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Abstract. Within the context of Industry 4.0, quality assessment pro-
cedures using data-driven techniques are becoming more critical due to
the generation of massive amounts of production data. In this paper, we
address the detection of abnormal screw tightening processes, which is
a relevant industrial task. Since labeling is costly, requiring a manual
effort, we focus on unsupervised approaches. In particular, we assume
a low-dimensional input screw fastening approach that is based only on
angle-torque pairs. Using such pairs, we explore three main unsuper-
vised Machine Learning (ML) algorithms: Local Outlier Factor (LOF),
Isolation Forest (iForest) and a deep learning Autoencoder (AE). For
benchmarking purposes, we also explore a supervised Random Forest
(RF) algorithm. Several computational experiments were held by us-
ing recent industrial data with 2.8 million angle-torque pair records and
a realistic and robust rolling window evaluation. Overall, high quality
anomaly discrimination results were achieved by the iForest (99%) and
AE (95% and 96%) unsupervised methods, which compared well against
the supervised RF (99% and 91%). When compared with iForest, the AE
requires less computation effort and provides faster anomaly detection
response times.

Keywords: Autoencoder · Deep Learning · Industry 4.0 · Isolation Forest ·
One-class classification · Random Forest · Unsupervised learning.

1 Introduction

The current competition market increases the pressure for industrial companies
to improve their productive processes (e.g., increasing efficiency and reducing
costs). Within this context, a key aspect is the reduction of assembly errors
during the production of products. Following the Industry 4.0 revolution, most
modern factories make use of automation and robots that are interconnected



2 D. Ribeiro et al.

with data sensors. While fully autonomous robots are used in some production
plants, there are still industrial tasks that require a human operator. In effect,
several companies use assembly machines that combine the flexibility of robotic
arms with the guidance of human operators. In particular, handheld screwdrivers
are often used in assembly factories, presenting the advantage of an automatic
adaption to different torque profiles. During the screw tightening process, data
is collected in real-time, generating several instances with multiple features, in-
cluding angle-torque pairs. Once the operation is finished, the full screw response
curve is presented to the operator, who needs to accept or reject it (due to lack
of quality issues) in a small amount of time. While defects are rare in this do-
main, they are related with a diverse range of situations, such as floating screws,
stripped screws and other situations. Often, the defect is detected too late down
the production chain, which results in extra production times and costs.

A common approach to detect industrial screw tightening anomalies is to
use a defect catalog that contains a curated set of normal and failure examples.
Each time a new screw tightening is executed, the obtained angle-torque curve
is compared with a predefined set of rules. However, this expert system detec-
tion method is rather static, requiring a manual collection and labeling of data.
Thus, there is a potential to automate and improve the detection task by using
Machine Learning (ML) algorithms. Within our knowledge, this approach has
been scarcely studied. The research work more closely related with our approach
was based on a Long Short-Term Memory (LSTM) neural network that uses an-
notated angle-torque screw responses [5]. Yet, such LSTM assumes a supervised
learning that is rather impractical in several industrial settings. In effect, labeled
data is costly (involving manual effort) and assembly companies typically pro-
duce big data. Thus, using a unsupervised learning for industrial screw tightening
anomaly detection would result in a more valuable and automated approach.

One of the challenges that anomaly detection has to address is that bound-
aries between normal data and abnormal data are often not clearly defined [4].
Moreover, the scarcity and diversity of anomalous data makes it a non trivial task
that is typically addressed by using an unsupervised or one-class learning [19].
Under the one-class learning approach, the training datasets only contain “nor-
mal” data points and the anomaly (often termed outlier) is detected when new
data is considered distant from the training learning space.

In this paper, we explore a low-dimensional input approach for the anomaly
detection of industrial screw tightening processes that only assumes angle-torque
pairs. To model the data, we adapt three main unsupervised algorithms that are
only trained with normal screw tightening process instances (thus one-class): Lo-
cal Outlier Factor (LOF), Isolation Forest (iForest) and a deep learning Autoen-
coder (AE). For comparison purposes, we also test a supervised (two-class) Ran-
dom Forest (RF). To evaluate the learning methods, we use a dataset with 2.8
million angle-torque pairs that were recently collected from an automotive mul-
timedia assembly company. Several computational experiments were conducted
by using a realistic rolling window evaluation that simulates several training and
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testing iterations through time. For each iteration, both the anomaly detection
performance and the computational effort were measured.

This paper is organized as follows. Section 2 presents the related work. Next,
Section 3 describes the collected industrial assembly data, anomaly detection
learning models and evaluation procedure. Then, Section 4 presents the experi-
mental results. Finally, Section 5 discusses the main conclusions and future work
directions.

2 Related Work

The topic of anomaly detection has been researched in several fields of study [6].
It is often regarded as a one-class task, since anomalous patterns are typically
scarce in most datasets. Several learning methods have been proposed for an
unsupervised anomaly detection, such as [1, 3]: Local Outlier Factor (LOF),
One-Class Support Vector Machine (OC-SVM) and Isolation Forest (iForest).
Following the success of Deep Learning, Autoencoders (AE) have been increas-
ingly adopted for anomaly detection tasks [21]. When compared with conven-
tional methods (e.g., LOF, OS-SVM and IF), AEs tend to provide faster training
times, thus are capable of handling a larger amount of training data. In partic-
ular, the AE model can be updated to include new instances without retraining
the full model [14], which is highly relevant when high velocity data is generated.

Regarding the specific screwing tightening use case, the research literature
involving ML approaches is scarce. For the automatic identification of behaviour
patterns on blind fasteners installation, [7] presents a kernel density-based pat-
tern methodology to classify good or bad examples. In [18], Support Vector
Machine (SVMs) with different kernel functions (e.g., linear and polynomial)
were used to monitor screw fastening processes on the cover of hard disks based
on the driver motor data. The obtained data-driven models were then used to
detect incomplete screwing processes. This work differs from ours as it correlates
motor power on a time series instead of the actual handled screw driver output
(e.g., angle and torque). In [15], another data-driven analysis was conducted
on thread fastening tasks that used a robotic manipulator. The problem was
addressed by a supervised SVM classifier, aiming to estimate how much of the
screw has been inserted by using the thread vibration from a torque sensor. As
explained in Section 1, the most similar related work was performed by Cao et
al. [5], where a supervised learning LSTM was used to infer the quality of the
assembly by analyzing the screwing tightening angle-torque curve. The main
novelty of our approach is that we use a pure unsupervised one-class learning,
which is more suited for high volume industrial screwing data.

3 Materials and Methods

3.1 Industrial Data

Our case study is related with a major automotive multimedia assembly com-
pany, where a new fastening process starts with the insertion of several sub-parts
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(the total number varies from product to product) into the assembly jig. Then
a scanner reads the imprinted barcode and the machine automatically loads the
screw tightening program. Next, the human operator proceeds with an alignment
of the matching pair and initiates the task. Using the help of the handheld screw-
driver, the operator is guided to fasten each screw in a specific order, leaving the
remaining technical details (e.g., torque and angle) to be handled automatically
by the machine. Screw after screw, the operator is presented with a “Good Or
Fail” (GOF) result, which is calculated automatically by the assembly machine
based on its internal configuration. Each time the tightening is finished, the as-
sembly system generates a local .csv file with all process details. All files are
then imported into a centralized big data server cluster. The new data is then
made available via the export of a .json file. Until this point, we have no control
over the generated data stream.

In this work, we have designed a Python virtual environment that is ca-
pable of retrieving the industrial data by using Apache Spark queries to the
central cluster. The raw data variables of the retrieved data are summarized in
Table 1. Let i denote a screw fastening procedure for some product unit, where
i ∈ {1, 2, ..., N} and N represents the total number of screw tightening processes.
For each i process, there is a real-time generation of several k ∈ {1, 2, 3, ...,Ki}
values, where Ki denotes the total number of observations and each product
unit can produce a different Ki value. For a particular i and k value, the ma-
chine automatically registers the angle (αi,k) and torque (τi,k) measurements.
Typically, each screw fastening produces hundreds of angle-torque pairs, such
as exemplified in Fig. 1. It should be highlighted that while there is no direct
temporal variable, the angle (αi,k) attribute can be used as sequential or tem-
poral measure of the fastening, since in almost cases its value increases as the
procedure continues.

A tightening process is composed of four main steps s ∈ {1, 2, 3, 4} (Table 2).
In order to succeed at combining sub-parts, every screw must sequentially meet
the transition conditions of each step within the parameterized time. The steps
are exemplified in Fig. 1, where the short blue curve denotes the initial rotation
(step s =0) used to catch the screw and the remainder curve colors (s = 1 – red,
s = 2 – green, s = 3 –purple and s = 4 – orange) denote the four main fastening
steps. For each step, the screw fastening tool stores the step number, total angle
and torque values. At the beginning of step s =4, the fastening tool computes an
estimate of the DTM Clamping Angle (dtmclampt). Once the process is nearly
finishing, the real DTM Clamping Angle is measured (dtmclampa). Then, the fi-
nal GOF result is computed by the screw assembly machine (attribute screwgof).

In this work, we adopt the last variable (screwgof attribute) as the supervised
label of the screwing process. Thus, this variable, denoted as yi for the i-th screw
tightening process, is used to select the instances for learning methods (e.g.,
only normal examples are fed into the one-class methods) and also to define
the normal and abnormal labels used to evaluate the models (when using test
“unseen” data). The values were directly computed by the assembly machine
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Table 1. Description of the industrial screw tightening data variables.

Variable Description

Hundreds of values per screw fastening (k):

angle (αi,k) Value for the angle (e.g., -208.1 degrees)
torque (τi,k) Value for the torque (e.g., 35.6 Ncm)
gradient Torque gradient for two consecutive angle values (e.g., 20)

Four values per fastening (one for each step):

stepnr Screwing step number (s ∈{1,2,3,4})
tstepangle Total step angle (e.g., 990 degrees)
tsteptorque Total step torque (e.g., 39.3)

One value per fastening (i):

dtmclampa Value for actual DTM Clamp (e.g., 79.1)
dtmclampt Value for predicted DTM Clamp (e.g., 30.2)
timestamp Timestamp (e.g., “2020-10-08 06:30:51”)
product Product family identifier (e.g., “2222111)
serial Product serial number (e.g., “11111)
screwnr Screw number (∈{1,2,...,8})
screwenergy Total energy required (e.g., 19959)
totalangle Total angle (e.g., 2993 degrees)
totaltorque Total torque (e.g., 30000 Ncm)
screwgof (yi) Screwing process “Good” (1) or “Fail” (0)
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Fig. 1. Example of a normal (“Good”) screw tightening.
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Table 2. Description of the screw fastening process steps.

Step Description Transition condition

Simple
torque
(s =1)

Serves as a transition to the next
step when the thread starts to be
formed.

Achieve either the transition
torque or angle within the param-
eterized time range.

Angle
(s =2)

Fixed number of turns conducted. Min Angle < Angle Target < Max
Angle within stipulated time.

Torque
(s =3)

Apply a fixed torque value. Min Torque < Torque Target
< Max Torque within stipulated
time.

Seating
control
(s =4)

Apply a torque value from the
screw seating value to the part.

Clamping Torque < Max Seating
Torque; Min Total Angle < Total
Angle < Max Total Angle; Min To-
tal Torque < Total Torque < Max
Total Torque.

software tool, which includes a rather rigid internal set of rules that define a
normal fastening cycle (based on a catalog of normal and abnormal examples).
It should be noted that in a few cases, this assembly tool provides a wrong
labeling, such as classifying a fastening cycle as normal when it actually was a
defect. However, since we have big data and it is costly to manually verify all
fastening cycles, we assume here that the provided yi values are a reasonable
oracle for testing the proposed anomaly detection methods (which do not use
any labels).

In terms of preprocessing, we grouped all records by product family (prod-
uct), serial number (serial) and screw number (screwnr, maximum of 8 screws
per individual unit). This grouping allows a fast identification of all k values
related with a tightening process (i), which is useful for anomaly detection eval-
uation purposes. The resulting dataset corresponds to around two days of screw
tightening processes, collected in November of 2020, and it includes a total of
2,853,967 entries related with N =6,162 fastening cycles. On average, there is
around Ki =463 records (angle-torque pairs) per cycle. Moreover, the dataset is
highly unbalanced. In effect, there are 74 defects that correspond to only 2% of
the screw tightening cycles.

3.2 Anomaly Detection Angle-Torque Approach

There are two screw tightening anomaly detection goals. The first and most
important goal is to automatically detect if there has been a failure in the screw
fastening cycle (yi =“Fail”). Once a failure has been detected, the secondary
goal is to automatically identify where (within the full cycle) the defect took
place. The secondary goal is needed to fine tune the detection details, providing
additional information that helps the human operator to accept the machine
learning result.
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In this work, we assume that each anomaly detection model outputs a deci-
sion score (di), such that the higher the score, the more probable is the chance
that an anomaly has occurred for the i-th tightening screw process. In order to
achieve both goals simultaneously, the anomaly detection methods are fed with
the all individual and more instant k values (one at the time). This means that
each i-th screw fastening produces a total of k ∈ {1, 2, ...Ki} examples that are
used for training or testing purposes, resulting in di,k anomaly decision scores.

To compute the overall decision score di (thus perform the main goal), the
individual scores are averaged, thus di =

∑
k di,k/Ki. For distinct i values, the

resulting scores (di) can be compared with the target variable (yi), allowing
the computation of the Receiver Operating Characteristic (ROC) curve [8]. If
class labels are needed, then a fixed Th threshold value needs to be set, such
that the i-th output is interpreted as an anomaly if di > Th. The specific Th
can be selected by using historical unlabeled data (e.g., by adopting a given
percentage above the maximum AE reconstruction error) or by selecting the
best specificity-sensitivity trade-off from a ROC curve that is generated when
using a labeled validation set. As for the secondary goal, if fine-grained target
values (yi,k) were available, then the individual decision scores (di,k) could be
used to generate ROC curves or other classification performance measures. Since
our dataset does not contain any fine-grained target labels, we will adopt a fixed
threshold to demonstrate the applicability of the secondary goal but without
robustly studying it. Moreover, given that we use pure unsupervised ML models,
the threshold will be set using historical unlabeled data (see Section 4).

Regarding the input features, the industrial screw tightening data includes
several attributes with different granularities (Table 1): fine-grained – angle
(αi,k), torque (τi,k) and gradient; step-grained – step number, total step angle
and torque; and one per each i-th tightening – such as dtmclampa, screwenergy
and yi. To select the input variables (and also to tune the AE models, see Sec-
tion 3.3), we conducted preliminary experiments by considering only the train-
ing data of the first rolling window iteration, thus related with the oldest data
records (Section 3.4). This oldest training data was further split into training (to
fit the models, with W −T tightening screw processes) and validation sets (with
T tightening cycles). In particular, we initially tested anomaly detection models
that were fed with all possible input variables (e.g., angle, torque, gradient, total
step angle, energy). However, the obtained models provided substantially worst
results when compared with the low-dimensional angle-torque input approach.
Moreover, the full input anomaly detection models required much more memory
and computational effort. In some cases, such as when using LOF, the compu-
tational training process even halted due to an out-of-memory issue. Based on
these results, all screw anomaly methods described in this work assume just two
input values: the simpler angle-torque pairs (αi,k, τi,k) for each (i, k) example.

3.3 Learning Models

Three unsupervised learning algorithms were selected for the empirical compar-
ison: LOF, iForest and a AE. These methods are are only trained with normal
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cases (one-class approach). For benchmarking purposes, we selected the popular
Random Forest (RF) method. However, we note that RF is a supervised learn-
ing method that, contrary to the one-class methods, requires labeled data for
the training procedure. Thus, RF was trained with both normal and abnormal
angle-torque instances.

To implement the methods we used the scikit-learn (for RF, LOF and
iForest) [16] and TensorFlow (for AE) [9] Python modules. At an initial stage,
we also explored the OC-SVM implementation of scikit-learn. However, our
training sets are too large for the algorithm, which did not compute results in
an affordable time (e.g., the first rolling window iteration execution was halted
after 40 hours of execution time). In order to provide a fair comparison, and
also reduce the computational effort, in the experiments we assumed in general
the default scikit-learn and keras hyperparameter values. Before feeding the
models, all angle-torque data values were first normalized, where the numeric
values were transformed to fit into a [0,1] scale by using a max-min normalization,
via the MinMaxScaler procedure of the sklearn module.

Unlike the other anomaly detection methods, LOF is a density-based algo-
rithm that heavily depends on K-nearest neighbors [3]. It is designed as local
because it depends on how well isolated an object is from the surrounding neigh-
borhood. Instead of classifying an object as being an outlier or an inlier, an
outlier factor is assigned describing up to which degree the object differs from
the rest of the dataset. It should be noted that LOF can be used to detect both
local and global outliers. Moreover, it can be trained with multi-class instances.
In this paper, in order to provide a fair comparison, we only use normal examples
to fit the model, where the outlier factor score is directly used as the anomaly
decision score (di,k).

Isolation Forests (iForest) take advantage of two major characteristics of
anomalous points: they are present in fewer quantities and are also numerically
different to normal instances. This means that anomalous instances are prone to
be more easily isolated (separated from the rest of the instances) than normal
points. Using this principle, an anomaly detection method can be based on the
construction of a tree structure to isolate every single instance and then evaluate
their normality. Due to their nature and tendency to be quickly isolated, abnor-
mal instances are closer to the root of the tree. This characteristic, also known
as Isolation Tree or iTree, forms the basis of anomaly detection for this model.
An iForest [13] is based on an ensemble of iTrees for a given dataset. Anomalies
are the instances that are closer to the root of the tree and will have shorter
average path lengths. The scikit-learn provides an anomaly score that ranges
from ŷi,k =-1 (highest abnormal score) to ŷi,k =1 (highest normal score). Thus,
we rescaled these scores into the [0,1] anomaly probability range by computing
di,k = (1− ŷi,k)/2.

Autoencoders (AE) are unsupervised learning techniques that efficiently com-
presses and encode data to a lower-dimensional representation [10]. The includes
an encoding stage, where compression occurs by reducing the input data (the
number of features describing the dataset) into a latent space (defined by a bot-
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tleneck layer), and a decoding stage, where the model tries to reconstruct the
original data from the latent space. When adapted for our anomaly detection
case, the training algorithm is only fed with normal instances and it attempts to
generate two output values (α̂i,k, τ̂i,k) that are identical to its inputs (αi,k, τi,k).
When a new (i, k) instance is evaluated, we compute the Mean Absolute Error
(MAE) [1]:

MAEi,k = (|αi,k − α̂i,k|+ |τi,k − τ̂i,k|)/2 (1)

This reconstruction error is used as the decision score di,k = MAEi,k, where
higher reconstruction errors should denote a higher anomaly probability. In terms
of the deep AE architecture, we assume a dense AE with two inputs (αi,k, τi,k),
two output nodes and a fully-connected structure that includes a stack of layers
in both the encoder and decoder components. All hidden layers use the popular
ReLU activation function, while the output nodes assume the logistic function
(all inputs are normalized ∈[0,1]). Every hidden layer is also attached with a
Batch Normalization layer, which reduces the internal covariate shift, discards
the need of dropout layers and normalizes the layer inputs for each batch of
data that passes through it [12]. In order to define the number of layers and
units per layer, we performed several trial-and-error preliminary experiments.
These experiments assume the same oldest training data used to set the input
variables (Section 3.2). The tested architectures use a bottleneck layer with 1
hidden node (to define the latent space) and a varying range of hidden layers.
The best results, measured in terms of the lowest reconstruction error for the
validation set, were achieved for an AE with 20 layers (including the input,
Batch Normalization and output layers), as shown in Fig. 2. In this work, the
selected AE is trained with the Adam optimization algorithm using the MAE
loss function, a total of 100 epochs and early stopping (with 5% of the training
data being used as the validation set).
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Fig. 2. The adopted dense AutoEncoder (AE) structure (the numbers denote the num-
ber of hidden units per layer and the term BN represents a Batch Normalization layer).

As explained in Section 2, the AE model can be adapted to dynamic environ-
ments when there are frequent data updates. In [14], two neural network learning
modes were compared: reset and reuse. When new data arrives and the neural
network is retrained, the former assumes a random weight initialization, while
the latter uses the previously trained weights as the initial set of weights. In
this work, we compare both learning modes when executing the rolling window
evaluation.
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Finally, RF is a supervised learning algorithm that works as an ensemble
of decision trees that form a “forest”. Each tree depends on the values of a
randomly sampled input vector and a bagging selection of training samples [2].
RF can be used for both regression and classification tasks. In this work, we
used RF to output anomaly class probabilities (∈[0.0,1.0]), which are used as
the decision score (di,k).

3.4 Evaluation

To compare the anomaly detection ML models, we execute the realistic rolling
window procedure [14,20]. This procedure is more robust than the popular ran-
dom holdout train-test split, since it realistically simulates an anomaly detec-
tion through time, producing several training and test updates, as exemplified
in Fig. 3. A fixed training window with W examples is first set. Then, in the
first iteration (u =1), the model is trained with the oldest W instances. Once
the model is fit, it performs T ahead predictions. Then, it simulates the passage
of time by “rolling” the training and test sets by assuming a temporal jump step
(S). The oldest S instances are discarded from the training set, being replaced
by S more recent ones. A new model is then fit, allowing to perform T new
subsequent predictions, and so on. In total, there are U = (D − (W + T ))/S
model updates (training and test iterations), where D is the total dataset size.
To split the data, in this work we adopt the screw tightening granularity, where
all k instances for a particular i tightening process are always kept together,
thus D = N = 6, 162. After consulting the industrial experts, we adopted the
values W = 5, 000, T = 500 and S = 33, which produces a total of U = 20 model
updates.

Iterations

1

2

U

3

...

Training Test

Training

Training

Test

Test

......

W

Full data (with    examples)

Time

T

D

S
Training Test

Fig. 3. Schematic of the adopted rolling window procedure.

To evaluate the anomaly detection methods, we adopt the popular ROC [8],
which is computed by using the target labels (anomaly or normal) and the
predicted anomaly decision scores (di,k) for the T tightening test examples of
each u rolling window iteration. The ROC represents the full discrimination
performance of a binary classifier when considering all possible Th threshold
values, plotting one minus the specificity (x-axis), also known as False Positive
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Rate (FPR), versus the sensitivity (y-axis) or True Positive Rate (TPR). The
overall discrimination quality is measured by the Area Under the Curve AUC

=
∫ Thmax

0
ROC dTh, where Thmax denotes the maximum maximum threshold

value (in this work, Thmax = 1 for the iForest, AE and RF methods). This AUC
metric has two main advantages [17]. Firstly, when the data is highly unbalanced
(which is our case), the interpretation of the goodness of the metric values does
not change. Secondly, the quality of the AUC values can be interpreted as: 50%
performance of a random classifier; 60% - reasonable; 70% - good; 80% - very
good; 90% - excellent; and 100% - perfect. Given that the rolling window pro-
duces several ROC curves and AUC values (one for each iteration), we aggregate
the results by computing the median (AUC, training and inference time) and
average (AUC) values, using the Wilcoxon non parametric statistic [11] to check
if paired AUC differences are statistically significant. All experiments were ex-
ecuted using a 2.3 GHz Intel Core i9 processor. Besides the predictive decision
scores, for each anomaly detection method we recorded the computational effort,
measured in terms of the average (over all u iterations) total training and and
anomaly screw tightening inference times (both in s).

4 Results

Table 3 summarizes the rolling window evaluation results, while Fig. 4 shows the
evolution of AUC values through the rolling window iterations. The supervised
method (RF) provides a high median and average AUC scores (99% and 91%),
which sets a high comparison standard for the unsupervised one-class methods.
Regarding LOF, it corresponds to the fastest training method, requiring an
average of 18.3 s for each rolling window iteration. However, this method also
provides the worst AUC values (median of 80% and average of 75%). When
comparing both AE learning modes, reuse and reset, the former provides better
median and average AUC results, and lower average computational training
times (explained by the usage of the early stopping procedure). The best one-
class median and average results are obtained by the iForest (99%). As shown
in Table 3, the median AUC differences are only significant when comparing
RF, iForest or the AEs with LOF. As for the average AUC values, iForest is
significantly better than other methods, while AE reuse is significantly better
than LOF and AE reset. Fig. 4 confirms that the two best one-class performing
models continuously provide an excellent (almost perfect) discrimination along
the distinct evaluation iterations. Given these results, we recommend the two
unsupervised methods iForest and AE resuse, since they do not require labeled
data (as RF). In particular, iForest obtains the highest discrimination capability.
As for AE reuse, the method produces an almost similar performance while
requiring much less computational effort. In effect, when compared with iForest,
the AE reuse training is around 7 times faster. Moreover, the AE reuse anomaly
inference time is half of the one required by iForest and one third of the response
time required by RF.
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Table 3. Rolling window screw tightening anomaly detection results (best values in
boldface font; selected models in italic font).

AUC Train Inference

Median Avg. Time (s) Time (s)

LOF 0.80 0.75 18.30 0.12
RF 0.99? 0.91? 25.33 0.12

iForest 0.99? 0.99† 168.18 0.08
AE reset 0.93? 0.92? 29.64 0.04
AE reuse 0.95? 0.96� 23.00 0.04

? – Statistically significant under a paired comparison with LOF.
† – Statistically significant under a paired comparison with all other methods.
� – Statistically significant under a paired comparison with LOF and AE reset.
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Fig. 4. AUC evolution for the screw tightening anomaly detection methods.

As an example, Fig. 5 plots the individual ROC curves for the selected models
during the third rolling window iteration. The curves overlap in the sensitive (top
right) region, with the AE reuse model slightly presenting a better specificity
(bottom left region) in this example.

To demonstrate the secondary goal (identification of the anomaly process
angle-torque regions), we selected the iForest and AE reuse models that were
obtained in the same rolling window iteration and a defect example from the test
set related with a a torque not reached error. Then, we defined a threshold value
(Th) that corresponds to the average plus one standard deviation of the training
decision scores (a different Th value was used for each method). Fig. 6 shows
the obtained anomaly points that correspond to the highest decision scores, such
that di,k > Th. It is interesting to note that both models signal several identical
abnormal regions, such as the three abrupt torque decays (set at the normalized
x-axis angle values of 0.30, 0.46 and 0.86).
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Fig. 5. ROC curves for the best two models for the rolling window iteration u=3
(dashed black line denotes the performance of a random baseline classifier).

Fig. 6. Anomaly points identified by iForest (top, blue points) and AE reuse (bottom,
orange points) for a screw fastening defect process.
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The obtained results were shown to the industrial experts, who considered
them very positive. Besides the high quality AUC results, the iForest and AE
reuse models allowed to detect one real defect example that was labeled as
“normal” by the screw assembly expert system tool. Thus, there is a potential for
a better screw tightening defect detection by the proposed data-driven models.
Moreover, the secondary goal demonstration example (Fig. 6) was valued as
interesting and useful, particularly in the end part of the process (right x−axis
region) when there is an abrupt torque decay. The experts highlighted that this
is one of the defect behaviors. Nevertheless, they also mentioned that there are
other types of screw tightening failures (at more initial stages), which will be
analysed in future work.

5 Conclusions

Following the Industry 4.0 phenomenon, there is currently a vast abundance of
digital data that reflect several stages of the manufacturing process. By using
these data, analytic tools based on machine learning methods can potentially
provide valuable production insights. In particular, within the electronic com-
ponent assembly industry, the automatic detection of screw tightening processes
can improve productivity and reduce costs. The assembly of screws is currently
a semi-automated procedure, involving both a human operator and robotic ma-
chines. Thus, typically each tightening procedure requires a two-stage inspection,
first by the machine and then by the operator. Moreover, current screw tighten-
ing failures, as identified by the machine tool, are often based on a defect catalog
comparison, which uses a rigid set of rules defined by an expert system. Thus,
there is room for improvement by using machine learning algorithms, creating
a data-driven model that can more quickly adapt to changes in the assembly
environment (e.g., assembly of new products).

In this paper, we focus on an industrial screw tightening anomaly detection
task by using an unsupervised approach, which does not require any labeled
data and thus it is more easy to automate. Our approach assumes that only
normal (thus one-class) angle-torque input pairs are used to train the models.
Using recently collected data, from an automotive electronics assembly company,
we collected around 2.8 million angle-torque pairs, related with 6,162 screw fas-
tening cycles. Four different learning algorithms were compared: unsupervised –
Local Outlier Factor (LOF), Isolation Forest (iForest) and a dense Autoencoder
(AE, under two learning modes: reset and reuse); and supervised - Random For-
est (RF), used for benchmarking purposes. The algorithms were trained with
individual angle-torque observations (two input variables), allowing to output
an anomaly decision score for each angle-torque pair. The anomaly detection
methods were compared by using a realistic rolling window evaluation, which
simulated 20 training and test iterations through time. Overall, the best un-
supervised learning results were obtained by the iForest and AE reuse. Both
methods provide an excellent anomaly discrimination capability that is iden-
tical or better than the supervised RF (median of 99% and average of 91%)
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benchmark. In effect, iForest produces the best unsupervised anomaly detection
result (median and average of 99%), slightly outperforming the AE reuse (me-
dian of 95%, average of 96%) approach. However, it should be noted that the
AE reuse method requires much less computational effort, which is relevant in
this industrial domain, since it generates high velocity data.

In future work, we intend to explore more deep learning architectures, such
as based on an AE with Long Short Term Memory (LSTM) layers, which can
capture directly sequential data [5]. Another interesting research direction is to
extend the research study by comparing the proposed data-driven approach with
the screw assembly expert system tool (main goal) and also evaluate the data-
driven model capability to correctly identify specific defect angle-torque regions
(secondary goal), which however would require the collection of a more costly
fine-grained human labeled data.
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