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Abstract—This paper presents a benchmark of supervised
Automated Machine Learning (AutoML) tools. Firstly, we an-
alyze the characteristics of eight recent open-source AutoML
tools (Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O
AutoML, rminer, TPOT and TransmogrifAI) and describe twelve
popular OpenML datasets that were used in the benchmark
(divided into regression, binary and multi-class classification
tasks). Then, we perform a comparison study with hundreds
of computational experiments based on three scenarios: General
Machine Learning (GML), Deep Learning (DL) and XGBoost
(XGB). To select the best tool, we used a lexicographic approach,
considering first the average prediction score for each task and
then the computational effort. The best predictive results were
achieved for GML, which were further compared with the best
OpenML public results. Overall, the best GML AutoML tools
obtained competitive results, outperforming the best OpenML
models in five datasets. These results confirm the potential of the
general-purpose AutoML tools to fully automate the Machine
Learning (ML) algorithm selection and tuning.

Index Terms—Automated Deep Learning (AutoDL), Auto-
mated Machine Learning (AutoML), Benchmarking, Neural
Architecture Search (NAS), Software, Supervised Learning.

I. INTRODUCTION

A Machine Learning (ML) application includes typically
several steps: data preparation, feature engineering, algorithm
selection and hyperparameter tuning. Most of these steps
require trial and error approaches, especially for non-ML-
experts. More experienced practitioners often use heuristics
to exploit the vast dimensional space of parameters [1]. With
the increasing number of non-specialists working with ML [2],
in the last years there has been an attempt to automate several
components of the ML workflow, giving rise to the concept
of Automated Machine Learning (AutoML) [3].

This paper focuses on the selection of the best supervised
ML algorithm and its hyperparameter tuning. The comparison
study considers eight recent open-source AutoML technolo-
gies: Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon,
H2O AutoML, rminer, TPOT, and TransmogrifAI. To assess
these tools, we use twelve popular datasets retrieved from
the OpenML platform, divided into regression, binary and
multi-class classification tasks. In particular, we design three
main scenarios for the benchmark study: General ML (GML)

algorithm selection; Deep Learning (DL) selection and XG-
Boost (XGB) hyperparameter tuning. Each tool is measured in
terms of its predictive performance (using an external 10-fold
cross-validation) and computational cost (measured in terms
of time elapsed). Moreover, the best AutoML tools are further
compared with the best public OpenML predictive results
(which are assumed as the “gold standard”).

The paper is organized as follows. Section 2 presents the
related work. Next, Section 3 describes the AutoML tools
and datasets. Section 4 details the benchmark design. Then,
Section 5 presents the obtained results. Finally, Section 6
discusses the main conclusions.

II. RELATED WORK

The state-of-the-art works that compare AutoML tools can
be grouped into three major categories. The first category
includes publications that introduce a novel AutoML tool and
then compared it with existing ones. The second category (sim-
ilar to our work) is related with comparison of distinct tools,
without proposing a new AutoML framework. Finally, the
third category (less approached) focuses on the characteristics
of the technologies rather than their predictive performances.

Table I summarizes the related works using the following
columns: Ref. – the study reference; Cat. – the AutoML study
category; Dat. – the number of analyzed datasets; Tools –
the number of compared AutoML tools; GML – if General
ML algorithms (not DL) were tested, such as Naı̈ve Bayes
(NB), Support Vector Machine (SVM) or XGB; DL – if
DL was included in the comparison; Ext. – the external
validation method used (if any); C. – if computational effort
was measured; and Description – brief explanation of the
comparison approach. The majority of the related works (14
studies) are from the year 2020, which confirms that AutoML
tool comparison is a hot research topic. Some studies explore
a large number of datasets [4], [5]. Our comparison adopts
12 datasets, which is below the two mentioned works but is
still higher than used in eleven other studies (e.g., [6], [7]).
More importantly, we consider eight AutoML technologies,
which is a number only outperformed by [8] (which tested
only one dataset) and [9] (which did not use any datasets).



In particular, we benchmark the following recent tools: Auto-
PyTorch - only studied in [10] and compared in [9]; rminer
– not considered by the related works; and Transmogrifai –
only compared in [11]. Most works target GML. There are
four studies that only address DL (e.g., [6], [12]). Similar
to our approach, there are seven studies that consider both
GML and DL. Of the 21 surveyed works, only 12 employ
an external validation. Most of these studies (8 of 12) use
a single holdout train test split, which is less robust than a
10-fold cross-validation (adopted in four works). In addition,
only 9 studies measure the computational effort. Furthermore,
few studies contrast the AutoML results with the best human
configured results. Kaggle competition results were included
in [6], [13], [14]. This work adopts open science (OpenML)
best results, which was only performed in [15].

TABLE I
SUMMARY OF THE RELATED WORK (AUTOML TOOL COMPARISON).

Year Ref. Cat. Dat. Tools GML DL Ext. C. Description
2019 [16] 1 8 5 X new AutoML tool
2019 [6] 1 2 4 X HO X new AutoML tool
2019 [17] 1 53 4 X X 10CV X new AutoML tool
2019 [18] 2 39 4 X X AutoML benchmark
2019 [19] 2 5 3 X X AutoML benchmark
2019 [3] 2 n.d. n.d. X X HO X AutoML competition
2019 [4] 2 300 6 X X HO AutoML benchmark
2020 [5] 1 175 2 X HO X new AutoML tool
2020 [7] 1 3 2 X new AutoML tool
2020 [13] 1 50 6 X 10CV X new AutoML tool
2020 [20] 1 39 2 X 10CV X new AutoML tool
2020 [21] 1 5 2 X HO X new AutoML tool
2020 [12] 1 3 2 X HO new AutoML tool
2020 [22] 1 130 3 X X new AutoML tool
2020 [10] 1 8 4 X X new AutoML tool
2020 [15] 2 12 4 X AutoML benchmark

2020 [11] 2 3 2 X HO X
AutoML benchmark
(risk management)

2020 [14] 2 137 5 X 10CV survey and benchmark
2020 [8] 3 1 12 X HO literature review
2020 [23] 3 0 7 X qualitative comparison
2020 [9] 3 0 18 X X qualitative comparison
this
work - 2 12 8 X X 10CV X benchmark

n.d. - not disclosed.
10CV - 10-fold Cross-Validation (CV).
HO - Hold-Out (HO) validation.

III. MATERIALS AND METHODS

A. AutoML Tools

This study compares eight recent open-source AutoML
tools. Whenever possible, all tools were executed with their
default values, in order to prevent any bias towards a particular
tool, while also corresponding to a natural non-ML-expert
choice. When available in the tool documentation, we show
the number of hyperparameters (H) tuned by the AutoML.

1) Auto-Keras: a Python library based on the Keras module
and that is focused on an automatic DL Neural Architecture
Search (NAS) [24]. The search is performed by using a
Bayesian Optimization, with the tool automatically tuning the
number of dense layers, units, type of activation functions

used, dropout values and other DL hyperparameters. In this
work, we adopt Auto-Keras version 1.0.7, which is used in
the DL scenario (Section IV).

2) Auto-PyTorch: another AutoML tool specifically fo-
cused on NAS [10]. Auto-PyTorch version 0.0.2 uses the
PyTorch framework and a multi-fidelity optimization to search
the parameters of the best architecture (e.g., network type,
number of layers, activation function). Similarly to Auto-
Keras, we use Auto-PyTorch only in the second DL scenario.

3) Auto-Sklearn: an AutoML library built on top of the
Scikit-Learn ML framework. The choice of algorithms and hy-
perparameters implemented by Auto-Sklearn takes advantage
of recent advances in Bayesian optimization, meta-learning,
and Ensemble Learning [25]. We use Auto-SkLearn version
0.7.0 in the first GML scenario, since it does not implement
an automated DL or XGB. All ML algorithms (when available
for the task type) were tested: AdaBoost (H = 4), Bernoulli
(H = 2) and Multinomial NB (H = 2), Gaussian NB
(H = 0), Decision Tree (DT) (H = 4), Extremely Randomized
Trees (XRT) (H = 5), Gradient Boosting Machine (GBM)
(H = 6), k-Nearest Neighbors (k-NN) (H = 3), Linear
Discriminant Analysis (LDA) (H = 4), Linear SVM (LSVM)
(H = 4), Kernel based SVM (KSVM) (H = 7), Passive
Aggressive (H = 3), Quadratic Discriminant Analysis (QDA)
(H = 2), Random Forest (RF) (H = 5) and a Multiple Linear
Regression (MR) classifier (H = 10).

4) AutoGluon: a Python AutoML toolkit focused on DL
[26]. In this work, we consider the tabular prediction feature
of AutoGluon version 0.0.13. The tabular prediction executes
several ML algorithms and then returns a Stacked Ensemble
that uses the distinct ML models in multiple layers. In the
GML scenario (Section IV), ensemble includes all non DL
algorithms: GBM, CatBoost Boosted Trees, RF, Extra Trees
(XT), k-NN and MR. For the DL scenario, the AutoGluon
uses a DL dense architecture that uses heuristics to set the
hidden layer sizes, employing also ReLU activation functions,
dropout regularization and batch normalization layers [26].

5) H2O AutoML: the H2O open-source module for Au-
toML [27]. The tool adopts a grid search to perform the ML
model selection. In this paper, we use H2O AutoML version
3.30.1.2 for the three comparison scenarios: GML, DL and
XGB. In GML, all ML algorithms were explored (except DL):
Generalized Linear Model (GLM) (H = 1), GBM (H = 8),
RF (H = 0), XRT (H = 0), XGB (H = 9) and two Stacked
Ensembles: Best – with only the best models per ML family;
and All – with all trained algorithms. For the DL scenario, the
H2O tool uses a fully connected multi-layer perceptron trained
with a stochastic gradient descent back-propagation algorithm.
The searched H = 7 hyperparameters include the number of
hidden layers and hidden units per layer, the learning rate, the
number of training epochs, activation functions and input and
hidden layer dropout values. Finally, for the XGB scenario,
the tool tunes the same H = 9 hyperparameters of GML.

6) rminer: package of the R tool that is intending to
facilitate the use of ML algorithms [28]. In its most recent
version (1.4.6), rminer implements AutoML functions. The



rminer AutoML executions can be completely customized
by the user, who can define the searched ML algorithms,
hyperparameter ranges and validation metrics of the assumed
grid search. For less experienced users, rminer includes
three predefined AutoML search templates (https://CRAN.R-
project.org/package=rminer). Similarly to H2O, we test this
tool in the GML and XGB scenarios. In GML, we used the
"automl3" template, which searches the best model among:
GLM (H = 2), Gaussian kernel SVM (H = 2 for classification
andH = 3 for regression), shallow multilayer perceptron (with
one hidden layer, H = 1), RF (H = 1), XGB (H = 1) and a
Stacked Ensemble (H = 2, similar to H2O Stacked Best).

7) TPOT: a tool written in Python and that automates
several ML phases (e.g., feature selection, algorithm selection)
by using a Genetic Programming [29]. The GML scenario
tested all TPOT version 0.11.5 algorithms: DT, RF, XGB,
(multinomial) Logistic Regression (LR) and k-NN. TPOT
was not included in the third comparison scenario (XGB,
Section IV) because the tool does not allow the selection of a
single algorithm, such as XGB.

8) TransmogrifAI: an AutoML tool for structured data and
that runs on top of Apache Spark [30]. TransmogrifAI version
0.7.0 uses a grid search to perform the search of the best ML
model. In the GML scenario, the tool was tested with all its
ML algorithms: NB, DT, Gradient Boosted Trees (GBT), RF,
MR, LR and LSVM.

9) Summary: Table II summarizes the AutoML tools that
were used. For each tool, we detail the base ML Framework,
available Application Programming Interface (API) program-
ming Language, compatible Operating Systems, and if it
supports DL (Auto-Keras and Auto-PyTorch only address DL).

B. Data

The analyzed datasets (Table III) were retrieved from
OpenML [31]. The data selection criterion was defined as
selecting the most downloaded datasets that did not include
missing data and that reflected three supervised learning tasks:
regression, binary and multi-class classification. The datasets
reflect different numbers of instances (Rows), input variables
(Cols.) and output target response values (Classes/levels, from
2 to 257; the last column details the Target domain values).

IV. BENCHMARK DESIGN

The comparison study assumes three main scenarios (Ta-
ble II). The first GML scenario executes all ML algorithms
from the AutoML tools except DL, aiming to perform a more
horizontal ML family agnostic search. DL was discarded since
some of the tools do not implement DL (Table II), the training
of DL models often requires a higher computational effort and
the second scenario is exclusively devoted to DL. The second
DL scenario focuses on NAS, as implemented by the Auto-
Keras, Auto-PyTorch, AutoGluon and H2O AutoML tools.
Finally, the third scenario is more vertical, considering only
the XGB algorithm. XGB was selected since it is a recently
proposed non DL algorithm that includes a large number

TABLE II
DESCRIPTION OF THE COMPARED AUTOML TOOLS.

AutoML Framework API Operating DL Scenario

Tool Lang. Systems GML DL XGB

Auto-Keras Keras Python
MacOs
Linux
Windows

Yes
(only) X

Auto-PyTorch PyTorch Python
MacOs
Linux
Windows

Yes
(only) X

Auto-Sklearn Scikit-Learn Python Linux No X

AutoGluon PyTorch Python MacOS (P.)
Linux Yes X X

H2O AutoML H2O
Java
Python
R

MacOs
Linux
Windows (P.)

Yes X X X

rminer
AutoML rminer R

MacOs
Linux
Windows

No X X

TPOT Scikit-Learn Python
MacOs
Linux
Windows

No X

TransmogrifAI Spark
(MLlib) Scala

MacOs
Linux
Windows

No X

P. - partially supported (with less capabilities).

TABLE III
DESCRIPTION OF THE SELECTED OPENML DATASETS.

Dataset Task Rows Cols. Classes/
levels

Target
values

Cholesterol regression 303 14 152 [126, 564]
Churn binary 5000 21 2 {0,1}
Cloud regression 108 7 94 [0, 6]
Cmc multi-class 1473 10 10 {0,1,...,9}
Credit binary 1000 21 2 {0,1}
Diabetes binary 768 9 2 {0,1}
Dmft multi-class 797 5 6 {0,1,...,5}
Liver
disorders regression 345 6 16 [0, 20]

Mfeat multi-class 2000 7 10 {0,1,...,9}
Plasma regression 315 14 257 [179, 1727]
Qsar binary 1055 42 2 {0,1}
Vehicle multi-class 846 19 4 {0,1,...,3}

of hyperparameters (e.g., H2O documentation mentions 40
hyperparameters of which only H = 9 are tunned). In this
scenario, we test H2O and rminer, since they are AutoML
tools that allow to run the single XGB algorithm.

For every predictive experiment, the datasets were equally
divided into tens folds, used for the external cross-validation.
In order to create validation sets (to select the best ML
algorithms and hyperparameters), we adopted an internal 5-
fold validation. For instance, if the data contains 100 instances,
then in the first external 10-fold iteration 90 examples are used
by the tool for fitting purposes (model selection and training),
with the remaining 10 instances being used for the external
testing. The 90 fit examples are further divided into 5 folds.

https://CRAN.R-project.org/package=rminer
https://CRAN.R-project.org/package=rminer


In the first internal fold, each ML is trained with 72 instances
and 18 are used for validation purposes (allowing to select
the best model). Since neither Auto-Keras nor Auto-PyTorch
natively support cross-validation during the fitting phase, we
used a simpler holdout train (75%) and test (25%) set split to
select and fit the models.

In all three scenarios the same measures are used to evaluate
the performance of the external 10-fold test set predictions.
Popular prediction measures were selected: regression - Mean
Absolute Error (MAE) (∈ [0.0,∞[, where 0.0 denotes a perfect
predictor); binary classification - Area Under the receiver
operating characteristic Curve (AUC) (∈ [0.0,1.0], where 1.0
denotes the ideal classifier); multi-class classification - Macro
F1-score (∈ [0.0,1.0], where 1.0 denotes the perfect model).
Whenever allowed by the AutoML tool, we adopted the
same measures for the internal AutoML validation set model
comparison. The exceptions were with multi-class datasets
and the Auto-Keras and Auto-PyTorch tools, which did not
allow to use a Macro F1-score validation, thus the default loss
function was adopted for these tools.

All experiments were executed using an Intel Xeon
1.70GHz server with 56 cores and 2TB of disk space. For
each external fold, we also recorded the computational effort
(in terms of time elapsed) for the AutoML fit (model selection
and training). When the AutoML tool allowed to specify a time
limit for training, the chosen time was one hour (3,600 s).
Also, for the tools that implement an early stopping AutoML
parameter, we fixed the value to three rounds. To aggregate
the distinct external 10-fold results, we compute the average
values. We also provide the 10-fold average t-distribution 95%
confidence intervals, which can be used to attest if the tool
differences are statistically significant (e.g., by checking if two
confidence intervals do not overlap). Nevertheless, given that
there is a very large number of comparisons, to select the best
tool for each task, we adopt a lexicographic approach [32],
which considers first the best average predictive performance
(with a precision up to 1% or 0.01 points) and then the
average computational effort (precision in s). To facilitate the
lexicographic regression analysis, we compute the Normalized
MAE (NMAE) score, which is a scale independent measure,
where NMAE = MAE/(max(y) −min(y)) and y denotes
the output target.

V. RESULTS

Figures 1 and 2 summarize the main scenario (GML)
results. In total, there were 12 (dataset)× 6 (tools)× 10 (folds)
= 720 AutoML executions. Figure 1 presents the average
computational effort (in s) for each external 10-fold iteration.
Figure 2 shows the average external test scores (grouped
in terms of the binary, multi-class and regression tasks). To
facilitate the visualization of the regression scores, in the right
of Figure 2 we use the NMAE score in the y-axis.

For GML, Auto-Sklearn always requires the maximum
allowed computational effort (3,600 s), followed by TPOT
(average of 858 s per external fold and dataset). The other
tools are much faster: AutoGluon – lowest average value (70

s), best in 5 datasets; H2O – second average value (158
s), best in 5 datasets; TransmogrifAI – third best average
(317 s); rminer – fourth best average (408 s), best in 2
datasets. Regarding the prediction performances, there is a
high overall correlation between the validation and test scores
(not shown in Figure 2, although the same effect is present in
Tables IV and V), when considering all tool execution values:
0.75 – binary; 0.90 – multi-class; and 0.92 – regression. For
binary classification, and when considering the test set results,
the AutoML differences are smaller for churn (maximum
difference of 3 percentage points - pp) and higher for the
other datasets (10 pp for diabetes, 15 pp for credit and 16 pp
for qsar). TransmogrifAI is the best tool in 3 of the datasets
(churn, credit and qsar), also obtaining the best average AUC
per dataset (88%). An almost identical average (87%) is
achieved by H2O (best in churn and credit), rminer (best in
diabetes) and TPOT (best in churn). AutoGluon and Auto-
Sklearn produced the worst overall results (average AUCs per
dataset of 78% and 80%). Turning to multi-class tasks, the
AutoML differences (best tool test result minus the worst one)
are smaller when compared with the binary task: 4 pp – Cmc;
5 pp – Dmft; 6 pp – Mfeat; and 8 pp – Vehicle. The best test
dataset average is obtained by AutoGluon (Macro F1-Score
58%), followed by Auto-Sklearn, H2O and TPOT (Macro F1-
Score of 57%), then TransmogrifAI (56%) and finally rminer
(53%). In terms of datasets, the best results were: Cmc –
Auto-Sklearn (54%); Dmft – TransmogrifAI (24%); Mfeat
– AutoGluon, Auto-Sklearn and TPOT (74%); and vehicle
- AutoGluon and Auto-Sklearn (82%). As for the regression
tasks, the AutoML tool differences for each dataset are very
small, corresponding to 1 pp in terms of NMAE for all three
datasets. In effect, all tools obtain the same average NMAE per
dataset (9%). Using the lexicographic selection (Section IV),
the GML tool recommendation is: binary - TransmogrifAI;
multi-class - AutoGluon; regression – rminer.

The DL benchmark consisted of 12 (dataset) × 4 (tools)
× 10 (folds) = 480 AutoML executions. Table IV shows
the average DL 10-fold results (± the 95% confidence in-
tervals) in terms of the external computational effort (Time),
internal validation (Val.) and test scores (Test). The Auto-
Keras and Auto-PyTorch validation scores are omitted, since
they are not disclosed by the tools. Regarding execution time,
AutoGluon is much faster than the other tools, requiring an
average fit time of just 24 s. The second fastest DL tool
is Auto-Keras (average of 984 s), followed by H2O (3,458
s) and then Auto-PyTorch (3,600 s). As for the prediction
performances, the average test values per dataset are: binary
(AUC) - H2O (85%), Auto-PyTorch (77%); AutoGluon (72%)
and Auto-Keras (69%); multi-class (Macro F1-score) - Auto-
Gluon (57%), Auto-PyTorch (56%); H2O (50%) and Auto-
Keras (43%); regression (NMAE) - H2O (10%); Auto-PyTorch
and AutoGluon (11%); Auto-Keras (13%). While only four
tools are compared, larger differences among the tools were
obtained for the DL scenario when compared with GML:
binary - ranging from 11 pp (Qsar) to 24 pp (credit); multi-
class - from 4 pp to 30 pp; and regression – from 2 pp to 10 pp.



Fig. 1. Execution time (y-axis) for the GML scenario (bars denote external 10-fold average values with 95% confidence intervals; the Auto-Sklearn values
were omitted from the graph because they are always constant and equal to 3,600 s).

Fig. 2. Predictive results for the GML scenario (bars denote external 10-fold average values with 95% confidence intervals).



The lexicographic recommendation for DL is: binary - H2O;
multi-class - AutoGluon; regression – H2O. However, when
considering both GML and DL scenarios, the lexicographic
selection favors GML tools.

TABLE IV
RESULTS FOR THE DL SCENARIO (BEST VALUES IN BOLD).

Dataset Tool Time Measure Val. Test

Churn
Auto-Keras 2294±309 - 0.74±0.04

Auto-PyTorch 3600±000 - 0.81±0.08
AutoGluon 0041±003

AUC

0.90±0.00 0.80±0.02
H2O AutoML 3600±000 0.92±0.00 0.92±0.02

Credit
Auto-Keras 1498±333 - 0.52±0.02

Auto-PyTorch 3600±000 - 0.68±0.04
AutoGluon 0021±002 0.77±0.01 0.57±0.03

H2O AutoML 3600±000 0.78±0.00 0.76±0.04

Diabetes
Auto-Keras 0828±179 - 0.70±0.04

Auto-PyTorch 3600±000 - 0.73±0.03
AutoGluon 0022±001 0.79±0.01 0.65±0.05

H2O AutoML 3600±000 0.84±0.01 0.82±0.03

Qsar
Auto-Keras 1154±336 - 0.82±0.03

Auto-PyTorch 3600±000 - 0.87±0.02
AutoGluon 0026±003 0.91±0.00 0.84±0.03

H2O AutoML 3600±000 0.92±0.00 0.92±0.02

Cmc
Auto-Keras 0884±139 - 0.45±0.04

Auto-PyTorch 3600±000 - 0.51±0.04
AutoGluon 0027±003

Macro
F1

0.55±0.00 0.53±0.02
H2O AutoML 3600±000 0.55±0.00 0.48±0.06

Dmft
Auto-Keras 0478±045 - 0.16±0.04

Auto-PyTorch 3600±000 - 0.18±0.04
AutoGluon 0018±002 0.21±0.01 0.17±0.02

H2O AutoML 3600±000 0.23±0.01 0.14±0.04

Mfeat
Auto-Keras 0713±095 - 0.44±0.04

Auto-PyTorch 3600±000 - 0.73±0.02
AutoGluon 0032±002 0.76±0.00 0.74±0.01

H2O AutoML 3600±000 0.69±0.01 0.58±0.06

Vehicle
Auto-Keras 0708±053 - 0.65±0.05

Auto-PyTorch 3600±000 - 0.85±0.02
AutoGluon 0038±003 0.85±0.01 0.82±0.03

H2O AutoML 3600±000 0.82±0.01 0.78±0.03

Cholesterol
Auto-Keras 0665±059 38.4±3.2 57.7±29.3

Auto-PyTorch 3600±000 59.5±3.9 60.5±24.8
AutoGluon 0013±002

MAE

39.0±0.5 39.4±4.0
H2O AutoML 2509±279 37.3±0.4 39.9±4.1

Cloud
Auto-Keras 0549±572 0.00±0.00 0.88±0.36

Auto-PyTorch 3600±000 0.20±0.04 0.30±0.10
AutoGluon 0013±001 0.39±0.03 0.43±0.12

H2O AutoML 3256±437 0.25±0.01 0.32±0.11

Liver
Disorders

Auto-Keras 0879±797 2.67±0.29 2.60±0.37
Auto-PyTorch 3600±000 2.54±0.14 2.41±0.35

AutoGluon 0018±003 3.39±0.20 3.44±0.33
H2O AutoML 3326±546 2.23±0.04 2.68±0.33

Plasma
Auto-Keras 1156±111 127±006 170±020

Auto-PyTorch 3600±000 175±091 191±097
AutoGluon 0014±002 156±004 155±022

H2O AutoML 3600±000 151±003 160±017

Table V presents the XGB scenario results (total of 240
AutoML executions). Both tools require a low computational
effort, with rminer presenting the faster fit times (average of
5 s), while H2O requires around 16 times more computation
(average of 80 s). Both tools also present similar predictive
performances, with the tool differences ranging from 0 to 2 pp.

The lexicographic selection for XGB favors: binary - rminer
(average AUC of 86%); multi-class - H2O (average Macro F1-
score of 55%); regression - rminer (average NMAE of 9%).
When considering both DL and XGB scenarios, the lexico-
graphic choice favors rminer XGB for the binary classification
and regression tasks, while AutoGluon DL is the selected
tool for multi-class. When analyzing all three scenarios, the
overall lexicographic selection is: binary – TransmogrifAI
GML; multi-class – AutoGluon GML; regression - rminer
XGB.

TABLE V
RESULTS FOR THE XGB SCENARIO (BEST VALUES IN BOLD).

Dataset Tool Time Measure Val. Test

Churn H2O 356±182

AUC

0.93±0.00 0.92±0.01
rminer 006±000 0.92±0.00 0.92±0.01

Credit H2O 021±002 0.79±0.01 0.79±0.02
rminer 004±000 0.77±0.01 0.79±0.02

Diabetes H2O 013±002 0.83±0.01 0.82±0.05
rminer 003±001 0.81±0.01 0.82±0.04

Qsar H2O 037±004 0.93±0.00 0.93±0.01
rminer 004±000 0.93±0.00 0.93±0.02

Cmc H2O 035±002

Macro
F1

0.53±0.01 0.53±0.02
rminer 006±000 0.53±0.01 0.52±0.03

Dmft H2O 034±002 0.23±0.01 0.21±0.04
rminer 009±000 0.20±0.01 0.19±0.02

Mfeat H2O 121±009 0.72±0.06 0.71±0.02
rminer 015±001 0.72±0.01 0.71±0.02

Vehicle H2O 088±012 0.77±0.00 0.77±0.04
rminer 007±000 0.76±0.01 0.75±0.03

Cholesterol H2O 025±005

MAE

39.1±0.5 39.2±4.2
rminer 002±000 42.7±1.0 42.4±5.1

Cloud H2O 167±120 0.28±0.02 0.30±0.08
rminer 002±000 0.31±0.01 0.30±0.08

Liver
Disorders

H2O 020±004 2.29±0.04 2.35±0.32
rminer 002±000 2.49±0.05 2.45±0.30

Plasma H2O 042±008 154±003 154±022
rminer 003±001 171±004 170±021

Finally, we contrast the best main GML scenario results
(which consider more ML algorithms and AutoML tools) with
the best public OpenML results (Table VI). For each dataset,
we show in rounded brackets the best GML AutoML tool
and the type of OpenML modeling (the algorithm name or
“Pipeline”, with the latter denoting a ML workflow that in-
cludes a data preparation step). While the best OpenML result
includes predictions for all external 10-fold instances, we do
not know the exact validation and testing procedures adopted.
Thus, rather than assuming a “correct” comparison, we use
here the best OpenML results as a “gold standard”, denoting
a proxy to the best results that can be achieved when using
a human expert ML modeling. The column Attempts from
Table VI denotes the number of human ML attempts, termed
as a “run” in OpenML. The higher the number of attempts,
the stronger is our assumption that the gold standard was
reached. While all 12 datasets have high download numbers,



TABLE VI
COMPARISON BETWEEN BEST GML SCENARIO AND BEST OPENML

RESULTS (BEST VALUES IN BOLD).

Dataset Measure Best OpenML

AutoML OpenML Attempts

Churn

AUC

0.919
(H2O AutoML)

0.930
(Pipeline) 5,132

Credit 0.803
(H2O AutoML)

0.800
(Ranger) 419,021

Diabetes 0.825
(rminer)

0.842
(XGB) 132,164

Qsar 1.000
(TransmogrifAI)

0.938
(XGB) 147,659

Cmc

Macro F1

0.545
(Auto-Sklearn)

0.572
(Pipeline) 21,446

Dmft 0.236
(TransmogrifAI)

0.262
(Pipeline) 19,445

Mfeat 0.745
(AutoGluon)

0.772
(Pipeline) 22,136

Vehicle 0.820
(AutoGluon)

0.870
(Pipeline) 23,532

Cholesterol

MAE

38.59
(TransmogrifAI)

38.60
(Cforest) 160

Cloud 0.256
(TransmogrifAI)

0.268
(Pipeline) 5

Liver
Disorders

2.329
(Auto-Sklearn)

2.309
(Pipeline) 77

Plasma 152.3
(AutoGluon)

152.6
(Pipeline) 15

the attempts distribution is highly unbalanced towards the
classification tasks, particularly the binary ones (e.g., Credit
has more than 419,000 attempts). The results from Table VI
confirm the quality of the AutoML. In effect, the tools obtained
prediction scores that are close to the best OpenML results
in seven datasets (e.g., the maximum difference is 2 and 5
pp for the binary and multi-task classification tasks). More
importantly, the AutoML outperformed the best OpenML for
three regression tasks and for two highly modeled binary
datasets.

VI. CONCLUSIONS

In this paper, we benchmark eight recent open-source su-
pervised learning Automated Machine Learning (AutoML)
tools: Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon,
H2O AutoML, rminer, TPOT and TransmogrifAI. A large
set of computational experiments was held by considering an
external 10-fold cross-validation, twelve datasets and three
tool comparison scenarios. Each tool was benchmarked by
measuring its computational effort and predictive scores. We
retrieved popular datasets from the OpenML platform, which
were equally grouped into regression, binary and multi-class
classification tasks. The three comparison scenarios were:
General Machine Learning (GML) - with a broad range of
classical ML algorithms; Deep Learning (DL) - focusing on
tools with DL Neural Architecture Search (NAS) capabilities;

and XGBoost (XGB) - considering a single XGB algorithm
hyperparameter tuning.

To select the best tools for each scenario, we adopted
a lexicographic approach, which considers first, for each
task, the best average predictive score and then the lowest
computational effort. For GML, the lexicographic selection
favors TransmogrifAI for binary classification, AutoGluon for
multi-class classification and rminer for regression. For DL,
the selection is H2O for the binary and regression tasks and
AutoGluon for regression. As for the XGB scenario, rminer is
the best overall option for binary and regression tasks, while
H2O is recommended for multi-class tasks.

A global overall analysis, considering all three scenarios,
favors the GML approach, which produced the best pre-
dictive scores. This result should be taken with some cau-
tion, since GML explored more ML algorithms and AutoML
tools. Nevertheless, the slightly lower AutoML DL predictive
performances might be explained by two factors. Firstly,
the analyzed datasets are relatively “small”, with the largest
dataset containing only 5,000 instances. And it is known that
DL tends to produce better results (when compared with
shallow methods) when modeling big data [33]. Secondly,
the AutoML tools with DL capabilities are more recent and
thus might be still immature when compared with GML
tools. For instance, the tested Auto-PyTorch and AutoGluon
versions are still in their zero dot something versions (e.g.,
0.0.2). To further measure the quality of the GML AutoML
modeling, we compared the best GML results with the best
predictions publicly available at the OpenML platform. The
OpenML comparison confirmed that current GML AutoML
tools provide competitive results, producing close predictions
in seven datasets and even outperforming the human ML
modeling in five datasets.

In future work, we intend to enlarge the comparison
by considering more open-source AutoML technologies and
datasets. In particular, we wish to analyze big data, where
DL can potentially produce better predictions. We also plan to
benchmark ML frameworks for specific infrastructure settings,
such as involving edge computing.
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