 

chemical binding systems.” (NF EN 13473: Spécifications pour les tissus multi-axiaux multicouches, 

2001) 

 

Figure 14 Schematic set-up of a multiaxial warp-knitted multiaxial fabric (Cnc, 2003) 

A multiaxial warp-knitted fabric is a stacking of layers of unidirectional fibers. Each layer can have different 

orientations and the final reinforcement is fixed by a loop system. This structure has many advantages; 

• Good resin impregnation thanks to the straight disposition of the yarns and the presence of 

stitches, which allows good vertical diffusion (Seu, 2014); 

• Full exploitation of fiber mechanical properties thanks to the straight disposition of the yarns (Seu, 

2014). In fact, the structure has no crimp, which allows better mechanical results for the 

composite. Crimp has been shown to create complex elastic coupling and stress distribution 

which results in stiffness and strength decrease of the resulting composite (Bogetti TA, Gillespie 

JW, 1992; Hipp P, 1992; Jensen D, 1993; Pai SP, 2001; Henry TC, Bakis CE, 2015; HENRY, 

Todd C., RIDDICK, Jaret C., EMERSON, Ryan P., 2015). 

Reinforcement fibers

Fiber mat or chopped fibers

Fiber mat
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4.2 Production 

For producing a multiaxial fabric, the warp-knitting with multiaxial weft insertion machine  is the most 

adapted and used one in the industry today (Schnabel and Gries, 2011a). This machine was patented in 

1983 by the LIBA Maschinenfabrik Gmbh (LIBA Maschinenfabrik Gmbh, 1983) and has since then 

evolved in various versions. In the following part, the production process is further described. 

4.2.1 Principle 

The warp-knitting with multiaxial weft insertion machine in composed of a beam with multiple pillar 

threads (forming a 0º angle layer), creels with a transport system for the weft-insertion, a warp-knitting 

unit and a take-up unit.  

The machine transport system carries the loose fiber layers to the warp-knitting module, where pillar 

threads are also carried. The weft and pillar threads are then fixed together by warp-knitting yarns and 

the multiaxial fabric is cut out of the transport chain and wound up (Figure 15) (Schnabel and Gries, 

2011b). 

 

 

Figure 15 Tricot Machine with Multiaxial Weft Insertion COPCENTRA MAX 3 CNC (Cnc, 2003) 

 

The machine has as many weft-carriage systems as needed and the angle of the weft layers can be varied 

(Cnc, 2003). 

Fabric winder

Pillar threads

Warp-knitting unitWeft threads

Weft-insertion systemCreels
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4.2.2 Weft carriage system 

The weft carriage system carries the threads from the stationary creel to the transport system, swinging 

permanently between the two lay-in units, placed on both sides of the machine (Figure 16) (Schnabel and 

Gries, 2011b). The weft carriage system guides the threads, spaces them to a specific width while 

preserving the thread configuration. Once the thread arrives to the transport system, the weft carriage 

deposits the layers and fixes them to the weft lay-in unit  (Schnabel and Gries, 2011b).   

 

 

Figure 16 Schematics of the weft insertion system (Schnabel and Gries, 2011b) 

There are two main types of weft-insertion portals (Figure 17): 

• Stationary: The angle of the layer depends on the angle of the weft-insertion portal according to 

the direction of the process.  

• Mobile: The angle of the layer depends on the transport system speed and the portal 

movement. The weft-insertion portal moves independently from the process direction.  

 

 

Figure 17 Stationary (left) and mobile (right) weft insertion portal (Schnabel and Gries, 2011a) 
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4.2.2.1 Weft thread transport system 

The transport chain of the warp-knitting weft insertion machine consists of two main systems. For the 

COPCENTRA MAX 3 CNC, which can be found in ITA’s laboratory, there’s a hook chain along the transport 

chain. For the COPCENTRA MAX 5 CNC, there’s a compiled clamp system added to the hook chain. The 

two systems are further explained in the following part.  

4.2.2.2 Hook chain 

In Figure 18, the weft carriage system with the hook chain is represented.  

 

Figure 18 Movement of the weft carriage (Schnabel and Gries, 2011a) 

When the weft threads are filled into the open transport hooks (1), the weft clamps close (2) automatically 

and fix the weft threads. The clamps move laterally while the weft carriage starts to move (3) to the 

opposite direction of the process, whereby the threads are fixed in the weft lay-in units. As soon as the 

weft threads are fixed, the weft-insertion device moves back up (4) and goes to the other side of the 

transport chain (5), continuing indefinitely with the same procedure (Schnabel and Gries, 2011b). 

 

4.2.2.3 Hook chain combined with clamping system 

In Figure 19, the weft carriage system with the hook chain and a clamping system is represented.  

 

Portal system

ChainMachine frame Chain

Displacement mechanism

Layer carriage
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Figure 19 Clamping system (Schnabel and Gries, 2011a) 

The tapes are pulled out from the creels, cut to a defined length and placed in the transport chain with 

the clamping device and a row of hooks.  

When the tape is deposited threw the row of hooks, the guide rail opens the upper clamping plate, the 

clamping head opens, the UD tape is released, a sword cuts the tape and the UD tape is fixed by the 

clamping plate. The weft carriage moves back up and goes to the other side of the transport chain, 

repeating the same steps.   

 

4.2.3 Warp-knitting module  

In the warp-knitting module, the weft and pillar layers are fixed together with knitting loops (Figure 20). 

Generally, the gauges of the needles vary between 3,5 to 14 needles per inch. The weft and pillar thread 

sinkers fix the threads and places them the closest to the knitting elements (Schnabel and Gries, 2011a). 

 

 

Figure 20 Knitting elements and walking needle (Schnabel and Gries, 2011a) 
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4.3 Challenge 

The machine which will be considered is the 2007 multiaxial weft-insertion machine COPCENTRA MAX 3 

CNC. Conventional machines for the production of multiaxial fabrics are adapted for the processing of 

yarns or continuous fibers – such as carbon, glass, aramid, etc. However, because of the low cohesion 

of untwisted flax slivers, the feeding system needs to be modified in order to be able to process them. 

Therefore, the objective of the following work will be to design an adapted lay-up system for the processing 

of untwisted flax slivers (Figure 21).  

 

Figure 21 Weft insertion system   
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5 Conceptualization of a novel weft insertion system 

In order to conceptualize a new design for the weft-insertion system, the guideline VDI 2221 (Systematic 

approach to the development and design of technical systems and products) gives a methodology for 

designing technical systems and products. The methodology is subdivided into 7 main steps, the 

identification and definition of the main task, from which results the requirements list, the determination 

of function structures, the identification of solution principles, their combination to solutions, their 

evaluation and validation until construction. (Figure 22).  

 

 

Figure 22  Guideline VDI 2221 (Jänsch, 2006) 

 

 

 

Fu
lfi

ll 
an

d 
ad

ap
t r

eq
ui

re
m

en
ts

Ite
ra

te
 to

w
ar

ds
 a

nd
 b

ac
kw

ar
ds

 b
et

w
ee

n 
pr

ev
io

us
 a

nd
 fo

llo
w

in
g 

st
ag

es

Task

Further realization

Clarify and define the task

Determine functions and their 
structure

Search for solution principles 
and their combinations

Divide into realizable modules

Develop layout of key modules

Complete overall layout

Prepare production and 
operating instructions

1

2

3

4

5

7

6

Specification

Function structures

Principal solutions

Module structures

Preliminary layouts

Definitive layouts

Product documents



                   Development of a multiaxial fabric out of untwisted flax sliver for high-performance composites 

52 

 

5.1 Requirements list for the weft-insertion system 

To design a new weft insertion system, the task needs to be clarified, the product needs to be investigated, 

its functionality and performance described, and the limitations discerned: identifying the requirements 

for the solution. A requirements list must be made to identify the objectives of the solution and the 

properties it should or should not have (Jänsch, 2006). 

Here, the weft insertion system needs to be adapted to the processing of flax slivers. 5000 tex flax slivers 

from Safilin, Sailly-sur-la-Lys and 9000 Tex flax slivers from HessenLeinen GmbH, Zierenberg are used 

as raw material. The 5000 tex slivers were tested using the COPCENTRA MAX 3 CNC resulting in the 

following problems. The flax slivers tend to slip apart during the transportation from the creel to the laying 

of the sliver due to high tension. When clamping the slivers to the needle system, the sliver was loose, 

and the distribution of the sliver was uneven, the slivers overloaded the needle system, leading to material 

loss. For the definition of the requirements list, the current weft-insertion system, the kinematics of the 

machine and the processed slivers are analyzed.  

 

5.1.1 Weft insertion system 

The geometry of the weft insertion system needs to be calculated, as the size of the system gives the 

space limitation for the solution. The weft-insertion system is separated in three functions here, in Figure 

23, the entrance, the guiding system and the exit. 

 

Figure 23 Weft insertion system of the COPCENTRA MAX 3 CNC 
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5.1.2 Sliver Characterization 

To understand the problems occurring during the processing of the flax slivers in the weft insertion 

system, a sliver characterization is necessary. First, the fineness of the slivers is tested, then, because of 

the inhomogeneities of the sliver, the unevenness of the sliver and its average fiber length is also tested. 

Finally, given the tendency of the sliver to break under tension, a mechanical test of the slivers and its 

fibers is proceeded.  

Two different flax slivers are tested, one from Safilin, in France, that we’ll be referred as “F-Flax”, and 

one from Hessen Leinen, in Germany, that we’ll be referred as “G-Flax”. For the sliver characterization, 

the slivers were conditioned and tested in a standard atmosphere of: 

 

Temperature: 20 ºC ±2 ºC 

Relative Humidity: 65 % ±2 % 

 

5.1.2.1 Fineness 

The fineness of a sliver in [Tex] is the weight in grams of 1000 meters of sliver. 

𝐹𝑖𝑛𝑒𝑛𝑒𝑠𝑠[𝑇𝑒𝑥] =
𝑊𝑒𝑖𝑔ℎ𝑡[𝑔]

𝐿𝑒𝑛𝑔𝑡ℎ[𝑘𝑚]
 

To find the title of the sliver, 5 measurements must be taken from different spots of the sliver. The fineness 

of the two flax sliver samples are presented in Table 9:  

Table 9 Flax sliver fineness 

 

 

It is to expect that the evenness and mechanical properties of the G-Flax will be better than the F-Flax, 
since the fineness of G-Flax is higher (Klein, 2016b).   

Sample G-Flax (Tex) F-Flax (Tex)

1 8596,0 5288,9

2 9649,0 5087,7

3 8506,0 5033,9

4 8738,0 4960,6

5 9169,0 5113,8

Average 8931,6 5097,0
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5.1.2.2 Unevenness 

For textile products, the unevenness, also known as irregularity, is the variation in mass per unit length 

along the yarn (or slivers, rovings, …) (NPTEL, 2012).  

Unevenness is unavoidable for staple fibers, as it is not possible to keep a constant number of fibers in 

the cross section, however it is possible to minimize the unevenness.   

Unevenness can affect the quality of the end-product:  

• Strength of yarns (the more regular the yarn/sliver, the better strength it will have, the less it will 

break during processing); 

• Fabric appearance, defects, feel; 

• Fabric properties such as abrasion, soil retention, drape, absorbency, reflectance; 

• Productivity (the lower the unevenness the lower incidents during processing, because of 

occasional break). 

There are different methods for measuring the yarn unevenness. A visual examination is firstly made 

(Figure 24), showing that the unevenness of the G-Flax is higher than the F-Flax.  

 

Figure 24 G-Flax and F-Flax  

A further test is proceeded with the USTER 5. The USTER 5 determines the yarn evenness, imperfections, 

hairiness, diameter, shape, density for short and long staple yarns, roving or slivers. (USTER, 2016) It 

consists of a parallel plate air capacitor where the material passes through. The material changes the 

capacity of the capacitor, which is proportional to the mass per unit length, which are then processed by 

the USTER. 

The results of the F-flax tested with the USTER 5 are shown in Figure 25 (more details in ANNEX  1). 

 

Figure 25 Unevenness results F-Flax A and B 

200 mm 200 mm

G-Flax F-Flax

Sample U%
%

CVm
%

CVm 1m
%

CVm 3m
%

F-Flax 14,31 17,78 4,75 3,09

G-Flax 13,23 16,92 6,60 3,17
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U%: is the percentage mass deviation of unit length of material. It is caused by uneven fiber distribution 

along the length of the sliver. 

CV%: is the coefficient of variation which defines. It is used when handling large quantities of data. The 

lower is the CV-value, the more even is the material. 

 

In Figure 26 and Figure 27, the mass per unit along the length of the sliver is graphically represented, it 

shows the variability of the sliver.  It’s notable that the variability of the F-Flax is lower than the G-Flax, 

confirming the visual examination.  

 

Figure 26 Diagram mass F-Flax 

 

Figure 27 Diagram mass G-Flax 

 

5.1.2.3 Fiber length 

Giving the importance of the fiber length for machine settings, more than 200 fibers are measured to 

have an idea of the average fiber length. The fiber length varies between 30 mm and 400 mm. In Table 

10, the average length and the standard deviation of the G-Flax and F-Flax are regrouped.  

Table 10 Fiber length of F-Flax and G-Flax 

 

F-Flax Diagram mass

m1201101009080706050403020100

0
10
20

-10
-20

0
10
20

-10
-20

m1201101009080706050403020100

G-Flax Diagram mass

Fiber length F-Flax G-Flax

Average fiber length [cm] 209,3 192,54

Standard deviation 81,95 75,26
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It is important to note that the result is not reliable, the laboratory is not equipped to test fiber length and 

the differentiation between the single fiber and the fiber bundle is complicated. The values are not 

representative of the real value but give an estimated representation. 

 

5.1.2.4 Mechanical properties of the sliver  

The tensile strength of the sliver is measured with the STATIMAT 4U, with a load cell of 100 N, a gauge 

length of 240 mm and a pretension of 0 cN. The test is conducted for 10 samples of 240 mm length 

slivers. The detailed results can be found in ANNEX 2. 

• Force/Elongation diagram: According to the diagrams, the rupture strength (moment were 

the fibers start to slide) for the F-Flax varies between 13,80 and 30,65 N and for the G-Flax 

between 7,82 and 14,10 N. 

 

Figure 28 Fiber Force/Elongation diagram of F-Flax and G-Flax 

• Fmax: The sliver tensile strength is on average, for F-Flax, 18,95 N and for G-Flax, 10,32 N. 

The variation coefficient is high, around 15 % for F-Flax and 20,57 % for G-Flax B, the values are 

not regular, which is to expect when working with natural fibers. 
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5.1.2.5 Mechanical properties of the fiber 

The tensile strength of the fiber is measured with the FAVIMAT+ FIBRE TEST, with a pretension of 0,50 

cN/Tex. The test is conducted for 50 samples of fibers of 25 mm for each material A and B. The detailed 

results can be found in the ANNEX 3. 

• Fmax: The fiber tensile strength is on average, for F-Flax A, 150,51 cN, and for G-Flax, 96,05 

cN. The variation coefficient is high, around 105,69 % for F-Flax and 82,82 % for G-Flax B, the 

values are not regular, which is to expect when working with natural fibers. 

 

5.1.3 Sliver width determination 

The aim is to produce a multiaxial fabric consisting of two layers with a weight per area for each layer of 

150 g.m-2. To achieve this with the 5000 Tex flax slivers, the following equation is used:  

 

𝑆𝑙𝑖𝑣𝑒𝑟 𝑤𝑖𝑑𝑡ℎ =
𝐹𝑖𝑛𝑒𝑛𝑒𝑠𝑠

1000 × 𝐵𝑎𝑠𝑖𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 × sin
𝛼𝜋
180

 

α - layer angle [°] 

The width of the sliver depends on the required layer angle: 

• For a -45º/+45º, the width of the sliver has to be 4,71 cm (Figure 29); 

• For a -90º/+90º, the width of the sliver has to be 3,33 cm. 

 
Figure 29 Laying of the sliver: width determination 
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5.1.4 Kinematics determination 

The acceleration of the weft insertion system is measured with the acceleration sensor of a Samsung 

Galaxy S7 and the application “Physics Toolbox Sensor”. The device is unprecise and measures the 

coordinates over time instead of the acceleration, which would have been more exact. The cellphone was 

attached to the carrier system and the machine was set up with a production speed of 25 m/hour. 

 

5.1.4.1 Kinematics according to the x-axis and y-axis 

The phone application provided the acceleration of the machine, ax and ay, expressed in [g], according to 

the time, in seconds (Figure 30). 

 

Figure 30 Acceleration data of the weft insertion system in respect to the x-axis and y-axis 

In order to exploit these values, the acceleration is converted from [g] to [m.s-2]: 

𝑎𝑥[𝑚. 𝑠−2] = 9,81 × 𝑎𝑥[𝑔] 

𝑎𝑥[𝑚. 𝑠−2] = 9,81 × 𝑎𝑥[𝑔]  

To obtain the speed, the acceleration is integrated using a numerical integration: 

𝑣𝑛 =
𝑎𝑛−1 + (𝑎𝑛 − 𝑎𝑛−1)

2
× (𝑡𝑛 − 𝑡𝑛−1) + 𝑣𝑛−1                    (1) 

The resulting velocity is represented in Figure 31. 

 

Figure 31 Velocity of the weft insertion system in respect to the x-axis and y-axis 

-2

-1

0

1

2

0 10 20 30 40 50

Ac
ce

le
ra

tio
n 

[g
]

Time [s]

ax [g]

ay [g]

y = -0,0153x + 0,0604

y = -0,0119x - 0,026

-1,5

-1

-0,5

0

0,5

1

0 10 20 30 40 50

Ve
lo

ci
ty

 [
m

/s
]

Time [s]

vx [m/s]

Vy [m/s]

Linear (vx [m/s])

Linear (Vy [m/s])



                   Development of a multiaxial fabric out of untwisted flax sliver for high-performance composites 

59 

 

When the weft carriage moves from one side of the transport system to the other, the velocity of the 

carriage system during the filling of the weft-threads to the lay-in unit is for each of the movement, zero. 

The velocity should vary around the 0 axis, which is not the case here. This is due to the imprecision of 

the values from the phone application. To resolve this problem, the trend of the velocity graphic is 

determined: 

𝑣𝑥:  𝑦 = −0,0119𝑥 − 0,026 

𝑣𝑦: 𝑦 =  −0,0153𝑥 + 0,0604 

And to level up the velocity around the 0 axis, the equation is added to the velocities and the following 

graphic is obtained (Figure 32): 

 

Figure 32 Levelled velocity of the weft insertion system in respect to the x-axis and y-axis 

 And finally, to obtain the position of each point during the time, the velocity is integrated: 

𝑥𝑛 =
𝑣𝑛−1 + (𝑣𝑛 − 𝑣𝑛−1)

2
× (𝑡𝑛 − 𝑡𝑛−1) + 𝑥𝑛−1                    (2) 

The resulting path is represented in Figure 33: 

 

Figure 33 Path of the weft-insertion system in respect to the x-axis and y-axis 
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can be due to the imprecision of the values from the phone application or because of the undetermined 
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𝑥𝑥:  𝑦 = −0,0585𝑥 − 0,0533 

𝑥𝑦: 𝑦 =  −0,0652𝑥 + 0,9706 

And to level up the position around the 0 axis, the equation is added to the position values and the 

following graphic is obtained (Figure 34 ): 

 

Figure 34 Levelled path of the weft-insertion system in respect to the x-axis and y-axis 

 

5.1.4.2 Kinematics of the 45º movement 

The movement of the weft insertion system during the second phase is of a 45º angle, it is the part of 

the process where the highest accelerations and velocities are met. Since the values collected so far are 

in relation to the x-axis and y-axis, a transformation is needed to have the relative velocity of the fibers 

and determine the maximum acceleration and velocity of the system. To represent the velocity along the 

45º angle movement, the values of the velocity are transformed, thanks to the Pythagorean formula: 

𝑣45º,𝑙𝑣𝑙𝑑 = √𝑣𝑥
2 + 𝑣𝑦

2                     (3) 

 The resulting velocity is represented in Figure 35: 

 

Figure 35 Velocity of the weft insertion system (45º) 
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the velocity is higher (Second phase). In red, the values are not representative, as they represent the 

beginning and ending of the testing.  

 

Figure 36 Separation of the different velocity phases of the weft insertion system 

 

5.1.4.3 First phase kinematics 

To determine a general function of velocity, the values of each step are isolated and processed. For the 

first phase, filling the hooks, the absolute values of the velocity are isolated (Figure 37): 

 

Figure 37 First phase weft insertion system velocity 

The average velocity of those values is represented in the following Figure 38.  The closest linear trend is 

a polynomic function of factor 6: 

y = 0,2286x6 - 1,1961x5 + 2,0342x4 - 0,8554x3 - 0,8332x2 + 0,6773x - 0,0287 

 

Figure 38 General velocity of the weft insertion system in the first phase  
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5.1.4.4 Second phase dynamics 

The same steps are made for the second phase, the motion of the weft insertion device from one side to 

the other.  The absolute velocities are isolated (Figure 39): 

 

Figure 39 Second phase weft insertion system velocity 

The average motion of those values was represented in the following Figure 40. 

 

The closest linear trend is a polynomic function of factor 6: 

y = -0,0045x6 + 0,0797x5 - 0,5258x4 + 1,578x3 - 2,1419x2 + 1,2806x - 0,0539 

 

 

Figure 40 General velocity of the weft insertion system in the second phase  

This function gives the general velocity of the weft insertion system, for the second phase movement. 

With this function, it is possible to give the average acceleration and the average position of the weft 

insertion system. 

By deriving the velocity function, the acceleration function is: 

 

a(t) =  3,189x5 − 14,9245x4 + 22,924x3 − 11,1561x2 − 1,3648x 
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The general acceleration path is represented in Figure 41: 

 

Figure 41 General acceleration of the weft insertion system in the second phase 

For the position function of the weft insertion system, the velocity function is integrated: 

x(t) =  0,075928571x7 − 0,497483333x6 + 1,1462x5 − 0,929675x4 − 0,227466667x3 +

0,5977x2 − 0,0399x  

 

The general path is represented in Figure 42: 

 

Figure 42 General path of the weft insertion system 

 

5.1.4.5 Kinematics conclusions 

For the production speed of 25 m/h: 

• The maximum acceleration of the weft insertion system is 1,8 m/s2. 

• The maximum velocity of the weft insertion system is 1,61 m/s. 

In order to determine the maximum acceleration and speed of the weft insertion system for a production 

speed of 100 m/h, the same method was used. The following results were obtained: 

• The maximum acceleration of the weft insertion system is 8 m/s2. 

• The maximum velocity of the weft insertion system is 3 m/s.  

-10

0

10

20

30

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Ac
ce

le
ra

tio
n

[m
/s

2 ]

Time [s]

-1

0

1

2

0 0,2 0,4 0,6 0,8 1 1,2 1,4Po
si

tio
n 

x 
[m

}

Time [s]



                   Development of a multiaxial fabric out of untwisted flax sliver for high-performance composites 

64 

 

5.1.5 Requirements list 

All the requirements for the weft-insertion system are assembled in Table 11. 

Table 11 Requirements list 

Requirements list  

Tricot Machine with Multiaxial Weft Insertion (LIBA Copcentra 

Max 3 CNC): Development of a new weft-insertion system. 

 

Demand (D) 

Wish (W) 

Requirements 

 Geometry 

D 

 

 

 

 

 

D 
 
 
 

 

D 

 

 

D 

 

 

D 

Size of the weft insertion device:  

• Length ≤ 320 mm 

• Breadth ≤ 280 mm 

• Height ≤ 355 mm 

Weft insertion Entrance: 

• Length ≤ 240 mm 

• Width ≤ 50 mm 

Weft insertion Exit: 

• Length ≤ 240 mm 

• Width ≤ 75 mm 

Lay-in unit: 

• Needles gauge E12 

• Clamps gauge E9 

Working width: 1270 mm  

 Kinematics 

D 

D 

D 

D 

Speed of the transport chain: 25 m/h 

Max. speed of the weft carriage system: 6 m.s-1 

Max. acceleration of the weft carriage system: 15 m.s-2 

Max. path acceleration: ab,x = ab,z = 8 m.s-2 
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 Forces 

D 

D 

D 

Friction force on the sliver during the lay-up process: approx. 350 cN 

Clamps fix the weft threads with optimum tension and in their exact position. 

The weft threads are drawn parallel and at a fixed tension.  

 Material 

D 

D 

D 

D 

Number of layers: 2 

Fiber Orientation of the layers: ± 45º 

Weight per area for each layer: 150 g/m2 

Laying width of the sliver:  

• For 90º insertion: 3,33 cm;  

• For 45º insertion: 4,71 cm. 

 Production 

D 

D 

D 

Tolerance for the fiber orientation: ± 5% 

Tolerance for the weight per area: ± 10% 

Manufacturing processes with ITA’s available equipment and tools  

 Ergonomics 

W 

W 

Easy transportation from the creel to the weft insertion system 

Good accessibility  

 Operation 

D Assemblage not to complex and easy to implement 

 Maintenance 

W 

W 

Long maintenance intervals 

Worn parts easily exchangeable 

 Safety 

W Operational and environmental safety in regards of the possible carbon fibers 

presence in the laboratory 

N.B: “Demands are requirements that must be met under all circumstances, if those requirements are 

not fulfilled the solution is unacceptable. Wishes are requirements that should be taken into 

consideration whenever possible” 
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5.2 Function structure 

Thanks to the requirements list, the task is better clarified and the main problem, which is the lay-up of 

a natural fiber sliver, can be subdivided into sub functions, as shown in Figure 43, thus facilitating the 

future research of solutions.   

 

 

Figure 43 Function Structure 

 

In order to lay-in the sliver, it’s first transported from the creel to the weft insertion device, it is 

guided through the weft-insertion device and tensioned, the sliver is spreading evenly, to control the 

mass surface of the layer, without changing the sliver configuration. The sliver is finally filled in 

the hook chain of the lay-in unit and fixated by being pressed.   
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5.3 Determination of partial solutions 

The processability of the untwisted flax sliver is investigated with regard to the existing process frame 

conditions on the COP-CENTRA MAX 3 CNC machine from Karl Mayer. An analysis of each sub-function 

of the process is made with the determination of possible solutions. The transportation of the sliver has 

been undertaken by another group project, it will be overviewed in the following work, and the filling and 

pressing of the slivers in the lay-in unit will be part of another project, but also slightly overviewed. 

 

5.3.1 Feeding of the weft insertion system 

5.3.1.1 Transportation 

When transporting the untwisted flax slivers to the weft insertion system, the fibers of the sliver slip and 

the sliver ends up breaking. This is due to the withdrawal force of the system, which is higher than the 

supported force of the flax untwisted slivers. The adhesive friction force for the withdrawal system for 

glass fibers if of approx. 350 cN and increases during the accelerations of the lay-up process.  

Thus, the processing of untwisted flax slivers into fabrics is not possible without a new strategy of 

transportation from the creel to the weft insertion system. For responding to this problem, the sliver is 

temporary twisted. A false twist (Figure 44) is the application of a temporary twist which returns after 

transportation. It can strengthen the flax slivers, which would allow to conduct the transportation of the 

material to the weft-insertion system (Koenig, 2014). 

 

 

Figure 44 Principle of the false twist (Klein and Rieter Machine Works, 2008) 
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Pair of rollers 1
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5.3.1.2 Entrance 

The entrance of the weft-insertion system (Figure 45) is adapted for the processing of glass fibers. In 

order to process flax slivers, the entrance has to be adapted.  

 

Figure 45 Entrance of the weft insertion system 

The multiple entries system (a) has multiple ceramic eyelets that allow material to slide in. The more 

eyelets there are, the more there is friction (Kyosev, 2016). This entry system can easily be changed by 

a single entrance unit (b) (see Figure 46). With less friction, the flax sliver can, without difficulty, enter the 

system.  

 

Figure 46 Entrance solution 

5.3.2 Guiding of the sliver 

The weft-insertion system guides the glass fibers and maintains an adapted tension for the laying of the 

glass fibers (Figure 47).  

 

Figure 47 Weft-insertion guiding system 

Entrance

(a) (b)

Guiding system



                   Development of a multiaxial fabric out of untwisted flax sliver for high-performance composites 

69 

 

However, this system is not adapted for the processing of untwisted flax slivers, as they tend to break 

with the actual unit, and when processing the flax slivers without any guidance and tension, the sliver is 

loose and hard to lay-in. To respond to this problem, a new guiding system must be conceptualized.  

Various guiding systems exist: 

 

5.3.2.1 Belt conveyor 

Belts can be used as short transport systems within a machine, to carry the sliver (Lord, 2003). They are 

endless circulating belts. The belts are driven by shafts that simultaneously serve for the belt tensioning. 

They allow to work at high speeds but the belt causes friction and the material can to stick to the belt 

(Klein, 2016a). 

 

Figure 48 Belt conveyor transportation (Klein, 2016a) 

The advantages and disadvantages of the belt conveyor are presented in Table 12: 

Table 12 The advantages and disadvantages of the belt conveyor 

Advantages  Disadvantages 

• Simple implementation; 

• High speed process; 

• Material can stick to the belt; 

 

5.3.2.2 Roller pairs 

Guiding systems can be found the production chain for sliver production. During the drafting of the sliver, 

explained in 3.2.1, the nip pair roller system (Figure 49) presents good guiding characteristics.  
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Figure 49 Roller pairs transportation 

The break-draft part of the drafting system has the function of pre-tensioning and transporting the sliver. 

Here, the sliver configuration should be preserved. Drafting only occurs when the speed of the rollers 

increases from pair roller to the next. To avoid drafting, the speed of the rollers has to be equal.  

 

The distance between the rollers is important for good guidance of the fibers (Klein, 2016a): 

• If the distance is to wide, it will increase the number of floating fibers and result in higher 

unevenness of the sliver.  

• If the distance is too narrow, it will cause fiber damage; 

However, for the guiding systems, as the fibers are not drawn, the parameter that counts the most is that 

the distance is not to wide and covers most of the fiber lengths.  

 

The material of the rollers is an important parameter to consider enhancing the guiding properties. In 

fact, the top rollers should be coated with a thick synthetic rubber coat. The rubber is used to improve 

the grip on the fibers, the more the coats are soft the better they will surround the fiber and guide it. Hard 

coats will enhance drafting, which is not wanted here (Klein, 2016a): 

• Soft: 65° - 75° Shore 

• Medium: 75° - 80° Shore 

• Hard: Above 80° Shore 

Coats can be made out of urethane or silicone. Silicone coats are more expensive than urethane coats 

and have higher coefficient of friction, so better drafting properties. Here a urethane coat responds better 

to the requirements as it is cheaper and has good durability and lower coefficient friction (Schaefer, 

2018). 

For the bottom rollers, the material most generally used is steel, with a hardness of 150 HB. 

The advantages and disadvantages of the roller pairs are presented in Table 13: 

Table 13 The advantages and disadvantages of the roller pairs 

Advantages  Disadvantages 
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• Simple implementation; 

• Good transportation; 

• Adjustable tension. 

• Simple combination with other 

processes. 

• Fibers with high quality or medium 

fiber length required; 

• No data on fiber damage; 

5.3.2.3 Trumpet-Take-up rolls: 

In 3.2.1, the transportation system from the sliver condenser to the can be used as a solution for the 

guiding system (Figure 50).  

 

 

Figure 50 Trumpet - Take-up rolls transportation (Lord, 2003) 

When exiting the sliver condenser, the sliver passes through a trumpet, which condenses it and is 

discharged by a take-up rolls system into the can.  

However, the trumpet size has to be changed according to the sliver weights (Lord, 2003). If included in 

the feeding system of the weft-insertion device, the trumpet would have to be changed for differing sliver 

weights. The throat diameter of the trumpet should be between 1,6√𝑛 and 1,9√𝑛 , with n, the linear 

density of the sliver in ktex and the diameter expressed in mm.  

The advantages and disadvantages of the “trumpet – take-up rolls” are presented in Table 14: 

Table 14 The advantages and disadvantages of the trumpet-take-up rolls 

Advantages  Disadvantages 

• Good guiding. • Difficult implementation. 
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5.3.2.4 Loop tensioner 

The loop tensioner can transport a thread and keep it under tension (Figure 51). This system is used in 

braiding systems for rewinding, with synthetic fibers (Ebel, Brand and Drechsler, 2013). There is no 

existing data in the efficiency of the process for natural fibers. 

 

Figure 51 Loop tensioner dynamic 

In Figure 51, the thread has an initial velocity vi and a fineness Tti. It comes out from the system with the 

velocity vo and the fineness Tto. For our case scenario, the thread fineness must remain the same, as we 

only aim to guide and give appropriate tension to the sliver. This is possible under the condition that 

(Brünig and Beyreuther, 2006):  

• vo = vi 

The resulting transportation system is represented in Figure 52. 

 

 

Figure 52 Loop tensioner transportation (Ebel, Brand and Drechsler, 2013) 

The advantages and disadvantages of the loop tensioner are presented in Table 15: 

Table 15 The advantages and disadvantages of the loop tensioner 

Advantages  Disadvantages 

• Good guiding; • High fiber damage; 

• High tensions. 

 

Tt0 v0
Tti vi
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5.3.2.1 Final evaluation of the guiding system 

The presented guiding methods are evaluated on the basis of three different evaluation criteria in order 

to determine a suitable method for the processing of natural fiber slivers. The evaluation criteria are 

defined on the basis of the task and weighted according to their priority. This includes implementability, 

costs and required installation space. In Table 16 the weighting factors are presented. The 

implementability is the highest priority, the costs are second and the required installation space is the 

last priority. 

Table 16 Determination of the weighting factors of the evaluation criteria (Jänsch, 2006) 

 

[3: highest priority, 1: lowest priority] 

 

The individual spreading methods are quantitatively evaluated on a scale of 0 to 4 with regard to the three 

evaluation criteria. A rating of 4 points is a very high suitability with regard to the respective evaluation 

criterion, a rating of 2 points, however, represents the minimum necessary degree of fulfilment of the 

requirement (see Table 17). A score of 1 or 0 points means that the requirements cannot be met.  

Table 17 Scale of points for quantitative evaluation of the spreading principles 

 

The evaluation is based on the theoretical considerations from the previous parts and with the evaluation.  

The results are regrouped in the following Table 18: 

Evaluation criteria Priorities (pi)

Implementability 3

Costs 2

Required installation space 1

Weighting factors (gi)

0,5

0,33

0,17

𝑔 =
𝑝 

 𝑝 

Evaluation criteria 

Points Implementability Costs Installation space

4 Extremely high Extremely low Extremely low

3 High Low Low

2 Moderate Moderate Moderate

1 Low High High

0 Extremely low Extremely high Extremely high
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Table 18 Evaluation and evaluation of the guiding methods considering the respective weighting factors (Jänsch, 2006) 

 

The evaluation shows that the belt conveyor and the roller pairs should be the best suited solutions for 

guiding the slivers. The minimum requirements were exceeded for all the criteria.  

 

5.3.3 Spreading the sliver evenly 

The slivers need to be spread-out to obtain a defined width. To do so, various spreading methods exist: 

electrostatic, mechanical (with spreader bars, spreader rollers, spreader combs or knives), pneumatical 

(with jets operated by pressurized air) and also jet-liquid spreading or acoustic spreading. Some of those 

methods are detailed in the following part (Cherif, 2015). 

 

5.3.3.1 Spreader bars 

Spreading by means of spreader bars is currently the most frequently used method. It is based on the 

principle of pulling fibers over spreader bars using high tension (Composites World and Gardinier, 2018). 

 

Figure 53 Spreading by spreader bars 

 

Implementability Costs Installation space Sum

Weighting factors 0,5 0,33 0,17 Σ gi * wi

Belt conveyor 4 3 4 3,67

Roller pairs 4 3 4 3,67

Trumpet-Take-up rolls 1 3 3 2

Loop tensioner 1 2 3 1,67

d(after)

d(before)

Roving

Crowned spreader bar

Cylindrical spreader bar
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The filaments which are further away from the central axis of the bar cover a longer distance than the 

filaments which go through the central axis. As a result, the stress of the filaments increases the higher 

the distance with the central axis. These stresses cause forces in the direction of the central axis and 

leads to splitting up the strips in the axial direction of the bar (Irfan et al., 2012). The sliver thickness and 

basis weight are reduced. In order to reduce filament damage, the friction between the bar surface and 

the filaments should be as low as possible. A smooth bar surface is therefore desired for fixed bars  

(Yamamoto, Yamatsuta and Abe, 1988).  

The spreading can be influenced by the spreader bar geometry. Spherical bars, for example, reinforce 

the spreading but can lead to the formation of gas if the yarn guide is not exact. Cylindrical bars 

homogenize the belt and requires less yarn guidance precision.  

When processing untwisted natural fiber slivers, even small tensions can cause the sliver to tear apart, 

as the individual fibers slide from each other. For working with natural fibers, to avoid the slivers from 

breaking, the distance between the bars should be smaller than the average fiber length. It is therefore 

useful to work with high fiber length, but high fiber length, for slivers, implies that the quality of material 

is higher and so is the resulting cost of the material. Therefore, the process becomes expensive.  

The other disadvantages of this method are that the production speed is limited to 25m/min. At higher 

speeds, the friction is too high and damages the fibers. Also, spreading is limited to 3 times the initial 

width (Composites World and Gardinier, 2018). 

The advantages and disadvantages of fluid flow are presented in Table 19. 

 

Table 19 Advantages and disadvantages of spreading with spreader bars 

Advantages  Disadvantages 

• Simple implementation; 

• Variety of variations; 

• Simple combination with other 

processes. 

• High fiber damage; 

• High yarn tensions; 

• Fibers with high quality or medium 

fiber length required; 

• Low speed process. 
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5.3.3.2 Fluid flow spreading  

Spreading processes with fluid flows represent an alternative to the mechanical spreading processes, 

which usually lead to a certain damage of the filaments. Thanks to gas or liquid flows, the filaments can 

be spread to 6-7 times the initial width (Composites World and Gardinier, 2018). The flow hits the 

filaments perpendicularly to the process direction ( Figure 54). 

 

Figure 54 Spreading by air flow 

 

The simplest method is spreading by means of gas flow. The air flow is generated by overpressure (or 

under pressure) and directed from the nozzles onto the filaments.   

With this contactless spreading method, the fibers are spread very gently. Natural fiber slivers can be 

processed without fiber damage.  

Spreading by liquid flow is however not adapted for the processing of natural fibers as they have high 

liquid absorption capacity and if spread by liquid flow, an additional drying step would be needed.  

The advantages and disadvantages of fluid flow are presented in Table 20: 

Table 20 Advantages and disadvantages of fluid flow spreading 

Advantages  Disadvantages 

• High degree of expansion; 

• Constant degree of expansion; 

• Low yarn tensions; 

• Low filament damage; 

• Good adjustability; 

• Homogenizing effect (self-regulation). 

• High complexity; 

• Low process speeds; 

• High costs due to drying processes 

(when using liquids). 

 

 

 

 

Air flow
Nozzle
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5.3.3.3 Air vibration spreading 

An alternative to the continuous air flow spreading, is spreading using airborne sound. The filaments are 

guided via a loudspeaker as shown in Figure 55. The membrane of the loudspeaker generates sound 

waves, which stimulate the fibers to vibrate. The vibrations of the fibers lead to the filaments to repel each 

other and result in the fragmentation of the sliver (Composites World and Gardinier, 2018). 

 

Figure 55 Spreading by air vibration 

 

In order to achieve high spreading degrees, it must be ensured that the frequency range is adapted to 

the filaments. The higher is the energy absorption of the filaments – and thus the vibration - the higher is 

the degree of spreading. The problem with processing natural fibers could be that the vibrations are not 

as well transmitted for staple fibers as they are for filaments and therefore the energy absorption capacity 

is too low. Vibrations could also loosen the sliver so much that the cohesion is no longer guaranteed, and 

the sliver would break. Further advantages and disadvantages of this method are shown in the following 

Table 21. 

 

Table 21 Advantages and disadvantages of spreading by air vibration 

Advantages  Disadvantages 

• Very high degree of spreading; 

• Low yarn tensions; 

• High process speeds. 

• Noise protection necessary due to 

high sound pressures; 

• No information regarding the filament 

damage. 

 

  

Speaker

Roving

d(before)

d(after)
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5.3.3.4 Electrostatic spreading 

Another spreading method is the electrostatic repulsion. The roving needs to be electrically conductive, if 

it is not naturally conductive, the rovings can be wet with a conductive liquid. The roving is then passed 

through a charging electrode which generates an electric field (Figure 56). This saturates the ambient air 

with Ions of one polarity. As a result of the excess charge of one polarity, the filaments repulse each other.  

 

Figure 56 Spreading by electrostatic repulsion 

For processing natural fibers, a conductive liquid must be applied to the fibers and therefore, has to be 

removed in an additional step after the spreading. This increases the complexity and costs of the 

procedure. Further advantages and disadvantages of the spreading method are clearly presented in the 

following Table 22: 

Table 22 Advantages and disadvantages of spreading by electrostatic repulsion 

Advantages  Disadvantages 

• Very good spreading degrees; 

• Low filament damage; 

• Very low yarn tensions; 

• High process speeds. 

• High complexity; 

• Danger to the user by high-voltage 

operation; 

• High energy costs. 

 

 

5.3.3.5 Final evaluation of the spreading system 

The evaluation is based on the theoretical considerations from the previous parts and with the evaluation 

criteria from 5.3.2.1.  The results are shown in the following Table 23.  

Charging electrode

Roving

d(before)

d(after)

High-voltage source
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Table 23 Evaluation of the spreading methods considering the respective weighting factors 

 

The evaluation shows that the fluid flow method with gas is best suited for an application on flax slivers 

in regard to the evaluation criteria of implementability, cost and installation space. The minimum 

requirements were exceeded for all the criteria.  

 

5.3.4 Laying the sliver in the lay-in unit 

When filling the flax sliver to the laying unit of the Copcentra Max 3 CNC (Figure 57), the sliver overloaded 

the needles, there is a damage of the sliver and material loss along the process.  

 

Figure 57 Laying unit 

The laying unit for the COPCENTRA Max 3 CNC is the hook system, explained in 4.2.2.2. The clamping 

system would probably be more adapted for the processing of natural slivers, as the slivers would be cut 

and clamps to the lay-in unit and no material overpacking would occur. However, the machine is yet too 

expensive, further research should be made for the optimization of the hook system.   

Implementability Costs Installation space Sum

Weighting factors 0,5 0,33 0,17 Σ gi * wi

Spreader bars 1 4 3 2,33

Fluid flow (liquid) 1 1 1 1

Fluid flow (gas) 4 3 4 3,67

Air vibration 2 3 4 2,67

Electrostatic 1 1 2 1,17

Lay-in unit

Clamps

Needles
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5.4 Development of concepts 

5.4.1 Morphological box and concepts developments 

To generate the solutions for the weft-insertion system, the partial solutions are regrouped in a 

morphological box ( 

Table 24). The partial solutions that were evaluated best fitted for responding to the problem are 

combined to form solutions.  

 

Table 24 Morphological box and concepts developments 

 

There are two combined solutions: 

• Solution A: Combines the single entrance with the roller pairs, the air flow system and in order 

to control the width a bar system should be installed.  

• Solution B: Combines the single entrance was combined with the belt conveyor and air flow 

system. The width is also controlled with two bars.  

  

Solutions
Functions

1 2 3 4

F1: Sliver 
entrance

F2: Guiding the 
sliver

F3: Spacing 
sliver evenly

F4: Controlling 
width of the 
sliver

Single 
entrance

Multiple 
entrance

Belt 
conveyor

Roller 
pairs

Trumpet/ 
Take-up rolls

Loop 
tensioner

Air 
flow

Air 
vibration

Spreader
bars

Bar width

Electrostatic

A B

F1 2 F1 2

F2 1 F2 2

F3 1 F3 1

F4 1 F4 1
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5.4.2 Solution A 

In solution A (Figure 58), the sliver is guided and tensioned by a pair of guiding rollers, an air flow system, 

with a determined air pressure, spreads the slivers. In order to control the width variation, the air pressure 

must be controlled, and adjustable bars should be installed to avoid slippage from the fibers at the 

extremities.  

 

Figure 58 Solution A 

5.4.3 Solution B 

In solution A (Figure 59), the sliver is guided by a belt conveyor, an air flow system, with a determined air 

pressure, spreads the slivers. In order to control the width variation, the air pressure must be controlled, 

and the belt should have a width limitation. The problem with that solution is that the width limitation 

system is not adjustable according to the needed width, the belt should therefore be changed for each 

width which is costly and not practical.   

 

Figure 59 Solution B 

Roving
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d(after)

Air flow

Width limitators

Roving
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Belt conveyor

d(after)
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Air flow
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5.4.4 Evaluations of the solutions 

When evaluating the solutions, with the same method explained in 5.3.2.1, Table 25 regroups the 

evaluation criteria for each solution: 

Table 25 Solutions evaluation 

 

The evaluation shows that the solution A is the best suited solution for replacing the actual weft-insertion 

system. The minimum requirements were exceeded for all the criteria.  

 

5.5 Validation of the concept 

In order to validate the solution A, a test stand is constructed with the available material at ITA. An 

experiment design is conducted to determine the influencing factors and setting ranges of the solution 

and the results are finally evaluated for the effectiveness of spreading the flax sliver.  

 

5.5.1 Preliminary testing 

The test stand (see Figure 60) helps to evaluate the suitability of the solution A for spreading the flax 

slivers and allows to determine the influencing parameters and their limits. The guiding rollers system 

could not be implemented, as the system was built with the available components at ITA.  

The distance between the individual units are reduced as much as possible in order to reduce the risk of 

sliver damage (the distance between the force introduction points must be smaller than the average fiber 

length). Also, as the sliver is conveyed directly from the container to the conveyor, and additional ring, 

through which the sliver is guided, ensures centering the sliver. 

In order to have control on the degree of spreading more precisely, the sliver above the air nozzle is 

limited laterally by adjustable plates. Camera systems are installed in front and behind the spreading unit 

to measure the fiber sliver width. A VGA camera with a resolution of 640x480 pixels records the width 

before the spread, a line camera with a resolution of 2000 pixels records the width after the spread. LED 

panels are placed under the fibers to create contrast. 

Feasibility Costs Installation space Sum

Weighting factors 0,5 0,33 0,17 Σ gi * wi

A 4 3 4 3,67

B 1 1 4 1,51
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Figure 60 Test stand of solution A 

In Figure 61 a schematic illustration of the spreading unit is represented and in Figure 62 a schematic 

lateral view of the test stand is illustrated.  

 

 

Figure 61 Air spreading in the test stand 

 

 

Figure 62 Schematic structure of the test stand in lateral view 
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Five influential parameters for the spreading unit can be highlighted:   

• Process speed: The process speed is determined by the speed of the Omega drive. A higher 

speed results in shorter spreading time of the sliver over the air nozzle, thus lower spreading of 

the sliver. For the following tests the sliver speed is kept constant at 3,12 m/min. 

• Height of the sliver in the spreading unit: The speed of the winder is adapted to the 

speed of the Omega drive and varies slightly to keep the tension within the sliver constant. A 

constant tension of the sliver is essential for a good spreading process, as this has an effect on 

the height of the sliver in the spreading unit. Higher tensions cause a higher height, lower 

tensions cause a low height and floating sliver. When the sliver has a low height and floats 

above the air nozzle system, the sliver oscillates due to turbulent flows. The sliver is then 

subjected to uneven stress and the air flow cannot be directed correctly through the sliver. For 

the following tests, a height of approx. 5 cm has been chosen. 

• Air pressure: The air pressure also has a direct effect on the result of the spread. A low air 

pressure has hardly noticeable effects on the sliver, a high air flow induces greater forces in the 

sliver and thus causes higher spreading degrees. However, if the pressure is too high, individual 

fibers can get loose, especially in the edges of the sliver and damage can occur. For the following 

tests, the minimum air pressure is set to 1 bar and the maximum air pressure to 2 bar. 

• Distance between bars in the spreading unit: The distance between the bars of the 

spreading unit have also an effect on the spreading of the sliver. A larger distance leads to a 

larger radius of the arc, smaller distances cause an arc with a smaller radius. Due to the design 

of the spreading unit, the minimum distance between the bars is limited to 9.5 cm, the 

maximum distance is set to 12 cm. 

• Width of the lateral plate limitation: The lateral limitation of the sliver regulates the 

maximum width of the sliver above the nozzle of the air spreading unit. This limitation limits the 

maximum achievable spreading degree of the sliver, but at the same time leads to a smoothing 

of the sliver after spreading. The unprocessed width of the sliver varies around 3 cm, in the 

preliminary tests, it turned out that a width of less than 3 cm for the plates does not lead to any 

meaningful spreading results, since it is lower than the unprocessed sliver width. Instead of 

spreading the sliver, the sliver is folded, and the width reduced. At widths over 5 cm, the limitation 

has almost no effect, since the sliver doesn’t touch the plates. 
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5.5.2 Experiment design 

In order to investigate the effect of the influential parameters, determined above, on the sliver, an 

experimental design is made. The individual parameters (the process speed, the air pressure, the distance 

between the bars of the spreading unit, the width of the lateral plate limitation of the spreading unit and 

the height of the sliver in the spreading unit) are evaluated in two levels, a low (-) level and a high (+) level 

(see Table 26). The levels were previously determined in the preliminary tests and must not exceed 

machine or material limits.  

The process speed is kept constant at 0.05 m/s during the tests.  The height of the sliver is kept at 

approx. 5 cm by manually adjusting the take-off speed. Thus, three parameters remain, which are varied 

within the parameter ranges determined in the preliminary tests.  The air pressure (A) can be adjusted 

between 1 bar and 2 bar, the lateral plate limitation of the spreading unit (B) between 3 and 5 cm and 

the distance between the bars (C) between 9,5 and a maximum of 12 cm.  

Table 26 Factor limitations 

 

In order to determine the influence of the factors, a combination of 8 tests is made (see Table 27). 

Table 27 Factor experimental design 

 

 

 

A [bar] B [cm] C [cm]

- + - + - +

1 2 3 5 9,5 12

Combination A B C

(1) - - -

a + - -

b - + -

c - - +

ab + + -

ac + - +

bc - + +

abc + + +
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5.5.3 Test evaluation 

For the test evaluation, the values recorded by the cameras in front of and behind the spreading unit for 

the width of the sliver were evaluated. In the unprocessed state, the width of the strip varies greatly. In 

order to determine the spreading effect of the air spreading unit, the width of the same specific sliver 

section must be compared before and after the spreading. For this reason, the measured value curves 

must be corrected in time by the amount of time the sliver section needs from the first to the second 

measuring point. The length of the sliver between the first and second measuring point is approx. 39,7 

cm. For a sliver speed of 52 mm.s-1 the time difference is of 7,6 s. In addition to the time shift, incorrect 

values may have to be corrected or excluded from the evaluation. Incorrect values occur when the edges 

of the sliver cannot be correctly determined, for example when single fibers are loose around the sliver. 

These lead to contrasts in the recorded image, which are recognized by the edge detection algorithms.  

These defective measuring points are excluded for the test evaluation. All the values gathered per factor 

of combination before and after the spread are evaluated below. In Figure 63, the sliver width before and 

after the spread for different factors combination is represented. 

 

Figure 63 Mean sliver width before and after the spread for different factor combinations 

An increase in sliver width can be achieved for each combination of factors. The highest average width of 

52,54 mm can be achieved with the factor combination "ab", however, it must be taken into account 

that the entrance width of 30,11 mm was also the highest. Even before spreading, the sliver shows strong 

variations in its width. It should be investigated whether these fluctuations can be reduced by air spreading 

and whether the sliver is more uniform. To assess the actual spreading effect, the degree of spreading 

can be considered. This results from the ratio of the width after and before the spread: 

𝑆𝐷 = 𝑏(𝑎𝑓𝑡𝑒𝑟)/𝑏(𝑏𝑒𝑓𝑜𝑟𝑒) 
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In Figure 64, it is possible to observe that the factor combination "ab", which reaches the highest average 

width after spreading, does not achieve the highest spreading effect. Instead, the highest spreading effect 

is achieved by increasing the distance between the lateral areas with the factor combination "b". 

 

Figure 64 Spreading degree for different factor combinations 

To evaluate the suitability of the spreading unit for the uniformity of the sliver width, the coefficients of 

variation can be considered:  

𝑣 =
𝜎

𝑥
∗ 100 

v: Coefficient of variation [%]  

𝜎  Standard deviation 

x: Mean value 

In Figure 65, the variation coefficients of the mean sliver width for each of the factor combinations is 

represented before and after spread. For each factor combination, the coefficient of variation is reduced 

and thus a homogenization of the fiber is achieved. For the factor combination "ab" the coefficient of 

variation could be reduced from approx. 14 % to 5 %. 

 

Figure 65 Variation coefficient of the mean sliver width for different factor combinations 

In Figure 66, the effect of air pressure on the sliver width after spreading is represented. This results in 

a linear influence, since only two factor levels were investigated. The width of the sliver increases by 4,86 

mm from an air pressure of 1 to 2 bar.  
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Figure 66 Effect of air pressure (A) on the width of the sliver after spreading 

The plate width limitation is the most influential parameter for the width of the sliver after spreading. The 

width of the sliver increases by 7,61 mm from a plate distance of 3 to 5 cm.  

 

Figure 67 Effect of the plate width limitation (B) of the sliver after spreading 

The effect of the bar spacing on the width of the sliver after spreading is less influential than the other 

effects. Nevertheless, its effect is not to be neglected, as an increase in the bar spacing in the spreading 

unit leads to a reduction in the mean sliver width after spreading.  

The greater the distance between the bars, the less the sliver will be fixated and the more it will be flexible. 

The air flow will no longer be orthogonal to the sliver and the distribution of the fiber will be irregular.  

 

Figure 68 Effect of the bar spacing on the width of the sliver after spreading 
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6 Construction of the new weft insertion system prototype 

6.1 Requirements list for the new weft insertion system prototype 

6.1.1 Roller pairs parameters  

As described in 5.3.2.2, the distance between the rollers should cover most of the fiber length (Klein, 

2016a). The average fiber length here being of 200mm, it was decided that the distance between the 

rollers should be smaller than 150mm.   

Also, the top rollers should be coated with a soft (65° - 75° Shore) synthetic rubber coat, for a good 

guidance of the sliver. For the bottom rollers, the material most generally used is steel, with a hardness 

of 150 HB. The diameter of the rollers normally varies between 40 to 60 mm (Klein, 2016a) and the 

length of the rollers should obliged by the following equation (Whiteside, 2007): 

𝐿𝑒𝑛𝑔𝑡ℎ

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
= 16 𝑜𝑟 𝑙𝑒𝑠𝑠  

 

6.1.2 Motor parameters 

In order to choose the motor for the weft insertion system, it is necessary to determine the torque and 

speed needed.  

The speed of the weft insertion system was described in 0. However, the speed to analyze here is the 

rotation speed needed for the roller pairs.  

The speed rotation is determined thanks to the following equation: 

 

𝑣𝑟𝑜𝑡(𝑡) =
𝑣(𝑡)

𝐷𝑟𝑜𝑙𝑙𝑒𝑟 × 𝜋
                   (4) 

With, 

𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 𝑑𝑖𝑎𝑚𝑎𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙𝑒𝑟 = 65𝑚𝑚. 

 

And with the obtained values, the torque and the pulse per second (PPS) could be determined. For the 

determination of the PPS, the following equation was used: 

 

𝑃𝑃𝑆 = 𝑣𝑟𝑜𝑡 × (𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛) × (𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜) 
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With, 

𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 ℎ𝑎𝑠 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 200 

𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑 𝑠𝑐 𝑠ℎ𝑎𝑓𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑑 𝑠𝑘 𝑚𝑜𝑡𝑜𝑟
= 

36

72
= 0,5  

 

The torque is determined with the following equations: 

 

𝑀 = 
𝐴𝐵𝑆((𝑣𝑟𝑜𝑡 × (𝑀𝑟𝑜𝑙𝑙𝑒𝑟𝑠 + 𝑀𝑏𝑒𝑙𝑡𝑠 + 𝑀𝑚𝑜𝑡𝑜𝑟 + 𝑀𝑟𝑜𝑙𝑙))

𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜
 

With,  

𝑀𝑟𝑜𝑙𝑙𝑒𝑟𝑠 = 0,001230902 𝑁𝑚 (determined by AutoInventor) 

𝑀𝑏𝑒𝑙𝑡𝑠 = 0,000062812 𝑁𝑚   (determined by AutoInventor) 

𝑀𝑚𝑜𝑡𝑜𝑟 = 0,00022 𝑁𝑚  (estimated) 

𝑀𝑟𝑜𝑙𝑙 = 0,033673806 Nm  (estimated) 

 

The resulting torque and speed needed for the system for the first phase (filling the hooks) is represented 

in Figure 69. The second phase, weft carriage moving from one side to the other, is represented in Figure 

70. 

 

Figure 69 First phase motor characteristics 

 

Figure 70 Second phase motor characteristics 
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For choosing the motor, the torque and the PPS must be fulfilled. The motor that fitted best the 

characteristics and was at a reasonable price was a motor from Oriental Motor Co. Ltd., PKP299D63A. 

The characteristics of the motors are represented in Figure 71: 

 

 

Figure 71 Selected motor characteristics 
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6.1.3 Requirements list 

 

Requirements list  

Tricot Machine with Multiaxial Weft Insertion (LIBA Copcentra 

Max 3 CNC): Development of a new weft insertion device. 

 

Demand (D) 

Wish (W) 

Requirements 

 Geometry 

D 

 

 

D 

 

D 

 

D 

Nip to nip distance between the rollers: 

• Max. 150 mm;  

• Must be adjustable. 

Diameter of rollers: 

• 40 to 60 mm. 

Length of rollers (Whiteside, 2007): 

• 
𝐿𝑒𝑛𝑔𝑡ℎ

𝐷 𝑎𝑚𝑒𝑡𝑒𝑟
= 16 𝑜𝑟 𝑙𝑒𝑠𝑠  

Width limitation: 

• 10 to 100 mm; 

• Must be hand adjustable. 

 Kinematics 

D 

D 

D 

D 

Max. speed of the weft carriage system: 6 m.s-1 

Max. acceleration of the weft carriage system: 15 m.s-2 

Pairs of rollers independently driven  

Conveyor speeds of the roller pairs can be synchronized 

 Forces 

D 

 

 

 

 

Air pressure: 

• 1 to 10 bars; 

• Must be controllable; 

• Proportional to the speed of the weft insertion device.  
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D 

 

 

 

 

D 

D 

D 

Pressure on rollers:  

• Top rollers must be pressured towards the bottom rollers (by spring 

weighting or pneumatic weighting); 

• Must be adjustable. 

Friction force on the flax fiber during the lay-up process: approx. 350 cN 

Friction force on the glass fiber during the lay-up process: approx. 50 N 

The weft threads are drawn parallel. No thread tension difference can occur. 

 Material 

D 

 

 

D 

 

Top rollers: 

• Coating material: Thick coating made of synthetic rubber; 

• Soft Coat: 65° to 75° Shore. 

Bottom rollers: 

• Minimum hardness: 150 HB 

 Ergonomics 

W Good accessibility.  

 Operation 

D Assemblage not to complex and easy to implement. 

 Maintenance 

W 

W 

Long maintenance intervals. 

Worn parts easily exchangeable. 

 Safety 

W Operational and environmental safety in regards of the possible carbon fibers 

presence in the laboratory. Electrical components suitable for use in 

environments with CF fiber dust exposure (protection class: IP-6X) 
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6.2 Drawing of the new weft insertion system prototype 

With the help of a mechanical engineer student at ITA, the new weft insertion system was modelized with 

AutoInventor (Figure 72): 

 

Figure 72 Weft insertion system prototype model 

 

6.3 Constructing of the test stand 

Each part of the machine was drawn as in industrial drawing to be sent to the construction site of ITA. 

The drawings can be found in ANNEX 4. The construction of all the elements has exceeded the time 

intended and it was not possible to build the construction stand on the time of the project. 
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7 Conclusion and Outlook 

The most common fibers in fiber reinforced plastics are glass fibers and carbon fibers. However, these 

materials have a high ecological footprint, they are made from non-renewable resources and their 

production results in high energy consumption and high CO2 emission. In this project, natural fibers 

where studied as a potential alternative, it was found that flax fibers have comparable mechanical 

properties to glass fibers and have a low ecological footprint. Yet, natural fibers are rare in the composite 

industry and are mainly found today in components with low mechanical loads. This is due to the fact 

that their properties are not fully exploited. Flax fibers are currently used as yarn, but the spinning process 

of flax fiber is costly, it has an important environmental impact and lowers the mechanical properties of 

the fiber because of the negative effect of twist. Untwisted flax slivers however allow to skip the spinning 

process. In order to produce a fabric out of untwisted flax sliver, the multiaxial fabric is the most adapted. 

But the multiaxial warp-knitting machine is only adapted for the processing of synthetic fiber, and since 

untwisted flax slivers have low cohesion, the sliver tends to slip apart during the process. This project aim 

was to create a new weft-insertion system adapted for the processing of untwisted flax slivers. To design 

this new system, the design guideline VDI 2221 was followed. A requirements list was firstly made, setting 

up the limitations and objectives for the new-weft insertion system. Five central functions were deducted 

from the system, the transportation from the creel to the weft insertion system, the guidance of the sliver, 

the spreading of the sliver, the laying and fixation of the sliver to the lay-in unit. Partial solutions were 

designed for guiding the sliver and spreading it. The solutions were evaluated, and a roller guiding system 

with an air spreading device was selected. A preliminary test was made on a test stand, the sliver width 

could be controlled, and the coefficient of variation reduced. The solution was validated, and influential 

parameters were found, such as the process speed, the height of the sliver over the air spreading device, 

the air pressure, the distance between the bars fixating the sliver over the air spreading device and the 

width of the lateral plate limitation. The concept was modelized in order to build it and a kinematic study 

took place for the determination of the maximum accelerations and maximum velocities of the machine 

so to find the most adapted motor to drive the shafts that guide the slivers. Industrial drawings were made 

in order to produce the components of the new device, but the construction time exceeded the 

premeditated time and so the system could not be built. In continuation of this project, a characterization 

of the sliver after being processed through the new insertion system should be proceeded, in order to 

identify the effects on the sliver and to adjust the settings of the system accordingly. A qualitative 

examination of the processed sliver must be carried out, as the width and variation coefficient of the sliver 
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after spreading was evaluated only quantitatively in the course of this work. Also, an important project 

that should be carried on, once the new weft insertion is tested is the development of a new lay-in unit, 

by optimizing the hook chain system.  
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ANNEX 1: Unevenness F-Flax and G-Flax 
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ANNEX 2: Mechanical characterization Sliver F-Flax and G-Flax 
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ANNEX 3: Mechanical characterization Fiber F-Flax and G-Flax 
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ANNEX 4: Industrial Drawings 

 

Figure 73 Shaft industrial drawing 

 

Figure 74 Width limitation bar industrial drawing 

 

Figure 75 Bearing plate industrial drawing 

 



                   Development of a multiaxial fabric out of untwisted flax sliver for high-performance composites 

107 

 

 

Figure 76 Entrance and exit guidance industrial drawing 

 

Figure 77 Motor plate industrial drawing 

 

 

Figure 78 Frame plate industrial drawing 
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Figure 79 Clamping block industrial drawing 

 

 

Figure 80 Bar industrial drawing 
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Figure 81 Driving shaft industrial drawing 

 

 

Figure 82 Coated shaft industrial drawing 




